
Get improved application performance with the Cray Programming Environment (Cray PE), a fully integrated
software suite with compilers, tools and libraries designed to maximize programmer productivity, application
scalability and performance.

THE CRAY
PROGRAMMING
ENVIRONMENT

About the Cray Programming Environment
This feature-rich, easy-to-use software package
facilitates application development, porting and
tuning. Its target architecture consists of multiple
dissimilar multi-core processor types closely coupled
with accelerators. The programming environment is
designed to allow easy porting of existing applications
with minimal recoding, minimize changes to existing
programming models, and simplify developer
transition to the new hardware paradigm.

The Cray Programming Environment suite consists of:
• Cray Compiler Environment (CCE)
• Cray Scientific Libraries (LibSci™ and

LibSci_ACC)
• Cray Programming Environment Machine

Learning Plugin
• Cray Debugging Support Tools (GDB4HPC and

CCDB)
• Cray Performance Measurement, Analysis and

Porting Tools (CPMAT)
• Chapel™ programming language

The Cray Programming Environment suite is
compatible with MVAPICH and Intel MPI.

Cray Compiler Environment
The Cray Compiler Environment (CCE) is the
cornerstone innovation of Cray’s adaptive computing
paradigm. CCE builds on a well-developed and
sophisticated Cray technology base that identifies
regions of computation that are either sequential
scalar, vector parallel or highly multithreaded. It
includes optimizing compilers that automatically
exploit the scalar, vector and multithreading hardware
capabilities of the Cray system. CCE supports Fortran,
C and C++.

Cray compiler features include:
• Compliance with C++11 (ISO/IEC

14882:2011), C++14 (ISO/IEC 14882:2014),
ANSI/ISO C11 (ISO/IEC 9899:2011) and
ANSI/ISO Fortran 2008

• ANSI/ISO TS 29113 for further interoperability
of Fortran with C

• Support for Kernighan & Ritchie C, 64-bit
programs and corresponding 64-bit libraries,
OpenMP 4.5, hybrid programming using MPI
across nodes and OpenMP within the node, IEEE
floating-point arithmetic and IEEE file formats,
and OpenACC 2.0

SOLUTION BRIEF

www.cray.com

Cray Scientific Libraries
The Cray Scientific Libraries, including LibSci and
LibSci_ACC, are a collection of highly tuned linear
algebra subroutines for Cray systems.

Cray® LibSci™ includes:
• Highly optimized Basic Linear Algebra

Subroutines (BLAS) – Cray LibSci includes
the auto-tuned BLAS library (CrayBLAS) with
custom optimizations for selected routines
on Cray systems. The CrayBLAS library is
optimized extensively using auto-tuning and
runtime adaptation. At runtime, CrayBLAS
draws on a performance database and provides
a tuned kernel for the precise BLAS calling
sequence passed to the library. For Cray systems,
CrayBLAS is tuned for both serial and SMP
execution. Both serial and threaded versions of
the BLAS library are provided.

• Linear Algebra Package (LAPACK) – Cray LibSci
includes serial numerical linear algebra routines
optimized specifically for Cray hardware. The
optimizations in Cray LibSci are mainly at the
algorithmic level, affecting both single-core and
SMP performance.

• Scalable LAPACK (ScaLAPACK) – Cray LibSci
provides an optimized ScaLAPACK library for
Cray systems based on ScaLAPACK from
Netlib. Cray’s ScaLAPACK library is a distributed-
memory programming model using MPI. It
includes parallel communications improvements
that are not part of the standard ScaLAPACK
distribution, as well as algorithmic improvements
that mirror those made for the LAPACK library.

• Iterative Refinement Toolkit (IRT) – IRT is a
custom library that allows users of LAPACK
and ScaLAPACK to solve linear systems with
increased efficiency by using mixed precision
iterative refinement. IRT includes a set of routines
to help understand advanced performance
available using iterative refinement, and a set
of wrappers that allow IRT to be used without
changing user code wherever possible. For
well-conditioned problems, IRT can provide
significant performance improvement with few or
no code changes. accelerator resources used by
their application.

PROGRAMMING ENVIRONMENT
OPTIONS FOR CRAY SYSTEMS

• The Cray Programming Environment suite

• Intel® Parallel Studio*

• GNU compilers and debugger

• PGI compiler and tools

• Qualified third-party tools including
 Rogue Wave TotalView™ and Arm
 Forge (DDT+MAP), Python and
 programming languages

• Arm Allinea Studio

*The Intel Parallel Studio development environment
includes both the Intel debugger and the GNU
debugger (GDB).

SOLUTION BRIEF

www.cray.com

Cray LibSci_ACC is a library that provides
accelerated BLAS and LAPACK routines to enhance
user application performance by generating and
executing autotuned kernels on GPUs. Cray LibSci_
ACC also provides a C API to allow pass-by-value
semantics for input parameters, improving productivity
for C programmers. Cray LibSci_ACC provides
both automatic selection of the appropriate GPU or
CPU algorithm based on problem size, and manual
selection for programmers who want to explicitly
manage the accelerator resources used by their
applications.

Cray Programming Environment Machine
Learning Plugin
The Cray Programming Environment Machine
Learning Plugin allows users to achieve optimized
scaling and performance across multiple machine
learning frameworks, such as TensorFlow™,
utilizing gradient descent. The plugin delivers high
performance across Cray node architectures. Key
benefits include:

• No parameter servers – the plugin automatically
determines which nodes to use, removing the
burden of figuring out how many to use and
where to put them.

• Easy to launch – the user does not need to
specify hosts and port numbers for workers.

• Simple to add parallelism – it’s easy to start from
a serial training script and include the plugin for
parallelism.

With the Cray Programming Environment Machine
Learning Plugin, data scientists can easily perform
deep learning training on a Cray® XC™ series
supercomputer — leveraging either CPUs or GPUs —
with nearly ideal efficiency to 512 nodes. The plugin
is packaged with the Cray® Urika-XC™ 1.1 UP001
release of Open Source Analytics that includes
TensorFlow.

Cray Performance Measurement, Analysis
and Porting Tools
Cray provides an integrated infrastructure to help
application developers port and optimize applications.
CPMAT consists of four main components:

• CrayPAT™, a robust measurement and analysis
tool

• CrayPAT-lite, a simplified interface to the
measurement and analysis tool

• The Cray Apprentice2 visualization tool

• The Cray® Reveal™ porting tool

Cray Performance Analysis Tool (CrayPAT™)
CrayPAT is the primary performance analysis tool for
Cray systems. Programs written in Fortran, C or C++
with MPI, OpenMP or OpenACC, or a combination
of these programming languages and models, are
supported.

CrayPAT allows users to select the functions to be
instrumented at different levels within the program,
by user function or by function name. It also provides
an API for fine-grained instrumentation. Users do not
need to modify program source or their makefile to
instrument at a function level. CrayPAT uses binary
rewrite techniques at the object level to create an
instrumented application, which is generated with a
single static or dynamic relink.

A general profile of an executable in CrayPAT
provides the total time consumed by a program
and its functions. In addition, samples can be taken
at set intervals or at the overflow of a hardware
performance counter. CrayPAT can take samples of
the call stack, dynamic heap memory management
statistics, the program counter, and system resource
usage.

SOLUTION BRIEF

www.cray.com

CrayPAT features include:

• Timing and hardware (CPU and GPU)
performance counter measurements for Fortran,
C and C++ functions with derived metrics

• The ability to collect and show a program’s top
time-consumers and bottlenecks (for example,
load imbalance) for jobs at scale with low
overhead and little program perturbation

• Automatic generation of observations and
suggestions based on analysis of collected data

• Integrated data collection and presentation of
computation, communication, I/O and memory
statistics

• Reports that are presented in text, with content
can be exported to other formats such as
spreadsheets and programs

CrayPAT-lite
CrayPAT-lite is a simplified, easy-to-use version of
the Cray Performance Analysis Tool. CrayPAT-lite
provides basic performance analysis information
automatically, with a minimum of user interaction, and
offers information useful to users wishing to explore a
program’s behavior further using the full CrayPAT tool
set.

CrayPAT-lite supports three basic experiments,
providing output to stdout at the end of a program’s
execution:

• Sample profile – a sampling experiment that can
include execution time, aggregate MFLOP count,
top time-consuming functions and routines, MPI
behavior in user functions, and performance
observations or hints

• Event profile – a tracing experiment that
generates a profile of top functions traced,
OpenMP or OpenACC information if applicable,
and performance observations and possible rank
order suggestions

• gpu – a trace experiment that generates more
detailed OpenACC GPU statistics including host
and device time, bytes transferred between the
host and device, and data transfer times between
the host and device

Cray Apprentice2
Cray Apprentice2 is a visualization tool that presents
performance data collected by CrayPAT in report and
graphical formats. The Cray Apprentice2 graphical
user interface (GUI) makes it easy for developers
to view graphs and charts that summarize their
programs’ performance data and helps to quickly
assess the type and severity of performance issues.
It takes as input the performance file generated
by CrayPAT and provides a familiar notebook-style
tabbed user interface. The GUI displays a variety
of different data panels, depending on the type of
performance experiment that was conducted. It
includes call-graph-based profile information and
timeline-based trace visualization that focuses on MPI
communication, as well as host and device activity
for GPU-accelerated programs. It also supports
traditional parallel processing and communication
mechanisms such as MPI, OpenMP and OpenACC.

Since Cray Apprentice2 uses platform-independent
data files, it can run efficiently on Windows®, macOS™
and Linux® operating systems — including laptops
and desktops. This allows remote users who do
not connect to a Cray system through a high-
performance network to benefit from the power of
the GUI without experiencing long delays due to
X-Window System™ network traffic.

SOLUTION BRIEF

www.cray.com

Capabilities of the Cray Apprentice2 tool:

• Provides a high-level overview of a program’s key
performance characteristics, including top time-
consuming functions, load imbalance, memory
utilization, and a program profile breaking down
computation versus communication

• Uses program runtime summary information
as well as event traces; records the amount of
time spent in execution of each portion of the
codeReports statistics summed across all PEs (or
on a per-PE basis) for the whole program, as well
as for functions and source code regions (user-
selected using the CrayPAT API)

• Shows total execution time, synchronization time,
subroutine execution time, communication time,
and the number of instructions executed

• Works with both optimized and unoptimized code

Cray® Reveal™

The Cray Reveal code restructuring assistant allows
developers to take advantage of more powerful
nodes by adding additional levels of parallelism
when porting applications. It assists with parallelizing
complicated loops, such as those that contain calls
to functions.

Reveal extends Cray’s performance measurement,
analysis and visualization technology by combining
performance statistics and program source code
visualization with Cray compiler optimization
feedback. It provides the ability to easily navigate
through source code to highlighted dependencies or
bottlenecks during the optimization phase of program
development or porting. By using the program library
provided by CCE and performance data collected
by CPMAT, users can navigate through their source
code to understand which high-level loops could
benefit from OpenMP parallelism. Reveal provides
dependency and variable scoping information
for those loops and assists users with creating
parallel directives.

Cray Reveal has the following capabilities:

• Source code navigation by loop performance, file,
function and loop

• Visual version of CCE’s listing information

• Visual version of CCE’s optimization messages,
filtered by category if desired

• Parallelization assistance including automatic
variable scoping for a loop or set of loops,
scoping results with feedback on issues found,
automatic OpenMP parallel directive generation,
and the ability to insert new OpenMP directive
into source code

Debugger Tools for Cray Systems
The Cray Programming Environment offers debugger
support based on industry-standard debuggers
and additional debugging tools developed by Cray.
Together, these technologies allow users to address
debugging problems at a broader range and scale
than conventional techniques.

GDB4HPC
GDB4HPC is a GDB-based parallel debugger
used to debug applications compiled with Fortran,
C and C++ compilers. GDB4HPC enables users
to run a traditional scalable debugging session
with a command line interface that provides an
experience similar to gdb. It allows programmers to
either launch an application or attach to an already-
running application. GDB4HPC also supports
fast-track debugging and comparative debugger
technology that enables programmers to compare
data structures between two executing applications.
It fully supports applications using the MPI, SHMEM,
PGAS and OpenMP programming models. OpenMP
support is implemented through the use of the
gdbmode command. The special mode exposes
the gdb command line syntax and allows the use of
thread commands.

SOLUTION BRIEF

www.cray.com

Cray Comparative Debugger (CCDB)
The Cray Comparative Debugger (CCDB) is Cray’s
data-centric debugging tool. CCDB features a GUI
that extends the comparative debugging capabilities
of lgdb, enabling users to easily compare data
structures between two executing applications. If the
values of the selected data structures diverge, the
user is notified that an error may exist. This capability
is useful for locating errors that are introduced when
applications are modified through code, compiler or
library changes, and for application porting between
architectures or programming models.

Cray systems also support third-party debuggers
such as Rogue Wave TotalView and Allinea DDT.

Chapel Programming Language
The Chapel programming language is designed for
productive parallel computing on large-scale systems.
Chapel’s design and implementation have been
undertaken with portability in mind, permitting Chapel
to run on multicore desktops and laptops, commodity
clusters and in the cloud, in addition to the high-end
supercomputers for which it was designed. Chapel’s
design and development are being led by Cray, but
it receives active collaboration and contributors from
academia, computing centers, industry and the open-
source community.

Chapel supports a multithreaded execution model
via high-level abstractions for data parallelism, task
parallelism, concurrency and nested parallelism.
Chapel’s locale type enables users to specify and
reason about the placement of data and tasks on a
target architecture in order to tune for locality and
affinity. Chapel supports global-view data aggregates
with user-defined implementations, permitting
operations on distributed data structures to be
expressed in a natural manner. In contrast to many
previous higher-level parallel languages, Chapel

is designed around a multiresolution philosophy,
permitting users to initially write very abstract code
and then incrementally add more detail until they
are as close to the machine as their needs require.
Chapel supports code reuse and rapid prototyping via
object-oriented design, type inference, and features
for generic programming. Existing code can be
integrated into Chapel programs (or vice versa) via
interoperability features.

Key benefits of the Chapel language:

• Parallel – contains first-class concepts for
concurrent and parallel computation

• Productive – designed with programmability and
performance in mind

• Portable – runs on laptops, clusters, HPC
systems and in the cloud

• Scalable – supports locality-oriented features for
distributed memory systems

• Open source – hosted on GitHub and
permissively licensed

©2018 Cray Inc. All rights reserved. Cray, the Cray logo and Urika are registered trademarks of Cray Inc. CrayPAT, Cray Reveal, Cray LibSci, Chapel and Cray XC are trademarks of Cray Inc.
All other trademarks mentioned herein are the properties of their respective owners. 20180213ES

SOLUTION BRIEF

www.cray.com

