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The fully nonlinear governing equations for spin 1
2
quantum plasmas are presented. Starting from

the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quan-
tum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear
response of the quantum plasma in an electron–ion system is obtained and analyzed. Applications
of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.
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There is currently a great deal of interest in investi-
gating collective plasma modes [1, 2, 3, 4, 5, 6, 7, 8] in
quantum plasmas, as such plasmas could be of relevance
in nano-scale electro-mechanical systems [9, 10, 11], in
microplasmas and dense laser-plasmas [12], and laser in-
teractions with atomic systems [13, 14]. For example,
Refs. [1] and [3, 4, 5] used quantum transport models
in order to derive modified dispersion relations for Lang-
muir and ion-acoustic waves, while Shukla & Stenflo [15]
ionvestigated drift modes in nonuniform quantum mag-
netoplasmas. Moreover, it is known that cold quantum
plasmas can support new dust modes [16, 17]. In Ref.
[8] it was shown that electron quantum plasmas could
support highly stable dark solitons and vortices. Fur-
ther examples of quantum plasmas and the range of va-
lidity of their descriptions has been discussed recently
in Ref. [18]. The above studies of quantum plasmas
have used models based on the Schrödinger description
of the electron. It is expected that new and possible
important effects could appear as further quantum ef-
fects are incorporated in models describing the quantum
plasma particles. The coupling of spin to classical mo-
tion has attracted interest in the literature (see, e.g.,
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]). Much
work has been done concerning single particle spin effects
in external field configurations, such as intense laser fields
[22, 23, 24, 25, 26, 27], and the possible experimental sig-
natures thereof. However, there have also been interest
in excitations of collective modes in spin systems, such as
spin waves, in a wide scientific community. For example,
in Refs. [19, 20, 21] hydrodynamical models including
spin was presented, and further theory concerning spin,
angular momentum, and the forces related to spin was
discussed in Refs. [29] and [30]. Moreover, spin waves
in spinor Bose condensates has recently been discussed
in, e.g., Ref. [31]. The treatment of charged particles
and plasmas using quantum theory has received atten-
tion in astrophysical settings, especially in strongly mag-

∗Electronic address: mattias.marklund@physics.umu.se
†Electronic address: gert.brodin@physics.umu.se

netized environments [32, 33]. For example, effects of
quantum field theory on the linear response of an elec-
tron gas has been analyzed [34], results concerning the
spin-dependence of cyclotron decay on strong magnetic
fields has been presented [35], and the propagation of
quantum electrodynamical waves in strongly magnetized
plasmas has been considered [36].
In this Letter we present for the first time the fully non-

linear governing equations for spin 1
2 quantum electron

plasmas. Starting from the Pauli equation describing
the nonrelativistic electron, we show that the electron–
ion plasma equations are subject to spin related terms.
These terms give rise to a multitude of collective effects
of which some are investigated in detail. Applications of
the governing equations are discussed, and it is shown
that under certain circumstances the collective spin ef-
fects can dominate the plasma dynamics.
We will assume that the electron wave function can

be written in the product form Ψ = Ψ(1)Ψ(2) . . . Ψ(N),
where N is the number of particle states. Thus we will
here neglect the effects of entanglement and focus on the
collective properties of the the quantum electron plasma.
Then the non-relativistic evolution of spin 1

2 particles, as
described by the two-component spinor Ψ(α), is given by
(see, e.g. [37])

ih̄
∂Ψ(α)

∂t
=

[
− h̄2

2me

(
∇+

ie

h̄c
A

)2

+ µBB · σ − eφ

]
Ψ(α)

(1)
where α numbers the particle states, me is the parti-
cle mass, A is the vector potential, e is the magnitude
of the electron charge, µB = −eh̄/2mec is the electron
magnetic moment, φ is the electrostatic potential, and
σ = (σ1, σ2, σ3) are the Pauli spin matrices, represented
by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

(2)
By introducing the decomposition of the spinors ac-

cording to Ψ(α) =
√
n(α) exp(iS(α)/h̄)ϕ(α), we may derive

a set of N coupled fluid equations [37] for the densities
n(α), the velocities v(α) = (1/me)

(
∇S(α) − ih̄ϕ†∇ϕ

)
+
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(e/mec)A, and the spin vectors s(α) = (h̄/2)ϕ†

(α)σϕ(α)

(where ϕ(α) is the 2-spinor through which the spin 1
2

properties are mediated).
Next we define the total particle density for the species

with charge q according to ne =
∑N

(α)=1 pαn(α), where
pα is the probability related to the wave function Ψ(α).
Using the ensemble average 〈f〉 =

∑
α pα(n(α)/n)f for

any tensorial quantity f , we define the total electron fluid
velocity for charges Ve = 〈v(α)〉 and the total electron
spin density S = 〈s(α)〉. From these definitions we can
define the microscopic velocity in the electron fluid rest
frame according to w(α) = v(α)−Ve, satisfying 〈w(α)〉 =
0, and the microscopic spin density S(α) = s(α)−S, such
that 〈S(α)〉 = 0.
We then obtain the conservation equations

∂tne +∇ · (neVe) = 0, (3)

mne (∂t + Ve ·∇)Ve = −ene (E + Ve ×B)

−∇ ·Πe −∇Pe + Cei + FQ (4)

and

ne (∂t + Ve ·∇)S =
2µBne

h̄
B × S −∇ ·Ke +ΩS (5)

respectively. Here we have added the electron–ion colli-
sions Cei, denoted the total quantum force density by

FQ = −ne〈∇Q(α)〉 −
2µBne

h̄
(∇⊗B) · S

− 1

me
∇ · (neΣ )− 1

me
∇ ·

(
neΣ̃

)

− 2

me
∇ ·

{
ne Sym

[
(∇Sa)⊗ 〈(∇Sa

(α))〉
]}

, (6)

where Sym denotes the symmetric part of the tensor, and
defined the nonlinear spin fluid contribution by

ΩS =
1

me
S × [∂a(ne∂

aS)] +
1

me
S × [∂a(ne〈∂a

S(α)〉)]

+
ne

me

〈
S(α)

n(α)
× [∂a(n(α)

〉
∂aS)]

+
ne

me

〈
S(α)

n(α)
× [∂a(n(α)∂

a
S(α))]

〉
, (7)

where Πe = mene[〈w(α)⊗w(α)〉− I〈w2
(α)〉/3] is the trace-

free anisotropic pressure tensor (I is the unit tensor),
Pe = mene〈w2

(α)〉 is the isotropic scalar pressure, Σ =

(∇Sa) ⊗ (∇Sa) is the nonlinear spin correction to the

classical momentum equation, Σ̃ = 〈(∇S(α)a)⊗(∇Sa
(α))〉

is a pressure like spin term (which may be decomposed
into trace-free part and trace), K = ne〈w(α)⊗S(α)〉 is the
thermal-spin coupling, and [(∇ ⊗B) · S ]a = (∂aBb)S

b.
Here the latin indices a, b, . . . = 1, 2, 3 denote the vec-
tor components. We note that the momentum conser-
vation equation (4) and the spin evolution equation (5)

still contains the explicit sum over the N states, and (as
in classical fluid theory) it is necessary to impose fur-
ther statistical relations in order to close the system [38].
The preceding analysis applies equally well to electrons
as holes or similar condensations. We will now include
the ion species, which, due to the smaller charge-to-mass
ratio, are described by the classical equations of motion.

The coupling between the quantum plasma species is
mediated by the electromagnetic field. By definition we
let Btot include spin sources, i.e. Btot ≡ B +Bsp, such
that Ampere’s law in terms of Btot reads ∇ × Btot =
µ0(j + jsp) + c−2∂tE, including the magnetization spin
current jsp = ∇×(2nµBS/h̄) [39]. We obtain consistency
with the momentum conservation equation (4) by adding
a term proportional to V ×Bsp to the Lorentz force, and
subtracting it from the quantum force. The above alter-
ations are only reshuffling of terms. However, a difference
do appear when closing the system using Faraday’s law.
By letting ∇ × E = −∂tBtot, using Btot instead of B,
we indeed obtain a difference compared to the classical
Maxwell’s equations. It is the full electromagnetic fields,
including spin sources, that should be used in Faraday’s
law. Thus, Faraday’s law as presented here is therefore
the correct one to use. This form also gives a Hermitian
susceptibility tensor (see below), something which is not
obtained otherwise.

To demonstrate the usefulness of the spin fluid equa-
tions, we investigate linear wave propagation in a mag-
netized plasma. For comparison we first neglect all
quantum effects. Linearizing and Fourier analyzing the
equations of motion, and substituting the velocities into
Maxwells equations, we obtain ε ·E = 0, where

ε = I+




χ⊥⊥ χ⊥⊤ χ⊥z

−χ⊥⊤ χ⊤⊤ χ⊤z

χ⊥z −χ⊤z χzz


+




k2

z
c2

ω2 0 kzk⊥c2

ω2

0 k2c2

ω2 0
kzk⊥c2

ω2 0
k2

⊥
c2

ω2




(8)
and the standard susceptibility components are

χ⊥⊥ = −
∑

p.s.

ω2
p(ω

2 − k2zv
2
t )

ω4
w

,

χ⊥⊤ = −i
∑

p.s.

ω2
pωc(ω

2 − k2zv
2
t )

ωω4
w

,

χ⊥z = −
∑

p.s.

ω2
pk⊥kzv

2
t

ω4
w

,

χ⊤⊤ = −
∑

p.s.

ω2
p(ω

2 − k2v2t )

ω4
w

, (9)

χ⊤z = i
∑

p.s.

ω2
pωck⊥kzv

2
t

ωω4
w

,

χzz = −
∑

p.s.

ω2
p(ω

2 − ω2
c − k2

⊥
v2t )

ω4
w

.
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Here, the sums are over the particle species, k = (k2z +
k2⊥)

1/2, k⊥ is the perpendicular (to ẑ) part of the wave-
vector, the ⊤-direction is parallel to ẑ × k⊥, ωp is the
plasma frequency (ωpe for the electrons and ωpi for the
ions), ωc = qB0/m is the cyclotron frequency, q and m
are the particle charge and mass, v2t is the square of the
thermal velocity times the ratio of specific heats, c is
the speed of light in vacuum, and ω4

w = ω2
(
ω2 − k2v2t

)
−

ω2
c (ω

2−k2zv
2
t ). For notational convenience, the subscripts

denoting the various particle species have been left out.
Next we determine the equilibrium spin configuration.

For many plasmas paramagnetic theory applies. Thus,
in an external magnetic field B0 = B0ẑ, the zero order
magnetization MS0 due to the spin can be written [40]

MS0 = n0µB η

(
µBB0

KT

)
ẑ (10)

where K is Boltzmann’s constant, T is the tempera-
ture, and we have introduced the Langevin function
η(x) = [coth(x) − x−1]. Here we have assumed that
the spin contribution to the total magnetic field is small,
otherwise B0 → B0 + BS0, where BS0 = µ0µBn0, in
Eq. (10). In general, the spin-magnetization MS and
the spin-vector S are related by

S =
h̄MS

2nµB
(11)

and thus the zero order spin vector becomes S0 =
(h̄/2) η(µBB0/KT )ẑ. From (11) we obtain the spin-
current contribution js = ∇× (4neeS/me).
Generalizing (8) to include all terms from quantum ef-

fects give extremely complicated expressions. However,
for most plasmas, the parameter µBB0/KT is very small,
the spins are essentially randomly orientes, and the spin
quantum effects are negligible. On the other hand, for
low-frequency wave motion in a highly magnetized (or
low temperature) plasma, the spin effects can be appre-
ciable. In this case the dominant contribution to the spin
effects come from the component of the spin force par-
allel to the magnetic field, FQz = −(2µBn0S0/h̄)∂zB1,
where B1 denotes the magnetic field perturbation, to-
gether with the part of the spin current in the ⊤-direction
(from the part proportional to∇n×S0), and we can drop
all other components as well as quantum terms that are
proportional to h̄2, provided eB0 ≫ h̄k2. Keeping the
above terms, including only the lowest order contribu-
tions in ω/ωci, the susceptibility tensor is modified to

χ =




χ⊥⊥ χ⊥⊤ χ⊥z

−χ⊥⊤ χ⊤⊤ χ⊤z + χsp

χ⊥z −(χ⊤z + χsp) χzz


 (12)

where the spin-contribution is

χsp = i η

(
µBB0

KT

)
ω2
pe

h̄k⊥kz

ω(ω2 − k2zv
2
te)me

(13)

As an example we consider the fast and slow magne-
tosonic mode, which is now described by the dispersion
relation ε⊤⊤εzz+(ε⊤z+εsp)

2 = 0. In the standard regime
ω2
ci/ω

2
pi ≪ 1, ω ≪ kzvte, the dispersion relation becomes

(ω2−k2c2A)(ω
2−k2zc

2
s) = ω2k2⊥c2s

[
1 + η

(
µBB0

KT

)
h̄ωce

mev2te

]

(14)
where the ion-acoustic velocity is cs = (me/mi)

1/2vte,
the Alfvén velocity is cA = (B2

0/µ0n0mi)
1/2 and, for

simpliticy, we have assumed that the ion-temperature
is smaller than the electron temperature and included
only electron thermal effects. Noting that µBB0/KT ≡
h̄ωce/mev

2
te, obviously the spin-effects are important if

h̄ωce

mev2te
>∼ 1. (15)

Thus, for laboratory magnetic fields, where at most
B0 ∼ 10 − 20T, we need low temperature plasmas for
spin effects to influence the fast and slow magnetosonic
modes. However, in the vicinity of pulsars and magne-
tars [33], we have B0 ≥ 108T. For such systems, spin
plasma effects can be important even in a high tempera-
ture plasma.The spin effect on the fast and slow mode is
illustrated in Fig. 1. Furthermore, we point out that for
modes with even lower phase velocities (which exist in for
example dusty plasmas [16]), the relative importance of
the spin susceptibility term is enhanced, and spin effects
can be significant also under laboratory conditions.
In conclusion, we have derived the multi-fluid equa-

tions for spin 1
2 quantum plasmas, starting from the

Pauli equation. In order to demonstrate the usefulness
of our equations, we have analyzed the linear modes,
and demonstrated that the low-frequency modes are sig-
nificantly altered by the spin effects provided the con-
dition (15) is fulfilled. In many classical plasmas spin
effects can be neglected due to the random orienta-
tions of the spin vector. We stress here, however, that
our results show that the spin multi-fluid equations can
have important applications to such different mediums
as low-temperature solid state plasmas, as well as to
the accretion discs surrounding pulsars and magnetars.
Furthermore, we emphasize that the spin-contributions
are typically more important than the usual quantum
plasma corrections [18], specifically when the inequality
eB0 ≫ h̄k2 is fulfilled.
The linearized results presented in this Letter will most

likely find its experimental application in dusty plasmas,
where the low phase velocity will make the relative im-
portance of the spin contribution (13) particularly signif-
icant, enabling probing of the collective spin dynamics.
Finally, we suggest that the full nonlinear system (3)–

(7) will show interesting behavior close to the electrons
cyclotron frequency, when the spin vector evolution be-
comes resonant. Moreover, the importance of the pres-
sure like spin terms for, e.g., astrophysical plasmas is a
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FIG. 1: The two roots of the dispersion relation (14) plotted
in (a) (fast mode) and (b) (slow mode). In case (a) the lower
surface is without spin and the upper surface is with spin,
while in (b) the lower surface is with spin and the upper sur-
face is without spin. We note that the contribution from the
spin term can be significant, in particular for large values of
the wave numbers kz and k⊥. Here we have used c2s/c

2
A = 0.5,

ηh̄ωce/mev
2
te = 8, and normalized the frequency by the ion

cyclotron frequency ωci and the wave numbers by ωci/cA.

further field of investigation.
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