
3/20/2013

1

JavaScript/DDS Integration:

Using Node.js and OpenDDS

OMG Data Distribution Service

Information Days, March 2013

Adam Mitz mitza@ociweb.com

Senior Software Engineer

Object Computing, Inc.

Extending the DDS Global

 Data Space to the Web
• Problem Statement

– Large Asian bank operating in several countries

– Expanding its country-specific Financial Trading Services to

>10K users, using desktop and mobile devices

– Requirements:

• Low cost of operation/distribution

• Rapid response to changing competitive marketplace

• End-to-end control

– Phases:

I. Market data distribution

II. Secure mobile trading

3/20/2013

2

Node.js http://nodejs.org

• Server-side software system designed for writing

scalable Internet applications, notably web servers.

• Uses Google's V8 JavaScript engine, the libuv portable

event loop library, and a core library written in

JavaScript.

• Uses event-driven, asynchronous I/O to minimize

overhead and maximize scalability.

• Portable to multiple operating systems.

• Applications are written JavaScript, some also include

compiled (C/C++) modules.

• OCI offers a training class in Node.js

OpenDDS http://opendds.org

• Implementation of the OMG DDS* 1.2 and DDS-RTPS

2.1 specifications

– *DCPS layer with all optional profiles

• Open source, permissive license, public source repo

• Core libraries written in C++, includes Java API

• Configurable transports:

– TCP, RTPS, UDP-unicast, UDP-multicast, shared memory

• Configurable discovery: centralized, peer-to-peer (RTPS)

• Modeling tool based on Eclipse with code generation

• OCI offers training classes in both OpenDDS

programming with C++ and the OpenDDS Modeling SDK

3/20/2013

3

Solution Architecture

QuickFIX

Feed Handler

OpenDDS

QuickFAST

Feed Handler

OpenDDS

OpenDDS

Node Modules

Web Application

HTML5 / Dojo

FIX - Financial Information eXchange

FAST - FIX Adapted for STreaming

HTTP / WebSocket

Node.js

process

Demo Application

• OpenDDS process (C++) publishes sample market data

• Web server (Node.js) subscribes to the market data

• Web client receives dynamic updates using WebSockets

(Socket.IO module for Node)

module MarketData {

#pragma DCPS_DATA_TYPE "MarketData::SymbolDefinition"

#pragma DCPS_DATA_KEY "MarketData::SymbolDefinition symbol"

 struct SymbolDefinition {

 string symbol;

 string description;

 float closing_price;

 };

#pragma DCPS_DATA_TYPE "MarketData::Trade"

#pragma DCPS_DATA_KEY "MarketData::Trade symbol"

 struct Trade {

 string symbol;

 float price;

 unsigned long quantity;

 };

};

3/20/2013

4

OpenDDS Module for Node.js

• NPM Module http://npmjs.org

– Our module (“npm install opendds”) is open source and uses

open source libraries and tools, wrapping the C++ OpenDDS

code.

• API Design

– Minimal API: only what’s required to subscribe to DDS data,

including optional QoS and Content-Filtering

– Each data sample is delivered via a callback function which runs

on Node’s event loop.

• IDL / JavaScript mini-mapping (see next slide)

Mapping IDL to JavaScript

• The current implementation only needs to translate IDL

structs to JavaScript objects, not the other way around

– Including all data types that structs used with DDS can contain

• IDL Boolean is JavaScript Boolean

• Mapped to JavaScript Number:

– IDL octet, integral and floating point types

• Mapped to JavaScript String:

– IDL char, wchar, string, wstring, enum

• Mapped to JavaScript Object: IDL struct, union*

• Mapped to JavaScript Array: IDL sequence, array*

 * => not yet implemented

http://npmjs.org/

3/20/2013

5

Quality of Service and

Content-Filtered Topic
• DURABILITY QoS Policy

– Used by the “Symbols” topic (TRANSIENT_LOCAL kind)

– Publishing side writes each instance just once, most likely before

subscribing side (Node.js) has even started

• Other QoS Policies are left at default values in this demo

• Content-Filtered Topic

– Used by the “Trades” topic

– Only trades involving symbols which the user has requested

(using the Web interface) pass the filter

– Other trades are not sent on the network

• Due to publisher-side evaluation of the Content-Filtered Topic

Scalability

• Additional Feed Handlers

– New market data sources

– Each feed handler could be responsible for a subset of symbols

(per-channel, or segmented)

– Redundancy using DDS OWNERSHIP and LIVELINESS QoS

• Additional Web Servers

– Use Node’s “cluster” module to start multiple instances on the

same host (in order to make use of multi-core systems)

– Use web server load balancing to scale to multiple hosts

3/20/2013

6

Future Directions

• OpenDDS Module for Node.js could eventually gain

support for:

– IDL unions and arrays

– Current features (subscribe) with the full DDS DCPS API:

• Topic, MultiTopic, ContentFilteredTopic (dynamic parameter changes)

• Subscriber, DataReader

• Listeners/Conditions

• Built-In Topics

– Ability to publish data samples using a simplified API

• Example use case: web server load balancing and stats

– Publication with the full DDS DCPS API:

• Publisher, DataWriter

For More Information

• OpenDDS: http://opendds.org

• Object Computing, Inc.: http://ociweb.com

• Node.js: http://nodejs.org

• Financial Domain

– FIX: http://fixprotocol.org

– QuickFIX: http://quickfixengine.org

– FAST: http://fixprotocol.org/fast

– QuickFAST: https://code.google.com/p/quickfast (an OCI project)

– Liquibook: https://github.com/objectcomputing/liquibook

• Adam Mitz: mitza@ociweb.com

http://opendds.org/
http://ociweb.com/
http://nodejs.org/
http://fixprotocol.org/
http://quickfixengine.org/
http://fixprotocol.org/fast
https://code.google.com/p/quickfast
https://github.com/objectcomputing/liquibook
mailto:mitza@ociweb.com

