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The Basic Two-Level Regression Model

The multilevel regression model has become known in the research literature under a
variety of names, such as ‘random coefficient model’ (de Leeuw & Kreft, 1986; Long-
ford, 1993), ‘variance component model’ (Longford, 1987), and ‘hierarchical linear
model’ (Raudenbush & Bryk, 1986, 1988). Statistically oriented publications tend to
refer to the model as a mixed-effects or mixed model (Littell, Milliken, Stroup, &
Wolfinger, 1996). The models described in these publications are not exactly the same,
but they are highly similar, and I will refer to them collectively as ‘multilevel regression
models’. They all assume that there is a hierarchical data set, with one single outcome
or response variable that is measured at the lowest level, and explanatory variables at
all existing levels. Conceptually, it is useful to view the multilevel regression model as a
hierarchical system of regression equations. In this chapter, I will explain the multilevel
regression model for two-level data, and also give an example of three-level data.
Regression models with more than two levels are also used in later chapters.

2.1 EXAMPLE

Assume that we have data from J classes, with a different number of pupils 7; in each
class. On the pupil level, we have the outcome variable ‘popularity’ (Y), measured by a
self-rating scale that ranges from 0 (very unpopular) to 10 (very popular). We have two
explanatory variables on the pupil level: pupil gender (X;: 0 = boy, 1 = girl) and pupil
extraversion (X,, measured on a self-rating scale ranging from 1 to 10), and one class
level explanatory variable teacher experience (Z: in years, ranging from 2 to 25). There
are data on 2000 pupils in 100 classes, so the average class size is 20 pupils. The data are
described in Appendix A.

To analyze these data, we can set up separate regression equations in each class
to predict the outcome variable Y using the explanatory variables X as follows:

Yy =B+ By + BoXoy + € 21
Using variable labels instead of algebraic symbols, the equation reads:

popularity; = B+ Bgender; + frextraversion; + e;. 2.2)

11
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In this regression equation, f, is the intercept, f;; is the regression coefficient (regres-
sion slope) for the dichotomous explanatory variable gender, f,; is the regression coef-
ficient (slope) for the continuous explanatory variable extraversion, and e; is the usual
residual error term. The subscript j is for the classes (j=1 ... J) and the subscript i is
for individual pupils (i=1. . . n)). The difference with the usual regression model is that
we assume that each class has a different intercept coefficient f,, and different slope
coefficients f;; and B, This is indicated in equations 2.1 and 2.2 by attaching a sub-
script j to the regression coefficients. The residual errors e, are assumed to have a mean
of zero, and a variance to be estimated. Most multilevel software assumes that the
variance of the residual errors is the same in all classes. Different authors (see
Goldstein, 2003; Raudenbush & Bryk, 2002) use different systems of notation. This
book uses a2 to denote the variance of the lowest level residual errors™®

Since the intercept and slope coefficients are random variables that vary across
the classes, they are often referred to as random coefficients® In our example, the
specific values for the intercept and the slope coefficients are a class characteristic. In
general, a class with a high intercept is predicted to have more popular pupils than a
class with a low value for the intercept ®Similarly, differences in the slope coefficient for
gender or extraversion indicate that the relationship between the pupils’ gender or
extraversion and their predicted popularity is not the same in all classes. Some classes
may have a high value for the slope coefficient of gender; in these classes, the difference
between boys and girls is relatively large. Other classes may have a low value for the
slope coefficient of gender; in these classes, gender has a small effect on the popularity,
which means that the difference between boys and girls is small. Variance in the slope
for pupil extraversion is interpreted in a similar way; in classes with a large coefficient
for the extraversion slope, pupil extraversion has a large impact on their popularity,
and vice versa.

Across all classes, the regression coefficients f; are assumed to have a multivariate
normal distribution. The next step in the hierarchical regression model is to explain the
variation of the regression coefficients f8; introducing explanatory variables at the class
level:

Boi= Voo + Yor Z; + Uy, (2.3)

! At the end of this chapter, a section explains the difference between some commonly used notation
systems. Models that are more complicated sometimes need a more complicated notation system,
which is introduced in the relevant chapters.

% Of course, we hope to explain at least some of the variation by introducing higher-level variables.
Generally, we will not be able to explain all the variation, and there will be some unexplained
residual variation.

* Since the model contains a dummy variable for gender, the precise value of the intercept reflects the
predicted value for the boys (coded as zero). Varying intercepts shift the average value for the entire
class, both boys and girls.
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and

Bi=70t v +uy
By =710+ yuZ;+ . (2.4)

Equation 2.3 predicts the average popularity in a class (the intercept f;) by the
teacher’s experience (Z). Thus, if y,, is positive, the average popularity is higher in
classes with a more experienced teacher. Conversely, if 7, is negative, the average
popularity is lower in classes with a more experienced teacher. The interpretation of
the equations under 2.4 is a bit more complicated. The first equation under 2.4 states
that the relationship, as expressed by the slope coefficient f3;;, between the popularity
(Y) and the gender (X) of the pupil, depends on the amount of experience of the
teacher (Z). If y,, is positive, the gender effect on popularity is larger with experienced
teachers. Conversely, if y,, is negative, the gender effect on popularity is smaller with
experienced teachers. Similarly, the second equation under 2.4 states, if y,, is positive,
that the effect of extraversion is larger in classes with an experienced teacher. Thus, the
amount of experience of the teacher acts as a moderator variable for the relationship
between popularity and gender or extraversion; this relationship varies according to
the value of the moderator variable.

The u-terms wu,, u;; and u,; in equations 2.3 and 2.4 are (random) residual error
terms at the class level. These residual errors u; are assumed to have a mean of zero,
and to be independent from the residual errors ¢; at the individual (pupil) level. The
variance of the residual errors u; is specified as ., and the variance of the residual
errors uy; and u,; is specified as o, and o,. The covariances between the residual error

terms are denoted by ¢, , 0, and o, , which are generally not assumed to be zero.

Note that in equations 2.3 and 2.4 the regression coefficients y are not assumed
to vary across classes. They therefore have no subscript j to indicate to which class
they belong. Because they apply to all classes, they are referred to as fixed coefficients.
All between-class variation left in the f coefficients, after predicting these with the
class variable Z, is assumed to be residual error variation. This is captured by the
residual error terms u;, which do have subscripts j to indicate to which class they
belong.

Our model with two pupil-level and one class-level explanatory variable can be
written as a single complex regression equation by substituting equations 2.3 and 2.4
into equation 2.1. Rearranging terms gives:

Y= v00 + 710X + 720X + V01 2 + i XL+ v Xy Z,

i) 4
+ Uy Xy + Uy X + up; + e 2.5

Using variable labels instead of algebraic symbols, we have:
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popularity; = yo, + 1o gender; + yy, extraversion; + y,, experience;

+ 711 gender; X experience; + y,, extraversion; X experience;

+ wy; gender;; + uy; extraversion; + uyj + e;.
The segment [y + 710 X1+ V20 Xoj+ YaZ;+ y11 X154+ Y11 X»3Z] in equation 2.5 contains
the fixed coefficients. It is often called the fixed (or deterministic) part of the model.
The segment [u,,X; + uyX,; + uy; + ¢;] in equation 2.5 contains the random error terms,
and it is often called the random (or stochastic) part of the model. The terms X},Z; and
X,;Z; are interaction terms that appear in the model as a consequence of modeling the
varying regression slope f8; of a pupil level variable X; with the class level variable Z,.
Thus, the moderator effect of Z on the relationship between the dependent variable Y
and the predictor X, is expressed in the single equation version of the model as a cross-
level interaction. The interpretation of interaction terms in multiple regression analysis
is complex, and this is treated in more detail in Chapter 4. In brief, the point made in
Chapter 4 is that the substantive interpretation of the coefficients in models with
interactions is much simpler if the variables making up the interaction are expressed as
deviations from their respective means.

Note that the random error terms u,; are connected to Xj. Since the explanatory
variable X; and the corresponding error term u; are multiplied, the resulting total error
will be different for different values of the explanatory variable X, a situation that in
ordinary multiple regression analysis is called ‘heteroscedasticity’. The usual multiple
regression model assumes ‘homoscedasticity’, which means that the variance of the
residual errors is independent of the values of the explanatory variables. If this
assumption is not true, ordinary multiple regression does not work very well. This is
another reason why analyzing multilevel data with ordinary multiple regression
techniques does not work well.

As explained in the introduction in Chapter 1, multilevel models are needed
because with grouped data observations from the same group are generally more simi-
lar to each other than the observations from different groups, and this violates the
assumption of independence of all observations. The amount of dependence can be
expressed as a correlation coefficient: the intraclass correlation. The methodological
literature contains a number of different formulas to estimate the intraclass correlation
p. For example, if we use one-way analysis of variance with the grouping variable as
independent variable to test the group effect on our outcome variable, the intraclass
correlation is given by p = [MS(B) — MS(error)|//[MS(B)+(n — 1) x MS(error)], where
MS(B) is the between groups mean square and 7 is the common group size. Shrout and
Fleiss (1979) give an overview of formulas for the intraclass correlation for a variety of
research designs.

If we have simple hierarchical data, the multilevel regression model can also be
used to produce an estimate of the intraclass correlation. The model used for this
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purpose is a model that contains no explanatory variables at all, the so-called intercept-
only model. The intercept-only model is derived from equations 2.1 and 2.3 as follows.
If there are no explanatory variables X at the lowest level, equation 2.1 reduces to:

Y= By + ey (2.6)

Likewise, if there are no explanatory variables Z at the highest level, equation 2.3
reduces to:

BoJ = 00 + Uy 2.7
We find the single equation model by substituting 2.7 into 2.6:
Y= o0+t + ¢ (2.8)

We could also have found equation 2.8 by removing all terms that contain an X or Z
variable from equation 2.5. The intercept-only model of equation 2.8 does not explain
any variance in Y. It only decomposes the variance into two independent components:

o2, which is the variance of the lowest-level errors e;, and ¢2, which is the variance of

i

the highest-level errors u,,. Using this model, we can define the intraclass correlation p
by the equation:

2
gy,

p= e (2.9)
The intraclass correlation p indicates the proportion of the variance explained by the
grouping structure in the population. Equation 2.9 simply states that the intraclass
correlation is the proportion of group level variance compared to the total variance®
The intraclass correlation p can also be interpreted as the expected correlation between
two randomly drawn units that are in the same group.

Ordinary multiple regression analysis uses an estimation technique called ordin-
ary least squares, abbreviated as OLS. The statistical theory behind the multilevel
regression model is more complex, however. Based on observed data, we want to
estimate the parameters of the multilevel regression model: the regression coefficients
and the variance components. The usual estimators in multilevel regression analysis are

* The intraclass correlation is an estimate of the proportion of group-level variance in the population.
The proportion of group-level variance in the sample is given by the correlation ratio #* (eta-squared,
see Tabachnick & Fidell, 2007, p. 54): #* = SS(B)/SS(Total).
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maximum likelihood (ML) estimators. Maximum likelihood estimators estimate the
parameters of a model by providing estimated values for the population parameters
that maximize the so-called ‘likelihood function’: the function that describes the prob-
ability of observing the sample data, given the specific values of the parameter esti-
mates. Simply put, ML estimates are those parameter estimates that maximize the
probability of finding the sample data that we have actually found. For an accessible
introduction to maximum likelihood methods see Eliason (1993).

Maximum likelihood estimation includes procedures to generate standard errors
for most of the parameter estimates. These can be used in significance testing, by
computing the test statistic Z: Z = parameter/(st.error param. ). This statistic is referred
to the standard normal distribution, to establish a p-value for the null-hypothesis that
the population value of that parameter is zero. The maximum likelihood procedure
also produces a statistic called the deviance, which indicates how well the model fits the
data. In general, models with a lower deviance fit better than models with a higher
deviance. If two models are nested, meaning that a specific model can be derived from a
more general model by removing parameters from that general model, the deviances of
the two models can be used to compare their fit statistically. For nested models, the
difference in deviance has a chi-square distribution with degrees of freedom equal to
the difference in the number of parameters that are estimated in the two models. The
deviance test can be used to perform a formal chi-square test, in order to test whether
the more general model fits significantly better than the simpler model. The chi-square
test of the deviances can also be used to good effect to explore the importance of a set
of random effects, by comparing a model that contains these effects against a model
that excludes them.

2.2 AN EXTENDED EXAMPLE
The intercept-only model is useful as a null model that serves as a benchmark with
which other models are compared. For our pupil popularity example data, the
intercept-only model is written as:

Y =700+ ug + e

The model that includes pupil gender, pupil extraversion and teacher experience, but
not the cross-level interactions, is written as:

Yij=y00+y10 Xlij+ 720 Xzy"'%l Zj+ ulely"'uszzy"'uo/"'e

i

or, using variable names instead of algebraic symbols:
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popularity; = yy, + 1o gender; + yy, extraversion; + y,, experience;
+ u; gender;; + uy; extraversion;; + uy; + e;.

Table 2.1 Intercept-only model and model with explanatory variables

Model MO: intercept only M1: with predictors
Fixed part Coefficient (s.c.) Coefficient (s.e.)
Intercept 5.08 (.09) 0.74 (.20)

Pupil gender 1.25 (.04)

Pupil extraversion 0.45 (.03)
Teacher experience 0.09 (.01)
Random part*

o 1.22 (.04) 0.55 (.02)

) 0.69 (.11) 1.28 (.47)

ol 0.00 (-)

b 0.03 (.008)
Deviance 6327.5 4812.8

* For simplicity the covariances are not included.

Table 2.1 presents the parameter estimates and standard errors for both models®

In this table, the intercept-only model estimates the intercept as 5.08, which is simply
the average popularity across all classes and pupils. The variance of the pupil-level
residual errors, symbolized by o7, is estimated as 1.22. The variance of the class-level
residual errors, symbolized by o5, is estimated as 0.69. All parameter estimates are
much larger than the corresponding standard errors, and calculation of the Z-test
shows that they are all significant at p < 0.005%The intraclass correlation, calculated
by equation 2.9 as p = afo/(afo + aﬁ), is 0.69/1.91, which equals 0.36. Thus, 36% of the
variance of the popularity scores is at the group level, which is very high. Since the
intercept-only model contains no explanatory variables, the residual variances repre-
sent unexplained error variance. The deviance reported in Table 2.1 is a measure of

° For reasons to be explained later, different options for the details of the maximum likelihood
procedure may result in slightly different estimates. So, if you re-analyze the example data from this
book, the results may differ slightly from the results given here. However, these differences should
never be so large that you would draw entirely different conclusions.

¢ Testing variances is preferably done with a test based on the deviance, which is explained in
Chapter 3.
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model misfit; when we add explanatory variables to the model, the deviance is expected
to go down.

The second model in Table 2.1 includes pupil gender and extraversion and
teacher experience as explanatory variables. The regression coefficients for all three
variables are significant. The regression coefficient for pupil gender is 1.25. Since pupil
gender is coded 0 = boy, 1 = girl, this means that on average the girls score 1.25 points
higher on the popularity measure. The regression coefficient for pupil extraversion is
0.45, which means that with each scale point higher on the extraversion measure, the
popularity is expected to increase by 0.45 scale points. The regression coefficient for
teacher experience is 0.09, which means that for each year of experience of the teacher,
the average popularity score of the class goes up by 0.09 points. This does not seem
very much, but the teacher experience in our example data ranges from 2 to 25 years, so
the predicted difference between the least experienced and the most experienced
teacher is (25 — 2 =) 23 x 0.09 = 2.07 points on the popularity measure. We can use the
standard errors of the regression coefficients reported in Table 2.1 to construct a 95%
confidence interval. For the regression coefficient of pupil gender, the 95% confidence
interval runs from 1.17 to 1.33, the confidence interval for pupil extraversion runs from
0.39 to 0.51, and the 95% confidence interval for the regression coefficient of teacher
experience runs from 0.07 to 0.11.

The model with the explanatory variables includes variance components for the
regression coefficients of pupil gender and pupil extraversion, symbolized by ¢,; and
o5 in Table 2.1. The variance of the regression coefficients for pupil extraversion
across classes is estimated as 0.03, with a standard error of 0.008. The simple Z-test (Z
= 3.75) results in a (one sided) p-value of p < 0.001, which is clearly significant. The
variance of the regression coefficients for pupil gender is estimated as 0.00. This
variance component is clearly not significant, so the hypothesis that the regression
slopes for pupil gender vary across classes is not supported by the data. Therefore we
can remove the residual variance term for the gender slopes from the model #Table 2.2
presents the estimates for the model with a fixed slope for the effect of pupil gender.
Table 2.2 also includes the covariance between the class-level errors for the intercept
and the extraversion slope. These covariances are rarely interpreted, and for that
reason often not included in the reported tables. However, as Table 2.2 demonstrates,
they can be quite large and significant, so as a rule they are always included in the
model.

The significant variance of the regression slopes for pupil extraversion implies
that we should not interpret the estimated value of 0.45 without considering this

7 Multilevel software deals with the problem of zero variances in different ways. Most software
inserts a zero which may or may not be flagged as a redundant parameter. In general, such zero
variances should be removed from the model, and the resulting new model must be re-estimated.
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Table 2.2 Model with explanatory variables, extraversion
slope random

Model M1: with predictors
Fixed part Coefficient (s.e.)
Intercept 0.74 (.20)

Pupil gender 1.25(.04)

Pupil extraversion 0.45(.02)
Teacher experience 0.09 (.01)
Random part

o’ 0.55 (.02)

ol 1.28 (.28)

o0 0.03 (.008)

Oy, —.18 (.05)
Deviance 4812.8

variation. In an ordinary regression model, without multilevel structure, the value of
0.45 means that for each point of difference on the extraversion scale, pupil popularity
goes up by 0.45, for all pupils in all classes. In our multilevel model, the regression
coefficient for pupil gender varies across the classes, and the value of 0.45 is just the
expected value (the mean) across all classes. The varying regression slopes for pupil
extraversion are assumed to follow a normal distribution. The variance of this distribu-
tion is in our example estimated as 0.034. Interpretation of this variation is easier when
we consider the standard deviation, which is the square root of the variance or 0.18 in
our example data. A useful characteristic of the standard deviation is that with nor-
mally distributed observations about 67% of the observations lie between one standard
deviation below and one above the mean, and about 95% of the observations lie
between two standard deviations below and above the mean. If we apply this to the
regression coefficients for pupil gender, we conclude that about 67% of the regression
coefficients are expected to lie between (0.45—0.18 =) 0.27 and (0.45+0.18 =) 0.63, and
about 95% are expected to lie between (0.45 —0.37 =) 0.08 and (0.45 +0.37 =) 0.82. The
more precise value of Z ;s = 1.96 leads to the 95% predictive interval calculated as 0.09
to 0.81. We can also use the standard normal distribution to estimate the percentage of
regression coefficients that are negative. As it turns out, if the mean regression coef-
ficient for pupil extraversion is 0.45, given the estimated slope variance, less than 1% of
the classes are expected to have a regression coefficient that is actually negative. Note
that the 95% interval computed here is totally different from the 95% confidence
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interval for the regression coefficient of pupil extraversion, which runs from 0.41 to
0.50. The 95% confidence interval applies to j,,, the mean value of the regression
coefficients across all the classes. The 95% interval calculated here is the 95% predictive
interval, which expresses that 95% of the regression coefficients of the variable ‘pupil
extraversion’ in the classes are predicted to lie between 0.09 and 0.81.

Given the significant variance of the regression coefficient of pupil extraversion
across the classes it is attractive to attempt to predict its variation using class-level
variables. We have one class-level variable: teacher experience. The individual-level
regression equation for this example, using variable labels instead of symbols, is given
by equation 2.10:

popularity; = B + pgender; + B,extraversion; + e;. (2.10)

The regression coefficient f, for pupil gender does not have a subscript j, because it is
not assumed to vary across classes. The regression equations predicting f, the inter-
cept in class j, and f3,, the regression slope of pupil extraversion in class j, are given by
equation 2.3 and 2.4, which are rewritten below using variable labels:

Boi = Yoo + 88oit.exp; + uy,. (2.11)
ﬁZj = Y0 T 88ul.exp;+ Uy,

By substituting 2.11 into 2.10 we get:

popularity; =y, + yiogender; + yyextraversion; + yot.exp;
+ yyextraversiongt.exp; + uextraversion; + uy + €; (2.12)

The algebraic manipulations of the equations above make clear that to explain
the variance of the regression slopes f3,, we need to introduce an interaction term in
the model. This interaction, between the variables pupil extraversion and teacher
experience, is a cross-level interaction, because it involves explanatory variables from
different levels. Table 2.3 presents the estimates from a model with this cross-level
interaction. For comparison, the estimates for the model without this interaction are
also included in Table 2.3.

The estimates for the fixed coefficients in Table 2.3 are similar for the effect of
pupil gender, but the regression slopes for pupil extraversion and teacher experience are
considerably larger in the cross-level model. The interpretation remains the same:
extraverted pupils are more popular. The regression coefficient for the cross-level inter-
action is —0.03, which is small but significant. This interaction is formed by multiplying
the scores for the variables ‘pupil extraversion’ and ‘teacher experience’, and the
negative value means that with experienced teachers, the advantage of being
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Table 2.3 Model without and with cross-level interaction

Model MI1A: main effects M2: with interaction
Fixed part Coefficient (s.e.) Coefficient (s.e.)
Intercept 0.74 (.20) -1.21(.27)
Pupil gender 1.25 (.04) 1.24 (.04)
Pupil extraversion 0.45 (.02) 0.80 (.04)
Teacher experience 0.09 (.01) 0.23 (.02)
Extra*T.exp —.03 (.003)
Random part

o’ 0.55(.02) 0.55 (.02)

ah 1.28 (.28) 0.45(.16)

o 0.03 (.008) 0.005 (.004)

G, —.18 (.05) -.03(.02)
Deviance 4812.8 4747.6

extraverted is smaller than expected from the direct effects only. Thus, the difference
between extraverted and introverted pupils is smaller with more experienced teachers.

Comparison of the other results between the two models shows that the variance
component for pupil extraversion goes down from 0.03 in the direct effects model to
0.005 in the cross-level model. Apparently, the cross-level model explains some of the
variation of the slopes for pupil extraversion. The deviance also goes down, which
indicates that the model fits better than the previous model. The other differences in
the random part are more difficult to interpret. Much of the difficulty in reconciling
the estimates in the two models in Table 2.3 stems from adding an interaction effect
between variables that have not been centered. This issue is discussed in more detail in
Chapter 4.

The coefficients in the tables are all unstandardized regression coefficients. To
interpret them properly, we must take the scale of the explanatory variables into
account. In multiple regression analysis, and structural equation models, for that
matter, the regression coefficients are often standardized because that facilitates the
interpretation when one wants to compare the effects of different variables within one
sample. Only if the goal of the analysis is to compare parameter estimates from differ-
ent samples to each other, should one always use unstandardized coefficients. To
standardize the regression coefficients, as presented in Table 2.1 or Table 2.3, one could
standardize all variables before putting them into the multilevel analysis. However, this
would in general also change the estimates of the variance components. This may not
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be a bad thing in itself, because standardized variables are also centered on their
overall mean. Centering explanatory variables has some distinct advantages, which are
discussed in Chapter 4. Even so, it is also possible to derive the standardized regression
coefficients from the unstandardized coefficients:

unstandardized coefficient * stand.dev.explanatory var.

standardized coefficient = (2.13)

stand. dev.outcome var.

In our example data, the standard deviations are: 1.38 for popularity, 0.51 for gender,
1.26 for extraversion, and 6.55 for teacher experience. Table 2.4 presents the
unstandardized and standardized coefficients for the second model in Table 2.2. It also
presents the estimates that we obtain if we first standardize all variables, and then carry
out the analysis.

Table 2.4 Comparing unstandardized and standardized estimates

Model Standardization using 2.13 Standardized variables
Fixed part Coefficient (s.c.) Standardized  Coefficient (s.e.)
Intercept 0.74 (.20) - —.03(.04)

Pupil gender 1.25(.04) 0.46 0.45(.01)

Pupil extraversion 0.45 (.02) 0.41 0.41 (.02)
Teacher experience 0.09 (.01) 0.43 0.43 (.04)
Random part

o, 0.55 (.02) 0.28 (.01)

o 1.28 (.28) 0.15(.02)

ol 0.03 (.008) 0.03 (.01)

O, —.18 (.05) —-.01 (.01)
Deviance 4812.8 3517.2

Table 2.4 shows that the standardized regression coefficients are almost the same
as the coefficients estimated for standardized variables. The small differences in Table
2.4 are simply a result of rounding errors. However, if we use standardized variables in
our analysis, we find very different variance components and a very different value for
the deviance. This is not only the effect of scaling the variables differently, which
becomes clear if we realize that the covariance between the slope for pupil extraversion
and the intercept is significant for the unstandardized variables, but not significant for
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the standardized variables. This kind of difference in results is general. The fixed part
of the multilevel regression model is invariant for linear transformations, just like the
regression coefficients in the ordinary single-level regression model. This means that if
we change the scale of our explanatory variables, the regression coefficients and the
corresponding standard errors change by the same multiplication factor, and all
associated p-values remain exactly the same. However, the random part of the multi-
level regression model is not invariant for linear transformations. The estimates of the
variance components in the random part can and do change, sometimes dramatically.
This is discussed in more detail in section 4.2 in Chapter 4. The conclusion to be drawn
here is that, if we have a complicated random part, including random components for
regression slopes, we should think carefully about the scale of our explanatory vari-
ables. If our only goal is to present standardized coefficients in addition to the
unstandardized coefficients, applying equation 2.13 is safer than transforming our
variables. On the other hand, we may estimate the unstandardized results, including the
random part and the deviance, and then re-analyze the data using standardized vari-
ables, merely using this analysis as a computational trick to obtain the standardized
regression coefficients without having to do hand calculations.

2.3 INSPECTING RESIDUALS

Inspection of residuals is a standard tool in multiple regression analysis to examine
whether assumptions of normality and linearity are met (see Stevens, 2009;
Tabachnick & Fidell, 2007). Multilevel regression analysis also assumes normality and
linearity. Since the multilevel regression model is more complicated than the ordinary
regression model, checking such assumptions is even more important. For example,
Bauer and Cai (2009) show that neglecting a nonlinear relationship may result in
spuriously high estimates of slope variances and cross-level interaction effects. Inspec-
tion of the residuals is one way to investigate linearity and homoscedasticity. There is
one important difference from ordinary regression analysis; we have more than one
residual, in fact, we have residuals for each random effect in the model. Consequently,
many different residuals plots can be made.

2.3.1 Examples of residuals plots

The equation below represents the one-equation version of the direct effects model for
our example data. This is the multilevel model without the cross-level interaction.
Since the interaction explains part of the extraversion slope variance, a model that does
not include this interaction produces a graph that displays the actual slope variation
more fully.
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popularity; = yo, + 1o gender; + yy, extraversion; + y,, experience;
+ uy; extraversion; + uy; + e;;

In this model, we have three residual error terms: e;, u;, and u,,. The e; are the residual
prediction errors at the lowest level, similar to the prediction errors in ordinary single-
level multiple regression. A simple boxplot of these residuals will enable us to identify
extreme outliers. An assumption that is usually made in multilevel regression analysis is
that the variance of the residual errors is the same in all groups. This can be assessed by
computing a one-way analysis of variance of the groups on the absolute values of the
residuals, which is the equivalent of Levene’s test for equality of variances in analysis
of variance (Stevens, 2009). Raudenbush and Bryk (2002) describe a chi-square test
that can be used for the same purpose.

The uy,; are the residual prediction errors at the group level, which can be used in
ways analogous to the investigation of the lowest level residuals e;. The u,; are the
residuals of the regression slopes across the groups. By plotting the regression slopes
for the various groups, we get a visual impression of how much the regression slopes
actually differ, and we may also be able to identify groups which have a regression slope
that is wildly different from the others.

To test the normality assumption, we can plot standardized residuals against
their normal scores. If the residuals have a normal distribution, the plot should show a
straight diagonal line. Figure 2.1 is a scatterplot of the standardized level 1 residuals,
calculated for the final model including cross-level interaction, against their normal
scores. The graph indicates close conformity to normality, and no extreme outliers.
Similar plots can be made for the level 2 residuals.

We obtain a different plot, if we plot the residuals against the predicted values of
the outcome variable popularity, using the fixed part of the multilevel regression model
for the prediction. Such a scatter plot of the residuals against the predicted values
provides information about possible failure of normality, nonlinearity, and hetero-
scedasticity. If these assumptions are met, the plotted points should be evenly divided
above and below their mean value of zero, with no strong structure (see Tabachnick &
Fidell, 2007, p. 162). Figure 2.2 shows this scatter plot for the level 1 residuals. For our
example data, the scatter plot in Figure 2.2 does not indicate strong violations of the
assumptions.

Similar scatter plots can be made for the second level residuals for the intercept
and the slope of the explanatory variable pupil extraversion. As an illustration, Figure
2.3 shows the scatterplots of the level 2 residuals around the average intercept and
around the average slope of pupil extraversion against the predicted values of the
outcome variable popularity. Both scatterplots indicate that the assumptions are
reasonably met.

An interesting plot that can be made using the level 2 residuals, is a plot of the
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Figure 2.1 Plot of level 1 standardized residuals against normal scores.

residuals against their rank order, with an added error bar. In Figure 2.4, an error bar
frames each point estimate, and the classes are sorted in rank order of the residuals.
The error bars represent the confidence interval around each estimate, constructed by
multiplying its standard error by 1.39 instead of the more usual 1.96. Using 1.39 as the
multiplication factor results in confidence intervals with the property that if the error
bars of two classes do not overlap, they have significantly different residuals at the 5%
level (Goldstein, 2003). For a discussion of the construction and use of these error bars
see Goldstein and Healy (1995) and Goldstein and Spiegelhalter (1996). In our
example, this plot, sometimes called the caterpillar plot, shows some outliers at each
end. This gives an indication of exceptional residuals for the intercept. A logical next
step would be to identify the classes at the extremes of the rank order, and to seek a
post hoc interpretation of what makes these classes different.

Examining residuals in multivariate models presents us with a problem. For
instance, the residuals should show a nice normal distribution, which implies an
absence of extreme outliers. However, this applies to the residuals after including all
important explanatory variables and relevant parameters in the model. If we analyze a
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Figure 2.2 Level 1 standardized residuals plotted against predicted popularity.

sequence of models, we have a series of different residuals for each model, and scrutin-
izing them all at each step is not always practical. On the other hand, our decision to
include a specific variable or parameter in our model might well be influenced by a
violation of some assumption. Although there is no perfect solution to this dilemma, a
reasonable approach is to examine the two residual terms in the intercept-only model,
to find out if there are gross violations of the assumptions of the model. If there are,
we should accommodate them, for instance by applying a normalizing transformation,
by deleting certain individuals or groups from our data set, or by including a dummy
variable that indicates a specific outlying individual or group. When we have deter-
mined our final model, we should make a more thorough examination of the various
residuals. If we detect gross violations of assumptions, these should again be accom-
modated, and the model should be estimated again. Of course, after accommodating
an extreme outlier, we might find that a previously significant effect has disappeared,
and that we need to change our model again. Procedures for model exploration and
detection of violations in ordinary multiple regression are discussed, for instance, in
Tabachnick and Fidell (2007) or Field (2009). In multilevel regression, the same pro-
cedures apply, but the analyses are more complicated because we have to examine more
than one set of residuals, and must distinguish between multiple levels.
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Figure 2.3 Level 2 residuals plotted against predicted popularity.

As mentioned at the beginning of this section, graphs can be useful in detecting
outliers and nonlinear relations. However, an observation may have an undue effect on
the outcome of a regression analysis without being an obvious outlier. Figure 2.5, a
scatter plot of the so-called Anscombe data (Anscombe, 1973), illustrates this point.
There is one data point in Figure 2.5, which by itself almost totally determines the
regression line. Without this one observation, the regression line would be very
different. Yet, when the residuals are inspected, it does not show up as an obvious
outlier.

In ordinary regression analysis, various measures have been proposed to indicate
the influence of individual observations on the outcome (see Tabachnick & Fidell,
2007). In general, such influence or leverage measures are based on a comparison of the
estimates when a specific observation is included in the data or not. Langford and
Lewis (1998) discuss extensions of these influence measures for the multilevel regres-
sion model. Since most of these measures are based on comparison of estimates with
and without a specific observation, it is difficult to calculate them by hand. However, if



28 MuLTILEVEL ANALYSIS: TECHNIQUES AND APPLICATIONS

-
+

Figure 2.4  Error bar plot of level 2 residuals.

the software offers the option to calculate influence measures, it is advisable to do so. If
a unit (individual or group) has a large value for the influence measure, that specific
unit has a large influence on the values of the regression coefficients. It is useful to
inspect cases with extreme influence values for possible violations of assumptions, or
even data errors.

2.3.2 Examining slope variation: OLS and shrinkage estimators

The residuals can be added to the average values of the intercept and slope, to produce
predictions of the intercepts and slopes in different groups. These can also be plotted.
For example, Figure 2.6 plots the 100 regression slopes for the explanatory vari-
able pupil extraversion in the 100 classes. It is clear that for most classes the effect is
strongly positive: extravert pupils tend to be more popular in all classes. It is also clear
that in some classes the relationship is more pronounced than in other classes. Most of
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Figure 2.5 Regression line determined by one single observation.

the regression slopes are not very different from the others, although there are a few
slopes that are clearly different. It could be useful to examine the data for these classes
in more detail, to find out if there is a reason for the unusual slopes.

The predicted intercepts and slopes for the 100 classes are not identical to the
values we would obtain if we carried out 100 separate ordinary regression analyses in
each of the 100 classes, using standard ordinary least squares (OLS) techniques. If we
were to compare the results from 100 separate OLS regression analyses to the values
obtained from a multilevel regression analysis, we would find that the results from the
separate analyses are more variable. This is because the multilevel estimates of the
regression coefficients of the 100 classes are weighted. They are so-called empirical
Bayes (EB) or shrinkage estimates; a weighted average of the specific OLS estimate in
each class and the overall regression coefficient, estimated for all similar classes.

As a result, the regression coefficients are shrunk back towards the mean coef-
ficient for the whole data set. The shrinkage weight depends on the reliability of the
estimated coefficient. Coefficients that are estimated with small accuracy shrink more
than very accurately estimated coefficients. Accuracy of estimation depends on two
factors: the group sample size, and the distance between the group-based estimate and
the overall estimate. Estimates for small groups are less reliable, and shrink more than
estimates for large groups. Other things being equal, estimates that are very far from
the overall estimate are assumed less reliable, and they shrink more than estimates that
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Figure 2.6 Plot of the 100 class regression slopes for pupil extraversion.

are close to the overall average. The statistical method used is called empirical Bayes
estimation. Because of this shrinkage effect, empirical Bayes estimators are biased.
However, they are usually more precise, a property that is often more useful than being
unbiased (see Kendall, 1959).

The equation to form the empirical Bayes estimate of the intercepts is given by:

B = 2855 + (1 = 1)yeo, (2.14)

where 4, is the reliability of the OLS estimate g as an estimate of f3, which is given
by the equation 4, = o, / (62 + o / nj) (Raudenbush & Bryk, 2002), and y,, is the
overall intercept. The reliability 4; is close to 1.0 when the group sizes are large and/or
the variability of the intercepts across groups is large. In these cases, the overall esti-
mate y,, is not a good indicator of each group’s intercept. If the group sizes are small
and there is little variation across groups, the reliability /; is close to 0.0, and more
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weight is put on the overall estimate y,,. Equation 2.14 makes clear that, since the OLS
estimates are unbiased, the empirical Bayes estimates 8, must be biased towards the
overall estimate y,,. They are shrunken towards the average value y,,. For that reason,
the empirical Bayes estimators are also referred to as shrinkage estimators. Figure 2.7
presents boxplots for the OLS and EB estimates of the intercept and the extraversion
regression slopes in the model without the cross-level interaction (model M1A in Table
2.3). It is clear that the OLS estimates have a higher variability.

31
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Figure 2.7 OLS and EB estimates for intercept and slope.

Although the empirical Bayes or shrinkage estimators are biased, they are also in
general closer to the (unknown) values of 3, (Bryk & Raudenbush, 1992, p. 40). If the
regression model includes a group-level model, the shrinkage estimators are con-
ditional on the group-level model. The advantages of shrinkage estimators remain,
provided that the group-level model is well specified (Bryk & Raudenbush, 1992, p. 80).
This is especially important if the estimated coefficients are used to describe specific
groups. For instance, we can use estimates for the intercepts of the schools to rank
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them on their average outcome. If this is used as an indicator of the quality of schools,
the shrinkage estimators introduce a bias, because high scoring schools will be pre-
sented too negatively, and low scoring schools will be presented too positively. This is
offset by the advantage of having a smaller standard error (Carlin & Louis, 1996;
Lindley & Smith, 1972). Bryk and Raudenbush discuss this problem in an example
involving the effectiveness of organizations (Bryk & Raudenbush, 1992, Chapter 5);
see also the cautionary points made by Raudenbush and Willms (1991) and Snijders
and Bosker (1999, pp. 58-63). All emphasize that the higher precision of the empirical
Bayes residuals is achieved at the expense of a certain bias. The bias is largest when we
inspect groups that are both small and far removed from the overall mean. In such
cases, inspecting residuals should be supplemented with other procedures, such as
comparing error bars for all schools (Goldstein & Healy, 1995). Error bars are
illustrated in this chapter in Figure 2.4.

2.4 THREE- AND MORE-LEVEL REGRESSION MODELS

2.4.1 Multiple-level models

In principle, the extension of the two-level regression model to three and more levels is
straightforward. There is an outcome variable at the first, the lowest level. In addition,
there may be explanatory variables at all available levels. The problem is that three- and
more-level models can become complicated very fast. In addition to the usual fixed
regression coefficients, we must entertain the possibility that regression coefficients for
first-level explanatory variables may vary across units of both the second and the third
level. Regression coefficients for second-level explanatory variables may vary across
units of the third level. To explain such variation, we must include cross-level inter-
actions in the model. Regression slopes for the cross-level interaction between first-
level and second-level variables may themselves vary across third-level units. To explain
such variation, we need a three-way interaction involving variables at all three levels.

The equations for such models are complicated, especially when we do not use
the more compact summation notation but write out the complete single equation
version of the model in an algebraic format (for a note on notation see section 2.5).

The resulting models are not only difficult to follow from a conceptual point of
view; they may also be difficult to estimate in practice. The number of estimated
parameters is considerable, and at the same time the highest level sample size tends to
become relatively smaller. As DiPrete and Forristal (1994, p. 349) put it, the imagin-
ation of the researchers ‘. . . can easily outrun the capacity of the data, the computer,
and current optimization techniques to provide robust estimates.’

Nevertheless, three- and more-level models have their place in multilevel
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analysis. Intuitively, three-level structures such as pupils in classes in schools, or
respondents nested within households, nested within regions, appear to be both con-
ceptually and empirically manageable. If the lowest level is repeated measures over
time, having repeated measures on pupils nested within schools again does not appear
to be overly complicated. In such cases, the solution for the conceptual and statistical
problems mentioned is to keep models reasonably small. Especially specification of the
higher-level variances and covariances should be driven by theoretical considerations.
A higher-level variance for a specific regression coefficient implies that this regression
coefficient is assumed to vary across units at that level. A higher-level covariance
between two specific regression coefficients implies that these regression coefficients are
assumed to covary across units at that level. Especially when models become large and
complicated, it is advisable to avoid higher-order interactions, and to include in the
random part only those elements for which there is strong theoretical or empirical
justification. This implies that an exhaustive search for second-order and higher-order
interactions is not a good idea. In general, we should look for higher-order interactions
only if there is strong theoretical justification for their importance, or if an unusually
large variance component for a regression slope calls for explanation. For the random
part of the model, there are usually more convincing theoretical reasons for the higher-
level variance components than for the covariance components. Especially if the cov-
ariances are small and insignificant, analysts sometimes do not include all possible
covariances in the model. This is defensible, with some exceptions. First, it is recom-
mended that the covariances between the intercept and the random slopes are always
included. Second, it is recommended to include covariances corresponding to slopes of
dummy variables belonging to the same categorical variable, and for variables that are
involved in an interaction or belong to the same polynomial expression (Longford,
1990, pp. 79-80).

2.4.2 Intraclass correlations in three-level models

In a two-level model, the intraclass correlation is calculated in the intercept-only model
using equation 2.9, which is repeated below:

2

Uy

g (2.9, repeated)

P
The intraclass correlation is an indication of the proportion of variance at the second
level, and it can also be interpreted as the expected (population) correlation between
two randomly chosen individuals within the same group.

If we have a three-level model, for instance pupils nested within classes, nested
within schools, there are several ways to calculate the intraclass correlation. First, we
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estimate an intercept-only model for the three-level data, for which the single-equation
model can be written as follows:

Y = Yoo + Vor + Ugy + €. (2.15)
The variances at the first, second, and third level are respectively o, o,, and a,. The
first method (see Davis & Scott, 1995) defines the intraclass correlations at the class
and school level as:

2

Pelass = 2 0-“20 29 (2 1 6)
ag,, + 0, + 0,
and:
2
Pschool = 2 0-172O 2° (2 1 7)
gy, + Oy, + 0o,

The second method (see Siddiqui, Hedeker, Flay, & Hu, 1996) defines the intraclass
correlations at the class and school level as:

2 2
gy, + Ty,
pvlasszo_% +0_2 +O'27 (218)
Yo Uy e
and:
2
ay,
Pschool = 2 2 2° (2 1 9)
gy, + Oy, + 0o,

Actually, both methods are correct (Algina, 2000). The first method identifies the
proportion of variance at the class and school level. This should be used if we are
interested in a decomposition of the variance across the available levels, or if we are
interested in how much variance is explained at each level (a topic discussed in section
4.5). The second method represents an estimate of the expected (population) correl-
ation between two randomly chosen elements in the same group. So p,,, as calculated
in equation 2.18 is the expected correlation between two pupils within the same class,
and it correctly takes into account that two pupils who are in the same class must by
definition also be in the same school. For this reason, the variance components for
classes and schools must both be in the numerator of equation 2.18. If the two sets of
estimates are different, which may happen if the amount of variance at the school level
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is large, there is no contradiction involved. Both sets of equations express two different
aspects of the data, which happen to coincide when there are only two levels.

2.4.3 An example of a three-level model

The data in this example are from a hypothetical study on stress in hospitals. The data
are from nurses working in wards nested within hospitals. In each of 25 hospitals, four
wards are selected and randomly assigned to an experimental and control condition. In
the experimental condition, a training program is offered to all nurses to cope with job-
related stress. After the program is completed, a sample of about 10 nurses from each
ward is given a test that measures job-related stress. Additional variables are: nurse age
(years), nurse experience (years), nurse gender (0 = male, 1 = female), type of ward
(0 = general care, 1 = special care), and hospital size (0 = small, 1 = medium, 2 = large).

This is an example of an experiment where the experimental intervention is
carried out at the group level. In biomedical research this design is known as a cluster
randomized trial. They are quite common, also in educational and organizational
research, where entire classes or schools are assigned to experimental and control
conditions. Since the design variable Experimental versus Control group (ExpCon) is
manipulated at the second (ward) level, we can study whether the experimental effect is
different in different hospitals, by defining the regression coefficient for the ExpCon
variable as random at the hospital level.

In this example, the variable ExpCon is of main interest, and the other variables
are covariates. Their function is to control for differences between the groups, which
should be small given that randomization is used, and to explain variance in the
outcome variable stress. To the extend that they are successful in explaining variance,
the power of the test for the effect of ExpCon will be increased. Therefore, although
logically we can test if explanatory variables at the first level have random coefficients
at the second or third level, and if explanatory variables at the second level have
random coefficients at the third level, these possibilities are not pursued. We do test a
model with a random coefficient for ExpCon at the third level, where there turns out to
be significant slope variation. This varying slope can be predicted by adding a
cross-level interaction between the variables ExpCon and HospSize. In view of this
interaction, the variables ExpCon and HospSize have been centered on their overall
mean. Table 2.5 presents the results for a series of models.

The equation for the first model, the intercept-only model is:

STress = Yooo + Vor T Uo st €y (2.20)

This produces the variance estimates in the MO column of Table 2.5. The proportion of
variance (ICC) is 0.52 at the ward level, and 0.17 at the hospital level, calculated
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Table 2.5 Models for stress in hospitals and wards

Model MO: intercept MI1: with M2: with M3: with
only predictors random slope  cross-level
ExpCon interaction
Fixed part Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.)
Intercept 5.00 (0.11) 5.50(.12) 5.46 (.12) 5.50 (.11)
ExpCon =70 (.12) —-.70 (.18) -.50 (.11)
Age 0.02 (.002) 0.02 (.002) 0.02 (.002)
Gender —.45 (.04) —.46 (.04) —.46 (.04)
Experience —.06 (.004) —.06 (.004) —.06 (.004)
Ward type 0.05(.12) 0.05 (.07) 0.05 (.07)
Hosp. Size 0.46 (.12) 0.29 (.12) —.46 (.12)
Exp*HSize 1.00 (.16)
Random part
Oeiik 0.30 (.01) 0.22 (.01) 0.22 (.01) 0.22 (.01)
Cuiik 0.49 (.09) 0.33 (.06) 0.11 (.03) 0.11 (.03)
O\ 0.16 (.09) 0.10 (0.05) 0.166 (.06) 0.15(.05)
Guij 0.66 (.22) 0.18 (.09)
Deviance 1942.4 1604.4 1574.2 1550.8

following equations 2.18 and 2.19. The nurse-level and the ward-level variances are
evidently significant. The test statistic for the hospital level variance is Z =0.162/0.0852
= 1.901, which produces a one-sided p-value of 0.029. The hospital-level variance is
significant at the 5% level. The sequence of models in Table 2.5 shows that all predictor
variables have a significant effect, except the ward type, and that the experimental
intervention significantly lowers stress. The experimental effect varies across hospitals,
and a large part of this variation can be explained by hospital size; in large hospitals
the experimental effect is smaller.

2.5 ANOTE ABOUT NOTATION AND SOFTWARE
2.5.1 Notation

In general, there will be more than one explanatory variable at the lowest level and
more than one explanatory variable at the highest level. Assume that we have P
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explanatory variables X at the lowest level, indicated by the subscript p (p=1... P).
Likewise, we have Q explanatory variables Z at the highest level, indicated by the
subscript ¢ (g=1... Q). Then, equation 2.5 becomes the more general equation:

Y=yt 70X,

Py

+ Yoy Zyt Vpy ZyXpy + 1y X,

aXpij T Upy Xpy + Ug; + € (2.21)

Using summation notation, we can express the same equation as:

Y=+ Z Vo0 X + Z VogLy + Z Z VoaXpiy + Z Uy X5+ uy+ e (2.22)
» q Poa »

The errors at the lowest level ¢; are assumed to have a normal distribution with a mean
of zero and a common variance o in all groups. The u-terms uy; and u,; are the residual
error terms at the highest level. They are assumed to be independent from the errors ¢;
at the individual level, and to have a multivariate normal distribution with means of
zero. The variance of the residual errors u is the variance of the intercepts between the
groups, symbolized by a,.. The variances of the residual errors u,,; are the variances of
the slopes between the groups, symbolized by afp. The covariances between the residual
error terms o, are generally not assumed to be zero; they are collected in the higher
level variance/covariance matrix Q%

Note that in equation 2.22, y,,, the regression coefficient for the intercept, is not
associated with an explanatory variable. We can expand the equation by providing an
explanatory variable that is a constant equal to one for all observed units. This yields
the equation:

Y= 900 X + Vg ZoX,

Py P + Up; X

it e (2.23)
where X,; = 1, and p = 0 ... P. Equation 2.23 makes clear that the intercept is a
regression coefficient, just like the other regression coefficients in the equation. Some
multilevel software, for instance HLM (Raudenbush, Bryk, Cheong, & Congdon,
2004) puts the intercept variable X; = 1 in the regression equation by default. Other
multilevel software, for instance MLwiN (Rasbash, Stecle, Browne, & Goldstein,
2009), requires that the analyst includes a variable in the data set that equals one in all
cases, which must be added explicitly to the regression equation. In some cases, being
able to eliminate the intercept term from the regression equation is a convenient
feature.

¥ We may attach a subscript to Q to indicate to which level it belongs. As long as there is no risk of
confusion, the simpler notation without the subscript is used.
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Equation 2.23 can be made very general if we let X be the matrix of all explana-
tory variables in the fixed part, symbolize the residual errors at all levels by u® with /
denoting the level, and associate all error components with predictor variables Z,
which may or may not be equal to the X. This produces the very general matrix
formula Y = X8 + Z®u® (see Goldstein, 1995, Appendix 2.1). Since this book is more
about applications than about mathematical statistics, it generally uses the algebraic
notation, except when multivariate procedures such as structural equation modeling
are discussed.

The notation used in this book is close to the notation used by Goldstein (1987,
2003), Hox (1995), and Kreft and de Leeuw (1998). The most important difference is
that these authors indicate the higher-level variance by o, instead of our g, . The logic
is that, if g, indicates the covariance between variables 0 and /, then g, is the covari-
ance of variable 0 with itself, which is its variance. Bryk and Raudenbush (1992), and
Snijders and Bosker (1999) use a different notation; they denote the lowest level error
terms by r;, and the higher-level error terms by ;. The lowest level variance is ¢° in
their notation. The higher-level variances and covariances are indicated by the Greek
letter tau; for instance, the intercept variance is given by 7. The 7,, are collected in the
matrix TAu, symbolized as T. The HLM program and manual in part use a different
notation, for instance when discussing longitudinal and three-level models.

In models with more than two levels, two different notational systems are used.
One approach is to use different Greek characters for the regression coefficients at
different levels, and different (Greek or Latin) characters for the variance terms at
different levels. With many levels, this becomes cumbersome, and it is simpler to use the
same character, say f for the regression slopes and u for the residual variance terms,
and let the number of subscripts indicate to which level these belong.

2.5.2 Software

Multilevel models can be formulated in two ways: (1) by presenting separate equations
for each of the levels, and (2) by combining all equations by substitution into a single
model equation. The software HLM (Raudenbush et al., 2004) requires specification
of the separate equations at each available level, but it can also show the single equa-
tion version. Most other software, for example MLwiN (Rasbash et al., 2009), SAS
Proc Mixed (Littell et al., 1996), SPSS Command Mixed (Norusis, 2005) uses the
single-equation representation. Both representations have their advantages and dis-
advantages. The separate-equation representation has the advantage that it is always
clear how the model is built up. The disadvantage is that it hides from view that
modeling regression slopes by other variables results in adding an interaction to the
model. As will be explained in Chapter 4, estimating and interpreting interactions
correctly requires careful thinking. On the other hand, while the single-equation repre-



The Basic Two-Level Regression Model 39

sentation makes the existence of interactions obvious, it conceals the role of the com-
plicated error components that are created by modeling varying slopes. In practice, to
keep track of the model, it is reccommended to start by writing the separate equations
for the separate levels, and to use substitution to arrive at the single-equation
representation.

To take a quote from Singer’s excellent introduction to using SAS Proc Mixed
for multilevel modeling (Singer, 1998, p. 350): ‘Statistical software does not a statisti-
cian make. That said, without software, few statisticians and even fewer empirical
researchers would fit the kinds of sophisticated models being promulgated today.’
Indeed, software does not make a statistician, but the advent of powerful and user-
friendly software for multilevel modeling has had a large impact in research fields as
diverse as education, organizational research, demography, epidemiology, and medi-
cine. This book focuses on the conceptual and statistical issues that arise in multilevel
modeling of complex data structures. It assumes that researchers who apply these
techniques have access to and familiarity with some software that can estimate these
models. Software is mentioned in various places, especially when a technique is dis-
cussed that requires specific software features or is only available in a specific program.

Since statistical software evolves rapidly, with new versions of the software com-
ing out much faster than new editions of general handbooks such as this, I do not
discuss software setups or output in detail. As a result, this book is more about the
possibilities offered by the various techniques than about how these things can be done
in a specific software package. The techniques are explained using analyses on small
but realistic data sets, with examples of how the results could be presented and dis-
cussed. At the same time, if the analysis requires that the software used have some
specific capacities, these are pointed out. This should enable interested readers to
determine whether their software meets these requirements, and assist them in working
out the software setups for their favorite package.

In addition to the relevant program manuals, several software programs have
been discussed in introductory articles. Using SAS Proc Mixed for multilevel and
longitudinal data is discussed by Singer (1998). Peugh and Enders (2005) discuss SPSS
Mixed using Singer’s examples. Both Arnold (1992), and Heck and Thomas (2009)
discuss multilevel modeling using HLM and Mplus as the software tool. Sullivan,
Dukes, and Losina (1999) discuss HLM and SAS Proc Mixed. West, Welch, and
Gatecki (2007) present a series of multilevel analyses using SAS, SPSS, R, Stata and
HLM. Finally, the multilevel modeling program at the University of Bristol maintains
a multilevel homepage that contains a series of software reviews. The homepage for
this book (on www.joophox.net) contains links to these and other multilevel resources.

The data used in the various examples are described in the Appendix A, and are
all available through the Internet.





