

This page intentionally left blank

www.itpub.net

Fundamentals of Digital
and Computer Design

with VHDL

Richard S. Sandige
Professor Emeritus, California Polytechnic State University

Michael L. Sandige
Principal Engineer, WildTangent

FUNDAMENTALS OF DIGITAL AND COMPUTER DESIGN WITH VHDL

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New
York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of America. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,
but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

 This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

1 2 3 4 5 6 7 8 9 0 QDB/QDB 1 0 9 8 7 6 5 4 3 2 1

ISBN 978-0-07-338069-8
MHID 0-07-338069-5

Vice President & Editor-in-Chief: Marty Lange
Vice President & Director of Specialized Publishing: Janice M. Roerig-Blong
Global Publisher: Raghothaman Srinivasan
Senior Sponsoring Editor: Peter E. Massar
Senior Marketing Manager: Curtis Reynolds
Developmental Editor: Lorraine K. Buczek
Lead Project Manager: Jane Mohr
Design Coordinator: Brenda A. Rowles
Cover Designer: Studio Montage, St. Louis, Missouri
Cover Image: © R.A. - Fotolia.com
Buyer: Nicole Baumgartner
Media Project Manager: Balaji Sundararaman
Compositor: Lachina
Typeface: 10/12 Times LT Std
Printer: Quad Graphics

All credits appearing on pages are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Sandige, Richard S.
 Fundamentals of digital and computer design with VHDL / Richard S. Sandige, Michael L. Sandige.
 p. cm.
 Includes index.
 ISBN-13: 978-0-07-338069-8 (alk. paper)
 ISBN-10: 0-07-338069-5 (alk. paper)
1. Digital electronics. 2. Electronic digital computers—Design and construction—Data processing. 3. VHDL
(Computer hardware description language) I. Sandige, Michael L. II. Title.
 TK7868.D5S253 2012
 621.39'2—dc23
 2011033683

www.mhhe.com

www.itpub.net

To
my loving wife

Edie

Brief Contents

Preface xiii
About the Authors xx

 1 Boolean Algebra, Boolean Functions, VHDL, and Gates 1

 2 Number Conversions, Codes, and Function Minimization 37

 3 Introduction to Logic Circuit Analysis and Design 67

 4 Combinational Logic Circuit Design with VHDL 94

 5 Bistable Memory Device Design with VHDL 125

 6 Simple Finite State Machine Design with VHDL 156

 7 Computer Circuits 184

 8 Circuit Implementation Techniques 210

 9 Complex Finite State Machine Design with VHDL 227

 10 Basic Computer Architectures 279

 11 Assembly Language Programming for VBC1 292

 12 Designing Input/Output Circuits 316

 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit 335

 14 Designing Multiplexed Display Systems 357

 15 Designing Instruction Decoders 379

 16 Designing Arithmetic Logic Units 398

 17 Completing the Design for VBC1 416

 18 Assembly Language Programming for VBC1-E 425

 19 Designing Input/Output Circuits for VBC1-E 458

 20 Designing the Data Memory Circuit for VBC1-E 471

 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits
for VBC1-E 482

 22 Designing a Circuit to Prevent Program Execution During Manual Loading for VBC1-E 493

 23 Designing Extended Instruction Memory for VBC1-E 496

 24 Designing the Software Interrupt Circuits for VBC1-E 504

 25 Completing the Design for VBC1-E 516

 A Laboratory Experiments 528

 B Obtaining Simulations via the VHDL Test Bench Program 675

 C FPGA Pin Connections—Handy Reference 683

 D EASY1 Tutorial 687

 E Three Methods for Loading Instructions into Memory 701

Index 705

iv

www.itpub.net

Contents

Preface xiii
About the Authors xx

Chapter 1
Boolean Algebra, Boolean Functions, VHDL, and
Gates 1

 1.1 Introduction 1

 1.2 Basics of Boolean Algebra 1
1.2.1 Venn Diagrams 2
1.2.2 Black Boxes for Boolean Functions 3
1.2.3 Basic Logic Symbols 4
1.2.4 Boolean Algebra Postulates 7
1.2.5 Boolean Algebra Theorems 8
1.2.6 Proving Boolean Algebra Theorems 9

 1.3 Deriving Boolean Functions from Truth Tables 10
1.3.1 Deriving Boolean Functions Using the 1s of the

Functions 10
1.3.2 Deriving Boolean Functions Using the 0s of the

Functions 11
1.3.3 Deriving Boolean Functions Using Minterms and

Maxterms 12

 1.4 Writing VHDL Designs for Simple Gate
Functions 15
1.4.1 VHDL Design for a NOT Function 15
1.4.2 VHDL Design for an AND Function 17
1.4.3 VHDL Design for an OR Function 18
1.4.4 VHDL Design for an XOR Function 19
1.4.5 VHDL Design for a NAND Function 21
1.4.6 VHDL Design for a NOR Function 22
1.4.7 VHDL Design for an XNOR Function 24
1.4.8 VHDL Design for a BUFFER Function 26
1.4.9 VHDL Design for any Boolean Function Written

in Canonical Form 27

 1.5 More about Logic Gates 30
1.5.1 Equivalent Gate Symbols 30
1.5.2 Functionally Complete Gates 31
1.5.3 Equivalent Gate Circuits 32
1.5.4 Compact Description Names for Gates 32
1.5.5 International Logic Symbols for Gates 32

Problems 34

 v

Chapter 2
Number Conversions, Codes, and Function
Minimization 37

 2.1 Introduction 37

 2.2 Digital Circuits versus Analog Circuits 37
2.2.1 Digitized Signal for the Human Heart 37
2.2.2 Discrete Signals versus Continuous Signals 38

 2.3 Binary Number Conversions 38
2.3.1 Decimal, Binary, Octal, and Hexadecimal

Numbers 38
2.3.2 Conversion Techniques 40

 2.4 Binary Codes 45
2.4.1 Minimum Number of Bits for Keypads and

Keyboards 45
2.4.2 Commonly Used Codes: BCD, ASCII, and

Others 45
2.4.3 Modulo-2 Addition and Conversions between

Binary and Refl ective Gray Code 48
2.4.4 7-Segment Code 51
2.4.5 VHDL Design for a Letter Display System 52

 2.5 Karnaugh Map Reduction Method 54
2.5.1 The Karnaugh Map Explorer 55
2.5.2 Using a 2-Variable K-Map 56
2.5.3 Using a 3-Variable K-Map 58
2.5.4 Using a 4-Variable K-Map 60
2.5.5 Don’t-Care Outputs 61

Problems 63

Chapter 3
Introduction to Logic Circuit Analysis and
Design 67

 3.1 Introduction 67

 3.2 Integrated Circuit Devices 67

 3.3 Analyzing and Designing Logic Circuits 69
3.3.1 Analyzing and Designing Relay Logic

Circuits 69
3.3.2 Analyzing IC Logic Circuits 70
3.3.3 Designing IC Logic Circuits 71

 3.4 Generating Detailed Schematics 74

vi Contents

5.3.2 Characteristic Table for an S-R NAND
Latch 132

5.3.3 Characteristic Equation for an S-R NAND
Latch 133

5.3.4 PS/NS Table for an S-R NAND Latch 133
5.3.5 Timing Diagram for an S-R NAND Latch 133

 5.4 Designing a Simple Clock 134

 5.5 Designing a D Latch 137
5.5.1 Gated S-R Latch Circuit Design 137
5.5.2 D Latch Circuit Design with S-R Latches 138
5.5.3 D Latch Circuit Design via the Characteristic

Table for a D Latch 139
5.5.4 Timing Diagram for a D Latch 140
5.5.5 Creating a Clock via a D Latch 141
5.5.6 Creating an 8-bit D Latch 142

 5.6 Designing D Flip-Flop Circuits 143
5.6.1 Designing Master–Slave D Flip-Flop

Circuits 143
5.6.2 Designing D Flip-Flop Circuits with S-R NAND

Latches 146
5.6.3 Timing Diagram for Positive Edge-Triggered D

Flip-Flop 149

Problems 150

Chapter 6
Simple Finite State Machine Design with VHDL 156

 6.1 Introduction 156

 6.2 Synchronous Circuits 156

 6.3 Creating D-type Flip-Flops in VHDL 157

 6.4 Designing Simple Synchronous Circuits 158

 6.5 Counter Design Using the Algorithmic Equation
Method 159

 6.6 Nonconventional Counter Design Using the
Algorithmic Equation Method 167

 6.7 Counter Design Using the Arithmetic Method 170

 6.8 Frequency Division (Slowing Down a Fast Clock
Frequency) 171

 6.9 Counter Design Using the PS/NS Tabular
Method 174

 6.10 Nonconventional Counter Design Using the PS/NS
Tabular Method 177

Problems 178

Chapter 7
Computer Circuits 184

 7.1 Introduction 184

 7.2 Three-State Outputs and the Disconnected
State 184

 3.5 Designing Circuits in NAND/NAND and NOR/NOR
Form 76

 3.6 Propagation Delay Time 78

 3.7 Decoders 79
3.7.1 Designing Logic Circuits with Decoders and

Single Gates 82

 3.8 Multiplexers 85
3.8.1 Designing Logic Circuits with MUXs 87

 3.9 Hazards 88
3.9.1 Function Hazards 88
3.9.2 Logic Hazards 89

Problems 91

Chapter 4
Combinational Logic Circuit Design with VHDL 94

 4.1 Introduction 94

 4.2 VHDL 94

 4.3 The Library Part 95

 4.4 The Entity Declaration 96

 4.5 The Architecture Declaration 97
4.5.1 Comments about a Datafl ow Design Style 98
4.5.2 Comments about a Behavioral Design Style 98
4.5.3 Comments about a Structural Design Style 98

 4.6 Datafl ow Design Style 99

 4.7 Behavioral Design Style 102

 4.8 Structural Design Style 106

 4.9 Implementing with Wires and Buses 112

 4.10 VHDL Examples 116
4.10.1 Design with Scalar Inputs and Outputs 117
4.10.2 Design with Vector Inputs and Outputs 118
4.10.3 Common VHDL Constructs 120

Problems 121

Chapter 5
Bistable Memory Device Design with VHDL 125

 5.1 Introduction 125

 5.2 Analyzing an S-R NOR Latch 125
5.2.1 Simple On/Off Light Switch 125
5.2.2 Circuit Delay Model for an S-R NOR Latch 127
5.2.3 Characteristic Table for an S-R NOR Latch 128
5.2.4 Characteristic Equation for an S-R NOR

Latch 129
5.2.5 PS/NS Table for an S-R NOR Latch 129
5.2.5 Timing Diagram for an S-R NOR Latch 130

 5.3 Analyzing an S-R NAND Latch 132
5.3.1 Circuit Delay Model for an S-R NAND

Latch 132

www.itpub.net

 Contents vii

 9.5 Designing Compact Encoded State Machines with
Moore Outputs 235

 9.6 Designing One-Hot Encoded State Machines with
Moore Outputs 237

 9.7 Designing Compact Encoded State Machines with
Moore and Mealy Outputs 241

 9.8 Designing One-Hot Encoded State Machines with
Moore and Mealy Outputs 243

 9.9 Using the Algorithmic Equation Method to Design
Complex State Machines 245

 9.10 Improving the Reliability of Complex State Machine
Designs 251

 9.11 Additional State Machine Design Methods 255
9.11.1 Two-Assignment PS/NS Method 256
9.11.2 Hybrid PS/NS Method 259

Problems 262

Chapter 10
Basic Computer Architectures 279

 10.1 Introduction 279

 10.2 Generic Data-Processing System or Computer 279

 10.3 Harvard-Type Computer and RISC
Architecture 280

 10.4 Princeton (von Neumann)-Type Computer and CISC
Architecture 282

 10.5 Overview of VBC1 (Very Basic Computer 1) 283

 10.6 Design Philosophy of VBC1 283

 10.7 Programmer’s Register Model for VBC1 286

 10.8 Instruction Set Architecture for VBC1 287

 10.9 Format for Writing Assembly Language
Programs 289

Problems 290

Chapter 11
Assembly Language Programming for VBC1 292

 11.1 Introduction 292

 11.2 Instruction Set for VBC1 292

 11.3 The IN Instruction 293

 11.4 The OUT Instruction 296

 11.5 The MOV Instruction 298

 11.6 The LOADI Instruction 300

 11.7 The ADDI Instruction 301

 11.8 The ADD Instruction 303

 11.9 The SR0 Instruction 304

 11.10 The JNZ Instruction 306

 7.3 Data Bus Sharing for a Microcomputer System 187

 7.4 More about XOR and XNOR Symbols and
Functions 190
7.4.1 Odd and Even Functions 191
7.4.2 Single-Bit Error Detection System 192
7.4.3 Comparators and Greater Than Circuits 194

 7.5 Adder Design 197
7.5.1 Designing a Half Adder Module 197
7.5.2 Designing a Full Adder Module 198

 7.6 Designing and Using Ripple-Carry Adders and
Subtractors 200

 7.7 Propagation Delay Time for Ripple-Carry
Adders 203

 7.8 Designing Carry Look-Ahead Adders 203

 7.9 Propagation Delay Time for Carry Look-Ahead
Adders 206

Problems 206

Chapter 8
Circuit Implementation Techniques 210

 8.1 Introduction 210

 8.2 Programmable Logic Devices 210
8.2.1 PROMs and LUTs 212
8.2.2 PLAs 213
8.2.3 PALs or GALs 213
8.2.4 Designing with PROMs or LUTs 214
8.2.5 Designing with PLAs 215
8.2.6 Designing with PALs or GALs 216

 8.3 Positive Logic Convention and Direct Polarity
Indication 217
8.3.1 Signal Names 217
8.3.2 Analyzing Equivalent Circuits for the PLC and

the DPI Systems 218

 8.4 More about MUXs and DMUXs 221
8.4.1 Designing MUX Trees 223
8.4.2 Designing DMUX Trees 223

Problems 224

Chapter 9
Complex Finite State Machine Design with
VHDL 227

 9.1 Introduction 227

 9.2 Designing with the Two-Process PS/NS Method 228

 9.3 Explanation of CPLDs and FPGAs and State
Machine Encoding Styles 231

 9.4 Summary of Finite State Machine Models 234

viii Contents

Chapter 14
Designing Multiplexed Display Systems 357

 14.1 Introduction 357

 14.2 Multiplexed Display System for Four 7-Segment LED
Displays 357

 14.3 Designing a Multiplexed Display System Using
VHDL 360
14.3.1 Designing Module 1: A 4-to-1 MUX Array 360
14.3.2 Designing Module 2: A HEX Display

Decoder 361
14.3.3 Designing Module 3: A 2-bit Counter and a

Frequency Divider 362
14.3.4 Designing Module 4: A 2-to-4 Decoder 364

 14.4 Complete Design of a Multiplexed Display System
Using a Flat Design Approach 364

 14.5 Complete Design of a Multiplexed Display System
Using a Hierarchal Design Approach 367

 14.6 Designing a Word Display System Using a Flat
Design Approach 372

Problems 377

Chapter 15
Designing Instruction Decoders 379

 15.1 Introduction 379

 15.2 Purpose of the Instruction Decoder 379

 15.3 Instruction Decoder Truth Tables for the IN, OUT,
and MOV Instructions 380

 15.4 Designing an Instruction Decoder for the IN
Instruction 382

 15.5 Designing an Instruction Decoder for the OUT and
MOV Instructions 383

 15.6 Instruction Decoder Truth Table for the LOADI
Instruction 384

 15.7 Instruction Decoder Truth Table for the ADDI
Instruction 385

 15.8 Instruction Decoder Truth Table for the ADD
Instruction 386

 15.9 Instruction Decoder Truth Table for the SR0
Instruction 387

 15.10 Designing an Instruction Decoder for the SR0
Instruction 388

 15.11 Instruction Decoder Truth Table for the JNZ
Instruction 389

 15.12 Designing an Instruction Decoder for the JNZ
Instruction 391

 15.13 Designing an Instruction Decoder for VBC1 393

Problems 393

 11.11 Programming Examples and Techniques for
VBC1 308
11.11.1 Unconditional Jump 308
11.11.2 Labels 308
11.11.3 Loop Counter 309
11.11.4 Program Runs Amuck 310
11.11.5 Subtraction Instruction 310
11.11.6 Multiply Instruction 312
11.11.7 Divide Instruction 312

Problems 312

Chapter 12
Designing Input/Output Circuits 316

 12.1 Introduction 316

 12.2 Designing Steering Circuits 316

 12.3 Designing Bus Steering Circuits 318

 12.4 Designing Loadable Register Circuits 319

 12.5 Designing Input Circuits 321
12.5.1 Designing an Input Circuit Driven by Four Slide

Switches 323

 12.6 Designing Output Circuits 324
12.6.1 Designing an Output Circuit to Drive Four

LEDs 325
12.6.2 Designing an Output Circuit to Drive a

7-Segment Display 326
12.6.3 A Closer Look at the Circuitry for

Display 0 328

 12.7 Combining Input and Output Circuits to Form a
Simple I/O System 329

 12.8 Alternate VHDL Design Styles 332

Problems 333

Chapter 13
Designing Instruction Memory, Loading Program
Counter, and Debounced Circuit 335

 13.1 Introduction 335

 13.2 Designing an Instruction Memory 335
13.2.1 Coding Alterations for Instruction Memory 337
13.2.2 Initializing Instruction Memory for VBC1 at

Startup 339

 13.3 Designing a Loading Program Counter 342

 13.4 Designing a Debounced One-Pulse Circuit 345

 13.5 Design Verifi cation for a Debounced One-Pulse
Circuit 348

Problems 355

www.itpub.net

 Contents ix

Chapter 19
Designing Input/Output Circuits for VBC1-E 458

 19.1 Introduction 458

 19.2 Designing the Input Circuit for VBC1-E 458

 19.3 Instruction Decoder Truth Table for the Modifi ed IN
Instruction for VBC1-E 460

 19.4 Designing the Output Circuit for VBC1-E 462

 19.5 Instruction Decoder Truth Table for the Modifi ed
OUT Instruction for VBC1-E 464

 19.6 Designing an Instruction Decoder for the Modifi ed
IN and OUT Instructions for VBC1-E 466

 19.7 Designing an Instruction Decoder for the LOADI,
ADDI, and JNZ Instructions for VBC1-E 467

Problems 468

Chapter 20
Designing the Data Memory Circuit for VBC1-E 471

 20.1 Introduction 471

 20.2 Designing the Data Memory for VBC1-E 471

 20.3 Designing Circuits to Select the Registers and Data
for VBC1-E 475

 20.4 Instruction Decoder Truth Tables for the STORE and
FETCH Instructions for VBC1-E 475

 20.5 Designing an Instruction Decoder for the STORE
and FETCH Instructions for VBC1-E 478

 20.6 Designing an Instruction Decoder for the MOV
Instruction for VBC1-E 479

Problems 480

Chapter 21
Designing the Arithmetic, Logic, Shift, Rotate, and
Unconditional Jump Circuits for VBC1-E 482

 21.1 Introduction 482

 21.2 Designing the Arithmetic and Logic Instructions Part
of the ALU for VBC1-E 482

 21.3 Designing the Instruction Decoder for the Arithmetic
and Logic Instructions for VBC1-E 484

 21.4 Designing the Shift and Rotate Instructions Part of
the ALU for VBC1-E 485

 21.5 Designing the Instruction Decoder for the Shift and
Rotate Instructions for VBC1-E 486

 21.6 Designing the JMP and JMPR Circuits for
VBC1-E 488

 21.7 Designing the Instruction Decoder for the JMP and
JMPR Instructions for VBC1-E 489

Problems 490

Chapter 16
Designing Arithmetic Logic Units 398

 16.1 Introduction 398

 16.2 Utilization of the Arithmetic Logic Unit 398

 16.3 Designing the LOADI Instruction Part of the
ALU 399

 16.4 Designing the ADDI Instruction Part of the
ALU 400

 16.5 Designing the ADD Instruction Part of the ALU 401

 16.6 Designing the SR0 Instruction Part of the ALU 401

 16.7 Designing an ALU for VBC1 402

 16.8 Additional Circuit Designs with VHDL 403
16.8.1 Designing Additional ALU Circuits 403
16.8.2 Designing Shifter Circuits 406
16.8.3 Designing Barrel Shifter Circuits 409
16.8.4 Designing Shift Register Circuits 412

Problems 414

Chapter 17
Completing the Design for VBC1 416

 17.1 Introduction 416

 17.2 Designing a Running Program Counter 416

 17.3 Combining a Loading and a Running Program
Counter 419

 17.4 Designing a Run Frequency Circuit and a Speed
Circuit 421

 17.5 Designing Circuits to Provide a Loader for
Instruction Memory for VBC1 423

Problems 424

Chapter 18
Assembly Language Programming for VBC1-E 425

 18.1 Introduction 425

 18.2 Instruction Summary 425

 18.3 Input, Output, and Interrupt Instructions 427

 18.4 Data Memory Instructions 432

 18.5 Arithmetic and Logic Instructions 434

 18.6 Shift and Rotate Instructions 437

 18.7 Jump, Jump Relative, and Halt Instructions 439

 18.8 More about Interrupts and Assembler
Directives 443

 18.9 Complete Instruction Set Summary for
VBC1-E 448

Problems 449

x Contents

Chapter 25
Completing the Design for VBC1-E 516

 25.1 Introduction 516

 25.2 Designing a Debounced One-Pulse Trigger Interrupt
Circuit and Modifying the RPC Circuit for
VBC1-E 516

 25.3 Designing Circuits for Displaying the Signal RETA
for VBC1-E 521

 25.4 Designing Circuits to Provide a Loader for
Instruction Memory for VBC1-E 525

Problems 525

 Appendices
 A Laboratory Experiments 528

 Experiment 1A: Designing and Simulating Gates 528

 Experiment 1B: Completing the Design Cycle 534

 Experiment 2: Designing and Testing a Keypad Encoder
System 539

 Experiment 3: Designing and Testing a Check Gates
System 542

 Experiment 4: Designing and Testing a Custom Decimal
Display Decoder System 546

 Experiment 5A: Designing and Testing a D Latch and a
D Flip-Flop with a CLR Input 549

 Experiment 5B: Designing and Testing an 8-bit Register
and a D Flip-Flop with a PRE Input 553

 Experiment 6A: Designing and Testing a Simple Counter
System—A One-Hot Up Counter with 8
Bits 558

 Experiment 6B: Designing and Testing a Simple Counter
System—A Gray Code Counter with
2 Bits 562

 Experiment 6C: Designing and Testing a Simple
Nonconventional Counter System—A
Robot Eye Circuit 565

 Experiment 6D: Designing and Testing a Simple
Nonconventional Counter—A Smiley Face
Circuit 569

 Experiment 7A: Designing and Testing a Simple Error
Detection System Using a Flat Design
Approach 572

 Experiment 7B: Designing and Testing a 4-bit Simple
Adder-Subtractor System Using a
Hierarchal Design Approach 577

Chapter 22
Designing a Circuit to Prevent Program Execution
During Manual Loading for VBC1-E 493

 22.1 Introduction 493

 22.2 Designing a Circuit to Modify Manual Loading for
VBC1-E 493

 22.3 Modifying the Instruction Decoder for Manual
Loading for VBC1-E 495

Problems 495

Chapter 23
Designing Extended Instruction Memory for
VBC1-E 496

 23.1 Introduction 496

 23.2 Modifying the Instruction Memory to Add Extended
Instruction Memory for VBC1-E 496

 23.3 Modifying the Running Program Counter Circuit for
VBC1-E 500

 23.4 Modifying the Proper Address Circuit for
VBC1-E 501

 23.5 Modifying the Loading Program Counter Circuit for
VBC1-E 501

 23.6 Modifying the JMPR Circuit for VBC1-E 502

Problems 502

Chapter 24
Designing the Software Interrupt Circuits for
VBC1-E 504

 24.1 Introduction 504

 24.2 Designing the Modifi ed Circuit for the Running
Program Counter and the Select Circuit for
VBC1-E 504

 24.3 Designing the Circuit to Store PCPLUS1 for
VBC1-E 509

 24.4 Instruction Decoder Truth Tables for the INT and
IRET Instructions for VBC1-E 510

 24.5 Designing the Instruction Decoder for the INT and
IRET Instructions for VBC1-E 511

Problems 513

www.itpub.net

 Contents xi

 B Obtaining Simulations via the VHDL Test
Bench Program 675

 B.1 Introduction 675

 B.2 Example 1—Combinational Logic Design (project:
AND_3) 675

 B.3 Example 2—Synchronous Sequential Logic Design
(project: DFF) 679

 C FPGA Pin Connections—Handy
Reference 683

 C.1 BASYS 2 Board 683

 C.2 NEXYS 2 Board 684

 C.3 Memory Loader I/O Pin Connections for the FPGAs
on the BASYS 2 and NEXYS 2 Board 685

 C.4 FX2 MIB (Module Interface Board)—Add-on Board
for NEXYS 2 686

 D EASY1 Tutorial 687

 D.1 Introduction 687

 D.2 EASY1 Screen or GUI 687

 D.3 EASY1 Layout 687

 D.4 How to Use EASY1 689

 D.5 Example 1—A Simple Input/Output Program 689

 D.6 Example 2—Input/Output Program Modifi ed to Run
Continuously 695

 D.7 Example 3—A Simple State Machine Program 696

 D.8 Example 4—A Complex State Machine
Program 696

 D.9 Example 5—Generating Time Delays 698

 D.10 Using EASY1 to Generate Machine Code for
VBC1 699

 E Three Methods for Loading Instructions
into Memory 701

 E.1 Loading Memory Manually 701

 E.2 Initializing Memory at Startup 702

 E.3 Loading Memory via the Memory Loader
Program 703

Index 705

 Experiment 8: Designing and Testing a LUT
Design System Using a Flat Design
Approach 580

 Experiment 9A: Designing and Testing a One-Hot Up/
Down Counter System Using a Flat Design
Approach 584

 Experiment 9B: Designing and Testing a 10-State Counter
System Using a Hierarchal Design
Approach 589

 Experiment 10: Working with EASY1 (Editor/Assembler/
Simulator) for VBC1 593

 Experiment 11: Writing and Simulating Programs for
VBC1 with EASY1 598

 Experiment 12: Designing and Testing VBC1 (Data Path
Unit) 600

 Experiment 13: Designing and Testing VBC1 (Instruction
Memory Unit) 605

 Experiment 14: Designing and Testing VBC1 (Monitor
System) 609

 Experiment 15: Designing and Testing VBC1 (Instruction
Decoder) 613

 Experiment 16: Designing and Testing VBC1 (Arithmetic
Logic Unit) 617

 Experiment 17: Designing and Testing VBC1 (Final
Hardware Design for VBC1) 621

 Experiment 17L: Designing a Loader for Instruction
Memory for VBC1 626

 Experiment 18 Writing Assembly Language Programs
and Running Them on VBC1 632

 Experiment 19: Designing and Testing VBC1-E (IN, OUT,
and Unchanged Instructions) 635

 Experiment 20: Designing and Testing VBC1-E (MOV and
Data Memory Instructions) 640

 Experiment 21: Designing and Testing VBC1-E (Almost
All Instructions) 645

 Experiment 22: Designing and Testing VBC1-E (Modifi ed
Manual Loading) 651

 Experiment 23: Designing and Testing VBC1-E (Add
Extended Instruction Memory) 654

 Experiment 24: Designing and Testing VBC1-E (INT and
IRET Instructions) 658

 Experiment 25: Designing and Testing VBC1-E (Final
Hardware Design for VBC1-E) 663

 Experiment 25L: Designing a Loader for Instruction
Memory for VBC1-E 668

This page intentionally left blank

www.itpub.net

T
his book is intended for an introductory digital design course for students at the fresh-
man level; it is also intended for an introductory computer design course with assembly
language programming for students at the sophomore level or above. The material in the

book is suitable for students who study computer engineering, computer science, and electrical
engineering. This book uses a spiral teaching approach by introducing a design problem and
then, in the same or a later chapter, either (1) reemphasizing the same concepts when a different
design problem is presented, or (2) working the same problem using a different technique. This
is done to increase the likelihood of retention.
 There is no prerequisite for the book; however, computer familiarity and/or a fi rst program-
ming course usually helps students to learn VHDL and assembly language programming.

KEY FEATURES OF THIS TEXT

• Generic VHDL code is taught and used throughout the book so that different companies’
VHDL tools can be used if desired.

• Classical and modern VHDL designs are taught to provide a balance throughout the course.
• A Karnaugh Map Explorer program is provided as an interactive tool to teach students to

use Karnaugh maps with 2, 3, and 4 variables.
• Students are taught how to design VBC1 (Very Basic Computer 1) and VBC1-E (an

enhanced version of VBC1), which are 4-bit educational computers. Both computers can
be downloaded into a fi eld programmable gate array (FPGA) on a development board and
programmed in assembly language.

• An editor/assembler/simulator program called EASY1 is provided to teach students how to
program VBC1 and VBC1-E.

• A memory loader software program is provided to teach students how to design a loader for
instruction memory.

• One or more experiments are provided for every chapter and keyed by number; many have
a recommended pre-lab assignment, related to either writing assembly language programs
or obtaining simulations for VHDL designs.

• Homework problems are keyed to every section of the book.

CHAPTER AND TOPICAL OVERVIEW

In the digital design section of this book, the following topics are covered in Chapters 1 through 9:

• VHDL (Very High Speed Integrated Circuit Hardware Description Language) is intro-
duced in Chapter 1 for combinational logic circuits.

• Thirty-four experiments are provided to allow students to “learn by doing.” Experiments 1A
through 9B provide practice for students to learn how to design VHDL circuits for digital

Preface

 xiii

xiv Preface

designs in the laboratory. The experiment numbers are keyed to the chapter numbers. The
experiments may be used for homework assignments or special projects.

• Students are introduced in Chapter 2 to a 7-segment display that uses a letter display system
that they can design and build with an FPGA board via VHDL to display the high (H) or
low (L) level of a slide switch. The Karnaugh Map Explorer program is also provided as an
interactive tool to teach students to use Karnaugh maps with 2, 3, and 4 variables.

• A graphical design method is introduced for manually designing logic circuits in NAND/
NAND and NOR/NOR form in Chapter 3 and then followed up with equivalent designs
using VHDL. Decoders and multiplexers (MUXs) are introduced and manual methods are
used to design circuits with both decoders and MUXs. These methods are followed with
equivalent designs using VHDL. Function and logic hazards are presented and students are
shown how to eliminate logic hazards with logic hazard cover terms.

• Combinational logic circuit design with VHDL is presented in Chapter 4 with complete
coverage of datafl ow, behavioral, and structural design styles. VHDL examples that include
both scalar and vector inputs and outputs are provided.

• Set-reset (S-R) latches, D latchs, and D fl ip-fl ops are designed both classically and with
VHDL in Chapter 5. In this chapter students learn how to design D edge-triggered fl ip-
fl ops. Experiment 5A provides hands-on learning experience in the gate-level design of a
D latch and a positive edge-triggered D fl ip-fl op with a CLR (clear) input. Experiment 5B
provides a similar hands-on experience of an 8-bit register and a positive edge-triggered
D fl ip-fl op with a PRE (preset) input.

• Finite state machine design is divided into simple and complex state machines. Simple state
machines are basic counters without an external input to change the counting sequence.
Complex state machines have an external input(s) to change the counting sequence. Simple
state machines are presented in Chapter 6. An algorithmic equation method for simple state
machines is presented to show students how to design simple state machines manually. This
method works for practically any size state machine but it is tedious because students must
learn how to write D excitation equations. Students learn how to use the arithmetic method,
which is especially useful when generating a slower clock frequency (or frequency divider).
In addition, a present-state/next-state (PS/NS) tabular method is introduced that allows
students to write the VHDL equations for basic counters using a process that eliminates
the hassle of obtaining D excitation equations. A new counter design description called a
counting or state sequence diagram is introduced alongside the traditional state diagram.

• In Chapter 7 various computer circuits are presented including three-state outputs, data
bus sharing, adder and subtractor design, ripple carry adders, and carry look-ahead adders.
Experiments 7A and 7B provide hands-on design experience of special combinational logic
systems related to Chapter 7, that is, a simple (single-bit) error detection system and a 4-bit
simple adder-subtractor system.

• Circuit implementation techniques presented in Chapter 8 show the implementation of
programmable logic devices—that is, PROMs, PLAs, PALs, GALs and LUTs. This chapter
also contains a brief introduction to the positive logic convention and direct polarity indica-
tion and how to convert between the two representations. A modular design technique is
presented to show how to design MUX and DMUX trees. Designing and testing of a LUT
design system is provided in Experiment 8.

• Complex state machine design with VHDL is presented in Chapter 9 using the two-process
PS/ NS method. The fi rst process, called the synchronous process, generates the fl ip-fl ops,
and the second process, called the combinational process, decodes the next-state func-
tions and any Moore and Mealy outputs that may be present in the design. State machine
encoding styles that are used for complex programmable logic devices (CPLDs) and FPGAs
are also presented in this chapter. Experiment 9A provides hands-on design experience in
designing a one-hot up/down counter system using a fl at design approach. Experiment 9B

www.itpub.net

 Preface xv

provides hands-on design experience in designing a 10-state counter system using a hier-
archal design approach. A synchronizer circuit is introduced that improves the reliability
of complex state machine designs by reducing the possibility of metastability. To complete
the discussion, two additional state machine design methods are presented—the two-
assignment PS/NS method and the hybrid PS/NS method.

In the computer design section of this book, the following topics are covered in Chapters 10
through 17:

• After a brief introduction to Harvard and Princeton (von Neumann)-type computer archi-
tectures, students are introduced to a very basic Harvard-type computer called VBC1
(Very Basic Computer 1) in Chapter 10. Students learn the programmer’s register model,
the instruction set architecture, and the format for writing assembly language for VBC1.
Students get their fi rst introduction to writing assembly language programs for VBC1 in
Experiment 10. Appendix D provides a tutorial for the editor/assembler/simulator 1 that we
call EASY1.

• In Chapter 11, the assembly language form, transfer function form, and machine code form
are presented for all the instructions for VBC1. Programming examples and techniques are
presented for VBC1.

• The experiments accompanying Chapter 12 through Chapter 17 allow students to construct,
design, and implement VBC1 via an FPGA over a period of six weeks if one experiment
is performed per week. The number of experiments per week can be decided on by the
instructor teaching the laboratory class. Recommended pre-lab assignments are provided.

• Chapter 12 presents the design of input/output (I/O) circuits for VBC1 and deals mainly
with bus steering circuits, loadable D registers, driving light-emitting diodes (LEDs) and
driving 7-segment displays.

• The design of instruction memory (for storing programs), a loading program counter (for
loading instruction memory), and a debounced circuit (for single stepping through instruc-
tion memory) is presented in Chapter 13. An introduction to gated clock circuits and how to
remove them is also emphasized in this chapter.

• Chapter 14 presents the design of a multiplexed display system for VBC1. To provide addi-
tional experience, students learn how to design a word display system in this chapter.

• The design of the instruction decoder for VBC1 is presented in Chapter 15 because each
instruction must be decoded to automatically provide instruction execution.

• The design of the arithmetic logic unit (ALU) for VBC1 is covered in Chapter 16. In addi-
tion to an expanded ALU design, students also learn how to design the following circuits:
shifter circuits, barrel shifter circuits, and shift register circuits via VHDL.

• Chapter 17 covers the fi nal design for VBC1, which includes the design of the running
program counter that allows VBC1 to run at a specifi ed clock frequency. Experiment 17L
is designed to provide the capability to automatically load programs into the instruction
memory of VBC1 via a memory loader program. Up to this point the instruction memory
was either loaded manually via slide switches or preloaded via initialization of the instruc-
tion memory in the VHDL code for VBC1.

In the computer design section of this book, the following topics are covered in Chapters 18
through 25:

• In Chapter 18, the assembly language form, transfer function form, and machine code
form are presented for all the instructions for VBC1-E. This includes modifi ed IN and
OUT instructions (four ports each), additional instructions for a data memory (STORE and
FETCH), additional arithmetic and logic instructions (SUB, NOT, AND, OR, and XNOR),
additional shift and rotate instructions (SR1, SL0, SL1, RR, and RL), additional control
instructions (JMP, JMPR, and HALT), additional software interrupt instructions (INT and

xvi Preface

IRET), and a hardware interrupt capability. Two assembler directives (BIPROC and EQU)
are also included in the EASY1-E assembler for VBC1-E. Experiment 18 provides students
with hands-on experience with writing and simulating assembly language programs for
both VBC1 and VBC1-E.

• The experiments accompanying Chapters 19 through Chapter 25 allow students to con-
struct, design, and implement VBC1-E via an FPGA over a period of seven weeks (if one
experiment is performed per week). The number of experiments per week can be decided
on by the instructor teaching the laboratory class.

• In Chapter 19 students learn how to expand the I/O design of VBC1 to make VBC1-E. This
includes redesigning the instruction decoder to handle the expanded I/O design for the IN
and OUT instructions.

• Data memory did not exist in VBC1 so Chapter 20 covers the design of a simple data
memory with four storage locations for VBC1-E.

• In Chapter 21, students learn how to enhance the design of the ALU for VBC1 to include
new arithmetic and logic instructions, and new shift and rotate instructions. This includes
redesigning the instruction decoder to handle the additional instructions. The design for the
new control instructions JMP, JMPR, and HALT are presented, and the instruction decoder
is redesigned to handle these new instructions.

• Chapter 22 is a very short chapter showing how to design a circuit to prevent program
execution during manual loading. Students often fi nd manual loading of VBC1-E to be
distracting, which led to this chapter in the book.

• VBC1-E has additional storage locations and Chapter 23 covers the modifi cation of the
instruction memory to include the additional storage locations.

• VBC1-E has new software interrupt instructions and Chapter 24 covers the design of the
necessary circuits to handle the instructions INT and IRET. The instruction decoder is also
redesigned to handle these new instructions.

• Chapter 25 covers the fi nal design for VBC1-E, which includes the design of the hardware
interrupt capability. Experiment 25L is designed to provide the capability to automatically
load programs into the instruction memory of VBC1-E via a memory loader program.

Information on CAD Tools and FPGA Boards
For the digital design portion of this book, circuits and systems are presented using both a clas-
sical methodology—that is, manual calculations—and VHDL designs. For the computer design
portion of this book, VHDL is used to design VBC1 and VBC1-E. This approach encourages
students to design their own digital systems and/or games once they learn how easy it is to
design with VHDL. Students are not restricted to generating circuits on a small circuit board,
where they must place the IC (integrated circuit) packages and wire them together. The FPGA
(fi eld programmable gate array) chips that are used on modern digital boards remove this ardu-
ous task. Xilinx- ISE- WebPACK is the primary CAD (computer-aided design) tool used in
this book. The ISE WebPACK is available to students and instructors via the Xilinx web site at
http://www.xilinx.com/support/download/index.htm.
 A programmable logic FPGA chip can be reprogrammed over and over, which is an ideal
way for students to learn by trial and error. Designs with VHDL code are simulated to verify
that the VHDL code works. If there is an error in the simulation of their VHDL code, students
can simply fi nd and fi x the error or errors and rerun the simulation. When the simulation is cor-
rect, the correct bit pattern for the VHDL code can be downloaded into the FPGA chip. Students
can then observe their design working in hardware.
 The Digilent- Company manufactures and distributes two very popular FPGA boards.
Their web site is http://www.digilentinc.com. The boards are (1) the BASYS 2/ board, which
contains a Spartan 3E FPGA manufactured by Xilinx, and (2) the NEXYS 2/ board, which
also contains a Spartan 3E FPGA. The cost of the BASYS 2 board is about $49; the cost of the

www.itpub.net

 Preface xvii

NEXYS 2 board is about $99. If the book is used for a digital design course, either the BASYS
2 or NEXYS 2 board can be used. If the book is used for a computer design course, either the
BASYS 2 or NEXYS 2 board can be used to design a stripped-down version of VBC1-E, for
an added cost of about $55 for a few additional peripheral modules. The NEXYS 2 board has
additional fl exibility that allows an add-on board called the FX2 MIB (module interface board)
to be used. This add-on board allows a full-blown version of VBC1-E to be designed with addi-
tional peripheral modules. The cost of the FX2 MIB is about $20 and the additional peripheral
modules are about $40.

Information for Laboratory Experiments
Appendix A contains 34 laboratory experiments. To perform Experiments 1B through 25L
requires the use of a BASYS 2 or NEXYS 2 board. These boards are quite popular and will be
upgraded as newer FPGAs become available. The experiments may be performed on a different
FPGA board from another vender, provided that the FPGA board has the required input/output
capability, or the VHDL code is modifi ed to match the input/output capability of the different
FPGA board. The Altera® DE1 and DE2 boards can also be used to perform the experiments
using Quartus-II software, because generic VHDL code is used throughout the book. The I/O
for the DE1 and DE2 boards are slightly different than that of the BASYS 2 and NEXYS 2
boards, thus requiring changes to be made in the generic VHDL code to accommodate the dif-
ferences in I/O capability.
 Recommended pre-lab assignments are included so students can learn how to modify test
bench code or write test bench code to simulate their VHDL designs. Appendix B provides
students with help in how to modify test bench code.

ACKNOWLEDGMENTS

We would like to thank the many reviewers who made valuable comments during the develop-
ment and writing phases of this book. We hope the fi nal product meets with their approval.

Bharat Bhuva Vanderbuilt University
Suresh Borkar Illinois Institute of Technology
C. Hwa Chang Tufts University
Katherine Compton University of Wisconsin–Madison
Steve Crist Western New England College
Nila Y. Desai Sardar Vallabhbhai National Institution of Technology, India
Rahul Dubey DA-IICT (Dhirubhai Ambani Institute of Information and

 Communication Technology), Gujarat India
Mark Faust Portland State University
Maria Garazaran University of Illinois–Urbana
Roger Haggard Tennessee Technological University
Ronald Hayne The Citadel
M. Nazrul Islam Old Dominion University
Anura Jayasumana Colorado State University
Brock LaMeres Montana State University
Yong Li University of Wisconsin–Platteville
Yufeng Lu Bradley University
Aleksander Malinowski Bradley University
Chad Mano Utah State University
James C. Maxted University of Iowa

xviii Preface

David G. Meyer Purdue University
Venkatesan Muthukumar University of Nevada–Las Vegas
Shahin Nazarian University of Southern California
Patricia Nava University of Texas–El Paso
Haluk Ozemek San Jose State University
James K. Peckol University of Washington
Reginald Perry Florida State University
Arvind Rajawat Maulana Azad National Institute of Technology, Bhopal India
Jackie Rice University of Lethbridge
Salam Salloum California State Polytechnic University–Pomona
Martha Sloan Michigan Technological University
James Stine Oklahoma State University
Somanath Tripathy Indian Institute of Technology, Patna India
Kenneth S. Vastola Rensselaer Polytechnic University
Earl Wells University of Alabama–Huntsville
Phillip Wilsey University of Cincinnati

 We would also like to provide a special acknowledgment to Scott Marshall, one of Richard’s
students, who developed and wrote Experiments 17L and 25L. Scott also wrote the memory
loader program for VBC1-L and VBC1-EL. Scott did this for Digilent’s BASYS 2 and NEXYS
2 boards and also for Altera’s DE1 and DE2 boards. The memory loader program provides the
means to automatically download the instruction bit patterns into the instruction memory of
VBC1 and VBC1-E without using switches or initializing instruction memory at startup.
 We would also like to thank the many dedicated and studious students at California State
Polytechnic University in San Luis Obispo, in both electrical and computer engineering. Many
students took an interest in our work, making suggestions and corrections as they completed the
digital and computer design courses taught from our notes while the book was being developed.
Without these caring students—who are too many to mention by name—it would not have been
possible to write this book. Thank you.
 Without the wonderful caring help of the following people at McGraw-Hill, this book
would not have made it through the publication process: Raghu Srinivasan, global publisher;
Peter Massar, senior sponsoring editor; Lorraine Buczek, developmental editor; and Jane Mohr,
project manager. We really appreciate all your help in making this book become a reality.
 We would like to thank the Digilent Company for supplying the BASYS 2 and NEXYS 2
boards, providing the technical assistance in using them, and providing the photos in Experi-
ments 1A and 19. The people who helped us are Clint Cole, Gene Apperson, Jim O’Dell, Joe
Harris, Joshua Pederson, Fiona Cole, Stephanie Roberts, Norman MacDonald, and Roy Bean.
 We would like to thank the Altera- Corporation for supplying the DE1 and DE2 boards and
for providing the technical assistance in using them. The people who helped us are Blair Fort
and Ralene Marcoccia.
 Richard would like to personally thank the Xilinx Company for allowing him to attend in-
house courses on the ISE software and to work at Xilinx over the summer with their software
and hardware engineers. The people who helped him are Rina Raman, Peter Alfke, and Paul
Hartke. Richard would also like to thank Ken Chapman who reviewed the manuscript very
early in the development of the book and made important comments. Ken is the designer of the
Xilinx PicoBlaze 8-bit microcontroller. There were many more engineers who provided excel-
lent advice and help while Richard worked at Xilinx, and sincere thanks goes out to all of them.
 Last, but not least, we would like to thank the faculty in the electrical engineering depart-
ment and CPE program at Cal Poly who had a part in making this book better. The people who
helped us are Jim Harris, Michael Cirovic, Art MacCarley, Albert Liddicoat, Xiao-Hua (Helen)
Yu, Tina Smilkstein, David Braun, Dennis Derickson, Fred DePiero, John Oliver, Wayne Pilk-

www.itpub.net

 Preface xix

ington, Lynne Silvovsky, Bryan Mealy, John Saghri, and Hugh Smith. Some of these people
taught the courses using our notes and others encouraged or discouraged us from doing certain
things, which we believe made the book better.

Online Resources
A number of valuable resources are available to students and instructors at the following web-
site: www.mhhe.com/sandige. Students may download the programs used in the text, such as
the Karnaugh map explorer program, the EASY1 program, and the Memory Loader program.
PowerPoint slides, solutions to the end-of-chapter problems, stimulus processes for pre-labs, and
solutions to the laboratory experiments are available to instructors only.
 No book is totally error free. If you fi nd an undiscovered error, please e-mail your com-
ments to richard,sandige.com. An up-to-date list of discovered errors will be available to all
readers on the book’s website.

Richard Sandige

Michael Sandige

Richard Sandige is a Professor Emeritus at California Polytechnic State University (Cal Poly)
at San Luis Obispo, California. He taught from 1998 to 2010 at Cal Poly in the CPE (computer
engineering) program. He received a PhD in electrical engineering from Texas A&M University
in 1978, an MS in electrical engineering from West Virginia University in 1969, and a BS in
electrical engineering from West Virginia University in 1963. He taught from 1989 to 1998 at
the University of Wyoming in the Electrical Engineering Department. He worked at Hewlett-
Packard (HP) Company from 1979 to 1989, where he was on the team that designed the fi rst HP
desktop computer. He taught at Texas A&M University from 1973 to 1979 in the Engineering
Technology Department while working on his PhD. He taught at Southwest Virginia Com-
munity College from 1970 to 1973 in the Electronics Department. He worked at Conductron
Missouri (Electronic Branch of McDonnell Douglas) from 1969 to 1970 on fl ight simulators. He
taught at West Virginia Institute of Technology from 1967 to 1969 while working on his MS. He
served in the United States Air Force from 1963 to 1966, working on the research and develop-
ment of intercontinental ballistic missiles, after receiving his commission as Second Lieutenant
in the Air Force Reserve Offi cer Training Corps at West Virginia University. While working at
the University of Wyoming, he served as an assistant editor for the IEEE Transactions on Edu-
cation. Dr. Sandige has more than 20 publications in professional journals and has published
four textbooks and one lab manual.

Mike Sandige is a software architect and developer with a history of and interest in game and
game technology development. He received a BS in electrical engineering and computer science
in 1990 from the University of Colorado, Boulder. He started in the game industry as an inde-
pendent contractor, working as the sole or lead programmer on several titles from 1987 through
1994. In 1994, he co-founded Cinematronics LLC, with the charter to make games for Micro-
soft Windows, an emerging platform for games. As vice president of product development, he
worked on games, and as the company grew, he managed and directed the engineering staff.
One of the more popular games he developed during this time was the “Space Cadet” pinball
game that shipped with Windows 95. Cinematronics became a successful game development
studio, leading to acquisition by Maxis (the makers of “The Sims”) in 1996. In 1997, Mike Sand-
ige joined Eclipse Entertainment, a small startup, as vice president of research and development.
He worked on game engine architecture, rendering technology and helping make Eclipse Enter-
tainment’s Genesis3D game engine a leading product. He joined WildTangent when it acquired
Eclipse Entertainment in 1999 to leverage the 3D engine team and technology into a new web
browser–based technology, the “WildTangent Web Driver.” He architected the technology and
managed the technology team, as well as assisting with the development of a few of the many
games that used the engine. Mike has remained with WildTangent for more than 10 years, help-
ing the company with different technical challenges as it transitioned from a game and technol-
ogy developer to a game distributer; he currently serves as a principal engineer. Mike Sandige
has credits on more than 20 games and other published software titles.

xx

About the Authors

www.itpub.net

C h aa p t e rr

Boolean Algebra, Boolean
Functions, VHDL, and Gates

Chapter Outline

 1.1 Introduction 1

 1.2 Basics of Boolean Algebra 1

 1.3 Deriving Boolean Functions from Truth Tables 10

 1.4 Writing VHDL Designs for Simple Gate Functions 15

 1.5 More about Logic Gates 30

 Problems 34

1.1 INTRODUCTION

In this chapter, you will learn three different ways to express Boolean functions. Boolean
algebra is a mathematical form used to represent a Boolean function. Gates are a graphical
form to represent a Boolean function. VHDL (Very High Speed Integrated Circuit Hardware
Description Language) is a textual form to represent a Boolean function. Boolean functions are
used in industry to specify logic or digital circuits. Logic gates or digital circuits represent a
class of circuits that produce operations of the yes–no (true–false or 1–0) variety. These types
of circuits are the ones used in the computer industry and many other areas that use digital
circuits. It is hard to get through each day without using a digital circuit. For example, digital
circuits are used in cell phones, calculators, computers, washing machines, microwave ovens,
and kid’s and adult’s toys (from simple music producing toys to automobiles of all types)—the
list is practically endless.

1.2 BASICS OF BOOLEAN ALGEBRA

Boolean algebra consists of a set of independent statements called postulates that are assumed
to be true without proof. The term Boolean is derived from the writings of George Boole and
a book he published in 1854 called An Investigation of the Laws of Thought. Today, there are
several ways to form Boolean algebra. H. E. Huntington published several sets of independent
statements or postulates for Boolean algebra in a paper published in 1904 called “Sets of Inde-
pendent Postulates for the Algebra of Logic.” Both Boole’s book and Huntington’s paper are
quite mathematical. Books and papers are archived and are available in the library for those
interested in reading about their work. Boole and Huntington were early pioneers in the area of
Boolean algebra.

rr 1

1

2 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 Perhaps the simplest way to describe Boolean algebra is to illustrate the major binary opera-
tors (“ ”, “?”, and “1”) with variables (or signals) in a list like the one shown in Table 1.1.

TABLE 1.1 Major binary operators with variables

(or signals) in a Boolean expression

Boolean expression Type of operation
VHDL
equivalent

X Complement of X NOT X

X?Y Intersection of
X, Y

X AND Y

X 1 Y Union of X, Y X OR Y

 Things you should notice about the Boolean expressions in Table 1.1:

• The signal X with a bar over it, or X , is called the complement of X. This is equivalent to
NOT X in VHDL. VHDL is a language for designing digital circuits. You will learn VHDL
in a natural manner by simply studying the design examples that we provide.

• The signal X with a raised dot followed by the signal Y, or X?Y, is called the intersection of
X, Y and is equivalent to X AND Y in VHDL.

• The signal X with a plus sign followed by the signal Y, or X 1 Y is called the union of X, Y
and is equivalent to X OR Y in VHDL.

1.2.1 Venn Diagrams
Figure 1.1 shows Venn diagrams that illustrate the complement, the intersection, and the union
operations in a graphical form in a universe (the universe is the area of the large rectangle).

UniverseUniverseUniverse

Complement of X
(shaded area, X

-
)

Intersection of X, Y
(shaded area, X∙Y)

Union of X, Y
(shaded area, X + Y)

X
-

X∙Y

XXX

X + Y

YY

FIGURE 1.1 Venn diagrams
for the complement, the
intersection, and the union
operations

 A Venn diagram is a graphical interpretation of an algebraic operation. In Figure 1.1, the
area for X is represented as a triangle, while the area for Y is shown as a square. It is not impor-
tant what objects are used for the areas of X and Y.
 Things you should notice about the Venn diagrams in Figure 1.1:

• Each Venn diagram represents an interpretation of an algebraic operation or Boolean
expression inside a universe.

• The Boolean expression for the complement of X is X . The Boolean expression for the inter-
section of X, Y is X?Y. The Boolean expression for the union of X, Y is X 1 Y.

www.itpub.net

 1.2 Basics of Boolean Algebra 3

• The complement of X in the Venn diagram for the Boolean expression X is the area outside
of object X.

• The intersection of X, Y in the Venn diagram for the Boolean expression X?Y is the area
where object X and object Y overlap.

• The union of X, Y in the Venn diagram for the Boolean expression X 1 Y is the area for both
object X and object Y.

1.2.2 Black Boxes for Boolean Functions
The term black box is used in circuit theory to specify the inputs and outputs for a digital circuit.
A digital circuit may be described by a Boolean function (or Boolean equation). The definition of
a Boolean function (or Boolean equation) is a dependent variable such as F set equal to a Bool-
ean expression such as X 1 Y, where X and Y are independent variables. The functional notation
such as F(X,Y) is also used in Boolean algebra in the same way it is used in ordinary algebra. A
function may be assigned a value of 0 or 1 for each of the possible 2n combinations of the binary
values for n independent variables. Consider the Boolean function F1X 2 5 X or simply F 5 X .
In the Boolean function F1X 2 5 X , X is an independent variable or signal and X is the comple-
ment of X. A dependent variable is normally an output signal in a digital circuit while the inde-
pendent variable is the input signal in the digital circuit as shown by the black box in Figure 1.2.

FIGURE 1.2 Black
box for a digital circuit
with a single input and
output

Input
signal Output

signal

Digital
circuit

X F

Input
signal

Input
signal

Output
signal

Digital
circuit

X

Y
F

FIGURE 1.3 Black
box for a digital circuit
with two inputs and
one output

 What’s inside the black box or the contents of the black box are not visible. The black box
shows only the input signal and the output signal for a digital circuit, but it does not show the
actual logic circuitry for the Boolean function. In the black box in Figure 1.2, the output signal
F is a function of or is dependent on the input signal X. The relationship of the output signal and
the input signal is provided by the Boolean function for F, that is, F 5 X . The function F 5 X
also satisfies the criteria for the black box in Figure 1.2. This function will be covered later.
 A black box for a function with two input signals and one output signal is shown in
Figure 1.3. This black box can represent any Boolean function that has the input signals X and
Y and also has an output signal F.

 Two Boolean functions that meet the criteria for the black box in Figure 1.3 are written as
F(X,Y) 5 X?Y or simply F 5 X?Y, and F(X,Y) 5 X 1 Y or simply F 5 X 1 Y. There are other
Boolean functions that meet the criteria for the black box in Figure 1.3. Some of these functions
will be covered later.

4 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 Things you should notice about the black boxes in Figures 1.2 and 1.3:

• Black boxes do not show the actual logic circuits inside the black boxes.
• Black boxes show only the inputs and output for a Boolean function.
• Input signals are normally placed on the left side of a black box.
• Output signals are normally placed on the right side of a black box.
• Each line going into or coming out of a black box represents a single wire or a net. The

electrical signals X, Y, and F travel along their respective wire or net.

1.2.3 Basic Logic Symbols
To draw a logic circuit diagram, a digital circuit, or a schematic for each of the Boolean func-
tions F1 5 X , F2 5 X?Y, and F3 5 X 1 Y, you need to know the gate symbols. Figure 1.4 shows
a logic symbol summary for the NOT operation, AND operation, and OR operation.

...
...

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic name

NOT or
Complement
operation

AND operation

OR operation

Inverter or
NOT Gate

AND Gate

OR Gate

A A
-

A
-

A∙B∙C∙ ...

A + B + C + ...

A∙B∙C∙ ...

A + B + C + ...

A
B
C

A
B
C

FIGURE 1.4 Logic symbol
summary for the NOT
operation, AND operation,
and OR operation

 Things you should notice about the logic symbol summary in Figure 1.4:

• The Inverter or NOT gate has only one input and one output.
• The AND gate has two or more inputs as indicated by the dotted lines below the C input

and one output. For three signals, A?B?C is equivalent to A AND B AND C in VHDL.
• The OR gate has two or more inputs as indicated by the dotted lines below the C input and

one output. For three signals, A 1 B 1 C is equivalent to A OR B OR C in VHDL.
• Logic symbols may be drawn using distinctive shapes or using rectangular shapes.

Rectangular-shape logic symbols will be covered later in this chapter.
• The shape of the symbols in Figure 1.4 indicates the gate type. The NOT gate has a bubble

on the output. In Figure 1.4, the bubble is the circle that is placed on the apex or tip of the
triangle on the output. The AND gate has a straight line on its input side and a semicircle on
the output. The OR gate has a curved line on its input side and two curved lines forming an
apex on the output. The distinctive-shape AND gate and the OR gate do not have a bubble
on their outputs.

 You need to learn the distinctive-shape gate symbols because that is what we will be using
throughout this book.
 The logic circuit diagrams or schematic diagrams for the Boolean functions F1 5 X , F2 5
X?Y, and F3 5 X 1 Y are shown in Figure 1.5 using distinctive-shape gate symbols.

www.itpub.net

 1.2 Basics of Boolean Algebra 5

 Things you should notice about the logic circuit diagrams in Figure 1.5:

• The logic circuit diagram for the Boolean function F1 5 X is represented by the
distinctive-shape symbol for the NOT gate. The signal X is shown on the input side (left
side) of the NOT gate symbol and the signal F1 is shown on the output side (right side) of
the symbol.

• The logic circuit diagram for the Boolean function F2 5 X?Y is represented by the
distinctive-shape symbol for the AND gate. The signals X and Y are shown on the input
side (left side) of the AND gate symbol and the signal F2 is shown on the output side (right
side) of the symbol.

• The logic circuit diagram for the Boolean function F3 5 X 1 Y is represented by the
distinctive-shape symbol for the OR gate. The signals X and Y are shown on the input side
(left side) of the OR gate symbol and the signal F3 is shown on the output side (right side)
of the symbol.

 A truth table is a tabular form for presenting the yes–no, true–false, or 1–0, values of its
variables or signals. The binary operators (“ ”, “?”, and “1”) or NOT, AND, and OR operators,
respectively, are defined by the truth tables shown in Table 1.2.

TABLE 1.2 Truth tables for the NOT, AND,

and OR operator definitions

Defi nitions

NOT operation AND operation OR operation

X X X Y X?Y X Y X 1 Y

0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

F2 = X⋅Y

F1 =

F3 = X + Y

X X
-

X
Y

X
Y

Logic circuit diagrams FIGURE 1.5 Logic circuit
diagrams for Boolean
functions F1, F2, and F3

 Things you should notice about the truth tables in Table 1.2:

• A truth table is a tabular form for presenting the yes–no, true–false, or 1–0 values of its
variables or signals. Note: Number of rows in a truth table 5 2Number of input signals or variables.
For one variable, 21 5 2, so the truth table for the NOT operation has two rows. For two
variables, 22 5 4, so the truth table for the AND operation and also the OR operation has
four rows.

6 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

• The values of the signals X and Y only have the values of 0 or 1. The values 0 and 1 are
called binary digits or bits for short. In the truth tables for the AND and the OR opera-
tions, row 00 represents decimal 0, row 01 represents decimal 1, row 10 represents decimal
2, and row 11 represents decimal 3. This is assuming that signal X represents the MSB
(most significant bit) and signal Y represents the LSB (least significant bit) in each of the
binary numbers 00, 01, 10, and 11 as read from left to right.

• The value of 0 represents false, while the value of 1 represents true. The value 0 and the
value 1 are also called identity elements in Boolean algebra.

• The NOT operator represents the complement of a variable—that is, if the variable is 0 its
complement is 1, or if the variable is 1 its complement is 0.

• The AND operator represents the intersection of two variables such that their intersection
is 1 (or true) only if both variables are 1 (or true).

• The OR operator represents the union of two variables such that their union is 1 (or true)
when one or both variables are true.

• The complement only applies to one variable at a time such that the complement of X is X ,
or the complement of Y is Y .

• The intersection applies to two or more variables, such that X?Y?Z has the value of 1 only
when all values of the variables X, Y, and Z are 1.

• The union applies to two or more variables, such that that X 1 Y 1 Z has the value of 1
when one or more of the values of the variables X, Y, and Z is 1.

 The binary operators can also be defined by writing all possible combinations of the iden-
tity elements (0 and 1) with each respective operator as illustrated in Table 1.3.

TABLE 1.3 Definition of binary operators NOT, AND, and OR

Definition
of NOT
operator
(for 1
identity
element)

Definition
of AND
operator
(for 2
identity
elements)

Definition of
AND operator
(for 3 identity
elements)

Definition of
AND operator
(for 4 identity
elements)

Definition of
OR operator
(for 2 identity
elements)

Definition of OR
operator (for 3
identity elements)

Definition of OR
operator (for 4
identity elements)

1 5 0 0?0 5 0 0?0?0 5 0 0?0?0?0 5 0 0 1 0 5 0 0 1 0 1 0 5 0 0 1 0 1 0 1 0 5 0

0 5 1 0?1 5 0 0?0?1 5 0 0?0?0?1 5 0 0 1 1 5 1 0 1 0 1 1 5 1 0 1 0 1 1 1 0 5 1

1?0 5 0 0?1?0 5 0 0?0?1?0 5 0 1 1 0 5 1 0 1 1 1 0 5 1 0 1 0 1 1 1 0 5 1

1?1 5 1 0?1?1 5 0 ? 1 1 1 5 1 0 1 1 1 1 5 1 ?

1?0?0 5 0 ? 1 1 0 1 0 5 1 ?

1?0?1 5 0 ? 1 1 0 1 1 5 1 ?

1?1?0 5 0 1?1?1?0 5 0 1 1 1 1 0 5 1 1 1 1 1 1 1 0 5 1

1?1?1 5 1 1?1?1?1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 5 1

 Things you should notice about the definitions of the binary operators in Table 1.3:

• The NOT operator definition only applies to a single identity element.
• The AND operator definition applies to two or more identity elements.
• The OR operator definition applies to two or more identity elements.
• The NOT operator definition provides the complement of the identity element (either 0 or 1).

www.itpub.net

 1.2 Basics of Boolean Algebra 7

• The AND operator definition provides a 1 only when all the identity elements that are
ANDed are a 1, else it provides a 0.

• The OR operator definition provides a 1 when any one of the identity elements that are
ORed are a 1, else it provides a 0.

1.2.4 Boolean Algebra Postulates
As we mentioned earlier, Boolean algebra can be represented by a list of postulates. Table 1.4
shows a list of postulates from Huntington’s first set. We accept Huntington’s postulates and use
them for defining two-valued Boolean algebra.

TABLE 1.4 List of Huntington’s first set of postulates

Postulates for Boolean algebra with two distinct values (1 or 0) for each variable

Variable dominant rule P1a: X?1 5 X

P1b: X 1 0 5 X

Commutative rule P2a: X?Y 5 Y?X

P2b: X 1 Y 5 Y 1 X

Distributive rule P3a: X?(Y 1 Z) 5 X?Y 1 X?Z

P3b: X 1 Y?Z 5 (X 1 Y)?(X 1 Z)

Complement rule P4a: X #X 5 0

P4b: X 1 X 5 1

 In Boolean algebra, there is a hierarchy or order of precedence for the binary operators
(“ ”, “?”, and “1”). When writing Boolean algebra expressions, the NOT operator has the high-
est precedence followed by the AND operator followed by the OR operator. In postulate P3a,
the expression on the right side is evaluated in the order X?Y and X?Z then the two expressions
are ORed. In postulate P4b, the expression on the left side is evaluated in the order X and X then
the two expressions are ORed. In the postulate P3a, the expression on the left side is evaluated
in the order X and Y 1 Z then the two expressions are ANDed. In this case, the parentheses
surrounding the expression Y 1 Z forces the OR operator to have a higher precedence than the
AND operator. In Boolean algebra, as in normal algebra, parentheses may be used to establish
the desired order of precedence of the binary operators.
 Each postulate or rule has a dual. In Table 1.4, P1a and P1b, P2a and P2b, etc., are dual
relationships. The dual of a Boolean relationship or a Boolean expression is obtained by inter-
changing the identity elements (1 and 0) and the binary operators (? and 1) while maintaining
the order of precedence of the operators using parentheses if required. Notice that parentheses
are required to obtain the dual of the right side of P3b. The dual X 1 Y?Z can be written as (X
1 Y?Z)D. The superscript D is used to indicate that the dual of the expression in parentheses
needs to be taken. First add parentheses around Y?Z and then interchange the binary operators
(? and 1), so the dual of X 1 Y?Z or (X 1 Y?Z)D 5 (X 1 (Y?Z))D is X?(Y 1 Z). The result of the
interchange is a new Boolean expression. The dual of X #X 5 0 or 1X #X 5 0 2D is X 1 X 5 1.
Caution: When obtaining the dual of a relationship that has complemented variables, only
interchange the identity elements (1 and 0) and the binary operator (? and +) and not the comple-
mented variables. Interchanging the complemented variables appears to work for obtaining the
dual of P4a or P4b, but this is not true in general.

8 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

1.2.5 Boolean Algebra Theorems
Postulates can be used to prove a number of useful Boolean algebra theorems. Theorems are
useful equalities that are helpful in designing logic circuits. Table 1.5 shows a list of theorems
for Boolean algebra and their associated names. Notice that each of the theorems have a dual
except Theorem T7, because theorem T7 does not contain any identity elements or binary opera-
tors to interchange.

TABLE 1.5 List of useful Boolean algebra theorems

Theorems for Boolean algebra

Absorption Theorem T1a: X?(X 1 Y) 5 X

T1b: X 1 X?Y 5 X

Adjacency Theorem T2a: X #Y 1 X #Y 5 X

T2b: 1X 1 Y 2 # 1X 1 Y 2 5 X

Associative Theorem T3a: X?(Y?Z) 5 (X?Y)?Z

T3b: X 1 (Y 1 Z) 5 (X 1 Y) 1 Z

Consensus Theorem T4a: X #Y 1 X #Z 1 Y #Z 5 X #Y 1 X #Z

T4b: 1X 1 Y 2 # 1X 1 Z 2 # 1Y 1 Z 2 5 1X 1 Y 2 # 1X 1 Z 2

DeMorgan’s Theorem (with
two variables)

T5a: X #Y 5 X 1 Y

T5b: X 1 Y 5 X #Y

DeMorgan’s Theorem (with
multiple variables)

T6a: X #Y #Z c 5 X 1 Y 1 Z 1 c

T6b: X 1 Y 1 Z 1 c 5 X #Y #Z #
c

Double Complementation or
Double Negation Theorem

T7: X 5 X

Idempotency Theorem T8a: X?X 5 X

T8b: X 1 X 5 X

Identity Element Theorem T9a: X?0 5 0

T9b: X 1 1 5 1

Simplification Theorem T10a: X # 1X 1 Y 2 5 X #Y

T10b: X 1 X #Y 5 X 1 Y

 Boolean algebra postulates and theorems are used to minimize Boolean expressions so that
logic circuits can be constructed using the fewest number of gates. For example, the expression
on the left side of Adjacency Theory T2a requires a circuit with three Boolean operators that
results in multiple gates, while the expression on the right side is equivalent and only requires a
single wire and thus results in a minimum logic circuit. Figure 1.6 shows the comparison of the
two different, but equivalent, circuits provided by the Boolean function F1 5 X #Y 1 X #Y , and
the equivalent Boolean function F2 5 X, for Adjacency Theorem T2a.

www.itpub.net

 1.2 Basics of Boolean Algebra 9

 In general, it is better to use fewer logic gates to minimize complexity, cost, and the power
requirement when designing logic circuits. Theorems are mainly used to minimize simple Bool-
ean functions, or functions with only a few operators, so that circuits can be implemented with
a minimum gate count, that is, a minimum number of gates.

1.2.6 Proving Boolean Algebra Theorems
We are not interested in deriving theorems because we leave that task up to logicians or math-
ematicians. A method called perfect induction is perhaps the easiest way to prove that the
expression on the left (EOL) side of a theorem is equivalent to the expression on the right (EOR)
side. Selectively using the postulates and/or other theorems via a method called mathematical
manipulation is another way to prove a theorem is correct. The latter method is considered
somewhat tricky compared to the former method, because it involves trial and error. When using
the mathematical manipulation method, you may choose to prove EOL 5 EOR or that EOR 5
EOL. Figure 1.7 illustrates the perfect induction method and also the mathematical manipula-
tion method for proving the validity of Simplification Theorem T10b.

F1 = X∙Y + X∙Y
-

F2 = XX

X
Y

X
Y

Logic circuit diagrams FIGURE 1.6 Comparing circuit complexity
for the Boolean functions F1 and F2

Proof by perfect induction method

Step 1: Make the truth table

Step 3: Verify that EOL = EOR
EOL = EOR

Step 2: Fill in each column in the table
 using the operator definitions

Substitute postulates and/or theorems to show that
EOR = EOL, which can be tricky because it involves trial
and error

Note that EOR = EOL

Proof by mathematical manipulation method

X + Y
X + Y∙1
X + Y∙(X + X

-
)

X + Y∙X + Y∙X
-

X∙1 + Y∙X + Y∙X
-

X∙1 + X∙Y + X
-

X∙(1 + Y) + X
-

X∙1 + X
-

X + X
-

∙Y

Using the following postulates and/or theorems:
 Variable dominate rule
 Complement rule
 Distributive rule
 Variable dominate rule
 Commutative rule
 Distributive rule
 Identity element theorem
 Variable dominate rule

P1a: X∙1 = X
P4b: X + X

-
 = 1

P3a: X∙(Y + Z) = X∙Y + X∙Z
P1a: X∙1 = X
P2a: X∙Y = Y∙X
P3a: X∙(Y + Z) = X∙Y + X∙Z
T9b: X + 1 = 1
P1a: X∙1 = X

X Y X
-

 X
-

 X + X
-

X + Y

X Y

1
1
0
0

0
1
0
0

0
1
1
1

0
1
1
1

0
0
1
1

0
1
0
1

X
-

 X
-

X + X
-

X + Y

(proving that EOR = EOL)

Simplification Theorem T10b: X + ∙Y = X + YX

0 0
0 1
1 0
1 1

∙Y ∙Y

∙Y ∙Y

∙Y

∙Y
∙Y

FIGURE 1.7 Proving Simplification Theorem T10b by the perfect induction method and the mathematical
manipulation method

10 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 One of the most important theorems in Boolean algebra is Adjacency Theorem T2a:
X #Y 1 X #Y 5 X . Figure 1.8 shows a proof of the Adjacency Theorem using the perfect induc-
tion method and also using the mathematical manipulation method.

Proof by perfect induction method Proof by mathematical manipulation method

X∙Y + X∙Y
-

X∙(Y + Y

-
)

X∙1
X
Note that EOL = EOR

Using the following postulates and/or theorems:
 Distributive rule
 Complement rule
 Variable dominate rule

P3a: X∙(Y + Z) = X∙Y + X∙Z
P4b: X + X = 1
P1a: X∙1 = X

X Y

0
0
1
1

0
1
0
1

Y
-

X∙Y X∙Y
-

X∙Y + X∙Y
-

EOR = EOL

1
0
1
0

0
0
0
1

0
0
1
0

0
0
1
1

(proving that EOL = EOR)

Adjacency Theorem T2a: X∙Y + X∙ = X Y

-

FIGURE 1.8 Proof of the Adjacency Theorem using the perfect induction method and the mathematical
manipulation method

TABLE 1.6 Truth table

for an XOR function

XOR function

Decimal Binary

X Y X Y FXOR

0 0 0 0

1 0 1 1

2 1 0 1

3 1 1 0

1.3 DERIVING BOOLEAN FUNCTIONS FROM TRUTH TABLES

A standard way of expressing a logic function or Boolean function is by a truth table. After a
truth table is written and filled in, the Boolean function can be derived in terms of the input
signals for the 1s of the function written as a Boolean expression, or a Boolean function can be
derived in terms of the input signals for the 0s of the function written as a Boolean expression.
So,

Boolean function:

F 5 Boolean expression (in terms of the 1s of the function), or

F 5 Boolean expression (in terms of the 0s of the function)

In the following discussions we show how to derive Boolean functions both ways.

1.3.1 Deriving Boolean Functions Using the 1s of the Functions
In this section we show how to derive Boolean functions from truth tables. To do this, we will
use the Boolean function called an XOR (Exclusive OR) function. The truth table for an XOR
function with two inputs is shown in Table 1.6. When the two input signal values are different,
the function FXOR is 1, otherwise the function is 0.

www.itpub.net

 1.3 Deriving Boolean Functions from Truth Tables 11

 Notice that the output value of the function FXOR is 1 when signal X and signal Y are dif-
ferent values. This occurs in two places in the truth table, when X Y 5 01 and when X Y 5 10.
A Boolean expression for the case when X Y 5 01 or X 5 0 occurs at the same time that Y 5 1
occurs is simply X #Y .

Note: X 5 0 so we write X

 Y 5 1 so we write Y

 An AND operator must be used between the expression X and the expression Y to form the
expression X #Y , because the signals X Y 5 01 occur at the same time, which means that they
have an intersection.

Observe: X Y 5 01 substituted into the expression X #Y
 results in X #Y 5 0 # 1 5 1, which is required for FXOR to be equal to 1

 A Boolean expression for the case when X Y 5 10 or X 5 1 occurs at the same time that
Y 5 0 occurs is simply X #Y .

Note: X 5 1 so we write X

 Y 5 0 so we write Y

 An AND operator must be used between the expression X and the expression Y to form the
expression X #Y , because the signals X Y 5 10 occur at the same time or have an intersection.

Observe: X Y 5 10 substituted into the expression X #Y
 results in X #Y 5 1 # 0 5 1, which is required for FXOR to be equal to 1

 The Boolean function for the union of X #Y and X #Y is written as FXOR 5 X #Y 1 X #Y .
An OR operator must be used between the two expressions X #Y and X #Y , because the two
expressions occur either at the same time or at a different time, which means that they have a
union.
 The Boolean expression X #Y 1 X #Y is used so often in digital design that the special XOR
operator 1! 2 is used to simplify writing the expression, so X!Y 5 X #Y 1 X #Y . The simpli-
fied expression X!Y is equivalent to X XOR Y in VHDL. The Boolean function for FXOR can
be written as FXOR 5 X!Y .

1.3.2 Deriving Boolean Functions Using the 0s of the Functions
A Boolean expression can be written for the complement of the XOR function in Table 1.6
as FXOR. To derive the Boolean function for FXOR requires using the values of FXOR that are
0s. When a function has fewer 0s, it may be advantageous to use the 0s to obtain the function
rather than using the 1s. Because the number of 1s and 0s is the same for the XOR function, the
complexity of the Boolean expression for each Boolean function will be the same. By complex-
ity, we are referring to the number of variables that are contained in the Boolean expression for
the function. A smaller number of variables results in less complexity. Notice that the output
value of the function FXOR is 0 when signals X and Y are the same. This occurs in two places
in the truth table: when X Y 5 00 and when X Y 5 11. A Boolean expression for the case when
X Y 5 00 or X 5 0 occurs at the same time that Y 5 0 occurs is simply X #Y .

Note: X 5 0 so we write X

 Y 5 0 so we write Y

 An AND operation is used in the Boolean expression X #Y because the signals X Y 5 00
occur at the same time or have an intersection.

12 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 A Boolean expression for the case when X Y 5 11 or X 5 1 occurs at the same time that
Y 5 1 occurs is simply X?Y.

Note: X 5 1 so we write X

 Y 5 1 so we write Y

 An AND operation is used in the Boolean expression X?Y because the signals X Y 5 11
occur at the same time or have an intersection.
 Because the two expressions X #Y and X?Y each provide a 1 at the same time or at a different
time, they have a union. Because FXOR 5 0 for these expressions, the complement FXOR must be used
when combining the Boolean expressions to form the Boolean function, or FXOR 5 X #Y 1 X #Y .
Complementing both sides of the Boolean function FXOR 5 X #Y 1 X #Y results in the Boolean

function FXOR 5 X #Y 1 X #Y . Apply DeMorgan’s theorem to the Boolean expression, and we
obtain FXOR 5 1X 1 Y 2 # 1X 1 Y 2 . Either the first Boolean function we derived for FXOR using
the 1s of function or the second Boolean function we derived for FXOR using the 0s of function can
be used to design or implement a circuit for FXOR.

1.3.3 Deriving Boolean Functions Using Minterms and Maxterms
There is an elegant way to derive a Boolean function from a truth table by obtaining inter-
mediate product terms called minterms. The minterms are then ORed together to form the
Boolean function. Minterms are used to write Boolean functions in a simple and concise form.
A minterm designator mi is assigned to every row of a truth table where i 5 0, 1, 2, . . . , which
represents the decimal values of the inputs. In the XOR Boolean function truth table in Table
1.6, the minterms are uniquely defined as follows: m0 5 X #Y , m1 5 X #Y , m2 5 X #Y , and
m3 5 X?Y. Observe that each minterm expression is defined such that its value evaluates to 1
when the minterm number i in binary is applied to the expression, because 0s are replaced by a
complemented variable and 1s are replaced by an uncomplemented variable. Note: m1 5 X #Y ,
where X Y 5 01. Memory Jogger: For minterms, place an overbar just over the 0s. For minterm
1 (m1), X Y 5 01, so the minterm expression is X #Y and the expression evaluates to 1 when 01 is
substituted into the expression. The same process is used to obtain any minterm for any number
of variables. Example: For the three variables X, Y, and Z, m6 5 X #Y #Z, and for the four vari-
ables A, B, C, and D, m10 5 A #B #C #D.
 The XOR Boolean function can be written using the following compact minterm form:
FXOR(X,Y) 5 Sm(1,2) for the 1s of the function. The notation Sm(1,2) means m1 1 m2, so
m1 1 m2 5 X #Y 1 X #Y . Putting all the parts together, we can write the XOR Boolean func-
tion as FXOR 1X, Y 2 5 Sm 11, 2 2 5 m1 1 m2 5 X #Y 1 X #Y . This is an algorithmic procedure
that is usually memorized, and unfortunately, it is often applied without fully comprehending
the derivation of a Boolean function for its 1s, as illustrated in Section 1.3.1. A function written
in the form FXOR 1X,Y 2 5 X #Y 1 X #Y is referred to as the canonical sum of products (CSOP)
form of the function.
 Why is a lowercase m used as a minterm designator? In a truth table for the function
F(X,Y, . . .) 5 mi for i 5 0, or i 5 1, or i 5 2, . . . the product term mi is designated as a lowercase
m, because there is a minimum number of 1s in the truth table for the function F(X,Y, . . .) 5
mi—that is, just 1.
 Intermediate sum terms called maxterms may also be used to derive a Boolean func-
tion. A maxterm designator Mi is assigned to every row of a truth table where i 5 0, 1, 2, . . . ,
which represent the decimal values of the inputs. In the XOR function truth table in Table 1.6,
the maxterms are uniquely defined as follows: M0 5 X 1 Y, M1 5 X 1 Y , M2 5 X 1 Y , and
M3 5 X 1 Y . Observe that each maxterm expression is defined such that its value evaluates
to 0 when the maxterm number i is applied to the expression, because 0s are replaced by an

www.itpub.net

 1.3 Deriving Boolean Functions from Truth Tables 13

uncomplemented variable and 1s are replaced by a complemented variable. Note: M1 5 X 1 Y ,
where X Y 5 01. Memory Jogger: For maxterms, place an overbar just over the 1s. For maxterm
1 (M1), X Y 5 01, so the maxterm expression is X 1 Y and the expression evaluates to 0 when
01 is substituted into the expression. The same process is used to obtain any maxterm for any
number of variables. Example: For the three variables X, Y, and Z, M6 5 X 1 Y 1 Z, and for
the four variables A, B, C, and D, M10 5 A 1 B 1 C 1 D.
 The XOR Boolean function can be written using the following compact maxterm form:
FXOR(X,Y) 5 PM(0,3) for the 0s of the function. The notation PM(0,3) means M0?M3, so
M0

#M3 5 1X 1 Y 2 # 1X 1 Y 2 . Putting all the parts together, we can write the XOR Boolean
function as FXOR 1X, Y 2 5 PM 10,3 2 5 M0

#M3 5 1X 1 Y 2 # 1X 1 Y 2 . A function written in
the form FXOR 1X,Y 2 5 1X 1 Y 2 # 1X 1 Y 2 is referred to as the canonical product of sums
(CPOS) form of the function.
 Why is an uppercase M used as a maxterm designator? In a truth table for the function
F(X,Y, . . .) 5 Mi for i 5 0, or i 5 1, or i 5 2, . . . the sum term Mi is designated as an uppercase
M, because there is a maximum number of 1s in the truth table for the function F(X,Y, . . .)
5 Mi —that is, all except 1.
 It is interesting to observe that minterms and maxterms for the same variables are comple-
ments of each other—that is, one can be obtained from the other by complementation. The rela-
tionship between a minterm and its corresponding maxterm is written as m0 5 M0, m1 5 M1,
m2 5 M2, and m3 5 M3 or mi 5 Mi where i 5 0, 1, 2, Compact minterm and maxterm
forms represent a concise way to represent truth tables.
 For the truth table shown in Table 1.7, write the compact minterm forms for the function F1.

TABLE 1.7 Truth table

for function F1

(Decimal) X Y Z F1

0 0 0 0 1

1 0 0 1 0

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

The compact minterm forms for F1 are written as follows:

F1(X,Y,Z) 5 Sm(0,2,5,6,7) Explicit compact minterm form for the 1s of the function F1

F1 1X,Y, Z 2 5 Sm 11,3,4 2 Explicit compact minterm form for the 0s of the function F1

 The Boolean equation for either F1 or F1 represents the truth table for the function F1. To
write an implicit compact minterm form, simply leave off the m following the summation sym-
bol. Example: F1(X,Y,Z) 5 S(0,2,5,6,7) is the implicit compact minterm form for the 1s of the
function F1, and F1 1X,Y, Z 2 5 S 11,3,4 2 is the implicit compact minterm form for the 0s of the
function F1.

14 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 Using the compact minterm form for F1, we can write the CSOP form of the function F1 as
follows:

F1(X,Y,Z) 5 m0 1 m2 1 m5 1 m6 1 m7

5 X #Y #Z 1 X #Y #Z 1 X #Y #Z 1 X #Y #Z 1 X #Y #Z

 Using the compact minterm form for F1, we can write the CSOP form of the function F1 as
follows:

F1 1X,Y, Z 2 5 m1 1 m3 1 m4

5 X #Y #Z 1 X #Y #Z 1 X #Y #Z

 For the truth table shown in Table 1.8, write the compact maxterm forms for the function F2.

TABLE 1.8 Truth table

for function F2

(Decimal) X Y Z F2

0 0 0 0 1

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

The compact maxterm forms for F2 are written as follows:

F2(X,Y,Z) 5 PM(3,4,5) Explicit compact maxterm form for the 0s of the function F2

F2 1X ,Y ,Z 2 5 PM 10,1,2,6,7 2 Explicit compact maxterm form for the 1s of the function F2

 The Boolean equation for either F2 or F2 represents the truth table for the function F2. To
write an implicit compact maxterm form, simply leave off the M following the product symbol.
Example:

F2(X,Y,Z) 5 P(3,4,5) is an implicit compact maxterm form for the 0s of the function F2, and

F2 1X ,Y ,Z 2 5 P 10,1,2,6,7 2 is an implicit compact maxterm form for the 1s of the function F2.

 Using the compact maxterm form for F2, we can write the CPOS form of the function F2
as follows:

F2(X,Y,Z) 5 M3?M4?M5

5 1X 1 Y 1 Z 2 # 1X 1 Y 1 Z 2 # 1X 1 Y 1 Z 2

 Using the compact maxterm form for F2, we can write the CPOS form of the function F2
as follows:

F2(X,Y,Z) 5 M0?M1?M2?M6?M7

5 1X 1 Y 1 Z 2 # 1X 1 Y 1 Z 2 # 1X 1 Y 1 Z 2 # 1X 1 Y 1 Z 2 #
 1X 1 Y 1 Z 2

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 15

 The canonical sum of products forms and canonical product of sums forms of functions are
unique because there is only one way to write them. When working by hand to design logic cir-
cuits, CSOP and CPOS forms of functions are seldom used to design logic circuits because they
are not minimized Boolean functions. Boolean functions should be minimized so that circuits
can be implemented with a minimum gate count. Chapter 2 introduces techniques for minimiz-
ing Boolean functions.
 In the next section, we introduce VHDL. The VHDL software has a built-in program that
minimizes Boolean functions so the CSOP and CPOS forms of functions can be used without
first minimizing them.

1.4 WRITING VHDL DESIGNS FOR SIMPLE GATE FUNCTIONS

As we briefly mentioned earlier, VHDL is an acronym for Very High Speed Integrated Circuit
Hardware Description Language. VHDL is a language for designing digital circuits. Once the
VHDL code for a design is written, it can be simulated by a software program to determine if
the design works properly. In this section, we will only discuss how to write VHDL code for
designs using simple Boolean functions and show the waveform simulation diagrams for the
designs.
 If you have access to a hardware board with a CPLD (complex programmable logic device)
or a FPGA (field programmable gate array), you can download the required bits for the design
and observe the circuit working on the hardware board. This can be done at home or in the labo-
ratory as an experiment. Experiments are provided in Appendix A, and you are encouraged to
use them.
 We begin by presenting VHDL in the simplest form. The terms entity and architecture
are the main sections of VHDL that you need to become familiar with. The entity contains the
description for the inputs and outputs in a circuit just like the black box discussed earlier. The
architecture contains the description of an actual logic circuit in terms of a Boolean function as
discussed earlier.

1.4.1 VHDL Design for a NOT Function
Listing 1.1 shows a complete VHDL design for the Boolean function F1 5 X .

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity not_1 is port (
 X : in std_logic;
 F1 : out std_logic
);
end not_1;

architecture Boolean_function of not_1 is
begin
 F1 ,5 not X;
end Boolean_function;

LISTING 1.1
Complete VHDL
design for a NOT
function and related
graphics (Project:
not_1).

 Things you should notice about the VHDL design in Listing 1.1:

• A VHDL design consists of the three parts: library part, entity declaration, and architec-
ture declaration.

X F1

F1 = X
-

X

Actual logic circuit

Black box

Digital
circuit
(not_1)

16 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

• The lines in the VHDL design that begin with library and use make up the library part.
At this time, simply remember to include the library part in all your VHDL designs. We
will discuss the library part in detail later in the book.

• The lines in the VHDL design that begin with entity and end with end entity_name (not_1
in this example) make up the entity declaration. The VHDL entity declaration represents
the black box for the digital circuit that is shown to the right.

• The lines in the VHDL design that begin with architecture and end with end architec-
ture_name (Boolean_function in this example) make up the architecture declaration. The
VHDL architecture declaration represents the actual logic circuit that is shown to the right.

• The entity declaration and architecture declaration are textual descriptions in VHDL of the
black box and the actual logic circuit, respectively.

• The syntax (the rules for writing a VHDL design) must be followed explicitly for the design
to compile correctly. To learn how to write a VHDL design, we recommend that you copy
the style and modify it as necessary to create new designs. With practice, you will soon be
able to write your own VHDL design.

• For this design, the entity declaration has the label not_1. To end the entity declaration, you
must type end not_1. The words in bold type are called keywords. Keywords are reserved
words that cannot be used for signal names or labels. In the entity declaration, the keywords
are entity, is, port, in, out, and end.

• The following is an alphabetical list of VHDL keywords for designing circuits:

A abs, all, alias, and, architecture, array, attribute
B begin, block, body, buffer
C case, component, configuration, constant
D downto
E else, elsif, end, entity, exit
F for, function
G generate, generic, group
I if, in, inout, is
L library, literal, loop
M map, mod
N nand, next, nor, not, null
O of, or, others, out
P package, port, procedure, process
R range, record, rem, return, rol, ror
S select, signal, sla, sll, sra, srl, subtype
T then, to, type
U until, use
V variable
W wait, when, while, with
X xnor, xor

• In the entity declaration, the external signal X is declared as an input via the keyword in,
and the external signal F1 is declared as an output via the keyword out. Both signals X and
F1 are declared as data type std_logic. We will discuss data types in more detail later in the
book.

• In the architecture declaration, the Boolean expression not X is assigned to the signal F1 via
the signal assignment symbol (,5); that is, F1 ,5 not X. The Boolean function F1 ,5 not
X is placed in the architecture declaration between begin and end Boolean_function.

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 17

• Signal names (such as X and F1) and labels (such as not_1 and Boolean_function) have the
following rules: (a) the first character must be a letter, (b) numbers may be included as well
as the underscore character (_), (c) no adjacent underscore characters may be used, (d) an
underscore character may not be used as the last character, and (e) spaces are not allowed.
Signal names and labels are formally called identifiers.

• The label not_1 provides a meaningful description of the VHDL design. Observe that not_1
is used as the label for the entity declaration. The keyword “not” cannot be used for a label,
because not is a keyword that represents the NOT operator in VHDL.

• VHDL is not case sensitive, which means that upper- or lowercase letters can be used for
keywords, names and labels. VHDL also has a free format, which means that there is no
formatting convention for spacing and indentations. We recommend that you use the for-
matting style that we use in our designs because our formatting style will become second
nature to you as you read and study our VHDL designs.

 Waveform 1.1 shows waveform diagrams for the VHDL design for the Boolean function
F1 5 X .

+

+

Name Value

0

0 ns
m0 m0 m0m1 m1

200 ns 400 ns

x

f1 1

WAVEFORM 1.1
Diagrams for the
VHDL design for the
Boolean function
F1 5 X

 Running a simulation for a VHDL design results in waveform diagrams like the ones shown
in Waveform 1.1 and allows the designer to verify the correct functionality of a design. Observe
that F1 is 1 when X is 0, and F1 is 0 when X is 1. This shows that the output waveform for F1
is the complement of the input waveform for X. Waveform 1.1 shows that the VHDL design in
Listing 1.1 does, in fact, provide a correct design for the Boolean function F1 5 X . The values
0 and 1 that are listed in the second column of Waveform 1.1 are the values of X and F1, respec-
tively, at the beginning of the simulation.
 To identify the input, minterm designators were added to the waveform diagrams in Wave-
form 1.1. Because F1(X) 5 Sm(0) 5 X , you may observe in Waveform 1.1 that F1 5 1 for m0;
else, F1 5 0.
 NOTE: To learn how to use Xilinx ISE software to run your own VHDL design and simu-
lation, see Experiments 1a in the Appendix A and Section B.2 in Appendix B.

1.4.2 VHDL Design for an AND Function
Listing 1.2 shows a complete VHDL design for the Boolean function F2 5 X?Y.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity and_1 is port (
 x, y : in std_logic;
 f2 : out std_logic
);
end and_1;

architecture Boolean_function of and_1 is
begin
 f2 ,5 x and y;
end Boolean_function;

LISTING 1.2
Complete VHDL
design for an AND
function and related
graphics (Project:
and_1).X

Y
F2

Black box

Digital
circuit
(and_1)

Y
F2 = X∙Y

X

Actual logic circuit

18 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 Things you should notice about the VHDL design in Listing 1.2:

• The VHDL entity declaration represents the black box for the digital circuit that is shown
to the right.

• The VHDL architecture declaration represents the actual logic circuit that is shown to the right.
• Observe that the style for writing the VHDL design in Listing 1.2 is a modified copy of the

VHDL design in Listing 1.1. When you first begin to write programs in a new programming
language, it is a good habit to copy and modify existing code as we are doing.

• For this design, the entity declaration has the label and_1. To end the entity declaration,
you must type end and_1. The label and_1 provides a meaningful description of the VHDL
design. The keyword “and” cannot be used for a label, because and is a keyword that rep-
resents the AND operator in VHDL.

• In the entity declaration, the external signal Y is added to X as an input. Observe that you
may use uppercase or lowercase because VHDL is case insensitive.

• In the entity declaration, the external signal F1 is changed to F2.
• Observe that the label and_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X and Y is assigned to the signal F2

via the signal assignment symbol (,5); that is, F2 ,5 X and Y. The Boolean function F2 ,5
X and Y is placed in the architecture declaration between begin and end Boolean_function.

 Waveform 1.2 shows waveform diagrams for the VHDL design for the Boolean function
F2 5 X?Y.

 The waveform diagrams in Waveform 1.2 show the actual simulation of the VHDL design
in Listing 1.2. Observe that F2 is only 1 when both X and Y are 1, and F2 is 0 for all other
conditions of X and Y. This shows that the output waveform for F2 is the ANDing of the input
waveforms for X and Y. Waveform 1.2 shows that the VHDL design in Listing 1.2 does, in fact,
provide a correct design for the Boolean function F2 5 X?Y. To identify the inputs, minterm
designators were added to the waveform diagrams in Waveform 1.2. Because F2(X,Y) 5 Sm(3),
you may observe in Waveform 1.2 that F2 5 1 for m3; else, F2 5 0.

1.4.3 VHDL Design for an OR Function
Listing 1.3 shows a complete VHDL design for the Boolean function F3 5 X 1 Y.

+

+

+

Name

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

f2 0

Value

WAVEFORM 1.2 Waveform
diagrams for the VHDL design for
the Boolean function F2 5 X?Y

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity or_1 is port (
 x, y : in std_logic;
 f3 : out std_logic
);
end or_1;

architecture Boolean_function of or_1 is
begin
 f3 ,5 x or y;
end Boolean_function;

LISTING 1.3
Complete VHDL
design for an OR
function and related
graphics (Project:
or_1) X

Y
F3

Black box

Digital
circuit
(or_1)

Y
F3 = X + Y

X

Actual logic circuit

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 19

 Things you should notice about the VHDL design in Listing 1.3:

• Observe that the style for writing the VHDL design in Listing 1.3 is a modified copy of the
VHDL design in Listing 1.2.

• For this design, the entity declaration has the label or_1. To end the entity declaration, you
must type end or_1. The label or_1 provides a meaningful description of the VHDL design.
The keyword “or” cannot be used for a label, because or is a keyword that represents the
OR operator in VHDL.

• In the entity declaration, the external signal F2 is changed to F3.
• Observe that the label or_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X or Y is assigned to the signal F3

via the signal assignment symbol (,5); that is, F3 ,5 X or Y. The Boolean function F3 ,5
X or Y is placed in the architecture declaration between begin and end Boolean_function.

 Waveform 1.3 shows waveform diagrams for the VHDL design for the Boolean function
F3 5 X 1 Y.

 The waveform diagrams in Waveform 1.3 show the actual simulation of the VHDL design
in Listing 1.3. Observe that F3 is 1 any time X is 1 or Y is 1, and F3 is 0 when both X and Y are
0. This shows that the output waveform for F3 is the ORing of the input waveforms for X and Y.
Waveform 1.3 shows that the VHDL design in Listing 1.3 does, in fact, provide a correct design
for the Boolean function F3 5 X 1 Y. To identify the inputs, minterm designators were added
to the waveform diagrams in Waveform 1.3. Because F3(X,Y) 5 Sm(1,2,3), you may observe in
Waveform 1.3 that F3 5 1 for m1, m2, and m3; else, F3 5 0.

1.4.4 VHDL Design for an XOR Function
Figure 1.9 shows a logic symbol summary for the XOR operation.

+

+

+

Name Value

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

f3 0

WAVEFORM 1.3 Waveform
diagrams for the VHDL design for the
Boolean function F3 5 X 1 Y

...

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic name

XOR operation XOR gateA ⊕ B ⊕ C ⊕ ... A ⊕ B ⊕ C ⊕ ...
A
B
C

FIGURE 1.9 Logic symbol
summary for the XOR operation

 Notice in Figure 1.9 that an XOR gate can have two or more inputs. For three input signals,
A!B!C! is equivalent to A XOR B XOR C in VHDL.
 The XOR function is an odd function, which has a value of 1 when the combination of all
the inputs have an odd number of 1s (1, 3, 5, . . .). This is shown in Table 1.9, where FXOR and
FODD provide the same truth table values for the simplest case of just two inputs. Observe that 01
and 10 represent an odd number of 1s—that is, one 1. Using perfect induction it can be shown
FXOR 5 FODD for more than two inputs.

20 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

Listing 1.4 shows a complete VHDL design for the Boolean function FXOR 5 X!Y .

XOR function
(ODD function)

X Y FXOR FODD

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

TABLE 1.9 Truth table

for an XOR function and

an ODD function with two

inputs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity xor_1 is port (
 x, y : in std_logic;
 fxor : out std_logic
);
end xor_1;

architecture Boolean_function of xor_1 is
begin
 fxor ,5 x xor y;
-- fxor ,5 (not x and y) or (x and not y);
end Boolean_function;

LISTING 1.4
Complete VHDL
design for an XOR
function and related
graphics (Project:
xor_1)

Y
F

XOR
 = X ⊕ Y

X

Actual logic circuit

 Things you should notice about the VHDL design in Listing 1.4:

• Observe that the style for writing the VHDL design in Listing 1.4 is a modified copy of the
VHDL design in Listing 1.3.

• For this design, the entity declaration has the label xor_1. To end the entity declaration,
you must type end xor_1. The label xor_1 provides a meaningful description of the VHDL
design. The keyword “xor” cannot be used for a label, because xor is a keyword that repre-
sents the XOR operator in VHDL.

• In the entity declaration, the external signal F3 is changed to Fxor.
• Observe that the label xor_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X xor Y is assigned to the signal

Fxor via the signal assignment symbol (,5)—that is, Fxor ,5 X xor Y. The Boolean
function is Fxor ,5 X xor Y placed in the architecture declaration between begin and end
Boolean_function.

• Notice in listing 1.4 a comment may be placed in VHDL code by using two hyphens in
series, that is, “--”. The Boolean function Fxor ,5 (not X and Y) or (X and not Y) follow-
ing the comment symbol can be used in place of the Boolean function Fxor ,5 X xor Y.

• The AND and OR binary operators have the same precedence in VHDL. This means that
parentheses must be used to select the order of precedence of the binary operators in VHDL.
No parentheses are required around the NOT operator, because it has a higher priority than
any of the binary operators in VHDL.

 Waveform 1.4 shows waveform diagrams for the VHDL design for the Boolean function
FXOR 5 X!Y .

X

Y
F

XOR

Black box

Digital
circuit
(xor_1)

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 21

 The waveform diagrams in Waveform 1.4 show the actual simulation of the VHDL design
in Listing 1.4. Observe that FXOR is 1 any time X has the opposite value of Y, and FXOR is 0 when
X has the same value of Y. This shows that the output waveform for FXOR is the XORing of the
input waveforms for X and Y. Waveform 1.4 shows that the VHDL design in Listing 1.4 does,
in fact, provide a correct design for the Boolean function FXOR 5 X!Y . To identify the inputs,
minterm designators were added to the waveform diagrams in Waveform 1.4. Because FXOR(X,Y)
5 Sm(1,2) you may observe in Waveform 1.4 that FXOR 5 1 for m1 and m2; else, FXOR 5 0.

1.4.5 VHDL Design for a NAND Function
Table 1.10 shows a truth table for the NAND function FNAND. When the input signal values are
both 1 (for two inputs), or all 1s (if more than two inputs), the function FNAND is 0; otherwise,
the function is 1.

+

+

+

Name Value

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

fxor 0

WAVEFORM 1.4 Waveform
diagrams for the VHDL design for
the Boolean function FXOR 5 X!Y

TABLE 1.10 Truth table

for a NAND function with two

inputs

NAND function

X Y FNAND

0 0 1

0 1 1

1 0 1

1 1 0

 Using the 0s of the function, we can write the Boolean function as FNAND 5 X #Y , so
FNAND 5 X #Y .
 Figure 1.10 shows a logic symbol summary for the NAND operation.

 Notice in Figure 1.10 that a NAND gate can have two or more inputs. For three input sig-
nals, X #Y #Z 5 X 1 Y 1 Z by DeMorgan’s Theorem T6a and is equivalent to NOT X OR NOT
Y OR NOT Z in VHDL. For three input signals, X #Y #Z is not equivalent to X NAND Y NAND
Z. The expression X NAND Y NAND Z is an illegal expression in VHDL. In VHDL, NOT (X
AND Y AND Z) is equivalent to the expression X #Y #Z.
 Listing 1.5 shows a complete VHDL design for the Boolean function FNAND 5 X #Y .

...

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic name

NAND operation NAND gateA∙B∙C∙ ... A∙B∙C∙ ...
A
B
C

FIGURE 1.10 Logic symbol
summary for the NAND
operation

22 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 Things you should notice about the VHDL design in Listing 1.5:

• Observe that the style for writing the VHDL design in Listing 1.5 is a modified copy of the
VHDL design in Listing 1.4.

• For this design, the entity declaration has the label nand_1. To end the entity declaration,
you must type end nand_1. The label nand_1 provides a meaningful description of the
VHDL design. The keyword “nand” cannot be used for a label, because nand is a keyword
that represents the NAND operator in VHDL.

• In the entity declaration, the external signal Fxor is changed to Fnand.
• Observe that the label nand_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X nand Y is assigned to the signal

Fnand via the signal assignment symbol (,5)—that is, Fnand ,5 X nand Y. The Boolean
function Fnand ,5 X nand Y is placed in the architecture declaration between begin and
end Boolean_function.

 Waveform 1.5 shows waveform diagrams for the VHDL design for the Boolean function
FNAND 5 X #Y .

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nand_1 is port (
 x, y : in std_logic;
 fnand : out std_logic
);
end nand_1;

architecture Boolean_function of nand_1 is
begin
 fnand ,5 x nand y;
end Boolean_function;

LISTING 1.5
Complete VHDL
design for a NAND
function and related
graphics (Project:
nand_1)

Y
F

NAND
 = X∙Y

X

Actual logic circuit

+

+

+

Name Value

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

fnand 1

WAVEFORM 1.5 Waveform
diagrams for the VHDL design for
the Boolean function FNAND 5 X #Y

 The waveform diagrams in Waveform 1.5 show the actual simulation of the VHDL design in
Listing 1.5. Observe that FNAND is 0 when both X and Y are 1, and FNAND is 1 for all other condi-
tions of X and Y. This shows that the output waveform for FNAND is the NANDing of the input
waveforms for X and Y. Waveform 1.5 shows that the VHDL design in Listing 1.5 does, in fact,
provide a correct design for the Boolean function FNAND 5 X #Y . To identify the inputs, minterm
designators were added to the waveform diagrams in Waveform 1.5. Because FNAND(X,Y) 5
Sm(0,1,2) you may observe in Waveform 1.5 that FNAND 5 1 for m0, m1, and m2; else, FNAND 5 0.

1.4.6 VHDL Design for a NOR Function
Table 1.11 shows a truth table for the NOR function FNOR. When the input signal values are
both 0 (for two inputs), or all 0s (if more than two inputs), the function FNOR is 1; otherwise, the
function is 0.

X

Y
F

NAND

Black box

Digital
circuit

(nand_1)

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 23

 Using the 1s of the function, we can write the Boolean function as FNOR 5 X #Y , but
X #Y 5 X 1 Y by DeMorgan’s Theorem T5b, so FNOR 5 X 1 Y . Figure 1.11 shows a logic
symbol summary for the NOR operation.

TABLE 1.11 Truth table

for a NOR function with two

inputs

NOR function

X Y FNOR

0 0 1

0 1 0

1 0 0

1 1 0

...

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic name

NOR operation NOR gateA + B + C + ... A + B + C + ...
A
B
C

FIGURE 1.11 Logic symbol
summary for the NOR
operation

 Notice in Figure 1.11 that a NOR gate can have two or more inputs. For three input signals,
X 1 Y 1 Z 5 X #Y #Z by DeMorgan’s Theorem T6b and is equivalent to NOT X AND NOT Y
AND NOT Z in VHDL. For three input signals, X 1 Y 1 Z is not equivalent to X NOR Y NOR
Z. The expression X NOR Y NOR Z is an illegal expression in VHDL. In VHDL, NOT (X OR
Y OR Z) is equivalent to the expression X 1 Y 1 Z.
 Listing 1.6 shows a complete VHDL design for the Boolean function FNOR 5 X 1 Y .

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nor_1 is port (
 x, y : in std_logic;
 fnor : out std_logic
);
end nor_1;

architecture Boolean_function of nor_1 is
begin
 fnor ,5 x nor y;
end Boolean_function;

LISTING 1.6
Complete VHDL
design for a NOR
function and related
graphics (Project:
nor_1)X

Y
F

NOR

Black box

Digital
circuit
(nor_1)

 Things you should notice about the VHDL design in Listing 1.6:

• Observe that the style for writing the VHDL design in Listing 1.6 is a modified copy of the
VHDL design in Listing 1.5.

• For this design, the entity declaration has the label nor_1. To end the entity declaration,
you must type end nor_1. The label nor_1 provides a meaningful description of the VHDL
design. The keyword “nor” cannot be used for a label, because nor is a keyword that rep-
resents the NOR operator in VHDL.

• In the entity declaration, the external signal Fnand is changed to Fnor.
• Observe that the label nor_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.

Y
F

NOR
 = X + Y

X

Actual logic circuit

24 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

• In the architecture declaration, the Boolean expression X nor Y is assigned to the signal
Fnor via the signal assignment symbol (,5)—that is, Fnor ,5 X nor Y. The Boolean
function Fnor ,5 X nor Y is placed in the architecture declaration between begin and end
Boolean_function.

 Waveform 1.6 shows waveform diagrams for the VHDL design for the Boolean function
FNOR 5 X 1 Y .

+

+

+

Name Value

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

fnor 1

WAVEFORM 1.6 Waveform
diagrams for the VHDL design for
the Boolean function FNOR 5 X 1 Y

 The waveform diagrams in Waveform 1.6 show the actual simulation of the VHDL design
in Listing 1.6. Observe that FNOR is 1 when both X and Y are 0, and FNOR is 0 for all other con-
ditions of X and Y. This shows that the output waveform for FNOR is the NORing of the input
waveforms for X and Y. Waveform 1.6 shows that the VHDL design in Listing 1.6 does, in fact,
provide a correct design for the Boolean function FNOR 5 X 1 Y . To identify the inputs, mint-
erm designators were added to the waveform diagrams in Waveform 1.6. Because FNOR(X,Y) 5
Sm(0) you may observe in Waveform 1.6 that FNOR 5 1 for m0; else, FNOR 5 0.

1.4.7 VHDL Design for an XNOR Function
Table 1.12 shows a truth table for the XNOR function FXNOR. When the input signal values are
the same (both are 0, or both are 1), the function FXNOR is 1; otherwise, the function is 0.

TABLE 1.12 Truth table

for a XNOR function with two

inputs

XNOR function

X Y FXNOR

0 0 1

0 1 0

1 0 0

1 1 1

 Using the 1s of the function, we can write the Boolean function as FXNOR 5 X #Y 1 X #Y .
 An alternate way of writing the XNOR function is FXNOR 5 X!Y , which is the complement
of the XOR function. The XNOR function with two inputs is often referred to as a comparator
because the XNOR function is a 1 when both input signals are the same value and is a 0 when
they are different values.
 Figure 1.12 shows a logic symbol summary for the XNOR operation.

...

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic name

XNOR operation XNOR gateA ⊕ B ⊕ C ⊕ ... A ⊕ B ⊕ C ⊕ ...
A
B
C

FIGURE 1.12 Logic
symbol summary for the
XNOR operation

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 25

 Notice in Figure 1.12 that an XNOR gate can have two or more inputs. For three input
signals, A!B!C is equivalent to NOT(A XOR B XOR C) but not equivalent to A XNOR B
XNOR C in VHDL.
 The XNOR function is an even function, which has a value of 1 when the combination of
all the inputs has an even number of 1s (0, 2, 4, . . .). This is shown in Table 1.13, where FXNOR
and FEVEN provide the same truth table values for the simplest case of just two inputs. Observe
that 00 represents an even number of 1—that is, no 1s—and 11 represent an even number of
1s—that is, two 1s. Using perfect induction, it can be shown that FXNOR 5 FEVEN for more than
two inputs.

 Listing 1.7 shows a complete VHDL design for the Boolean function FXNOR 5 X!Y .

XNOR function
(EVEN function)

X Y FXNOR FEVEN

0 0 1 1

0 1 0 0

1 0 0 0

1 1 1 1

TABLE 1.13 Truth table

for an XNOR function and

an EVEN function with two

inputs

 Things you should notice about the VHDL design in Listing 1.7:

• Observe that the style for writing the VHDL design in Listing 1.7 is a modified copy of the
VHDL design in Listing 1.6.

• For this design, the entity declaration has the label xnor_1. To end the entity declaration,
you must type end xnor_1. The label xnor_1 provides a meaningful description of the
VHDL design. The keyword “xnor” cannot be used for a label, because xnor is a keyword
that represents the XNOR operator in VHDL.

• In the entity declaration, the external signal Fnor is changed to Fxnor.
• Observe that the label xnor_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X xnor Y is assigned to the signal

Fxnor via the signal assignment symbol (,5)—that is, Fxnor ,5 X xnor Y. The Boolean
function is placed in the architecture declaration between begin and end Boolean_function.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity xnor_1 is port (
 x, y : in std_logic;
 fxnor : out std_logic
);
end xnor_1;

architecture Boolean_function of xnor_1 is
begin
 fxnor ,5 x xnor y;
-- fxnor ,5 (not x and not y) or (x and y);
end Boolean_function;

LISTING 1.7
Complete VHDL
design for an XNOR
function and related
graphics (Project:
xnor_1)X

Y
F

XNOR

Black box

Digital
circuit

(xnor_1)

Y
F

XNOR
 = X ⊕ Y

X

Actual logic circuit

26 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

• Observe that the Boolean function Fxnor ,5 (not X and not Y) or (X and Y) may be used
in place of the Boolean function Fxnor ,5 X xnor Y. Recall that any text that follows two
hyphens in series, that is, “--”, can be used as a comment in VHDL.

 Waveform 1.7 shows waveform diagrams for the VHDL design for the Boolean function
FXNOR 5 X!Y .

 The waveform diagrams in Waveform 1.7 show the actual simulation of the VHDL design
in Listing 1.7. Observe that FXNOR is 1 when both X and Y are 0 or when both X and Y are 1—that
is, both inputs are the same value—and FXNOR is 0 for all other conditions of X and Y—that
is, when the inputs are different values. This shows that the output waveform for FXNOR is the
XNORing of the input waveforms for X and Y. Waveform 1.7 shows that the VHDL design in
Listing 1.7 does, in fact, provide a correct design for the Boolean function FXNOR 5 X!Y . To
identify the inputs, minterm designators were added to the waveform diagrams in Waveform 1.7.
Because FXNOR(X,Y) 5 Sm(0,3) you may observe in Waveform 1.7 that FXNOR 5 1 for m0 and
m3; else, FXNOR 5 0.

1.4.8 VHDL Design for a BUFFER Function
Table 1.14 shows a truth table for BUFFER function FBUF. The BUFFER function seems like a
do nothing function, because its output is logically equivalent to its input.

+

+

+

Name Value

0

0 ns
m0 m2 m3 m0m1

200 ns

x

y 0

fxnor 1

WAVEFORM 1.7 Waveform
diagrams for the VHDL design for
the Boolean function FXNOR 5 X!Y

TABLE 1.14 Truth table

for a BUFFER function
BUFFER function

X FBUF

0 0

1 1

 Using the 1s of the function, we can write the Boolean function FBUF 5 X.
 Figure 1.13 shows a logic symbol summary for the BUFFER operation.

Boolean
algebra
expression

Name of
expression

Distinctive-shape
logic symbol

Logic
symbol
name

BUFFER
operation

BUFFERA A F
BUF

 = A

FIGURE 1.13 Logic symbol
summary for the BUFFER
operation

 The distinctive-shape symbol shown in Figure 1.13 has an amplifier symbol x included.
The amplifier symbol need not be included unless the output has amplification or additional
“oomph” so that the output can drive a larger number of gates. A BUFFER can also be used in a
design for the purpose of documentation so that different signal names can be used on the input
and output of the BUFFER.

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 27

 Things you should notice about the VHDL design in Listing 1.8:

• Observe that the style for writing the VHDL design in Listing 1.8 is a modified copy of the
VHDL design in Listing 1.7.

• For this design, the entity declaration has the label buf_1. To end the entity declaration,
you must type end buf_1. The label buf_1 provides a meaningful description of the VHDL
design. The keyword “buffer” cannot be used for a label, because buffer is a keyword that
represents the mode inout in VHDL.

• In the entity declaration, the external signal Y is removed and Fxnor is changed to Fbuf.
• Observe that the label buf_1 must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean expression X is assigned to the signal Fbuf via

the signal assignment symbol (,5)—that is, Fbuf ,5 X. The Boolean function is placed in
the architecture declaration between begin and end Boolean_function.

 Waveform 1.8 shows waveform diagrams for the VHDL design for the Boolean function
FBUF 5 X.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity buf_1 is port (
 x : in std_logic;
 fbuf : out std_logic
);
end buf_1;

architecture Boolean_function of buf_1 is
begin
 fbuf ,5 x;
end Boolean_function;

LISTING 1.8
Complete VHDL
design for a BUFFER
function and related
graphics (Project:
buf_1)

X F
BUF

F
BUF

 = XX

Actual logic circuit

Black box

Digital
circuit
(buf_1)

 The waveform diagrams in Waveform 1.8 show the actual simulation of the VHDL design
in Listing 1.8. Observe that FBUF is 0 when X is 0, and FBUF is 1 when X is 1. This shows that
the output waveform for FBUF is the BUFFERing of the input waveform for X. Waveform 1.8
shows that the VHDL design in Listing 1.8 does, in fact, provide a correct design for the Bool-
ean function FBUF 5 X. To identify the inputs, minterm designators were added to the waveform
diagrams in Waveform 1.8.
 Because FBUF(X) 5 Sm(1) you may observe in Waveform 1.8 that FBUF 5 1 for m1; else,
FBUF 5 0.

1.4.9 VHDL Design for any Boolean Function Written
in Canonical Form
A VHDL design can be obtained for any Boolean function written in canonical form. First,
obtain a truth table for the function or a compact minterm or maxterm form of the function.

+

+

Name Value

0

0 ns
m0 m0 m0m1 m1

200 ns 400 ns

x

fbuf 0

WAVEFORM 1.8
Waveform diagrams for
the VHDL design for the
Boolean function FBUF
5 X

 Listing 1.8 shows a complete VHDL design for the Boolean function FBUF 5 X.

28 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

Next, write the function in a canonical form—that is, either in a canonical SOP (CSOP) form or
a canonical POS (CPOS) form. Then, write the assignment statement for the Boolean function
in VHDL.
 To keep things simple, we will only use compact minterm forms and write CSOP forms
for functions. If you prefer, you can use compact maxterm forms and write CPOS forms for
functions.
 For example, consider the truth table for a Two-1s function; that is, output F is 1 only when
there are two 1s in each input combination A B C, as shown in Table 1.15.

(Decimal) A B C F

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

TABLE 1.15 Truth

table for a Two-1s

function F

 We can write an assignment statement in VHDL for the function F in many different ways.
First, write a compact minterm forms for the function using its 1s as:

F(A,B,C) 5 Sm(3, 5, 6)

 Then write the canonical SOP (CSOP) form as:

F1A,B,C 2 5 A #B #C 1 A #B #C 1 A #B #C

 The assignment statement for the 1s of the function F can now be written in CSOP form as:

F ,5 (not A and B and C) or
(A and not B and C) or
(A and B and not C)

 Another way to write an assignment statement for the function F is to write a compact min-
term form for the function using its 0s as:

F(A,B,C) 5 Sm(0,1,2,4,7)

The canonical SOP (CSOP) form is written as:

F1A, B, C 2 5 A #B #C 1 A #B #C 1 A #B #C 1 A #B #C 1 A #B #C

 The assignment statement for the 0s of the function F can now be written in CSOP form as:

F ,5 not ((not A and not B and not C) or
(not A and not B and C) or
(not A and B and not C) or
(A and not B and not C) or
(A and B and C))

www.itpub.net

 1.4 Writing VHDL Designs for Simple Gate Functions 29

 When writing an assignment statement for a function in VHDL, use the fewest number of
1s or 0s in the truth table for the function. The function written with the fewest number of 1s or
0s has fewer minterms and is easier to type. If the function has the same number of 1s and 0s,
then choose the 1s, for less typing.
 Listing 1.9 shows a complete VHDL design for the Two-1s function F in Table 1.15.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity two_1s is port (
 a,b,c : in std_logic;
 f_1s,f_0s : out std_logic
);
end two_1s;

architecture Boolean_function of two_1s is
begin

--the canonical SOP form for the 1s for the function f
 f_1s ,5 (not A and B and C) or
 (A and not B and C) or
 (A and B and not C);

--the canonical SOP form for the 0s for the function f
 f_0s ,5 not ((not A and not B and not C) or
 (not A and not B and C) or
 (not A and B and not C) or
 (A and not B and not C) or
 (A and B and C));

end Boolean_function;

LISTING 1.9
Complete VHDL
design for the
Two-1s function F in
Table 1.15 (Project:
canonical_form)

 Things you should notice about the VHDL design in Listing 1.9:

• Remember that VHDL code is not case sensitive—that is, upper- and lowercase names are
interchangeable.

• Observe that the style for writing the VHDL design in Listing 1.9 is a modified copy of the
VHDL design in Listing 1.7.

• For this design, the entity declaration has the label two_1s. To end the entity declaration,
you must type end two_1s. The label two_1s provides a meaningful description of the
VHDL design.

• In the entity declaration, the external input signals X and Y are changed to A, B, and C.
• In the entity declaration, the external output signal FXNOR is changed to F_1s, F_0s.
• Observe that the label two_1s must be used in the architecture declaration because it is the

label that is used in entity declaration.
• In the architecture declaration, the Boolean functions for the 1s of the function labeled

(F_1s) and the Boolean function for the 0s of the function labeled (F_0s) are placed in the
architecture declaration between begin and end Boolean_function.

• Observe the comments. Either function F_1s or function F_0s may be used to represent the
Boolean function F in Table 1.15.

• The purpose of including both function F_1s and function F_0s is to verify that both functions
generate the same output when we run a simulation. So, F 5 F_1s 5 F_0s should be true.

 Waveform 1.9 shows waveform diagrams for the VHDL design for the Two-1s function F in
Table 1.15.

30 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 The waveform diagrams in Waveform 1.9 show the actual simulation of the VHDL design
in Listing 1.9. Observe that both function F_1s and function F_0s in Waveform 1.9 provide the
same output as function F in Table 1.15. This shows that the VHDL design in Listing 1.9 does,
in fact, provide a correct design for Boolean function F—that is, F 5 F_1s or F 5 F_0s can be
used to generate the function F. To identify the inputs, minterm designators were added to the
waveform diagrams in Waveform 1.9. Because F(A,B,C) 5 Sm(3,5,6) you may observe in Wave-
form 1.9 that f_1s 5 1 for m3, m5, and m6, else f_1s 5 0. Because F(A,B,C) 5 Sm(0,1,2,4,7),
you may observe in Waveform 1.9 that f_0s 5 0 for m0, m1, m2, m4, and m7; else, f_0s 5 1.

1.5 MORE ABOUT LOGIC GATES

In this section we summarize some additional information about gates.

1.5.1 Equivalent Gate Symbols
Logic gate symbols can be represented by different equivalent gate symbols called DeMorgan
equivalent gate symbols. Figure 1.14 shows an equivalent gate symbols for the AND gate, OR
gate, NAND gate, and NOR gate.

+

+

+

+

+

Name Value

0

0 ns
m0 m2 m3 m4 m5 m6 m7 m0m1

200 ns 400 ns

a

b 0

c

f_1s

f_0s

0

0

0

WAVEFORM 1.9
Waveform diagrams for
the VHDL design for
the Two-1s function F in
Table 1.15

Gate symbols DeMorgan equivalent gate symbols

A

B

A

B

A

B

A

B

A∙B

∙B
-

= A + B

∙B
-

 = A + B A
-

A∙B

A + B

A
-

+ B
-

 = A∙B

A + B

A

B

A

B

A

B

A
-

+ B
-

 = A∙B
A

B

≡

≡

≡

≡

A

FIGURE 1.14 Equivalent logic
gate symbols for the AND gate,
OR gate, NAND gate, and NOR
gate

 The DeMorgan equivalent gate symbols are shown so that you may recognize that there is
more than one way to represent a gate symbol and still provide the same output operation. An
easy way to remember the equivalent gate symbols is to recognize that there is an AND form
(the distinctive shape is the AND shape) and an OR form (the distinctive shape is the OR shape)
for each logic gate symbol in Figure 1.14. To convert to the equivalent form, simply change to the

www.itpub.net

 1.5 More about Logic Gates 31

opposite distinctive shape, and at each input and output, simply remove a bubble if one is present
or add a bubble if no bubble is present. You can see that this process works for each of the gates
in Figure 1.14 from left to right or from right to left. Memory Jogger: To obtain a DeMorgan
equivalent gate symbol for an AND, OR, NAND, or NOR gate, simply add bubbles to all inputs
and outputs and change an AND symbol to an OR symbol or change an OR symbol to an AND
symbol. Remember that two bubbles result in no bubble via Double Negation Theorem T7.
 In Figure 1.14, notice that the Boolean output expressions for the DeMorgan equivalent gate
symbols are obtained using DeMorgan’s Theorems either directly or by complementing them.

The output for the DeMorgan equivalent gate symbol for the AND gate is A 1 B 5 A #B. The

output for the DeMorgan equivalent gate symbol for the OR gate is A #B 5 A 1 B. The output
for the DeMorgan equivalent gate symbol for the NAND gate is A 1 B 5 A #B. The output for
the DeMorgan equivalent gate symbol for the NOR gate is A #B 5 A 1 B.

1.5.2 Functionally Complete Gates
Using the three gates NOT, AND, and OR, we can design any logic circuit. The NAND gate
is referred to as a functionally complete gate, because a set of just NAND gates can be used to
design any logic circuit. Figure 1.15 shows NAND gate equivalent circuits for the NOT, AND,
and OR gates.

 The NOR gate is also a functionally complete gate, because a set of just NOR gates can be
used to design any logic circuit. Figure 1.16 shows NOR gate equivalent circuits for the NOT,
AND, and OR gates.

A

A
A∙B

∙B
-

 = A + B

A∙B

A + B

B

A
B

A

A
B

A

B B
-

A
-

A
-

A
-

≡ A∙B = A∙B

A
-

 ≡

≡

NOT, AND, and
OR gates

NAND gate
equivalent circuits

FIGURE 1.15 NAND gate
equivalent circuits for the NOT,
AND, and OR gates

A

A
A∙B

A + B

B

A
B

A
-

≡ A
-

 + B
-

 = A∙B

A + B

A

A
B

A
-

A

B B
-

A
-

A + B = A + B≡

≡

NOT, AND, and
OR gates

NOR gate
equivalent circuits

FIGURE 1.16 NOR gate
equivalent circuits for the NOT,
AND, and OR gates

32 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

1.5.3 Equivalent Gate Circuits
Logic gates that use bubbles at their inputs or outputs can be drawn in different but equivalent
ways. Figure 1.17 shows a summary of several logic gates and their equivalent gate circuits.

Equivalent gate circuits

≡

≡

≡

≡

≡

≡

≡

FIGURE 1.17 Equivalent
gate circuits

 In Figure 1.17, when a bubble is attached to a distinctive-shape gate symbol, the circuit
denotes a built-in (or internal) NOT gate. When a bubble is attached to a triangle, the circuit
denotes a separate (or external) NOT gate.

1.5.4 Compact Description Names for Gates
A graphic package is normally used to draw a circuit diagram on a computer. Rather than show-
ing the logic symbols for the available gates in a graphic package, a list of compact description
names is used. You must learn the compact description names to move the correct logic symbols
to the screen. Figure 1.18 shows a summary of several logic symbols and their associated com-
pact description names.
 The notation AND2B1 stands for a 2 input AND gate with one bubble input, while the
notation OR3B2 stands for a 3 input OR gate with two bubbles at the input. Bubbled inputs are
used to make a circuit diagram simpler to draw. The bubble represents a complemented input or
output, depending on where the bubble is placed.
 A gate with a bubble input (or output) may be referred to as an active low input (or active low
output). A gate that does not contain a bubble input (or output) may be referred to as an active high
input (or active high output). The AND2 in Figure 1.18 has two active high inputs and an active
high output. The NAND2 has two active high inputs and an active low output. The NOR2B1 has
one active high input, one active low input, and an active low output. An active high input requires
a 1 or a high-voltage input for the input to be active or asserted. An active high output provides a
1 or high-voltage output for the output to be active or asserted. An active low input requires a 0 or
a low-voltage input for the input to be active or asserted. An active low output provides a 0 or low-
voltage output for the output to be active or asserted.

1.5.5 International Logic Symbols for Gates
The rectangular-shape logic symbols shown in Figure 1.19 are IEEE (Institute of Electrical and
Electronics Engineers) international standard logic symbols. You need to learn these symbols in
order to read circuits diagrams in international books and journals.

www.itpub.net

 1.5 More about Logic Gates 33

 The distinctive-shape logic symbols that we have used up until now are also IEEE standard
logic symbols. Distinctive-shape logic symbols are predominantly used in the United States, so
we will use the distinctive-shape logic symbols throughout the rest of this book.

AND2

AND2B1

AND3B2

OR2

OR2B1

XOR2

XOR3

OR3B2

XNOR2

XNOR3

NAND2

NAND2B1

NAND3B2

NOR2

NOR2B1

NOR3B2

Logic symbols
Compact
descripion
names

Logic symbols
Compact
descripion
names

FIGURE 1.18 Logic symbols and their associated compact description
names

NOT gate

AND gate

OR gate

NAND gate

Logic symbol
name

Rectangular shape
logic symbols

A

A

A

B
C

A
B
C

A
B
C

A⋅B⋅C⋅ ...

A + B + C + ...

A⋅B ⋅C⋅ ...

1

&

≥1

=1

≥1

&

NOR gate

XOR gate
(symbol for
2 inputs only)

XNOR gate
(symbol for
2 inputs only)

Logic symbol
name

A

B

A

A

B

A
B
C

A + B + C + ...

A ⊕ B

A ⊕ B

FBUF = A BUFFER

=

1

FIGURE 1.19 IEEE international standard logic symbols

34 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

(use A as the input signal), and the AND operator (use Y
and Z as the input signals).

 1.21 What are the values 1 and 0 called in Boolean algebra?
 1.22 Show the defi nitions with all possible combinations of

the identity elements (1 and 0) for the AND operator
(use three identity elements), the OR operator (use two
identity elements), and the NOT operator.

 1.23 List the four names of the postulates or rules for Boolean
algebra.

 1.24 List the order of precedence of the binary operators.
 1.25 One form of each of the four postulates or rules for

Boolean algebra are provided as A 1 0 5 A (variable
dominant rule), A 1 B 5 B 1 A (commutative rule),
A 1 B?C 5 (A 1 B)?(A 1 C) (distributive rule), and
A 1 A 5 1 (complement rule). Write the dual form for
each of the postulates.

 1.26 Describe how to obtain the dual of a Boolean relation-
ship, and show the dual of the Boolean relationship X 1
Y?Z?W 1 A.

 1.27 Obtain the duals of the expressions A 1 B 1 C,
X #Y 1 Z, and A # 1B 1 C #D 2 1 A #D.

 1.28 What are theorems?
 1.29 Show a logic circuit with a minimum gate count for the

Boolean function F 5 X?(X 1 Y). Name and show the
theorem you used to minimize the Boolean function
prior to drawing the logic circuit.

 1.30 Show a logic circuit with a minimum gate count for the
Boolean function F 5 X 1 X #Y . Name and show the
theorem you used to minimize the Boolean function
prior to drawing the logic circuit.

 1.31 Show a logic circuit with a minimum gate count for the
Boolean function F 5 A #B 1 A #C 1 B #C. Name and
show the theorem you used to minimize the Boolean
function prior to drawing the logic circuit.

 1.32 Prove that Idempotency Theorem T8a, X?X 5 X, is true
by the perfect induction method and the mathematical
manipulation method.

 1.33 Prove that DeMorgan’s Theorem (with two variables)
T5a, X #Y 5 X 1 Y , is true by the perfect induction
method and the mathematical manipulation method.

 1.34 Prove that Absorption Theorem T1a, X?(X 1 Y) 5 X, is
true by the perfect induction method and the mathemati-
cal manipulation method.

Section 1.3 Deriving Boolean Functions
from Truth Tables
 1.35 Obtain the CSOP forms for the following Boolean func-

tions expressed in compact minterm form: (a) F1(X,Y) 5
Sm(3), (b) F2(Y) 5 Sm(0), (c) F3(A,B) 5 Sm(1,2,3).

 1.36 What is the memory jogger you can use when obtaining
the expressions for minterms?

 1.37 Obtain the truth tables for the following Boolean func-
tions expressed in compact minterm form: (a) F1(X,Y) 5
Sm(3), (b) F2(Y) 5 Sm(0), (c) F3(A,B) 5 Sm(1,2,3).

Section 1.1 Introduction
 1.1 What are three different ways to express Boolean func-

tions, and what are their forms?
 1.2 What are Boolean functions used to specify?
 1.3 Name a few electronic devices that contain digital

circuits.

Section 1.2 Basics of Boolean Algebra
 1.4 What are the independent statements called in Boolean

algebra that are assumed to be true without proof?
 1.5 Name two early pioneers in the area of Boolean algebra.
 1.6 What is the name of the binary operator “ ”?
 1.7 What is the name of the binary operator “?”?
 1.8 What is the name of the binary operator “1”?
 1.9 Write a Boolean expression with a signal or signals for

each of the binary operators NOT, AND, and OR.
 1.10 What is a Venn diagram?
 1.11 How are Boolean expressions represented on Venn

diagrams?
 1.12 If the area inside a border in a Venn diagram represents

the Boolean expression X 1 Y, where is the area in the
Venn diagram for the Boolean expression X 1 Y ?

 1.13 What signals are shown on a black box for a Boolean
function?

 1.14 Does a black box show its digital circuit?
 1.15 What are the input and output lines associated with a

black box?
 1.16 Show the logic symbols for the NOT or complement

operation, the AND operation, and the OR operation
using distinctive-shape symbols. For the AND operation
and OR operation, show logic symbols with only two
inputs.

 1.17 For the following Boolean functions, draw the proper
logic symbols and label them with their inputs and out-
puts: F1 5 P 1 Q 1 R, F2 5 Y , F3 5 X #Y #Z.

 1.18 Write the Boolean function for each of the logic circuit
diagrams in Figure P1.18.

PROBLEMS

A
B BF1 F2 F3
C

A
B
C
D

P
T

C
S
W
Y

F4 F5 F6

(a) (b) (c)

(d) (e) (f)

FIGURE P1.18

 1.19 What are the values 1 and 0 called in a truth table?
 1.20 Show the defi nitions with truth tables for the OR opera-

tor (use B and C as the input signals), the NOT operator

www.itpub.net

 Problems 35

 1.54 Show the black box for the entity in Listing P1.54. 1.38 Obtain the CSOP forms for the following Boolean func-
tions expressed in compact minterm form: (a) F1(X,Y) 5
Sm(2), (b) F2 1Y 2 5 Sm 11 2 , (c) F3 1A ,B 2 5 Sm 10,1,2 2 .

 1.39 Obtain the truth tables for the following Boolean func-
tions expressed in compact minterm form: (a) F1(X,Y) 5
Sm(2), (b) F2 1Y 2 5 Sm 11 2 , (c) F3 1A ,B 2 5 Sm 10,1,2 2 .

 1.40 What is the memory jogger you can use when obtaining
the expressions for maxterms?

 1.41 Obtain the CPOS forms for the following Boolean func-
tions expressed in compact maxterm form: (a) F1(X,Y) 5
PM(0,1,2), (b) F2(Y) 5 PM(0), (c) F3(A,B) 5 PM(1,2).

 1.42 Obtain the truth tables for the following Boolean func-
tions expressed in compact maxterm form: (a) F1(X,Y) 5
PM(0,1,2), (b) F2(Y) 5 PM(0), (c) F3(A,B) 5 PM(1,2).

 1.43 Obtain the CPOS forms for the following Boolean func-
tions expressed in compact maxterm form: (a) F1(X,Y) 5
PM(0,1,3), (b) F2(Y) 5 PM(1), (c) F3(A,B) 5 PM(1,3).

 1.44 Obtain the truth tables for the following Boolean func-
tions expressed in compact maxterm form: (a) F1(X,Y) 5
PM(0,1,3), (b) F2(Y) 5 PM(1), (c) F3(A,B) 5 PM(1,3).

Section 1.4 Writing VHDL Designs
for Simple Gate Functions
 1.45 What are the names for the acronyms CPLD and FPGA?
 1.46 What are the two main sections of VHDL that you need

to become familiar with?
 1.47 Describe what the entity and the architecture contain in

VHDL.
 1.48 How many parts does a VHDL design consist of? Name

them.
 1.49 What are keywords in VHDL?
 1.50 What are the keywords in the VHDL design in Listing

P1.50?

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity larger_and is port (
 x, y, z : in std_logic;
 f : out std_logic
);
end larger_and;

architecture Boolean_function of
larger_and is
begin
 f ,5 x and y and z;
end Boolean_function;

LISTING P1.50

 1.51 How many inputs are there in the entity in Listing P1.50,
and what are their names?

 1.52 Show the black box for the entity in Listing P1.50.
 1.53 Show the actual logic circuit for the architecture in List-

ing P1.50.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity larger_or is port (
 w, x, y, z : in std_logic;
 f : out std_logic
);
end larger_or;

architecture B_function of larger_or is
begin
 f ,5 w or x or y or z;
end B_function;

LISTING P1.54

 1.55 Show the actual logic circuit for the architecture in List-
ing P1.54.

 1.56 Show complete VHDL code for the Boolean function
F(A,B,C) 5 Sm(2,3,6,7) for an entity named CSOP1 and
the output signal F.

 1.57 Show a complete and correct simulation for the VHDL
design in problem 1.56. Identify the inputs using mint-
erm designators.

 1.58 Show complete VHDL code for the Boolean function
F (A,B,C) 5 Sm(1,5,7) for an entity named CSOP2 and
the output signal F. Hint: Organize the function as
F(A,B,C) 5 not (Sm(1,5,7)).

 1.59 Show a complete and correct simulation for the VHDL
design in problem 1.58. Identify the inputs using mint-
erm designators.

 1.60 Show complete VHDL code for the Boolean function
F(W,X,Y,Z) 5 PM(0,1,2,14) for an entity named CPOS1
and the output signal F.

 1.61 Show a complete and correct simulation for the VHDL
design in problem 1.60. Identify the inputs using max-
term designators.

 1.62 Show complete VHDL code for the Boolean function
F (X,Y,Z) 5 PM(0,3,6) for an entity named CPOS2 and
the output signal F. Hint: Organize the function as
F(X,Y,Z) 5 not (PM(0,3,6)).

 1.63 Show a complete and correct simulation for the VHDL
design in problem 1.62. Identify the inputs using max-
term designators.

Section 1.5 More about Logic Gates
 1.64 Show the DeMorgan equivalent gate symbol for an AND

gate.
 1.65 Show the DeMorgan equivalent gate symbol for an OR

gate.
 1.66 Show the DeMorgan equivalent gate symbol for a NAND

gate.

36 Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates

 1.85 Write the logic symbol names for the rectangular-shape
logic symbols in Figure P1.85.

 1.67 Show the DeMorgan equivalent gate symbol for a NOR
gate.

 1.68 Name two functionally complete gates, and show their
logic symbols.

 1.69 Show a NAND gate equivalent circuit for a NOT gate.
 1.70 Show a NAND gate equivalent circuit for a NOR gate.
 1.71 Show a NOR gate equivalent circuit for a NOT gate.
 1.72 Show a NOR gate equivalent circuit for a NAND gate.
 1.73 Show an equivalent gate circuit for the logic gate in

Figure P1.73 using external NOT gates.

FIGURE P1.73

 1.74 Show an equivalent gate circuit for the logic gate in
Figure P1.74 using external NOT gates.

 1.75 Show an equivalent gate circuit for the logic gate in
Figure P1.75 using an external NOT gate.

FIGURE P1.74

FIGURE P1.75

 1.76 Show the logic symbol for the compact description name
AND3B1.

 1.77 Show the logic symbol for the compact description name
NOR4.

 1.78 Show the logic symbol for the compact description name
OR3B1.

 1.79 Show the logic symbol for the compact description name
XNOR3.

 1.80 Discuss how to identify an active low input for a gate and
what an active low input means.

& = 1 1

(a) (b) (c)

FIGURE P1.84

≥ 1 1 =

(a) (b) (c)

FIGURE P1.85

 1.86 Write the Boolean expressions at the output for the
rectangular-shape logic symbols in Figure P1.86.

 1.87 Write the Boolean expressions at the output for the
rectangular-shape logic symbols in Figure P1.87.

≥ 1 =&A
B
C

A
B
C

A

B

(a) (b) (c)

FIGURE P1.86

A
B

A
BA
C

≥ 1= 1 1

(a) (b) (c)

FIGURE P1.87

 1.81 Discuss how to identify an active low output for a gate
and what an active low output means.

 1.82 Discuss how to identify an active high input for a gate
and what an active high input means.

 1.83 Discuss how to identify an active high output for a gate
and what an active high output means.

 1.84 Write the logic symbol names for the rectangular-shape
logic symbols in Figure P1.84.

www.itpub.net

C h aa p t e rr

Number Conversions, Codes,
and Function Minimization

Chapter Outline

 2.1 Introduction 37

 2.2 Digital Circuits versus Analog Circuits 37

 2.3 Binary Number Conversions 38

 2.4 Binary Codes 45

 2.5 Karnaugh Map Reduction Method 54

 Problems 63

2.1 INTRODUCTION

In this chapter, you will learn the difference between two types of circuits—that is, digital
circuits and analog circuits. You are introduced to binary numbers and their conversions to the
decimal, octal, and hexadecimal number systems. You will also learn different types of binary
codes and where they are used. You will learn how to design a small 7-segment display system
using VHDL. You will learn how to minimize functions using a graphical technique called the
Karnaugh map reduction method.

2.2 DIGITAL CIRCUITS VERSUS ANALOG CIRCUITS

There are two primary types of signals. These are analog or continuous signals and discrete or
digital signals. Circuits that use analog signals are classified as analog circuits, while circuits
that use digital signals are classified as digital circuits. Digital circuits operate with discrete
signals, while analog circuits operate with continuous signals. In this text, we will only cover
discrete signals, and thus we will only work with digital circuits.

2.2.1 Digitized Signal for the Human Heart
The majority of signals in nature are of the analog variety. The human heartbeat illustrated in
Figure 2.1a is an example of an analog signal. Figure 2.1b shows a simple digitized version of
the same signal.

rr 2

37

38 Chapter 2 Number Conversions, Codes, and Function Minimization

2.2.2 Discrete Signals versus Continuous Signals
Analog signals are continuous, while digital signals are noncontinuous; that is, discrete signals
have distinct values. The mathematics (algebra and perhaps calculus) that you have learned up to
this point in your career applies mostly to analog signals. The Boolean algebra that you learned
back in Chapter 1 deals with two different discrete signal levels. The levels are high (or H) for
high voltage and low (or L) for low voltage.
 Notice that the analog signal shown in Figure 2.1a can be any value in the range of Vmin (the
minimum or lowest voltage) to Vmax (the maximum or highest voltage) and is therefore a con-
tinuous signal. The digitized signal ideally has only two values L or low (a range of low-voltage
values) and H or high (a range of high-voltage values). When H 5 1 (1 or true) and L 5 0 (0 or
false), this protocol for identifying 1 and 0 is called the positive logic convention. When H 5 0
(0 or false) and L 5 1 (1 or true), then the protocol for identifying 1 and 0 is called the negative
logic convention. We use the positive logic convention in this text.
 The mathematics that deals with discrete signals or variables containing only two values is
called Boolean algebra, switching algebra, or the algebra of logic. This is the algebra we used
when we selected the values of 1 and 0 for the two values for the digital signals in Chapter 1.

2.3 BINARY NUMBER CONVERSIONS

In this section, we discuss number systems and conversions between the different number sys-
tems. The decimal number system, or base-10 number system, will be our reference system
because we all know this one well. The binary number system, or base-2 number system, is a two-
valued number system that is used in designing all types of digital systems. Two additional num-
ber systems will also be discussed. These number systems are the octal number system, or base-8
number system, and the hexadecimal number system, or base-16 number system. The octal and
hexadecimal number systems are used to represent binary numbers in a more compact form.

2.3.1 Decimal, Binary, Octal, and Hexadecimal Numbers
The primary number systems used in digital systems are decimal, binary, octal, and hexadeci-
mal. Consider the number 76. You may guess that the number is decimal because that is the
number system you are most familiar with. A number without its base or radix identified is
implicitly written. Usually when the base or radix is missing, a decimal (base-10) number is
implied. To be more specific or exact, we can append a 10 to the number 76 like this (76)10, to
explicitly show the base or radix for the decimal number 76. Using this notation, there is now
no doubt that the number 76 is a decimal number.

L

H

V
max

V
min

V

(b)

(a)

V

t

t

1sec≈

1sec≈

LOW (L)

HIGH (H)

FIGURE 2.1 (a) Analog
signal waveform or timing
diagram for a human
heartbeat; (b) digitized
(digital) signal waveform
or timing diagram for a
human heartbeat

www.itpub.net

 2.3 Binary Number Conversions 39

 Recall that the decimal number system is a weighted-positional number system with only
10 digits to represent each digit position. The set of digits D contains only the following digits:
D 5 {0,1,2,3,4,5,6,7,8,9}. All decimal numbers are built up from these digits. The digit posi-
tions are shown first in Example 2.1. Digit position 0 identifies the least significant digit
(LSD), which is 4, and digit position 3 identifies the most significant digit (MSD), which is 6.
The weights of the digits increase from the LSD on the right to the MSD on the left, as illus-
trated for the number (6234)10.

 Like decimal numbers, binary numbers also have a base or radix. The base or radix is just
2 for binary numbers. Digital systems, including digital computers and microprocessors, only
work with binary numbers. Decimal numbers are often used for human convenience, but all the
internal math is done in the binary number system, not the decimal number system. To explic-
itly represent a binary number, we will append a 2 to the number like this: (10110111)2. As we
mentioned earlier, binary digits are called bits (short for binary digits). The set of digits or bits
B for a binary number therefore contains only the following digits or bits: B 5 {0,1}. All binary
numbers are built up from these digits. The digit positions or bits are shown first in Example 2.2.
Bit position 0 identifies the least significant bit (LSB), which is 1, and digit position 7 identifies
the most significant digit (MSB), which is also 1. The weights of the bits increase from the LSB
on the right to the MSB on the left as illustrated for the number (10110111)2.

3 2 1 0 Digit positions

103 102 101 100 Weights of the digits in powers of 10

1000 100 10 1 Weights of the digits

(6 2 3 4)10 Decimal number

 c c
MSD LSD

EXAMPLE 2.1 Weights of decimal digits

 All the number systems we will cover are weighted positional number systems. These num-
ber systems can always be represented using the digit notation in Example 2.3.

7 6 5 4 3 2 1 0 Bit positions in decimal

27 26 25 24 23 22 21 20 Weights of the bits in powers of 2

128 64 32 16 8 4 2 1 Weights of the bits in decimal

(1 0 1 1 0 1 1 1)2 Binary number

 c c
MSB LSB

EXAMPLE 2.2 Weights of binary digits or bits

 The value for each digit is dependent on the number system being used. A digit such as dn
can take on the values 0 through 9 in the decimal number system but only the values 0 and 1 in
the binary number system. Notice that the subscripts for the digit notation are the digit positions.
Digit notation is illustrated for the decimal number system in Example 2.4.

dj . . . d5 d4 d3 d2 d1 d0

EXAMPLE 2.3 Digit
notation for a positional
number system

Weights 102 101 100

Decimal number 8 3 5

Digit notation d2 d1 d0

EXAMPLE 2.4 Digit notation for
decimal numbers

40 Chapter 2 Number Conversions, Codes, and Function Minimization

 In the binary number system, the base or radix is 2 instead of 10. Notice that digit notation for
the binary number system and the decimal number system is the same as shown in Example 2.5.

 Notice that the least significant digit (LSD) or least significant bit (LSB) is d0 or b0, not d1
or b1, and always begins with the LSD or LSB for the number. Because the least significant bit
begins with 0 and not 1, this is called 0 referencing as opposed to 1 referencing. When you
first learned to count, you used 1 referencing. The first item counted was called 1, the second
2, and so on. In the binary number system, 0 referencing is used. This means that the first item
counted is called 0, the second item 1, the third item 2, and so forth. If eight items are counted,
they range from 0 through 7. For a count of n items the range is from 0 through n 2 1, where
dn21 or bn21 is the most significant digit (MSD) or the most significant bit (MSB).

2.3.2 Conversion Techniques
In this section, we discuss conversion techniques between each of the number systems: decimal,
binary, octal, and hexadecimal. One way for humans to convert an integer decimal number to
a binary number is to follow the conversion method referred to as the subtract the weights
method. This step-by-step procedure or algorithm is listed as follows:

 1. List the weights of the bits up to or beyond the value of the decimal number.
 2. Working from the highest weight on the left to the smallest weight on the right, ask yourself

the following question: Is the weight contained in the decimal number?
 3. If the answer is no, then place a 0 for the bit value below the respective weight.
 4. If the weight is contained in the decimal number, then place a 1 for the bit value below the

respective weight and subtract the weight from the decimal number to obtain a reduced
decimal number.

 5. Repeat this process for the reduced decimal number for each lower bit positions.

 When you finish, the weights with 1s under them should add up to the decimal number (this
reverse procedure, called the add the weights method, can be used to convert an integer binary
number to a decimal number). If the weights with the 1s under them do not add up to the decimal
number, then check your work. This is a hand calculation method. You may also use a calcula-
tor to check your work. Most scientific calculators will perform base conversions of numbers.
You may ask: Why must I learn to do base conversions when I have a calculator? The answer is
simple. You may not have a calculator handy when you need it, or you may need to show that you
can execute a technique for doing base conversions. The subtract the weights method is used to
convert the decimal number 76 to its equivalent binary value in Example 2.6.

Weights 22 21 20

Decimal number 1 0 1

Digit notation d2 d1 d0

Alternate notation b2 b1 b0

(for binary numbers)

EXAMPLE 2.5 Digital notation for
binary numbers

 76 12 4

 264 28 24 Weights in the binary number

 12 4 0 Reduced decimal number

128 64 32 16 8 4 2 1 Weights of the bits in decimal

 (0 1 0 0 1 1 0 0)2 Binary number 5 (76)10

EXAMPLE 2.6 Subtract the weights method

www.itpub.net

 2.3 Binary Number Conversions 41

 Just as in decimal numbers, leading 0s are insignificant and may be dropped.
 The reverse procedure, or add the weights method, can now be used to check your result.
The algorithm is this: list the binary number and include the weights above the bits, then add
the weights of all the bits for just the 1s in the binary number. The procedure is illustrated in
Example 2.7.

64 32 16 8 4 2 1 Weights of the bits in decimal

(1 0 0 1 1 0 0)10 Binary number

(64 1 8 1 4)10 5 (76)10

EXAMPLE 2.7 Add the weights method

 Both octal and hexadecimal number systems are used for several reasons. These number
systems offer a compression of the binary number system that is easier for humans to read,
write, or remember. In addition, these two number systems can also be printed out in less space,
which means that less printer ink is required. Long strings of binary numbers are not easy for
humans to read, write, or remember. The number system being used may also be a function of
the operating system used by the computer. A 12-bit binary number would be a string of 1s and
0s as shown in Example 2.8.

 One method of compressing this binary number is to obtain the equivalent number in
the octal number system. Each group of three bits beginning at bit position 0 are assigned
the weights 1, 2, 4 in sequence from right to left. When the weights are added via the add the
weights method for each group of 3 bits, the numbers are octal numbers in the octal number
system (base-8 or radix-8 number system). Because 23 5 8, there are eight possible digits that
range from 0 (000) to 7 (111). The set of digits O for an octal number contains only the following
digits: O 5 {0,1,2,3,4,5,6,7}. The 12-bit number shown in Example 2.8 can be represented more
simply in a compressed form in the octal number system as shown in Example 2.9.

 For a byte, which is an 8-bit binary number, such as (10111100)2, the conversion can easily
be done by inspection, providing the result of (274)8. For a nibble, which is a 4-bit binary num-
ber, (1101)2, the octal equivalent number is (15)8.
 Converting the binary number (111110)2 to octal yields 76. As you can see, you cannot
always take for granted the base of a number that you think you know. When working with
nondecimal numbers, you should use explicit notation, i.e., (76)8.
 To convert an octal number such as (5673)8 to binary simply requires reversing the process,
i.e., use the groups of 3 method in reverse. This is illustrated in Example 2.10.

Binary number: 101100000001

EXAMPLE 2.8 12-bit binary number

 421 421 421 421

 (101 100 000 001)2
 " " " "

 5 4 0 1

so, (101 100 000 001)2 5 (5401)8

EXAMPLE 2.9 Binary to octal
conversion, called the groups of
3 method

 (5 6 7 3)8
 # # # #

 421 421 421 421

 101 110 111 011

so, (5673)8 5 (101 110 111 011)2

EXAMPLE 2.10 Groups of 3
method in reverse

42 Chapter 2 Number Conversions, Codes, and Function Minimization

 An even more compact form for a binary number results when the number is converted
to the hexadecimal number system. Each group of four bits, beginning at bit position 0, are
assigned the weights 1, 2, 4, 8 in sequence from right to left When the weights are added via the
add the weights method for each group of 4 bits, the numbers are decimal numbers. Substituting
A, B, C, D, E, and F for the decimal numbers 10, 11, 12, 13, 14, and 15, respectively, converts the
decimal numbers to hexadecimal numbers in the hexadecimal number system (base-16 or radix-
16 number system). Because 24 5 16, there are 16 possible digits that range from 0 to 15. The
traditional symbols assigned to the numbers 10 to 15 are 10 5 A, 11 5 B, 12 5 C, 13 5 D, 14
5 E, and 15 5 F. The set of digits H for a hexadecimal number is H 5 {0,1,2,3,4,5,6,7,8,9,A,B,
C,D,E,F}. The 12-bit number shown in Example 2.8 can be represented even more simply in a
compressed form in the hexadecimal number system as shown in Example 2.11.

 Bytes and nibbles such as (10100101)2 and (1110)2 in binary are easily converted to equiva-
lent hexadecimal numbers using the groups of 4 method as (A5)16 and (E)16.
 To convert a hexadecimal number such as EA to an equivalent binary number, simply
reverse the process, using the groups of 4 method in reverse, as shown in Example 2.12.

 8 4 2 1 8 4 2 1 8 4 2 1

 (1011 0000 0001)2
 " " "
 B 0 1

so, (1011 0000 0001)2 5 (B01)16

EXAMPLE 2.11 Binary to
hexadecimal conversion, called
the groups of 4 method

(E A)16

 14 10
 # #

 8 4 2 1 8 4 2 1

 1110 1010

so, (EA)16 5 (1110 1010)2

EXAMPLE 2.12 Groups
of 4 method in reverse

 Converting from hexadecimal to octal or from octal to hexadecimal is accomplished by
simply regrouping the bits in the binary number, so (C2)16 5 (1100 0010)2 5 (11 000 010)2 5
(302)8 and (452)8 5 (100 101 010)2 5 (0001 0010 1010)2 5 (12A)16.
 In digital system design, we will only be concerned with the decimal, binary, octal, and
hexadecimal number systems. To convert a number in the binary, octal, or hexadecimal number
system to decimal, we can use the polynomial function method. The generalized form of the
polynomial function is used to convert a number in any base or radix r to an equivalent number
in the decimal number system and is written as follows:

(Integer number in any number system)r 5 (dj . . . d1d0)r

 5 (djr
j 1 . . . 1 d1r

1 1 d0r
0)10

 5 (Decimal number)10

 The binary number 100101 is converted to an equivalent decimal number using the polyno-
mial function method as shown in Example 2.13.

www.itpub.net

 2.3 Binary Number Conversions 43

(100101)2 5 (d5d4d3d2d1d0)2

 5 (d5325 1 d4324 1 d3323 1 d2322 1 d1321 1 d0320)10

 5 (1332 1 0316 1 038 1 134 1 032 1 131)10

 5 (32 1 4 1 1)10 weights of the 1s of the binary number

 5 (37)10

EXAMPLE 2.13 Binary number conversion to an equivalent decimal number via the
polynomial function method

 Notice that this conversion process is identical to the add the weights method discussed
earlier for converting a binary number to its decimal equivalent.
 To convert a number in any base to decimal, the polynomial function method can be pro-
grammed by you or a calculator manufacturer. The polynomial function can therefore be used
to convert hexadecimal numbers to equivalent decimal numbers. The conversion of (4BCE)16 to
decimal is illustrated in Example 2.14.

(4BCE)16 5 (d3d2d1d0)16

 5 (d33163 1 d23162 1 d13161 1 d03160)10

 5 (434096 1 113256 1 12316 1 1431)10

 5 (16384 1 2816 1 192 1 14)10

 5 (19406)10

EXAMPLE 2.14 Hexadecimal number conversion to an equivalent decimal number
via the polynomial function method

 As an alternate method of converting a number in any base to a decimal number, we can
use the factored form (FF) method. To illustrate this method, first observe the factored form
of the polynomial function:

Number in any base 5 d4r
4 1 d3r

3 1 d2r
2 1 d1r

1 1 d0r
0 5 (((d4r 1 d3)r 1 d2)r 1 d1)r 1 d0

Example 2.15 shows how the FF method is used to convert the binary number (101011)2 to its
equivalent decimal number.

(1 0 1 0 1 1)2

1 3 2 5 2 (2 1 0) 3 2 5 4 (4 1 1) 3 2 5 10 (10 1 0) 3 2 5 20 (20 1 1) 3 2 5 42 42 1 1 5 (43)10

EXAMPLE 2.15 Binary number conversion to an equivalent decimal number via the FF method

 Example 2.16 shows how the FF method is used to convert the octal number (314)8 to its
equivalent decimal number.

 Example 2.17 shows how the FF method is used to convert the hexadecimal number (A4E)16
to its equivalent decimal number.

(3 1 4)8

3 3 8 5 24 (24 1 1) 3 8 5 200 (200 1 4) 5 (204)10

EXAMPLE 2.16 Octal number conversion to an equivalent
decimal number via the FF method

44 Chapter 2 Number Conversions, Codes, and Function Minimization

 The conversion of the decimal number 182 to its equivalent octal number using the repeated
radix division method (octal-dabble method) is shown in Example 2.19.

(A 4 E)16

10 3 16 5 160 (160 1 4) 3 16 5 2,624 (2,624 1 14) 5 (2,638)10

EXAMPLE 2.17 Hexadecimal number conversion to an equivalent decimal
number via the FF method

 To convert a decimal number to any base, the repeated radix division method for integers
can be used. We use this method to convert a decimal number to its equivalent binary number
(sometimes called the double-dabble method), to convert a decimal number to its equivalent
octal number (octal-dabble method), and to convert a decimal number to its equivalent hexa-
decimal number (hex-dabble method). The repeated radix division method can also be pro-
grammed by you or a calculator manufacturer. To illustrate this method, the following integer
number will be used:

Decimal number 5 d3r
3 1 d2r

2 1 d1r
1 1 d0r

0

 5 d3r
3 1 d2r

2 1 d1r 1 d0

Dividing by the radix r (2 for binary, 8 for octal, or 16 for hexadecimal) results in

Decimal number
r

5
d3r

3

r
1

d2r
2

r
1

d1r

r
1

d0

r
When the division is carried out, the quotient is

d3r
2 1 d2r

1 1 d1, with a remainder of d0 (LSB)

Continuing with radix division of each remaining quotient, we obtain a set of remainders. These
remainders are then used to represent the number in the required base by writing each remain-
der digit in its correct position as

Decimal number 5 (d3d2d1d0)r for r 5 2 (binary), r 5 8 (octal), or r 5 16 (hexadecimal)

From our discussion, the least significant digit (d0) is found first, and the most significant digit
(d3) is found last.
 The conversion of the decimal number 182 to its equivalent binary number using the
repeated radix division method (double-dabble method) is shown in Example 2.18.

182 / 2 5 91 with remainder (wr) 5 0 5 d0 (LSB)
91 / 2 5 45 wr 5 1 5 d1

45 / 2 5 22 wr 5 1 5 d2

22 / 2 5 11 wr 5 0 5 d3

11 / 2 5 5 wr 5 1 5 d4

5 / 2 5 2 wr 5 1 5 d5

2 / 2 5 1 wr 5 0 5 d6

1 / 2 5 0 wr 5 1 5 d7 (MSB)
so, (182)10 5 (d7d6d5d4d3d2d1d0)2 5 (10110110)2

EXAMPLE 2.18 Conversion of the decimal number 182 to its equivalent binary
number using the repeated radix division method (double-dabble method)

182 / 8 5 22 wr 5 6 5 d0 (LSB)

22 / 8 5 2 wr 5 6 5 d1

2 / 8 5 0 wr 5 2 5 d2 (MSB)

so, (182)10 5 (d2d1d0)8 5 (266)8

EXAMPLE 2.19 Conversion of the decimal number
182 to its equivalent octal number using the repeated
radix division method (octal-dabble method)

www.itpub.net

 2.4 Binary Codes 45

 The conversion of the decimal number 182 to its equivalent hexadecimal number using the
repeated radix division method (hex-dabble method) is shown in Example 2.20.

2.4 BINARY CODES

Binary codes are special strings of binary digits. The most common code is the binary coded
decimal (BCD) code. Another very common code is used on your personal computer. This
code is called the American Standard Code for Information Interchange (ASCII) and is
pronounced AS-key. Other codes such as reflective Gray code, 2-out-of-5 code, and 7-segment
code round out our discussion of codes.

2.4.1 Minimum Number of Bits for Keypads and Keyboards
Before you can begin to understand codes, it is important to realize how many bits it takes to
represent a particular range of numbers. A decimal number is used to represent the keys on a
keypad or keyboard. The formula that allows us to determine the minimum number of bits for
any size keypad or keyboard can be written as follows:

2Number of bits $ Number of keys

 To represent the decimal numbers or digits 0 through 9 on a keyboard or keypad requires
10 keys. How many bits are required to represent 10 keys? Because 21 5 2, 22 5 4, 23 5 8, and
24 5 16, respectively, you can see that at least 4 bits are required to represent 10 keys. You can
always use more bits than the minimum.
 As you have observed, trial and error can be used to determine the smallest number of
bits for a keyboard, but a calculator can also determine the smallest number of bits as shown in
Example 2.21.

182 / 16 5 11 wr 5 6 5 d0 (LSB)

11 / 16 5 0 wr 5 11 5 B 5 d1 (MSB)

so, (182)10 5 (d1d0)16 5 (B6)16

EXAMPLE 2.20 Conversion of the decimal number 182
to its equivalent hexadecimal number using the repeated
radix division method (hex-dabble method)

Number of bits 5 < log2(Number of keys) = d Ceiling function, smallest integer; i.e., $ log2 (Number of keys)

 5 < log210=

 5 < ln10/ln2= 5 <3.32= 5 4

EXAMPLE 2.21 Calculation for the smallest number of bits for a keyboard using 10 keys

2.4.2 Commonly Used Codes: BCD, ASCII, and Others
When you type on the keyboard of a computer or enter commands on the keypad of a microwave
oven, a TV remote control unit, a calculator, or a telephone, how do the numbers and letters
designated on the push-button switches get mapped or transformed to binary numbers?
 When you want to enter a character, you simply press the push button marked with the
appropriate character. Each push button on a keyboard or a keypad is assigned a string of special
binary digits called a code.
 The decimal numbers 0 through 9 can be encoded (represented in a binary code) in several
ways. The minimum number of bits required is only 4 bits, but some encoding schemes use
more bits as shown in Table 2.1.

46 Chapter 2 Number Conversions, Codes, and Function Minimization

TABLE 2.1 Decimal numbers represented in various binary codes

Decimal Binary code 8 4 2 1 or BCD code Reflective Gray code 2-out-of-5 coded decimal code

0 0000 0000 0000 00011

1 0001 0001 0001 00101

2 0010 0010 0011 00110

3 0011 0011 0010 01001

4 0100 0100 0110 01010

5 0101 0101 0111 01100

6 0110 0110 0101 10001

7 0111 0111 0100 10010

8 1000 1000 1100 10100

9 1001 1001 1101 11000

10 1010 0001 0000 1111 00101 00011

25 11001 0010 0101 10101 00110 01100

37 100101 0011 0111 110111 01001 10010

98 1100010 1001 1000 1010011 11000 10100

 BCD (binary coded decimal) is usually easier for humans to use than binary to represent
decimal numbers with more than two digits. In this code, the numbers from 0000 or decimal
0 to 1001 or decimal 9 are represented in straight binary. For the decimal number with two or
more digits, each digit is represented as a 4-bit code. Decimal 25 is represented as 0010 0101 in
BCD, while decimal 437 is represented as 0100 0011 0111 in BCD.
 Reflective Gray code (RGC) is important and is discussed in the next section.
 The 2-out-of-5 coded decimal code is an example of a very simple error detection code
that can be used for data transmission applications. Every code word for the decimal digits 0
through 9 for this code always has two 1s and three 0s—that is, two ls out of the 5 bits. Digital
circuitry counts the bits at the receiving end of a data transmission link utilizing this code. If the
number of 1s is two at the receiving end, it is most likely that the data have arrived without errors
(unless two bits were in error, which is highly unlikely although not impossible). If the number
of 1s is not two at the receiving end, then it is most likely that the data have arrived with errors
(probably due to a single bit error).
 In 1950, Richard Hamming introduced a class of error detection/correction codes now
called Hamming codes. This coding scheme allows practically any code to be modified by
adding so-called parity or check bits. With enough parity or check bits added to the code,
digital circuitry can detect as well as correct errors in the data being received. Error detection/
correction codes are often utilized in the banking industry, where fortunes can be lost by a mis-
placed decimal point; in the Space Shuttle, where human lives are at risk; or whenever error-free
data transmission is essential. Computers subject to continuous use often utilize error detection/
correction code circuitry in their internal memory systems. You will be introduced to such
codes in more advanced studies.
 The alphanumeric character code that is found on almost all PCs today is extended 8-bit
ASCII. This standard code is used to represent numbers, letters of the alphabet, and some spe-
cial control and graphic characters. ASCII is the dominant keyboard code for alphanumeric
characters today and is shown in Table 2.2 in the original (nonextended) form.

www.itpub.net

 2.4 Binary Codes 47

TABLE 2.2 7-bit ASCII character set code (nonextended form)

b6 b5 b4

b3 b2 b1 b0 000 001 010 011 100 101 110 111

0000 NULL DLE Space 0 , P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYNC & 6 F V f v

0111 BELL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC 1 ; K [k {

1100 FF FS , , L \ l |

1101 CR GS - 5 M] m }

1110 SO RS . . N ^ n ~

1111 SI US / ? O _ o DEL

Control Characters: Control Characters: Graphic Characters:

NULL Null DLE Data link escape ’ Apostrophe

SOH Start of heading DC1 Device control 1 - Hyphen

STX Start of text DC2 Device control 2 / Forward slant

ETX End of text DC3 Device control 3 , Less than

EOT End of transmission DC4 Device control 4 (stop) . Greater than

ENQ Enquiry NAK Negative knowledge [Opening bracket

ACK Acknowledge SYNC Synchronous idle \ Reverse slant

BELL Bell (audible Signal) ETB End of transmission block] Closing bracket

BS Backspace CAN Cancel ^ Circumflex

HT Horizontal tabulation EM End of medium _ Underline

LF Line feed SUB Substitute ` Grave accent

VT Vertical tabulation ESC Escape { Opening brace

FF Form feed FS File separator | Vertical line

CR Carriage return GS Group separator } Closing brace

SO Shift out RS Record separator ~ Overline (tilde)

SI Shift in US Unit separator

DEL Delete

(a)

(b)

48 Chapter 2 Number Conversions, Codes, and Function Minimization

 The nonextended ASCII, or 7-bit ASCII, character set contains 128 different characters and
thus 7 bits are required to represent all the characters (27 5 128). The extended ASCII charac-
ter set uses the nonextended ASCII character set for the first 128 characters (with bit position
7 5 0) followed by an additional 128 characters (with bit position 7 5 1).

2.4.3 Modulo-2 Addition and Conversions between Binary
and Reflective Gray Code
Another very common code, reflective Gray code, or unit distance code, has the property that
only 1-bit changes as the code changes from its decimal equivalent value of i to i 1 1; that is, for
each pair of consecutive decimal numbers, the equivalent reflective Gray code numbers differ
in only 1-bit position. Reflective Gray code numbers can be generated by the so-called mirror
method as illustrated in Figure 2.2.

0
1

0
1

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00
01
11
10

000
001
011
010
110
111
101
100

Mirror

. . .

Decimal 1-bit
 reflective
 Gray code

Decimal 2-bit
 reflective
 Gray code

Decimal 3-bit
 reflective
 Gray code

Decimal 4-bit
 reflective
 Gray code

FIGURE 2.2 Decimal to reflective
Gray code conversion using the
mirror method

 Notice in Figure 2.2 that the 4-bit reflective Gray code numbers for decimal 3 (0010) and
decimal 4 (0110) differ only in bit position b2. Likewise, the 4-bit reflective Gray code numbers
for decimal 7 (0100) and decimal 8 (1100) differ only in bit position b3. First write down all 1-bit
reflective Gray codes (0 and 1), and draw a line under the last bit (1) as shown in Figure 2.2.
Next write down 1 and 0 under the line with the line acting as a vertical mirror to reflect these
bits from the ones written above the line. The 1 under the line appears closer to the line and the
0 appears further away. Finally, prefix the top bits over the line with 0s, and prefix the bottom
bits under the line with 1s. This ends the process for obtaining all 2-bit reflective Gray code
numbers.
 Notice that one line or mirror is drawn to determine all 2-bit reflective Gray codes. To
determine all 3-bit reflective Gray codes, begin with all 2-bit reflective Gray codes in decimal
sequence and repeat the process as illustrated in Figure 2.2. Notice that the number of lines or
mirrors that you draw in each case is always one less that the number of reflective Gray code
bits.
 The mirror method is interesting but time consuming for obtaining the equivalent reflec-
tive Gray code number for a single decimal number. Suppose that you wanted to obtain the
equivalent reflective Gray code number for the decimal number 152 for 8 bits. You would need
to repeat the mirror method 7 times.
 Identify a single decimal number, and do the following to determine its equivalent reflec-
tive Gray code number:

 1. Convert the decimal number to its equivalent binary number.
 2. Apply the binary to RGC conversion method shown in Figure 2.3.

www.itpub.net

 2.4 Binary Codes 49

 The symbol ! represents the modulo-2 addition operator. Modulo-2 addition is the addi-
tion of 2 bits without a carry—that is, the carry bit is ignored. The modulo-2 addition operator
is the same as the XOR operator. Table 2.3 shows the modulo-2 addition table.

Binary number

Modulo-2 addition operator

Reflective Gray code number

b
1

b
n

b
n - 1

b
n - 2

b
0

g
1

g
n

g
n - 1

g
n - 2

g
0

⊕ ⊕ ⊕ ⊕

. . .

. . .

FIGURE 2.3 Binary to RGC
conversion method

 In Example 2.22, the decimal numbers 27 and 76 are first converted to binary numbers and
then converted to reflective Gray code numbers using the binary to RGC conversion method.

TABLE 2.3 Modulo-2 addition table

 0 0 1 1

 !0 !1 !0 !1
V Two bits to be added by modulo-2 addition

 0 1 1 0 d Sum bits, ignore carry

 Figure 2.4 shows a RGC to binary conversion method for converting a reflective Gray
code number back to a binary number, which can be, if desired, converted back to its decimal
equivalent number.

(27)10 5 (1 1 0 1 1)2 B

 5 (1 0 1 1 0)2 RGC

(76)10 5 (1 0 0 1 1 0 0)2 B

 5 (1 1 0 1 0 1 0)2 RGC

EXAMPLE 2.22 Conversions from decimal to binary to reflective Gray code

 An example of this conversion process is shown in Example 2.23 for reflective Gray code
numbers (10110)2 RGC and (1101010)2 RGC obtained previously in Example 2.22. Both (10110)2 RGC
and (1101010)2 RGC are converted back to binary numbers using the RGC to binary conversion
method and then converted to equivalent decimal numbers.

Reflective Gray code number

Modulo-2 addition operator

Binary number b
1

b
n

b
n - 1

b
n - 2

b
0

g
1

g
n

g
n - 1

g
n - 2

g
0

⊕ ⊕ ⊕ ⊕

. . .

. . .

FIGURE 2.4 RGC to binary conversion
method

(1 0 1 1 0)2 RGC

5 (1 1 0 1 1)2 B

5 (27)10

(1 1 0 1 0 1 0)2 RGC

5 (1 0 0 1 1 0 0)2 B

5 (76)10

EXAMPLE 2.23 Conversions from reflective
Gray code to binary to decimal

50 Chapter 2 Number Conversions, Codes, and Function Minimization

 Modulo-2 addition is performed by an XOR gate. A circuit with XOR gates can be con-
nected to convert binary code to reflective Gray code by simply arranging the XOR gates so that
they perform the binary to RGC conversion method. Likewise, a circuit with XOR gates can be
connected to convert reflective Gray code to binary code by arranging the XOR gates so that
they perform the RGC to binary conversion method.
 Reflective Gray code is often used in shaft-angle encoders as shown in Figure 2.5. This
example shows a binary-encoding device that measures the angular position of a rotating shaft.
To keep the example simple, we show a shaft-angle encoder with a two-bit output in Figure 2.5a.
The output angular resolution in degrees for two output bits is only one-fourth of a full revolu-
tion (360 degrees), or 90 degrees. An encoded disk similar to the one illustrated in Figure 2.5b
is mounted on the shaft inside the encoding device. As the shaft rotates the encoding device con-
verts the angular position of the shaft (the four separate quadrants) into four different reflective
Gray code numbers. The shaft position in degrees and the corresponding reflective Gray-code
output for a two-bit shaft-angle encoder are shown in Figure 2.5b. The reflective Gray code
values shown in the table in Figure 2.5c may then be used to provide input signals to a circuit
to indicate the angular position of the shaft. A shaft-angle encoder with a larger number of bits
provides a higher output angular resolution. For 3 bits, the output angular resolution in degrees
would be 45 degrees and for n bits the output angular resolution would be 360/2n degrees.

 An encoded disk using a reflective Gray code allows only 1-bit to change between succes-
sive Gray code numbers. A code with this property is also called a unit distance code. If a Gray
code was not used, area-shading misalignments that could occur in manufacturing the encoded
disk would allow more than 1-bit to change between successive angular positions and thus cause
momentary errors. A Gray code prevents these misalignment errors.
 Two light sources and two photocells can be used with the encoded disk illustrated in Fig-
ure 2.5b. When light shines through a transparent area of the encoded disk, the bit associated
with that output is a binary 1; otherwise, it is a binary 0. An alternate design could be a set of two
brushes rubbing against a disk that has conducting and insulated areas such that a conducting
area produces a binary 1 while an insulated area produces a binary 0. These examples serve to
illustrate the principle involved in the encoding process.
 The shaft-angle encoder is a mechanical form of analog-to-digital converter. The shaft
position brought about by a continuous rotation of the shaft (an analog signal) is converted to a
digital signal whose bit pattern is encoded using a reflective Gray code.
 Another example of where the reflective Gray code sequence is used will be provided later
when we discuss the graphical minimization technique that is referred to as a Karnaugh map or
K-map.

Nontransparent
(light stopped, output 0)

Transparent
(light passes, output 1)

g1 g0

Shaft
position
in degrees

Reflective
Gray code

g1 g0

0–90
90–180

180–270
270–360

0
0
1
1

270°

0°

90°

180°

g1
g0

(a) (b) (c)

0
1
1
0

FIGURE 2.5 (a) Sketch
of a shaft-angle encoder;
(b) blown-up sketch
of encoded disk using
reflective Gray code;
(c) table showing shaft
position in degrees and
corresponding output in
reflective Gray code.

www.itpub.net

 2.4 Binary Codes 51

2.4.4 7-Segment Code
A very common code that practically everyone encounters every day is the 7-segment type of
code. This code is used for readouts for digital watches, voltmeters, blood pressure monitors,
microwave ovens, toys, pedometers, and odometers in some new cars. An example of this code
is shown in Table 2.4 for a 7-segment display.

 Notice in Table 2.4 that bits b6 b5 b4 b3 b2 b1 b0 represent the segments g, f, e, d, c, b, and a,
respectively. This display requires a binary 1 or high signal to light a segment and a binary 0 or
low signal to turn off a segment such that 0000110 is the code for the decimal digit 1. To change
the decimal digit 1 to the decimal digit 7 only requires that the signal b0 or segment a change
from 0 to 1. This code is used to drive a 7-segment display device called a common-cathode
LED (light-emitting diode) display.
 A common-anode LED display requires the 1’s complement of the code in Table 2.4. The
1’s complement is simply the complement of each individual bit. For a common-anode LED dis-
play, a binary 0 or low signal lights a segment and a binary 1 or high signal turns off a segment.
Both common-cathode and common-anode display devices provide the same output decimal
digits 0 through 9. The input signals for a common-cathode display must be high to light the seg-
ments because the inputs are active high. The input signals for a common-anode display must
be low to light the segments because the inputs are active low.
 It is also possible to display the hexadecimal symbols A, b, c or C, d, E, and F when the cor-
rect codes are supplied to the segments. The code used for the lowercase letter b for a 7-segment
common cathode display with the segments g, f, e, d, c, b, and a assigned as bits b6 b5 b4 b3 b2 b1
b0 is 1111100. A lowercase letter b is used because an uppercase letter B would look just like the
symbol for 8. It should be noted that when a 7-segment display is used to display hexadecimal
symbols A, b, C, d, E, and F, a flag segment (segment a) is lighted for 6 to distinguish between
the symbol 6 and the symbol b. The code used for the lowercase letter d for a 7-segment common-
anode display with the segments g, f, e, d, c, b, and a assigned as bits b6 b5 b4 b3 b2 b1 b0 is 0100001.
A lowercase letter d is used because an uppercase D would look just like the symbol for 0.

0 1 1 1 1 1 1

0 0 0 0 1 1 0

1 0 1 1 0 1 1

1 0 0 1 1 1 1

1 1 0 0 1 1 0

1 1 0 1 1 0 1

1 1 1 1 1 0 0

0 0 0 0 1 1 1

1 1 1 1 1 1 1

1 1 0 0 1 1 1

a

d

bf
cge

b
6

b
5

b
4

b
3

b
2

b
1

b
0

1(1 1 1 1 0 1)

b
6

b
5

b
4

b
3

b
2

b
1

b
0

1(1 0 1 1 1 1)

b
6

b
5

b
4

b
3

b
2

b
1

b
0

7-segment code 7-segment display

or With a flag

With a flagor

TABLE 2.4 7-segment code for a 7-segment display

52 Chapter 2 Number Conversions, Codes, and Function Minimization

2.4.5 VHDL Design for a Letter Display System
Figure 2.6 shows a schematic for a letter display system that displays an L (for low) on a 7-seg-
ment display, when a binary input of 0 is applied to the input of the letter display decoder via a
slide switch, and displays an H (for high) when a binary input of 1 is applied at the input of the
letter display decoder.

 Things you should notice about the schematic for the letter display system (LDS) in Figure
2.6.

• There are three separate modules that make up the LDS. These are module 1, the letter
display decoder circuit; module 2, the array of NOT gates; and module 3, the array of BUF-
FERs. The slide switch is an input device, and the 7-segment display is an output device.

• The slide switch that drives the letter display decoder is used to select the letter that will be
lighted. When 0 is supplied to the input of the letter display decoder, the letter that will be
lighted is an L, and when a 1 is supplied to the input the letter that will be lighted is an H.
We have elected to make the outputs of the letter display decoder active high. This means
that a 1 lights a segment, while a 0 turns off or blanks a segment.

• The 7-segment display has active low inputs, which means that the segments are lighted by
a 0 and turned off by a 1. Because the outputs of the letter display decoder are active high
and the inputs of the 7-segment display are active low, there is a mismatch. The outputs of
the letter display decoder must be changed to provide the required active low input for the
7-segment display. The polarity mismatch is fixed by the array of NOT gates, because the
outputs of the NOT gates complement (or invert) the outputs of the letter display decoder so
that they agree with the inputs required by the 7-segment display.

• The 7-segment display is a multiplexed display that consists of four separate displays. Only
display 3 is shown in Figure 2.6. Each display is turned on or off by applying a signal to the
display enable inputs AN3, AN2, AN1, and AN0, respectively. The small triangle (called
the bus tap) on the bus AX(3:0) represents a connection to an individual signal on the bus.
Display 3 is turned ON via input AN3, display 2 is turned on via input AN2, etc. A display
is turned on by applying a 0 and turned off by applying a 1 because these inputs are also

 AX(3:0)
(AN3,AN2,AN1,AN0)

Switch position:
forward for 1
and back for 0

External
signal

0

0

1
2
3
4

4 4

5
6
7

B0
B1

B2
B3

B4
B5
B6
B7

External
signals

Bus tap

External
signals AX(3)

To other three multiplexed
7-segment displays
AX(2), AX(1), AX(0)

All inputs for
7-segment display

are active low

Legend

a
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(CA)
(CB)
(CC)
(CD)
(CE)
(CF)

(CG)
(DP)

SEG Bit

b
c
d
e
f
g
dp

a

b

c

d

e
f

g
dp

a

b

c

d

e

f

g

dp

AN3

Constant
(4 bits)

0111

7-segment display
(common anode)

Display 3

Internal
signals

Array of
NOT Gates

Array of
BUFFERs

Letter display
decoder

Module 1 Module 2

Module 3

Slide switch
with resistor

GND

S0
(SW0)

V
CC

FIGURE 2.6 Schematic for a letter display system for displaying letters L and H
on a 7-segment display

www.itpub.net

 2.4 Binary Codes 53

active low. The array of BUFFERs is supplied with the constant 0111 to turn display 3 on
and to turn display 2, display 1, and display 0 off.

• Observe that all the wires or nets are labeled with a signal name. A schematic or circuit dia-
gram with this feature is referred to as an annotated schematic or annotated circuit diagram.

 Table 2.5 shows the truth table for the letter display decoder in Figure 2.6. Remember that
the outputs are active high, so a 1 lights a segment and a 0 turns off or blanks a segment.
 Using the letter display decoder truth table, we can write the output functions as follows:
B0 5 0, B1 5 S0, B2 5 S0, B3 5 S0, B4 5 1, B5 5 1, B6 5 S0, and B7 5 0. B7 provides an
output for a decimal point, and it is set to 0 to turn the decimal point off.

 Using the schematic for the letter display system, we can write the output equations for the
array of NOT gates as follows: a 5 B0, b 5 B1, c 5 B2, d 5 B3, e 5 B4, f 5 B5, g 5 B6,
and dp 5 B7.
 Complete VHDL code for the letter display system is shown in Listing 2.1.

Letter display decoder
(active high outputs)

7-segment display

S0

0

1

0

0

B7

0

1

B6

1

1

B5

1

1

B4

1

0

B3

0

1

B2

0

1

B1

0

0

B0

a

d dp

bf
cge8

TABLE 2.5 Truth table for letter

display decoder in Figure 2.6

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity LDS is port (
 s0 : in std_logic;
 a,b,c,d,e,f,g,dp : out std_logic;
 ax :out std_logic_vector (3 downto 0)
);
end LDS;

architecture Boolean_functions of LDS is
--Internal signals
 signal b0,b1,b2,b3,b4,b5,b6,b7: std_logic;
begin

--Letter Display Decoder
 b0 ,5 ‘0’; b1 ,5 s0; b2 ,5 s0; b3 ,5 not s0;
 b4 ,5 ‘1’; b5 ,5 ‘1’; b6 ,5 s0; b7 ,5 ‘0’;
--Array of NOT gates
 a ,5 not b0; b ,5 not b1; c ,5 not b2; d ,5 not b3;
 e ,5 not b4; f ,5 not b5; g ,5 not b6; dp ,5 not b7;
--Array of BUFFERs to enable 7-segment display
 ax ,5 “0111”;
end Boolean _ functions;

LISTING 2.1
Complete VHDL
code for the letter
display system
(project: LDS_
BASYS2 or LDS_
NEXYS2)

54 Chapter 2 Number Conversions, Codes, and Function Minimization

 Things you should notice about the VHDL design in Listing 2.1:

• Keep in mind that VHDL is case insensitive.
• The port signals in the entity are the external signals. These are the input signal S0, and the

output signals a, b, c, d, e, f, g, and dp from the array of NOT gates, and the output signals
AX from the array of BUFFERs.

• The signals S0, a, b, c, d, e, f, g, and dp have the data type called std_logic, which means
that they are scalars. A scalar is a signal that feeds a single wire. The signal AX has the data
type called std_logic_vector. A vector is a signal that feeds a group of similar wires. On a
schematic, a group of similar wires is called a bus. A vector must have a range to declare
the number of signals in the group. The signal AX has the range 3 down to 0, written as
(3 downto 0), which indicates there are four signals in the group. Downto is a keyword in
VHDL and is one word.

• The signals coming out of the letter display decoder in Figure 2.6 and going into the array
of NOT gates are internal signals. These are the signals B0, B1, B2, B3, B4, B5, B6, and B7.
Internal signals in VHDL must be placed between architecture and the first begin as shown
in Listing 2.1.

• The comments, such as -- Internal signals, and -- Letter Display Decoder, are used to help
document the VHDL code; that is, they make it easier for someone to read and understand
the VHDL code. Later on we will provide more details on a good documentation style.

• The design approach we used in writing the VHDL code is a flat design approach, because
each module of the design is included within a single architecture. Another design approach
is a hierarchal design approach, which will be covered later.

• In VHDL, single bits such as 0 and 1 in Listing 2.1 must be surrounded by single quota-
tion marks, and a string (or series) of two or more bits such as 0111 in Listing 2.1 must be
enclosed by double quotation marks.

2.5 KARNAUGH MAP REDUCTION METHOD

Boolean equations that make up circuits should be reduced prior to obtaining a hardware design
to reduce the gate count. VHDL has built in reduction algorithms to reduce Boolean functions.
An algorithm is a procedure for solving a problem in a finite number of steps. Fewer variables
result in simpler digital circuits, so reduction is a good thing, because a reduced gate count
may cost less and require less power to operate. The most common and fastest way to manually
reduce or minimize a Boolean function is called the Karnaugh map reduction method.
 A literal is defined as a variable or complement of a variable. The literal count of a Bool-
ean expression is simply the sum of the single variables and the complement of single variables
such as X, X , Y, Y in a Boolean expression. Boolean expressions with a smaller literal count
require a smaller number of gates to build digital circuits. The goal is to obtain Boolean func-
tions with the fewest number of literals—that is, the smallest literal count.
 Maurice Karnaugh, an engineer at Bell Labs, invented the Karnaugh map in 1953 (“The
Map Method for Synthesis of Combinational Logic Circuits,” Trans. AIEE, Communications
and Electronics, 72, Part 1, November 1953, pages 593–599). Combinational or combinato-
rial logic circuits are circuits with outputs that depend only on the external inputs applied to
the circuits. A Karnaugh map, or K-map, is a pictorial or graphical method used for reducing
Boolean functions, which relies heavily on the ability of our minds to perceive patterns. As it
turns out, our minds can handle this task remarkably well.
 Given a truth table for a function or the equivalent compact minterm or maxterm form for
the function we can

www.itpub.net

 2.5 Karnaugh Map Reduction Method 55

 1. Draw a K-map for the function.
 2. Fill in the K-map.
 3. Write a reduced or minimum expression for the function by observing patterns in the

K-map.

2.5.1 The Karnaugh Map Explorer
We will use a computer program to help you gain an understanding of how to reduce Boolean
functions. From this textbook’s website, download the program Karnaugh Map Explorer on
your computer. Figure 2.7 shows the screen or graphical user interface (GUI) for KME (Kar-
naugh Map Explorer).

 The program always opens for three variables: A, B, and C. To change to two variables,
click the radio button for Two Variables, or to change to four variables, click the radio button for
Four Variables. Let’s begin with two variables, so click the radio button for Two Variables. The
screen for two variables is shown in Figure 2.8.

0

0

0

0

0

0

0

A B C F(ABC)

Three Variables Four Variables Allow Don’t CaresTwo Variables

0 0 0 0

0 0 0 01
C

0

Karnaugh Map

AB

00 01 11 10

F(ABC) = 0

Truth Table

0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 2.7 The screen
(or GUI) for Karnaugh Map
Explorer for three variables
(refer to the color image in the
back of the book)

 Observe that Karnaugh Map Explorer has three major parts. These are the truth table, the
K-map, and the function. When the radio button is selected for Two Variable, the program is
designed to reduce any function that has two-input variables—that is, input variables A and B.
The function that is shown in Figure 2.8 is F(AB) 5 0. If you move the cursor over the 0 in the
function, you will observe that the 0 is highlighted in yellow. You will also observe that all the
rows in the truth table for the function that are 0 are also highlighted in yellow, and all the cells
in the K-map that are 0 also highlighted in yellow. This provides an aid in learning how the
values for the rows in a truth table and the values in the cells in a K-map are related to the value
of the function.

Three Variables Four Variables Allow Don’t CaresTwo Variables

0

0

0

A B F(AB)

0 0

0 01
B

0

Karnaugh Map

A

0 1

F(AB) = 0

Truth Table

0 0 0

0 1

1 0

1 1

FIGURE 2.8 The screen
(or GUI) for Karnaugh Map
Explorer for two variables (refer
to the color image in the back
of the book)

56 Chapter 2 Number Conversions, Codes, and Function Minimization

2.5.2 Using a 2-Variable K-Map
Figure 2.9a shows a 2-variable K-map plotted (the cells in the map are filled in) for a 2-input
AND gate. To plot the 2-variable K-map, simply select (click) the output F(AB) for row A B 5 11
(minterm 3) in the truth table to change the output to 1, and observe that the row is highlighted
in red. Observe that the corresponding cell (minterm 3) in the K-map is changed to 1 and is also
highlighted in red, and the function F(AB) 5 A B is the result. If you move the cursor over A B
in the function, you will observe that A B is highlighted in yellow, and the row for minterm 3 in
the truth table and the cell for minterm 3 in the K-map are also highlighted in yellow as shown
in Figure 2.9b.

 Also observe in Figure 2.9 that F(AB) 5 A B represents F(A,B) 5 A?B. The program does
not show a comma between the variables in a function, and the program uses implied ANDing.
 Figure 2.10 shows a 2-variable K-map plotted for a 2-input OR gate. To plot the 2-variable
K-map, simply select (click) the output F(AB) for rows A B 5 01, A B 5 10, and A B 5 11 to
change the outputs to 1, and observe that the rows are highlighted in red. Observe that the corre-
sponding cells in the K-map are changed to 1 and are highlighted in red, and the function F(AB)
5 A 1 B is the result.

0

0

1

A B F(AB)

0 0

0 11
B

0

Karnaugh Map

A

0 1

0 0

0 11
B

0

Karnaugh Map

A

0 1

F(AB) = A B F(AB) = A B

Truth Table

0 0 0

0 1

1 0

1 1

0

0

1

A B F(AB)

Truth Table

0 0 0

0 1

1 0

1 1

(b)(a)

FIGURE 2.9 (a) The screen (or GUI)
for Karnaugh Map Explorer for a
2-input AND gate; (b) highlighted
areas in yellow in the truth table
and K-map relate to the value of the
function (refer to the color image in
the back of the book)

 Place the cursor over variable A in the function to observe the minterms that generate vari-
able A in the truth table and the cells that generate variable A in the K-map. Variable A in the
function, the minterms that generate variable A in the truth table, and the cells that generate
variable A in the K-map are all highlighted in yellow as shown in Figure 2.11a. Likewise, place
the cursor over variable B in the function to observe the minterms that generate variable B in the
truth table and the cells that generate variable B in the K-map. Variable B in the function, the
minterms that generate variable B in the truth table, and the cells that generate variable B in the
K-map are highlighted in yellow, as shown in Figure 2.11b.

1

1

1

A B F(AB)

0 1

1 11
B

0

Karnaugh Map

A

0 1

F(AB) = A + B

Truth Table

0 0 0

0 1

1 0

1 1

FIGURE 2.10 The screen
(or GUI) for Karnaugh Map
Explorer for a 2-input OR gate
(refer to the color image in the
back of the book)

www.itpub.net

 2.5 Karnaugh Map Reduction Method 57

 The function for the OR gate can be represented in compact minterm form as F(A,B)
5 Sm(1,2,3) or in compact maxterm from as F(A,B) 5 PM(0). Using the same organization
as Karnaugh Map Explorer, we can draw a manual K-map using paper and pencil as shown in
Figure 2.12a. The minterm or maxterm numbers are labeled in each cell in the manual K-map.
Using the manually drawn K-map, we can plot the minterms for the 1s of the function as shown
in Figure 2.12b.

0 1

1

1

1

A B F(AB)

0 1

1 11
B

0

Karnaugh Map

A

0 1

1 11
B

0

Karnaugh Map

A

0 1

F(AB) = A + B F(AB) = A + B

Truth Table

0 0 0

0 1

1 0

1 1

1

1

1

A B F(AB)

Truth Table

0 0 0

0 1

1 0

1 1

(b)(a)

FIGURE 2.11 (a) Minterms that
generate variable A; (b) minterms
that generate variable B (refer to the
color image in the back of the book)

B
A

0

1 3

2
0

0 1

1

F(A,B)

B
A

0

1 3

2
0

0 1

1

F(A,B)

(a) (b) (c)
e2 = B

e1 = A

F(A,B) = e1 + e2 = A + B

Minterm
numbers

1

1

1

FIGURE 2.12 (a) Each
cell identified in terms of
its minterms; (b) minterms
plotted and minterms
grouped for the 1s of the
function; (c) expression
for each group and the
reduced function

 The expressions e1 and e2 are used to identify the groups of 1s that are circled in the K-map.
 The values for the expressions are obtained by keeping the variable in each group that
does not change over the area represented by the group. In Figure 2.12b, e1 5 A, and because
B has a 1-bit change in the group, B can be removed. In addition, e2 5 B, and because A has a
1-bit change in the group, A can be removed. This can be verified by applying the Adjacency
Theorem in each group so e1 5 1A #B 1 A #B 5 A 2 and e2 5 1A #B 1 A #B 5 B 2 . A reduced
function is obtained by ORing the expressions for each group as shown in Figure 2.12c.
 Before moving on to 3- and 4-variable K-maps, you should fill in a truth table using Kar-
naugh Map Explorer for the NOR gate, the XOR gate, and the XNOR gate for practice. In each
case, the function generated by the Karnaugh Map Explorer is written in sum of products (SOP)
form in terms of expressions for the groups of 1s for the function as shown in Figure 2.13a, for
a 2-input NAND gate.

1 1

1 01
B

0

A

0 1

1

1

0

A B F(AB)

0 0 1

0 1

1 0

1 1

Karnaugh Map

F(AB) = A
-

 + B
-

Truth Table

(a)

B
A

F(A,B)

0

0 1

1

 1 1

 1 0
1 3

0 2

e1 = A
-

e2 = B

F(A,B) = e1 + e2 = A
-

+ B
-

(b)

FIGURE 2.13 (a) The screen
(or GUI) for Karnaugh Map
Explorer for a 2-input NAND
gate; (b) manual K-map
reduction for a 2-input NAND
gate (refer to the color image
in the back of the book)

58 Chapter 2 Number Conversions, Codes, and Function Minimization

 Figure 2.13b shows the manual K-map reduction for a 2-input NAND gate. Observe that
e1 5 A , and because B has a 1-bit change in the group, B can be removed. Observe that e2 5 B,
and because A has a 1-bit change in the group, A can be removed. Remember, when two cells
with the same function values (1s in the case of Karnaugh Map Explorer) are physically adjacent
to each other either vertically or horizontally, a reduced expression can always be obtained using
the Adjacency Theorem (e1 5 1A #B 1 A #B 5 A 2 and e2 5 1A #B 1 A #B 5 B 2), because
there is a 1-bit change from one cell to the next adjacent cell. A reduced function is obtained by
ORing the expressions for each group as shown in Figure 2.13b.

2.5.3 Using a 3-Variable K-Map
A 3-variable K-map is shown in Figure 2.14 for a 3-input majority function such that the output
is 1 any time two or more input variables are 1. The function can be written in compact minterm
form as follows: F(A,B,C) 5 Sm(3,5,6,7).

 Look closely at the bit values for A B on the perimeter of the 3-variable K-map. Observe that
the bits are arranged in Gray code counting sequence—that is, 00, 01, 11, 10. This sequence is
necessary so that horizontal adjacent cells have a 1-bit change from one cell to the next adjacent
cell, thus allowing the Adjacency Theorem to be applied. When grouping two adjacent cells that
contain 1s, the variable that is removed by applying the Adjacency Theorem is the variable that
has a 1-bit change. The remaining variables are ANDed together and represent the expression
for the group. A reduced function is obtained by ORing the three expressions for each group. To
identify each group of 1s in the function, move the cursor over each of the three ANDed expres-
sions in the function one at a time, and observe the group that is highlighted in yellow.
 Figure 2.15 shows a manual K-map reduction for a 3-input majority function.

0 0 1 0

0 1 1 11
C

0

00 01 11 10

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C

0 0 0

0

0

1

0

1

1

1

0

F(ABC)

Karnaugh Map

AB

F(ABC) = A B + B C + A C

Truth TableFIGURE 2.14 The
screen (or GUI)
for Karnaugh Map
Explorer for a 3-input
majority function (refer
to the color image in
the back of the book)

00 01 11 10

0

1

C

AB
F(A,B,C) e1 = A⋅B

e2 = B⋅C e3 =A⋅C

F(A,B,C) = e1 + e2 + e3

 = A⋅B + B⋅C + A⋅C

0

0

0

1

1

1

0

1

0

1

2

3

6

7

4

5

FIGURE 2.15
Manual K-map
reduction for a
3-input majority
function

 The expressions e1, e2, and e3 are used to identify the groups of 1s that are circled in the
K-map. The values for the expressions are obtained by ANDing together the variables in each
group that do not change over the area represented by the group. In Figure 2.15, e1 5 A?B,
and because C has a 1-bit change in the group, C can be removed. In addition, e2 5 B?C, and
because A has a 1-bit change in the group, A can be removed. Then, e3 5 A?C, and because B

www.itpub.net

 2.5 Karnaugh Map Reduction Method 59

has a 1-bit change in the group, B can be removed. A reduced function is obtained by ORing the
expressions for each group as shown in Figure 2.15.
 The 3-variable K-maps shown in Figures 2.16a and 16b have a group of two adjacent cells
that contain 1s and also a group of four adjacent cells that contain 1s.

 In Figure 2.16b, observe that the cells 0, 1, 4, and 5 represent a group of four adjacent cells
that contain 1s, because end-around adjacency is true for Karnaugh maps. The expression for
cells 0, 1, 4, and 5 can be represented as e1 5 B, and because A and C each have a 1-bit change
in the group, A and C can be removed. The cells for minterms 7 and 5 represent a group of two
adjacent cells that contain 1s. The expression for cells 7 and 5 can be represented as e2 5 A?C,
and because B has a 1-bit change in the group, B can be removed. The expressions for e1 and e2
are then ORed together. This example has shown us that we can also group four adjacent cells that
contain 1s, as well as two adjacent cells that contain 1s, to obtain a reduced expression. A reduced
function is obtained by ORing together the expressions for each group as shown in Figure 2.16b.
 A 3-variable K-map is shown in Figure 2.17 for a 3-input XOR gate (or a 3-input ODD
function).

1 0 0 1

1 0 1 11
C

0

00011110
0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C

0 0 0

1

0

0

1

1

0

1

1

F(ABC)

Karnaugh Map
AB

F(ABC) = B + A C

Truth Table

(a)

00

0 0 01 1

0 11 11

01 11 10

0

1

2

3

6

7

4

5

F(A,B,C) = e1 + e2 = B
-

 + A∙C

F(A,B,C)
AB

e1 = B
-

e2 = A∙C

C

(b)

FIGURE 2.16 (a) The screen
(or GUI) for Karnaugh Map
Explorer with a group of four
adjacent cells; (b) manual
K-map reduction (refer to the
color image in the back of the
book)

 This function will not reduce to a simpler sum of products expression because none of the
cells that contain a 1 are physically adjacent, so the Adjacency Theorem cannot be applied.
Notice that an expression must be written for each cell that contains a 1, and then all the expres-
sions must be ORed together to form the sum of products expression for the function. This shows
us that each single isolated cell that contains a 1 must be included in a function, even though the
cell does not provide a reduced expression. By using Boolean algebra, it can be shown that the
function can be written using XOR operators as F 5 A!B!C.

00011110

F(ABC)

1

1

0

1

0

0

1

A B C

0 1 0 1

1 0 1 01
C

0

Karnaugh Map

AB

F(ABC) = A
-

 B
-

 C + A
-

 B C
-

 + A B C + A B
-

 C
-

Truth Table

0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 2.17 The screen (or GUI) for
Karnaugh Map Explorer for a 3-input XOR
gate (refer to the color image in the back of
the book)

60 Chapter 2 Number Conversions, Codes, and Function Minimization

2.5.4 Using a 4-Variable K-Map
When you obtain a reduced function from a K-map, you may not obtain a minimum function
unless you remember to cover the product terms for the smaller grouping of 1s first. Cover
isolated cells, followed by two cells, followed by four cells, followed by eight cells that contain
1s. If a group of several smaller cells cover a larger group of larger cells, then it is not neces-
sary to cover the larger group because the product term produced by the larger group would be
redundant or unnecessary. The 4-variable K-map shown in Figure 2.18 illustrates the case of a
redundant larger group of cells.

 Notice in Figure 2.18 that the horizontal perimeter variables AB follow the Gray code
counting sequence and the vertical perimeter variables CD also follow the Gray code counting
sequence. This sequence is necessary so that both the horizontal adjacent cells and the vertical
adjacent cells have a 1-bit change from one cell to the next adjacent cell, thus allowing the Adja-
cency Theorem to be applied. Figure 2.19 shows a manual K-map reduction with a redundant
larger group of cells.

0

1

1

1

1

0

1

10

1

0 0 0 00

0 0 0

1 1 0

0 1 1

0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 1 0 0 0

0 1 0 1 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 1 0 0

1 0 1 1 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

00

00 01 11 10

AB

A B C D F(ABCD)

CD

Truth Table

Karnaugh Map

F(ABCD) = A
-

 B C + A B C
-
 + A

-
C
-
 D + A C D

FIGURE 2.18 The screen (or GUI)
for Karnaugh Map Explorer for a
redundant larger group of cells (refer
to the color image in the back of the
book)

00 0 0 1 0

1 1 1 0

0 1 1 1

0 1 0 0

00 01 11 10

01

11

10

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

F(A,B,C,D)

F(A,B,C,D) = e1 + e2 + e3 + e4

AB

e3 = A
-

⋅C
-

⋅ D

e1 = A
-

⋅B⋅C e5 = B⋅D

e4 = A⋅C⋅D

e2 = A⋅B⋅C
-

CD

= A
-

⋅B⋅C + A⋅B⋅C
-

 + A
-

⋅C
-

⋅D + A⋅C⋅D

FIGURE 2.19 Manual
K-map reduction for a
4-variable K-map with a
redundant larger group
of cells

www.itpub.net

 2.5 Karnaugh Map Reduction Method 61

 In the manual K-map in Figure 2.19, the larger group of cell represented by the expres-
sion e5 is redundant because the four smaller groups of cells represented by the expressions e1
through e4 cover all the 1s in the larger group of cells. The redundant group is not included in
the function because the function will contain more literals than necessary.
 To obtain a minimum expression, the trick is to cover all the 1s using the largest possible
groups of adjacent cells, while trying to do this with the fewest number of groups so that you
obtain the function with the smallest literal count. It is important to keep in mind that occasion-
ally there are alternate ways to cover the 1s and still obtain a minimum function.

2.5.5 Don’t-Care Outputs
When a function has a specified output for all combinations of its inputs, the function has com-
pletely or fully specified outputs. When all the outputs of a function are not specified or are
unimportant, the function has incompletely specified outputs. The output of an incompletely
specified function may be given a third type of output value called a don’t-care output. It is
common practice to use the symbol 3 for a don’t-care output in a truth table or a K-map.
 The compact minterm form for a function with a don’t-care output may be written as
follows:

F(A,B,C) 5 Sm(0,1,6) 1 Smd(2). The function has a 1 output for the minterms 0, 1, and 6, a
don’t care output for minterm 2, and a 0 output for all other minterms in the function.

 The 3-variable K-map shown in Figure 2.20 is plotted for the function F(A,B,C)
5 Sm(0,1,6) 1 Smd(2).

 When plotting a function with an incompletely specified output you must check (click) the
box Allow Don’t Cares as shown in Figure 2.20. The don’t-care output is obtained by clicking
on minterm 2 in the truth table or on the corresponding K-map cell until an 3 appears. The 3
represents a don’t-care output, which means its value may be a 0 or may be 1. Karnaugh Map
Explorer chooses the value of 3 that provides the fewest literals for the function, which is what
you also need to do if you are using a manual K-map to reduce a function. In Karnaugh Map
Explorer, place the cursor on the expression B #C to observe that 3 is grouped with the 1 at min-
term 6. If 3 is not grouped with the 1 at minterm 6, the expression would be the same expres-
sion as minterm 6, or A #B #C, which would increase the literal count. The proper use of 3 is to
decrease the literal count, to minimize the function.
 In Figure 2.21, a 4-variable K-map is shown plotted for a function that has several incom-
pletely specified, or don’t-care, outputs.

Three Variables Four Variables Allow Don’t CaresTwo Variables

1

X

0

0

0

1

0

A B C F(ABC)

1 X 1 0

1 0 0 01
C

0

Karnaugh Map

AB

00 01 11 10

F(ABC) = A
-

 B
-

 + B C
-

Truth Table

0 0 0 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 2.20 The screen
(or GUI) for Karnaugh Map
Explorer for a function with
an incompletely specified, or
don’t-care, output (refer to the
color image in the back of the
book)

62 Chapter 2 Number Conversions, Codes, and Function Minimization

 The compact minterm form for the function in Figure 2.21 may be written as F(A,B,C,D)
5 Sm(1,3,4,5,11,14,15) 1 Smd(6,8,12,13). In Karnaugh Map Explorer, place the cursor on the
expression B #C to observe that the 3 at minterm 12 and the 3 at minterm 13 are both grouped
with the 1 at minterm 4 and the 1 at minterm 5. The 3 at minterm 6 and the 3 at minterm 8 are
not used to minimize the function, because they are not grouped with any 1s. This shows us that
when we use a manual K-map to reduce a function, we should only use a don’t-care output if it
helps to decrease the literal count of the function.
 When you use a manual K-map to reduce a function, never cover don’t-care outputs by
themselves, because a group of only don’t-care outputs always represents a redundant expres-
sion or product term.
 Karnaugh Map Explorer was written to group only the 1s to obtain a reduced function.
In the manually drawn K-map shown in Figure 2.22, the 0s and the don’t-care outputs for the
function F(A,B,C) 5 Sm(0,1,6) 1 Smd(5,7) are grouped to obtain a reduced function. The 1s
and don’t-care outputs are also grouped in Figure 2.22 so that you can see how the function is
reduced in two different ways.

0

1

X

X

1

1

1

10

1

0 0 0 00

0 1 X

1 1 0

1 0 1

0 X 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 1 0

0 1 0 1 1

0 1 1 X 0

0 1 1 0 1

1 0 0 X 0

1 0 0 0 1

1 0 1 0 0

1 0 1 1 1

1 1 0 X 0

1 1 0 X 1

1 1 1 1 0

1 1 1 1 1

00

00 01 11 10

AB

A B C D F(ABCD)

CD

Truth Table

Karnaugh Map

F(ABCD) = A B + B C
-

 + A
-

 B
-

 D + A C D

Three Variables Four Variables Allow Don’t CaresTwo VariablesFIGURE 2.21 The screen
(or GUI) for Karnaugh Map
Explorer for a function with
several incompletely specified,
or don’t-care, outputs (refer to
the color image in the back of
the book)

00

0

1
1 3 7 5

0 2 6 4

1 0 X X

1 0 1 0

01 11 10

F(A,B,C)

F(A,B,C) = e1 + e2 = A
-

⋅B
-

 + A⋅B

F
-

(A,B,C) = ez1 + ez2 = A
-

⋅B + A⋅B
-

e1 = A
-

⋅B
-

e2 = A⋅B

AB
C

ez1 = A
-

⋅B
ez2 = A⋅B

-
FIGURE 2.22
Grouping the 0s and
don’t-cares to obtain
a reduced function
and also grouping the
1s and don’t-cares
to obtain a reduced
function

www.itpub.net

 Problems 63

 2.12 Convert the following hexadecimal numbers to equivalent
binary numbers using the groups of 4 method in reverse.

 a. E
 b. 14
 c. 234
 2.13 Convert the following binary numbers to octal using the

groups of 3 method and also to hexadecimal using the
groups of 4 method.

 a. 10001010
 b. 11110000
 c. 100000011
 2.14 Construct a table with a column for hexadecimal num-

bers, and list the numbers 00 through 20. Make a col-
umn for binary numbers, and list the equivalent binary
numbers.

 2.15 Convert the following binary numbers to equivalent
decimal numbers using the polynomial function method.

 a. 11011
 b. 110110
 c. 1101101
 2.16 Convert the following octal numbers to their decimal

equivalents using the polynomial function method.
 a. (27)8

 b. (471)8

 c. (1234)8

 2.17 Convert the following hexadecimal numbers to their dec-
imal equivalents using the polynomial function method.

 a. (3A)16

 b. (D1B)16

 c. (E2B4)16

 2.18 Convert the following binary numbers to their decimal
equivalents using the factored form method.

 a. (10011)2

 b. (110010)2

 c. (1110001)2

 2.19 Convert the following octal numbers to their decimal
equivalents using the factored form method.

 a. (35)8

 b. (542)8

 c. (1361)8

 2.20 Convert the following hexadecimal numbers to their
decimal equivalents using the factored form method.

 a. (B3)16

 b. (12D)16

 c. (F2B4)16

Section 2.2 Digital Circuits versus Analog Circuits
 2.1 List the two primary types of signals.
 2.2 Briefl y describe the difference between analog and digi-

tal circuits. Would the wind be considered an analog or
a digital measurement? Would a normal light switch in a
room be considered an analog or digital control unit?

 2.3 Explain the positive logic convention. Explain the nega-
tive logic convention. Which convention is used in this
book?

Section 2.3 Binary Number Conversions
 2.4 Name four number systems and their corresponding

bases.
 2.5 Write the value for the digit position in each of the fol-

lowing decimal numbers.
 a. Digit position d0 in 123
 b. Digit position d3 in 64087
 c. Digit position d2 in 39283
 2.6 Write the values for the bit positions in the binary num-

ber 10001001.
 a. Bit position b0

 b. Bit position b3

 c. Bit position b6

 2.7 What does 0 referencing mean? List the range for a count
of 16 items using 0 referencing.

 2.8 Use the subtract the weights method to convert the fol-
lowing decimal integers to binary.

 a. 17
 b. 37
 c. 56
 2.9 Convert the following binary numbers to equivalent

octal numbers using the groups of 3 method.
 a. 10001010
 b. 11110000
 c. 10000001
 2.10 Convert the following octal numbers to equivalent

binary numbers using the groups of 3 method in reverse.
 a. 24
 b. 754
 c. 463
 2.11 Convert the following binary numbers to equivalent

hexadecimal numbers using the groups of 4 method.
 a. 10001010
 b. 11110000
 c. 10000001

 In Figure 2.22, each group of 0s is identified using ez (expression for zeros), while each group
of 1s is identified using e (expression for ones). Observe that the function must be complemented
when groups of 0s are ORed together to form the function, while the function is not complemented
when groups of 1s are ORed together to form the function.

PROBLEMS

64 Chapter 2 Number Conversions, Codes, and Function Minimization

 2.31 Look in the ASCII table (Table 2.2) in Section 2.4.2, and
write the binary code and its hexadecimal equivalent for
the following ASCII characters.

 a. A
 b. .

 c. \
 2.32 Write the code sequence that is being sent to the com-

puter in hexadecimal when an ASCII keyboard is used
to type the following words. Hint: Use Table 2.2.

 a. Having
 b. Fun
 c. Yet?
 2.33 Convert the following decimal numbers to binary num-

bers to refl ective Gray code numbers. Write the results in
explicit notation with the binary numbers specifi ed as B
and the refl ective Gray code numbers specifi ed as RGC.

 a. 10
 b. 19
 c. 25
 2.34 Convert each of the following binary numbers to equiva-

lent refl ective Gray code numbers. Write the results in
explicit notation with the binary numbers specifi ed as B
and the refl ective Gray code numbers specifi ed as RGC.

 a. 101
 b. 0110
 c. 10111
 2.35 Write the Boolean functions for the refl ective Gray code

bits g3, g2, g1, and g0 in terms of the binary bits b3, b2, b1,
and b0 for the following binary numbers.

 a. (b1 b0)2 B

 b. (b2 b1 b0)2 B

 c. (b3 b2 b1 b0)2 B

 2.36 Convert each of the following refl ective Gray code num-
bers to equivalent binary numbers.

 a. 011
 b. 1011
 c. 01100
 2.37 Write the Boolean functions for the binary bits b3, b2, b1,

and b0 in terms of the refl ective Gray code bits g3, g2, g1,
and g0 for the following refl ective Gray code numbers.

 a. (g1 g0)2 RGC

 b. (g2 g1 g0)2 RGC

 c. (g3 g2 g1 g0)2 RGC

 2.38 Show the circuit for a group of XOR gates that will con-
vert any binary number with 8 bits to a refl ective Gray
code number. First write the Boolean functions for the
refl ective Gray code bits g7, g6 . . . , g0 in terms of the
binary bits b7, b6 . . . , b0, then draw the circuit using the
Boolean functions.

 2.39 Show the circuit for a group of XOR gates that will
convert any refl ective Gray code number with 5 bits to a
binary number. First write the Boolean functions for the
binary bits b4, b3 . . . , b0 in terms of the refl ective Gray
code bits g4, g3 . . . , g0, then draw the circuit using the
Boolean functions.

 2.21 Convert the following decimal numbers to their binary
equivalents using the repeated radix division method
(double-dabble method).

 a. (58)10

 b. (137)10

 c. (253)10

 2.22 Convert the following decimal numbers to their octal
equivalents using the repeated radix division method
(octal-dabble method).

 a. (92)10

 b. (248)10

 c. (814)10

 2.23 Convert the following decimal numbers to their hexa-
decimal equivalents using the repeated radix division
method (hex-dabble method).

 a. (96)10

 b. (492)10

 c. (1678)10

Section 2.4 Binary Codes
 2.24 Determine the minimum number of bits that are required

to represent the following number of keys on a keypad or
keyboard.

 a. 27
 b. 36
 c. 132
 2.25 Determine the number of keys that can be represented

on a keypad or keyboard with the following number of
bits.

 a. 6
 b. 7
 c. 8
 2.26 BCD is an abbreviation for binary coded decimal. In this

code, straight binary is used to represent the decimal
numbers 0 through 9 with a minimum number of bits
(four). XS3 is an abbreviation for excess 3. In this code,
straight binary 1 0011 is used to represent the decimal
numbers 0 through 9 with a minimum number of bits
(again four). Make a table for the decimal numbers 0
through 9, the BCD representation for each decimal num-
ber, and the XS3 representation for each decimal number.

 2.27 Which code in Table 2.1 (Section 2.4.2) in the text is
considered easiest for humans to understand? Explain
your answer.

 2.28 Which code in Table 2.1 (Section 2.4.2) in the text is an
error-detecting code? Explain your answer.

 2.29 Which character code is the most commonly used code
for PCs? In the extended version of the code, how many
bits does the code require?

 2.30 Look in the ASCII table (Table 2.2) in Section 2.4.2,
and record the ASCII character for each of the following
binary bit patterns.

 a. 0011111
 b. 1101010
 c. 0110000

www.itpub.net

 Problems 65

 2.53 The letter display system in the text must be changed.
The new letter display decoder must generate the letter
b (for back) when a 0 is supplied to its input. When a 1
is supplied to its input, the letter that must be lighted is
F (for forward). To simplify the design, write the truth
table for the new letter display decoder using active low
outputs so the array of NOT gates can be removed. After
you obtain the truth table, write the output functions for
the new letter display system.

 2.54 Suppose we wanted to change the letter display system
in the text to a digit display system. When 0 is supplied
to the input of the digit display decoder, the digit that
will be lighted is 0, and when a 1 is supplied to the input
the digit that will be lighted is a 1. Write the truth table
for the digit display decoder using active high outputs.

 2.55 Suppose we wanted to change the letter display system
to a simpler digit display system. When 0 is supplied to
the input of the digit display decoder, the digit that will
be lighted is 0, and when a 1 is supplied to the input the
digit that will be lighted is a 1. Write the truth table for
the digit display decoder using active low outputs. How
does this change simplify the design compared to the
letter display system it will replace?

 2.56 Write complete VHDL code for a simpler letter display
system. Table P2.56 shows the truth table for the new let-
ter display decoder. Hint: The array of NOT gates must
be removed.

 2.40 What is the minimum number of output bits required
for each shaft-angle encoder with the following output
angular resolution in degrees?

 a. 22.50 degrees
 b. 11.25 degrees
 c. 2.8125 degrees
 2.41 Determine the 7-segment code for a common-cathode

display with the segments g, f, e, d, c, b, and a assigned as
bits b6 b5 b4 b3 b2 b1 b0, where a segment is lighted when
a code bit is 1, for the following symbols.

 a. Uppercase letter E
 b. Lowercase letter b
 c. Uppercase letter C
 2.42 Determine the 7-segment code for a common-anode dis-

play with the segments g, f, e, d, c, b, and a assigned as
bits b6 b5 b4 b3 b2 b1 b0, where a segment is lighted when
a code bit is 0, for the following symbols.

 a. Uppercase letter A
 b. Lowercase letter b
 c. Lowercase letter c
 2.43 In the schematic for the letter display system in the text,

which module generates the code for the 7-segment
display?

 2.44 In the schematic for the letter display system in the
text, the letter display decoder has active high outputs.
Explain what this means.

 2.45 In the schematic for the letter display system in the text,
the 7-segment display has active low inputs. Explain
what this means.

 2.46 In the schematic for the letter display system in the text,
why is an array of NOT gates used to invert the outputs
from the letter display decoder?

 2.47 How many separate displays does the 7-segment display
contain in the letter display system discussed in the text?

 2.48 Describe how display 0 can be turned on in the letter
display system discussed in the text.

 2.49 Describe how display 1 can be turned off in the letter
display system discussed in the text.

 2.50 Describe how display 2 can be turned off in the letter
display system discussed in the text.

 2.51 What does the term annotated schematics or annotated
circuit diagram mean?

 2.52 The letter display system in the text must be changed.
Table P2.52 shows a truth table for a new letter display
decoder that generates the letter n (for negative) when a
0 is supplied to the input of the letter display decoder.
When a 1 is supplied to the input, the letter that will be
lighted is P (for positive). Write the output functions for
the letter display decoder in Table P2.52.

Letter display decoder
(active high outputs)

7-segment display

S0

0

1

0

0

B7

1

1

B6

0

1

B5

1

1

B4

0

0

B3

1

0

B2

0

1

B1

0

1

B0

a

d dp

bf
cge8

TABLE P2.52

Letter display decoder
(active low outputs)

7-segment display

S0

0

1

1

1

B7

0

1

B6

1

0

B5

0

0

B4

0

0

B3

0

0

B2

0

0

B1

1

1

B0

a

d dp

bf
cge8

TABLE P2.56
 2.57 What is a scalar in VHDL?
 2.58 What is a vector in VHDL? What is another name for a

vector?
 2.59 How is the number of wires specifi ed in a vector? Pro-

vide the vector specifi cation in VHDL for fi ve wires.
 2.60 What design approach was use in Listing 2.1 in the

text for the letter display system? How does this design
approach handle each module of the design.

 2.61 Write the correct VHDL code for the following Boolean
constants: F1 5 0, F2 5 1, F3 5 01, and F4 5 101

Section 2.5 Karnaugh Map Reduction Method
 2.62 Why is it important to minimize or reduce Boolean

equations that make up digital circuits?
 2.63 What is an algorithm?
 2.64 Name the method that is used in this chapter to reduce

Boolean functions.
 2.65 What is a literal?
 2.66 Why is it important to reduce the literal count of Bool-

ean expressions?

66 Chapter 2 Number Conversions, Codes, and Function Minimization

 2.76 Plot each of the following functions on a manual K-map.
Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B,C,D) 5 PM(0,1,4,5,9,10,12,13,14,15)
 b. F(A,B,C,D) 5 Sm(0,1,2,4,5,8,9,12,13,14,15)
 c. F(A,B,C,D) 5 Sm(0,2,5,7,8,10,13,15)
 2.77 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B,C) 5 Sm(0,7) 1 Smd(1)
 b. F(A,B,C) 5 Sm(1,5) 1 Smd(0,2,4)
 c. F(A,B,C) 5 PM(4,6)?PMd(1,5)
 2.78 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B,C,D) 5 Sm(2,3,4,7,11) 1 Smd(5,15)
 b. F(A,B,C,D) 5 PM(4,10)?PMd(2,6,8)
 c. F(A,B,C,D) 5 Sm(0,2,5,7,8,10,13) 1 Smd(4,6,14)
 2.79 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 0s to identify each expres-
sion. Write the reduced functions in SOP form.

 a. F(A,B,C) 5 Sm(0,7) 1 Smd(1)
 b. F(A,B,C) 5 Sm(1,5) 1 Smd(0,2,4)
 c. F(A,B,C) 5 PM(4,6)?PMd(1,5)
 2.80 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 0s to identify each expres-
sion. Write the reduced functions in SOP form.

 a. F(A,B,C,D) 5 PM(0,1,6,8,9,10,12,13,14)?PMd(5,15)
 b. F(A,B,C,D) 5 PM(4,10)?PMd(2,6,8)
 c. F(A,B,C,D) 5 Sm(0,2,5,7,8,10,13) 1 Smd(4,6,14)

 2.67 What is a K-map?
 2.68 What is the name of the theorem that applies when

grouping adjacent 1s in a K-map?
 2.69 In what form is a function generated by Karnaugh Map

Explorer?
 2.70 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B) 5 Sm(2,3)
 b. F(A,B) 5 PM(1,3)
 2.71 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B) 5 Sm(0,2,3)
 b. F(A,B) 5 PM(1,2,3)
 2.72 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B) 5 Sm(0,3)
 b. F(A,B) 5 Sm(1,2)
 2.73 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B,C) 5 Sm(0,1,4,5)
 b. F(A,B,C) 5 Sm(0,2,3,6,7)
 c. F(A,B,C) 5 PM(2,3)
 2.74 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake.

 a. F(A,B,C) 5 PM(0,2,3)
 b. F(A,B,C) 5 PM(1,3,5)
 c. F(A,B,C) 5 Sm(1,3,4,6)
 2.75 Plot each of the following functions on a manual K-map.

Circle each adjacent group of 1s to identify each expres-
sion. Write the reduced functions in SOP form. Then
check your result using Karnaugh Map Explorer. If you
make an error, learn from your mistake. It is important to
keep in mind that occasionally there are alternate ways
to cover the 1s and still obtain a minimum function.

 a. F(A,B,C,D) 5 Sm(2,3,6,7,8,9,12,13)
 b. F(A,B,C,D) 5 PM(2,4,6,8,10)
 c. F(A,B,C,D) 5 PM(0,2,5,8,10,13)

www.itpub.net

C h aa p t e rr

Introduction to Logic Circuit
Analysis and Design

Chapter Outline

 3.1 Introduction 67

 3.2 Integrated Circuit Devices 67

 3.3 Analyzing and Designing Logic Circuits 69

 3.4 Generating Detailed Schematics 74

 3.5 Designing Circuits in NAND/NAND and NOR/NOR Form 76

 3.6 Propagation Delay Time 78

 3.7 Decoders 79

 3.8 Multiplexers 85

 3.9 Hazards 88

 Problems 91

3.1 INTRODUCTION

In this chapter, you will learn about integrated circuit devices, how to analyze and design logic
circuits, and how to generate detailed schematic diagrams. You will learn how to manually
design circuits in AND/OR form, OR/AND form, NAND/NAND form, and NOR/NOR form.
All logic circuits have a delay time, so we will discuss how to determine the worst-case delay
time through a circuit. Two very important logic devices—decoders and multiplexers—are
introduced. Simple procedures are presented for manually designing digital circuits with decod-
ers and also with multiplexers. Function hazards and logic hazards that generate glitches that
can cause circuits to fail are covered. The design of most of the circuits is followed by a listing
that shows the complete VHDL design of the circuits using Boolean equations.

3.2 INTEGRATED CIRCUIT DEVICES

There are many manufacturers that provide physical hardware devices called integrated cir-
cuits (ICs) that are capable of carrying out two-valued Boolean functions. These devices can
contain tens to literally millions of transistors on a small silicon semiconductor crystal called a
die or chip. Because the circuitry contains mainly transistors, diodes, and resistors, which are
all interconnected inside the chip, power consumption can be quite low and reliability quite
high. The die is constructed and then welded to a frame as illustrated in Figure 3.1. Its input

rr 3

67

68 Chapter 3 Introduction to Logic Circuit Analysis and Design

and output leads are connected by thin gold wires to the package’s leads or pins. The unit is
encapsulated using glass, ceramic, or plastic. Finally, the unit is hermetically sealed. ICs that are
hermetically sealed guard against die contamination in many different environments.

Cutaway view

Metal
lead frame

Package’s leads
or pins

Thin gold wire

Metal die frame
upon which die

is mounted

Die or chip

1

2

3

4

5

6

7

8

FIGURE 3.1 Cutaway view of an IC
package showing the die or chip,
the die frame, the gold wire, the lead
frame, the package’s leads or pins,
and the pin numbers or pin outs

 Five different types of integrated circuit packages are shown in Figure 3.2.

 The package shown in Figure 3.2a is the common dual-in-line (DIP) package. The pack-
ages shown in Figures 2b and c are the flat package (flat pack) and the surface mount (small
outline) package. These packages are generally used in applications in which real estate on
a printed circuit board (PCB) is critical and/or a lower cost must be achieved for high vol-
ume application. The packages shown in Figures 2d and e are the plastic leaded chip carrier
(PLCC) package and the pin grid array (PGA) package, respectively, which are used for very
large IC designs especially when the pin count—that is, the package inputs and outputs—for
the designs become very large. Note the location of pin 1 for each package type. The integrated
circuit packages shown in Figure 3.2 are only a few among many different types of packages
available. For very large integrated circuit devices, a newer package is available called a ball
grid array (BGA) package (the BGA package is not shown in Figure 3.2). The BGA has balls
of solder on its pins that are soldered directly to a PC board. Manufacturers have a website that
provides the data sheets for their parts. The data sheets provide a list of IC packages available,
so engineers can choose the ones they prefer to use.

(a) (b) (c)

1
1

1

(d) (e)

1 1

FIGURE 3.2 Packages
for integrated circuits:
(a) dual-in-line package;
(b) flat package; (c) surface
mounting package; (d) plastic
leaded chip carrier package;
(e) pin grid array package

www.itpub.net

 3.3 Analyzing and Designing Logic Circuits 69

3.3 ANALYZING AND DESIGNING LOGIC CIRCUITS

We call circuit analysis the process of obtaining a Boolean function for a schematic or a circuit
diagram. We call circuit design or synthesis the process of obtaining a schematic or a circuit
diagram for a Boolean function. Keep in mind that the schematics or circuit diagrams we will
cover are combinational or combinatorial logic circuits; that is, the outputs of these circuits
depend only on the external inputs applied to the circuits. Combinational logic circuits do not
have feedback (the outputs are never fed back as inputs), and they do not have memory capability.

3.3.1 Analyzing and Designing Relay Logic Circuits
Before we introduce the analysis/design process using IC logic circuits, let’s first analyze a
logic switching circuit that uses relays. Switching circuits of this type are used in heavy power
equipment. Figure 3.3a shows a physical representation for relay contacts that are normally
closed (n.c.) and its corresponding symbol. Figure 3.3b shows a physical representation for relay
contacts that are normally open (n.o.) and its corresponding symbol.

 A logic switching circuit that uses relays connected up to a drive a motor is shown in Fig-
ure 3.4.

(a) (b)

+
– N
V

S

Current
(when current flows
the relay opens)

Coil
=

Spring n.c.
contacts

N

S

Current
(when current flows
the relay closes)

Coil
=

Spring n.o.
contacts

Physical representation
for relay contacts that
are normally closed (n.c.)

Common symbol for
n.c. relay contacts

Common symbol for
n.o. relay contacts

Physical representation
for relay contacts that
are normally open (n.o.)

+
–
V

FIGURE 3.3 Relay contacts:
(a) physical representation
and common symbol for
normally closed (n.c.) relay
contacts and (b) physical
representation and common
symbol for normally open
(n.o.) relay contacts

(a) (b) (c)

DC motor DC motor

M
A

+

B

D

B

A A
B

B

D
D

F

F

F

A C

C
M

– + – FIGURE 3.4
Relay logic switching
circuits: (a) original
relay circuit; (b) mini-
mized symbolic logic
circuit; (c) minimized
relay circuit

 Logic switching circuits used in power applications are generally referred to as ladder logic
circuits. This term is used because it refers to the physical layout of the circuit (it looks like a ladder
that may be climbed). In the switching circuit in Figure 3.4a, when F is 1, the motor M is turned
on. Otherwise, the motor is turned off—that is, F 5 0. To analyze relay logic circuits, one must
remember that relays or switches connected in series provide an AND operation, while relays or
switches connected in parallel provide an OR operation. The same series and parallel principles
apply to transistor circuits, which you will study in a later course—that is, transistors connected in
series provide an AND operation while transistors connected in parallel provide an OR operation.
 Analyzing the circuit in Figure 3.4a, we obtain the following Boolean equation for the cir-
cuits: F 5 A #B #C 1 D 1 A #B #C. The expression A #B #C indicates that signal A must be 0 AND
signal B must be 1 AND signal C must be 1, so F 5 1 to turn the motor on; OR the expression D

70 Chapter 3 Introduction to Logic Circuit Analysis and Design

indicates that the signal D must be 0, so F 5 1 to turn the motor on; OR the expression A #B #C
indicates that the signal A must be 0 AND the signal B must be 1 AND the signal C must be 0,
so F 5 1 to turn the motor on.
 Applying Boolean algebra or using a K-map, the function F can be reduced to the following
minimum form: F 5 A #B 1 D. Using the minimum form of the function, we can design the
circuit in symbolic form as shown in Figure 3.4b. The relay logic circuit drawn for the minimum
form of the function is shown in Figure 3.4c. In general, logic circuits that use ICs may not be
hefty enough to drive high-powered motors or electric light bulbs; however, logic circuits that
use relays can be used for these applications.
 To manually design a logic circuit using relays as illustrated in the last example, first obtain
a minimum Boolean equation for the function. Next, substitute the appropriate relay type (either
normally open or normally closed) for each input, and connect each relay either in series or in
parallel depending on the form of the function. Connect the resulting relay circuit in series with
an output device such as a motor, a lamp, or a control relay (CR). A control relay is represented
by CR with a circle around it and signifies the coil of a relay. When a control relay is energized,
its associated contacts close, thus allowing the CR to control another circuit. The voltage for a
ladder logic circuit is applied across the vertical lines labeled 1 and 2.

3.3.2 Analyzing IC Logic Circuits
Now let’s analyze the symbolic logic circuits shown in Figure 3.5.

 The circuit in Figure 3.5a is drawn in AND/OR form because AND gates are feeding into
an OR gate. The circuit in Figure 3.5b is drawn in OR/AND form because OR gates are feeding
into an AND gate. To analyze these circuits, we need to obtain the Boolean functions for F1
and F2. These circuits could represent relay logic circuits, or they could represent logic circuits
constructed with ICs. In this section, we will assume that the circuits are constructed with ICs.
 In Figure 3.5a, the function F1 is written by obtaining the outputs of IC2 (an AND gate
with output A?B) and IC2 (another AND gate with output C #B) and then obtaining the output
of IC3 (an OR gate with output F1 5 A #B 1 C # B or F1 5 1A 1 B 2 # 1C 1 B 2 via DeMor-
gan’s Theorem). The function F1 5 A #B 1 C # B is written in SOP form, while the function
F1 5 1A 1 B 2 # 1C 1 B 2 is written in POS form.
 In Figure 3.5b, the function F2 is written by obtaining the outputs of IC2 (an OR gate with
output X 1 Y) and IC2 (another OR gate with output X 1 Z) and then obtaining the output of
IC3 (an AND gate with output F2 5 1X 1 Y 2 # 1X 1 Z 2 or F2 5 X #Y 1 X #Z via DeMorgan’s
Theorem). The function F2 5 1X 1 Y 2 # 1X 1 Z 2 is written in POS (product of sums) form,
while the function F2 5 X #Y 1 X #Z is written in SOP (sum of products) form.
 As you can see from these examples, the analysis of small IC (or relay) logic circuits is fairly
simple. All one needs to do is to write the output function of the circuit in terms of the input
variables.

(a) (b)

IC1
(6 NOT gates)

IC2
(4 AND gates)

IC2
(4 OR gates)

IC1
(6 NOT gates)

IC3
(4 AND gates)

IC3
(4 OR gates)

A

B

C

F1 F2

B

X

Y

X

Z

FIGURE 3.5 Circuits
to be analyzed to
obtain their Boolean
functions

www.itpub.net

 3.3 Analyzing and Designing Logic Circuits 71

 In practice, an IC number is assigned to each IC package on a printed circuit board (PCB).
An IC package can contain more than one gate, as shown in Figure 3.5. Small-scale integration
(SSI) packages are ICs packages that contain only a few gates. For example, each package may
contain six Inverters or NOT gates, four 2-input OR gates, and four 2-input AND gates, respec-
tively. An IC number is also assigned to large-scale integration packages such as a complex
programmable logic device (CPLD) or a field programmable gate array (FPGA). CPLDs
contain hundreds to thousands of gates, while FPGAs contain thousands to millions of gates.

3.3.3 Designing IC Logic Circuits
When you manually design a circuit for a Boolean function, it is a good idea to first reduce the
Boolean function. The easiest way to manually design an IC logic circuit is write the Boolean
function in reduced SOP form and then draw the circuit in AND/OR form, or to write the Bool-
ean function in reduced POS form and then draw the circuit in OR/AND form. The following
four steps may help you draw the circuit:

Step 1: Draw the AND and OR gates for the reduced Boolean function.
Step 2: Show all signals as noncomplemented signal names.
Step 3: Interconnect the gates, including NOT gates where necessary.
Step 4: Cleanup or reduce the number of NOT gates.

 Figure 3.6 shows the manual design of an IC logic circuit for the reduced SOP function
F1 5 A #B #C 1 B #C 1 A #B.

Step 1

Step 3

Step 2

Step 4

A
B

A

B

C

F1
B

C

A
B

A

C

B

C

3-input AND gate

2-input AND gate 3-input OR gate

2-input AND gate

F1

3-input AND gate

2-input AND gate 3-input OR gate

2-input AND gate

3-input AND gate

2-input AND gate 3-input OR gate

2-input AND gate

A
B

A

B

C

B

C
F1

3-input AND gate

2-input AND gate 3-input OR gate

2-input AND gate

FIGURE 3.6 Manual design of an IC logic circuit for a reduced SOP function

72 Chapter 3 Introduction to Logic Circuit Analysis and Design

Step 1: The AND and OR gates are drawn for the reduced function.
Step 2: All the input and output signals are shown as noncomplemented signal names.
Step 3: The gates are interconnected, including NOT gates where they were necessary.
Step 4: Cleanup was performed to remove one NOT gate.

 Each IC for a particular logic family such as TTL (transistor transistor logic) and CMOS
(complementary metal-oxide semiconductor) has a fan-out. The fan-out is the maximum num-
ber of inputs to which the IC output can be connected without electrically loading down the
output. As long as the fan-out is not exceeded, the IC will function properly. The fan-out for the
low-power Schottky (LS) TTL family is 20 (or 20 inputs). The original or standard TTL family
has a fan-out of only 10 (or 10 inputs). Another name you should know is fan-in. Fan-in is the
name used to describe the number of gate inputs—that is, the number of inputs that a gate has.
 A signal line is a line drawn to an input line of a gate symbol, or a line drawn from an
output line of a gate symbol. A net is the name used to describe signal lines that are connected
together to carry the same signal. In Figure 3.6, signal lines with the same signal names are
considered to be connected—that is, they belong to the same net. Be careful to label each signal
line with only one name. If you were to wire up the circuit in Figure 3.6 in the laboratory, you
would need to connect all signal lines together that have the same name.
 In Figure 3.7, we show two alternate solutions for function F1 5 A #B #C 1 B #C 1 A #B.
Both solutions use a connection scheme for the input signal lines called a vertical-input scheme.
Circuits drawn using a vertical-input scheme are usually more organized. With this scheme, one
can draw large circuit designs in AND/OR form or OR/AND form quite rapidly. The vertical-
input scheme eliminates Step 4 (cleanup) to reduce the number of NOT gates.

A

B

C

(a)

C
-

CB
-

BA
-

A

F1

3-input AND gate

2-input AND gate 3-input OR gate

2-input AND gate

(b)

CBA

F1

3-input AND gate

3-input AND gate 3-input OR gate

IC package count = 3
(due to fan-in reductions)

IC package count = 4

3-input AND gate

OR

FIGURE 3.7 IC logic circuit designs for a minimum SOP form of a function using a vertical-input scheme

 Notice in Figure 3.7a that the IC package count is four, but in Figure 3.7b the IC package
count is only three, because a single IC package of three 3-input AND gates is used in the same
package. After obtaining a circuit design for a minimum function, it is sometimes possible to
build a smaller implementation of the circuit by using fewer ICs. This is done by connecting
unused gate inputs to used gate inputs to reduce the fan-in of a gate, as shown in Figure 3.7b.
This technique may be referred to as fan-in reduction. By using fan-in reduction, the 2-input
AND gate IC package is not required.
 Manually designing logic circuits is somewhat tedious. Using a hardware description lan-
guage such as VHDL is a more efficient way to design logic circuits. Listing 3.1 shows a com-
plete VHDL design for the function F1 5 A #B #C 1 B #C 1 A #B.

www.itpub.net

 3.3 Analyzing and Designing Logic Circuits 73

 For manual designs, OR gates with more than two inputs for some off-the-shelf logic fami-
lies (such as TTL) are not available in ICs. This may pose a problem with the circuit designs
in Figure 3.6 and Figure 3.7, which required a 3-input OR gate. Connecting (cascading) two
2-input OR gates in series to obtain a 3-input OR gate easily solves this problem as shown in
Figure 3.8a.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb1 is port (
 A, B, C : in std_logic;
 F1 : out std_logic
);
end comb1;

architecture Boolean_function of comb1 is
begin
 F1 ,5 (not A and B and not C) or (not B and C) or (A and not B);
end Boolean_function;

LISTING 3.1 Complete VHDL design for the function F1 5 A #B # C 1 B #C 1 A #B (project: comb1)

 Connecting three 2-input OR gates in series provides us with a 4-input OR gate as shown in
Figure 3.8b. This solution also has a problem. The resulting cascaded circuit provides an output
that responds more slowly to input changes as the number of cascaded stages is increased. We
will consider this phenomenon a little later.
 Consider the function F2 written in a minimum POS form as F2 5 1X 1 Y 2 #
1X 1 Y 2 # 1X 1 Z 2 . A circuit design for this function is shown in Figure 3.9 using a vertical-
input scheme.

(a) (b)

= =
FIGURE 3.8 Cascading IC gates
(a) 3-input OR gate (b) 4-input OR
gate

X

Y

Z

ZYX Z
-

Y
-

X
-

F2

2-input OR gate

2-input OR gate 3-input AND gate

2-input OR gate

FIGURE 3.9 IC logic circuit
design for a minimum POS form
of a function using a vertical-input
scheme

 The main difference between the design of an SOP form (AND/OR form) of circuit and
a POS form (OR/AND form) of circuit is the placement of the AND and the OR gates. For an
SOP form of circuit, the AND gates feed into an OR gate—hence the name AND/OR form. For
a POS form of circuit, the OR gates feed into an AND gate—hence the name OR/AND form.

74 Chapter 3 Introduction to Logic Circuit Analysis and Design

 Here is a more efficient way to design a logic circuit for function F2. Listing 3.2 shows a
complete VHDL design for the function F2 5 1X 1 Y 2 # 1X 1 Y 2 # 1X 1 Z 2 .

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb2 is port (

 X, Y, Z : in std_logic;
 F2 : out std_logic
);
end comb2;

architecture Boolean_function of comb2 is
begin
 F2 ,5 (not X or Y) and (X or not Y) and (X or not Z);
end Boolean_function;

LISTING 3.2 Complete VHDL design for the function F2 5 1X 1 Y 2 # 1X 1 Y 2 # 1X 1 Z 2 (project: comb2)

3.4 GENERATING DETAILED SCHEMATICS

All the circuits that we have drawn up to now are functional logic diagrams; that is, they are
functionally correct but lack the details necessary to show the actual IC connections (or wir-
ing) required to build a circuit on a PC board or in the lab. The circuit shown in Figure 3.10a
is an example of a detailed schematic for the function F1 5 A #B 1 C #B using off-the-shelf
advanced CMOS (complementary metal-oxide semiconductor) devices. The circuit shown in
Figure 3.10a is in NAND/NAND form, which will be covered in the next section. Datasheets
for Texas Instruments logic devices are available online at http://ti.com. When the ti window
opens, select Logic, User Guides, GO; then click on Logic. Choose a logic family such as AC
(Advanced CMOS); and select GO. When all the devices for that family appear, click on the
device you want, then click on the Datasheet Icon. The datasheet provides the input pins, output
pins, and power pins (VCC and GND) for the package.

∙B + C

A
B

C
B

F1

F1 = A
-

(a)

GND
Reference
designator

Part value Pin number
V

CC
*

14 7
14 7

CD74AC04
CD74AC00IC2

IC2c

IC2a

IC2b

Output pins

Input pins Four 2-input NAND gates
per IC package

IC1b

Six NOT gates
per IC package

3

3

6

9
8

10

4 5

4

2

121
IC1a

IC1

* + 5V∙B
-

A

B
F2

∙

F2 = A
-

(b)

GND

Reference
designator

Part value Pin number

V
CC

*

14 7CD74AC86

Four 2-input XOR gates
per IC package

3
2

1
IC1a

IC1

* + 5V
∙B + A∙B

-
 = A ⊕ B

FIGURE 3.10
Detailed sche-
matics: (a) circuit
using multiple IC
devices; (b) circuit
using a single gate
in an IC device

www.itpub.net

 3.4 Generating Detailed Schematics 75

 In Figure 3.10b, we show a detailed schematic for the function F2 5 A #B 1 A #B 5 A!B.
This IC has four XOR gates in the same package, and we are only using one. The following
important items are necessary when drawing a detailed schematic:

 1. Identify the part number for each IC in the circuit.
 2. Show the pin numbers (also referred to as pin assignments) for all ICs in the circuit.
 3. Show the power connections (VCC and GND) for all the ICs in the circuit.

Many companies require their designers to provide detailed schematics so that an accurate
record can be kept for each design. In addition, they require a written record to explain how the
circuit works. This information is archived by companies so that they can keep complete and
accurate records of their designs.
 Listing 3.3 shows a complete VHDL design for the functions F1 5 A #B 1 C #B and
F2 5 A!B.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb3 is port (
 A, B, C : in std_logic;
 F1, F2 : out std_logic
);
end comb3;

architecture Boolean_funtions of comb3 is
begin
 F1 ,5 (not A and B) or (C and not B);
 F2 ,5 A xor B;
end Boolean_funtions;

LISTING 3.3 Complete VHDL design for the functions F1 5 A #B 1 C #B and F2 5 A!B (project:
comb3)

 Waveform 3.1 shows waveform diagrams for the VHDL design for the Boolean functions
F1 5 A #B 1 C #B and F2 5 A!B.

+

+

+

+

+ 0a

b 0

c

f1

f2

0

0

0

Name Value
0 ns 200 ns 400 ns WAVEFORM 3.1 Waveform

diagrams for the VHDL
design for the Boolean
functions F1 5 A #B 1 C #B
and F2 5 A!B

 Note that function F1 is 1 when A is 0 and B is 1, F1 is also 1 when C is 1 and B is 0, and F1
is 0 for all other combinations of A, B, and C. Note that the function F2 is only 1 when A is not
equal to B otherwise F2 is 0. The simulation shows that the VHDL design functions correctly.
 One of the nice things about using a hardware description language such as VHDL is that
you do not have to draw detailed schematics to obtain a circuit on a system board such as the
BASYS 2 board or the NEXYS 2 board, because the circuits are connected up internally via
the bit pattern that is generated by the software. Only the external pin connections for each of
the signals in the entity have to be declared. None of the pin connections for power have to be
declared. Just apply power to the system board via the USB connector to the computer.

76 Chapter 3 Introduction to Logic Circuit Analysis and Design

3.5 DESIGNING CIRCUITS IN NAND/NAND AND NOR/NOR FORM

In manual designs using discrete (or separate) IC devices, NAND and NOR gates are preferable
to AND and OR gates. There are three reasons this is true: (1) NAND gates are generally faster
than AND gates, and NOR gate are generally faster than OR gates in the same logic family;
(2) NAND gates and NOR gates are available with a larger variety of fan-ins (gate inputs) to
choose from than AND gates and OR gates; and (3) fewer IC packages are required to design
circuits that use NAND gates and NOR gates because they are functionally complete gates, as
discussed in Chapter 1.
 A procedure for manually designing a logic circuit in NAND/NAND form is shown in
Figure 3.11. First, design the circuit in AND/OR form, and then convert the circuit into NAND/
NAND form, as shown in Figure 3.11 using the graphical design method for NAND/NAND
form.

 AND gate

AND gate

AND gate NAND gate

NAND gate

orNAND gate

NAND gate

NAND gate

NAND gateAND gate

OR gate

≡ ≡

OR gate

Apply
double-
negation
theorem

Step 1
(First draw circuit in SOP
form, i.e., AND/OR form)

Step 2
(Apply DNT)

Step 3
(Use NAND gates)

FIGURE 3.11
Graphical Design
Method for NAND/
NAND form

 A procedure for manually designing a logic circuit in NOR/NOR form is shown in Figure
3.12. First, design the circuit in OR/AND form, and then convert the circuit into NOR/NOR
form, as shown in Figure 3.12 using the graphical design method for NOR/NOR form.

AND gate

OR gate

OR gate

OR gate NOR gate

NOR gate

orNOR gate

NOR gate

NOR gate

NOR gateOR gate≡ ≡

AND gate

Apply
double-
negation
theorem

Step 1
(First draw circuit in POS
form, i.e., OR/AND form)

Step 2
(Apply DNT)

Step 3
(Use NOR gates)

FIGURE 3.12
Graphical design
method for NOR/NOR
form

 Consider the manual design of a circuit to implement the reduced Boolean function
F1 5 A #B #C 1 B #C 1 A #C in NAND/NAND form using the graphical design method. Since
the function is already expressed in SOP form, we just have to draw the circuit in AND/OR form
then convert the circuit to NAND/NAND form as shown in Figure 3.13.

www.itpub.net

 3.5 Designing Circuits in NAND/NAND and NOR/NOR Form 77

 The application of the double-negation theorem (DNT) is not shown in Figure 3.13 because
this can be done mentally without drawing all the NOT gate pairs.
 Listing 3.4 shows a complete VHDL design for the function F1 5 A #B #C 1 B #C 1 A #C.

A
B
C

B
C

A
C

F1

2-input AND gate

3-input AND gate

3-input OR gate

2-input AND gate

F1

A
B
C

B
C

A
C

2-input NAND gate

3-input NAND gate

3-input NAND gate

2-input NAND gate

(b)(a)

≡

FIGURE 3.13 Converting a circuit from AND/OR form to NAND/NAND form

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb4 is port (
 A, B, C : in std_logic;
 F1 : out std_logic
);
end comb4;

architecture Boolean_function of comb4 is
begin
 F1 ,5 (not A and not B and not C) or (B and C) or (A and C);
end Boolean_function;

LISTING 3.4 Complete VHDL design for the function F1 5 A #B # C 1 B #C 1 A #C (project: comb4)

 Consider the manual design of a circuit to implement the reduced Boolean function
F2 5 X # Z 1 X #Z 1 Y in NOR/NOR form using the graphical design method. To follow
the graphical design method, we must first express the function F2 in POS form, which is
F2 5 1X 1 Z 2 # 1X 1 Z 2 #Y . Now the circuit must be drawn in OR/AND form and then con-
verted to NOR/NOR form as shown in Figure 3.14.

X

Z

X

Z

Y

F2

2-input OR gate

2-input OR gate 3-input AND gate

(b)(a)

X

Z

X

Z

Y

F2

2-input NOR gate

2-input NOR gate 3-input NOR gate

≡

FIGURE 3.14 Converting a circuit from OR/AND form to NOR/NOR form

78 Chapter 3 Introduction to Logic Circuit Analysis and Design

 The application of the DNT is not shown in Figure 3.14 because this can be done mentally
without drawing all the NOT gate pairs.
 Listing 3.5 shows a complete VHDL design for the function F2 5 1X 1 Z 2 # 1X 1 Z 2 #Y .

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb5 is po.5rt (
 X, Y, Z : in std_logic;
 F2 : out std_logic
);
end comb5;

architecture Boolean_function of comb5 is
begin
 F2 ,5 not ((X or Z) and (not X or not Z) and not Y);

--POS form for F2
 --F2 ,5 (n ot X and not Z) or (X and Z) or Y;

--This is an alternate description for F2
 --i.e., an SOP form for F2
end Boolean_function;

LISTING 3.5
Complete VHDL
design for the
function F2 5

1X 1 Z 2 # 1X 1 Z 2 #Y
(project: comb5)

 Reminder: A comment may be placed in VHDL code by using two hyphens in series, that
is, --, as shown in Listing 3.5.

3.6 PROPAGATION DELAY TIME

Circuit delays are caused by signals passing through the components that make up the circuit.
Worst-case delay is caused by a signal passing through the slowest delay path in the circuit. Each
wire (or connector) and each gate has a propagation delay time, which is the time it takes a
signal applied at its input to travel from the input to the output. The propagation delay time of a
wire is dependent on its length and its cross-sectional area. It is also dependent on the material
that the wire is made out of, such as copper, silver, and gold. Gold has the best conductivity,
followed by silver and then copper. In terms of just the physical dimensions, a longer wire has a
longer propagation delay time than a shorter wire, and a wire with a smaller cross-sectional area
has a longer propagation delay time than a wire with a larger cross-sectional area. Remember
that even wires have a propagation delay time that usually cannot be ignored in a circuit, if the
circuit is operated at a very high frequency.
 The abbreviation tp is used as a relative measure of the time it takes for a signal to propagate
through a gate. Figure 3.15 shows a NOT gate, an AND gate, and an OR gate with their sym-
bols, their Boolean functions, and their propagation delay times. The propagation delay times
are generally different because they are all different circuits. The propagation delay times for
single-gate circuits is in the order of only a few nanoseconds. A nanosecond is one billionth of a
second (or 1029 seconds) and is the time it takes for electricity to travel through a length of wire
approximately 1 foot or about 13 meter.

F2

F2 = A∙B

F1

F1 = A
-

F3

F3 = A + B

A

Output delay = t
p1

NOT gate AND gate OR gate

Output delay = t
p2

Output delay = t
p3

A

B B

A

FIGURE 3.15 A NOT
gate, an AND gate,
and an OR gate with
their symbols, their
Boolean functions,
and their propagation
delay times

www.itpub.net

 3.7 Decoders 79

 The propagation delay time, tp, is the average of tPLH and tPHL, which are specified in the
data sheets for the ICs. The propagation delay time (high-to-low-level output, or tPHL) is the
delay time through a gate when the output changes from a high (H) value to a low (L) value.
The propagation delay time (low-to-high-level output, or tPLH) is the delay time through a gate
when the output changes from a low (L) value to a high (H) value. Waveform 3.2 shows a wave-
form diagram that illustrates both tPHL and tPLH for the NOT gate in Figure 3.15.

F1

A

t
PHL

t
PLH

WAVEFORM 3.2 Waveform diagram
illustrating both tPLH and tPHL for the NOT
gate in Figure 3.15

 Delays add up. For example, three similar NOT gates connected in cascade or in series
(where one output feeds into the next) cause a propagation delay time of three times the propaga-
tion delay time of one of the NOT gates, or 3tp1. Sometimes NOT gates are used to slow down
or delay a signal through a circuit.
 Delays also add up for all gate types, including NOT gates, AND gates, and OR gates as
shown in Figure 3.16 for the function F4 5 A #C 1 A #C 1 B.

 The worst-case delay time through the circuit in Figure 3.16 is the path from the input to the
output that has the longest delay time—that is, delay 1 in the circuit in Figure 3.16. The delay
times through the wires in the circuit in Figure 3.16 were ignored, but they would increase the
overall delay time through the circuit slightly. So,

Worst-case delay time 5 tp1 1 tp2 1 tp3 5 tpNOT gate 1 tpAND gate 1 tpOR gate

In general, faster circuits have shorter delay times. Also, faster circuits have the fewest number
of cascaded components from the input to the output of the circuit.

3.7 DECODERS

Figure 3.17a shows a very useful circuit called a decoder that utilizes NOT gates and AND
gates. A circuit that converts a binary code applied to n input lines to one of 2n different output
lines is called an n-to-2n line decoder. A decoder with n input lines can convert 2n different
binary codes applied to its input lines into 2n mutually exclusive outputs. Each code applied to

Circuit delay is t
p2

+ t
p3

Circuit delay is t
p1

 + t
p3

Circuit delay is t
p1

 + t
p2

+ t
p3

Delay 1

Delay 2

Delay 3

F4

A

C

A

C

B

FIGURE 3.16 Worst-case delay time
through the circuit

80 Chapter 3 Introduction to Logic Circuit Analysis and Design

its input is converted to a corresponding single bit on the output. Figure 3.17a shows the circuit
diagram for a 2-line to 4-line decoder, which we will just call a 2-to-4 decoder.

F1

F0

F3

F2

F0 = B1∙B0

(a) (b)

B1 B0

B1

B0

0

1

2

3

0

2-to-4
decoder

1

F1 = B1∙B0

F2 = B1∙B0

F3 = B1∙B0

FIGURE 3.17 2-to-4 decoder:
(a) discrete IC circuit diagram;
(b) logic symbol

 Figure 3.17b shows a logic symbol for a 2-to-4 Decoder. A decoder can also be thought of
as a minterm generator because it generates the minterms at its outputs for each of the binary
values applied to its inputs. For the inputs B1 B0 in Figure 3.17a, observe that the outputs are
F0 1B1, B0 2 5 B1 # B0 5 m0, F1 1B1, B0 2 5 B1 # B0 5 m1, F2 1B1, B0 2 5 B1 # B0 5 m2, and
F3(B1,B0) 5 B1?B0 5 m3. Using this fact, it is very easy to manually design combination logic
circuits for Boolean functions using a decoder with discrete ICs gates, as we will show in the
next section.
 In Figure 3.17a, when the binary input B1B0 is 00, output F0 evaluates to 1 and outputs F1,
F2, and F3 evaluate to 0. When the binary input B1B0 is 01, output F1 evaluates to 1 and outputs
F0, F2, and F3 evaluate to 0. When the binary input B1B0 is 10, output F2 evaluates to 1 and
outputs F0, F1, and F3 evaluate to 0. When the binary input B1B0 is 11, output F3 evaluates to
1 and outputs F0, F1, and F2 evaluate to 0. This explanation is represented by the truth table for
the 2-to-4 decoder shown in Table 3.1.

TABLE 3.1 Truth table for the 2-to-4

decoder in Figure 3.17

Select inputs Outputs

B1 B0 F0 F1 F2 F3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

 Outputs F0 through F3 in Table 3.1 are active-high outputs; that is, each decoded input
results in just one 1 on the outputs. If we change the 1s to 0s and the 0s to 1s for the outputs in
Table 3.1, we obtain a 2-to-4 decoder with active-low outputs; that is, each decoded input results
in just one 0 on the outputs. Larger decoders (3-to-8, 4-to-16, 5-to-32, etc.) have similar truth
tables that operate in a similar manner. Decoder circuits are available as discrete off-the-shelf
IC devices. Decoders are often used in microprocessor or microcontroller systems as an address
decoder that selects a specific device in the system such as a RAM (random-access memory),
a ROM (read-only memory), or an I/O (input/output) device via the outputs of the decoder.

www.itpub.net

 3.7 Decoders 81

 Listing 3.6 shows a complete VHDL design for the 2-to-4 decoder.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb6 is port (
 B1, B0 : in std_logic;
 F0, F1, F2, F3 : out std_logic
);
end comb6;

architecture Boolean_functions of comb6 is
begin
 F0 ,5 not B1 and not B0;
 F1 ,5 not B1 and B0;
 F2 ,5 B1 and not B0;
 F3 ,5 B1 and B0;
end Boolean_functions;

LISTING 3.6
Complete VHDL
design for the 2-to-4
decoder (project:
comb6)

 Waveform 3.3 shows waveform diagrams for the VHDL design for the 2-to-4 decoder.

+

+

+

+

+

+

0b1

b0 0

f0

f1

f2

1

0

0

f3 0

Name Value 0 ns 200 ns WAVEFORM 3.3 Waveform diagrams
for the VHDL design for the 2-to-4
decoder

 Off-the-shelf decoders are usually equipped with one or more enable inputs—some active
high and some active low. A decoder with an enable input is also called a demultiplexer. Table
3.2 shows the truth table for a 3-to-8 decoder with an active high enable input G1, an active low
enable input G2, and active-low outputs. The 3-to-8 decoder shown in Table 3.2 is very similar
to the off-the-shelf Texas Instruments CD74AC138 3-line to 8-line decoder/demultiplexer. As
discussed earlier, logic products for Texas Instruments and data sheets are available online at
http://ti.com.

TABLE 3.2 Truth table for the 3-to-8 decoder/demultiplexer

Enable
inputs

Select inputs Outputs

G1 G2 B2 B1 B0 F0 F1 F2 F3 F4 F5 F6 F7

0 3 3 3 3 1 1 1 1 1 1 1 1

3 1 3 3 3 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1 1 1 1 1 1

1 0 0 1 0 1 1 0 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1 1 1

1 0 1 0 0 1 1 1 1 0 1 1 1

1 0 1 0 1 1 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 1 1 1 1 1 0

82 Chapter 3 Introduction to Logic Circuit Analysis and Design

 Using only the 0 in the column of the output function F0, we can write the Boolean function

for F0 as F0 5 G1 # G2 # B2 #B1 # B0 or as F0 5 G1 #G2 # B2 # B1 # B0. In VHDL, the latter form is
written as

F0 ,5 not (G1 and not G2 and not B2 and not B1 and not B0).

 Listing 3.7 shows a complete VHDL design for the 3-to-8 decoder/demultiplexer in Table 3.2.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb7 is port (
 G1, G2, B2, B1, B0 : in std_logic;
 F0, F1, F2, F3, F4, F5, F6, F7 : out std_logic
);
end comb7;

architecture Boolean_functions of comb7 is
begin
 F0 ,5 not (G1 and not G2 and not B2 and not B1 and not B0);
 F1 ,5 not (G1 and not G2 and not B2 and not B1 and B0);
 F2 ,5 not (G1 and not G2 and not B2 and B1 and not B0);
 F3 ,5 not (G1 and not G2 and not B2 and B1 and B0);
 F4 ,5 not (G1 and not G2 and B2 and not B1 and not B0);
 F5 ,5 not (G1 and not G2 and B2 and not B1 and B0);
 F6 ,5 not (G1 and not G2 and B2 and B1 and not B0);
 F7 ,5 not (G1 and not G2 and B2 and B1 and B0);
end Boolean_functions;

LISTING
3.7 Complete VHDL
design for the 3-to-8
decoder (project:
comb7)

3.7.1 Designing Logic Circuits with Decoders and Single Gates
It is rather easy to manually design a logic circuit using a decoder and a single gate (AND gate,
OR gate, NAND gate, or NOR gate). The design technique utilizes the fact that a decoder gener-
ates all possible minterms for the input variables. ORing the required minterms for the 1s of the
function is the job of an OR gate when designing with a decoder that has active high outputs. If
a decoder has active low outputs, then ORing the minterms is the job of a NAND gate drawn as
an OR form—that is, its DeMorgan equivalent gate symbol.
 ORing the required minterms for the 0s of the function is the job of a NOR gate when
designing with a decoder that has active high outputs. If a decoder has active low outputs, then
ORing the minterms is the job of an AND gate drawn as an OR form—that is, its DeMorgan
equivalent gate symbol.
 When designing with a decoder and a gate, the function does not have to be reduced.
Table 3.3 shows the truth table for the function F1(A,B,C) 5 Sm(2,3,5,7).

A B C F1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

TABLE 3.3 Truth table

for function F1

www.itpub.net

 3.7 Decoders 83

 Figure 3.18a shows a design for the function F1(A,B,C) 5 Sm(2,3,5,7) in Table 3.3 using a
3-to-8 decoder with an OR gate.

m0

m1

m2

m3

m4

m5

m6

m7

m0

m1

m2

m3

m4

m5

m6

m7

A

F1 F1
(b)(a)

B

C

GND

V
CC

A

B

C 0

1

2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3-to-8
decoder

OR gate DeMorgan equivalent
gate symbol for a
NAND gate

3-to-8
decoder/

demultiplexer

G1

G2

FIGURE 3.18 Design of the function F1(A,B,C) 5 Sm(2,3,5,7) (a) using a 3-to-8
decoder with active high outputs for the 1s of the function F1 and (b) using a 3-to-8
decoder/demultiplexer with active low outputs for the 1s of the function F1

 Figure 3.18b shows an equivalent design for the function F1(A,B,C) 5 Sm(2,3,5,7) in Table
3.3 using a 3-to-8 decoder/demultiplexer with a NAND gate. Notice that both designs use the
function expressed as the minterms of the 1s of the function F1.
 Listing 3.8 shows a complete VHDL design for the function F1(A,B,C) 5 Sm(2,3,5,7).

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb8 is port (
 A, B, C : in std_logic;
 F1 : out std_logic
);
end comb8;

architecture Boolean_function of comb8 is
begin
 F1 ,5 (not A and B and not C) or (not A and B and C) or

--minterms 2 and 3
 (A and not B and C) or (A and B and C);

--minterms 5 and 7
end Boolean_function;

LISTING 3.8 Complete VHDL design for the function F1(A,B,C) 5 Sm(2,3,5,7) (project: comb8)

 The function F1 expressed as the minterms of the 0s of the function is written as F1(A,B,C)
5 Sm(0,1,4,6). Figure 3.19a shows a design for the function F1(A,B,C) 5 Sm(0,1,4,6) using a
3-to-8 decoder with a NOR gate, which ORs the minterms and complements the result.

84 Chapter 3 Introduction to Logic Circuit Analysis and Design

 Figure 3.19b shows an equivalent design for the function F1(A,B,C) 5 Sm(0,1,4,6) using
the 3-to-8 decoder/demultiplexer with an AND gate. If you are confused with the names associ-
ated with the DeMorgan equivalent gate symbols, now is a good time to review the DeMorgan
equivalent gate symbols back in Chapter 1, Section 1.5.1.
 When implementing a function with a decoder, it is best to use the fewest number of 1s or
0s to make up the function so that the fan-in of the gate is as small as possible. If there are fewer
1s in the function, use the compact minterm form for the 1s of the function to obtain the design;
however, if there are fewer 0s in the function, use the compact minterm form for the 0s of the
function. Additional gates can also be added to provide for additional outputs, thus allowing
more than a single function to be implemented with a decoder.
 Listing 3.9 shows a complete VHDL design for the function F1(A,B,C) 5 Sm(0,1,4,6).

m0m0

m1

m2

m3

m4

m5

m6

m7

0

1

2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

G2

G1

1

2

m7

m6

m5

m4

m3

m2

m1

A

F1 F1
(b)(a)

B

C

GND

V
CC

A

B

C

NOR gate DeMorgan equivalent
gate symbol for an
AND gate

3-to-8
decoder/

demultiplexer

3-to-8
decoder

FIGURE 3.19 Design for
the function F1(A,B,C)
5 Sm(0,1,4,6): (a) using
a 3-to-8 decoder with
active high outputs for
the 0s of the function
F1; (b) using a 3-to-8
decoder/demultiplexer
with active low outputs
for the 0s of the function
F1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb9 is port (
 A, B, C : in std_logic;
 F1 : out std_logic
);
end comb9;

architecture Boolean_function of comb9 is
begin
 F1 ,5 not ((not A and not B and not C) or (not A and not B and C) or

--minterms 0 and 1
 (A and not B and not C) or (A and B and not C));

--minterms 4 and 6
end Boolean_function;

LISTING 3.9 Complete VHDL Design for the function F1(A,B,C) 5 Sm(0,1,4,6) (project: comb9)

www.itpub.net

 3.8 Multiplexers 85

3.8 MULTIPLEXERS

Figure 3.20a shows a very versatile circuit called a multiplexer or MUX that utilizes a NOT
gate, a couple of AND gates, and an OR gate shown in AND/OR form. A MUX is a circuit that
is used to direct one of 2n data inputs to a single output. Because n select lines are used to select
each of the 2n data input signals and direct it to the output, a MUX is also called a data selec-
tor. Figure 3.20a shows the circuit diagram for a 2-line to 1-line MUX, which we will just call
a 2-to-1 MUX.

 To observe how the MUX works, look at the switch representation in Figure 3.20c. When the
select input S0 is 0, output F is D0, and when S0 is 1, output F is D1. The equation of the MUX
in Figure 3.20a provides the same result when S0 is 0 and when S0 is 1 as shown as follows:

F 5 D0 #S0 1 D1 #S0 5 D0 when S0 5 0

F 5 D0 #S0 1 D1 #S0 5 D1 when S0 5 1

The logic symbol for the MUX in Figure 3.20b implies that F 5 D0 when S0 5 0 and F 5 D1
when S0 5 1. The truth table for the 2-to-1 MUX is shown in Table 3.4.

0
1

D0

F
F F

F = D0∙S0 + D1∙S0
D1

D0

D1

D0
D1

S0
S0

0

1

MUX

S0
(b) (c)(a)

FIGURE 3.20
Multiplexer: (a) gate-
level circuit diagram;
(b) logic symbol; (c)
switch representation

Inputs Output

S0 D1 D0 F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

TABLE 3.4 Truth table for

the 2-to-1 MUX in Figure 3.20

 Notice in the truth table that output F follows (is the same as) input D0 when S0 is 0, but
output F follows (is the same as) input D1 when S0 is 1. Based on this observation, we can write
a compact or compressed form of the truth table for the 2-to-1 MUX as shown in Table 3.5.

TABLE 3.5 Compressed truth

table for the 2-to-1 MUX in Figure

3.20

S0 F

0 D0

1 D1

86 Chapter 3 Introduction to Logic Circuit Analysis and Design

 Listing 3.10 shows a complete VHDL design for the function F 5 D0 #S0 1 D1 #S0 for the
2-to-1 MUX.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb10 is port (
 D1, D0, S0 : in std_logic;
 F : out std_logic
);
end comb10;

architecture Boolean_function of comb10 is
begin
 F ,5 (D0 and not S0) or (D1 and S0);
end Boolean_function;

LISTING 3.10
Complete
VHDL design
for the function
F 5 D0 #S0 1 D1#S0
for the 2-to-1 MUX
(project: comb10)

 Larger MUXs or data selectors (4-to-1, 8-to-1, 16-to-1, etc.) have similar truth tables and
operate in a similar manner with more inputs. Table 3.6 shows the compressed truth table for a
2-to-1 MUX with an active low strobe input G. When the strobe input is 1 the output is 0, and
when the strobe input is 0 the output is selected from one of the two data inputs and is routed
to the output. The 2-to-1 MUX shown in Table 3.6 performs the same as one-fourth of an off-
the-shelf Texas Instruments CD74AC157 Quadruple 2-line to 1-line data selector/multiplexer.
CD stands for compliant device and is a lead-free device. When discarded, these devices do not
pollute the world by contributing to lead contamination because they are lead free.

G0 S0 F

1 3 0

0 0 D0

0 1 D1

TABLE 3.6 Compressed

truth table for the 2-to-1 MUX

with an active low strobe input G

 Figure 3.21a shows the logic symbol and output function for the 2-to-1 MUX in Table 3.6,
and Figure 3.21b shows the logic symbol and output function for a 4-to-1 MUX without a strobe
input.

F1

G

F1 = G∙(D0∙S0 + D1∙S0)

D0

D1

S0

0

1

MUX

F2

F2 = D0∙S1∙S0 + D1∙S1∙S0

+ D2∙S1∙S0 + D3∙S1∙S0

D0
D1
D2
D3

S0S1

S

0

1

0
1

2

3

MUX

(b)(a)

FIGURE 3.21 (a) Logic
symbol and output
function for the 2-to-1
MUX with an active low
strobe input G; (b) Logic
symbol and output
function for a 4-to-1
MUX without a strobe
input

 MUXs are used to implement designs for logic functions and to provide data-flow paths
between circuits by using MUXs as steering or routing circuits. We discuss the implementation
of logic functions with MUXs in the following section.
 Listing 3.11 shows a complete VHDL design for the 2-to-1 MUX and the 4-to-1 MUX in
Figure 3.21.

www.itpub.net

 3.8 Multiplexers 87

3.8.1 Designing Logic Circuits with MUXs
To obtain a MUX design for a logic function, we use the compact minterm form of the function.
To implement the function, connect the data inputs of the MUX to the function values (VCC for
1 and GND for 0). Connect the select lines of the MUX to the input variables. To generate the
design for a function, simply write the compact minterm form for the function; that is, the func-
tion does not have to be reduced.
 Figure 3.22a shows a MUX design for the function F1(X,Y,Z) 5 Sm(1,2,5,7) or the func-
tion F1(X,Y,Z) 5 Sm(0, 3, 4, 6). Simply connect the data inputs of the MUX to the values of the
function F1. If you wish, you may write the truth table for the function and then use the function
values in the truth table, or you can simply make the connections for the 1s and by default the
rest of the connections are for the 0s, or vice versa. The select inputs S3, S2, and S1 are then
connected to the input X, Y, and Z respectively. The MUX design shown in Figure 3.22a uses
an 8-to-1 MUX, such as a Texas Instruments CD74AC151, with an active low strobe input. The
MUX design in Figure 3.22b does not have a strobe input.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb11 is port (
 D3, D2, D1, D0, S1, S0, G : in std_logic;
 F1, F2 : out std_logic
);
end comb11;

architecture Boolean_functions of comb11 is
begin
 F1 ,5 not G and ((D0 and not S0) or (D1 and S0));
 F2 ,5 (D0 and not S1 and not S0) or (D1 and not S1 and S0) or
 (D2 and S1 and not S0) or (D3 and S1 and S0);
end Boolean_functions;

LISTING 3.11
Complete VHDL
design for the 2-to-1
MUX and the 4-to-1
MUX in Figure 3.21
(project: comb11)

 With this manual procedure, you can obtain a MUX design for any 2-variable function
using a 4-to-1 MUX, or you can obtain a MUX design for any 3-variable function using an
8-to-1 MUX. For a MUX design you need a 2n-to-1 MUX for any n-variable function. Notice
that you do not have to reduce a function to obtain a MUX design, but you must obtain the truth
table of the function or obtain the function in compact minterm form for its 1s or 0s.
 Listing 3.12 shows a complete VHDL design for the function F1(X,Y,Z) 5 Sm(1,2,5,7).

0
1
1
0
0
1
0
1

0
1
2
3
4
5
6
7 2

S

GND

V
CC

X

F1

Y Z

1 0

0
1
1
0
0
1
0
1

0
1
2
3
4
5
6
7 2

S

GND

V
CC

X

F1

Y Z

1 0

(b)(a)

MUX MUX

FIGURE 3.22 MUX design:
(a) with a strobe input;
(b) without a strobe input

88 Chapter 3 Introduction to Logic Circuit Analysis and Design

 As you can see, the manual MUX design methods that we presented are rather easy to use
and understand, but you still must obtain a detailed logic diagram for the circuit so that the
circuit can be wired up on a breadboard or on a PC board. The modern way is to write VHDL
code for the design and then download the bit pattern into a CPLD or an FPGA. The software
automatically wires up the circuit on the CPLD or FPGA chip. You must remember to assign the
external package pins for each of the signals that are placed in the entity.

3.9 HAZARDS

Hazards are classified as either function hazards or logic hazards. In this section, we present
a brief introduction to these two different types of hazards. A hazard can cause a logic glitch,
where a glitch is an undesired momentary pulse that occurs at the output of a circuit. In some
cases, glitches in a circuit can cause a circuit to fail.

3.9.1 Function Hazards
A hazard that can cause a glitch in the output signal of a combinational logic function imple-
mented with gates, when two or more input signals are changed at the same time in the circuit
due to the way the function is defined, is called a function hazard. A function hazard can be
spotted by plotting the function in a K-map. If two or more input signals are changed in the
function to produce the output, a logic glitch may occur. In a combinational logic circuit, the
designer has no control over function hazards. Figure 3.23 illustrates the occurrence of static
and dynamic function hazards and their corresponding glitches for the function F1.
 The function in Figure 3.23 is a 3-input XOR gate. All hardware implementations of this
function will contain the function hazards, so showing the circuit is not necessary. The directed
lines in the K-map show the transitions that cause each of the function hazards and their cor-
responding glitches—that is, a static 1 function hazard, a static 0 function hazard, a dynamic
1-to-0 function hazard, and a dynamic 0-to-1 function hazard. Notice in Figure 3.23 that a runt
pulse can also occur. A runt pulse is a pulse with small amplitude.
 Function hazards cannot be eliminated; however, the output signals from circuits that con-
tain function hazards may be used by simply waiting until the function hazards settle (die out).
After the output signals become stable or the function hazards settle, the signals may be used.
This concept is the basis of synchronous circuits that are introduced in Chapters 6 and 9, where
settling occurs between clock ticks.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity comb12 is port (
 X, Y, Z : in std_logic;
 F1 : out std_logic
);
end comb12;

architecture Boolean_function of comb12 is
begin
 F1 ,5 (not X and not Y and Z) or (not X and Y and not Z) or

--minterms 1 and 2
 (X an d not Y and Z) or (X and Y and Z);

--minterms 5 and 7
end Boolean_function;

LISTING 3.12
Complete VHDL
design for the
function F1(X,Y,Z)
5 Sm(1,2,5,7)
(project: comb12)

www.itpub.net

 3.9 Hazards 89

3.9.2 Logic Hazards
A hazard that can cause a glitch in the output signal of a combinational logic function imple-
mented with gates, when only one input signal is changed due to delays in the particular circuit
used to implement the function, is called a logic hazard. Both static and dynamic logic hazards
can be eliminated by adding additional product terms in the Boolean equation implemented by
the circuit (this requires adding more gates in the implementation). To eliminate a logic hazard,
a designer must recognize that a logic hazard may occur and add the necessary circuitry to pre-
vent the logic hazard. Some functions do not contain logic hazards. Figure 3.24 shows a design
specification with a single static 1 logic hazard. The single static 1 logic hazard represented
in Figure 3.24a exists for any realization of the minimized logic function. Figure 3.24b shows
a circuit for the function and a plausible explanation for the single static 1 logic hazard to be
present.
 Figure 3.25a shows how the single static 1 logic hazard can be eliminated, and Figure 3.25b
shows a circuit for the function that eliminates the single static 1 logic hazard.
 Things you should know about eliminating static and dynamic logic hazards:

• Logic hazards may occur for a minimized function implemented for the 1s or 0s of the func-
tion. If the product terms for the function are linked to each other, as shown for the K-map
for the 1s of the function in Figure 3.25a, then the function contains no logic hazards.

• For the minimized 1s or 0s of a function, one can add logic hazard cover terms if required,
which are consensus terms, to eliminate static and dynamic logic hazards.

• Cover terms are nonessential product terms that are used to link each product term in the
minimized form in the K-map for the function.

1 3 7 5

0 1 0 1

0 2 6 4

1 0 1 00

1

0

1

C

F1

F1

1

0
F1

1

0
F1

1

0
F1

00 01 11 10
AB

Static 1 function hazard m0 to m3 (ABC = 000 to ABC = 011)
BC = 00 to BC = 11
(Two signals change)

m1 to m2 (ABC = 001 to ABC = 010)
BC = 01 to BC = 10
(Two signals change)

m0 to m7 (ABC = 000 to ABC = 111)
ABC = 000 to ABC = 111

(Three signals change)

m1 to m6 (ABC = 001 to ABC = 110)
ABC = 001 to ABC = 110

(Three signals change)

Logic 0
glitch

Logic 1
glitch (runt pulse)

Logic 1
glitch

Logic 0
glitch

Static 0 function hazard

Dynamic 1-to-0 function hazard

Dynamic 0-to-1 function hazard

FIGURE 3.23 Function hazards—hazards that result from two or more
input signals changing at the same time

90 Chapter 3 Introduction to Logic Circuit Analysis and Design

• In some cases, product terms for a minimized form of the function are linked to each other
and require no additional cover terms.

• By chain linking all the minimized product terms in a K-map for the function, you will
obtain the required cover terms to add to the minimized form of the function to eliminate
all the static and dynamic logic hazards for the function.

• A function that has all of its products terms for the 1s or 0s of the function linked to each
other does not have static or dynamic logic hazards and is called a logic hazard-free
function.

0 1 1

(a)

(b)

0

1 1 00

1

0

0

1

C

A
C

B

Y

Z

C

F2

F2

F2 = A∙C + B∙C
-

00 01 11 10

AB

Static 1 logic hazard
With AB = 11,
C changes from
1 to 0.

Consider the negated input to have additional delay.
With AB = 11, when C changes from 1 to 0, Y changes to
0 before Z changes to 1, causing F2 to momentarily
change to 0.

Logic 0
glitch

FIGURE 3.24 (a) Design specification with a single static 1 logic hazard;
(b) circuit for the function and a plausible explanation for the single static
1 logic hazard to be present

0 1 10

1 1 00

1

0

C

F2

00 01 11 10

AB
F2 = A∙C + B∙C

-
 + A∙B

Logic hazard cover
term is the consensus term

(a)

0

1

A
C

B
C

A
B

F2

(b)

No logic hazard With AB = 11,
C changes from 1 to 0.
Static 1 logic hazard
has been eliminated.

With AB = 11, this gate provides the logic
hazard cover term A∙B that holds F2 at 1 when
C changes from 1 to 0.

FIGURE 3.25 (a) How a single static 1 logic hazard is eliminated;
(b) circuit for the function that eliminates the single static 1 logic hazard

www.itpub.net

 Problems 91

 Logic hazards may be eliminated; however, the output signals from circuits that contain
logic hazards may also be used by simply waiting until the logic hazards settle (die out). After
the output signals become stable or the logic hazards settle, the signals may be used. This con-
cept is the basis of synchronous circuits that are introduced in Chapters 6 and 9, where settling
occurs between clock ticks.

 3.18 Analyze the logic circuit shown in Figure P3.18 to obtain
its function F in SOP form and its truth table.

Section 3.2 Integrated Circuit Devices
 3.1 What can physical hardware devices called integrated

circuits (ICs) do?
 3.2 What type of wire is used to connect together the die and

the package leads or pins inside an IC?
 3.3 What does an IC with a hermetical seal provide?
 3.4 Name a few different types of integrated circuit

packages.
 3.5 Which IC package type has balls of solder on its pins

that are soldered directly to a PC board?

Section 3.3 Analyzing and Designing Logic Circuits
 3.6 What is the process of circuit analysis?
 3.7 What is the process of circuit design or synthesis?
 3.8 Show a common symbol for normally closed relay contacts.
 3.9 Show a common symbol for normally open relay contacts.
 3.10 Relays or switches connected in series provide what

logic operation?
 3.11 Relays or switches connected in parallel provide what

logic operation?
 3.12 What is the name that is used for logic switching circuit

in power applications?
 3.13 Analyze the logic switching circuit shown in Figure

P3.13 to obtain its function F.

PROBLEMS

+ –

Lamp

A B C

DB

F

L

FIGURE P3.13

 3.14 Show the design for an OR gate ladder logic circuit driv-
ing a lamp.

 3.15 Show the design for an AND gate ladder logic circuit
driving a control relay (CR).

 3.16 Show the design for an NAND gate ladder logic circuit
driving a lamp.

 3.17 Analyze the logic circuit shown in Figure P3.17 to obtain
its function F in SOP form and its truth table.

A

B

C

B

F

FIGURE P3.17

 3.19 Analyze each of the following circuits in Figure P3.19
to obtain their Boolean function in SOP form and their
truth table.

A

B

C

B

F

FIGURE P3.18

 3.20 Design a circuit that provides the 1’s complement at its
output for each 4-bit binary number applied at its input.
Use the input signals IN3, IN2, IN1, and IN0 and the

A

B

A

C

F1

W

X

Y

X

F2

FIGURE P3.19

92 Chapter 3 Introduction to Logic Circuit Analysis and Design

 3.35 Why do you need to know how to provide detailed sche-
matics of your designs?

 3.36 Show a complete VHDL design for the functions
F1 5 A #B 1 A #B and F2 5 A #B.

 3.37 What is the purpose of running a simulation on a VHDL
design?

 3.38 To obtain a circuit on a system board, why is a detailed
schematic not required when using a hardware descrip-
tion language such as VHDL?

Section 3.5 Designing Circuits in NAND/NAND and
NOR/NOR Form
 3.39 Design a two-1s-out-of-four event detector for input sig-

nals A, B, C, D and output signal F. Use a vertical-input
scheme and fan-in reduction if possible using NOT gates
(six in a package), 4-input NAND gates (two in a pack-
age), and an 8-input NAND gate (one in a package). Use
the graphical design method.

 3.40 Show a complete VHDL design for a two-1s-out-of-four
event detector for input signals A, B, C, D and output
signal F.

 3.41 Design a circuit using the 1s of the function F(X,Y,Z) 5
Sm(1,2,4). If possible, reduce the function. Draw the cir-
cuit for the function using just NAND gates in NAND/
NAND form and NOT gates. Use the graphical design
method.

 3.42 Show a complete VHDL design for a circuit using the 1s
of the function F(X,Y,Z) 5 Sm(1,2,4).

 3.43 Design a circuit using the 1s of the function F(X,Y,Z) 5
Sm(1,2,4). If possible, reduce the function. Draw the cir-
cuit for the function using just NOR gates in NOR/NOR
form and NOT gates. Use the graphical design method.

 3.44 Design a circuit using the 1s of the function F(W,X,Y,Z)
5 Sm(0,2,5,7,8,10) 1 Smd(12, 13). If possible, reduce
the function. Draw the circuit for the function using just
NAND gates in NAND/NAND form and NOT gates.
Use the graphical design method.

 3.45 Show a complete VHDL design for a circuit using the
1s of the function F(W,X,Y,Z) 5 Sm(0,2,5,7,8,10) 1
Smd(12,13). Hint: Choose 0s for the don’t cares, to
reduce the number of minterms in the VHDL expres-
sion for F.

 3.46 Design a circuit using the 1s of the function F(W,X,Y,Z)
5 Sm(0,2,5,7,8,10) 1 Smd(12,13). If possible, reduce
the function. Draw the circuit for the function using just
NOR gates in NOR/NOR form and NOT gates.

Section 3.6 Propagation Delay Time
 3.47 Which metal has the best conductivity—copper, gold, or

silver? Which has the second best conductivity? Which
has the third best conductivity?

 3.48 Provide an equation for tp in terms of tPHL and tPLH.
 3.49 Describe what is meant by the term worst-case delay

time through a circuit.
 3.50 Draw a circuit for a function FDELAY 5 A made up of

four cascaded NOT gates. If each NOT gate has a delay

corresponding output signals OUT3, OUT2, OUT1, and
OUT0. Hint: The 1’s complement of a binary number is
simply the complement of each individual bit.

 3.21 Show a complete VHDL design for a circuit that pro-
vides the 1’s complement at its output for each 4-bit
binary number applied at its input. Use the input signals
IN3, IN2, IN1, and IN0 and the corresponding output
signals OUT3, OUT2, OUT1, and OUT0. Hint: The 1’s
complement of a binary number is simply the comple-
ment of each individual bit.

 3.22 Design a circuit that provides the 2’s complement at its
output for each 3-bit binary number applied at its input.
Use the input signals X, Y, and Z and the corresponding
output signals F1, F2, and F3, and only AND, OR, and
NOT gates. Hint: The 1’s complement of a binary num-
ber is simply the complement of each individual bit. The
2’s complement of a binary number is the 1’s comple-
ment of the binary number 1 1 (i.e., the 1 is added to the
least signifi cant bit).

 3.23 Show a complete VHDL design for a circuit that pro-
vides the 2’s complement at its output for each 3-bit
binary number applied at its input. Use the input signals
X, Y, and Z and the corresponding output signals F1, F2,
and F3. Hint: The 1’s complement of a binary number is
simply the complement of each individual bit. The 2’s
complement of a binary number is the 1’s complement
of the binary number 1 1 (i.e., the 1 is added to the least
signifi cant bit).

 3.24 Design a majority of 1s circuit such that the output signal
F is 1 when a majority of the input signals X, Y, and Z are
1. Only use OR, AND, and NOT gates.

 3.25 Use VHDL to design a majority of 1s circuit such that
the output signal F is 1 when a majority of the input
signals X, Y, and Z are 1.

Section 3.4 Generating Detailed Schematics
 3.26 What is the difference between a functional logic or sche-

matic diagram and a detailed logic or schematic diagram?
 3.27 List a good online source for obtaining datasheets for IC

devices as mentioned in the text.
 3.28 How many gates are contained in the IC device IC1 in

Figure 3.10a in the text? Name the gates.
 3.29 Which pin must be connected to VCC and which pin must

be connected to GND for IC device IC1 in Figure 3.10a
in the text?

 3.30 How many gates are contained in the IC device IC2 in
Figure 3.10a in the text? Name the gates.

 3.31 Which pin must be connected to VCC and which pin must
be connected to GND for IC device IC2 in Figure 3.10a
in the text?

 3.32 How many gates are contained in the IC device IC1 in
Figure 3.10b in the text? Name the gates.

 3.33 Which pin must be connected to VCC and which pin must
be connected to GND for IC device IC1 in Figure 3.10b
in the text?

 3.34 List the important items that are necessary when draw-
ing a detailed schematic.

www.itpub.net

 Problems 93

 3.67 Show a complete VHDL design for the function F(X,Y,Z)
5 Sm(0,1,2,3,5,7). To simplify the function in VHDL,
rewrite the function with a minimum number of minterms.

Section 3.9 Hazards
 3.68 Name the two classifi cations of hazards.
 3.69 What can a hazard cause at the output of a circuit?
 3.70 List the reason a glitch can occur in a combinational

logic circuit as a result of a function hazard.
 3.71 List the four types of function hazards covered in the

book.
 3.72 List the two types of glitches covered in the book.
 3.73 What is a runt pulse?
 3.74 Can function hazards be eliminated? Describe how the

outputs of circuits that contain function hazards can be
used.

 3.75 List the reason a glitch can occur in a combinational
logic circuit as a result of a logic hazard.

 3.76 Can logic hazards be eliminated? If so, describe how.
 3.77 Eliminate all logic hazards that can result for the 1s of

the Boolean function F1(A,B,C) 5 Sm(1,3,4,5). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.78 Eliminate all logic hazards that can result for the 0s of
the Boolean function F1(A,B,C) 5 Sm(1,3,4,5). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.79 Eliminate all logic hazards that can result for the 1s of
the Boolean function F2(A,B,C) 5 S(1,2,3,6). Show the
K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.80 Eliminate all logic hazards that can result for the 0s of
the Boolean function F2(A,B,C) 5 S(1,2,3,6). Show the
K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.81 Eliminate all logic hazards that can result for the 1s of
the Boolean function F3(A,B,C) 5 S(0,2,3,4,6). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.82 Eliminate all logic hazards that can result for the 0s of
the Boolean function F3(A,B,C) 5 S(0,2,3,4,6). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.

 3.83 Determine the number of logic hazards that the circuit
shown in Figure P3.83 could contain. What product
terms are necessary to eliminate these logic hazards?
Write a logic hazard-free function for the circuits.

of tp, what is the output delay of the circuit from its input
to its output?

 3.51 Draw a circuit for the function FD1 5 A #B implemented
with an AND gate and NOT gates. Determine the worst-
case output delay for the circuit, assuming each gate has
a delay of tp.

 3.52 Draw a circuit for the function FD2 5 X 1 Y imple-
mented with an OR gate and NOT gates. Determine the
worst-case output delay for the circuit, assuming each
gate has a delay of tp.

Section 3.7 Decoders
 3.53 Draw and label a gate level circuit for a 3-to-8 decoder

with active low outputs. Also draw and label a logic
symbol for the 3-to-8 decoder.

 3.54 Design a circuit for the function F(X,Y,Z) 5 Sm(0,2,7)
with a 3-to-8 decoder with active high outputs. Use an
appropriate gate to provide the smallest possible fan-in
to implement the function.

 3.55 Show a complete VHDL design for the function F(X,Y,Z)
5 Sm(0,2,7).

 3.56 Design a circuit for the function F(X,Y,Z) 5 Sm(0,1,5,6,7)
with a 3-to-8 decoder/demultiplexer that has an active
low enable input and active low outputs. Use an appro-
priate gate to provide the smallest possible fan-in to
implement the function.

 3.57 Show a complete VHDL design for the function F(X,Y,Z)
5 Sm(0,1,5,6,7). To simplify the function in VHDL,
rewrite the function with a minimum number of minterms.

Section 3.8 Multiplexers
 3.58 Write the equation for a 4-to-1 MUX (data selector); then

draw and label the circuit. Use D3 down to D0 as the
data inputs, S1 down to S0 as the select inputs, and F as
the output. Draw a logic symbol for the circuit, and then
show its truth table in compressed form.

 3.59 Show a complete VHDL design for a 4-to-1 MUX (data
selector). Use D3 down to D0 as the data inputs, S1 down
to S0 as the select inputs, and F as the output.

 3.60 Obtain a MUX design for the AND function F(A,B)
5 A?B using an off-the-shelf MUX without a strobe input.

 3.61 Show a complete VHDL design for the AND function
F(A, B) 5 A?B.

 3.62 Obtain a MUX design for the NOR function F(A,B)
5 A 1 B using an off-the-shelf MUX without a strobe
input.

 3.63 Show a complete VHDL design for the NOR function
F(A,B) 5 A 1 B.

 3.64 Obtain a MUX design for the XOR function F(X,Y)
5 X #Y 1 X #Y using an off-the-shelf MUX with an
active low strobe input.

 3.65 Show a complete VHDL design for the XOR function
F1X ,Y 2 5 X #Y 1 X #Y .

 3.66 Obtain a MUX design for the function F(X,Y,Z)
5 Sm(0,1,2,3,5,7) using an off-the-shelf MUX with an
active low strobe input.

B

D

A
B
C
A
C
D

F4

FIGURE P3.83

CC h a p t e r

Combinational Logic Circuit
Design with VHDL

Chapter Outline

 4.1 Introduction 94

 4.2 VHDL 94

 4.3 The Library Part 95

 4.4 The Entity Declaration 96

 4.5 The Architecture Declaration 97

 4.6 Dataflow Design Style 99

 4.7 Behavioral Design Style 102

 4.8 Structural Design Style 106

 4.9 Implementing with Wires and Buses 112

 4.10 VHDL Examples 116

 Problems 121

4.1 INTRODUCTION

Up to now we have only introduced VHDL code using Boolean functions. In this chapter, you
will learn many different ways to write VHDL to synthesize or create digital hardware for
combinational logic circuits. Combinational logic circuits are digital circuits without feedback,
which means that the outputs are totally dependent on the external inputs to the circuits.

4.2 VHDL

To write VHDL code to create digital hardware, you must create a design entity. An entity is
defined by The American Heritage Dictionary as “Something that exists as a particular and dis-
crete unit.” A design entity is therefore a complete definition for a block of hardware. A design
entity in VHDL has three parts called the library part, entity declaration, and architecture
declaration.
 In the hardware description language VHDL, a design entity may be visualized as consist-
ing of the parts shown in Figure 4.1.

CC4

94

www.itpub.net

 4.3 The Library Part 95

 The library part consists of a standard logic library with its data type definitions, func-
tions, and procedures. The entity declaration (ED) specifies the interface or the external
inputs and outputs of a digital circuit. The architecture declaration (AD) specifies the func-
tional composition or functionality of a digital circuit.

4.3 THE LIBRARY PART

To make a complete VHDL design, we need to place a library part that consists of a library
clause and a use clause within each design entity so that we can use a standard logic library
with its data type definitions, functions, and procedures. Once you write a VHDL design, you
must analyze, compile, or synthesize the code with a vendor’s design tool. We will use the terms
analyze, compile, and synthesize interchangeably. The synthesize process identifies syntactical
errors—that is, those errors governing the rules of the language. The library is a storage place
that contains packages that supply information for your design. The library also provides stor-
age for your compiled VHDL code. Figure 4.2 shows three types of libraries that are available
for VHDL designs. These are the main libraries we will use.

Design entity

Library part

Entity declaration

Architecture declaration

FIGURE 4.1 Visualization of a
design entity in the hardware
description language VHDL

 The WORK and STD libraries in Figure 4.2 are implicitly declared (built in), but IEEE
library is not and must be added to a VHDL design via a library clause to make it visible to

VHDL
source code

(VHDL design)

VHDL
analyzer,
compiler,

or synthesizer

Library WORK
(built in)

Library STD
(built in)

Library IEEE
(must be added)

FIGURE 4.2
Available library
units

96 Chapter 4 Combinational Logic Circuit Design with VHDL

the design. The WORK library is the default library, and this is the storage place for the cur-
rent design you are working with and where that design is placed after it is compiled. The
STD library is the storage place for the miscellaneous and logical operators such as not, and,
and nor. The STD library also contains relational operators such as 5, ., ,. Refer to Section
4.10, VHDL Examples (at the end of this chapter), for a list of all the supported operators. The
IEEE library is the storage place for 9-value data types called std_logic in the package IEEE.
STD_LOGIC_1164. The main reason for using the IEEE library is for design portability—that
is, you can use your VHDL source code with many different software vendors.
 Listing 4.1 shows a library clause and a use clause for a VHDL design.

--These are the library and use clauses (The Library Part)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

LISTING 4.1 Making the IEEE library and IEEE.STD_LOGIC_1164 package visible to a design

 The library IEEE clause makes the IEEE library visible to a design. A library contains
packages. The IEEE.STD_LOGIC_1164 package is specified by the use clause so that data
type definitions, functions, and procedures that reside in the package are visible to the design.
A specific component name can be used inside the package, but the wild card ALL is used to
indicate that all the declarations inside the package can be used.

4.4 THE ENTITY DECLARATION

Think of a black box and inputs A, B, C, D (or terminal signals) and an output F as shown in
Figure 4.3.

 The term black box is used, as in circuit theory, to specify only the terminal or external
signals for a design entity and not its contents. What is inside the box or the contents of the black
box are not visible. A black box is equivalent to a symbol in a schematic. The terminal signals
may represent the pins on an integrated circuit chip or the terminal signals of an embedded
hardware block within a larger design. Small_ckt (short for Small_circuit) is simply the name or
label that is used to identify a specific design entity.
 Listing 4.2 shows the ED (entity declaration) for the black box in Figure 4.3.

Output on
the right

A

B

C

D

 Small_ckt

Inputs on
the left

F

FIGURE 4.3
Black box for
a design entity
named Small_ckt

--This is the entity declaration for design entity Small_ckt
entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

LISTING 4.2 Entity
declaration for black
box named Small_ckt
in Figure 4.3

www.itpub.net

 4.5 The Architecture Declaration 97

 Things you should notice about the VHDL entity declaration in Listing 4.2:

• Comments start with --.
• Keywords (reserved words) are shown in boldface type in the VHDL code. Refer to Sec-

tion 4.10, VHDL Examples (at the end of this chapter), for a list of all keywords that are
supported for synthesis.

• An ED must start with the keyword entity.
• VHDL is not case sensitive and has a free format, which means that there is no formatting

convention for spacing and indentations.
• Signal names (such as A, B, etc.) and labels (such as Small_ckt) have the following rules:

(a) the first character must be a letter, (b) numbers may be included as well as the under-
score character (_), (c) no adjacent underscore characters may be used, (d) an underscore
character may not be used as the last character, and (e) spaces are not allowed. Keywords
(reserved words) cannot be used as signal names or labels. Signal names and labels are
formally called identifiers.

• Input signals are mode in.
• Std_logic is the data type used in most digital designs [this is a 9-value system of which

only the values 0, L (weak 0—pull-down resistor), 1, H (weak 1—pull-up resistor), Z (high
impedance—tri-state), and - (don’t care) are supported for synthesis, i.e., hardware imple-
mentations]. Note: Values L, H, and Z are case sensitive; that is, they must be uppercase.
Just for your information, the values U (uninitialized), W (weak unknown), and X (forcing
unknown) are not supported by synthesis. This leaves only six values that are supported
for synthesis. The values U, W, and X are only supported for simulations of designs on a
computer but not for synthesizing designs via hardware components. The Xilinx compiler
supports the value - (don’t care), but not all compilers do.

• Output signals are mode out.
• Observe where semicolons are required and where a semicolon is not allowed, that is,

before “);” in the entity.
• A port must open with a left parenthesis and end with a right parenthesis.
• The entity must terminate with the keyword end.

Data Type Bit

A signal can be assigned the data type “bit.” The data type “bit” can only take on the values
of 1 and 0. This limits the usefulness of this data type, because it cannot have the values L,
H, Z, or -, which are the additional data types used by data type “std_logic.” Also, VHDL
has strict data type checking so that one data type cannot be assigned to a different data type.
Data type “std_logic” is the preferred data type for most designs because it has six values
that are supported for synthesis rather than the data type “bit,” which only has two values.

4.5 THE ARCHITECTURE DECLARATION

The contents of a black box represent the actual digital circuit for the design. In VHDL, the
actual digital circuit is expressed in an architecture declaration. Figure 4.4 shows the contents
of the black box labeled Small_ckt.

98 Chapter 4 Combinational Logic Circuit Design with VHDL

 VHDL has three design styles available for use in an architecture declaration. We will use
each of these design styles for the digital circuit in Figure 4.4 to help you to understand their
syntax. The three design styles are listed as follows:

 1. Dataflow design style.
 2. Behavioral design style.
 3. Structural design style.

4.5.1 Comments about a Dataflow Design Style
Only (1) Boolean equations, (2) conditional signal assignments (CSAs), and (3) selected signal
assignments (SSAs) can be used in a dataflow design style. These signal assignments are con-
current statements (CSs) because they are evaluated by the VHDL compiler concurrently or
at the same time. The order in which they are written is not important. The simplest form of a
dataflow design style is a Boolean equation. The equation implies how the hardware should be
created; therefore, implication is used to create the hardware required for a circuit when using
a dataflow design style.

4.5.2 Comments about a Behavioral Design Style
Only (1) Boolean equations, (2) if statements, and (3) case statements can be used in a behav-
ioral design style. These equations and statements must be placed inside a process. The
complete process is a concurrent statement; however, the statements inside the process are
evaluated sequentially by the VHDL compiler—that is, in the order in which they are written in
the process. A behavioral architecture declaration creates the structure for a circuit by inference
(creating the circuit from deduction by reasoning from the general to the specific).

4.5.3 Comments about a Structural Design Style
Hardware blocks or components are used in a structural design style. An annotated circuit or
schematic must be provided to use this design style—that is, a schematic with all the input,
output, and internal signals clearly labeled. The schematic is separated into hardware blocks
or components and then simply connected together just like wiring a digital circuit using gates.
The installation or placement of the hardware blocks or components are referred to in VHDL
as instantiation and their interconnections are referred to as port mapping. Instantiation and
port-mapping statements are concurrent statements because they are evaluated at the same
time. The order in which they are written is not important. A structural architecture declaration
creates the structure for a circuit by the way you wire it up or connect the components.
 As you will see later, a combination of design styles can also be used together in an archi-
tecture declaration to generate a hardware circuit for a system. We will refer to a collection of
modules or components that form a hardware circuit in VHDL as a system. When we use a
combination of design styles, we will call the name of the architecture mixed to indicate that a
mixture of design styles is being used.

A

B

C

D

Internal signals

A_B

C_D

Port signals

F

FIGURE 4.4 Digital
circuit: contents of the
black box for design
entity named Small_
ckt in Figure 4.3

www.itpub.net

 4.6 Datafl ow Design Style 99

4.6 DATAFLOW DESIGN STYLE

Listing 4.3 shows an AD (architecture declaration) with a dataflow design style for the digital
circuit in Figure 4.4—that is, the design entity named Small_ckt.

--This is a dataflow AD for Small_ckt
architecture dataflow of Small_ckt is
begin
 F ,5 (A and not B) nor (not C and not D);
end dataflow;

LISTING 4.3
Dataflow architecture
declaration with a
Boolean equation

 Things you should notice about the VHDL architecture declaration in Listing 4.3:

• The architecture declaration must start with the keyword architecture.
• The architecture declaration must reference the name of the design entity—that is, Small_

ckt for this example.
• The keyword begin is required before the simple signal assignment statement for F—that

is, a Boolean equation. A single Boolean equation is sufficient; however, multiple Boolean
equations could be specified if we add a declaration for the internal signals A_B and C_D.

• A Boolean expression is assigned to the signal F via the signal assignment symbol (,5).
• A semicolon is required to terminate the simple signal assignment statement.
• VHDL has no order of precedence for logic operators with two signals (or operands) such

as and and nor; therefore, parentheses must be used to establish precedence for these logic
operators. Not has the highest precedence of all the operators in VHDL and therefore does
not need parentheses—that is, the result for not B and not (B) are the same.

• The dataflow AD must terminate with the keyword end.

 If there is more than one signal assignment statement between begin and end, all of the
signal assignment statements are evaluated at the same time.
 Complete VHDL code for the design entity Small_ckt is obtained by combining Listings
4.1, 4.2, and 4.3 as shown in Listing 4.4.

--These are the library and use clauses
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

--This is the entity declaration for Small_ckt
entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

--This is a dataflow architecture declaration for Small_ckt
architecture dataflow of Small_ckt is
begin
 F ,5 (A and not B) nor (not C and not D);
end dataflow;

LISTING 4.4
Complete VHDL
design entity for
Small_ckt using a
dataflow architecture
declaration with a
Boolean equation
(project: Small_ckt_
Bool)

 To check for VHDL design correctness means to check for correct functionality. Waveform
4.1 shows a simulation waveform diagram with the correct functionality of design entity Small_
ckt. This can easily be confirmed by creating a truth table for function F and then checking the
waveform diagram with the truth table output.

100 Chapter 4 Combinational Logic Circuit Design with VHDL

 A different architecture declaration can be used with the same entity declaration to imple-
ment the same hardware block. Rather than a Boolean equation, two other types of signal
assignment statements may be used in a dataflow architecture declaration. A conditional signal
assignment (CSA) is one type. Another type is a selected signal assignment (SSA).
 Listing 4.5 shows a complete VHDL design entity for Small_ckt using a conditional signal
assignment in an architecture declaration.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

architecture dataflow of Small_ckt is
begin
 --writing F in terms of its 1s
 F ,5 ‘1’ when ((A and not B) nor (not C and not D)) 5 ‘1’ else
 ‘0’;
--or one of the following:
 --writing F in terms of its 0s, observe that nor must be changed to or
-- F ,5 ‘0’ when ((A and not B) or (not C and not D)) 5 ‘1’ else
-- ‘1’;
 --writing F in terms of its 1s
-- F ,5 ‘1’ when (A and not B) 5 ‘1’ nor (not C and not D) 5 ‘1’ else
-- ‘0’;
 --writing F in terms of its 1s
-- F ,5 ‘1’ when (A 5 ‘1’ and B 5 ‘0’) nor (C 5 ‘0’ and D 5 ‘0’) else
-- ‘0’;
end dataflow;

LISTING 4.5 Complete VHDL design entity for Small_ckt using a dataflow architecture declaration with a conditional signal
assignment (project: Small_ckt_CSA)

 Things you should notice about the VHDL design in Listing 4.5:

• Only one signal assignment symbol (,5) is used for a conditional signal assignment.
• A single bit is represented as '1' or '0'—that is, using single quotation marks.
• A Boolean expression or signal may be compared to a bit using the “5” relational operator.

Parentheses must be used around a Boolean expression when it is compared to a bit using a
relational operator.

• Parentheses determine the order of the precedence for logic operators.
• A semicolon is required to terminate a conditional signal assignment.
• The when conditions in a conditional signal assignment are prioritized. The first output

statement listed (F ,5 '1') has the highest priority and will be executed first, if the condi-

+

+

+

+

+

Name

0

0

0

0

0

0 ns 200 ns 400 ns 600 ns 800 nsValue

a

b

c

d

f

WAVEFORM 4.1
Simulation for the
correct functional-
ity of design entity
Small_ckt

www.itpub.net

 4.6 Datafl ow Design Style 101

tion is true. If the condition is not true, the first output statement is skipped and the second
output statement (F ,5 '0') will be executed next, and so on (for additional conditions).

• If a conditional signal assignment does not have the last else (the else after the last when), a
bad thing can happen: the circuit is not implemented correctly, because one or more inputs
are not used. The output of the circuit is tied to GND or VCC making the circuit nonfunc-
tional or useless. For combinational circuits, be sure to include the last else (the else after
the last when) so that latches or nonfunctional circuits are not inadvertently created on the
outputs of the circuits.

• The simulation for the VHDL design in Listing 4.5 is the same as Waveform 4.1 shown earlier.

 Listing 4.6 shows a complete VHDL design entity for Small_ckt using a selected signal
assignment (SSA).

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

architecture dataflow of Small_ckt is
begin
 with (A and not B) nor (not C and not D) select
 F ,5 ‘1’ when ‘1’,
 ‘0’ when ‘0’,
 ‘0’ when others;
end dataflow;

LISTING 4.6
Complete VHDL
design entity for
Small_ckt using a
dataflow architec-
ture declaration with
a selected signal
assignment (project:
Small_ckt_SSA)

 Things you should notice about the VHDL design in Listing 4.6:

• The evaluation of a Boolean expression provides the selection value.
• Parentheses determine the order of precedence for logic operators.
• Only one signal assignment symbol (,5) is used for a selected signal assignment.
• A single bit is represented as '1' or '0'—that is, using single quotation marks.
• The selected signal assignment examines the value of the expression and executes only the

signal assignment that matches the when value, and all the others signal assignments are
skipped.

• When others; is required to terminate a selected signal assignment statement. When oth-
ers is used to ensure that all possible select values for the expression (A and not B) nor (not
C and not D) are included in the choice list after when. The std_logic values that must be
included for the expression are 0, L, 1, H, Z, and -. Note that the single dash “-” represents
a don’t care in VHDL.

• Observe where commas are required in a selected signal assignment.
• The conditions for a selected signal assignment are not prioritized like a conditional signal

assignment and thus require conditions that do not overlap or are mutually exclusive values.
• Order is not important, and the only output statement that is executed is the one that meets

the condition.
• The simulation for the VHDL design in Listing 4.6 is the same as Waveform 4.1 shown

earlier.

 Listing 4.4, 4.5, or 4.6 may be used for the hardware design of the digital circuit in Figure
4.4 using a dataflow architecture declaration. You should now be very familiar with how to cre-
ate VHDL design entities using a dataflow architecture declaration.

102 Chapter 4 Combinational Logic Circuit Design with VHDL

4.7 BEHAVIORAL DESIGN STYLE

Statements within a process—that is, in the body of the process (between begin and end pro-
cess)—are evaluated in the order they are written (one after the other or sequentially), which
is similar to the evaluation of statements in normal software programming languages such as
Pascal, C, Java, Perl, and Ruby. Even though a process contains statements that are evaluated
sequentially, a complete process statement, from process through end process, is a concurrent
statement. This means that a complete process statement is evaluated concurrently with another
complete process statement or with other concurrent statements in an architecture declaration.
The fact that a complete process statement is a concurrent statement might not seem important
to you at this time, but it will be very important later, so keep this in mind.
 We will now show how to implement the design entity named Small_ckt using behavioral
architecture declarations. To refresh your memory, Figures 4.3 and 4.4 are combined in Figure
4.5 to provide you with a handy reference.

Small_ckt

(a)
(b)

A

B

C

D

A

F
B
C
D

Internal signals

A_B

C_D

Port signals

F

FIGURE 4.5 Design entity
Small_ckt (a) black box, and
(b) contents of black box

 The VHDL design entity for a behavioral architecture declaration must have the library clause,
the use clause, and the entity declaration as shown in Listing 4.7 for design entity Small_ckt.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

LISTING 4.7 Library
clause, use clause,
and entity declaration
for Small_ckt

architecture behavioral of Small_ckt is
 --internal signal declarations for A_B and C_D
 signal A_B, C_D: std_logic;
begin
example: process (A, B, C, D, A_B, C_D)
begin
 A_B ,5 A and not B;
 C_D ,5 not C and not D;
 F ,5 A_B nor C_D;
end process example;
end behavioral;

LISTING 4.8
Behavioral archi-
tecture declaration
for design entity
Small_ckt using a
process with Boolean
equations

 Listing 4.8 shows a behavioral architecture declaration using a process with Boolean equa-
tions, for design entity Small_ckt.

www.itpub.net

 4.7 Behavioral Design Style 103

 Things you should notice about the VHDL design in Listing 4.8:

• Internal signals (such as A_B and C_D) must be declared before the first begin, because
it is illegal in VHDL to declare signals in a process. These internal signals are only visible
inside the architecture.

• A process statement is used after the first begin. An optional name such as “example:”
(notice that it must be followed by a colon) may be used to name a process. The optional
name may or may not be included following end process (this is your choice).

• The process statement contains a list of signals called the sensitivity list. The process
wakes up or executes when an event occurs for any one of the signals A, B, C, D, A_B, and
C_D in the sensitivity list—that is, when a signal in the sensitivity list changes from 1 to 0
or from 0 to 1. When a process wakes up, it executes once and then suspends (stops or does
nothing) and waits for the next event to occur.

• All the inputs must be included in the sensitivity list, including the internal signals, or the
process will not work properly.

• The keyword is may be used after the sensitivity list but is practically never used because it
is optional.

• A process has a begin and an end just like an architecture.
• Each statement in a process ends with a semicolon.
• Each statement in a process is executed in the order that it is written in the process. You

may consider that the process executes in zero time each time a signal in the sensitivity list
changes. Writing the statements in a different order may result in a different design func-
tionality. A simulation run can be made to verify proper design functionality.

• Using intermediate simple signal assignments in a process tends to show the circuit layout.

 Note that Boolean equations can be used inside a process; however, conditional signal
assignments (CSAs) and selected signal assignments (SSAs) cannot be used inside a process.
 Complete VHDL code for the design entity Small_ckt using a behavioral architecture dec-
laration with Boolean equations is obtained by combining the Listings for 4.7 and 4.8 (project:
Small_ckt_Proc_Bool). The simulation for the VHDL design obtained by combining Listings 4.7
and 4.8 is the same as Waveform 4.1 shown earlier.
 Listing 4.9 shows a behavioral architecture declaration using a process with an if–then–
else statement for design entity Small_ckt.

architecture behavioral of Small_ckt is
begin
process (A, B, C, D)
begin
 if (A 5 ‘1’ and B 5 ‘0’) nor (C 5 ‘0’ and D 5 ‘0’) then F ,5 ‘1’;
 else F ,5 ‘0’;
 end if;
end process;
end behavioral;

LISTING 4.9 Behavioral architecture declaration for design entity Small_ckt using a process with
an if–then–else statement

 Things you should notice about the VHDL design in Listing 4.9:

• A process statement is used after the first begin. Notice that the process was not named as
it was in Listing 4.8. Remember, naming a process is optional.

• The process statement contains a list of signals called the sensitivity list. The process wakes
up or executes when an event occurs—that is, when a signal in the sensitivity list changes

104 Chapter 4 Combinational Logic Circuit Design with VHDL

from 1 to 0 or from 0 to 1 (any one of the signals A, B, C, and D in the list). When a process
wakes up, it executes once and then suspends and waits for the next event to occur.

• A process declaration has a begin and an end just like an architecture declaration.
• Semicolons are required after the simple signal assignment statements F ,5 '1',

F ,5 '0' and also after end if in the process.
• The conditions in the if–then–else statements are prioritized. The first output statement

listed (F ,5 '1') has the highest priority and will be executed first, if the condition is true.
If the condition is not true, the first output statement is skipped and the second output state-
ment (F ,5 '0') will be executed next, and so on (for additional conditions).

• If an if–then–else statement does not have the last else (the else after the last then), a couple
of bad things can happen: the circuit is not combinational, because the output is latched, or
the circuit is not implemented correctly, because one or more inputs are not used. In the first
case, the output now contains a memory and is no longer a combinational circuit. In the sec-
ond case, the output of the circuit is tied to GND or VCC, making the circuit nonfunctional
or useless. For combinational circuits, be sure to include the last else (the else after the last
then) so that latches or nonfunctional circuits are not inadvertently created for the outputs
of the circuits.

• An if–then–else statement must be placed in a process between begin and end process.
• You may observe that the if–then–else statement is similar to the conditional signal assign-

ment (CSA).

 Complete VHDL code for the design entity Small_ckt using a behavioral architecture dec-
laration with a process and an if–then–else statement, is obtained by combining Listings 4.7 and
4.9 (project: Small_ckt_Proc_if). The simulation for the VHDL design obtained by combining
Listings 4.7 and 4.9 is the same as Waveform 4.1 shown earlier.
 To handle multiple conditions, if–then–else statements can be nested (a statement within a
statement). Listing 4.10 shows the code for two conditions using nested if–then–else statements.

if x 5 ‘1’ then f ,5 a;
else if y 5 ‘1’ then f ,5 b;
 else f ,5 c;
 end if;
end if;

LISTING 4.10
Nested if–then–else
statements (project:
example_Proc_if)

 Output F is prioritized such that its output is A if X is 1, B if X is 0 and Y is 1, and C if X is
0 and Y is 0. The condition for signal X has priority over the signal Y. When both signal X and
signal Y are inactive (or 0), then F is C.
 Things you should notice about the VHDL if statements in Listing 4.10:

• Nested if–then–else statements require an end if to terminate each if. If six conditions were
required then six end ifs would be required.

• For readability, line up each if, else, and end if.

 The truth table for Listing 4.10 is shown in Table 4.1.

X Y F

1 1 A Highest priority

1 0 A
T

0 1 B

0 0 C Lowest priority

TABLE 4.1 Truth

table for Listing 4.10

www.itpub.net

 4.7 Behavioral Design Style 105

 To simplify nesting, it is more efficient to use an if–then–elsif statement. Listing 4.11
shows equivalent code as Listing 4.10 using an if–then–elsif statement.

if x 5 ‘1’ then f ,5 a;
elsif y 5 ‘1’ then f ,5 b;
else f ,5 c;
end if;

LISTING 4.11
Equivalent code as
in Listing 4.10 using
an if–then–elsif state-
ment (project: exam-
ple_Proc_elsif)

 Things you should notice about the VHDL if statement in Listing 4.11:

• Using an if–then–elsif statement results in fewer lines of code (only one less line for this
simple case).

• Only one end if is required to terminate an if–then–elsif statement. If six conditions were
required then only one end if would be required when elsif is used rather than else if for
each condition after the first if.

• For readability, line up the single if, all the elsifs, the final else, and the single end if. Be
sure to use the final else to make the circuit combinational and not sequential. If you leave
off the final else and compile the design by running Synthesize – XST, you will get the
warning: “Found 1-bit latch for signal ,f.”. When you generate a latch in this manner,
your circuit may have timing problems. So if you get this warning, fix your VHDL code by
writing complete if statements.

 A case statement is often preferred to nested if statements. This is because nested if state-
ments and elsif statements can result in more logic gates, because the conditions are prioritized.
Listing 4.12 shows a behavioral architecture declaration with a process and a case statement for
design entity Small_ckt.

architecture behavioral of Small_ckt is
begin
process (A, B, C, D)
begin
 case (A and not B) nor (not C and not D) is
 when ‘1’ 5. F ,5 ‘1’;
 when ‘0’ 5. F ,5 ‘0’;
 when others 5. null;
 end case;
end process;
end behavioral;

LISTING 4.12
Behavioral archi-
tecture declaration
for design entity
Small_ckt with a
process and a case
statement

 Things you should notice about the VHDL architecture declaration in Listing 4.12:

• A case statement must be placed in a process between begin and end process.
• The case statement examines the value of the signal that is listed after case—for example,

(A and not B) nor (not C and not D)—and only executes the output statement to the right
of the symbol 5. that matches the when value for the signal and all the other output state-
ments are skipped.

• The conditions for a case statement are not prioritized like an if statement and thus require
conditions that do not overlap or are mutually exclusive values.

• When others is used to ensure that all possible select values for the signal listed after case
are included in the choice list after when. The std_logic values that must be included for the
signal are 0, L, 1, H, Z, and -. Note that the single dash “-” represents a don’t care in VHDL.
The keyword null means do nothing—that is, perform no action.

106 Chapter 4 Combinational Logic Circuit Design with VHDL

• Order is not important, and the only output statement that is executed is the one that meets
the condition.

• You may observe that the case statement is similar to the selected signal assignment (SSA).
• Observe that a semicolon is required after each signal assignment and also after the key-

word null to terminate the case statement.

 Listing 4.13 is alternate code for design entity Small_ckt with a behavioral architecture
declaration with a process, Boolean equation, and a case statement:

architecture behavioral of Small_ckt is
 --internal signal declaration for sel (or select)
 signal sel: std_logic;
begin
process (A, B, C, D, sel)
begin
 sel ,5 (A and not B) nor (not C and not D);
 case sel is
 when ‘1’ 5. F ,5 ‘1’;
 when ‘0’ 5. F ,5 ‘0’;
 when others 5. null;
 end case;
end process;
end behavioral;

LISTING 4.13
Behavioral archi-
tecture declaration
for design entity
Small_ckt with a
process, a Boolean
equation, and a case
statement

 Things you should notice about the VHDL architecture declaration in Listing 4.13:

• The signal declaration statement for sel (or select) must be placed in the signal declaration
part of the architecture, which is between architecture and the first begin. This is an inter-
nal signal, so a mode (such as in, out, or inout) must not be assigned.

• To use SEL in the process, it must be included in the sensitivity list.
• The internal signal SEL is assigned its value in the process after begin using a simple signal

assignment (Boolean equation).

 Complete VHDL code for the design entity Small_ckt using a behavioral architecture dec-
laration with a case statement is obtained by combining Listings 4.7 and 4.12 (project: Small_
ckt_Proc_case) or Listings 4.7 and 4.13 (project: Small_ckt_Proc_case_alt). The simulations
for the VHDL designs obtained by combining Listings 4.7 and 4.12 and obtained by combining
Listings 4.7 and 4.13 are the same as Waveform 4.1 shown earlier.

4.8 STRUCTURAL DESIGN STYLE

A structural architecture declaration is often referred to as a hierarchal design approach.
The procedure we use to obtain a structural design is listed as follows:
 Step 1: Partition the design into manageable hardware blocks called components.
 Step 2: Write complete VHDL code to define each component with a dataflow design style or a

behavioral design style.
 Step 3: Write the library part and the entity declaration for the top level of the structural design.
 Step 4: Declare all the internal signals and all the components between architecture and the

first begin in the architecture declaration for the top level of the structural design.
 Step 5: Instantiate the components (or place and connect the components) after the first begin

in the architecture declaration for the top level of the structural design.

www.itpub.net

 4.8 Structural Design Style 107

Step 1: Figure 4.6 shows the design entity Small_ckt partitioned or subdivided into smaller
units called components.

 Things you should notice about the design entity Small_ckt in Figure 4.6:

• The components are enclosed by dotted lines.
• The components are given the arbitrary entity names AND_1, AND_2, and OR_1. These

names (or identifiers) are used as the names of the entities when writing the definitions for
the components in step 2.

• The input and output signals of the components (component port names) are called formal
signals and are given the arbitrary signal names i1, i2, and o1. Formal signals must be used
when writing the definitions for the components in step 2.

• The components are given the arbitrary component names C1, C2, and C3. These names (or
identifiers) are used when instantiating the components in step 5.

Step 2: Listing 4.14 shows complete VHDL code to define the components AND_1, AND_2,
and OR_1. Each design should be simulated to verify correct functionality.

OR_1
i1

i2

Component, C3

o1

AND_1
i1

i2

Component, C1

o1

AND_2
i1

i2

Component, C2

o1 C_D

A_B

Component
name

Actual signals

Formal signals
(or component port names)

A

B

C

D

Entity nameComponent enclosed
by dotted lines

F

FIGURE 4.6 Design
entity Small_ckt par-
titioned or subdivided
into smaller units
called components

--Component definition for AND_1
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity and_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end and_1;

architecture dataflow of and_1 is
begin
 o1 ,5 i1 and not i2;
end dataflow;

--Component definition for AND_2
library IEEE;
use IEEE.STD_LOGIC_1164.all;

LISTING 4.14
Component defini-
tions for AND_1,
AND_2, and OR_1

(Continued)

108 Chapter 4 Combinational Logic Circuit Design with VHDL

 Things you should notice about the VHDL component definitions in Listing 4.14:

• Complete VHDL code is written for each component definition.
• The entity name for each component is AND_1, AND_2, and OR_1, respectively.
• The formal signals (or component port names) i1 (short for input1), i2, and o1 (short for

output1) must be used to define the components.

Step 3: Listing 4.15 shows the library part and the entity declaration for the top level of the
structural design for design entity Small_ckt.

entity and_2 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end and_2;

architecture dataflow of and_2 is
begin
 o1 ,5 not i1 and not i2;
end dataflow;

--Component definition for OR_1
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity or_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end or_1;

architecture dataflow of or_1 is
begin
 o1 ,5 i1 nor i2;
end dataflow;

--Structural Design (top level)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

LISTING 4.15
Library part and
entity declaration
for design entity
Small_ckt

 Things you should notice about the VHDL code for design entity Small_ckt in Listing 4.15:

• The name of the entity is Small_ckt, which represents the complete design or complete
system.

• The signals in the entity Small_ckt are the external input signals and the external output
signals for the complete design or complete system.

Steps 4 and 5: Listing 4.16 shows the internal signal declarations and the component dec-
larations, which are placed between architecture and the first begin in the architecture dec-
laration for the structural design—that is, design entity Small_ckt. Listing 4.16 also shows the
component instantiations, which are placed after the first begin.

www.itpub.net

 4.8 Structural Design Style 109

 Things you should notice about the VHDL architecture declaration in Listing 4.16:

• The signal declaration signal A_B, C_D: std_logic; is required to declare two internal
signals A_B and C_D, which are the output signals of the two AND gates in Figure 4.6.
Signals A_B and C_D are only visible inside the architecture declaration of Small_ckt.
A mode (in or out) is not required for internal signals. Internal signal declarations must
always be placed between architecture and the first begin.

• The component declarations are placed between architecture and the first begin.
• Notice that a component declaration has exactly the same information as the entity declara-

tion for the component only it starts with the word component and is terminated by end
component.

• Each component must be placed and connected in the architecture of the structural design.
This is done via the instantiation statement C1: and_1 port map (i1 5. A, i2 5. B, o1
5. A_B); for component 1, C2: and_2 port map (i1 5. C, i2 5. D, o1 5. C_D); for
component 2, and C3: or_1 port map (i1 5. A_B, i2 5. C_D, o1 5. F); for component
3. This method for connecting the components is called name association, and has the
form formal signal 5. actual signal.

• An alternate method for connecting components is called positional association. Posi-
tional association for C1 is written as C1: and_1 port map (A, B, A_B). The actual signals
must be placed in exactly the same positions as they are listed in the component declaration.
Name association is highly recommended over positional association, because it is easier to
make mistakes when using positional association.

architecture structural of Small_ckt is

--internal signal declarations for A_B and C_D
 signal A_B, C_D: std_logic;

--Component declaration for and_1
component and_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;

--Component declaration for and_2
component and_2 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;

--Component declaration for or_1
component or_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;
begin

--Component placement and connections (formally called component instantiations)
 C1: and_1 port map (i1 5. A, i2 5. B, o1 5. A_B);
 C2: and_2 port map (i1 5. C, i2 5. D, o1 5. C_D);
 C3: or_1 port map (i1 5. A_B, i2 5. C_D, o1 5. F);
end structural;

LISTING 4.16 Structural architecture declaration for design entity Small_ckt

110 Chapter 4 Combinational Logic Circuit Design with VHDL

• The order of writing the instantiation statements is not important because these are concur-
rent statements.

• The structural architecture declaration must be terminated by the keyword end.

 It should be noted that instantiation statements (or component instantiations) cannot be
placed inside a process.
 Complete VHDL code for the design entity Small_ckt using a structural architecture
declaration is obtained by combining Listings 4.14, 4.15, and 4.16. The VHDL code for the
component definitions must be placed in the same project as the VHDL code for the structural
design—that is, design entity Small_ckt—to allow the VHDL code for the structural design to
correctly compile. Listing 4.17 shows the complete VHDL code for the design entity Small_ckt,
including the definitions of the components.

--Component definition for AND_1
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity and_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end and_1;

architecture dataflow of and_1 is
begin
 o1 ,5 i1 and not i2;
end dataflow;

--Component definition for AND_2
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity and_2 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end and_2;
architecture dataflow of and_2 is
begin
 o1 ,5 not i1 and not i2;
end dataflow;

--Component definition for OR_1
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity or_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end or_1;

architecture dataflow of or_1 is
begin
 o1 ,5 i1 nor i2;
end dataflow;

--Structural Design (top level)
library IEEE;
use IEEE.STD_LOGIC_1164.all;

LISTING 4.17
Complete VHDL
code for the design
entity Small_ckt
using a structural
architecture declara-
tion, including the
definitions of the
components (project:
Small_ckt_structural).

www.itpub.net

 4.8 Structural Design Style 111

 The simulation for the VHDL design in Listing 4.17 is the same as Waveform 4.1 shown
earlier.
 As we have pointed out, the structural design style can be treated as a hierarchal design
approach by considering the components as the lower levels and the architecture declaration as
the top level. In practice, we partition the design into the desired components (the lower levels of
the hierarchy), write the definitions for the components, simulate each component to verify that
it works as expected, and then write the architecture declaration for the structure (the top level
of the hierarchy). The top level can then be simulated or run in hardware to verify that it works
as expected.
 In Chapter 2 you were introduced to a flat design approach, where each of the modules in
the system was included within a single architecture declaration. Renaming component C1 as
module 1, component C2 as module 2, and component C3 as module 3 in the circuit in Figure
4.6, we can write VHDL code for a flat design approach as shown in Listing 4.18 using a data-
flow design style for each module.

entity Small_ckt is port (
 A, B, C, D : in std_logic;
 F : out std_logic
);
end Small_ckt;

architecture structural of Small_ckt is
 signal A_B, C_D: std_logic;
component and_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;

component and_2 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;

component or_1 is port (
 i1, i2: in std_logic;
 o1: out std_logic
);
end component;

begin
 C1: and_1 port map (i1 5. A, i2 5. B, o1 5. A_B);
 C2: and_2 port map (i1 5. C, i2 5. D, o1 5. C_D);
 C3: or_1 port map (i1 5. A_B, i2 5. C_D, o1 5. F);
end structural;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Small_ckt_flat is port (
 a,b,c,d : in std_logic;
 f : out std_logic
);
end Small_ckt_flat;

LISTING 4.18 Flat
design approach for
the circuit in Figure
4.6 using a dataflow
design style for each
module (project:
Small_ckt_flat)

(Continued)

112 Chapter 4 Combinational Logic Circuit Design with VHDL

 The simulation for the VHDL design in Listing 4.18 is the same as Waveform 4.1 shown
earlier.
 Observe how much simpler it is to use a flat design approach compared to a hierarchal
design approach (or structural design style) for the simple circuit in Figure 4.6. By simpler, we
mean fewer lines of code. For medium design projects, one may elect to use a hierarchal or a flat
design approach. For a very large design project, a hierarchal design approach is very important
because this approach allows individuals in a group to work on a portion of the design in a real-
world situation.
 In a very large design project, a flat design approach suffers because it may be hard to
understand conceptually and possibly hard to modify.

4.9 IMPLEMENTING WITH WIRES AND BUSES

A wire and a bus are hardware terms. A wire carries a single bit of information. A bus, which
represents a collection of wires, carries multiple bits of information. A signal on a wire and on
a bus is shown in Figure 4.7.

architecture dataflow of Small_ckt_flat is
 signal a_b, c_d : std_logic;
begin
--Module 1, AND_1
 a_b ,5 a and not b;
--Module 2, AND_2
 c_d ,5 not c and not d;
--Module 3, OR_1
 f ,5 a_b nor c_d;
end dataflow;

C

Wire
(1 thin line) Bus

(1 thick line)

Bus signal

Bus signal

Components
of bus signal

4-bit bus
(4 thin lines)

D(3:0)

D(3:0)

D(3:0)or or

Number of lines

Bus signal

Bus indicator
(slash)

Range of D
is 3 down to 0

D(0) LSB

D(1)

D(2)

D(3) MSB

Signal

4

FIGURE 4.7 Signal
on a wire and on a
bus

 In VHDL, signal C has a data type called std_logic that we have been using throughout this
chapter. A nonbus signal or a signal for a single wire or line such as signal C may be referred to
as a scalar. Bus signal D(3:0) has a data type called std_logic_vector (3 downto 0), where D(3) is
the MSB (most significant bit) and D(0) is the LSB (least significant bit). The components of a bus
signal D(3:0) in VHDL may not be written as D3, D2, D1, and D0. A bus signal or a signal for a
number of lines such as signal D(3:0), with the range 3 down to 0, may be referred to as a vector.
 If the bus signal in Figure 4.7 were rewritten as D(0:3), then D(0) is the MSB and D(3) is the
LSB. In VHDL, the bus signal D(0:3) would be the std_logic_vector (0 to 3) data type. When
writing VHDL code to represent hardware blocks or design entities, you must choose the correct
data type for each wire and bus in the design.
 A black box for a 3-to-8 decoder is shown in Figure 4.8, drawn in two different but equiva-
lent ways. The first drawing uses thin lines to represent the individual bus wires. The second
drawing uses slashes with the number of lines to represent the buses.

www.itpub.net

 4.9 Implementing with Wires and Buses 113

Table 4.2 shows the truth table for the decoder.

D(0)

A(0)
A(1)
A(2)

D(1)
D(2)

A(2:0) D(0:7)D(3)
D(4)
D(5)
D(6)
D(7)

MSB

LSB

LSB

MSB

Decoder

Decoder

or

3 8

Individual bus
wires indicated
by thin lines

Range of A
is 2 down to 0

Range of D
is 0 to 7

FIGURE 4.8 Black box
for 3-to-8 decoder

 A behavioral architecture declaration using a case statement is shown in Listing 4.19 for the
3-to-8 decoder. The bit pattern (or code) for bus A(2:0) is binary while the bit pattern for D(0:7)
is one-hot. For a one-hot output code, only one output bit is hot or active—that is, 1—while all
other output bits are inactive or 0.

TABLE 4.2 Truth table for 3-to-8 decoder

A(2) A(1) A(0) D(0) D(1) D(2) D(3) D(4) D(5) D(6) D(7)

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

architecture behavioral of Decoder is
begin
process (A)
begin
 case A is
 when “000” 5. D ,5 “10000000”;
 when “001” 5. D ,5 “01000000”;
 when “010” 5. D ,5 “00100000”;
 when “011” 5. D ,5 “00010000”;
 when “100” 5. D ,5 “00001000”;
 when “101” 5. D ,5 “00000100”;
 when “110” 5. D ,5 “00000010”;
 when “111” 5. D ,5 “00000001”;
 when others 5. null;
 end case;
end process;
end behavioral;

LISTING 4.19
Behavioral archi-
tecture declaration
for design entity
Decoder using a case
statement

114 Chapter 4 Combinational Logic Circuit Design with VHDL

 Things you should notice about the VHDL architecture declaration in Listing 4.19:

• Signal A must be read by the process, and so signal A must be in the sensitivity list of the
process.

• Signal A represents a single signal consisting of 3 bits (a bus). A string of bits—that is,
more than one bit—must be included in double quotation marks. Recall that a single bit is
included in single quotation marks. The data type for bus signal A is std_logic_vector (2
downto 0). This must be the data type listed in the entity declaration for the signal A.

• Signal D represents a single signal consisting of 8 bits (a bus). A string of bits—that is, more
than one bit—must be included in double quotation marks. The data type for bus signal D is
std_logic_vector (0 to 7). This must be the data type listed in the entity declaration for the
signal D.

• A when others clause is required at the end of the choice list of the case statement. When
others is used to ensure that all possible select values for signal A are included in the choice
list after when. The std_logic values that must be included for signal A are 0, L, 1, H, Z, and
-. Note that the single dash “-” represents a don’t care in VHDL. The keyword null means
do nothing—that is, perform no action.

 The library clause, use clause, and entity declaration for the design entity Decoder are
shown in Listing 4.20.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Decoder is port (
 A : in std_logic_vector (2 downto 0);
 D : out std_logic_vector (0 to 7)
);
end Decoder;

LISTING 4.20
Library clause, use
clause, and entity
declaration for design
entity Decoder

 To obtain complete VHDL code for the design entity Decoder, combine the listings for 4.19
and 4.20 (project: Decoder_3t8_Proc_case).
 The waveforms shown in Waveform 4.2 represent the correct functionality of design entity
Decoder. This can easily be confirmed by comparing Waveform 4.2 with the truth table for the
decoder in Table 4.2.

+

+

+

+

+

+

+

+

+

+

+

+

+

Name 0 ns 200 ns 400 ns

0 1 2 3 4 5 6 7

128 64 32 16 8 4 2 1

0

128

0

0

0

0

128

1

0

0

0

0

0

0

0

[2]

a[2:0]

d[0:7]

[1]

[0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Value
WAVEFORM 4.2
Simulation for the
correct functional-
ity of design entity
Decoder (project:
Decoder_3t8_Proc_
case)

www.itpub.net

 4.9 Implementing with Wires and Buses 115

 Rather than declaring a bus in the entity for signal A as shown in Listing 4.20, individual
signals A2, A1, and A0 can be declared and then grouped together to form a bus using an expres-
sion called an aggregate. An aggregate is a collection or group of elements. The VHDL code in
Listing 4.21 shows how to form a bus signal A with the aggregate (A2, A1, A0). The bus signal A
is needed for the case statement in the design.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Decoder is port (
 A2,A1,A0 : in std_logic;
 D : out std_logic_vector (0 to 7)
);
end Decoder;

architecture behavioral of Decoder is
 signal A: std_logic_vector (2 downto 0);

begin
 A ,5 (A2,A1,A0);
process (A)

begin
 case A is
 when “000” 5. D ,5 “10000000”;
 when “001” 5. D ,5 “01000000”;
 when “010” 5. D ,5 “00100000”;
 when “011” 5. D ,5 “00010000”;
 when “100” 5. D ,5 “00001000”;
 when “101” 5. D ,5 “00000100”;
 when “110” 5. D ,5 “00000010”;
 when “111” 5. D ,5 “00000001”;
 when others 5. null;
 end case;
end process;
end behavioral;

LISTING 4.21
Forming a bus with
an aggregate (proj-
ect: Decoder_3t8_
Proc_case_agg)

 Things you should notice about the VHDL code in Listing 4.21:

• The data type for signals A2, A1, and A0 is std_logic as declared in the entity.
• An internal signal A is declared as std_logic_vector (2 downto 0) and placed between archi-

tecture and the first begin, because a bus signal is needed for the case statement.
• An aggregate (A2, A1, A0) is assigned to the internal signal A and placed in the architecture

after the first begin.
• The bus signal A is now available for use in the case statement.

 The simulation for the VHDL design in Listing 4.21 is the same as Waveform 4.2 shown
earlier.
 Forming a bus with an aggregate is a handy concept to know. The placement of the elements
(or the order of the elements) in the aggregate is very important. The left-most element in the
list is the MSB, while the right-most element in the list is the LSB. In Listing 4.21, making the
assignment A ,5 (A0, A1, A2) would be an error for the logic circuit, because A is defined as a
std_logic_vector (2 downto 0), assuming that A2(MSB), A1, A0(LSB).
 An aggregate can also be used to form a larger bus using the individual elements of the bus
to form the aggregate. Do not use a vector in an aggregate; however, you may use the individual
elements to form a larger bus with a larger range. Suppose we wanted to form the bus A(4:0). If

116 Chapter 4 Combinational Logic Circuit Design with VHDL

some of the values of the individual elements of the bus [say, A(4) and A(3)] must be added to A(2
downto 0) to form the larger bus then the correct way to write the aggregate is A ,5 (A(4), A(3),
A(2), A(1), A(0)). Writing the aggregate as A ,5 (A(4), A(3), A(2 downto 0)) would be a syntax
error. If you want to form a larger bus with vectors you may use the concatenation operator “&”
as follows: A ,5 (A(4) & A(3) & A(2 downto 0)). Just like the aggregate, the order in which the
elements are placed in the list is very important—that is, the left-most element in the list is the
MSB and the right-most element in the list is the LSB.

4.10 VHDL EXAMPLES

Figure 4.9 shows an alphabetical list of keywords that support synthesis.

A abs, all, alias, and, architecture, array, attribute
B begin, block, body, buffer
C case, component, configuration, constant
D downto
E else, elsif, end, entity, exit
F for, function
G generate, generic, group
I if, in, inout, is
L library, literal, loop
M map, mod
N nand, next, nor, not, null
O of, or, others, out
P package, port, procedure, process
R range, record, rem, return, rol, ror
S select, signal, sla, sll, sra, srl, subtype
T then, to, type
U until, use
V variable
W wait, when, while, with
X xnor, xor

FIGURE 4.9 An alphabetical list of key-
words that support synthesis

 Figure 4.10 shows a list of supported operators.

 Group Supported Operators
 1. Logical (and, or, nand, nor, xor, xnor)

 2. Relational (5, /5, ,, ,5, ., .5)

 3. Shifting (sll, srl, sla, sra, rol, ror)

 4. Adding (1, 2, &)

 5. Unary signing (1, 2)

 6. Multiplying (*, /, mod, rem)

 7. Miscellaneous (**, abs, not)

Note: Without parentheses, operators in group 7 have the highest
precedence, followed by group 6, and so on. down to the lowest precedence,
or group 1. Within each group, there is no operator precedence, and
precedence must be established by parentheses. In an expression without
parentheses, operators are applied left to right.

FIGURE 4.10 A list of supported
operators

www.itpub.net

 4.10 VHDL Examples 117

4.10.1 Design with Scalar Inputs and Outputs
Figure 4.11 shows the design entity for an OR gate called OR_2. This design uses scalar inputs
and outputs.

 The library part, entity declaration, and partial architecture declaration for design entity
OR_2 are shown in Listing 4.22.

OR_2

A
F

B

FIGURE 4.11 Design entity for an OR gate called OR_2

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OR_2 is port (
 A, B : in std_logic;
 F : out std_logic
);
end OR_2;

architecture design_style of OR_2 is
begin
 ,Architecture body.

end design_style;

LISTING 4.22 The
library part, entity
declaration, and
partial architecture
declaration for design
entity OR_2

 Any one of the architecture design styles presented in Listing 4.23 can be used to complete the
partial architecture declaration in Listing 4.22. These design styles use scalar inputs and outputs.

Boolean equation:
 --place the Boolean equation between begin and end process for

--a behavioral design
 F ,5 A or B;

Conditional signal assignment (CSA):
 --Note: parentheses are required around A or B
 F ,5 ‘1’ when (A or B) 5 ‘1’ else
 ‘0’;
 Note: CSA is the concurrent equivalent of the if statement.

Selected signal assignment (SSA):
 with A or B select
 F ,5 ‘1’ when ‘1’,
 ‘0’ when ‘0’,
 ‘0’ when others;
 Note: SSA is the concurrent equivalent of the case statement.

If statement:
 --place the if statement between begin and end process
 --Note: parentheses are required around A or B
 if (A or B) 5 ‘1’ then F ,5 ‘1’;
 else F ,5 ‘0’;
 end if;
 Note: if statement is the sequential equivalent of the CSA.

LISTING 4.23
Architecture design
styles with scalar
inputs and outputs

(Continued)

118 Chapter 4 Combinational Logic Circuit Design with VHDL

 The waveform diagram shown in Waveform 4.3 represents the correct functionality of
design entity OR_2.

Case statement:
 --place the case statement between begin and end process
 case A or B is
 when ‘1’ 5. F ,5 ‘1’;
 when ‘0’ 5. F ,5 ‘0’;
 when others 5. null;
 end case;
 Note: case statement is the sequential equivalent of the SSA.

 All of the architecture design styles presented in Listing 4.23 provide the same simulation
as shown in Waveform 4.3.

4.10.2 Design with Vector Inputs and Outputs
Figure 4.12 shows the design entity for a 2-to-4 decoder called DEC2_4. This design uses vector
inputs and outputs.

Name

0

0

0

Value

+ a

+ b

+ f

0 ns 200 ns WAVEFORM 4.3 Simulation for the
correct functionality of design entity
OR_2 (project: or_2_Bool)

D(0)

A(1:0) D(3:0)A(0)

A(1)

D(1)

D(2)

D(3)

0

0 1

1 2

3

DEC2_4 DEC2_4

or
2 4

Decoder Decoder

FIGURE 4.12 Design
entity for a 2-to-4
decoder called DEC2_4

 The library part, entity declaration, and partial architecture declaration for design entity
DEC2_4 are shown in Listing 4.24.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DEC2_4 is port (
 A : in std_logic_vector (1 downto 0);
 D : out std_logic_vector (3 downto 0)
);
end DEC2_4;

architecture design_style of DEC2_4 is
begin
 ,Architecture body.

end design_style;

LISTING 4.24 The
library part, entity
declaration, and
partial architecture
declaration for design
entity DEC2_4

www.itpub.net

 4.10 VHDL Examples 119

 Any one of the architecture design styles presented in Listing 4.25 can be used to complete
the partial architecture declaration in Listing 4.24. These design styles use vector inputs and
outputs.

Boolean equations:
 D(0) ,5 not A(1) and not A(0);
 D(1) ,5 not A(1) and A(0);
 D(2) ,5 A(1) and not A(0);
 D(3) ,5 A(1) and A(0);

Conditional signal assignment (CSA):
 D ,5 “0001” when A 5 “00” else
 “0010” when A 5 “01” else
 “0100” when A 5 “10” else
 “1000”;
 Note: CSA is the concurrent equivalent of the if statement.

Selected signal assignment (SSA):
 with A select
 D ,5 “0001” when “00”,
 “0010” when “01”,
 “0100” when “10”,
 “1000” when “11”,
 “0001” when others;
 Note: SSA is the concurrent equivalent of the case statement.

If statement:
 --place the if statement between begin and end process
 if A 5 “00” then D ,5 “0001”;
 elsif A 5 “01” then D ,5 “0010”;
 elsif A 5 “10” then D ,5 “0100”;
 else D ,5 “1000”;
 end if;
 Note: if statement is the sequential equivalent of the CSA.

Case statement:
 --place the case statement between begin and end process
 case A is
 when “00” 5. D ,5 “0001”;
 when “01” 5. D ,5 “0010”;
 when “10” 5. D ,5 “0100”;
 when “11” 5. D ,5 “1000”;
 when others 5. null;
 end case;
 Note: case statement is the sequential equivalent of the SSA.

LISTING 4.25
Architecture design
styles with vector
inputs and outputs

 The waveform diagram shown in Waveform 4.4 represents the correct functionality of
design entity DEC2_4.

120 Chapter 4 Combinational Logic Circuit Design with VHDL

 All of the architecture design styles presented in Listing 4.25 provide the same simulation
as shown in Waveform 4.4.

4.10.3 Common VHDL Constructs
Listing 4.26 is a brief list of common VHDL constructs that we have used in this chapter. Other
constructs exist and are available by clicking on the light bulb icon (language templates) in
Xilinx ISE Projector Navigator.

+

+

0 ns 200 ns

0 1 2 3 0

11 2 4 8

Name Value

0

0

0

1

0

0

0

1

a[1:0]

[1]

[0]

d[3:0]

[3]

[2]

[1]

[0]+

+

+

+

+

+

WAVEFORM 4.4 Simulation for the
correct functionality of design entity
DEC2_4 (project: DEC2_4_Bool)

 Library Part:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

 Entity Declaration:
entity ,Entity name. is port (
 ,Port name. : ,Mode. ,Type.;
 ,Other ports.. . .
);
end ,Entity name.;

 Architecture Declaration:
architecture ,Architecture name. of ,Entity name. is
 --Signal_and_component declarations (internal signal

--declarations, component declarations)
begin
 ,Architecture body.

end ,Architecture name.;

 Boolean equation:
,Signal name. ,5 ,Expression.;

 Conditional signal assignment (CSA):
,Signal name. ,5 ,Expression. when ,Condition. else
 ,Expression. when ,Condition. else
 ,Expression.;

 Selected signal assignment (SSA):
with ,Choice expression. select
 ,Signal name. ,5 ,Expression. when ,Choices.,
 ,Expression. when ,Choices.,
 ,Expression. when others;

LISTING 4.26 A
brief list of common
VHDL constructs

www.itpub.net

 Problems 121

 Process Declaration:
process (,All input signals separated by commas.)
begin
 ,Boolean equation, if statement, case statement .;
end process;

 If statement:
if ,Condition. then ,Statement.;
elsif ,Condition. then ,Statement.;
else ,Statement.;
end if;

 Case statement:
case (,Signal name.) is
 when “. . .00” 5. ,Statement.;
 when “. . .01” 5. ,Statement.;
 when “. . .10” 5. ,Statement.;
 when “. . .11” 5. ,Statement.;
 . . .
 when others 5. ,Statement.;
end case;

 Component declaration:
component ,Component name. port (
 ,Port name. : ,Mode. ,Type.;
 ,Other ports.. . .
);
end component;

 Component instantiation:
,Instance name. : ,Component name. port map (,Port name. 5.

,Signal name.,
,Other ports.. . .);

 4.7 What two libraries are implicitly declared (built in) for
VHDL designs?

 4.8 What library must be added to a VHDL design to make
it visible to the design?

 4.9 Where is your design placed after it is compiled?
 4.10 What library stores the logical and relational operators?
 4.11 What library stores the 9-value data type called

std_logic?
 4.12 What is the main reason for using the IEEE library?

Section 4.4 The Entity Declaration
 4.13 What can an entity declaration be thought of, in terms of

circuit theory?
 4.14 What are the three main features of a black box?
 4.15 When writing VHDL, how do you insert a comment in

the code?

Section 4.2 VHDL
 4.1 What is a design entity?
 4.2 What are the names of the three parts of a design entity

in VHDL?
 4.3 What part of a design entity for VHDL has data type

defi nitions, functions, and procedures?
 4.4 What part of a design entity for VHDL specifi es the

interface or the external inputs and outputs of a digital
circuit?

 4.5 What part of a design entity for VHDL specifi es the
functional composition or functionality of a digital
circuit?

Section 4.3 The Library Part
 4.6 What two clauses are required for the library part of a

design entity in VHDL?

PROBLEMS

122 Chapter 4 Combinational Logic Circuit Design with VHDL

Section 4.7 Behavioral Design Style
 4.43 In what order are assignment statements evaluated in a

process?
 4.44 Is the following statement true or false? A complete

process is a concurrent statement that is evaluated at the
same time as another complete process or at the same
time as other concurrent statements.

 4.45 When does a process wake up or execute?
 4.46 What does a process do while it is waiting for an event to

occur?
 4.47 Is the following statement true or false? It is correct to

use a conditional signal assignment or a selected signal
assignment inside a process.

 4.48 Is it necessary to name a process?
 4.49 Where is an if–then–else statement placed in a process?
 4.50 How many end ifs are required when if–then–else

statements are nested?
 4.51 How many end ifs are required to terminate an if–then–

elsif statement?
 4.52 Which is usually preferred: a case statement or nested if

statements? Give one reason this may be true.
 4.53 Where is a case statement placed in a process?
 4.54 What does null mean in VHDL?
 4.55 Is a mode required for an internal signal?
 4.56 A signal name or identifi er placed between case and is in

a cast statement must also appear another placed in the
VHDL code for the case statement to run. Where?

Section 4.8 Structural Design Style
 4.57 What is another name for a structural design style?
 4.58 What is the fi rst step in the procedure we use to obtain a

structural design?
 4.59 How are components defi ned in a structural design?
 4.60 Where are the component declarations placed in a struc-

tural design?
 4.61 Where are the components placed and connected in a

structural design?
 4.62 What four items are used to identify each component?
 4.63 What signals must be used in the entity declaration of a

structural design?
 4.64 Where are internal signals placed in a structural design?
 4.65 Describe a component declaration in relationship to an

entity for the defi nition of a component.
 4.66 Given a formal signal I0, which must be connected to an

actual signal X0, select the correct port map statement.
 a. X0 5. I0
 b. I0 5. X0
 4.67 What method for connecting components is recom-

mended in the text?
 4.68 What is the order for writing instantiation statements?
 4.69 Can instantiation statements (or component instantia-

tions) be placed inside a process?
 4.70 Where do you have to place the component defi nitions

for a structural design so that the structural design will
compile correctly?

 4.16 What is the defi nition of the term synthesis in VHDL?
 4.17 Given the identifi ers, Bq_1, P_w_, B 1, and 2B_3, which

ones are incorrect? Why they are incorrect?
 4.18 What is the data type for a signal using the standard

logic 1164 package?
 4.19 List the values for the data type std_logic that support

synthesis.
 4.20 What is the mode for an output signal?
 4.21 List the values for the data type bit.

Section 4.5 The Architecture Declaration
 4.22 What part of a design entity deals with the contents of a

black box?
 4.23 What are the three design styles in VHDL that can be

used in an architecture declaration?
 4.24 What are the three signal assignments that can be used

in a datafl ow design style?
 4.25 What are signal assignments called that are evaluated at

the same time in VHDL?
 4.26 What design style uses a process in an architecture

declaration?
 4.27 What are the equations and statements that can be used

in a behavioral design style?
 4.28 What is an annotated circuit or schematic?
 4.29 What design style uses components in an architecture

declaration?
 4.30 How does a structural architecture declaration create the

structure for a circuit?
 4.31 What is a system in VHDL?

Section 4.6 Datafl ow Design Style
 4.32 What is the signal assignment symbol?
 4.33 How is a simple signal assignment statement terminated

in VHDL?
 4.34 Write the VHDL signal assignment for each of the fol-

lowing Boolean functions:
 a. F1 5 A 1 B #C
 b. F2 5 A #B 1 C #D
 c. F3 5 1A!B 2 #C 1 D
 4.35 Write the Boolean function for each of the following

VHDL signal assignments:
 a. F1 ,5 A and B or C
 b. F2 ,5 A or B and not C
 c. F3 ,5 A nand B or C xor not D
 4.36 Describe how to check for VHDL design correctness for

a function.
 4.37 What are the keywords used in a conditional signal

assignment?
 4.38 What are the keywords used in a selected signal

assignment?
 4.39 A single bit in VHDL must be surrounded by what?
 4.40 What must be used around a Boolean expression when it

is compared to a bit using a relational operator?
 4.41 How is a conditional signal assignment (CSA) termi-

nated in VHDL?
 4.42 How is a selected signal assignment (SSA) terminated in

VHDL?

www.itpub.net

 Problems 123

 4.89 Write a datafl ow architecture declaration using a Bool-
ean equation for the 2-bit comparator circuit in Figure
P4.89, which compares D1 D0 with B1 B0 to see if they
have the same values, if so F 5 1, else F 5 0. Use the
name Comparator as the design entity.

Section 4.9 Implementing with Wires and Buses
 4.71 How much information does a single wire carry?
 4.72 What is another name for a signal that carries a single bit

of information?
 4.73 How much information does a bus carry?
 4.74 What is a collection of wires called that carries multiple

bits of information?
 4.75 What is another name for a signal that carries multiple

bits of information?
 4.76 Write all the components for the signal A(5:0).
 4.77 Write the data type for the bus signal B(2:0) in VHDL

code.
 4.78 Write the data type for the bus signal C(0:7) in VHDL

code.
 4.79 What is a one-hot code for a decoder?
 4.80 What is an aggregate?
 4.81 Use the individual signals X, Y, and Z, which range from

MSB down to LSB, to write an aggregate to form a bus
M(2:0) in VHDL code.

 4.82 Use the individual signals P, Q, R, and S, which range
from LSB to MSB, to write an aggregate to form a bus
N(0:3) in VHDL code.

 4.83 Use the signals C(4) and C(3:0), which range from MSB
down to LSB, to write an aggregate to form a bus O(4:0)
in VHDL code.

 4.84 Use the concatenation operator to form a bus M(2:0)
for the individual signals X, Y, and Z, which range from
MSB down to LSB.

 4.85 Use the concatenation operator to form a bus N(0:3) for
the individual signals P, Q, R, and S, which range from
LSB to MSB.

 4.86 Use the concatenation operator to form a bus O(4:0)
for the signals C(4) and C(3:0), which range from MSB
down to LSB.

Section 4.10 VHDL Examples
 4.87 Write an entity declaration for the black box in Figure

P4.87.

 4.88 Draw the black box for the entity declaration in Listing
P4.88.

P
F

T

V

Q

R

M

Do it

FIGURE P4.87

entity hardware is port (
 X, Y, Z: in std_logic;
 F0, F1: out std_logic
);
end hardware;

LISTING P4.88

 4.90 Write a datafl ow architecture declaration using a condi-
tional signal assignment (CSA) for design entity Com-
parator in problem 4.89.

 4.91 Write a datafl ow architecture declaration using a
selected signal assignment (SSA) statement for design
entity Comparator in problem 4.89.

 4.92 Write a behavioral architecture declaration using an if
statement for design entity Comparator in problem 4.89.

 4.93 Write a behavioral architecture declaration using a case
statement for design entity Comparator in problem 4.89.

 4.94 Write an entity declaration for design entity Comparator
in problem 4.89.

 4.95 Write the library and use clauses for the package IEEE
.STD_LOGIC_1164 for design entity Comparator in
problem 4.89.

 4.96 Show a functionally correct simulation for the complete
VHDL design for design entity Comparator in problem
4.89. You can use any of the design styles presented in
the text to obtain the simulation.

 4.97 Write a datafl ow architecture declaration using Boolean
equations for the 2-to-4 decoder/demultiplexer called
DMUX2_4 in Figure P4.97 (project: DMUX2_4).

F

D0
B0

D1
B1

Comparator

FIGURE P4.89

 4.98 Write a datafl ow architecture declaration using a con-
ditional signal assignment (CSA) for design entity
DMUX2_4 in problem 4.97.

 4.99 Write a datafl ow architecture declaration using a selected
signal assignment (SSA) for design entity DMUX2_4 in
problem 4.97.

 4.100 Write a behavioral architecture declaration using an if
statement for design entity DMUX2_4 in problem 4.97.

D(0)
D(1)
D(2)
D(3)

G

0
1

G

S(0)

S(1)

0
1
2
3

DMUX2_4

FIGURE P4.97

124 Chapter 4 Combinational Logic Circuit Design with VHDL

 4.108 Write a behavioral architecture declaration using an if
statement for design entity MUX_E4_1 in problem 4.105.

 4.109 Write a behavioral architecture declaration using a case
statement for design entity MUX_E4_1 in problem 4.105.

 4.110 Write an entity declaration for design entity MUX_E4_1
in problem 4.105.

 4.111 Write the library and use clauses for the package IEEE.
STD_LOGIC_1164 for design entity MUX_E4_1 in
problem 4.105.

 4.112 Show a functionally correct simulation for the complete
VHDL design for design entity MUX_E4_1 in problem
4.105. You can use any of the design styles presented in
the text to obtain the simulation.

 4.113 Write the defi nitions for the XNOR_1 and AND_1 com-
ponents for the design entity Comparator_struc in Fig-
ure P4.113 using a datafl ow design style with Boolean
equations.

 4.114 Show a functionally correct simulation for the XNOR_1
and AND_1 components for design entity Compara-
tor_struc in problem 4.113.

 4.115 Write the library and use clauses for the package IEEE.
STD_LOGIC_1164 for design entity Comparator_struc
in problem 4.113.

 4.116 Write an entity declaration for design entity Compara-
tor_struc in problem 4.113.

 4.117 Write an architecture declaration for design entity Com-
parator_struc in problem 4.113.

 4.118 Show a functionally correct simulation for the complete
VHDL design for design entity Comparator_struc in
problem 4.113. Use the structural design styles presented
in the text to obtain the simulation.

 4.101 Write a behavioral architecture declaration using a case
statement for design entity DMUX2_4 in problem 4.97.

 4.102 Write an entity declaration for design entity DMUX2_4
in problem 4.97.

 4.103 Write the library and use clauses for the package IEEE
.STD_LOGIC_1164 for design entity DMUX2_4 in
problem 4.97.

 4.104 Show a functionally correct simulation for the complete
VHDL design for design entity DMUX2_4 in problem
4.97. You can use any of the design styles presented in
the text to obtain the simulation.

 4.105 Write a datafl ow architecture declaration using a Bool-
ean equation for the 4-to-1 multiplexer with an enable
input called MUX_E4_1 in Figure P4.105 (project:
MUX_E4_1).

D(0)

D(1)

D(2)

D(3)

S(0)
S(1)

 G

M

0

1

2

3

1
0

G

MUX_E4_1

FIGURE P4.105
 4.106 Write a datafl ow architecture declaration using a condi-

tional signal assignment (CSA) for design entity MUX_
E4_1 in problem 4.105.

 4.107 Write a datafl ow architecture declaration using a selected
signal assignment (SSA) for design entity MUX_E4_1
in problem 4.105.

F

AND_1
i1
i2

Component, C3

o1

XNOR_1

Component, C1

o1

XNOR_1
i1
i2

i1
i2

Component, C2

o1 D_B1

D_B0D(0)
B(0)

D(1)
B(1)

Comparator_struc

FIGURE P4.113

www.itpub.net

C h aa p t e rr

Bistable Memory Device
Design with VHDL

Chapter Outline

 5.1 Introduction 125

 5.2 Analyzing an S-R NOR Latch 125

 5.3 Analyzing an S-R NAND Latch 132

 5.4 Designing a Simple Clock 134

 5.5 Designing a D Latch 137

 5.6 Designing D Flip-Flop Circuits 143

 Problems 150

5.1 INTRODUCTION

In this chapter, we present the design of bistable memory devices. The term bistable means
that there are two stable states, allowing these devices to store, save, or capture the value for
a logic 1 or a logic 0. We discuss the design and analysis of various bistable devices including
set–reset (S-R) latches, D latches, and edge-triggered D flip-flops, and present their operat-
ing characteristics. The design of a simple clock is also presented. The techniques and devices
that are presented in this chapter are used in the next chapter to design synchronous sequential
logic circuits.

5.2 ANALYZING AN S-R NOR LATCH

A register is a digital component that can temporarily store single or multiple bits. A latch is the
simplest circuit form of a single-bit register. Two cross-coupled NOR gates or two cross-coupled
NAND gates can be used to form a set–reset (S-R) latch. First, we cover a light switch, because
the operation of a light switch is analogous to the operation of a latch with cross-coupled NOR
gates.

5.2.1 Simple On/Off Light Switch
Think of a simple light switch on the wall. Consider that there are two signals: one signal named
S to set or turn the light on, and the other signal named R to reset or turn the light off. Each of
the two signals S and R has two values. We can push the switch lever in one direction to set the
light to on (S 5 1), and then stop pushing the lever and the light stays on (S 5 0). We can push

rr 5

125

126 Chapter 5 Bistable Memory Device Design with VHDL

the switch lever in the opposite direction to reset the light to off (R 5 1), and then stop push-
ing the lever and the light stays off (R 5 0). Not pushing the switch lever to set the light to on
(S 5 0) and not pushing the switch lever to reset the light to off (R 5 0) maintains the status.
The concept is simple. Try it out yourself dynamically using the light switch on the wall of your
room. Figure 5.1 shows five different conditions for a simple light switch (mechanical latch) with
the values marked for S and R to turn the light on if the switch lever is pushed up or to turn the
light off if the switch lever is pushed down.

Light on

On

Off

S = 1
R = 0
(push up,
don’t
push down)

On

Off

S = 0
R = 0
(don’t
push up,
don’t
push down)

Light on

On

Off

S = 0
R = 1
(push down,
don’t
push up)

Light off

On

Off

S = 0
R = 0
(don’t
push up,
don’t
push down)

Light off

On

Off

S = 1
R = 1
(push up,
push down)

Not allowedFIGURE 5.1 Five different condi-
tions for a simple light switch

 An arrow in the figure represents both the direction and the force being applied to change
the switch position. If no arrow is present, then no force is being applied. Once a force is applied,
the switch stores the set or reset position, and the force can then be removed. This type of switch
has a memory because it remembers the last force that was applied. A momentary push-button
switch does not have a memory, but a light switch has a memory, so we don’t have to stand near
it and continuously press the switch to light the room.
 The light switch in Figure 5.1 snaps and stores the on position so we can stop pushing and
the light stays on. Likewise, the light switch snaps and stores the off position so we can stop
pushing and the light stays off.
 Table 5.1 shows the characteristic table for a light switch.

TABLE 5.1 Characteristic

table for a light switch

S R Light condition

0 0 Hold (on or off)

0 1 Off

1 0 On

1 1 Not allowed

 A light switch and two cross-coupled NOR gates, which is a digital circuit called an S-R
NOR latch, have similar characteristic tables. Both a light switch and an S-R NOR latch have a
memory—that is, they store a value.
 Up to this point, we have only covered combinational logic circuits, which are circuits that
do not contain feedback and therefore do not have memory capability. Circuits with feedback
are called sequential logic circuits and have memory capability. Sequential logic circuits are

www.itpub.net

 5.2 Analyzing an S-R NOR Latch 127

more difficult to analyze and design because of feedback. A few different techniques for analyz-
ing a basic S-R NOR latch are present as follows:

 1. Circuit delay model.
 2. Characteristic table.
 3. Characteristic equation.
 4. PS/NS (present-state/next-state) table.
 5. Timing diagram.

5.2.2 Circuit Delay Model for an S-R NOR Latch
The gate-level circuit for an S-R NOR latch is shown in Figure 5.2a. Figure 5.2b shows the logic
symbol for an S-R NOR latch.

 Figure 5.3 shows a circuit delay model for an S-R NOR latch. The gate-level circuit for an
S-R NOR latch is a digital circuit that has its present-state output Q fed back to its input. This
is the secret of retaining data or storing data for an S-R NOR latch.

Feedforward path

Feedback path

or
S S

S
Q

Q

Q

R

R

(a) (b)

R

FIGURE 5.2 S-R NOR latch:
(a) gate-level circuit; (b) logic
symbol

𝚫t
(delay)

Set input Present-state
output

Next-state
output

Reset input

Feedback (present-
state output Q is
fed back to input)

S

Q
Q

+

R

FIGURE 5.3 Circuit delay model for the
S-R NOR latch

 If an S-R NOR latch is set, its output Q goes to 1, and if it is reset, its output Q goes to 0.
Each NOR gate has a propagation delay time. The worst-case delay time for the circuit is Dt and
represents the longest delay time from the input S to the output Q or 2tp, assuming that each gate
has a delay of tp. In our delay model, we simply show the worst-case delay of the circuit in the
delay box. Now, the gates are considered to have no delay because the delay box shows the delay
for the circuit. Treating circuits as though they have lumped parameters (in this case, the param-
eter is delay time) is usually easier to explain than treating circuits with distributed parameters,
as they really exist.
 In our delay model, if the value of either S or R is changed to 1, the next-state output Q1
changes immediately to reflect the change caused by S or R. The present-state output Q is the
value of the output of the circuit before S or R changes. The present-state output changes to a
new present-state output that is equal to the values of Q1 only after delay time Dt has expired,
or Q 5 Q1 after Dt. In our light switch analogy, the bulb takes time to go from off to on or glow
(just like Q takes time Dt to go to a 1), or to go from on to off or stop glowing (just like Q takes
time Dt to go to a 0). The circuits a through e in Figure 5.4 represents the same conditions as
those shown for the simple light switch in Figure 5.1.

128 Chapter 5 Bistable Memory Device Design with VHDL

 The condition shown in Figure 5.4e is normally not allowed because the output cannot be
both set and reset at the same time. If you try to set and reset an S-R NOR latch at the same time,
the output of the circuit goes to the reset state (Q 5 0); that is, the reset input overrides the set
input. Because the reset input overrides the set input, an S-R NOR latch circuit is referred to as
reset dominant.
 At startup, when power is first applied to an S-R NOR latch circuit and the S and R inputs
are at 0, the Q output of the circuit is momentarily unknown, because the Q output may settle at
a 1 or a 0.

5.2.3 Characteristic Table for an S-R NOR Latch
An S-R NOR latch has active high inputs. For the positive logic convention, 1 5 high (H) and 0
5 low (L). If S 5 1, then Q goes to 1 or high, provided R 5 0. If R 5 1, then Q goes to 0 or low,
provided S 5 0. Table 5.2 shows the characteristic table for an S-R NOR latch.

𝚫t
(delay)

Q+ = 1
Q = 1

(a)

R = 0

S = 1

𝚫t
(delay)

Q+ = 1
Q = 1

(b)

R = 0

S = 0

𝚫t
(delay)

Q+ = 0
Q = 0

(c)

R = 1

S = 0

𝚫t
(delay)

Q+ = 0
Q = 0

(e)

R = 1

S = 1

𝚫t
(delay)

Q+ = 0
Q = 0

(d)

R = 0

S = 0

FIGURE 5.4 Five dif-
ferent conditions for
an S-R NOR latch

TABLE 5.2 Characteristic table for an

S-R NOR latch

Comment

S R Q1 Next state

0 0 Q Present state (high or low)

0 1 0 Low

1 0 1 High

1 1 0 Reset dominant (normally not allowed)

www.itpub.net

 5.2 Analyzing an S-R NOR Latch 129

 Observe that if you try to set and reset the S-R NOR latch at the same time, the output of
the circuit goes to the reset state, because the circuit is reset dominant.

5.2.4 Characteristic Equation for an S-R NOR Latch
The Boolean equation for a latch circuit is called its characteristic equation because it
describes in equation form how the latch circuit is constructed. Using the delay model for an
S-R NOR latch, we can write the characteristic equation from the circuit as shown in Figure 5.5.

 From analyzing the circuit, you can see that Q1 5 S 1 Q 1 R. The variable Q on the right
side of the equation is the present-state output, while the variable Q1 on the left side is the next-
state output.
 A combinational logic equation always has the form F(A,B,C, . . .), which shows that the
function is only dependent on the inputs A,B,C, A sequential logic equation (the equation
for a circuit that has a memory) has the form F1(F,A,B,C, . . .), which shows that the function
is dependent on its own output, as an input, and other inputs. The function Q1 has the form
Q1(Q,S,R), which shows that the function is dependent on its own output, as an input, and the
inputs S and R. When the output of an S-R NOR latch becomes stable, the present-state output
signal Q catches up or becomes Q1 after the delay time Dt, or Q 5 Q1 after Dt.

5.2.5 PS/NS Table for an S-R NOR Latch
A truth table for a sequential logic circuit is called a present-state/next-state table or PS/NS
table. The table gets its name from the fact that the present-state (PS) output signal Q is listed
as an input (feedback input) followed by the next-state (NS) output signal Q1. The PS/NS table
for an S-R NOR latch can be obtained in two ways: by expanding the characteristic table for the
S-R NOR latch or by filling in the table using the SOP form of the characteristic equation. We
can rewrite the characteristic equation in SOP form (AND/OR form) as follows:

Q1 5 Q 1 S 1 R 5 Q 1 S #R 5 1Q 1 S 2 #R 5 Q #R 1 S #R

The characteristic equation shows us that Q1 5 1 only when Q #R 5 1 OR S #R 5 1; otherwise,
Q1 5 0.
 Table 5.3 shows the PS/NS table for an S-R NOR latch.

𝚫t
(delay)

Q+

Q+ = S + Q + R

Q

Q

R

S S + Q

S + Q

Feedback signal

Feedforward signal

FIGURE 5.5 Characteristic equa-
tion for an S-R NOR latch

Q
0
1
0

0
1
0
0
1
1
0
0

0 0
0 1
1 0
1 1

Q
+

S R

S R Q Q
+

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

TABLE 5.3 PS/NS

table for an S-R NOR

latch

130 Chapter 5 Bistable Memory Device Design with VHDL

5.2.5 Timing Diagram for an S-R NOR Latch
Events that may cause the output of a sequential logic circuit to change are called timing events.
A change in either external input S or R provides a timing event for an S-R NOR latch. Ideal
timing diagrams, or waveform diagrams, show the logic values of signals associated with a cir-
cuit in terms of 1s and 0s. An ideal timing diagram does not show rise times and fall times, and
each gate is assumed to have a 0 gate delay. This is the simplest way to draw a timing diagram.
 The rise time or fall time of a signal is usually defined as the time it takes the signal to
change between the 10% and 90% values of the transition. The pulse width of a positive pulse
is usually defined as the time it takes the signal to go from its 50% value on the rising edge of
the pulse to its 50% value on the falling edge of the pulse. The pulse width for a negative pulse
is defined in a similar way. To simplify timing diagrams, gate delays may be represented by an
average propagation delay time tp 5 (tPHL 1 tPLH)/2, or in the simplest case, 0 gate delays may
be used. The delay tPHL represents the delay time through a gate when the output changes from
a high (H) value to a low (L) value, while the delay tPLH represents the delay time through a gate
when the output changes from a low (L) value to a high (H) value. These delay times are not
always equal.
 Waveform 5.1 shows an ideal timing diagram for an S-R NOR latch circuit.

 In Waveform 5.1 we list the inputs S and R first, followed by the output Q. The Q output
must follow the input signals according to the characteristic table for the S-R NOR latch. Time
progresses from left to right. A timing event occurs each time an external input changes, either
from a 1 to a 0 or changes from a 0 to a 1. The state time is the time between each timing event.
 Listing 5.1a shows a complete VHDL design for an S-R NOR latch.

S

R

Q

1 2 3 4 5 6 7 8 9

SS RS RS RSSSSS

Timing event

State time

Comment

Key: SS is the set state (Q = 1)

RS is the reset state (Q = 0)

 is the S or R timing event that causes the change in Q

Comment

1 or high

1 or high

1 or high

0 or low

0 or low

0 or low

WAVEFORM 5.1 Ideal timing diagram
for an S-R NOR latch

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity S_R_NOR_LATCH is port (
 S, R : in std_logic;
 Q : inout std_logic
);
end S_R_NOR_LATCH;

architecture dataflow of S_R_NOR_LATCH is
begin
 Q ,5 (Q and not R) or (S and not R);
end dataflow;

LISTING 5.1A
Complete VHDL
design for an S-R
NOR latch (project:
S_R_NOR_LATCH_
Bool)

www.itpub.net

 5.2 Analyzing an S-R NOR Latch 131

 Things you should notice about the VHDL design in Listing 5.1a:

• The output signal Q is specified as mode inout in the entity.
• Output signal Q must be read because it appears on the right side of the assignment state-

ment; hence it must be mode in. Because output signal Q also appears on the left side of the
assignment statement, it must also be mode out. The keyword inout is used to specify both
an input and an output mode. The keyword buffer is an alternate name that can be used for
the keyword inout for signals that are not bidirectional.

• A dataflow design style is used with a Boolean equation. The Boolean equation is the char-
acteristic equation for an S-R NOR latch.

 Waveform 5.2 shows a correct simulation (a behavioral simulation) of design entity
S_R_NOR_LATCH.

 Remember: At startup, if S or R is not asserted (i.e., is not 1), then the Q may be momen-
tarily undefined (its output is between a 0 and a 1) as shown in the Waveform diagram for Q.
Observe that the simulation in Waveform 5.2 follows the characteristic table for the S-R NOR
latch shown in Table 5.2. This proves that the VHDL code for the design is correct.
 Listing 5.1b shows an alternate way to design an S-R NOR latch.

+

+

+

s

r

q

0

0

U

Name Value 0 ns 200 ns WAVEFORM 5.2 Correct
simulation of design entity
S_R_NOR_LATCH

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity S_R_NOR_LATCH_int is port (
 S, R : in std_logic;
 Q : out std_logic
);
end S_R_NOR_LATCH_int;

architecture dataflow of S_R_NOR_LATCH_int is
 signal Q_int: std_logic;
begin
 Q_int ,5 (Q_int and not R) or (S and not R);
 Q ,5 Q_int;
end dataflow;

LISTING 5.1B
Alternate way to
design an S-R
NOR latch (project:
S_R_NOR_LATCH_
Bool_int)

 Things you should notice about the VHDL design in Listing 5.1b:

• The output signal Q is specified as mode out in the entity.
• Without using the mode inout, we can substitute a dummy signal Q_int (which stands for

Q_internal) for the signal Q in the Boolean equation for the latch. The dummy signal is an
internal signal and must be specified in the design between architecture and the first begin
by writing Signal Q_int: std_logic;.

• The output signal Q is generated by the Boolean equation Q ,5 Q_int;.

 Listing 5.1b provided the same simulation waveforms as shown in Waveform 5.2. The cir-
cuits produced by the Xilinx ISE software for Listings 5.1a and 5.1b are also the same. To keep
our VHDL code as simple as possible, we have elected to use mode inout throughout the text to
write our VHDL code for outputs that must also be feed back as inputs, because this results in
fewer lines of code to type and also requires fewer variables.

132 Chapter 5 Bistable Memory Device Design with VHDL

5.3 ANALYZING AN S-R NAND LATCH

In this section, the properties of a basic S-R NAND latch are presented. You should observe
that a basic S-R NAND latch has active low inputs, which is opposite to a basic S-R NOR latch,
which has active high inputs. You should also observe that a basic S-R NAND latch is set domi-
nant rather than reset dominant like a basic S-R NOR latch.

5.3.1 Circuit Delay Model for an S-R NAND Latch
The gate-level circuit for an S-R NAND latch and its logic symbol is shown in Figures 5.6a
and 5.6b with multiple S and R inputs. We used bubbled input OR gates to represent the NAND
gates because these equivalent gate forms help remind us that the inputs to an S-R NAND latch
are active low inputs. This type of latch is sometimes referred to as an S-R NAND latch as a
reminder. The logic symbol in Figure 5.6b is used later in this chapter to draw the circuit for a
D flip-flop. Observe that the feedforward path provides Q.

S1

S2
Q Q

Q
R1

R2

(b)

S1

S2

R1

R2S1
S2

R1
R2

S1
S2

R1
R2

(a)

or
Q

Q

Feedforward path Q

Feedback path

Q

FIGURE 5.6 S-R NAND latch: (a) gate-level circuit; (b) logic symbol

 Figure 5.7 shows a circuit delay model of an S-R NAND latch.

𝚫t
(delay)

Reset input

Present-state
output

Next-state
output

Set input

Feedback (present-
state output Q is
fed back to input)

S
Q

Q
+

R
FIGURE 5.7 Circuit delay model
for an S-R NAND latch

 At startup, when power is first applied to an S-R NAND latch circuit and the S and R inputs
are at 1, the Q output of the circuit is momentarily unknown, because the Q output may settle at
a 1 or a 0.

5.3.2 Characteristic Table for an S-R NAND Latch
Table 5.4 shows the characteristic table for an S-R NAND latch.

Comment
S R Q1 Next state

0 0 1 Set dominant (normally not allowed)
0 1 1 High
1 0 0 Low
1 1 Q Present state (high or low)

TABLE 5.4 Characteristic table

for an S-R NAND latch

www.itpub.net

 5.3 Analyzing an S-R NAND Latch 133

 Observe that if you try to set and reset the S-R NAND latch at the same time, the output of
the circuit goes to the set state, because the circuit is set dominant.

5.3.3 Characteristic Equation for an S-R NAND Latch
Using the delay model for the S-R NAND latch in Figure 5.7, one can write the characteristic

equation from the circuit as Q1 5 R 1 Q 1 S. The variable Q on the right side of the equation
is the present-state output, while the variable Q1 on the left side is the next-state output.

5.3.4 PS/NS Table for an S-R NAND Latch
Table 5.5 shows the PS/NS table for an S-R NAND latch, which can be written from its charac-
teristic table or from the SOP form of its characteristic equation.

5.3.5 Timing Diagram for an S-R NAND Latch
Waveform 5.3 shows an ideal timing diagram for an S-R NAND latch.

Q
+

1
1
0
Q

Q
+

1
1
1
1
0
0
0
1

S R
0 0
0 1
1 0
1 1

S R Q
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

TABLE 5.5 PS/NS

table for an S-R NAND

latch

 Listing 5.2 shows a complete VHDL design for an S-R NAND latch.

1 2 3 4 5 6 7 8 9

S

R

Q

Timing event WAVEFORM 5.3
Ideal timing dia-
gram for an S-R
NAND latch

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity S_R_NAND_LATCH is port (
 S, R : in std_logic;
 Q : inout std_logic
);
end S_R_NAND_LATCH;

architecture dataflow of S_R_NAND_LATCH is
begin
 Q ,5 (R and Q) or not S;
end dataflow;

LISTING 5.2
Complete VHDL
design for an S-R
NAND latch (project:
S_R_NAND_LATCH_
Bool)

134 Chapter 5 Bistable Memory Device Design with VHDL

 Things you should notice about the VHDL design in Listing 5.2:

• The output signal Q is listed as mode inout in the entity because this allows Q to be read as
an input and also an output.

• A dataflow design style is used with a Boolean equation. The Boolean equation is the char-
acteristic equation for an S-R NAND latch.

 Waveform 5.4 shows a correct simulation of design entity S_R_NAND_LATCH.

 Observe that the waveform diagram in Waveform 5.4 follows the characteristic table for the
S-R NAND latch shown in Table 5.4. This proves that the VHDL code for the design is correct.

5.4 DESIGNING A SIMPLE CLOCK

In this section, we present the design of a simple circuit called a clock. A clock provides a
sequence of pulses at its output. Clocks are used in the design of synchronous sequential logic
systems. For example, your PC (personal computer) uses a clock to operate the digital logic cir-
cuits inside the computer in a synchronous manner—that is, synchronized with the clock. The
output of a clock is used in the operation of D latches and flip-flops, which will be covered later.
The control input to a D Latch and a D flip-flop is driven by a system clock.
 A state diagram is a graphical way of describing a sequential logic circuit—that is, a logic
circuit with feedback. A circle or oval is used to represent each state of the circuit. A state-
transition line (a directed line segment) is used to represent the flow of the circuit when it
changes from one state to the next state. The four major parts of a state diagram are the state
bubbles, state-transition lines, state variables, and states or state values.
 The state diagram for a simple clock is shown in Figure 5.8.

s

r

q

1

1

1

+

+

+

Name Value 0 ns 200 ns WAVEFORM 5.4 Correct simulation
of design entity S_R_NAND_LATCH

State-transition line State variable

State or state value

Legend

State bubble

0 1

Q

FIGURE 5.8
State diagram
for a clock

 If the clock is in the reset state (Q 5 0) it goes to the set state (Q 5 1) after a brief delay
time. It then goes back to the reset state and continues in this manner as long as power is sup-
plied to the circuit. Because the clock switches from 0 to 1 to 0, a clock is sometimes called
an oscillator. Notice that there are no external inputs. If there were external input signals, they
would be placed beside the state-transition lines. What does a clock circuit look like? First, we
need to obtain the equation for the clock to see how to design it.
 It is common in digital design to describe a logic element by its state diagram or its PS/NS
table. The state diagram, or PS/NS table, can then be used to obtain the equation or equations

www.itpub.net

 5.4 Designing a Simple Clock 135

 From the PS/NS table, we can write the characteristic equations for the clock as

Q1 5 Sm 10 2 5 m0 5 Q.

 Figure 5.9 shows the gate-level circuit design for the clock using the 1s of the function
Q1—that is, Q1 5 Q.

Q Q1

0 1

1 0

TABLE 5.6 PS/NS table for the

clock (oscillator)

 The output signal of a clock circuit is usually called CLK. The circuit delay, 1tp, is the prop-
agation delay time for the NOT gate used in the circuit. The period is T 5 2tp, the frequency of
oscillation is f 5 1/T 5 1/(2tp), and the duty cycle is DC 5 50%, as shown in the timing diagram
in Waveform 5.5.

𝚫t
(delay)

𝚫t
(delay)

Feedback path

Q Q QQ
+

Q
+

Q
+

Q

(a) (b)

(c) (d)

CLK

FIGURE 5.9 Gate-level circuit
design for the clock

 The duty cycle of a periodic square waveform is defined as the on time (waveform is 1
or high) divided by “the period of the waveform.” For the timing diagram of the clock circuit
shown in Waveform 5.5, the duty cycle is 50% because the on time is one-half the period of the
waveform.
 The propagation delay time tp of the NOT gate in the clock circuit determines the period
and thus the frequency of the circuit. Providing a longer delay time increases the period and thus
provides a lower frequency. Adding buffers in cascade with the NOT gate will provide a longer
delay time. Using an odd number of NOT gates will also provide a longer delay time to ensure
that the clock circuit will oscillate at a lower frequency, when constructed with hardware.
 Adding an RC (resistor capacitor) circuit as shown in Figure 5.10 allows for frequency
adjustment.

T = 2t
p

f = 1/T = 1/(2t
p
)

DC = 1t
p
/T = 1t

p
 /(2t

p
) = ½ = 0.5 = 50%

CLK

Period

Frequency

Duty cycle

Timing event 1 2 3 4 5

1t
p

WAVEFORM 5.5 Ideal timing diagram
for the clock circuit

for the logic element. By observing the state diagram, we can write the PS/NS table for the clock
as shown in Table 5.6.

136 Chapter 5 Bistable Memory Device Design with VHDL

 The variable resistor R and a fixed capacitor C allow us to adjust the delay time and thus
raise or lower the frequency of the output signal CLK.
 Listing 5.3 shows a complete VHDL design for a clock circuit with a DISABLE input sig-
nal. When DISABLE is 1, the output of the clock circuit CLK is 0, and when DISABLE is 0,
the output of the clock circuit CLK oscillates at a very high unknown frequency. The circuit for
this clock is simply a NOR gate with feedback. In practice, you cannot create a clock with just
a NOR gate as we are doing here, because the frequency is too high and is not predictable or
controllable.

R

C

GND

CLK

FIGURE 5.10 Clock circuit
with an RC circuit added for
frequency adjustment

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CLOCK is port (
 DISABLE : in std_logic;
 CLK : inout std_logic
);
end CLOCK;

architecture dataflow of CLOCK is
begin
--Clock Generator
 CLK ,5 CLK nor DISABLE;
end dataflow;

LISTING 5.3
Complete VHDL
design for a clock cir-
cuit with a DISABLE
input signal (project:
CLOCK)

 Things you should notice about the VHDL design in Listing 5.3:

• The output signal CLK is listed as mode inout in the entity because this allows CLK to be
read as an input and also an output.

• A dataflow design style is used with a Boolean equation. The Boolean equation is for a
NOR gate with feedback from its output back to one of its inputs.

 Waveform 5.6 shows a correct post-route simulation of design entity CLOCK.

 Observe that the period for one cycle of the clock frequency in Waveform 5.6 is 2.35 ns which
is a frequency f 5 1/T 5 1/(2.35 3 1029s) < 0.4255 GHz. This frequency is extremely high,
compared to the operating frequency of most FPGAs, and may not be usable by the circuits on
the FPGA chip. A behavioral simulation uses VHDL code to obtain the simulation for a circuit.

+

+

Name 50 ns 55 ns 60 ns 65 ns

disable

clk

58.040 ns

60.390 ns

0

1

Value

WAVEFORM 5.6 Post-
route simulation for the
correct functionality of
design entity CLOCK

www.itpub.net

 5.5 Designing a D Latch 137

A behavioral simulation is just a functional simulation and has no timing information for device
delays. When a behavioral simulation fails to provide an output, try a post-route simulation.
 A post-route simulation first creates the placed and routed circuit using the VHDL code and
then obtains the simulation. A post-route simulation is a functional simulation with complete
timing information (device and internal wiring delays).
 The best possible clock to use is a crystal clock oscillator that vibrates at the desired
frequency when voltage is applied across the crystal. Crystal clock oscillators are much more
accurate than the clock circuits in Figures 5.9 and 5.10. Five-place accuracy is common for crys-
tal clock oscillators. Less accurate programmable silicon oscillators provide about three-place
accuracy. Crystal clock oscillators and programmable silicon oscillators provide relatively high
frequencies of oscillation. We will use a clock oscillator that provides 50 MHz for many of the
lab experiments. A divider circuit is used to lower the frequency to observe outputs on LEDs.
We will present divider circuits later.

5.5 DESIGNING A D LATCH

A gated latch circuit can be created by adding a control input C to an S-R latch circuit. The
control input is used to retain or hold the present-state output value. A gated latch circuit is level
sensitive, because its output is dependent on the logic level that is applied to the control input.
Once we design a gated latch circuit, we can add an additional NOT gate and turn the circuit
into a gated D latch circuit, which is simply referred to as a D latch.

5.5.1 Gated S-R Latch Circuit Design
To retain or hold the present-state output Q at either 0 or 1 in an S-R NOR latch when a control
input called C is 0 (or low) is easy to do. Simply add two AND gates at the inputs to the S-R
NOR latch as shown in Figure 5.11a. To retain or hold the present-state output Q at either 0 or 1
in an S-R NAND latch when a control input called C is 0 (or low) is also easy to do. Simply add
two NAND gates at the inputs to the S-R NAND latch as shown in Figure 5.11b. Figure 5.11c
shows the logic symbol for a gated S-R latch.

 In the circuit in Figure 5.11a and 5.11b, output Q retains or holds the present-state output
value when C is 0. Output Q goes to 1 when C is 1, S is 1, and R is 0. Output Q goes to 0 when
C is 1, S is 0, and R is 1.Output Q does not change when C is 1, S is 0, and R is 0.
 S and R should not be 1 at the same time C is 1. Each circuit acts differently when C is 1, S is
1, and R is 1. This is not a good situation, because the circuits act the same in all other respects.

S

C

R

S

C

R
Q

Q

(a)

S

C

R

Q

(b)

(c)

FIGURE 5.11 Gated S-R
latch: (a) implemented
with an S-R NOR latch;
(b) implemented with an
S-R NAND latch; (c) logic
symbol

138 Chapter 5 Bistable Memory Device Design with VHDL

These circuits only act the same provided we restrict the operation of the circuits by never allow-
ing the condition C is 1, S is 1, and R is 1 to occur.
 The operation for a gated S-R latch implemented with an S-R NOR latch is shown in the
characteristic table in Table 5.7a. The operation for the gated S-R latch implemented with an S-R
NAND latch is shown in the characteristic table in Table 5.7b. Observe that the two circuits act
the same except in the very last line of their characteristic tables. In the last line of the charac-
teristic table in Table 5.7a, Q is 0, because an S-R NOR latch is reset dominant. In the last line
of the characteristic table in Table 5.7b, Q is 1, because the S-R NAND latch is set dominant.

Gated S-R latch
(using an S-R
NOR latch)

C S R Q1

0 0 0 Q

0 0 1 Q

0 1 0 Q

0 1 1 Q

1 0 0 Q

1 0 1 0

1 1 0 1

1 1 1 0

(a)

Gated S-R latch
(using an S-R
NAND latch)

C S R Q1

0 0 0 Q

0 0 1 Q

0 1 0 Q

0 1 1 Q

1 0 0 Q

1 0 1 0

1 1 0 1

1 1 1 1

(b)

TABLE 5.7 Characteristic table for a

gated S-R latch: (a) implemented with an

S-R NOR latch; (b) implemented with an

S-R NAND latch

 The best solution to this dilemma (the circuits do not act the same in all cases) is to redesign
the circuit such that the condition S and R are both 1 when C is 1 can never occur. The rede-
signed circuit is called a gated D latch or simply a D latch.

5.5.2 D Latch Circuit Design with S-R Latches
When a NOT gate is added to the circuits in Figures 5.11a and 5.11b, as shown in Figures 5.12a
and 5.12b, the condition S and R are both 1 when C is 1 can never occur because of the NOT
gate. The S input is labeled D, which represents the DATA input, and the R input is supplied by
the NOT gate. Figure 5.12c shows the logic symbol for a D latch.

D

C

D

C

Q

Q

(a)

D

C

Q

(b)

(c)

FIGURE 5.12 D latch:
(a) implemented with
an S-R NOR latch;
(b) implemented with
an S-R NAND latch;
(c) logic symbol

www.itpub.net

 5.5 Designing a D Latch 139

 The characteristic table for the D latch implemented with an S-R NOR latch or imple-
mented with an S-R NAND latch is shown in Table 5.8.

 In Table 5.8, when C goes to 0, output Q1 stores the last value of D. This is called the stor-
age mode. When C is 1, the output is enabled, so output Q1 follows input D. This latter case is
called the transparent mode or see-through mode of the D latch. A D latch is level sensitive
because its output is dependent on the logic level that is applied to the control input.

5.5.3 D Latch Circuit Design via the Characteristic Table
for a D Latch
Table 5.9 shows the PS/NS table for a D Latch.

for
D

C

Q
Q

+

Q
Q
0
1

C D

Comment (level sensitive)
No change
No change
Q

+
 follows D

Q
+
 follows D

0
1
0
1

0
0
1
1

TABLE 5.8 Characteristic table for a D latch

 Figure 5.13 shows the manual K-reduction for the next state output Q1 for a D latch.

Q
Q
0
1

0
1
0
1
0
0
1
1

0 0
0 1
1 0
1 1

C D Q
+

Q
+

C D Q
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

TABLE 5.9 PS/NS

table for a D latch

 Figure 5.14 shows an AND/OR circuit for a D latch using the reduced next-state output Q1
written in SOP form. The reduced AND/OR circuit for the D latch requires fewer gates than a
D latch implemented with an S-R latch.

0
0

1

2

3

6

7

4

5

0 1 0

00 01 11 10

1

0e1 = C
-

= C
-

∙Q + C∙D

e2 = C∙D

1 1 1 0

Q
+
 (C,D,Q)

Q
+
 (C,D,Q) = e1 + e2

CD

∙Q

Q

FIGURE 5.13 Manual K-map reduc-
tion for the next state output Q1 for a
D latch

 It might not be obvious until you look a little closer, but the output Q1 5 C # Q 1 C #D
contains the Boolean expression for a 2-to-1 MUX. Figure 5.15 shows a D latch using or imple-
mented with a 2-to-1 MUX.

C
Q

or

Feedback path

Q
+

D

𝚫t
(delay)

C
Q

D

FIGURE 5.14 Reduced
AND/OR circuit for a
D latch

140 Chapter 5 Bistable Memory Device Design with VHDL

 Figure 5.16 shows the logic symbol for a D latch driven by a system clock.

0

1

MUX

C

Q or

Feedback path

Q
+

D

C

Q
D

𝚫t
(delay)

0

1

MUX

FIGURE 5.15 D Latch using a
2-to-1 MUX

DD Q Q

CCLKSystem
clock

FIGURE 5.16 Logic symbol
for a D latch driven by a sys-
tem clock

 A D latch circuit is primarily used for temporary data storage. A D latch circuit is also a
single bit Register.

5.5.4 Timing Diagram for a D Latch
Waveform 5.7 shows a timing diagram or waveform diagram for a D latch.

{ { { {

1 2 3 4

Metastable
state

Logic 0 glitch

Setup time
violation

Hold-time
violation

t
su

 = setup time
t
h
 = hold time

t
si
 = (sampling interval = t

su
 + t

h
)

t
si

t
si

t
si

t
si

Captures last
value of D

Failed to
capture last
value of D

Failed to
capture last
value of D

Captures last
value of D

t
su

t
h

Trigger event,
 clocking event, or
 timing event

C

D

Q

No setup
or hold-time
violation

No setup
or hold-time
violation

WAVEFORM 5.7 Timing diagram for D latch

 Device manufacturers generally specify a setup time, tsu, and hold-time, th, requirement
for parts that contain a control input. To reduce the possibility of circuit malfunction, the input
value D must be constant during the entire sampling interval, tsi. If the C input and the D input
are changed nearly simultaneously, a bistable device may generate a logic 0 glitch as shown in
Waveform 5.7 or a logic 1 glitch, which is not shown. A glitch is simply an undesired momen-
tary pulse that occurs at the output of a circuit as shown in Waveform 5.7. Another possibility
is the circuit may fail to store the last value of D or go into a temporarily unstable state, called
a metastable state, and stay in the metastable state for a short but undetermined time. A meta-
stable state is not a 1 or a 0 but a state in-between, as shown in Waveform 5.7. The setup time is
the time that the D input must be held stable—that is, unchanging or a constant value—prior to
the C input going to 0 to store the data value at the D input. The hold time is the time that the D
input to the D latch must be held stable after the C input goes to 0.

www.itpub.net

 5.5 Designing a D Latch 141

 At trigger events 1 and 3 in Waveform 5.7, there is no setup or hold-time violation, and
output Q stores 1 at event 1 and stores 0 at event 3, which is the last value of D when C goes to
0. At trigger event 2, there is a setup time violation, which causes output Q to fail to store the
last value of D momentarily, which results in a logic 0 glitch. At timing event 4, there is another
violation. This is a hold-time violation, which causes output Q to go into a metastable state for
a brief period of time, then to a high (or 1 in this case). Although metastability is not a frequent
event, it can cause the circuit to malfunction when it occurs. In the case shown at timing event
4, the D latch fails to store the last value of D.
 Listing 5.4 shows a complete VHDL design for a D latch.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is port (
 C, D : in std_logic;
 Q : inout std_logic
);
end D_Latch;

architecture dataflow of D_Latch is
begin
 Q ,5 ‘1’ when ((not C and Q) or (C and D)) 5 ‘1’ else
 ‘0’;
-- Q ,5 (not C and Q) or (C and D); --alternate way
end dataflow;

LISTING 5.4
Complete VHDL
design for a D latch
(project: D_Latch)

 Things you should notice about the VHDL design in Listing 5.4:

• The output signal Q is listed as mode inout in the entity because this allows Q to be read as
an input and also an output.

• A dataflow design style is used with a conditional signal assignment (CSA). An alter-
nate way to write the assignment statement for Q via a Boolean equation is shown by the
comment.

 Waveform 5.8 shows a correct simulation of design entity D_Latch.

 Observe that the waveform diagram in Waveform 5.8 follows the characteristic table for the
D latch shown in Table 5.8. This proves that the VHDL code for the design is correct.

5.5.5 Creating a Clock via a D Latch
As we mentioned in the last section, a D latch is used for temporary data storage. That should be
the only time a D latch is used. The last value of the D input is stored at the output when C is 0.
If feedback is added externally to a D latch, the circuit may break into oscillations at the output
when C is 1 or when the latch goes to its transparent or see-through mode. To prevent this pos-
sibility from happening, never use external feedback around a D latch, as shown in Figure 5.17.

+

+

+

Name Value 0 ns 200 ns

0

d

q

c

1

0

WAVEFORM 5.8 Correct simula-
tion of design entity D_Latch

142 Chapter 5 Bistable Memory Device Design with VHDL

 The circuit in Figure 5.17 is a bad circuit design because it will oscillate when C is 1. This
circuit provides a reminder that you should never use external feedback around a D latch or con-
nect the output of a D latch back to a gate or gates that feed into the D input of a D latch.
 If you are trying to create a clock, you can connect the C input of the D latch in Figure 5.17
to VCC and the circuit will oscillate. The frequency of this circuit is too high to be useful and
also the frequency is not predictable or controllable.

5.5.6 Creating an 8-bit D Latch
Figure 5.18 shows an array of 1-bit D latches and a simplified symbol for the array—that is, an
8-bit D latch. An 8-bit D latch is also an 8-bit register. Latches are only used to store temporary
data and should never be used with external feedback around them.

D

C

Q Q

D latch

External feedback

CLKSystem

clock

FIGURE 5.17 Example
of a bad circuit design

D Q Q(7:0)

C

D(7:0)

8-bit D latch

or

Array of 1-bit D latches

8 8

C

D Q Q(0)

C

D(0)

C

D Q Q(1)

C

D(1)

C

D Q Q(2)

C

D(2)

C

D Q Q(3)

C

D(3)

C

D Q Q(4)

C

D(4)

C

D Q Q(5)

C

D(5)

C

D Q Q(6)

C

D(6)

C

D Q Q(7)

C

D(7)

C

FIGURE 5.18 An array of 1-bit
D latches and a simplified logic symbol
for the array, an 8-bit D latch

www.itpub.net

 5.6 Designing D Flip-Flop Circuits 143

5.6 DESIGNING D FLIP-FLOP CIRCUITS

A flip-flop is specifically designed so that its output will not break into oscillation when feed-
back is added externally around it because it is edge triggered, as opposed to the D latch, which
is level sensitive. Edge triggering is required to allow feedback to be added externally. As we
will see later, D flip-flops are used to design counters. Counters have external feedback and are
found in practically every digital device produced today.

5.6.1 Designing Master–Slave D Flip-Flop Circuits
Figure 5.19a shows a positive edge-triggered D flip-flop (DFF) with a CLR (CLEAR) input
implemented with two D latches and a NOT gate. This type of circuit is called a master–slave D
flip-flop circuit. The master D latch and the slave D latch in the circuit each have an additional
input called CLR, which allows the user to clear the D latches and the resulting D flip-flop.
Figure 5.19b shows the logic symbol for a positive edge-triggered D flip-flop with a CLR input.

 There is no transparent mode or see-through mode from the D input to the Q output for a
D flip-flop due to edge triggering. When the master D latch is in its transparent mode, the slave
D latch is in its storage mode, and when the master D latch is in its storage mode, the slave D
latch is in its transparent mode. External feedback can thus be used around a D flip-flop, and
the circuit will not break into oscillation.
 The master D latch must be logic hazard free so that the circuit cannot produce a logic
glitch that will be passed on to the slave D latch and result in a circuit failure. When the 1s (or
0s) are grouped in a K-map and the groups are not linked—that is, groups are not connected—a
logic hazard may occur and produce a logic glitch. A logic 0 glitch may occur when groups of
1s are not linked, while a logic 1 glitch may occur when groups of 0s are not linked. A glitch
is simply an undesired momentary pulse that occurs at the output of the circuit. The K-map in
Figure 5.13 is repeated in Figure 5.20 to help with this discussion.

D QQ

C

D

Master Slave

No bubble indicates
triggering occurs
on positive edge

Dynamic indicator
means edge triggered

C

(a) (b)

QD

C

CLR

CLR CLR

QD

C
CLR

FIGURE 5.19
Positive edge-
triggered D flip-flop
with a CLR input:
(a) implemented with
two D latches and a
NOT gate; (b) logic
symbol

 The logic hazard cover term e3 that links the groups e1 and e2 shown in Figure 5.20 pro-
vides a logic hazard-free function for Q1 so that the circuit cannot produce a logic glitch. The
reduced function for Q1 has a logic hazard that may result in a logic 0 glitch. The function
Q1 5 C #Q 1 C #D 1 D # Q with the logic hazard cover term included—that is, D?Q—is a logic
hazard-free function that effectively removes the logic glitch.

1 3 7 5

0 2 6 4

1

e1 = C
-

∙Q

= C
-

e2 = C∙D

1 1 1 0

00 0 1 0

00 01 11 10

Q
+
(C,D,Q)

Q
+
(C,D,Q) = e1 + e2 + e3

Q
CD

Connecting groups e1 and e2
with group e3 = D∙Q,
the logic hazard cover term

∙Q + C∙D + D∙Q

FIGURE 5.20 Manual K-map reduc-
tion for the next state output Q1 for a
D latch

144 Chapter 5 Bistable Memory Device Design with VHDL

 Figure 5.21a shows the final circuit for the D latch with a CLR input implemented with the
logic hazard free function in AND/OR circuit form. Figure 5.21b shows the logic symbol for a
D latch with a CLR input.

 The circuit shown in Figure 5.21a can be used for the master D latch in the D flip-flop cir-
cuit with a CLR input shown in Figure 5.19a. The circuit shown in Figure 5.21a can also be used
for the slave D latch with or without the gate for the logic hazard cover term.
 The characteristic table for a D latch with a CLR input is shown in Table 5.10.

D

D

Q
Q

C

C

(b)(a)

CLR

CLR

Provision for
a CLR input

Gate for logic hazard cover term

FIGURE 5.21 D latch
with a CLR input:
(a) implemented with a
logic hazard-free func-
tion in AND/OR circuit
form; (b) logic symbol

 An S-R NOR latch and an S-R NAND latch are logic hazard-free circuits, because the
groups of 1s (or 0s) for these functions are linked, as you can observe by drawing K-maps for
the functions. Therefore, these circuits do not create a glitch due to a logic hazard. Each of the
D latch circuits shown in Figure 5.22 can also be used for the master or the slave D latch in the
D flip-flop circuit with a CLR input shown in Figure 5.19a.

CLR

for

D

C

Q
Q

+

0
Q
Q
0
1

CLR
1
0
0
0
0

C
x
0
0
1
1

Comment (level sensitive)
Asynchronous CLR
No change
No change
Q

+
 follows D

Q
+
 follows D

x
0
1
0
1

D

TABLE 5.10 Characteristic table for a D latch

with a CLR input

D

C

D

C

CLR
CLR

Q

(a)

Q

(b)

Provision for
a CLR input

Provision for
a CLR input

FIGURE 5.22 D latch
with a CLR input:
(a) implemented with
an S-R NOR latch;
(b) implemented with
an S-R NAND latch

 The characteristic table for a positive edge-triggered D flip-flop with a CLR input is shown
in Table 5.11.

D Q

C
CLR

for

Q
+

0
Q
Q
0
1

CLR
1
0
0
0
0

C
x
0

Comment (positive edge-triggered)
Asynchronous CLR
No change
No change
Q

+
 stores last value of D

Q
+
 stores last value of D

x

0

1

D

x
x1

TABLE 5.11

Characteristic table

for a positive edge-

triggered D flip-flop

with a CLR input

www.itpub.net

 5.6 Designing D Flip-Flop Circuits 145

 Notice in the characteristic table that Q1 stores the last value of D only when C is c. The
arrow up symbol in the characteristic table means that the C input goes from a 0 to a 1—that
is, in the positive direction from low to high; hence, this flip-flop type is a positive (or rising)
edge-triggered device. Observe that the asynchronous clear input overrides the control input C
and immediately clears the flip-flop. The asynchronous clear input allows the D flip-flop circuit
to function normally only when CLR is 0. When the asynchronous clear input CLR is active or
1, it forces the Q output of the D flip-flop circuit to go to 0 immediately.
 To convert a D flip-flop (or a D latch) circuit with an active high CLR input to an active low
CLR input, place a NOT gate on the CLR input or remove a NOT gate if one is currently there.
Keep in mind that the addition or deletion of the NOT gate will modify the characteristic table
and the logic symbol. The values in the characteristic table for CLR must be complemented, and
a bubble must be added to the CLR input of the logic symbol to indicate an active low input.
 Figure 5.23a shows a positive edge-triggered D flip-flop (DFF) with a PRE (PRESET)
input implemented with two D latches and a NOT gate. In this master–slave D flip-flop circuit,
the master D latch and the slave D latch each have an additional input called PRE, which allows
the user to set the D latches and the resulting D flip-flop. Figure 5.23b shows the logic symbol
for a positive edge-triggered D flip-flop with a PRE input.

 Figure 5.24 shows several logic hazard-free circuits for a D latch circuit with a PRE input.

D

C

D

C

PRE

PREPREPRE
QQD

C

Q D

C

Q

(a) (b)

Master Slave

No bubble indicates
triggering occurs
on positive edge

Dynamic indicator
means edge triggered

FIGURE 5.23
Positive edge-
triggered D flip-flop
with a PRE input:
(a) implemented with
two D latches and a
NOT gate; (b) logic
symbol

D

C

PRE

C

D

PRE

C

D

PRE

Q

Q
Q

(b)

(a)

(c)

Provision for
a PRE input

Provision for
a PRE input

Provision for
a PRE input

Gate for logic hazard cover term

FIGURE 5.24 D latch implemented with a PRE input: (a) implemented with a logic hazard-free function in AND/OR
circuit form; (b) implemented with an S-R NOR latch; (c) implemented with an S-R NAND latch

146 Chapter 5 Bistable Memory Device Design with VHDL

 Each of the circuits in Figure 5.24 may be used for the master or the slave D latch in the D
flip-flop circuit with a PRE input in Figure 5.23a.
 The characteristic table for a positive edge-triggered D flip-flop with a PRE input is shown
in Table 5.12.

 Observe that the asynchronous preset input overrides the control input C. The asynchronous
preset input allows the D flip-flop circuit to function normally only when PRE is 0. When the
asynchronous clear input PRE is 1, it forces the Q output of the D flip-flop circuit to go to 0
immediately.
 To convert a D flip-flop (or a D latch) circuit with an active high PRE input to an active low
PRE input, place a NOT gate on the PRE input or remove a NOT gate if one is currently there.
Keep in mind that the addition or deletion of the NOT gate will modify the characteristic table
and the logic symbol. The values in the characteristic table for PRE must be complemented, and
a bubble must be added to the PRE input of the logic symbol to indicate an active low input.

5.6.2 Designing D Flip-Flop Circuits with S-R NAND Latches
An alternate way to implement a positive edge-triggered D flip-flop (DFF) with a CLR input is
with three S-R NAND latches and a NOT gate as shown in Figure 5.25a. Figure 5.25b shows the
logic symbol for a positive edge-triggered D flip-flop with a CLR input.

D Q

C

PRE

for

Q
+

1
Q
Q
0
1

PRE
1
0
0
0
0

C
x
0

Comment (positive edge-triggered)
Asynchronous PRE
No change
No change
Q

+
 stores last value of D

Q
+
 stores last value of D

x
D

0
1

x
1 x

TABLE 5.12 Characteristic table for a positive edge-triggered

D flip-flop with a PRE input

D Q

C
CLR

D

C

CLR
QQQ

-

(b)(a)

S1

R1
R2

S1

R1
R2

Q
-

S1
S2

R1
R2

Q

FIGURE 5.25 Positive
edge-triggered D flip-
flop circuit with a CLR
input: (a) implemented
with three S-R NAND
latches and a NOT gate;
(b) logic symbol

 Figure 5.26 shows an annotated gate-level circuit for the positive edge-triggered D flip-
flop with a CLR input implemented with a three S-R NAND latches and a NOT gate. The inter-
nal signals E through J can be used to write the VHDL code for the circuit as shown in the next
section. This D flip-flop implementation is preferred over a master–slave D flip-flop with a CLR
input because it requires fewer gates.

www.itpub.net

 5.6 Designing D Flip-Flop Circuits 147

 The characteristic table for the D flip-flop circuit in Figure 5.26 is shown in Table 5.11.
 Figure 5.27 shows a gate-level circuit for a positive edge-triggered D flip-flop (DFF) with
a PRE input implemented with three S-R NAND latches and a NOT gate. This D flip-flop
implementation is preferred over a master–slave D flip-flop with a PRE input because it requires
fewer gates.

CLR

C

E

F

G

H

Q

J

I
D

FIGURE 5.26 Annotated
gate-level circuit for a posi-
tive edge-triggered D flip-flop
with a CLR input imple-
mented with three S-R NAND
latches and a NOT gate

PRE

C

Q

D

FIGURE 5.27 Gate-level circuit
for a positive edge-triggered D
flip-flop with a PRE input imple-
mented with three S-R NAND
latches and a NOT gate

 The characteristic table for the D flip-flop circuit in Figure 5.27 is shown in Table 5.12.
 Figure 5.28a shows the logic symbol for a negative edge-triggered D flip-flop with a CLR
input, and Figure 5.28b shows the logic symbol for a negative edge-triggered D flip-flop with a
PRE input.

D Q

C

Bubble indicates
triggering occurs
on negative edge

Dynamic indicator
means edge triggered

(a)

CLR

D Q

C

Bubble indicates
triggering occurs
on negative edge

Dynamic indicator
means edge triggered

(b)

PRE

FIGURE 5.28 Logic
symbol for negative
edge-triggered D flip-
flop: (a) CLR input;
(b) PRE input

148 Chapter 5 Bistable Memory Device Design with VHDL

 The characteristic tables for the negative edge-triggered D flip-flops in Figure 5.28 are
shown in Table 5.13.

 Notice in the characteristic table that Q1 stores the last value of D only when C is T. The
arrow down symbol in the characteristic table means that the C input goes from a 1 to a 0—that
is, in the negative direction from high to low; hence, this flip-flop type is a negative (or falling)
edge-triggered device.
 As you can observe from the characteristic tables, a positive edge-triggered D flip-flop and
a negative edge-triggered D flip-flop acts the same except for the control input. A positive edge-
triggered D flip-flop stores the value of D on the rising edge of the control input signal, while a
negative edge-triggered D flip-flop stores the value of D on the falling edge of the control input
signal.
 To convert a positive edge-triggered D flip-flop circuit to a negative edge-triggered D
flip-flop, place a NOT gate on the control input or remove a NOT gate if one is currently there.
Keep in mind that the addition or deletion of the NOT gate will modify the characteristic table
and the logic symbol. The values in the characteristic table for C input must be complemented,
and a bubble must be added to the control input of the logic symbol to indicate a negative edge-
triggered input.
 The control input C is often called the clock input because the signal supplied to the control
input is usually the system clock or a slower running clock derived from the system clock. The
logic symbols for the two most commonly used D flip-flops in this text are shown in Figure 5.29
with signals applied at their inputs. These single bit D flip-flops are also single-bit registers.

 The D input to a D flip-flop is called the excitation input because it excites the output and
thus allows the output to change to a new value. The D input is also referred to as a synchronous
input, because it must wait for the next clock tick to cause the output to change. We use the term
clock tick to mean a rising-edge timing event for a positive edge-triggered device or falling-edge
timing event for a negative edge-triggered device.

DD Q Q

C

(a)

CLR
CLK CLK

CLR

DD Q Q

C

(b)

PRE

PREFIGURE 5.29 Two most commonly
used D flip-flops in this text: (a) posi-
tive edge-triggered D flip-flop with a
CLR input; (b) positive edge-triggered
D flip-flop with a PRE input

CLR C D Q+ Comment (negative edge-triggered)

1 x x 0 Asynchronous CLR
0 0 x Q No change
0 1 x Q No change
0 0 0 Q+ stores last value of D
0 1 1 Q+ stores last value of D

(a)

PRE C D Q+ Comment (negative edge-triggered)
1 x x 1 Asynchronous PRE
0 0 x Q No change
0 1 x Q No change
0 0 0 Q+ stores last value of D
0 1 1 Q+ stores last value of D

(b)

TABLE 5.13 Characteristic table for negative edge-triggered D flip-flop: (a) CLR input;

(b) PRE input

www.itpub.net

 5.6 Designing D Flip-Flop Circuits 149

5.6.3 Timing Diagram for Positive Edge-Triggered D Flip-Flop
Waveform 5.9 shows a timing diagram for a positive edge-triggered D flip-flop.

 All devices with a controlled input have a specified setup time, tsu, and hold time, th,
requirement, including flip-flops. To reduce the possibility of circuit malfunction, the input
value D must be constant during the entire sampling interval, tsi. If input C and input D are
changed nearly simultaneously, a bistable device may either fail to store the correct value or go
into a temporarily unstable state, called a metastable state, and stay in the metastable state for an
undetermined time. The timing diagram in Waveform 5.9 does not show examples of setup time
or hold-time violations, because they are an exception, not the norm. An example of a meta-
stable state is shown in Waveform 5.7 in the timing diagram for a D latch. Observe in Waveform
5.9 that the Q output stores the correct value of D only at the rising edge of C, assuming that D
is constant during the entire sampling interval, tsi. CLR overrides C and resets Q at any time.
 A timing diagram for a negative edge-triggered D flip-flop operates in exactly the same
manner as a positive edge-triggered D flip-flop, only the Q output stores the correct value of D
at the falling edge of C, assuming that D is constant during the entire sampling interval, tsi.
 The annotated gate-level circuit for the positive edge-triggered flip-flop in Figure 5.26 is
repeated in Figure 5.30 as a handy reference for writing the VHDL code for the flip-flop.

{ { { {

1 2 3 4

CLR

C

D

Q

t
si

t
su

 = setup time

t
su

t
h

t
h
 = hold time

t
si
 = (sampling interval = t

su
 + t

h
)

t
si

t
si

t
si

Trigger event,
clocking event, or
timing event

Clock tick Clock tick Clock tick Clock tick

CLR overrides
the C input

Output gets
reset

No setup
or hold-time
violation

No setup
or hold-time
violation

No setup
or hold-time
violation

Captures last
value of D

Captures last
value of D

Captures last
value of D

WAVEFORM 5.9 Timing
diagram for a positive
edge-triggered D flip-flop

 Listing 5.5 shows a complete VHDL design for the positive edge-triggered D flip-flop with
a CLR input shown in Figure 5.30.

CLR

C

E

F

G

H

Q

J

I
D

FIGURE 5.30 Annotated gate-
level circuit for a positive edge-
triggered D flip-flop with a CLR
input implemented with three S-R
NAND latches and a NOT gate

150 Chapter 5 Bistable Memory Device Design with VHDL

 Things you should notice about the VHDL design in Listing 5.5:

• The output signal Q is listed as mode inout in the entity because this allows Q to be read as
an input and also an output.

• The internal signals E, F, G, H, I, and J must be declared between architecture and the first
begin. Remember that internal signals are not assigned a mode—that is, in, out, or inout.

• A dataflow design style is used with Boolean equations.
• It is simpler to use NAND (or NOR) gate assignments when working with gate-level designs

for latches and flip-flops because this takes less typing, but you may also use DeMorgan
equivalent gates if you prefer.

 Waveform 5.10 shows a correct simulation of design entity DFF_W_CLR.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DFF_W_CLR is port (
 CLR,C,D : in std_logic;
 Q : inout std_logic
);
end DFF_W_CLR;

architecture dataflow of DFF_W_CLR is
 signal E,F,G,H,I,J : std_logic;
begin
 E ,5 not CLR;
 F ,5 I nand G;
 G ,5 not (F and E and C);
 H ,5 not (G and C and I);
 I ,5 not (H and E and D);
 J ,5 not (Q and E and H);
 Q ,5 G nand J;
end dataflow;

LISTING 5.5
Complete VHDL
design for a positive
edge-triggered D flip-
flop with a CLR input
(project: DFF_W_
CLR_Bool)

 A clock tick is a rising edge timing event at the C input for this positive edge-triggered D
flip-flop. To emphasize adequate setup and hold time for the D flip-flop, the D input is changed
on the falling edge of the clock. Observe that the waveform diagram in Waveform 5.10 follows
the characteristic table for the positive edge-triggered D flip-flop with a CLR input shown in
Table 5.11. This proves that the VHDL code for the design is correct.

+

+

+

+

0 ns 200 ns 400 ns 600 ns 800 nsName Value

clr
c
d
q

0
0
0
U

WAVEFORM 5.10
Correct simulation of
design entity DFF_W_
CLR

 5.4 For a simple light switch (mechanical latch), what does
set mean?

 5.5 For a simple light switch (mechanical latch), what does
reset mean?

Section 5.2 Analyzing an S-R NOR Latch
 5.1 What is the simplest form of a single-bit register?
 5.2 Describe two ways to form an S-R latch with gates.
 5.3 What do S and R stand for when discussing S-R latches?

PROBLEMS

www.itpub.net

 Problems 151

 5.23 Obtain a simulation for the S-R NOR latch in problem
5.22. The simulation must agree with the characteristic
table for the S-R NOR latch shown in Table 5.2 in the
text to be correct.

Section 5.3 Analyzing an S-R NAND Latch
 5.24 Draw and label the circuit for an S-R NAND latch.
 5.25 Draw the logic symbol for an S-R NAND latch.
 5.26 Is an S-R NAND latch set dominant or reset dominant?

What do the terms mean?
 5.27 Write the characteristic table for an S-R NAND latch.
 5.28 Draw the circuit delay model for an S-R NAND latch,

and write the characteristic equation for the latch by
analyzing the circuit.

 5.29 Expand the characteristic table for an S-R NAND latch
to obtain the PS/NS table.

 5.30 Complete the timing diagram in Figure P5.30 by draw-
ing the waveform for the Q output for an S-R NAND
latch.

 5.6 Write the characteristic table for a light switch.
 5.7 What digital circuit has a similar characteristic table to a

light switch?
 5.8 Does a combinational logic circuit have a memory?
 5.9 What does a sequential logic circuit have that a combina-

tional logic circuit does not?
 5.10 Draw and label the circuit for an S-R NOR latch.
 5.11 Draw the logic symbol for an S-R NOR latch.
 5.12 Write the signal name used for the present-state output

of a latch.
 5.13 Write the signal name used for the next-state output of a

latch.
 5.14 Write an expression for the present-state output for a

latch in terms of the next-state output of the latch.
Explain what the expression means.

 5.15 Is an S-R NOR latch set dominant or reset dominant?
What do the terms mean?

 5.16 Write the characteristic table for an S-R NOR latch.
 5.17 Draw the circuit delay model for an S-R NOR latch, and

write the characteristic equation for the latch by analyz-
ing the circuit.

 5.18 Expand the characteristic table for an S-R NOR latch to
obtain the PS/NS table.

 5.19 Complete the timing diagram in Figure P5.19 by draw-
ing the waveform for the Q output for an S-R NOR latch.

S

R

Q

FIGURE P5.19

 5.20 Write complete VHDL code for the S-R NOR latch
shown in Figure P5.20. Use two Boolean equations—
that is, one Boolean equation for signal E and another
Boolean equation for output Q.

FIGURE P5.20

S

R

E

Q

 5.21 Obtain a simulation for the S-R NOR latch in problem
5.20. The simulation must agree with the characteristic
table for the S-R NOR latch shown in Table 5.2 in the
text to be correct.

 5.22 Write complete VHDL code for the latch circuit shown
in Figure P5.22. Use three Boolean equations—that is,
one Boolean equation for signal E, one Boolean equation
for signal F, and one Boolean equation for output Q.

FIGURE P5.22

S

F
R

E

S_R_LATCH1

Q

FIGURE P5.30

S

R

Q

 5.31 Write complete VHDL code for the S-R NAND latch
shown in Figure P5.31. Use two Boolean equations—
that is, one Boolean equation for signal E and another
Boolean equation for output Q.

FIGURE P5.31

R

S

E

Q

 5.32 Obtain a simulation for the S-R NAND latch in problem
5.31. The simulation must agree with the characteristic
table for the S-R NAND latch shown in Table 5.4 in the
text to be correct.

152 Chapter 5 Bistable Memory Device Design with VHDL

in Figure 5.13 in the text. Use the equation to draw and
label the D latch circuit.

 5.52 When is a D latch used in a digital circuit?
 5.53 Why is a D latch referred to as level sensitive?
 5.54 What is a metastable state, and how can a D latch arrive

in a metastable state?
 5.55 Write complete VHDL code for the D Latch circuit

shown in Figure P5.55. Use fi ve Boolean equations—
that is, one Boolean equation for signal E, and one Bool-
ean equation for each NAND gate outputs.

 5.33 Write complete VHDL code for the latch circuit shown
in Figure P5.33. Use three Boolean equations—that is,
one Boolean equation for signal E, one Boolean equation
for signal F, and one Boolean equation for output Q.

FIGURE P5.33

S
F

R

E

S_R_LATCH2

Q

 5.34 Obtain a simulation for the S-R NAND latch in problem
5.33. The simulation must agree with the characteristic
table for the S-R NAND latch shown in Table 5.4 in the
text to be correct.

Section 5.4 Designing a Simple Clock
 5.35 Draw and label a state diagram for a simple clock.
 5.36 List the four major parts of a state diagram.
 5.37 What is another name that is used for a clock?
 5.38 Write the PS/NS table for a simple clock.
 5.39 Calculate the frequency of a simple clock. The NOT gate

for the clock circuit has a propagation delay time, tp, of
10 ns. Write an expression for the frequency of the clock,
and then solve for the frequency.

 5.40 Write an expression for the defi nition of the term duty
cycle (DC). If the on time is 10 ns and the period of
the Waveform is 30 ns, calculate the duty cycle as a
percentage.

 5.41 What is the most accurate clock to use in a digital
circuit?

 5.42 For the VHDL design for the design entity CLOCK in
the text, what is the mode of the CLK? What is the alter-
nate name that can be used for the mode?

Section 5.5 Designing a D Latch
 5.43 What is another name for a D latch?
 5.44 Draw and label a circuit for a D latch that uses an S-R

NOR latch.
 5.45 Draw and label a circuit for a D latch that uses an S-R

NAND latch.
 5.46 Draw the logic symbol for a D latch.
 5.47 Write the characteristic table for a D latch.
 5.48 For a D Latch, what is the value of C for the storage

mode?
 5.49 For a D latch, what is the value of C for the transparent

mode or see-through mode?
 5.50 Expand the characteristic table for the D latch to obtain

the PS/NS table.
 5.51 Obtain a reduced equation in POS form for the next state

output Q1 for a D latch. Hint: Group the 0s in the K-map

FIGURE P5.55

C

D
H

F

G

D_LATCH_NANDS

E
Q

 5.56 Obtain a simulation for the D latch in problem 5.55. The
simulation must agree with the characteristic table for
the D latch shown in Table 5.8 in the text to be correct.

 5.57 What can happen if you provide external feedback
around a D latch circuit?

 5.58 Draw the circuit for a 2-bit register using an array of D
latches.

 5.59 Draw a simplifi ed logic symbol for a 2-bit register using
an array of D latches.

Section 5.6 Designing D Flip-Flop Circuits
 5.60 Explain why external feedback can be added to a D fl ip-

fl op but not to a D latch circuit.
 5.61 Draw a circuit for a master–slave positive edge-triggered

D fl ip-fl op with a CLR input using logic symbols for D
latches and a NOT gate. Also draw a logic symbol for the
circuit.

 5.62 Write the characteristic table for a D latch with a CLR
input and draw the logic symbol.

 5.63 What is the purpose of a gate for a logic hazard cover
term in the design of a D latch? Why is it important to
include a gate for a logic hazard cover term in the master
D latch for a master–slave edge-triggered D fl ip-fl op
design?

 5.64 Can a D latch implemented with an S-R NOR latch or
with an S-R NAND latch generate a glitch due to a logic
hazard? Provide an explanation for your answer.

 5.65 Write complete VHDL code for the D latch circuit with
a CLR input shown in Figure P5.65. Use fi ve Boolean
equations—that is, one Boolean equation for signal E,
one Boolean equation for each AND gate output, and
one Boolean equation for each NOR gate output.

www.itpub.net

 Problems 153

 5.76 Explain how a D fl ip-fl op (or a D latch) with an active
high PRE input, is converted to a D fl ip-fl op (or a D
latch) with an active low PRE input.

 5.77 Write the characteristic table for a positive edge-
triggered D fl ip-fl op with an active low PRE input, and
draw the logic symbol.

 5.78 Draw the gate-level circuit for the S-R NAND latch
shown in Figure P5.78, which is used in the D fl ip-fl op
with a CLR input implemented with three S-R NAND
latches in Figure 5.25.

 5.66 Obtain a simulation for the D latch in problem 5.65. The
simulation must agree with the characteristic table for
the D latch shown in Table 5.10 in the text to be correct.

 5.67 Write the characteristic table for a positive edge-
triggered D fl ip-fl op with a CLR input and draw the logic
symbol.

 5.68 In Figure 5.19 in the text, explain what the CLR input
does to the output Q of the master–slave D fl ip-fl op when
it is active or 1.

 5.69 What does the symbol c mean?
 5.70 Does an asynchronous clear wait on the control input to

a D fl ip-fl op to clear the fl ip-fl op, or does it override the
control input and clear the fl ip-fl op immediately?

 5.71 Explain how a D fl ip-fl op (or a D latch) with an active
high CLR input is converted to a D fl ip-fl op (or a D latch)
with an active low CLR input.

 5.72 Write the characteristic table for a positive edge-
triggered D fl ip-fl op with an active low CLR input, and
draw the logic symbol.

 5.73 Draw a circuit for a master–slave positive edge-triggered
D fl ip-fl op with a PRE input using logic symbols for D
latches and a NOT gate. Also draw a logic symbol for the
circuit.

 5.74 In the D latch circuit in Figure P5.74, what is eliminated
by the gate for the logic hazard cover term?

FIGURE P5.65

C

CLR

D
H

F

G

D_LATCH_W_CLR

E Q

FIGURE P5.74

C

PRE

D

Gate for logic hazard cover term

Q

 5.75 Write the characteristic table for a D latch with a PRE
input, and draw the logic symbol.

FIGURE P5.78

Q
-

S1
S2

R1
R2

Q

 5.79 Draw a circuit for a positive edge-triggered D fl ip-fl op
with a PRE input, using logic symbols for S-R NAND
latches and a NOT gate. Also draw a logic symbol for the
circuit. Hint: Use the circuit in Figure 5.27 in the text as
a guide.

 5.80 Write the characteristic table for a negative edge-
triggered D fl ip-fl op with a CLR input, and draw the
logic symbol.

 5.81 Draw the logic symbol for a negative edge-triggered D
fl ip-fl op with a PRE input.

 5.82 What does the symbol T mean?
 5.83 Explain how you can convert a positive edge-triggered

fl ip-fl op to a negative edge-triggered fl ip-fl op.
 5.84 Is the D fl ip-fl op circuit in Figure P5.84 a positive edge-

triggered fl ip-fl op or a negative edge-triggered fl ip-fl op?
Discuss how you arrived at your answer.

FIGURE P5.84

D

C

QD

C

Q

Master Slave

QD

C

CLR

CLR CLR

 5.85 Is the D fl ip-fl op in Figure P5.85 a positive edge-
triggered fl ip-fl op or a negative-edge triggered fl ip-fl op?
Discuss how you arrived at your answer.

154 Chapter 5 Bistable Memory Device Design with VHDL

 5.86 What is the excitation input to a D fl ip-fl op?
 5.87 Why is the D input to a D fl ip-fl op referred to as a synchronous input?
 5.88 What does the term clock tick mean?
 5.89 What is the name used for a temporarily unstable state for a bistable device?
 5.90 Complete the timing diagram in Figure P5.90 by drawing the waveform for the Q output for a posi-

tive edge-triggered D fl ip-fl op.

FIGURE P5.85

Q
Q
-

S1

R1
R2

D

C

CLR

Q
-

S1
S2

R1
R2

Q

Q
S1

R1
R2

FIGURE P5.90
Q

D

C

CLR

 5.91 Complete the timing diagram in Figure P5.91 by drawing the Waveform for the Q output for a nega-
tive edge-triggered D fl ip-fl op.

FIGURE P5.91
Q

D

C

PRE

www.itpub.net

 Problems 155

 5.93 Obtain a simulation for the D fl ip-fl op circuit in problem 5.92. The simulation must agree with the
characteristic table for a positive edge-triggered D fl ip-fl op with a CLR input shown in Table 5.11
in the text to be correct.

 5.94 Write complete VHDL code for the master–slave D fl ip-fl op circuit with a CLR input shown in
Figure P5.94. Use the following Boolean equations:

 E 5 1E #C 1 C #D 1 D #E 2 #CLR
 F 5 C
 Q 5 1Q #F 1 F #E 2 #CLR

 5.92 Write complete VHDL code for the D fl ip-fl op circuit with a CLR input shown in Figure P5.92. Use
the following Boolean equations:

 E 5 CLR

 H 5 1H 1 E 1 D 2 1 C 1 G

 G 5 1G 1 1H 1 E 1 D 2 1 E 1 C

 Q 5 1G 1 1Q 1 E 1 H 2

FIGURE P5.92

R2

Q
-

S1

R1
R2

Q
-

S1
S2

R1

Q

Q
S1

R1
R2

D

C

GE

H

CLR
Q

FIGURE P5.94

D

C
F

E
QD

C

Q

Master Slave

DFF_MOD

QD

C

CLR

CLR CLR

 5.95 Obtain a simulation for the D fl ip-fl op circuit in problem 5.94. The simulation must agree with the
characteristic table for a negative edge-triggered D fl ip-fl op with a CLR input shown in Table 5.13a
in the text to be correct.

CC h a p t e r

Simple Finite State Machine
Design with VHDL

Chapter Outline

 6.1 Introduction 156

 6.2 Synchronous Circuits 156

 6.3 Creating D-type Flip-Flops in VHDL 157

 6.4 Designing Simple Synchronous Circuits 158

 6.5 Counter Design Using the Algorithmic Equation Method 159

 6.6 Nonconventional Counter Design Using the Algorithmic Equation Method 167

 6.7 Counter Design Using the Arithmetic Method 170

 6.8 Frequency Division (Slowing Down a Fast Clock Frequency) 171

 6.9 Counter Design Using the PS/NS Tabular Method 174

 6.10 Nonconventional Counter Design Using the PS/NS Tabular Method 177

 Problems 178

6.1 INTRODUCTION

In this chapter, you will learn many ways to write VHDL to create digital hardware for synchro-
nous sequential logic circuits called counters. These types of circuits have feedback—that is,
the present-state flip-flop outputs are fed back as inputs to the circuits. In this chapter, we will
only present simple counters.

6.2 SYNCHRONOUS CIRCUITS

Our emphasis in this chapter is placed on designing clock mode (or clocked) counter circuits.
These circuits are synchronous circuits because their outputs change state in step with a par-
ticular input signal called the clock. A synchronous circuit stores a value (either a single bit or a
string of bits) at the rising (or falling) edge of the clock and remembers that value until the next
rising (or falling) edge of the next clock cycle. Latches are sometimes created due to our care-
lessness in writing VHDL code. We will concentrate on synchronous circuits that use data-type
flip-flops (DFFs), because they are predominantly used in modern programmable devices—that
is, CPLDs (complex programmable logic devices) and FPGAs (field programmable gate arrays).
Other types of flip-flops such as the SR-type flip-flop, JK-type flip-flop, and T-type flip-flops
exist but are no longer used for new design, because CPLDs and FPGAs only contain data-type
flip-flops, which are also called D flip-flops or DFFs.

CC6

156

www.itpub.net

 6.3 Creating D-type Flip-Flops in VHDL 157

6.3 CREATING D-TYPE FLIP-FLOPS IN VHDL

A D-type flip-flop (DFF) is rather useless in many applications unless its output value can either be
cleared (Q output goes to 0 when CLR input is 1) or preset (Q output goes to 1 when PRE input is
1) to a known state or value either at startup (or power on) or at any other desired time. Figure 6.1a
shows a standard DFF with a CLR input while Figure 6.1b shows a standard DFF with a PRE input.

 In Figure 6.1a when the CLR input is asserted or pulled high to logic 1, output Q is cleared
to 0, independent of the control input C. As long as the CLR input is 1, Q remains at 0. When
the CLR input is changed to 0, the DFF behaves in its normal fashion and loads the value of D
at the next rising edge of the clock signal CLK, which is applied to the control input C.
 In Figure 6.1b, when the PRE input is asserted or pulled high to logic 1, output Q is set to
1, independent of the control input C. As long as the PRE input is 1, Q remains at 1. When the
PRE input is changed to 0, the DFF behaves in its normal fashion and loads the value of D at the
next rising edge of clock signal CLK, which is applied to the control input C.
 Signals are used to write VHDL code, not terminal labels. In Figures 1a and 1b, signal D
and input D have the same name, and signal Q and output Q also have the same name. Signal
CLK and input C are named differently. The signal RST and input CLR are named differently.
The signal SET and input PRE are also named differently. The signal CLK is generally con-
nected to an external clock and hence is named CLK, which is short for CLOCK. The signal RST
is short for RESET, which is an alternate name for CLEAR. The signal SET is an alternate name
for PRESET. We added (asyn) which is short for asynchronous to the signals RST and SET to
indicate that the signals RST and SET are clock independent. An asynchronous signal is a signal
that can happen at any time. When the signal RST (asyn) in Figure 6.1a is asserted, it overrides
the clock signal CLK and immediately clears the D flip-flop. When the signal SET (asyn) in
Figure 6.1b is asserted, it overrides the clock signal CLK and immediately sets the D flip-flop.
 Listing 6.1 shows a complete VHDL design for the DFF in Figure 6.1a using a dataflow
architecture declaration with a conditional signal assignment (CSA).

DD Q Q

C

(a)

CLR
CLK CLK

RST
(asyn)

D D Q Q

C

(b)

Signals

Terminal labels
(these are not signals)

SET
(asyn)

PRE

FIGURE 6.1 Logic symbol for a
standard DFF (D-type flip-flop):
(a) CLR is a clock-independent
input for clearing the flip-flop;
(b) PRE is a clock-independent
input for setting the flip-flop

libraryIEEE;
use IEEE.STD_LOGIC_1164.all;

entity DFF is port (
 rst, clk, d: in std_logic;
 q: inout std_logic
);
end DFF;

architecture dataflow of DFF is
begin
 q ,5 ‘0’ when rst 5 ‘1’ else
 d when rising_edge(clk) else
 q;
 --note: “else q” is inferred (so it can be removed)
end dataflow;

LISTING 6.1
Complete VHDL
design for the DFF
(project: DFF)

158 Chapter 6 Simple Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 6.1:

• A library clause, a use clause, and an entity declaration are required to make the design
complete.

• The output signal Q is listed as mode inout in the entity because this allows Q to be read as
an input and also an output.

• Because the RST input precedes rising_edge(clk), the RST input is a clock-independent
input.

• Rising_edge(CLK) represents the event caused by CLK changing from 0 to 1. Another
way of representing the event is by using CLK' event and CLK 5 '1' in place of rising_
edge(CLK). Note: falling_edge(CLK) represents the event caused by CLK changing from 1
to 0. In either case, a D flip-flop is created.

• As indicated in the comment, else Q is inferred. When else Q is left off of this conditional
signal assignment, the present-state output value Q is simply retained or stored. Leaving
out else Q is an advantage because this results in less typing. This can cause problems
by creating latches by inference, when there is no clock tick event specified—that is, ris-
ing_edge(CLK) or falling_edge(CLK). In general, when no clock tick event is specified, be
sure to include the last else (the else after the last when) in a conditional signal assignment
(CSA) and also include the last else (the else after the last then) in an if-then-else statement
or if-then-elsif statement unless you really intend to create an inferred latch.

• Recommendation: Do not use rising_edge(CLK) embedded in a selected signal assignment
(SSA) because this construct is not supported in VHDL.

 Waveform 6.1 shows the simulation with the correct functionality of design entity DFF.

 To understand how the simulation of the design entity DFF was obtained, see Appendix B,
Section B.3.
 The VHDL design in Listing 6.1 can easily be modified to create a flip-flop with an active
low RST input, an active low SET input, and also a clock tick event for a falling edge of CLK.
Remember to place the RST input or the SET input prior to the clock tick event (before ris-
ing_edge(CLK) in the VHDL code) if you want the RST input or the SET input to be a clock-
independent input and thus override the clock input.
 To make a flip-flop with a clock-dependent or synchronous RST (SET) input, simply place
the RST (SET) input after the clock tick event (following rising_edge(CLK) in the VHDL code).
The RST (SET) input will be clock dependent and only be able to clear (set) the flip-flop after
the rising_edge(CLK). If you use a process to create the flip-flop, do not include RST (SET) in
the sensitivity list when the RST (SET) input is clock dependent. A DFF with a synchronous RST
(SET) input may be labeled RST (syn) (SET (syn)) as a reminder that the input is synchronous.

6.4 DESIGNING SIMPLE SYNCHRONOUS CIRCUITS

Simple counters have a fixed counting sequence and therefore do not have external inputs to
change the counting sequence. Complex counters have external inputs that allow the counting

+

+

+

+

+

0 ns 200 ns 400 ns 600 ns 800 nsName Value

50000 ps50000 ps

0

0

0

1

clk_period

q

clk

d

rst

WAVEFORM 6.1
Simulation with the
correct functionality
of design entity DFF

www.itpub.net

 6.5 Counter Design Using the Algorithmic Equation Method 159

sequence to be changed. We will cover complex counters or complex state machines later in
Chapter 9.
 Simple counters are often named by the sequence as well as the direction in which they
count. The sequence can be a straight binary sequence, a Gray code sequence, or any other
sequence in addition to counting forward (or up) or counting in reverse (or down). The sequence
can be a one-hot sequence such that all bits are off except one that is on; hence, the term one-hot.
A one-cold sequence can be used as well. Counters by definition are state machines, or finite
state machines, because they contain only a finite number of states in their counting sequence.
A simple counter is a simple state machine (SSM) or simple finite state machine (SFSM).
 We will cover the following three methods for designing simple counters suitable for
VHDL:

 1. Algorithmic equation method.
 2. Arithmetic method.
 3. PS/NS (present-state/next-state) tabular method.

 The first method requires a full understanding of D-type flip-flops as well as how to draw
a logic circuit for a design. The last two methods require less hardware understanding, but a
little more detailed understanding of VHDL. The following list is a brief description of the three
methods we will cover:

• When we use the algorithmic equation method, we use predefined steps to obtain the flip-
flop excitation equations and then draw the schematic. The schematic is then used to write
proper VHDL code for the design.

• When we use the arithmetic method, we enter the counting sequence via an arithmetic “1”
or “2” operator in VHDL.

• When we use the PS/NS tabular method, we enter the counting sequence via an if statement
and a case statement in VHDL.

6.5 COUNTER DESIGN USING THE ALGORITHMIC EQUATION METHOD

The algorithmic equation method (AE method) is partially a manual method and partially a
coding method because you must manually obtain the excitation equations for the flip-flops,
manually draw the circuit, and then write the VHDL code for the circuit. This method requires
that you have a complete understanding of the entire design process that must be performed to
obtain a counter design.
 Figure 6.2a shows a counting sequence diagram (or state sequence diagram) for a binary
up counter (2 bits) with a clock independent reset input RST for design entity Counter1. An
equivalent state diagram for the counter is shown in Figure 6.2b.
 When the asynchronous input RST is asserted or equal to 1, the counter goes to state 00.
When the asynchronous input RST is not asserted or is 0, the counter responds to the clock. Each
time the clock ticks, the counter changes from its present-state value to its next-state value—that
is, 00 to 01, then 01 to 10, then 10 to 11, then 11 back to 00—following the state-transition lines.
The clock signal is not shown in the counting sequence diagram or in a state diagram; that is, it
is implied.
 Figure 6.2 shows an asynchronous reset signal RST, which resets the counter to 00 indepen-
dent of the clock. From this information, we can draw the clouds-of-logic circuit for the binary
up counter as shown in Figure 6.3. Each state represents the output of a D flip-flop, so two flip-
flops are drawn with the outputs Q0 and Q1. D flip-flop Q0 has a D input signal labeled D0, and
D flip-flop Q1 has a D input signal labeled D1. The D inputs provide the next-state values for
the D flip-flops.

160 Chapter 6 Simple Finite State Machine Design with VHDL

 Our task is to obtain the D excitation equations D0 and D1 for the flip-flops Q0 and Q1 so
that we can fill in the clouds of combinational logic.
 An algorithm, or step-by-step procedure, will be developed so we can write the excitation
equations for the D inputs for each of the two flip-flops Q0 and Q1. After we obtain the D exci-
tation equations, we can draw the schematic for the circuit and write the proper VHDL code for
the design.
 The excitation equation for a single D flip-flop depends on the output transitions made
by the flip-flop from its present-state output Q(PS) to its next-state output Q(NS), or Q(PS) S
Q(NS). Table 6.1 summarizes all possible output transitions for a single D flip-flop. Notice in
Table 6.1 that the D column is the equivalent to the next-state value, or D 5 Q1 5 Q(NS).

≡

(a)

Q1

0

0

1

1

0

00

0 1

01

1 1

1

0

1

Q0

Q1 Q0

(b)

State variables

State variables

State-transition line

State-transition line

State or
state value

State or
state value

Legend

State bubble

RST
(asyn)

RST
(asyn)

FIGURE 6.2 Binary
up counter (2 bits) for
design entity Counter1:
(a) counting sequence
diagram; (b) equivalent
state diagram

Q1

Q0

Counter 1

Q1

Q0

D1

D

D

Q

Q

C

C

CLR

CLR

CLK

CLK

Cloud of
combinational

logic

Cloud of
combinational

logic

RST
(asyn)

RST
(asyn)

Q1

Q0
D0

FIGURE 6.3 Binary
up counter (2 bits)
with clouds of com-
binational logic to be
determined

TABLE 6.1 Flip-flop output

transitions and required D input

Q(PS) Q(NS) Comment D

0 0 Hold 0 transition 0

0 1 Set transition 1

1 0 Clear transition 0

1 1 Hold 1 transition 1

www.itpub.net

 6.5 Counter Design Using the Algorithmic Equation Method 161

 The equation for the function D can be written in terms of its 1s or its 0s. We chose to obtain
the D excitation equation for the 1s of the function D. This requires using just two of the transi-
tions in Table 6.1—that is, the Set transition (Q(PS) 5 0) S (Q(NS) 5 1) or simply the 0 S 1
transition, and the Hold 1 transition (Q(PS) 5 1) S (Q(NS) 5 1) or simply the 1 S 1 transition.
Using these two transitions, we can write the equations for simple counters that use D flip-flops
by inspection using just a counting sequence diagram, or a state diagram. For now we will just
work with a counting sequence diagram.
 Because only Set transitions and Hold 1 transitions are required to obtain each D input
excitation equation, we refer to this method as the Set OR Hold 1 method. The algorithm for
the method can be expressed by the following Set OR Hold 1 equation:

D 5 S(PS expression for a set transition)

 1 S(PS expression for a hold 1 transition)

 The summation symbol S represents a logical summation—that is, OR the PS expression
together for all the Set transitions and all the Hold 1 transitions. The Set OR Hold 1 equation
is applied in turn to obtain the D input excitation equations for each of the D flip-flops mak-
ing up the counter. This method works for any size design and the equations do not have to be
minimized because VHDL will reduce the equations. K-maps do not have to be drawn and
minimized when using the Set OR Hold 1 method.
 Figure 6.4a shows the procedure for using the Set OR Hold 1 method via a counting
sequence diagram. Figure 6.4b shows the classical procedure for using a PS/NS (present-state/
next-state) table to obtain the same D input excitation equations for the binary up counter, which
we will refer to as the conventional method.

 To use the Set OR Hold 1 method, you first need to understand how to obtain the present-
state expressions for each state. The PS expression for state 00 is Q1 #Q0, for state 01 is Q1 #Q0,
for state 10 is Q1 #Q0, and for state 11 is Q1?Q0. Notice that the PS expressions are simply the
minterms written for the two state variables Q1 and Q0.
 Always remember when using the Set OR Hold 1 equation that the D in the equation repre-
sents the next-state value, which is Q1, or Q(NS).
 From the counting sequence diagram shown in Figure 6.4a, we can write the excitation
equation for the D1 input by using the Set OR Hold 1 equation as follows:

D1 5 PS expression for a 0 S 1 transition from state 1 to state 2
 1 PS expression for a 1 S 1 transition from state 2 to state 3

which results in D1 5 Q1 #Q0 1 Q1 #Q0 (observe that D1 is an XOR function). Notice in Figure
6.4a that there is one Set transition and one Hold 1 transition for Q1.
 From the counting sequence diagram shown in Figure 6.4a we can write the excitation
equation for the D0 input by using the Set OR Hold 1 equation as follows:

D0 5 PS expression for a 0 S 1 transition from state 0 to state 1
 1 PS expression for a 0 S 1 transition from state 2 to state 3

which results in D0 5 Q1 #Q0 1 Q1 #Q0 5 Q0.

Q1

0

0

1

1

0

1

0

1

0 0

0 0

0 1

1 0

1 1

x x

1 1

0 0

0 1

1

1

0

0

0

0 0

Q0 Q1 Q0 Q1
+

Q0
+

Set transition
for Q1

Set transition
for Q0

Hold 1 transition
for Q1

RST
(asyn)

≡

(a) (b)

RST
(asyn)

PS NS FIGURE 6.4 (a) Counting
sequence diagram showing
all set and hold 1 transitions
for the binary up counter;
(b) equivalent PS/NS table

162 Chapter 6 Simple Finite State Machine Design with VHDL

 To obtain the D input excitation equations using the conventional method, you must first
remember that D1 5 Q11 and D0 5 Q01. Next you must obtain the next-state outputs equations
for Q11 and Q01 from the PS/NS table and then assign D1 and D0 to those expressions.

From the equivalent PS/NS table shown in Figure 6.4b, we can write D1 as follows:
D1 5 Q11 5 Q1 #Q0 1 Q1 #Q0 (observe that D1 is an XOR function).

From the equivalent PS/NS table shown in Figure 6.4b, we can write D0 as follows:
D0 5 Q01 5 Q1 #Q0 1 Q1 #Q0 5 Q0.

You must remember to only use the next-state values that result from clock ticks in Figure 6.4b;
do not use the row in the table for any asynchronous input signals—that is, RST, SET, or INIT.
 Observe that the resulting D equations obtained using the conventional method are the
same as the D equations obtained using the Set OR Hold 1 method. Keep in mind that the
conventional method works fine for small designs, but it does not work well for large designs—
that is, designs with many states. K-maps are generally required when using the conventional
method, which adds additional time and effort to obtain the D excitation equations. Minimized
equations are not required, because VHDL will reduce the equations. The size required for the
K-maps is a limiting factor when using the conventional method.
 The excitation equations for the D inputs are used to fill in the clouds of combinational logic
for the binary up counter as shown in the Figure 6.5.

Wires with the same signal name form a net, which is a group of wires that are all connected
together. Notice that there is a Q0 net, a Q1 net, a CLK net, and a RST net. The wiring for each
net is implied by signal name association.
 Figure 6.6 represents the same schematic as Figure 6.5 with the Q0 net, the Q1 net, the
CLK net, and the RST net shown with the actual physical wiring connections. Sometimes a
combination of both wiring connection schemes is used.

D

RST
(asyn)

D0Cloud of
combinational

logic

Q0Q1

Q0

Q

C
CLR

CLK

D

RST
(asyn)

D1Cloud of
combinational

logic

Q1Q1

Q0

Q

C
CLR

CLK

RST
(asyn)

D0

Cloud of
combinational

logic

Counter1 Counter1

Q0Q0

C
CLR

CLK

D

RST
(asyn)

D1

Cloud of
combinational

logic

Q1
Q1

Q0
Q

C
CLR

CLK

D Q

FIGURE 6.5 Schematic
for a binary up counter
(2 bits) with wire con-
nections implied by sig-
nal name association

D1

Counter1

Q1

C
CLR

RST
(asyn)

CLK

D Q

D0
Q0

C
CLR

D Q

≡

Note: Some graphic tools
 allow crossing wires
 that are not connected
 to be drawn as shown
 here:

FIGURE 6.6 Equivalent schematic for a
binary up counter (2 bits) with the signals
shown with physical wiring connections

www.itpub.net

 6.5 Counter Design Using the Algorithmic Equation Method 163

 The physical (or point-to-point) wiring connections shown in Figure 6.6 are usually harder
to draw because crossing wires (no dots at their intersections) and connected wires (dots at their
connection points) must be clearly indicated. The next step in the algorithmic equation method
is to use the schematic to write proper VHDL.
 Listing 6.2 shows a complete VHDL design for the binary up counter (2 bits) in Figure 6.5
or 6.6—that is, design entity Counter1.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Counter1 is port (
 rst, clk : in std_logic;
 q1, q0 : inout std_logic
);
end Counter1;

architecture mixed of Counter1 is
 signal d1, d0: std_logic;
begin
 d1 ,5 q1 xor q0;
 d0 ,5 not q0;
q1_output: process (clk, rst)
 begin
 if rst 5 ‘1’ then q1 ,5 ‘0’;
 elsif rising_edge(clk) then q1 ,5 d1;
 --or q1 ,5 q1 xor q0
 end if;
 end process;

q0_output: process (clk, rst)
 begin
 if rst 5 ‘1’ then q0 ,5 ‘0’;
 elsif rising_edge(clk) then q0 ,5 d0;
 --or q0 ,5 not q0
 end if;
 end process;
end mixed;

LISTING 6.2
Complete VHDL
design for design
entity Counter1 using
a mixed architecture
declaration with
dataflow and behav-
ioral design styles
(project: Counter1)

 Things you should notice about the VHDL design in Listing 6.2:

• The mode for Q1 and Q0 is inout because the VHDL code must read Q1 and Q0 (mode in)
and write Q1 and Q0 (mode out).

• Because the signals D1 and D0 are internal signals used inside the architecture, they are
declared between architecture and the first begin. Internal signals do not require a mode.
If a mode is supplied, this will be an error in your code.

• All the signals in this design are scalars.
• The excitation equations for D1 and D0 are assigned after the first begin. The right-hand

side (or expression) for each excitation equation can be assigned directly to Q1—that is, Q1
,5 Q1 xor Q0—and Q0—that is, Q0 ,5 not Q0. This eliminates the need for the signal
declarations for D1 and D0 and also the assignments for D1 and D0.

• The process requires in its sensitivity list (i.e., the list following process) all the signals that
must be read to start the process, which are CLK and RST for this design.

• The label Q1_output shows the beginning of the process for the DFF output Q1.
• The label Q0_output shows the beginning of the process for the DFF output Q0.

164 Chapter 6 Simple Finite State Machine Design with VHDL

• The signal RST is a clock-independent reset signal because it is placed before rising_
edge(CLK) in the VHDL code. When the signal RST is active or 1, it overrides the clock
and clears the circuit to state 00.

• All complete process statements, from process through end process, are inherently con-
current statements within this mixed architecture declaration, even though they contain
sequential statements. This allows multiple process statements to be used in a design.

• A single process can be used to simplify the VHDL code, because a single clock tick event
can load all the D inputs. This design will work correctly with one process that contains
the following if statement: if RST 5 '1' then Q1 ,5 '0'; Q0 ,5 '0'; elsif rising_edge(CLK)
then Q1 ,5 Q1 xor Q0; Q0 ,5 not Q0; end if;.

 Waveform 6.2 shows the simulation with the correct functionality of design entity Counter1.

+

+

+

+

+

0 ns 200 ns 400 nsName Value

50000 ps50000 ps

U

U

0

0

clk_period

q0

q1

clk

rst

State U 0 1 2 3 1 2 30 0 0 0 0WAVEFORM 6.2
Simulation with the cor-
rect functionality of design
entity Counter1

 The state of Counter1 is shown above Name in Waveform 6.2 in decimal. U represents
an unknown state at the beginning of the simulation. Observe that signal RST is used to place
the counter in state 0. The numbers 0, 1, 2, 3 are specified in decimal, where state 0 represents
q1 q0 5 00, state 1 represents q1 q0 5 01, state 2 represents q1 q0 5 10, and state 3 represents
q1 q0 5 11. Each state has a state time of one period of the clock from the rising edge to CLK
the next rising edge of CLK, or 50 ns as observed in Waveform 2.
 The counting sequence diagram and equivalent state diagram for a one-hot up counter (4
bits) for design entity Counter2, are shown in Figures 6.7a and 6.7b, respectively. Each flip-flop
output that is turned on represents a state, for a one-hot counter.

(a)

Q1

0

1

0

0

1

0

0

0

0

0

0

1

0

0

1

0

Q0

Q0

Q1

Q2

Q3

Q3 Q2

(b)

State

Legend

INIT
(asyn)

INIT
(asyn)

FIGURE 6.7 One-hot
up counter (4 bits): (a) count-
ing sequence diagram;
(b) equivalent state
diagram

 Figure 6.7 shows an asynchronous signal INIT (INITialize), which initializes the counter to
0001 (one of its one-hot states) independent of the clock. Using the Set OR Hold 1 equation, we
can write the excitation equations for the D inputs for each of the four flip-flops Q3, Q2, Q1, and
Q0 that are required for the design. After we obtain the excitation equations for the D inputs, we

www.itpub.net

 6.5 Counter Design Using the Algorithmic Equation Method 165

can fill in the clouds of combinational logic for the D flip-flops and write the proper VHDL for
the design.
 From Figure 6.7a or 7b, we can write the excitation equations for the D inputs by inspection
using the Set OR Hold 1 equation as shown here:

D3 5 Q3 #Q2 #Q1 #Q0 5 Q2 because there is only one Set transition and the PS expression
for the 0 S 1 transition of Q3 is Q3 #Q2 #Q1 #Q0, which reduces to Q2 because of the one-
hot definition for the present state Q2—that is, (Q3 5 Q1 5 Q0 5 0).

D2 5 Q3 #Q2 #Q1 #Q0 5 Q1 because there is only one Set transition and the PS expression
for the 0 S 1 transition of Q2 is Q3 #Q2 #Q1 #Q0, which reduces to Q1 because of the
one-hot definition for the present state Q1—that is, (Q3 5 Q2 5 Q0 5 0).

D1 5 Q3 #Q2 #Q1 #Q0 5 Q0 because there is only one Set transition and the PS expression
for the 0 S 1 transition of Q1 is Q3 #Q2 #Q1 #Q0, which reduces to Q0 because of the
one-hot definition for the present state Q0—that is, (Q3 5 Q2 5 Q1 5 0).

D0 5 Q3 #Q2 #Q1 #Q0 5 Q3 because there is only one Set transition and the PS expression
for the 0 S 1 transition of Q0 is Q3 #Q2 #Q1 #Q0, which reduces to Q3 because of the
one-hot definition for the present state Q3—that is, (Q2 5 Q1 5 Q0 5 0).

So, D3 5 Q2, D2 5 Q1, D1 5 Q0, and D0 5 Q3. As you can see, it is easy to write the D excita-
tion input equations for this simple one-hot up counter.
 The D excitation equations allow us to draw the schematic shown in Figure 6.8.

 Notice that the clouds of combinational logic represent single-wire connections for this
one-hot design. Also notice that the asynchronous INIT signal must set Q0 and reset Q1, Q2,
and Q3 when it is asserted. This requires a different type of D flip-flop for Q0 compared to the
D flip-flops for Q1 through Q3. The D flip-flop for Q0 requires an asynchronous PRE (Preset)
input, while all the other D flip-flops require an asynchronous CLR (Clear) input.
 The schematic for the one-hot up counter shown in Figure 6.8 is a special form of a shift
register counter called a ring counter. Each flip-flop derives its D input from the output of the
previous flip-flop thus forming a ring.
 Listing 6.3 shows the VHDL design for the one-hot up counter (4 bits) in Figure 6.8 for
design entity Counter2.

Counter2

or

Note: For Counter2, the outputs are Q3, Q2, Q1, and Q0,

 and the D excitation equations are D3 = Q2,

 D2 = Q1, D1 = Q0, and D0 = Q3.

Counter2

CLK CLK

D Q
PRE Q0 Q1 Q2 Q3

CLK C

D Q

C

D Q

C

D Q

C

INIT
(asyn)

CLK

CLR

D Q

C

INIT
(asyn)

INIT
(asyn)

CLK

D Q Q0

Q1

Q3

Q0

CLK

CLR

CLR CLR CLRD Q

C

INIT
(asyn)

Q2Q1

CLK

CLR

D Q

C

INIT
(asyn)

Q3Q2

PRE

C

INIT
(asyn)

INIT
(asyn)

INIT
(asyn)

CLK

FIGURE 6.8 Schematic for a
one-hot up counter (4 bits) for
design entity Counter2

166 Chapter 6 Simple Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 6.3:

• All the signals in this design are scalars.
• The mode for Q3 through Q0 is inout because the VHDL code must read Q3 through Q0

(mode in) and write Q3 through Q0 (mode out).
• The process requires in its sensitivity list (i.e., the list following process) all the signals that

must be read to start the process, which are INIT and CLK for this design.
• When INIT 5 '1' the state of the flip-flops for Q3 through Q0 is 0001, respectively. The

INIT signal is asynchronous because it is placed before rising_edge(CLK). When the init
signal is active or 1, this signal overrides the clock and forces the circuit to one of its one-hot
states—that is, Q0. The circuit cannot be cleared because this would place the circuit in a
state that is not in its normal counting sequence.

• The design can be accomplished with just one process.

 Waveform 6.3 shows the simulation with the correct functionality for design entity Counter2.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Counter2 is port (
 init, clk : in std_logic;
 q3, q2, q1, q0 : inout std_logic
);
end Counter2;

architecture behavioral of Counter2 is
begin
process (init, clk)
begin
 if init 5 ‘1’ then q3 ,5 ‘0’; q2 ,5 ‘0’; q1 ,5 ‘0’; q0 ,5 ‘1’;
 elsif rising_edge(clk) then q3 ,5 q2; q2 ,5 q1; q1 ,5 q0; q0 ,5 q3;
 end if;
end process;
end behavioral;

LISTING 6.3 Complete VHDL design for design entity Counter2 using a behavioral architecture declaration with a single
process and if statement (project: Counter2)

+

+

+

+

+

+

+

0 ns 200 ns 400 nsName Value

50000 ps50000 ps
U

0

U
U
U
0

clk_period
q0

init

q1
q2
q3
clk

State U 1 2 4 1 2 48 8 1 1 1WAVEFORM 6.3 Simulation
with the correct functionality
of design entity Counter2

 The state of Counter2 is shown above Name in Waveform 6.3 in decimal. U represents an
unknown state at the beginning of the simulation. Observe that signal INIT is used to place the
counter in state 1. The numbers 1, 2, 4, and 8 are specified in decimal, where state 1 represents
q3 q2 q1 q0 5 0001, state 2 represents q3 q2 q1 q0 5 0010, state 4 represents q3 q2 q1 q0
5 0100, and state 8 represents q3 q2 q1 q0 5 1000.

www.itpub.net

 6.6 Nonconventional Counter Design Using the Algorithmic Equation Method 167

6.6 NONCONVENTIONAL COUNTER DESIGN USING
THE ALGORITHMIC EQUATION METHOD

Most simple counters are conventional counters, because they do not have repeating states.
Each state in a conventional counter has a different state value. The simple counters we dis-
cussed in the last section were conventional counters. A simple counter that has repeating states
(states with the same state value) in its counting sequence is a nonconventional (NC) counter.
It is necessary to add additional flip-flops to a nonconventional counter to differentiate between
the repeating states; that is, the additional flip-flops are used to convert a nonconventional coun-
ter to a conventional counter. Only one additional flip-flop is required for two repeating states.
For additional repeating states, you must determine the number of additional flip-flops to add
so that each state has a different state value—that is, remove all repeating states values so there
are no repeating states.
 Figure 6.9a shows a nonconventional counter (2 bits) with the repeating state value 10.
Adding state variable Q2 (an additional D flip-flop Q2) removes the repeating state value 10 as
shown in Figure 6.9b. The states in Figure 6.9b are now 001, 110, and 010. Figure 6.9c shows
Figure 6.9b written in the format of a PS/NS table. Figures 6.9b and 6.9c do not have repeat-
ing states because Q2 has been added to remove the repeating states in Figure 6.9a. In other
words, an additional D flip-flop Q2 was added to the counting sequence diagram to differentiate
between the repeating states of Q1 Q0.

 When the asynchronous input INIT is asserted or pulled high or to a 1, the counter goes
to state 001. When the asynchronous input INIT is not asserted the counter responds to the
clock. Each time the clock ticks, the counter changes from its present-state value to its next-
state value—that is, 001 to 110, then 110 to 010, then 010 back to 001, and so on. The counting
sequence diagram and the PS/NS table clearly show these transitions.
 Using the Set OR Hold 1 equation, we can write the D2, D1, and D0 excitation equations
from Figure 6.9b as follows:

D2 5 Q2 #Q1 #Q0

D1 5 Q2 #Q1 #Q0 1 Q2 #Q1 #Q0

D0 5 Q2 #Q1 #Q0

 Again you should notice how easy it is to write the D excitation equations by inspection via
Figure 6.9b.
 The D excitation equations allow us to draw the schematic shown in Figure 6.10a and fill in
the clouds of combinational logic.
 To simplify drawings, it is sometimes convenient to represent each combinational logic
circuit as a rectangular box as shown in Figure 6.10b. The D excitation equation for each rect-
angular box may be listed separately or inside each box as shown in Figure 6.10b (NOTE: ! is
NOT, * is AND, and 1 is OR).

0

1

1

0

1

0

0

0

1

1

0

1

0

0

1

0

1

1

1

0

0

x
0

1

0

1

0

0

0

x
1

0

0

x
0

1

1

Q2 Q1 Q0 Q1
+

Q0
+

Q2
+

(c)(b)(a)

INIT
(asyn)

INIT
(asyn)

INIT
(asyn)

PS NS

Q2 Q1

1

0

0

Q1 Q0 Q0

≡0

1

0

FIGURE 6.9
Nonconventional counter:
(a) counting sequence dia-
gram for NC counter (2 bits);
(b) additional D flip-flop Q2
to differentiate between
repeating states of Q1Q0;
(c) equivalent PS/NS table

168 Chapter 6 Simple Finite State Machine Design with VHDL

 Listing 6.4 shows the VHDL design for the NCC (nonconventional counter) in Figure
6.10—that is, design entity NCC.

D

INIT
(asyn)

D0
Q0Q

Q2
Q1
Q0

Q2
Q1
Q0

Q2
Q1
Q0

Q2
Q1
Q0

CCLK

D

INIT
(asyn)

D2
Q2Q

Q2
Q1
Q0

Q2
Q1
Q0

Q2
Q1
Q0

C

(a) (b)

CLK
CLR

PRE

D

INIT
(asyn)

D1
Q1Q

or
CCLK
CLR

D
D0 = !Q2 * Q1 * !Q0

D2 = !Q2 * !Q1 * Q0

D1 = !Q2 * !Q1 * Q0 +
Q2 * Q1 * !Q0

INIT
(asyn)

D0
Q0Q

CCLK

D

INIT
(asyn)

D0
Q2Q

CCLK
CLR

PRE

D

INIT
(asyn)

D1
Q1Q

CCLK
CLR

NCC NCCCloud of
combinational
logic

Cloud of
combinational
logic

Cloud of
combinational
logic

Note: The counter outputs are Q2, Q1, and Q0
 where Q2 is used to differentiate between
 repeating states of Q1 and Q0.

FIGURE 6.10 Schematic for nonconventional counter: (a) with gates and DFFs; (b) with rectangular boxes and DFFs

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity NCC is port (
 init, clk : in std_logic;
 q : inout std_logic_vector (2 downto 0)
);
end NCC;

architecture dataflow of NCC is
 signal d2,d1,d0: std_logic;
begin
 d2 ,5 (not q(2) and not q(1) and q(0));
 d1 ,5 (not q(2) and not q(1) and q(0)) or
 (q(2) and q(1) and not q(0));
 d0 ,5 (not q(2) and q(1) and not q(0));
 q ,5 “001” when init 5 ‘1’ else
 (d2,d1,d0) when rising_edge(clk);
end dataflow;

LISTING 6.4
Complete VHDL
design for design
entity NCC using a
dataflow architecture
declaration (project:
NCC)

www.itpub.net

 6.6 Nonconventional Counter Design Using the Algorithmic Equation Method 169

 Things you should notice about the VHDL design in Listing 6.4:

• All the signals in this design are scalars except Q, which is a vector.
• The mode for Q is inout because the VHDL code must read Q(2), Q(1), and Q(0)—that is,

mode in—and write Q(2), Q(1), and Q(0)—that is, mode out.
• Simple signal assignments are used to assign the D inputs for the flip-flops. Observe that

Q is assigned the D2, D1, and D0 values for the NC counter via the aggregate (D2, D1,
D0). The order in which these signals are assigned is important because Q was declared as
a std_logic_vector (2 downto 0). Q may also be assigned the D2, D1, and D0 values for the
NC counter via concatenation operators as D2& D1& D0 when rising-edge (CLK).

 Waveform 6.4 shows the simulation with the correct functionality of design entity NCC.

 The state of NCC is shown inside the Waveform signal q(2:0) in Waveform 6.4. At the
beginning of the simulation for q(2:0), U represents an unknown state. Observe that the wave-
forms for q(1) q(0) follow the repeating state sequence 01 10 10, and waveform q(2) provides the
necessary distinction between waveform q(1) and waveform q(0).
 As you can observe in Waveform 6.4, the simulation provides an output of all the port
signals in the entity. To provide only the nonconventional counter outputs in the simulation,
rename the nonconventional counter outputs qn(1) and qn(0), and place the port signal declara-
tion qn: out std_logic_vector (1 downto 0) in the entity. Remove the port declaration q : inout
std_logic_vector (2 downto 0) from the entity, and place the internal signal declaration signal q:
std_logic_vector (2 downto 0) between architecture and the first begin. Place the assignment
statement qn ,5 q (1 downto 0) in the body of the architecture after the first begin. Waveform
6.5 shows the simulation that result from these changes. Remember: A simulation only displays
the signals in the entity declaration—that is, the external signals not the internal signals.

+

+

+

+

+

+

+

6 6 62 21 1 11U

0 ns 200 ns 400 nsName Value

50000 ps50000 ps

U

U

U

0

U

0

clk_period

[0]

[1]

[2]

clk

q[2:0]

init

WAVEFORM 6.4
Simulation with the
correct functionality
of design entity NCC

 The state of NCC_MOD is shown inside the waveform signal q(1:0) in Waveform 6.5.
Observe that the waveforms for qn(1) qn(0) follow the repeating state sequence 01 10 10.

+

+

+

+

+

+

0 ns 200 ns 400 nsName Value

50000 ps50000 ps

U

U

U

0

0

clk_period

[0]

[1]

qn[1:0]

clk

init

2 22 1 11U 1

WAVEFORM 6.5
Simulation with the
correct functionality
of design entity NCC_
MOD with changes
(project: NCC_MOD)

170 Chapter 6 Simple Finite State Machine Design with VHDL

6.7 COUNTER DESIGN USING THE ARITHMETIC METHOD

The arithmetic method (AM) is perhaps the most concise method, but it is limited to counting
up or counting down by a fixed integer value, i.e., 1, 2, 3, . . . , etc. When using this method you
do not have to obtain the excitation equations for the flip-flops, and you do not have to draw
the circuit. You must know how to use a conditional signal assignment or a process with an if
statement to enter the counting sequence via an arithmetic “1” or “2” operator in VHDL and
then simply let the VHDL software do the work. You can always observe the circuit that is pro-
duced using either View RTL Schematic or View Technology Schematic when using Xilinx
software. Other software vendors may have a similar option to allow you to view the resulting
schematic.
 Listing 6.5 shows a complete VHDL design for the binary up counter (2 bits) with a clock-
independent reset using an arithmetic “1” operator for design entity Counter1_AM. See Section
6.5, Figure 6.2, for the counting sequence diagram and the equivalent state diagram.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter1_AM is port (
 rst, clk : in std_logic;
 q : inout std_logic_vector (1 downto 0)
);
end Counter1_AM;

architecture behavioral of Counter1_AM is
begin
process (clk, rst)
begin
 if rst 5 ‘1’ then q ,5 “00”;
 elsif rising_edge(clk) then q ,5 q 1 1;
 end if;
end process;
end behavioral;

LISTING 6.5
Complete VHDL
design for design
entity Counter1_AM
using a behavioral
architecture declara-
tion with an arith-
metic “1” operator
(project: Counter1_
AM)

 Things you should notice about the VHDL design in Listing 6.5:

• A new use clause must be added to the design in order to use the arithmetic “1” operator.
The package IEEE.STD_LOGIC_UNSIGNED specified in use IEEE.STD_LOGIC_
UNSIGNED.all; is required because it contains the definition for the arithmetic “1”
operator.

• Output Q is written in bus notation as std_logic_vector (1 downto 0), because Q(1) and
Q(0) need to be specified as a single unit for performing the “1” or arithmetic addition
operation.

• The process requires in its sensitivity list (i.e., the list following process) all the signals that
must be read to start the process, which are CLK and RST for this design.

• The mode for Q is inout because the VHDL code must read Q (mode in) and write Q (mode
out) as specified by the signal assignment statement Q ,5 Q 1 1. Note: To count down, use
the arithmetic “2” operator.

• The signal RST is a clock-independent asynchronous reset signal because it is placed before
rising_edge(CLK) in the VHDL code. When the signal RST is active or 1, it overrides the
clock and clears the counter to state 00.

www.itpub.net

 6.8 Frequency Division (Slowing Down a Fast Clock Frequency) 171

• A string of bits—that is, more than one bit—must be included in double quotation marks.
Recall that a single bit is included in single quotation marks.

 Waveform 6.6 shows the simulation with the correct functionality of design entity
Counter1_AM.

 The state of Counter1_AM is shown inside the waveform signal q(1:0) in Waveform 6.6.
The numbers 0, 1, 2, and 3 are specified in decimal, where state 0 represents q(1:0) 5 00, state
1 represents q(1:0) 5 01, State 2 represents q(1:0) 5 10, and state 3 represents q(1:0) 5 11.

6.8 FREQUENCY DIVISION (SLOWING DOWN
A FAST CLOCK FREQUENCY)

Sometimes it may be desirable to operate a state machine at a much lower or slower frequency
than the frequency provided by the crystal clock oscillator on a hardware board. This would
be the case if we were to implement a state machine and wanted to see it operating via LEDs
(light emitting diodes) flashing on a hardware board that has a high-frequency crystal clock
oscillator. We would definitely need to provide a slower clock frequency to the state machine.
Frequency division can be used to effectively (not literally) slow down the frequency of the
crystal clock oscillator on the board.
 Suppose our hardware board came with a crystal clock oscillator frequency of just 1000
cycles per second or 1000 Hz [most clock oscillators operate in the megahertz (MHz) range,
which is much faster than this simple hypothetical example]. A frequency of 1000 Hz is still
much too fast to see our state machine operating LEDs on the board. We would like to operate
our state machine at approximately 1 Hz so we can see the LEDs flashing on and off in the
proper sequence. This can be done by designing a binary counter that divides the crystal clock
oscillator frequency by 1000. Because counters operate in binary, the closest integer to 1000 that
is a power of 2 is 210, or 1024. That means that we need to design a 10-bit counter and use the
highest output bit position (the ninth output bit position) as the clock input to our state machine.
 The arithmetic method is the easiest way to generate a very large binary up or binary down
counter. Using the ninth bit of a 10-bit counter, COUNT(9) divides the clock frequency CLK by
210, or 1024, thus providing a signal SLOW_CLK that has a frequency that is approximately 1
Hz (actually, 1000 Hz/ 210 5 0.9766 Hz).
 Figure 6.11 shows a design entity FD_SM, which represents a frequency divider and a state
machine.

+

+

+

+ 2 2

0 ns 200 ns 400 nsName Value

1

0

0

50000 ps 50000 ps

rst

clk

q[1:0]

clk_period

1 1 1 3 3 0 0 0 0

WAVEFORM 6.6
Simulation with the
correct functionality of
design entity Counter1_
AM

RST
(asyn)

(~ 1 Hz) (1000 Hz)
COUNT(9)

FD_SM

Module 1 Module 2

SLOW_CLK
CLK

CLR

Q0
To LED0

To LED1

To LED2

Frequency divider
(binary up counter,

10 bits)

State machine
(whatever type

we desire)
Q1

Q2

FIGURE 6.11 Annotated schematic
diagram for a frequency divider and
a state machine

Module 1, or the block labeled Frequency divider in Figure 6.11, shows SLOW_CLK driving
module 2, or the block labeled State machine.

172 Chapter 6 Simple Finite State Machine Design with VHDL

 Listing 6.6 shows a VHDL design for design entity FD_SM using a flat design approach.
Observe that the arithmetic method is used for the frequency divider design. The process for the
state machine in Listing 6.6 is left blank because the state machine is only partially specified in
Figure 6.11 via its inputs and outputs.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FD_SM is port (
 rst, clk : in std_logic;
 q : inout std_logic_vector (2 downto 0)
);
end FD_SM;

architecture mixed of FD_SM is
 signal COUNT: std_logic_vector (9 downto 0);
 signal SLOW_CLK: std_logic;
begin

--Module 1, Frequency Divider
 COUNT ,5 COUNT 1 1 when rising_edge(clk);
 SLOW_CLK ,5 COUNT(9);

--Module 2, State Machine
state_machine: process (rst, SLOW_CLK) begin
 .
 .
 .
end process state_machine;
end mixed;

LISTING 6.6 VHDL
design for design
entity FD_SM (fre-
quency divider
and state machine)
using a flat design
approach

 Things you should notice about the VHDL for design entity FD_SM in Listing 6.6:

• The VHDL code for module 1 and module 2 are included within a single architecture dec-
laration, which is the format for a flat design approach.

• The signal COUNT and the signal SLOW_CLK are internal signals and must be declared
between architecture and the first begin. Because a counter with 10 bits is needed, the
data type for COUNT is std_logic_vector (9 downto 0). SLOW_CLK is a single signal with
a std_logic data type.

• Mixed is used as the architecture name to indicate that two different design styles are used
for the design entity FD_SM. A dataflow design style is used for the module (Frequency
Divider) while a behavioral design style is used for the module (State Machine).

• A conditional signal assignment is used to create a counter, and a Boolean equation is used
to assign signal COUNT(9) to the signal SLOW_CLK.

• SLOW_CLK must be used in the sensitivity list as the clock in the process named
state_machine.

 The frequency of the programmable silicon oscillator on a hardware board such as the
BASYS 2 board (manufacture by Digilent; go to digilentinc.com) has three different clock set-
tings: 25 MHz, 50 MHz, and 100 MHz with an accuracy of about 60.5%. The frequency of the
crystal clock oscillator on a hardware board such as the NEXYS 2 board has a fixed frequency
of 50 MHz with an accuracy of about 60.01%. To see a state machine operating via LEDs at

www.itpub.net

 6.8 Frequency Division (Slowing Down a Fast Clock Frequency) 173

any of these frequencies would require a slower clock frequency. To accurately divide 50 MHz
to obtain a frequency of 1 Hz, the arithmetic method can be used to count the number of clock
cycles (25,000,000 clock cycles) that must occur for half the period of 1 Hz, which is T/2
5 (1/f)/2 5 (1/(1 Hz))/2 5 0.5 s. A signal called SLOW_CLK can be toggled between 1 and 0 at
0.5-s intervals to produce a frequency of 1 Hz.
 Listing 6.7 shows the complete VHDL design for design entity ACCURATE_CLK_1HZ.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ACCURATE_CLK_1HZ is port (
 clk : in std_logic; --50 MHz clock
 slow_clk : inout std_logic
);
end ACCURATE_CLK_1HZ;

architecture behavioral of ACCURATE_CLK_1HZ is
 signal count : integer;
 constant max_count: integer :5 25000000;
 --25M clock cycles for half the period (0.5 s)
begin
process (clk)
begin
 if rising_edge(clk) then count ,5 count 1 1;
 if count 5 max_count then slow_clk ,5 not slow_clk; count ,5 0;
 end if;
 end if;
end process;
end behavioral;

LISTING 6.7 Complete VHDL design for design entity ACCURATE_CLK_1HZ (project: ACCURATE_CLK_IHZ)

 Things you should notice about the VHDL for design entity ACCURATE_CLK_1HZ in
Listing 6.7:

• The signal COUNT is an internal signal and must be declared between architecture and
the first begin. The data type for COUNT is an integer and does not have to be bounded or
assigned a range.

• The keyword constant is used to declare a fixed value named max_count as a data-type
integer with the assigned value of 25,000,000. Constants are used for easy readability. We
could have simply removed the constant declaration and substituted 25000000 for the value
of max_count inside the second if statement. Data-type integers do not have commas or
quotation marks around the values of the integers—that is, 25000000 not “25,000,000.”

• Only input CLK is required in the sensitivity list for the frequency divider process.
• Data type integers do not have quotation marks—that is, count ,5 0 not count ,5 '0'.
• A single process with two if statements and the assignment COUNT ,5 COUNT 11 is

used to create a counter. SLOW_CLK is toggled between 1 and 0 precisely when count
5 max_count, which is at 0.5-s intervals, thus producing an output frequency of 1 Hz.

• This type of design is only required where you need an exact frequency division as for a
digital stop watch or a digital clock.

174 Chapter 6 Simple Finite State Machine Design with VHDL

6.9 COUNTER DESIGN USING THE PS/NS TABULAR METHOD

The PS/NS tabular method is perhaps one of the easiest methods to use and understand. When
using this method you do not have to obtain the excitation equations for the flip-flops, and you
do not have to draw the circuit. You must know how to use a process with an if statement and a
case statement to enter the counting sequence in VHDL, and then simply let the VHDL software
do the work. You can always observe the circuit that is produced using either View RTL Sche-
matic or View Technology Schematic which is under Synthesize, when using Xilinx software.
Other software vendors have a similar option to allow you to view the resulting schematic.
 As a handy reference, the counting sequence diagram (or state sequence diagram) for the
binary up counter (2 bits) with a clock-independent reset input and the equivalent state diagram
is repeated in Figures 6.12a and 6.12b. Figure 6.12c also shows the equivalent PS/NS Table for
the binary up counter.

 The counting sequence diagram, state diagram, and the PS/NS Table in Figure 6.12 each
represent a binary up counter in a slightly different format. Remember, when the asynchronous
input RST is asserted, the counter goes to state 00. When the asynchronous input RST is not
asserted, the counter responds to the clock. Each time the clock ticks, the counter changes from
its present-state value to its next-state value—that is, 00 to 01, then 01 to 10, then 10 to 11, then
11 back to 00, and so on.
 Listing 6.8 shows a complete VHDL design for the binary up counter (2 bits) with an if
statement and a case statement using the PS/NS tabular method for design entity Counter1_TM.

≡ ≡

(a) (b)

Legend

0 1

0 0

01

1 1

Q1 Q0
RST

(asyn)

Q1
0

0

1

1

0

1

0

1

Q0RST
(asyn)

0 0

0 0

0 1

1 0

1 1

x x

1 1

0 0

0 1

1

1

0

0

0

0 0

Q1 Q0 Q1
+

Q0
+

(c)

RST
(asyn)

PS NS

FIGURE 6.12 Binary
up counter (2 bits):
(a) Counting sequence
diagram; (b) equivalent
state diagram; (c) equiv-
alent PS/NS table

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Counter1_TM is port (
 rst, clk : in std_logic;
 q : inout std_logic_vector (1 downto 0)
);
end Counter1_TM;

architecture behavioral of Counter1_TM is
begin
process (rst, clk)
begin
 if rst 5 ‘1’ then q ,5 “00”;
 elsif rising_edge(clk) then

LISTING 6.8
Complete VHDL
design for design
entity Counter1_TM
using a behavioral
architecture declara-
tion with an if state-
ment and a case
statement (project:
Counter1_TM)

www.itpub.net

 6.9 Counter Design Using the PS/NS Tabular Method 175

 Things you should notice about the VHDL design Listing 6.8:

• Output Q is written in bus notation as inout std_logic_vector (1 downto 0), because Q(1)
and Q(0) need to be specified as a single unit for the case statement—that is, "00" for the
PS (present state) and "01" for the NS (next state) as represented by when "00" 5. Q ,5
"01";.

• A when others clause is required at the end of the choice list of the case statement to ensure
that all possible select values for signal Q are included in the choice list after when. The
value null means do nothing. The std_logic values that must be included for signal Q are 0,
L, 1, H, Z, and -. Note that the single dash “-” represents a don’t care in VHDL.

 Waveform 6.7 shows the simulation with the correct functionality of design entity
Counter1_TM.

 case q is
 when “00” 5. q ,5 “01”;
 when “01” 5. q ,5 “10”;
 when “10” 5. q ,5 “11”;
 when “11” 5. q ,5 “00”;
 when others 5. null;
 end case;
 end if;
end process;
end behavioral;

 The state of the counter is shown inside the Waveform signal q(1:0) in Waveform 6.7 in
binary.
 Waveforms 6.2, 6.6, and 6.7 each provide the correct functionality for a binary up counter
(2 bits). This shows that the algorithmic equation method, the arithmetic method, and the PS/NS
tabular method are simply three different design methodologies that provide the same result.
 Figures 6.13a and 6.13b show two equivalent state diagrams for a one-hot up counter (3 bits)
for design entity OHUC_3B.

+

+

+

+

0 ns 200 ns 400 ns 600 nsName Value

50000 ps
111010 01 0101 00 00 0000 11

50000 ps
00
0
1

clk_period
q[1:0]
clk
rst

WAVEFORM 6.7
Simulation with the
correct functional-
ity of design entity
Counter1_TM

100

010

001

Q1Q2 Q0

Q1

Q2

Q0

(a) (b)

Legend

StateINIT
(asyn)

Legend

INIT
(asyn)

FIGURE 6.13 Equivalent
state diagrams for a
one-hot up counter
(3 bits): (a) traditional;
(b) simplified.

176 Chapter 6 Simple Finite State Machine Design with VHDL

 Listing 6.9 shows the complete VHDL design for design entity OHUC_3B using the PS/NS
tabular method for design entity OHUC_3B.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OHUC_3B is port (
 init,clk : in std_logic;
 q : inout std_logic_vector (2 downto 0)
);
end OHUC_3B;

architecture behavioral of OHUC_3B is
begin
process (init,clk)
begin
 if init 5 ‘1’ then q ,5 “001”;
 elsif rising_edge(clk) then
 case q is
 when “001” 5. q ,5 “010”;
 when “010” 5. q ,5 “100”;
 when “100” 5. q ,5 “001”;
 when others 5. null;
 end case;
 end if;
end process;
end behavioral;

LISTING 6.9
Complete VHDL
design for design
entity OHUC_3B
using the PS/NS tab-
ular method (project:
OHUC_3B)

Things you should notice about the VHDL design in Listing 6.9:

• The process requires in its sensitivity list (i.e., the list following process) all the signals that
must be read to start the process, which are CLK and INIT for this design.

• The signal INIT is a clock-independent asynchronous initialization signal because it is
placed before rising_edge(CLK) in the VHDL code. When the signal INIT is active or 1, it
overrides the clock and initializes the counter to state 001.

 Waveform 6.8 shows the simulation with the correct functionality of design entity
OHUC_3B.

+

+

+

+

+

+

+

0 ns 200 ns 400 nsName Value

1

1

0

0

1

50000 ps 50000 ps

0

init

clk

q[2:0]

[2]

[1]

[0]

clk_period

1 2 2 24 41 1 1

WAVEFORM 6.8
Simulation with the
correct functional-
ity of design entity
OHUC_3B

 The state of the counter is shown inside the Waveform signal q(2:0) in Waveform 6.8.

www.itpub.net

 6.10 Nonconventional Counter Design Using the PS/NS Tabular Method 177

6.10 NONCONVENTIONAL COUNTER DESIGN USING
THE PS/NS TABULAR METHOD

As we mentioned earlier, a simple counter that has repeating states in its counting sequence is a
nonconventional counter. This type of simple counter needs additional flip-flops to differenti-
ate between the repeating states.
 The nonconventional counter (2 bits) with the repeating state value 10 that was presented
earlier is repeated in Figure 6.14a. The additional flip-flop that is used to differentiate between
the repeating states is shown in Figures 6.14b and 6.14c.

 Listing 6.10 shows a complete VHDL design for the nonconventional counter (2 bits) with
an if statement and a case statement using the PS/NS tabular method. The output of the noncon-
ventional counter is represented in the design as QN. The output of the counter with the added
state is represented as Q in the design in Listing 6.10, QN is used as the port signal for the output,
while Q is used as an internal signal.

0

1

0

0

0

1

1

0

1

0

0

1

0

1

0

0

1

1

1

0

0

x
0

1

0

1

0

0

0

x
1

0

0

x
0

1

1

Q2 Q1 Q0 Q1
+

Q0
+

Q2
+

(c)(b)(a)

INIT
(asyn)

INIT

(asyn)
INIT

(asyn)

PS NS

Q2 Q1

0

1

1

1

0

0

Q1 Q0 Q0

≡

FIGURE 6.14
Nonconventional Counter:
(a) counting sequence dia-
gram for nonconventional
counter (2 bits); (b) additional
D flip-flop Q2 to differentiate
between repeating states of
Q1Q0; (c) equivalent PS/NS
table

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity NCC_TM is port (
 init, clk : in std_logic;
 qn : inout std_logic_vector (1 downto 0)
);
end NCC_TM;

architecture behavioral of NCC_TM is
 signal q : std_logic_vector (2 downto 0);
begin
process (init, clk, q)
begin
 if init 5 ‘1’ then q ,5 “001”;
 elsif rising_edge(clk) then
 case q is
 when “001” 5. q ,5 “110”;
 when “110” 5. q ,5 “010”;
 when “010” 5. q ,5 “001”;
 when others 5. null;
 end case;
 end if;
 qn ,5 q (1 downto 0);
end process;
end behavioral;

LISTING 6.10
Complete VHDL
design for design
entity for NCC_TM
with an if statement
and a case statement
using the PS/NS tab-
ular method (project:
NCC_TM)

178 Chapter 6 Simple Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 6.10:

• All the signals in this design are scalars except QN and Q, which are vectors.
• Signal QN is declared as a port signal and written in bus notation as std_logic (1 downto 0).
• Signal Q is declared as an internal signal and written in bus notation as std_logic_vector (2

downto 0), because Q(2), Q(1), and Q(0) need to be specified as a single unit for the case
statement—that is, "001" for the PS (present state) and "110" for the NS (next state) as rep-
resented by when "001" 5. Q ,5 "110";.

• No mode is required for signal Q, because it is an internal signal.
• The process requires in its sensitivity list (i.e., the list following process) all the signals that

must be read in the process, which are INIT, CLK, and Q. If Q is not included in the list, QN
would not be assigned the value of Q until the clock goes low, which would delay the output
QN by half a clock cycle, which would result in an incorrect design.

• The signal INIT is a clock-independent asynchronous reset signal because it is placed before
rising_edge(CLK) in the VHDL code. When the signal INIT is active or 1, it overrides the
clock and initializes the counter to state 001.

• The assignment QN ,5 Q (1 downto 0) is made to generate only the outputs QN(1) and
QN (0)—that is, Q(2) is not output because it is an internal signal.

 Waveform 6.9 shows the simulation with the correct functionality of design entity NCC_TM.

+

+

+

+

0 ns 200 ns 400 nsName Value

01 10 01 10

50000 ps50000 psclk_period

01qn[1:0]

0clk

1init

01 10 01

WAVEFORM 6.9
Simulation with the
correct functionality of
design entity NCC_TM

 The state of the counter is shown inside the waveform signal q(1:0) in Waveform 6.9 in
binary. Observe that qn(1:0) maintains the same value of 10 for two clock ticks as it should, as
shown in the counting sequence diagram in Figure 6.14a.

 6.6 Explain what “(asyn)” indicates in Figure P6.5.
 6.7 The logic symbol for a standard DFF with a PRE input is

shown in Figure P6.7. Complete the following sentence:
When the PRE input is asserted or pulled high or to a
logic 1,

Section 6.2 Synchronous Circuits
 6.1 What is the emphasis of this chapter?
 6.2 Circuits that change state in step with a particular input

signal called a clock are called what types of circuits?
 6.3 Name two types of logic circuits that store a single bit.
 6.4 From the following list of fl ip-fl ops, which type is pre-

dominantly used in modern programmable devices?
 a. Data-type fl ip-fl ops
 b. SR-type fl ip-fl ops
 c. JK-type fl ip-fl ops
 d. T-type fl ip-fl ops

Section 6.3 Creating D-type Flip-Flops in VHDL
 6.5 The logic symbol for a standard DFF with a CLR input is

shown in Figure P6.5. Complete the following sentence:
When the CLR input is asserted or pulled high or to a
logic 1,

PROBLEMS

FIGURE P6.5

D Q

C
CLR

D Q

CLK

RST
(asyn)

www.itpub.net

 Problems 179

 6.19 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the DFF in problem 6.18.

 6.20 Combine your code for problems 6.18 and 6.19 to form
a complete VHDL design. Obtain a Waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.21 Draw a logic symbol that represents the VHDL code
with the following conditional signal assignment as the
only assignment in the architecture:

 Q <= ‘0’ when RST = ‘1’ else
 D when rising_edge(clk);
 6.22 Draw a logic symbol that represents the VHDL code

with the following if statement as the only assignment in
the architecture:

 if rising_edge(clk) then
 if RST = ‘1’ then Q <= ‘0’;
 else Q <= D;
 end if;
 end if;
 6.23 Draw a logic symbol that represents the VHDL code

with the following if statement as the only assignment in
the architecture:

 if SET = ‘1’ then Q <= ‘1’;
 elsif rising_edge(clk) then Q <= D;
 end if;
 6.24 Draw a logic symbol that represents the VHDL code

with the following if statement as the only assignment in
the architecture:

 if rising_edge(clk) then
 if SET = ‘1’ then Q <= ‘1’;
 else Q <= D;
 end if;
 end if;

Section 6.4 Designing Simple Synchronous Circuits
 6.25 What is our defi nition of a simple counter?
 6.26 What are the three methods presented in this chapter for

designing simple counters suitable for VHDL?
 6.27 What is another name for a state machine?
 6.28 What is the name of the method for the design of a

simple counter for VHDL that requires the user to draw
a logic circuit for a design?

 6.8 Explain what “(asyn)” indicates in Figure P6.7.
 6.9 Labels are used inside logic symbols. Signals are

assigned to inputs and outputs of logic symbols. Is
VHDL code written with labels or is VHDL code writ-
ten with signals?

 6.10 Is the logic symbol in Figure P6.5 a positive edge-
triggered or a negative edge-triggered D fl ip-fl op? Pro-
vide a reason for your answer.

 6.11 How is the clock signal CLK specifi ed in VHDL code for
a positive edge-triggered fl ip-fl op?

 6.12 How is the clock signal CLK specifi ed in VHDL code for
a negative edge-triggered fl ip-fl op?

 6.13 What is another mode for inout for a signal declared in
the entity declaration when a signal must be read (mode
in) as well as written (mode out)?

 6.14 Which event does falling_edge(clk) represent? Recall
that rising_edge(clk) represents the event caused by CLK
changing from 0 to 1.

 6.15 Write a behavioral architecture declaration for the DFF
shown in Figure P6.15. Use an if statement and an elsif
statement. The signal SET (asyn) is clock independent—
that is, it overrides the clock.

FIGURE P6.7

D Q

C

PRE

D Q

CLK

SET
(asyn)

FIGURE P6.15

D Q

C

PRE
D Q

CLKSystem
clock

SET
(asyn)

 6.16 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the DFF in problem 6.15.

 6.17 Combine your code for problems 6.15 and 6.16 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.18 Write a datafl ow architecture declaration for the D fl ip-
fl op in Figure P6.18 using a conditional signal assign-
ment. The signal SET (asyn) is clock independent—that
is, it overrides the clock.

FIGURE P6.18

D Q

C

PRE
D Q

CLKSystem
clock

SET
(asyn)

180 Chapter 6 Simple Finite State Machine Design with VHDL

represented as simply Q2, Q1, and Q0. This is only true
for one-hot counters.

 6.29 What is the name of the method for the design of a
simple counter for VHDL that requires the user to use
the “1” or “2” operator?

 6.30 What is the name of the method for the design of a
simple counter for VHDL that requires the user to use an
if statement and a case statement?

Section 6.5 Counter Design Using the Algorithmic
Equation Method
 6.31 Verify that the counter in Figure P6.31a can be repre-

sented by the circuit shown in Figure P6.31b by using
the Set OR Hold 1 equation to obtain the D excitation
equations for the circuit. What would be an appropriate
name for this counter?

FIGURE P6.31

Q1

0

1

1

0

Q0
RST

(asyn)

(a)

0

0

1

1

D Q

C
CLR

D0
Q0Q1

CLK

RST
(asyn)

D Q

C
CLR

D1
Q1Q0

CLK

RST
(asyn)

(b)

 6.32 Verify that the counter in Figure P6.32a can be repre-
sented by the circuit shown in Figure P6.32b by using
the Set OR Hold 1 equation to obtain the D excitation
equations for the circuit. What would be an appropriate
name for this counter?

FIGURE P6.32

Q1

1

0

1

0

Q0
SET

(asyn)

(a)

1

1

0

0

D Q

C

PRED0
Q0Q0

CLK

SET
(asyn)

D Q

C

PRED1
Q1

Q0
Q1

CLK

SET
(asyn)

(b)

FIGURE P6.33

INIT
(asyn)

1

0

0

0

1

0

0

0

1

Q2 Q1 Q0

 6.34 What is the defi nition of a net in a circuit?
 6.35 Write a behavioral architecture declaration for the coun-

ter circuit in Figure P6.35. Use two processes with if
statements. The signal RST (asyn) is clock independent—
that is, it overrides the clock. Can a single process be
used for this counter?

FIGURE P6.35

D Q

C
CLR

D0
Q0Q1

CLK

RST
(asyn)

D Q

C
CLR

D1
Q1Q0

CLK

RST
(asyn)

 6.36 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter circuit in problem 6.35.

 6.37 Combine your code for problems 6.35 and 6.36 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.38 Write a datafl ow architecture declaration for the counter
circuit in Figure P6.38. Use two conditional signal assign-
ments. Input signal SET (asyn) is clock independent—that
is, it overrides the clock.

FIGURE P6.38

D
PRE

PRE

Q

C

D0
Q0Q0

CLK

SET
(asyn)

D Q

C

D1
Q1

Q0
Q1

CLK

SET
(asyn)

 6.33 Use the algorithmic equation method to obtain a sche-
matic for the counter shown in Figure P6.33 using DFFs.
Hint: For one-hot counters, the current states can be

www.itpub.net

 Problems 181

Section 6.6 Nonconventional Counter Design Using
the Algorithmic Equation Method
 6.47 What is a simple conventional counter?
 6.48 What is a simple nonconventional counter?
 6.49 To design a simple nonconventional counter, what must

be done to the nonconventional counter?
 6.50 Explain how a simple counter can be design that

sequences through the states values 100 100 100 001
each time the clock ticks?

 6.51 Explain how a simple counter can be designed that
sequences through the states values 00 01 00 01 10 11 10
11 each time the clock ticks.

 6.52 A design specifi cation for a simple nonconventional
counter is shown in the counting sequence diagram in
Figure P6.52. Add the required number of FFs to the
counting sequence diagram so that the counter does not
have repeating state values.

 6.39 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter circuit in problem 6.38.

 6.40 Combine your code for problems 6.38 and 6.39 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.41 Repeat problem 6.38. Use a single conditional signal
assignment statement with an aggregate. Hint: Make Q a
vector.

 6.42 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter in problem 6.41.

 6.43 Combine your code for problems 6.41 and 6.42 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.44 Write a datafl ow architecture declaration for the
counter circuit in Figure P6.44. Use three conditional
signal assignments. The signal INIT (asyn) is clock
independent—that is, it overrides the clock.

FIGURE P6.44

D Q

C

Q0

CLK

Q1

CLR
INIT

(asyn)

D Q

C

Q1

CLK

Q2

CLR
INIT

(asyn)

PRE
D Q

C

Q2

CLK

Q0

INIT
(asyn)

 6.45 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter circuit in problem 6.44.

 6.46 Combine your code for problems 6.44 and 6.45 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

FIGURE P6.52

Q1

0

1

0

1

0

1

0

0

0

0

0

1

Q0

RST
(asyn)

 6.53 A design specifi cation for a simple nonconventional
counter is shown in the counting sequence diagram in
Figure P6.53a. One FF has been added to the count-
ing sequence diagram to remove the repeating state
value (see Figure P6.53b). Use the algorithmic equation
method to design the simple nonconventional counter.
First write the D excitation equations for the design
using the Set OR Hold 1 method. Next, draw an anno-
tated schematic for the design using D type FFs with the
nonconventional counter outputs named QN1 and QN0.
Then, write complete VHDL code for the design using a
mixed architecture declaration with Boolean equations
and a single process. Run a simulation to verify correct
functionality, and include the waveform diagram as part
of your solution.

FIGURE P6.53
(a) (b)

Q1

0

0

1

1

0

1

0

1

1 1

Q0

SET
(asyn)

Q1

0

0

1

1

0

0

1

1

1 1

Q1

0

1

0

1

1

Q0

SET
(asyn)

182 Chapter 6 Simple Finite State Machine Design with VHDL

 6.58 Combine your code for problems 6.56 and 6.57 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.59 Use the arithmetic method to write a behavioral architec-
ture declaration with a process for a binary up counter that
increment by 2 as shown in Figure P6.59. The signal RST
(asyn) is clock independent—that is, it overrides the clock.

 6.54 A design specifi cation for a simple nonconventional
counter is shown in the counting sequence diagram in
Figure P6.54a. Two FFs have been added to the counting
sequence diagram to remove repeating state values (see
Figure P6.54b). Use the algorithmic equation method to
design the simple nonconventional counter. First write
the D excitation equations for the design using the Set
OR Hold 1 method. Next, draw an annotated schematic
for the design using D type FFs with the nonconventional
counter outputs named QN3, QN2, QN1, and QN0. Then,
write complete VHDL code for the design using a mixed
architecture declaration with Boolean equations and a
single conditional signal assignment statement. Run a
simulation to verify correct functionality, and include
the waveform diagram as part of your solution.

Section 6.7 Counter Design Using the Arithmetic
Method
 6.55 The arithmetic method is perhaps the most concise

of the three design methods presented in this chapter.
Name one advantage of using the arithmetic method.
Name one limitation of using the arithmetic method.
Write the use clause that must be included in the VHDL
code when you use the arithmetic method.

 6.56 Use the arithmetic method to write a datafl ow architec-
ture declaration with a conditional signal assignment for
the binary down counter shown in Figure P6.56. The
signal SET (asyn) is clock independent—that is, it over-
rides the clock.

FIGURE P6.56

Q2 Q1 Q0
1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

SET
(asyn)

FIGURE P6.59

Q3 Q2 Q1
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Q0
RST

(asyn)

 6.60 Write the required library clause, use clauses, and entity
declaration for the counter in problem 6.59.

 6.61 Combine your code for problems 6.59 and 6.60 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

Section 6.8 Frequency Division (Slowing Down a Fast
Clock Frequency)
 6.62 Assume that a crystal clock oscillator on a hardware board

operates at 25 MHz. We would like to operate a state
machine on the board at a much slower frequency. What
would be the minimum number of bits or FFs for a binary
down counter that could be used to slow this clock oscil-
lator frequency down to slightly less than 1 Hz by using
frequency division via a power of 2? What signal assign-
ment must be made to signal SLOW_CLK to operate the
state machine on the board at the slower frequency?

 6.63 When using the operators 1 and 2 in statements such as
A ,5 A 1 1 and B ,5 B 2 1 in an architecture decla-
ration, what packages are required in the IEEE library?
Write the library clause and the use clauses that specifi es
the require packages.

 6.64 How much is the frequency of a crystal clock oscillator
divided by a binary up counter with one fl ip-fl op, two
fl ip-fl ops, three fl ip-fl ops, and six fl ip-fl ops if the output
is taken from the highest bit in the counter in each case?

 6.65 What is the frequency division provided by a 16-bit
counter at the following FF outputs that has 0 as the least
signifi cant bit: FF output 0, FF output 2, FF output 3, and
FF output 9?

 6.66 Explain how the arithmetic method can be used to gen-
erate an accurate division of the frequency of a crystal
clock oscillator.

 6.67 For a crystal clock oscillator frequency of 100 MHz,
how many clock cycles must be counted for each half-

 6.57 Write the required library clause, use clauses, and entity
declaration for the counter in problem 6.56.

FIGURE P6.54

Q3

(a)

Q2 Q1
0 0 0 1

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

Q0
INIT

(asyn)

Q3
0

0

0

0

0

0

0

0

1

Q2
0

0

0

0

1

0

0

1

0

Q5
0

0

0

0

0

1

1

0

0

Q4
0

0

1

1

0

0

0

1

1

Q1
0

1

0

1

0

0

1

0

0

1

0

1

0

0

1

0

0

0

Q0

(b)

INIT
(asyn)

www.itpub.net

 Problems 183

method to write a behavioral architecture declaration
for the simple nonconventional counter using an if state-
ment and a case statement. Use QN as a port signal for
the output of the counter and Q as an internal signal. Run
a simulation to verify correct functionality, and include
the waveform diagram as part of your solution.

period to generate an accurate frequency of 10 Hz and
also an accurate frequency of 4 Hz?

 6.68 What data type is used in the text for counting clock
cycles for the signal COUNT? Show how signal COUNT
is declared.

 6.69 What declaration can be used to specify a constant
named small_value? Show how 36 is assigned to
small_value.

Section 6.9 Counter Design Using the PS/NS Tabular
Method
 6.70 Use the PS/NS tabular method to write a behavioral

architecture declaration for the counter shown in Figure
P6.70. The signal SET (syn) is clock dependent—that is,
it doesn’t take effect until the clock ticks.

FIGURE P6.70

Q1 Q0
1 1

1 0

0 1

0 0

SET
(syn)

 6.71 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter in problem 6.70.

 6.72 Combine your code for problems 6.70 and 6.71 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.73 Use the PS/NS tabular method to write a behavioral
architecture declaration for the one-hot down counter
shown in Figure P6.73. The signal INIT (asyn) is clock
independent—that is, it overrides the clock.

FIGURE P6.73

Q2 Q1
1 0

0 1

0 0

Q0
0

0

1

INIT
(asyn)

 6.74 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter in problem 6.73.

 6.75 Combine your code for problems 6.73 and 6.74 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

Section 6.10 Nonconventional Counter Design Using
the PS/NS Tabular Method
 6.76 A design specifi cation for a simple nonconventional

counter named NCC4 is shown in the counting sequence
diagram in Figure P6.76a. One FF has been added to
the counting sequence diagram to remove the repeating
state value (see Figure P6.76b). Use the PS/NS tabular

 6.77 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter in problem 6.76.

 6.78 Combine your code for problems 6.76 and 6.77 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

 6.79 A design specifi cation for a simple nonconventional
counter named NCC5 is shown in the counting sequence
diagram in Figure P6.79a. Two FFs have been added
to the counting sequence diagram to remove repeating
state values (see Figure P6.79b). Use the PS/NS tabular
method to write a behavioral architecture declaration for
the simple nonconventional counter using an if statement
and a case statement. Use QN as a port signal for the
output of the counter and Q as an internal signal. Run
a simulation to verify correct functionality, and include
the waveform diagram as part of your solution.

 6.80 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the counter in problem 6.79.

 6.81 Combine your code for problems 6.79 and 6.80 to form
a complete VHDL design. Obtain a waveform diagram
that shows correct functionality for the complete VHDL
design.

FIGURE P6.79

Q3

(a)

Q2 Q1
0 0 0 1

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

Q0
INIT

(asyn)

Q3
0

0

0

0

0

0

0

0

1

Q2
0

0

0

0

1

0

0

1

0

Q5
0

0

0

0

0

1

1

0

0

Q4
0

0

1

1

0

0

0

1

1

Q1
0

1

0

1

0

0

1

0

0

1

0

1

0

0

1

0

0

0

Q0

(b)

INIT
(asyn)

FIGURE P6.76

Q1 Q0
0 0

0 1

1 0

1 1

SET
(syn)

1 1

Q2
0

0

0

0

SET
(syn)

1

Q1 Q0
0 0

0 1

1 0

1 1

1 1

(a) (b)

CC h a p t e r

Computer Circuits

Chapter Outline

 7.1 Introduction 184

 7.2 Three-State Outputs and the Disconnected State 184

 7.3 Data Bus Sharing for a Microcomputer System 187

 7.4 More about XOR and XNOR Symbols and Functions 190

 7.5 Adder Design 197

 7.6 Designing and Using Ripple-Carry Adders and Subtractors 200

 7.7 Propagation Delay Time for Ripple-Carry Adders 203

 7.8 Designing Carry Look-Ahead Adders 203

 7.9 Propagation Delay Time for Carry Look-Ahead Adders 206

 Problems 206

7.1 INTRODUCTION

In this chapter, you will learn about three-state outputs and the disconnected state. You are
introduced to data bus sharing for a microcomputer system. XOR and XNOR functions are used
to design a simple error detection system, and comparators and greater than circuits are covered
via a modular design technique. Adder design is presented first in the form of the half adder
and the full adder. These adders are then combined to form the ripple-carry adders and carry
look-ahead adders.

7.2 THREE-STATE OUTPUTS AND THE DISCONNECTED STATE

Each of the integrated circuits (ICs) shown in Figure 7.1 has an output enable (OE) input that
allows the ICs output signal to be tri-stated. This third-state output condition is a high imped-
ance state in which the output acts as though it is disconnected. Circuits with three-state output
are combinational logic circuits and do not have storage capability. In the positive logic system,
a high output is logic 1, and a low output is logic 0. The disconnected or high impedance state
is represented by the symbol Z.

CC7

184

www.itpub.net

 7.2 Three-State Outputs and the Disconnected State 185

 Circuits with this type of control input are designed to act normally—that is, as 2-state
output devices when the control input is active; however, when the control input is not active
(inactive or disabled), the output (or outputs), becomes disconnected or floating. A device with a
3-state output is created by simply turning off both transistors in the totem-pole output as shown
in Figure 7.1. Both transistors are turned off in a totem-pole output by disabling the OE input by
pulling it low or to 0. The term Z is borrowed from circuit theory, where it is defined as imped-
ance. When the Z value occurs, the output signal is said to be tri-stated or in its high impedance
state. A device with a 3-state output has the output values high, low, and Z.
 In Figure 7.1a when OE 5 0, T1 5 T2 5 0 and this shuts off both transistors and provides a
Z output. In Figure 7.1b when OE 5 0, T3 5 1 and T4 5 0 and this shuts off both transistors and
provides a Z output. In both Figure 7.1a and b when OE 5 1, the T signals only allow a single
transistor to turn on and provide a high or low output.
 Figure 7.2 shows an example of a 3-state buffer with an OE input and a 3-state output.

Active-high input
Input
disabled

Inputs

IC

Active-high input

ICOE = 0

Input
disabled

Inputs

OE = 0

GND GND

Off

Off

Off

Off
T1

T2

T3

T4

Vcc Vcc

Front-end
of IC
circut

Totem-pole
output circuit

Output
signal is
tri-stated

Output = Z

Totem-pole
output circuit

Output
signal is
tri-stated

Output = ZFront-end
of IC
circut

(a) (b)

FIGURE 7.1 Condition
for obtaining a tri-
stated output signal
with an active-high
output enable input

 Notice in Figure 7.2a that the circuit has two inputs. The normal input to the 3-state buffer
is labeled signal A and the output is labeled signal F. The control input is labeled signal OE,
which stands for output enable. When OE is active or goes high (or to a 1), output F 5 A (normal
2-state operation) as shown in Figure 7.2b; however, when OE is inactive or goes low (or to a 0),
output F is disconnected and is assigned the value of Z as shown in Figure 7.2c. The inverted tri-
angle shown at the output of the 3-state buffer is the 3-state qualifying symbol used to specify

A

OE

OE = L = 0
(OE is inactive)

OE = L = 0
(OE is inactive)

OE = H = 1

(OE is active)

F A F

A

(a) (b)

(c)

F Aor F

Qualifying symbol

(to indicate a 3-state

output)

F = A

(Normal 2-state

operation)

F = Z

(Tri-stated

output signal)

F = Z

(Tri-stated

output signal)

FIGURE 7.2 3-state buffer with an OE input:
(a) logic symbol; (b) normal 2-state operation;
(c) output in disconnected state or open switch
representation of tri-stated output signal

186 Chapter 7 Computer Circuits

a device with a 3-state output (or outputs). When F 5 Z, we say the output signal is tri-stated,
disconnected, or floating. In VHDL, the value for a tri-stated output signal or the disconnected
state is an uppercase Z.
 Table 7.1 shows a compressed truth table for the 3-state buffer in Figure 7.2.

OE F

0 Z

1 A

TABLE 7.1 Truth table for the

3-state buffer in Figure 7.2

 When the signal OE is inactive or 0, the output signal is in the disconnected state (or tri-
stated) and the output signal value is Z, or F 5 Z. When the signal OE is active or 1, the output
acts normally and is equal to the input A, or F 5 A.
 Listing 7.1 shows a complete VHDL design for the 3-state buffer shown in Figure 7.2a.

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Three_State_Buffer is port (
 oe, a : in std_logic;
 f : out std_logic
);
end Three_State_Buffer;

architecture Dataflow of Three_State_Buffer is
begin
 f ,5 ‘Z’ when oe 5 ‘0’ else
 a;
end Dataflow;

LISTING 7.1
Complete VHDL
design for a 3-state
buffer (project:
Three_State_Buffer)

 Things you should notice about the VHDL design in Listing 7.1:

• This design uses a dataflow design style, because a CSA is used to write the function F.
• When OE is a 0, output F is in the disconnected state, which must be represented by an

uppercase Z in the VHDL design.
• Uppercase Z is a value—that is, it is not a signal. Signals can be made upper- or lowercase

in VHDL, but values cannot be made lowercase.

 Waveform 7.1 shows the simulation with the correct functionality of design entity
Three_State_Buffer.

 Things you should notice about the waveforms in Waveform 7.1:

• When oe is a 0, notice that output f is in the disconnected state, which is represented by the
Waveform diagram as a line down the middle of the waveform, which indicates the output
is not a high or a 1 and is not a low or a 0.

• When oe is a 1, notice that output f follows input a—that is, when input a is 1—then f is a 1
and when a is a 0 f is a 0.

+

+

+ 0oe

a 0

f z

Name Value 0 ns 200 ns 400 nsWAVEFORM 7.1
Simulation with the
correct functionality
of design entity Three_
State_Buffer

www.itpub.net

 7.3 Data Bus Sharing for a Microcomputer System 187

 Figure 7.3a shows four 3-state buffers with 3-state outputs connected together so the signals
A, B, C, and D can share a common data line.

 An alternate and somewhat simpler solution is to use a 4-to-1 MUX to share a common data
line. Notice that the four buffers require a decoder to provide mutually exclusive signals to the
OE inputs, because only one of the four buffers may be enabled at a time.
 Table 7.2 shows a compressed truth table for the circuits in Figure 7.3.

A

S0
S1

S0S1

0
1

0
1
2
3

0

0

1

1

2

3

O0
O1
O2
O3

B

C

D

A
B
C S

D

(a) (b)

F F

2-to-4
decoder

4-to-1
MUX

FIGURE 7.3 Sharing a com-
mon data line: (a) four 3-state
buffers with 3-state outputs
connected together to share a
common data line; (b) a 4-to-1
MUX used to share a common
data line

7.3 DATA BUS SHARING FOR A MICROCOMPUTER SYSTEM

Logic devices with 3-state outputs provide a disconnected state. Devices with disconnected
states allow different signals to share common data lines in a microcomputer system. A
microcomputer system is a system that contains either a microprocessor or a microcontroller.
Data lines are the logic lines that are used to transport data from memories such as random-
access memory (RAM) and read only memory (ROM) and from input/output (I/O) devices
such as keyboards and monitors. Figure 7.4 shows a block diagram for a microcomputer system.
 A bus is a set of logic lines. Many microcomputer systems are designed using three buses
to move information. These buses are called the address bus, the control bus, and the data
bus. This is illustrated in Figure 7.4 for the simple case of a data bus of 8 bits. The address bus
provides the specific location for either getting data (reading data) or putting data (writing data).
The control bus provides the specific operation to be performed. This might be a read (RD) or
write (WR) operation. The data bus provides the specific data that is either read or written. Both
the address bus and the control bus are unidirectional because they send information in only one
direction. The data bus is bidirectional—that is, it operates in two directions.
 In addition to selecting the specific location for getting (reading) or putting (writing) data,
certain address bits are also used to decode the location of the specific device (RAM, ROM, or

S1 S0 F

0 0 A

0 1 B

1 0 C

1 1 D

TABLE 7.2 Truth Table for

the circuits in Figure 7.3

188 Chapter 7 Computer Circuits

I/O) that gets to use or share the data bus. The output of the decoder shown in Figure 7.4 pro-
vides the signals OE_RAM, OE_ROM, and OE_I/O to enable the RAM, the ROM, or the I/O
to share the data bus, respectively. OE stands for output enable (sometimes called chip select
or CS). If more than one device is enabled at the same time, logic line contention or a driver
fight can occur. A driver fight is another commonly used name for logic line contention. Never
connect normal or totem-pole outputs together because a driver fight will occur during certain
input combinations and possibly damage the devices. Do not allow this to happen. Logic line
contention occurs when two or more signals are trying to drive the same logic line: one signal
tries to drive the line high while another signal tries to drive the line low. The microcomputer
system in Figure 7.4 uses a decoder to prevent bus contention of the logic lines on the data bus;
otherwise, incorrect data may be read by the microcomputer due to driver fights.

To external device

Microprocessor

or

microcontroller

Address bus
(unidirectional)

Control bus
(unidirectional)

Data bus
(bidirectional)

RAM

8 logic lines

For an 8-bit data bus
i.e., data lines = 8.

RAM
0 1

1 0

2 3

OE_RAM OE_ROM OE_I/O
DATA DATA DATA

ADDR ADDR

a bits

c bits

d bits

RD RDWR ADDR RD WR
Decoder

ROM I/O

Qualifying
symbol for
3-state output

FIGURE 7.4 Block dia-
gram for a microcom-
puter system

OE

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

D(0)

D(1)

D(2)

OE

B(7:0) D(7:0)
8 8

OE_RAM

RAM_D(7:0)

OE_ROM

ROM_D(7:0)

OE_I/O

I/O_D(7:0)

DATA_BUS(7:0)

8 8

8 8

8 8

or

3-state 8-bit bus buffer
(with 3-state outputs)

D(3)

D(4)
(b)

(c)

D(5)

D(6)

D(7)

(a)
 Note: A decoder must be used
 to select the OE inputs.

FIGURE 7.5 3-state 8-bit bus buffer with 3-state outputs: (a) schematic; (b) simplified schematic; (c) connection of
three 3-state 8-bit bus buffers with 3-state outputs to provide data from three different sources to a common data bus

www.itpub.net

 7.3 Data Bus Sharing for a Microcomputer System 189

 Using a separate data bus for the RAM, ROM and the I/O in Figure 7.4 is too complex and
expensive for normal use. Devices with 3-state outputs can share a common data bus. Using a
common data bus reduces design complexity. The 3-state outputs can either be built into the
RAM, ROM and the I/O devices as shown in Figure 7.4, or they can be added externally via three
separate 3-state bus buffers with 3-state outputs. Figure 7.5a shows the schematic diagram for a
3-state 8-bit bus buffer with 3-state outputs. Figure 7.5b shows a simplified schematic diagram
for a 3-state 8-bit bus buffer with 3-state outputs. Simplified schematics are used to save time
when drawing larger systems. Figure 7.5c shows three separate 3-state 8-bit bus buffers connected
together to provide data from either a RAM, a ROM, or an I/O device to a common data bus.
 MUXs can be used to select different data sources—that is, provide data paths for the
RAM, ROM, or I/O in Figure 7.4—rather than using devices with 3-state outputs or using three
3-state 8-bit bus buffer circuits with 3-state outputs. To use MUXs, we simply construct an array
of 4-to-1 MUXs in parallel—that is, one MUX for each bit position on the data bus—and tie the
common select lines together. Figure 7.6 shows a 4-to-1 MUX array for selecting three different
data sources (RAM, ROM, and I/O) for an 8-bit data bus.

S0S1

S0S1
0 0
0 1
1 0
1 1

0
8

8

8

8

8
1

2

3

(b)

(a)

DATA_BUS (7:0)

DATA_BUS
RAM data
ROM data
I/O data
Not used

 Note: A decoder is not required
 because bits on the address
 bus are normally used to
 select the select inputs.

or

KEY

RAM_D(7:0)

ROM_D(7:0)

I/O_D(7:0)

Not used

4-to-1
MUX Array

S0S1

0
1
2
3

DATA_BUS (0)

RAM_D(0)
ROM_D(0)

I/O_D(0)
Not used

S0S1

0
1
2
3

DATA_BUS (1)

RAM_D(1)
ROM_D(1)

I/O_D(1)
Not used

S0S1

0
1
2
3

DATA_BUS (2)

RAM_D(2)
ROM_D(2)

I/O_D(2)
Not used

S0S1

0
1
2
3

DATA_BUS (3)

RAM_D(3)
ROM_D(3)

I/O_D(3)
Not used

S0S1

0
1
2
3

DATA_BUS (4)

RAM_D(4)
ROM_D(4)

I/O_D(4)
Not used

S0S1

0
1
2
3

DATA_BUS (5)

RAM_D(5)
ROM_D(5)

I/O_D(5)
Not used

S0S1

0
1
2
3

DATA_BUS (6)

RAM_D(6)
ROM_D(6)

I/O_D(6)
Not used

S0S1

0
1
2
3

DATA_BUS (7)

RAM_D(7)
ROM_D(7)

I/O_D(7)
Not used

0
1

S

0
1

S

0
1

S

0
1

S

0
1

S

0
1

S

0
1

S

0
1

S

0
1

S

FIGURE 7.6 Array
of 4-to-1 MUXs in
parallel: (a) sche-
matic; (b) simplified
schematic

190 Chapter 7 Computer Circuits

 The 4-to-1 MUX array in Figure 7.6 can be used instead of using three 3-state 8-bit bus buf-
fers with 3-state outputs shown in Figure 7.5c to provide data to the data bus of a microprocessor
or microcomputer.
 Either bus buffers with 3-state outputs or MUX arrays can be used to provide data paths in
microcomputer systems.

7.4 MORE ABOUT XOR AND XNOR SYMBOLS AND FUNCTIONS

Alternate cells, diagonal cells, and a checkerboard pattern of 1s on a K-map are signs of XOR
or XNOR functions as shown in the K-maps in K-map 7.1. We can represent such functions in
terms of the XOR operator (!).

 For the K-map with the alternate cells in K-map 7.1a, the function F1 is

F1 5 A #B 1 A #B
 5 A!B

For the K-map with the diagonal cells in K-map 7.1b, the function F2 is

F2 5 A #B #C 1 A #B #C
 5 A # 1B #C 1 B #C 2

 5 A # 1B!C 2

For the K-map with the checkerboard pattern in K-map 7.1c, the function F3 is

F3 5 C # 1A!B 2 1 C # 1A!B 2

 5 A!B!C

 In the preceding examples, the XOR operator (!) is both commutative,
A!B!C 5 C!A!B, and associative, 1A!B 2!C 5 A! 1B!C 2 , just like the AND
operator (?) and the OR operator (1).
 It can be demonstrated using perfect induction that an overbar associated with an XOR
operator can be rubber banded—that is, stretched longer or shorter—to cover a single variable
and still provide an equivalent XOR expression.

 For example: A!B 5 A!B 5 A !B 5 A!B 5 A!B provides an even number of
overbars, and each expression represents an equivalent XOR gate symbol as shown in Figure 7.7.

00

Alternate cells

0
0 2 6 4

1 3 7 5

1 0 10

C

AB
F1(A,B,C)

0 1 0 11

(a)

01 11 10 00

Diagonal cells

0
0 2 6 4

1 3 7 5

0 0 10

C

AB
F2(A,B,C)

0 0 1 01

(b)

01 11 10 00

Checkerboard pattern

0
0 2 6 4

1 3 7 5

1 0 10

C

AB
F3(A,B,C)

1 0 1 01

(c)

01 11 10

K-MAP 7.1 XOR or
XNOR functions: (a)
alternate cells; (b) diago-
nal cells; (c) checker-
board pattern

A
B

F = = =
A
B

F
A
B

F
A
B

F

FIGURE 7.7 Equivalent XOR gates symbols

 We obtain equivalent XOR gate symbols using an even number of bubbles. This may be remem-
bered as the XOR even number of bubbles rule, even though XOR has an odd number of letters.

www.itpub.net

 7.4 More about XOR and XNOR Symbols and Functions 191

 The following expressions are also equivalent: A!B 5 A!B 5 A!B 5 A!B 5 A!B;
each expression has an odd number of overbars. The equivalent XNOR gate symbol for each
expression is shown in Figure 7.8.

 We obtain equivalent XNOR gate symbols using an odd number of bubbles. This may be
remembered as the XNOR odd number of bubbles rule, even though XNOR has an even num-
ber of letters.

7.4.1 Odd and Even Functions
Table 7.3 shows examples of odd functions.

= = =
A

B
F

A

B
F

A

B
F

A

B
F

FIGURE 7.8 Equivalent XNOR gates symbols

 An odd function has a value of 1 when the input string has an odd number of 1s (1,3,5, . . .),
else it has a value of 0. If the function F2odd is plotted in a K-map, the 1s occupy diagonal cells.
The function that results is the XOR function of two variables, or F2odd 5 A!B. If the func-
tion F3odd is plotted in a K-map, the 1s occupy cells resulting in a checkerboard pattern. The
function that results is the XOR function of three variables, or F3odd 5 A!B!C.
 Table 7.4 shows examples of even functions.

A1 B0 F2odd

0 0 0

0 1 1

1 0 1

1 1 0

A1 B0 C F3odd

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

TABLE 7.3 Odd functions for 2 inputs

and 3 inputs

A1 B0 F2even

0 0 1

0 1 0

1 0 0

1 1 1

A1 B0 C F3even

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

TABLE 7.4 Even functions for 2 inputs

and 3 inputs

 An even function has a value of 1 when the input string has an even number of 1s (0,2,4, . . .),
else it has a value of 0. If the function F2even is plotted in a K-map, the 1s occupy diagonal cells.

192 Chapter 7 Computer Circuits

The function that results is the XNOR function of two variables, or F2even 5 A!B. If the
function F3even is plotted in a K-map, the 1s occupy cells resulting in a checkerboard pattern.
The function that results is the XNOR function of three variables, or F3even 5 A!B!C. The
diagonal cells and checkerboard patterns in the K-maps for odd functions and even functions are
complements of each other.
 You should confirm these statements by plotting the K-maps and reading the maps. You can
then use Boolean algebra to rewrite the expressions using the XOR operator (!).

 Is the function FX 5 A!B!C!D an even or an odd function? Stretching the shorter over-

bar to cover the full length of the expression results in FX 5 A!B!C!D 5 A!B!C!D
5 A!B!C!D, which is an odd function (i.e., XORs with omitted overbar). Remember that

an odd function has all the input variables XORed together without a complementation, while
an even function has all the input variables XORed together with one complementation.

7.4.2 Single-Bit Error Detection System
When transmitting data bits from a source to a destination, there is a need for error detection
because errors can occur. Odd and even functions are used in the error detection system shown
in Figure 7.9 to detect errors.

 The error detection system shown in Figure 7.9 detects via the received parity bit (RPB) any
single-bit errors in the transmitted bits received at the destination. The error detection system
also detects any odd number of bit errors in the transmitted bits received at the destination,
including the transmitted parity bit (TPB). Such errors, although not frequent, are due to random
noise that change transmitted bits from a 1 to a 0 or from 0 to a 1. Random noise changing two
transmitted bits or an even number of transmitted bits will not be detected by this system.
 In Figure 7.9, the parity generator interrogates the data bits and provides a transmitted
parity bit TPB that is included in the transmitted bits sent to the destination. A parity checker
interrogates the transmitted bits received at the destination and provides a received parity bit
RPB. If even parity is sent, then even parity should be received; otherwise, an error occurred
in the system. Likewise, if odd parity is sent, then odd parity should be received; otherwise,
an error occurred in the system. Using this system, when an error is detected, the data must be
retransmitted.
 Even parity means an even number of 1s in a given set of bits. To transmit even parity, the
parity generator’s output TPB must be an odd function, as shown in Table 7.5a in the simple
case of just two data bits. To receive even parity, the parity checker’s output RPB must also be
an odd function as shown in Table 7.5b, if RPB 5 0 is used to indicate that no single-bit error is
detected. Note: Any number of data bits can be used, but we just used two data bits in Table 7.5
to keep the example simple.

A
Source

Transmitted bits
Destination

Parity
checker

Received
parity bit

Parity
generator

Transmitted
parity bit

Data
bits

B{ C

D

A

B

C

D

TPB
RPB

FIGURE 7.9 Block
diagram for a single-
bit error detection
system

www.itpub.net

 7.4 More about XOR and XNOR Symbols and Functions 193

 To transmit and receive even parity, with RPB 5 0 indicating that no single-bit error is
detected, output TPB 5 A!B and output RPB 5 A!B!TPB—that is, both are odd func-
tions. If output RPB 5 1, then an error occurred during transmission.
 Odd parity means an odd number of 1s in a given set of bits. To transmit odd parity, the
parity generator’s output TPB must be an even function, as shown in Table 7.6a in the simple
case of just two data bits. To receive odd parity, the parity checker’s output RPB must also be an
even function as shown in Table 7.6b, if RPB 5 0 is used to indicate that no single-bit error is
detected.

To transmit even parity at the source
(make TPB an odd function)

A B TPB

u Transmitted bits are A, B, and
TPB

0 0 0

0 1 1

1 0 1

1 1 0

(a)

To check for even parity at the destination
(make RPB an odd function)

A B TPB RPB Comment

0 0 0 0 No error

0 0 1 1 Error

0 1 0 1 Error

0 1 1 0 No error

1 0 0 1 Error

1 0 1 0 No error

1 1 0 0 No error

1 1 1 1 Error

(b)

TABLE 7.5 To transmit and receive even parity: (a) to transmit even parity at the

source, make TPB an odd function; (b) to check for even parity at the destination,

make RPB an odd function so that RPB 5 0 indicates that no single-bit error is

detected

(a)

To transmit even parity at the source
(make TPB an even function)

A B TPB

u Transmitted bits are A, B, and
TPB

0 0 1

0 1 0

1 0 0

1 1 1

To check for even parity at the destination
(make RPB an even function)

A B TPB RPB Comment

0 0 0 1 Error

0 0 1 0 No error

0 1 0 0 No error

0 1 1 1 Error

1 0 0 0 No error

1 0 1 1 Error

1 1 0 1 Error

1 1 1 0 No error

(b)

TABLE 7.6 To transmit and receive odd parity: (a) to transmit odd parity at the

source, make TPB an even function; (b) to check for odd parity at the destination,

make RPB an even function so that RPB 5 0 indicates that no single-bit error is

detected

194 Chapter 7 Computer Circuits

 To transmit and receive odd parity, with RPB 5 0 indicating that no single-bit error is
detected, output TPB 5 A!B and output RPB 5 A!B!TPB—that is, both are even func-
tions. If output RPB 5 1, then an error occurred during transmission.
 In Figure 7.9, to transmit and receive even parity for four data bits, with RPB 5 0
indicating that no single-bit error is detected, output TPB 5 A!B!C!D and output
RPB 5 A!B!C!D!TPB—that is, both are odd functions. To transmit and receive odd
parity for four data bits, with RPB 5 0 indicating that no single-bit error is detected, out-
put TPB 5 A!B!C!D and output RPB 5 A!B!C!D!TPB—that is, both are even
functions.
 We have shown how to detect single-bit errors but not how to correct them. Hamming codes
can detect and correct single-bit errors. They can also detect but not correct double-bit errors.
Correction schemes for single-bit errors are not trivial. Advanced memory systems have the
capability to detect and correct single-bit errors. This capability requires much more circuitry
than the simple error detection system shown in Figure 7.9 that only detects single-bit errors but
cannot correct them.

7.4.3 Comparators and Greater Than Circuits
An application of an XNOR gate is used to compare two bits applied to its input. If the bits
are equal, then the output of the XNOR gate will be 1; else, it will be 0. Comparators utilize
the property of XNOR gates to compare the magnitudes of binary numbers for equality. For
multiple-bit operands such as operand A 5 An21 . . . A2 A1 A0 and operand B 5 Bn21 . . . B2 B1
B0, a comparator is a circuit that produces an output of 1 when A 5 B. Figure 7.10 shows a logic
symbol for a 4-bit comparator.

A(3:0)

4

B(3:0)

A = B F

4-bit
comparator

4

FIGURE 7.10 Logic
symbol for a 4-bit
comparator

 In Figure 7.10, the notation A(3:0) represents four signals lines with the signals A3 A2 A1 A0
applied at the input. Likewise the notation B(3:0) represents four signals lines with the signals
B3 B2 B1 B0 applied at the input.
 A truth table for a 4-bit comparator with 8 inputs (4 bits for operand A and 4 bits for operand
B) requires 28 5 256 rows. Solving the problem in this manner would be by brute force, which
is difficult.
 To write the function for a Comparator with two operands with multiple bits only requires
a simple truth table for bit position i for a function Ai 5 Bi, as shown in Table 7.7.

Ai Bi Ai 5 Bi

0 0 1

0 1 0

1 0 0

1 1 1

TABLE 7.7 Truth Table

for bit position i for the

function Ai 5 Bi

www.itpub.net

 7.4 More about XOR and XNOR Symbols and Functions 195

For the 4 bit comparator shown in Figure 7.10, our analysis will start with the most significant
bits (A3 and B3) of the operands and proceed to the least significant bits (A0 and B0).
 The only time that operands A3 A2 A1 A0 and B3 B2 B1 B0 are equivalent is when (A3
5 B3) AND (A2 5 B2) AND (A1 5 B1) AND (A0 5 B0). The Boolean equation for a compara-
tor with the two operands A3 A2 A1 A0 and B3 B2 B1 B0 is

F 5 1A3!B3 2 # 1A2!B2 2 # 1A1!B1 2 # 1A0!B0 2

 Figure 7.11 shows a circuit design for a 4-bit comparator using XNOR gates. This is a
modular design technique (or a divide-and-conquer technique) that is easy to understand and
can be extended to any number of bits.

 Listing 7.2 shows a complete VHDL design for the 4-bit Comparator shown in Figure 7.11.

A0
B0

A1
B1

A2
B2

A3
B3

F

1 if A0 = B0

1 if A1 = B1

1 if A2 = B2

1 if A3 = B3

1 if A = B

FIGURE 7.11 Circuit
design for a 4-bit com-
parator using XNOR
gates

libraryIEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Four_bit_Comparator is port (
 a, b : in std_logic_vector (3 downto 0);
 f : out std_logic
);
end Four_bit_Comparator;

architecture Dataflow of Four_bit_Comparator is
begin
 f ,5 (a(3) xnor b(3)) and (a(2) xnor b(2)) and

(a(1) xnor b(1)) and (a(0) xnor b(0));
end Dataflow;

LISTING 7.2
Complete VHDL
design for a 4-bit
comparator (proj-
ect: Four_bit_
Comparator)

 Things you should notice about the VHDL design in Listing 7.2:

• Vector notation was used for inputs A and B to provide less typing when writing the VHDL
code.

• This design uses a dataflow design style, because a Boolean equation is used to write the
function F.

• Because the order of precedence of the binary operators xnor and and are the same in
VHDL, parentheses must be placed around each xnor operation to established the required
order of precedence for the Boolean equation for the function F.

 Waveform 7.2 shows the simulation with the correct functionality of design entity
Four_bit_Comparator.

196 Chapter 7 Computer Circuits

 Things you should notice about the waveforms in Waveform 7.2:

• Observe that for the first five random-bit patterns that were chosen, where a 5 b, output f
5 1—as it should be for a correct design.

• Observe that for the second five random-bit patterns that were chosen, where a Z b, output
f 5 0—as it should be for a correct design.

• The simulation was not an exhaustive simulation run, but it does show that the output func-
tion f is correct for the selected inputs.

 The XNOR gate is also used in the design for a circuit that compares two operands to see
if operand A is larger or greater than operand B. A truth table for bit position i for a function Ai
. Bi is shown in Table 7.8.

+

+

+

0000a(3:0)

b(3:0) 0000

f 1

0000 0001 0010 0100 1000 0011 0001 0101 0110 1111

0000 0001 0010 0100 1000 1100 1000 1010 1001 0000

Name Value 0 ns 200 ns 400 nsWAVEFORM 7.2 Simulation
with the correct functionality
of design entity Four_bit_
Comparator

Ai Bi Ai . Bi

0 0 0

0 1 0

1 0 1

1 1 0

TABLE 7.8 Truth Table for

bit position i for the function

Ai + Bi

 To obtain a 4-bit greater than function with an output of 1 when A . B, we can write the
function in the following format and translate it to a Boolean equation as follows:

For our analysis, start with the most significant bits of the operands and proceed to the
least significant bits.

Most significant bits (i 5 3):

 (A3 . B3)

Next least significant bits (i 5 2):

 (A3 5 B3) AND (A2 . B2)

Next least significant bits (i 5 1):

 (A3 5 B3) AND (A2 5 B2) AND (A1. B1)

Least significant bits (i 5 0);

 (A3 5 B3) AND (A2 5 B2) AND (A15 B1) AND (A0 . B0)

Putting the pieces together, we can write the function greater than (FGT) as

 FGT 5 (A3 . B3) OR
 (A3 5 B3) AND (A2 . B2) OR

 (A3 5 B3) AND (A2 5 B2) AND (A1 . B1) OR

 (A3 5 B3) AND (A2 5 B2) AND (A1 5 B1) AND (A0 . B0)

www.itpub.net

 7.5 Adder Design 197

Using Tables 7.7 and 7.8, we can write the Boolean equation as

 FGT 5 1A3 #B3 2 1

 1A3!B3 2 # 1A2 #B2 2 1

 1A3!B3 2 # 1A2!B2 2 # 1A1 #B1 2 1

 1A3!B3 2 # 1A2!B2 2 # 1A1!B1 2 # 1A0 #B0 2

This is also a modular design technique that can be extended to any number of bits.

 Figure 7.12a shows a logic symbol for the function FGT for 4-bit operands—that is, a 4-bit
greater than circuit. A gate-level circuit design for the function FGT is shown in Figure 7.12b.

A3

A(3:0)

4

4

4-bit
greater than

B(3:0)

FGT

FGT

(a) (b)

A > B

B3

A3
B3

A2
B2

A2
B2

A1
B1

A1
B1

A0
B0

FIGURE 7.12 4-bit
greater than circuit:
(a) logic symbol for
4-bit operands;
(b) gate-level circuit
design

7.5 ADDER DESIGN

In this section, we show how to design a half adder and a full adder circuit at the gate level. The
design of larger arithmetic circuits at the gate level is too tedious because of the large number
of inputs required. To make the design process easier we use a modular design technique. We
first obtain the gate-level circuits (small modules) that perform small parts of the overall design
by analyzing bit slices of the design. Once the small modules are designed, they are copied
(repeated or iterated) to construct larger adders and/or subtractors.

7.5.1 Designing a Half Adder Module
A half adder (HA) is the simplest form of adder circuit. Figure 7.13 shows a logic symbol for
a half adder.

A

B

A B

A

HA

HA

B

A BS

or

CO SCO

S

CO

SCO

FIGURE 7.13 Logic symbol for a half
adder

198 Chapter 7 Computer Circuits

 The half adder shown in Figure 7.13, has two operand bits A and B, a sum bit S, and a carry-
out bit CO as shown by the following addition operation:

 A
 1 B
 CO S

 Table 9 shows the truth table for a half adder.

A B CO S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

TABLE 7.9 Truth table for a

half adder

 Because the truth table for the half adder in Table 7.9 contains only four rows, we can easily
write the set of minimized equations for the 1s of the functions by inspection as follows:

 S 5 A #B 1 A #B 5 A!B

 CO 5 A?B

 Figure 7.14 shows a gate level circuit design for a half adder.

7.5.2 Designing a Full Adder Module
A versatile circuit called a full adder (FA) is a single-bit slice of an n-bit adder. Consider oper-
and A with bits A3 A2 A1 A0 and operand B with bits B3 B2 B1 B0. The sum bits are S3 S2 S1
S0 with a carry-out bit CO4 as shown by the following addition operation for a 4-bit adder:

 A3 A2 A1 A0

 1 B3 B2 B1 B0

 CO4 S3 S2 S1 S0

 The truth table for a 4-bit adder with two 4-bit inputs (4 inputs for operand A and 4 inputs
for operand B) requires 28 5 256 rows. If we tried to obtain reduced equations by hand for the
sum bits S3 S2 S1 S0 and the carry-out bit CO4, this would require five 8-variable K-maps. To
design a 4-bit adder, we will use a modular design technique, which requires much less work.
 To show the carry-out bits in the 4-bit adder, we can represent the addition operation as
follows:

 CO3 CO2 CO1

 A3 A2 A1 A0

 1 B3 B2 B1 B0

 CO4 S3 S2 S1 S0

A

B
S

CO

FIGURE 7.14 Gate level circuit
design for a half adder

www.itpub.net

 7.5 Adder Design 199

 Notice that each bit position except the 0 position requires the same addition operation,
which is the operation of a full adder. For bit positions 1, 2, and 3, the carry-in bit to the next full
adder is the carry-out bit from the previous adder. The operation for bit position 0 requires only
a half adder. Bit positions 1, 2, and 3 require a full adder.
 Figure 7.15 shows a logic symbol for a full adder.

 Notice that the full adder has a carry input (CI), which is missing in the half adder. Table
7.10 shows the truth table for a full adder.

A

B

A CI

A

FA

FA
B

A CI

B

BS

or

CO

CI CI

SCO

S

CO

SCO

FIGURE 7.15
Logic symbol
for a full adder

 Minimized equations for S and CO are obtained from the K-maps shown in K-map 7.2.

A B CI CO S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 7.10

Truth table for a

full adder

 Figure 7.16 shows two different gate-level circuit designs for a full adder. The first design in
Figure 7.16a uses CO in SOP form, while the second design in Figure 7.16b uses CO in factored
form, with an XOR expression.

0
0 2 6 4

1 3 7 5

1 0 1

1 0 1 0

00

0

CI

S = e1 + e2 + e3 + e4

 = A
-

⋅B⋅CI + A⋅B
-

⋅CI + A
-

⋅B
-

⋅CI + A⋅B⋅CI

 = (A ⊕ B)⋅CI + (A ⊕ B)⋅CI

 = A ⊕ B ⊕ CI

CO = e1 + e2 + e3

 = A⋅B + A⋅CI + B⋅CI

CO = e1 + e2 + e3

 = A⋅B + A⋅B⋅CI + A⋅B⋅CI

 = A⋅B + CI⋅(A ⊕ B)

AB
e1 e2

e3 e4

S (A,B,CI)

1

01 11 10

0
0 2 6 4

1 3 7 5

0 1 0

0 1 1 1

00

0

CI
AB

e1

e3 e2

CO (A,B,CI)

1

01 11 10

or
0

0 2 6 4

1 3 7 5

0 1 0

0 1 1 1

00

0

CI
AB

e1

e3 e2

CO (A,B,CI)

1

01 11 10

K-MAP 7.2 K-maps
plotted for the func-
tions S and CO for
the full adder truth
table in Table 7.10

200 Chapter 7 Computer Circuits

 The factored form illustrates that a full adder may also be designed using two half adders
and one additional OR gate. The design in Figure 7.16b may be a little slower than the design in
Figure 7.16a because of the three gate delays from the input to the output for the CO circuit. To
speed up the full adder circuit, it would be better to use an SOP form rather than a factored form
to generate the output CO.

7.6 DESIGNING AND USING RIPPLE-CARRY ADDERS
AND SUBTRACTORS

Figure 7.17 shows a circuit design for a 4-bit adder using a modular design technique.

A

S
B

CI

CO

CO

(a)

A

HA HA

S

Additional
OR gate

B

CI

(b)

FIGURE 7.16 Gate-level
circuit designs for a full
adder: (a) using CO in
SOP form; (b) using a
factored form of CO and
including an additional
OR gate to form a full
adder with two half
adders

A3

A B

S

S3

CI

B3 CI3

CO4

CO

FA3

A2

A B

S

S2

CI

B2 CI2

CO3

CO

FA2

A1

A B

S

S1

CI

B1 CI1

CO2

CO

FA1

A0

A B

S

S0

GNDCI

B0 CI0 = 0

CO1

CO

FA0

FIGURE 7.17 Circuit
design for a 4-bit adder
using a modular design
technique

 In the design in Figure 7.17, FA3 down to FA0 are all full adder modules. The carry-input
signal to FA0 is tied to ground (GND) so that CI0 5 0. Notice that the carry-out signal CO1 from
module FA0 provided as the carry-in signal CI1 to the module FA1. The carry-out signal from
each adder module is supplied to the next adder module in the chain such that CIi 5 COi for
i 5 1, 2,
 An adder designed in this manner is called a ripple-carry adder (RCA), because the carry
output of the first adder module ripples through all the other adder modules via the circuit con-
nections shown in Figure 7.17. Designing a ripple-carry adder is the easiest way to design an
adder circuit with two or more bits for the input operands.
 Additional full adder modules can be added to build even larger adders using this process.
The carry-out signal from module FA0 must propagate through all the additional full adder
modules before the result can settle to its final binary value. Ripple-carry adders are considered
to be slow adders. The drawback of a ripple-carry adder is its settling time. Settling time is the
time (propagation delay time) it takes for the result to be computed—that is, for the adder out-
put to become stable—after the inputs are applied. Carry look-ahead circuitry, which we will
discuss a little later, is often used to speed up the addition operation.

www.itpub.net

 7.6 Designing and Using Ripple-Carry Adders and Subtractors 201

 Subtractor circuits are not generally used in computers because subtraction can be per-
formed with an adder circuit using indirect subtraction by addition. The modular logic circuit
in Figure 7.18 shows a circuit design for a 2-bit adder–subtractor using indirect subtraction by
addition.

 When the signal SUB is 0, the adder–subtractor circuit adds the operands at its inputs
providing the result A 1 B 5 A1 A0 1 B1 B0. The two XOR gates act as Buffers when SUB
5 0—that is, (B0!SUB 5 B0!0 5 B0 and B1!SUB 5 B1!0 5 B1)—and just pass the
B operand to the adder. US_OVERFLOW is the unsigned overflow bit. When adding two 2-bit
operands, US_OVERFLOW is 0 if the 2-bit result S1 S0 is correct, and US_OVERFLOW is 1 if
the 2-bit result S1 S0 is incorrect, because the result will not fit in just 2 bits.
 How does indirect subtraction work? It works using the 2’s complement of an operand. The
following relationship shows the 2’s complement concept:

2B 5 (2’s complement of B) 5 (1’s complement of B) 1 1 5 B 1 1, so

A 2 B 5 A 1 12B 2 5 A 1 1B 1 1 2 5 A 1 B 1 1

When the signal SUB is 1, the circuit performs indirect subtraction by addition which provides the
result A 2 B 5 A 1 1B 1 1 2 5 A1 A0 1 B1 B0 1 1. The two XOR gates act as NOT gates
when SUB 5 1—that is, (B0!1 5 B0 and B1!1 5 B1)—to provide the 1’s complement of B
or B to the adder. Complementing each bit of operand B to obtain B provides the 1’s complement
of B. When 1 is added to B via input CI of FA0, the result is the 2’s complement of B. Adding the
2’s complement of B to A provides the result A 2 B. When subtracting two 2-bit operands, A 2 B
for this design, US_OVERFLOW is 0 if the 2-bit result S1 S0 is correct, and US_OVERFLOW is
1 if the 2-bit result S1 S0 is incorrect, because the result will not fit in just 2 bits.
 The design in Figure 7.18 can be expanded to any number of bits. The limiting factor is the
speed of the circuit—that is, its settling time. Carry look-ahead circuitry can be used to speed
up the addition operation.
 Circuits that perform an increment operation and decrement operation are important in
the design of digital circuits and digital computers. In digital computers, these operations are
sometimes referred to as micro-operations. The increment operation can be represented by the
arithmetic formula F 5 A 1 1. An adder circuit with a carry-in bit to bit position 0 can be used
to perform this arithmetic operation. Simply set all the B bits of the adder to 0, and set the carry-
in bit at bit position 0 to a 1. An adder circuit without a carry-in bit to the bit position 0 can also

A1

A B

S

S1

CI

B1

CI1

CO2

US_OVERFLOW

CO

FA1

A0

A B

S

S0

CI

B0 SUB

CO1

CO

FA0

FIGURE 7.18
Circuit design for
a 2-bit adder–
subtractor using
indirect subtrac-
tion by addition

202 Chapter 7 Computer Circuits

be used to perform the arithmetic operation. Simply set the B bits of the adder to 1. For a 4-bit
adder, this means to set the B bits to 0001.
 The decrement operation can be represented by the arithmetic formula F 5 A 2 1. To per-
form this operation with an adder for any word size (i.e., number of bit for A), we can write the
decrement operation as

F 5 A 2 1 5 A 1 (all 1s for the word size)

For an adder with just 4 bits, 21 5 2’s complement of (1)10 5 2’s complement of (0001)2 5
0 0 0 1 1 1 5 1110 1 1 5 1111 5 all 1s for the word size of 4 bits. An adder circuit with a
carry-in bit to bit position 0 can be used to perform this arithmetic operation. Simply set all the
B bits of the adder to 1, and set the carry-in bit at bit position 0 to a 0. An adder circuit without a
carry-in bit to the bit position 0 can also be used to perform the arithmetic operation. Simply set
all the B bits of the adder to 1. For a 4-bit adder, this means to set the B bits to 1111.
 A circuit that performs the increment operation (F 5 A 1 1) can be used to design a binary
up counter. To do this, simply feed the outputs of the adder to a set of D flip-flops with the
outputs of the D flip-flops fed back into the A bits of the adder. Figure 7.19 shows the circuit
for an increment operation combined with D flip-flops for a binary up counter with 3 bits. This
is a modular design technique and is used later on in the book to design the running program
counter for VBC1 (Very Basic Computer 1).

 Notice in Figure 7.19 that the data supplied to the B input by VCC and GND is 001, which adds
1 to A, to provide the increment operation. Also observe that the adder in Figure 7.19 does not
have a carry-in bit to bit position 0. If the adder had a carry-in bit to bit position 0, then it could be
set to 1, and all the bits to the B input would then be set to 0 to perform the increment operation.
 Likewise, a circuit that performs the decrement operation (F 5 A 2 1) can be used to
design a binary down counter by simply feeding the outputs of the adder to a set of D flip-flops
with the outputs of the D flip-flops fed back into the A bits of the adder. All the bits for the B
input must be connected to VCC, so that the decrement operation will be performed by the adder.
If the adder you are using has a carry-in bit at bit position 0, then set that bit to 0.

A0

Adder
(F = A + 1)

A1
A2

B0
B1
B2

F0
F1
F2

Q0

Q0QD

C
CLR

CLK

RST
(asyn)

Q1QD

C
CLR

CLK

RST
(asyn)

Q2QD

C
CLR

CLK

RST
(asyn)

Q1
Q2
V

CC

GND

FIGURE 7.19 Circuit for an increment
operation combined with D flip-flops for
a binary up counter with 3 bits

www.itpub.net

 7.8 Designing Carry Look-Ahead Adders 203

7.7 PROPAGATION DELAY TIME FOR RIPPLE-CARRY ADDERS

In Figure 7.20, we show a circuit design for a 4-bit ripple-carry adder in gate-level form for easy
analysis. To keep things simple, assume that each gate has a propagation delay time of 1tp.

 The propagation delay times are shown in parentheses for each of the sum bits and the
carry-out bits. For larger adders, the delay time gets progressively larger as more full adder
modules are added to the design. For the 4-bit ripple-carry adder in Figure 7.20, the worst-case
delay time is 7tp, which is the time it takes the carry-out bit CO4 to settle or become static
(observe that S3 settles in 6tp, which is slightly faster). A general relationship for settling time
(ST)—that is, the worst-case delay time—for a ripple-carry adder is ST 5 1tp 1 (n 2 1) 3 2tp,
where n is the number of adder modules. In a ripple-carry adder, the settling time is a function
of the accumulative propagation delay times of the carry-out circuits. Adding more full adders
to make a larger adder results in a linear increase in the propagation delay time.
 Modern computers are relatively fast machines. For a 64-bit ripple-carry adder like the
adder in Figure 7.20, the settling time for the adder would be ST 5 1tp 1 (64 2 1) 3 2tp 5 127tp,
which is a relatively long time compared to the propagation delay time of a single gate, which we
are assuming is 1tp. In the next section, we will show how to speed up the settling time.
 The advantage of a ripple-carry adder is simply that it is easy to design. The disadvantage
of a ripple-carry adder is its slow settling time, which gets worse as more full adder modules are
added to make a larger adder. Remember that we assumed that each gate in the circuit in Figure
7.20 only has a gate delay of 1tp, which was used to simplify our calculations. In practice, the
true delay time for each gate type must be used to determine the actual settling time of a ripple-
carry adder. In general, the actual settling time will be worse than the simplified calculations.

7.8 DESIGNING CARRY LOOK-AHEAD ADDERS

The purpose of a carry look-ahead adder (CLAA) is to speed up the adding process by adding
more gates in each carry-out circuit to decrease the settling time. This is done by simply gener-
ating each individual carry-out circuit independent of all previous carry-out outputs except the
first one (CO1), which speeds up the addition process. The only place each carry-out output is
used is for the carry-in input to the sum circuitry of the next modified full adder.

A0

A1A2

B0S0
(1t

p
)

CO1

HA carry-out circuit

FA carry-out circuit
FA carry-out circuitFA carry-out circuit

Half adder (HA)
bit position 0

Full adder (FA)
bit position 1

Full adder (FA)
bit position 2

Full adder (FA)
bit position 3

(1t
p
)

S1
(2t

p
)

CO2
(3t

p
) A0

B0

B1

A1

A1

B1

B1

S2
(4t

p
)

CO3
(5t

p
)

A2

A2

B2

B2

B2
A3

S3
(6t

p
)

CO4
(7t

p
)

A3

A3

B3

B3

B3

FIGURE 7.20 Circuit design for a 4-bit ripple-carry adder in gate-level form

204 Chapter 7 Computer Circuits

 A carry look-ahead adder contains carry generate terms (terms of the form Gi 5 Ai?Bi)
and carry propagate terms (terms of the form Pi 5 Ai 1 Bi).
 Starting with a half adder, we can write the carry-out COi11 as follows:

COi11 5 Ai?Bi 5 Gi, or CO1 5 G0

Plotting the carry-out bit COi11 for a full adder in a 3-variable K-map and minimizing the func-
tion, we can write:

COi11 5 Ai?Bi 1 CIi?Ai 1 CIi?Bi 5 Ai?Bi 1 CIi?(Ai 1 Bi)

The carry-out bit COi11 contains one carry generate term Ai?Bi or Gi and one carry propagate
term Ai 1 Bi or Pi, so, COi11 can be expressed as COi11 5 Gi 1 CIi?Pi for each full adder.
 Because the carry-in bit of the next full adder module is supplied by the carry-out bit of the
previous full adder module, CIi 5 COi and we can write COi11 5 Gi 1 COi?Pi for each full adder.
 The carry-out bits for a carry look-ahead adder can be written as shown in Figure 7.21 for
each bit position.

Starting with a half adder, we can write:

Bit position 0:
CO1 5 G0 Carry-out bit for a half adder

Bit position 1:
CO2 5 G1 1 CO1?P1 Substitute previous result for CO1
 5 G1 1 G0?P1

Bit position 2:
CO3 5 G2 1 CO2?P2 Substitute previous result for CO2
 5 G2 1 (G1 1 G0?P1)?P2
 5 G2 1 G1?P2 1 G0?P1?P2

Bit position 3:
CO4 5 G3 1 CO3?P3 Substitute previous result for CO3
 5 G3 1 (G2 1 G1?P2 1 G0?P1?P2)?P3
 5 G3 1 G2?P3 1 G1?P2?P3 1 G0?P1?P2?P3

Bit position 4:
CO5 5 G4 1 CO4?P4 Substitute previous result for CO4
 5 G4 1 (G3 1 G2?P3 1 G1?P2?P3 1 G0?P1?P2?P3)?P4
 5 G4 1 G3?P4 1 G2?P3?P4 1 G1?P2?P3?P4 1 G0?P1?P2?P3?P4

Bit position i : for i 5 0, 1, 2 This is the general expression for the function COi11

COi11 5 Gi 1 Gi21?Pi 1 Gi22?Pi21?Pi 1 Gi23?Pi22?Pi21?Pi 1 . . .

FIGURE 7.21 The
carry-out bits for a
carry look-ahead
adder

 When you write COi11 with the general expression, continue with the pattern until the carry
generate term in the last product term is G0. Observe for bit position 2 that the last product term
for COi11 5 CO3 would be G0?P1?P2. Also observe for bit position 6 that the last product term
for COi11 5 CO7 would be G0?P1?P2?P3?P4?P5?P6. Once you understand the pattern, you can
write the all the terms for any of the carry-out bits of a carry look-ahead adder in a straightfor-
ward manner.

www.itpub.net

 7.8 Designing Carry Look-Ahead Adders 205

 In Figure 7.22, we show a circuit design for a 4-bit carry look-ahead adder in gate-level
form. To observe the carry generate and carry propagate terms in the 4-bit carry look-ahead
adder design, look closely at the modified full adder carry-out circuits. Remember that each
individual carry-out circuit is independent of all previous carry-out outputs except CO1.

 Figure 7.23 shows the circuit for the modified full adder module for bit position 4 for a 5-bit
carry look-ahead adder.

A0

A1

B0S0
(1t

p
)

G0

CO1

HA carry-out circuit
MFA carry-out circuit

Half adder (HA)
bit position 0

Modified full adder (MFA)
bit position 1

(1t
p
)

S1
(2t

p
)

CO2
(3t

p
)

A0
B0

or

B1

A1G1

G0
P1 A1

B1

B1

A2

MFA carry-out circuit

Modified full adder (MFA)
bit position 2

S2
(4t

p
)

CO3
(3t

p
)

B2

A2G2

G0
P1

G1
P2

P2 A2

B2

B2

A3

MFA carry-out circuit

Modified full adder (MFA)
bit position 3

S3
(4t

p
)

CO4
(3t

p
)

B3

A3G3

G1
P2

G2
P3

P3

G0
P1
P2
P3 A3

B3

B3

FIGURE 7.22 Circuit design for a 4-bit carry look-ahead adder in gate-level form

 The limitation of using carry-look ahead for adders with many bits is the fan-in require-
ments of the gates—that is, the number of gate inputs—and the fan-out requirements of the
gates—that is, the number of gates an output can electrically drive. If cascading gates must be

Modified full adder (MFA)
bit position 4

MFA carry-out circuit

A4

S4

G4

P4
G3

P3
P4

G2

P2
P3
P4

G1

P2
P3
P4

P1
G0

B4

A4
B4

A4
B4

CO4

CO5

FIGURE 7.23 Circuit for
the modified full adder
module for bit position 4
for a 5-bit carry look-ahead
adder

206 Chapter 7 Computer Circuits

added to meet the fan-in requirements or buffers must be added to meet the fan-out require-
ments for the design, then the settling time for the circuit will be increased, thus slowing down
the addition operation.

7.9 PROPAGATION DELAY TIME FOR CARRY LOOK-AHEAD ADDERS

To keep things simple, in Figure 7.22 we assumed that each gate has a propagation delay time of
1tp. The propagation delay times shown in parentheses for each of the sum bits and the carry-out
bits for the carry look-ahead adder are substantially smaller than that of a ripple-carry adder
when the number of modified full adder (MFAs) is increased. Also observe that each modified
full adder module is slightly different because of the additional carry-out circuitry.
 For the 4-bit carry look-ahead adder in Figure 7.22, the worst-case delay time is 4tp, which
is the time it takes the sum bit S3 to settle or become static (observe that CO4 settles in 3tp,
which is slightly faster). The propagation delay time for each carry-out circuit in a carry look-
ahead adder is the same (always 3tp) at the expense of additional gates for the carry-out circuitry.
Carry look-ahead adders are mainly used for adders with a large number of bits. The settling
time for the circuit design in Figure 7.22 is ST 5 3tp 1 1tp 5 4tp for three or more bits.
 Assuming there were no fan-in and fan-out requirement limitations, a 64-bit carry look-
ahead adder like the adder in Figure 7.22 would have a settling time of ST 5 4tp, which is a great
speed improvement over the settling time of the ripple-carry adder in Figure 7.20, which was
ST 5 127tp. Don’t forget that we assumed that each gate in the circuits in Figures 7.20 and 7.22
only has a gate delay of 1tp. In practice, the true delay time for each gate type must be used to
determine the actual settling time.

Section 7.3 Data Bus Sharing for a Microcomputer
System
 7.6 What is the main purpose of using logic devices with

3-state outputs?
 7.7 Three-state bus buffers with 3-state outputs can be con-

nected together to share a common data bus. What is
another way that a common data bus can be shared?

 7.8 When using 3-state bus buffers with 3-state outputs
to share a common data bus with different devices, is
a decoder required to enable the OE inputs of the bus
buffers?

 7.9 When using a MUX array to share a common data bus
with different devices, is a decoder required to enable
the select inputs of the MUX array?

Section 7.2 Three-State Outputs and the
Disconnected State
 7.1 What is the output signal value of a 3-state output circuit

that is tri-stated?
 7.2 What value is used in VHDL to represent a tri-stated

output signal?
 7.3 In Figure P7.3a, what is the input signal value that must

be applied to the output enable input of the 3-state output
circuit when the output signal of the circuit is not being
tri-stated? Answer the same question for Figure P7.3b.

 7.4 What values are available at the output of a 3-state out-
put circuit when the input signal that is applied to the
output enable input is active?

 7.5 From a circuit point of view, what does a tri-stated out-
put signal act like?

PROBLEMS

FIGURE P7.3

OE

A F

(a) (b)

OE

A F ≡
OE

A F

www.itpub.net

 Problems 207

a destination using the single-bit error detection system
illustrated in the textbook to transmit and receive odd
parity. Assume that D7, D6, D5, D4, D3, D2, D1, and
D0 are the data bits, TPB is the output of the parity gen-
erator, and RPB is the output of the parity checker. Also
assume that RPB 5 0 indicates that no single-bit error is
detected.

 7.20 Obtain the output function for a comparator with an out-
put F that will detect the equality of two operands that
contain 3 bits each—that is, F 5 1 when A 5 B. Assume
that A2, A1, and A0 are the operand bits for one operand
and B2, B1, and B0 are the operand bits for the second
operand. Use the modular design technique presented in
the textbook. Draw and label the gate-level circuit.

 7.21 Obtain the output function for a Comparator with an out-
put F that will detect the equality of two operands that
contain 5 bits each—that is, F 5 1 when A 5 B. Assume
that A(4:0) are the operand bits for one operand and
B(4:0) are the operand bits for the second operand. Use
the modular design technique presented in the textbook.
Draw and label the gate-level circuit.

 7.22 Obtain the output function for a greater than circuit
with an output F that will detect the inequality of two
operands that contain 2 bits each—that is, F 5 1 when
A . B. Assume that A1 and A0 are the operand bits for
one operand and B1 and B0 are the operand bits for
the second operand. Use the modular design technique
presented in the textbook. Draw and label the gate-level
circuit.

 7.23 Obtain the output function for a less than circuit with an
output F that will detect the inequality of two operands
that contain 4 bits each—that is, F 5 1 when A , B.
Assume that A3, A2, A1, and A0 are the operand bits
for one operand and B3, B2, B1, and B0 are the operand
bits for the second operand. Use the modular design
technique presented in the textbook. Draw and label the
gate-level circuit.

Section 7.5 Adder Design
 7.24 Does a half adder have a carry input signal?
 7.25 Where is a half adder used in a larger adder?
 7.26 Write the truth table for a half adder with inputs X0 and

Y0 and outputs S0 and CO. Write the simplest Boolean
functions for S0 and CO.

 7.27 Write the truth table for a full adder with inputs A, B,
and CI and outputs S and CO. Obtain the circuit for a
full adder for function S and CO using MUX designs for
each output.

 7.28 Where is a full adder used in a larger adder?

Section 7.6 Designing and Using Ripple-Carry Adders
and Subtractors
 7.29 What is the easiest way to design an adder circuit with

two or more bits for the input operands?
 7.30 How are full adders connected together to form a ripple-

carry adder?

Section 7.4 More about XOR and XNOR Symbols
and Functions
 7.10 What are the signs of XOR or XNOR functions plotted

on a K-map?
 7.11 An XOR gate can be drawn using a different number of

bubbles. What is a simple rule for remembering how to
draw equivalent XOR gate symbols?

 7.12 An XNOR gate can be drawn using a different number
of bubbles. What is a simple rule for remembering how
to draw equivalent XNOR gate symbols?

 7.13 In Figure P7.13, is the logic symbol an XOR gate or an
XNOR gate? Write the Boolean function F for the gate.

FIGURE P7.13

A
B
C

F

 7.14 In Figure P7.14, is the logic symbol an XOR gate or an
XNOR gate? Write the Boolean function F for the gate.

A
B
C

F

FIGURE P7.14

 7.15 An odd function has a value of 1 when the input string
has an odd number of 1s. Which gate type (a 2-input
XOR gate or a 2-input XNOR gate) is an odd function?
Prove your answer by writing the truth table for the gate
type you select, and show that the input string has an odd
number of 1s when the value of the function is 1.

 7.16 An even function has a value of 1 when the input string
has an even number of 1s. Which gate type (a 2-input
XOR gate or a 2-input XNOR gate) is an even function?
Prove your answer by writing the truth table for the gate
type you select, and show that the input string has an
even number of 1s when the value of the function is 1.

 7.17 Obtain the output functions for a parity generator and a
parity checker that can be used to send two data bits to
a destination using the single-bit error detection system
illustrated in the textbook to transmit and receive odd
parity. Assume that A and B are the data bits, TPB is the
output of the parity generator, and RPB is the output of
the parity checker. Also assume that RPB 5 0 indicates
that no single-bit error is detected.

 7.18 Obtain the output functions for a parity generator and a
parity checker that can be used to send three data bits to
a destination using the single-bit error detection system
illustrated in the textbook to transmit and receive even
parity. Assume that A, B, and C are the data bits, TPB is
the output of the parity generator, and RPB is the output
of the parity checker. Also assume that RPB 5 0 indi-
cates that no single-bit error is detected.

 7.19 Obtain the output functions for a parity generator and a
parity checker that can be used to send eight data bits to

208 Chapter 7 Computer Circuits

 7.44 Write the relationship for the settling time (ST) for a
ripple-carry adder circuit, assuming all gates have a
propagation delay time of 1tp and n is the number of
adder modules.

 7.45 What is the worst-case delay time for a 3-bit ripple-carry
adder, assuming all gates have a propagation delay time
of 1tp?

 7.46 What is the worst-case delay time for a 7-bit ripple-carry
adder, assuming all gates have a propagation delay time
of 1tp?

 7.47 What is the worst-case delay time for a 32-bit ripple-
carry adder, assuming all gates have a propagation delay
time of 1tp?

 7.48 Which bit in a 10-bit ripple-carry adder settles fi rst or
becomes static—the carry-out bit CO11 or the sum bit
S10, assuming all gates have a propagation delay time of
1tp?

 7.49 Which bit in a 12-bit ripple-carry adder settles last or
becomes static—the carry-out bit CO13 or the sum bit
S12, assuming all gates have a propagation delay time of
1tp?

 7.50 List the advantage and the disadvantage of a ripple-carry
adder as provided in the book.

Section 7.8 Designing Carry Look-Ahead Adders
 7.51 What is the purpose of a carry look-ahead adder?
 7.52 How does a carry look-ahead adder decrease the settling

time of each individual carry-out circuit?
 7.53 List all the carry generate terms for a 3-bit carry look-

ahead adder with inputs A2, A1, A0 and B3, B2, B0.
 7.54 List all the carry propagate terms for a 4-bit carry look-

ahead adder with inputs A3, A2, A1, A0 and B4, B3, B2,
B0.

 7.55 Express the carry-output bit COi11 or CO1 for a half
adder in a carry look-ahead adder in terms of its carry
generated term Gi or G0.

 7.56 Express the carry-output bit COi11 for each full adder in
a carry look-ahead adder in terms of its carry generate
term Gi and its carry propagate term Pi.

 7.57 Write the carry-out bit CO3 (for bit position 2) for a 3-bit
carry look-ahead adder in terms of its carry generate
terms (G terms) and its carry propagate terms (P terms).

 7.58 Show the circuit for the modifi ed full adder module for
bit position 2 for a 3-bit carry look-ahead adder.

 7.59 Write the carry-out bit CO6 (for bit position 5) for a 6-bit
carry look-ahead adder in terms of its carry generate
terms (G terms) and its carry propagate terms (P terms).

 7.60 Show the circuit for the modifi ed full adder module for
bit position 5 for a 6-bit carry look-ahead adder.

 7.61 Write the carry-out bit CO7 (for bit position 6) for a 7-bit
carry look-ahead adder in terms of its carry generate
terms (G terms) and its carry propagate terms (P terms).

 7.62 Show the circuit for the modifi ed full adder module for
bit position 6 for a 7-bit carry look-ahead adder.

 7.31 How is the carry-in signal handled in a 4-bit ripple-carry
adder that uses all full adders in the chain?

 7.32 Use the modular design technique to design a 2-bit
ripple-carry adder using just full adders. Explain how
one of the output signals can be used to indicate that an
unsigned overfl ow has occurred in the addition process.

 7.33 What is the drawback of a ripple-carry adder? What can
be used to speed up the addition operation?

 7.34 How can subtraction be performed with an adder? Pro-
vide a formula for doing subtraction with an adder.

 7.35 Use the modular design technique to design a 3-bit ripple
carry adder–subtractor that uses indirect subtraction by
addition. Make the design with full adders and XOR
gates. Add an XOR gate to indicate when an unsigned
overfl ow has occurred.

 7.36 In the adder–subtractor circuit in the book, what does
the US_OVERFLOW output indicate?

 7.37 In the expression 2OP 5 1 1OP 1 1 2 , what does OP
represent and what does OP 1 1 represent? How is the
expression used to perform subtraction? Show that this is
true for performing indirect subtraction by addition A 2
B for 4 bits, if A 5 7 (0111 in binary) and B 5 3 (0011 in
binary).

 7.38 Use the modular design technique to design a logic cir-
cuit that will increment any 3-bit binary number applied
to its input. Let the input to the circuit be A2 A1 A0 and
the output be R2 R1 R0. Use only full adders. Example:
Apply 5 (or 101) and the result is 6 (or 110).

 7.39 Use the modular design technique to design a logic cir-
cuit that will decrement any 3-bit binary number applied
to its input. Let the input to the circuit be A2 A1 A0 and
the output be R2 R1 R0. Use only full adders. Example:
Apply 5 (or 101) and the result is 4 (or 100).

 7.40 Use the modular design technique to design a binary
up counter with 4 bits. Use the circuit for an increment
operation combined with D fl ip-fl ops. Use D fl ip-fl ops
with a CLR input so the binary up counter can be reset
at any time. Use an adder that has a carry-in input to its
least signifi cant bit position CI0.

 7.41 Use the modular design technique to design a binary
down counter with 3 bits. Use the circuit for a decrement
operation combined with D fl ip-fl ops. Use D fl ip-fl ops
with a CLR input so the binary down counter can be
reset at any time. Use an adder that has a carry-in input
to its least signifi cant bit position CI0.

Section 7.7 Propagation Delay Time for Ripple-Carry
Adders
 7.42 In a ripple-carry adder, what is the worst-case delay time

for the HA carry-out circuit, assuming all gates have a
propagation delay time of 1tp?

 7.43 In a ripple-carry adder, what is the worst-case delay time
for each FA carry-out circuit, assuming all gates have a
propagation delay time of 1tp?

www.itpub.net

 Problems 209

 7.66 Which bit in a 20-bit carry-look-ahead adder settles last
or becomes static—the carry-out bit CO21 or the sum bit
S20, assuming all gates have a propagation delay time of
1tp?

 7.67 For a 9-bit carry look-ahead adder with no fan-in and
fan-out requirement limitations, what would be the
worst-case delay time, assuming all gates have a propa-
gation delay time of 1tp?

 7.68 For a 16-bit carry look-ahead adder with no fan-in and
fan-out requirement limitations, what would be the
worst-case delay time, assuming all gates have a propa-
gation delay time of 1tp?

Section 7.9 Propagation Delay Time for Carry
Look-Ahead Adders
 7.63 In a carry look-ahead adder, what is the worst-case delay

time for the HA carry-out circuit, assuming all gates
have a propagation delay time of 1tp?

 7.64 In a carry look-ahead adder, what is the worst-case delay
time for each MFA carry-out circuit, assuming all gates
have a propagation delay time of 1tp?

 7.65 Which bit in a 8-bit carry-look-ahead adder settles fi rst
or becomes static—the carry-out bit CO9 or the sum bit
S8, assuming all gates have a propagation delay time of
1tp?

CC h a p t e r

Circuit Implementation
Techniques

Chapter Outline

 8.1 Introduction 210

 8.2 Programmable Logic Devices 210

 8.3 Positive Logic Convention and Direct Polarity Indication 217

 8.4 More about MUXs and DMUXs 221

 Problems 224

8.1 INTRODUCTION

In this chapter, you will learn about the following programmable logic devices: PROMs, PLAs,
PALs and GALs, and LUTs. You are introduced to the direct polarity indication system for spec-
ifying signal name and equivalent circuits. A simple MUX/DMUX circuit is shown for a data
transmission scheme. The design of larger MUX and DMUX circuits, called trees, is presented.

8.2 PROGRAMMABLE LOGIC DEVICES

Industry only wired up so many circuits in laboratory situations before it developed smarter
ways to implement designs with logic gates. It is not known for sure who invented the PROM
(programmable read only memory). The PROM was introduced back in the early 1960s.
The PLA (programmable logic array) was invented at Signetics in 1975. PLA is a registered
trademark of Signetics. The PAL (programmable array logic) was invented in 1978 by John
Birkner at MMI (Monolithic Memories Inc.). Another name for a PAL is a GAL (generic
array logic). Both acronyms PAL and GAL are registered trademarks of Lattice Semiconductor
Corporation. The FPGA (field programmable gate array), which contains LUTs (look-up
tables), was invented at Xilinx in 1985. The PROM, PLA, PAL or GAL, and LUTs in FPGA are
all PLDs (programmable logic devices). Larger versions of PLA, PAL, or GAL architectures
are referred to as CPLDs (complex programmable logic devices). Programmable logic devices
primarily use the AND/OR gate form discussed earlier. Each of these devices can implement
multiple functions. The PROM, LUT, and PLA each allow product-term expression sharing;
however, the PAL or GAL do not allow product-term expression sharing.
 You can implement any function with these architectures provided the architectures have
enough gates. Figure 8.1 illustrates a template or generalized format for PLDs.
 When PLDs were first introduced they only had a few gates—that is, a 100 or so. Small
functions would fit into the architecture, while larger functions with more inputs or more prod-
uct terms would not fit. Designers had to be aware of the size of the PLDs they elected to use

CC8

210

www.itpub.net

 8.2 Programmable Logic Devices 211

to be sure the functions they wanted to implement would fit into the architecture of the PLDs
they chose to use. To satisfy designers, industry has continued to manufacture larger and larger
PLDs. Larger PLDs are ones with an increase in the number of gates.
 Table 8.1 shows the classification of the different types of PLDs. The connections to the
AND array, connections to the OR array, and volatility of the circuit connections determine the
type of PLD. Nonvolatile connection indicated that the connections are not lost (not broken)
when the power is turned off, while volatile connections are lost (effectively broken) when
power is turned off.

⋮ ⋮ ⋮

{{{

Device
inputs

Buffer/
NOT
array

AND
array

AND array
connections

OR array
connections

OR
array

Device
outputs

FIGURE 8.1 Template or
generalized AND/OR gate
form architecture for PLDs

TABLE 8.1 Classification of the different types of PLDs

Device type AND array connections OR array connections Volatility of the connections

PROM Fixed Programmable Nonvolatile

PLA Programmable Programmable Nonvolatile

PAL or GAL Programmable Fixed Nonvolatile

FPGA with LUTs Fixed Programmable Volatile

 A brief symbology summary for the different types of PLDs is shown in Figure 8.2.

⋮ ⋮

No
fuse

Fixed connection

Multiple input
AND gate

Input terms

A⋅A
-

⋅B⋅B
-

 = 0

A A
-

B B
-

 ⃛

A A
-

B B
-

 ⃛

Input terms

An placed inside
an AND gate also
represents all fuses intact

An placed inside
an OR gate also
represents all fuses intact

All fuses intact

All fuses blown

1 (due to pull-up
 resistors)

0 (due to pull-down
 resistors)

All fuses blown

All fuses intact

Product terms

Product terms

p
1
 p

2
 p

3
 p4 ⃛

p
1

p
1
 + p

2
 + p

3
 + p

4

 p
2
 p

3
 p

4 ⃛

≡≡

≡ ≡

Multiple input
OR gate

Pull-up resistors
not shown

Pull-down resistors
not shown

Programmable
connection

Simplified
representation

Simplified
representation

Connection broken
(after programming)

Intact
fuse

Intact
fuse

Blown
fuse

Blown
fuse

FIGURE 8.2 Symbology
summary for the different
types of PLDs

212 Chapter 8 Circuit Implementation Techniques

 In the summary, you should note that an “3” is used as a programmable connection (an
intact fuse), not a don’t care. Actual fuses may be used or they may be emulated by a transistor
circuit that is reprogrammable. If a transistor circuit is emulating a fuse connection, the circuit
may be volatile (such as the RAM storage in your PC; when the power is turned off the con-
nection is effectively broken) or nonvolatile. If the circuit is nonvolatile, the connection is not
broken when power is turned off. Nonvolatile circuits may be of the old ultraviolet erasable type
or of the electrically erasable type. Erasing a PLD reestablishes all fuse connections. Once a
reprogrammable device is programmed, it needs to be erased prior to programming it again.
The old ultraviolet erasable type requires a window in the top of package to expose the circuit
to ultraviolet light when it needs to be erased. The electrically erasable type is state-of-the-art
technology, and it may be erased more quickly by simply applying pulses to the correct device
pins. Devices using electrically erasable technology can be erased and reprogrammed even after
the device has been mounted on a PC board.
 A device called a universal programming unit can be used to erase and program program-
mable devices. Several different companies manufacture these units. To use the universal
programming unit, you must first generate a map of the fuses that need to be blown. The fuses
that are not blown are the connections you want to keep, and the connections that are blown
are the ones you don’t want to keep. A map of the fuses is called a fuse map and is generated
automatically by specialized industrial software packages. A standard has been devised by the
Joint Electronic Devices Engineering Council—the JEDEC standard fuse map file—for certain
types of PLDs. Once the device is programmed with the proper connections for the required
Boolean functions, the PLD is just a special-purpose circuit. For devices that emulate fuses, the
circuit is semipermanent, and the emulated fuse connections can last for several years. If actual
fuses are used, the fuses are permanent and cannot be reprogrammed.

8.2.1 PROMs and LUTs
Let’s look a little closer to see how the AND/OR gate circuits are connected for the different
PLDs. Figure 8.3 shows a PROM simplified circuit representation or a LUT (look-up table) sim-
plified circuit representation in an FPGA with just 2 inputs and 4 outputs.

A

F1 F2 F3 F4

m
0

m
1

m
2

m
3

B

Inputs
(2 in this case)

Outputs
(4 in this case)

AND array
connections
are fixed

OR array connections
are programmable

FIGURE 8.3 PROM or
LUT simplified circuit
representation

 The PROM or LUT circuit in Figure 8.3 consists of four 4-input AND gates and 4 outputs.
Much larger PROM circuits are available with many more inputs and outputs. LUTs in FPGAs
are generally limited to 4 to 8 inputs and just a single output. For the simple PROM or LUT
circuit shown in Figure 8.3, each additional input that is added causes the AND array to double

www.itpub.net

 8.2 Programmable Logic Devices 213

in size—that is, for 2 inputs there are four AND gates, for 3 inputs there are eight AND gates,
and so on (for n-inputs there are 2n AND gates).
 Observe that the AND array is a minterm generator circuit (or decoder circuit). For each
combination of inputs, only one AND gate output goes high at one time. For example, for
A B 5 00, the top AND gate is pulled to a 1 or high and all other AND gates are pulled to a 0
or low. For A B 5 01, the second AND gate down is pulled to a 1 or high and all other AND
gates are pulled to a 0 or low. A circuit that performs in this manner is called a decoder because
it selectively decodes at its outputs each binary combination applied to its inputs. Observe that
the minterm outputs are shared by each of the OR gates.
 A nonprogrammable read-only memory (ROM) is mask programmed one time at the
factory and may not be altered. Metal connections are used for the mask, and these are per-
manent connections. Mask-programmed ROMs are much more economical and are used after
designs are finalized. PROMs are used primarily in the development stage of a project when
designs are not fixed and may be changed. Remember that PROMs are nonvolatile. FPGAs with
LUTs use the same circuitry as the PROM circuit shown in Figure 8.3, but the LUTs usually
have only one output and the circuit connections are volatile.

8.2.2 PLAs
Figure 8.4 shows a PLA simplified circuit representation with just 3 inputs and 3 outputs. The
PLA circuit in Figure 8.4 consists of five 6-input AND gates and three 5-input OR gates.

 It seems natural to look back in history and see why Signetics invented the PLA. When the
decoder in the PROM circuit is replaced by another programmable array—the AND array—the
PLA can have more inputs without increasing the size of its circuit. The PLA circuit is quite
versatile. All the product-term expressions generated at the outputs of the AND array are shared
by all the ORs in the OR array just like the minterm expressions are shared in a PROM circuit.
 Notice that the PLA circuit has two arrays that must be programmed compared to only one
array for the PROM circuit. Two fuse maps must be generated for a PLA circuit.

8.2.3 PALs or GALs
Figure 8.5 shows a PAL simplified circuit representation with just 3 inputs and 2 outputs. The
PAL or GAL circuit in Figure 8.5 consists of four 6-input AND gates and two 2-input OR gates.

A

F1 F2 F3

p
1

p
2

p
3

p
4

p
5

B C

Inputs
(3 in this case)

Outputs
(3 in this case)

AND array
connections
are programmable

OR array connections
are programmable

FIGURE 8.4 PLA simpli-
fied circuit representation

214 Chapter 8 Circuit Implementation Techniques

 Like the PLA circuit, increasing the number of inputs for the PAL circuit does not cause the
AND array to double in size for each additional input as it does for the PROM circuit.
 When PALs were first introduced, they became the programmable device workhorse of
the industry for small designs because of their lower cost, higher speed, and ease of use. When
several PALs or GALs are included on the same chip or several PLAs are included on the
same chip, industry refers to theses devices as CPLDs (complex programmable logic devices).
Today, the programmable device workhorses are CPLDs (for small to medium-size designs) and
FPGAs (for medium- to very large-size designs).
 In the PAL circuit in Figure 8.5, there is no product-term expression sharing because each
AND gate output cannot be used by more than one OR gate input. This is the only drawback of
the PAL compared to the PLA which has product-term expression sharing.
 One might ask, “Why use PLDs to design circuits when you can always build circuits in
gate form?” It is desirable to use programmable devices for the following reasons: (1) to shorten
design time—PLD designs provide rapid prototyping because fuses serve as connections or
no connections based on the fuse map, making all manual wiring of the gates unnecessary;
(2) to allow rapid design changes—changing the fuse map or fuse connections changes the PLD
design; (3) to decrease PC board real estate—PLD designs in a single package are less costly
and bulky than multiple packages for gate-level designs; and (4) to improve reliability—PLD
designs require fewer packages and thus fewer interconnections. The first two items in the list
are the most important for students. They provide rapid prototyping and allow rapid design
change.

8.2.4 Designing with PROMs or LUTs
The design techniques we present here are automated and, therefore, are provided automatically
by manufactures’ software. Our designs simply illustrate what a software program must do
when programming a device.
 Table 8.2 shows the truth table for a NOT function, an OR function, a NAND function, and
an XOR function.

A

F1

F2

p
1

p
2

p
3

p
4

B C

Inputs
(3 in this case)

Outputs
(2 in this case)

AND array
connections
are programmable

OR array
connections
are fixed

FIGURE 8.5 PAL or
GAL simplified circuit
representation

A B F1 F2 F3 F4

0 0 1 0 1 0

0 1 1 1 1 1

1 0 0 1 1 1

1 1 0 1 0 0

TABLE 8.2 Truth

table for a NOT function,

an OR function, a NAND

function, and an XOR

function

www.itpub.net

 8.2 Programmable Logic Devices 215

 In Figure 8.6, observe that F1(A,B) 5 Sm(0,1), F2(A,B) 5 Sm(1,2,3), F3(A,B) 5 Sm(0,1,2),
and F4(A,B) 5 Sm(1,2).
 Because a PROM or LUT has a decoder front end that generates all the minterms for each
of the functions, think of the inputs to a PROM or LUT as an address and its outputs as data at
each address. A 1 in each column of a function in the table represents a fuse connection that has
not been blown (an intact fuse). A 0 in each column of a function in the table represents a fuse
connection that has been blown (a blown fuse). Given the circuit for a PROM or LUT without the
fuses, we can rapidly draw the intact fuses as shown in Figure 8.6. A universal programmer does
just the opposite because it actually blows the fuses where the connections need to be removed
because each new device comes with all fuses intact.
 The fuse map consists of the addresses 00B, 01B, 10B, 11B (where the B stands for binary).
Addresses can also be represented in decimal, octal, or hexadecimal. The corresponding
data listed in binary are 1010B, 1111B, 0111B, and 0100B, respectively. In hexadecimal, the
ADDRESS and DATA are listed in Table 8.3.

 Figure 8.6 shows how the functions in Table 8.2 are implements with a PROM or a LUT.

A

AB = 00 1 0 1 0

1 1 1 1

0 1 1 1

0 1 0 0

AB = 01

AB = 10

AB = 11

F1 F2 F3 F4

m
0

m
1

m
2

m
3

B

Fixed
connections
(address)

Programmed
connections
(data)

FIGURE 8.6 Implementation for a NOT
function, an OR function, a NAND function,
and an XOR function with a PROM or LUT

 To change the fuse map we simply need to change the data for the PROM or LUT. If we
decide later to complement input B rather than input A for function F1, then the address and data
sequence would be changed to address (data) as follows: 0(A), 1(7), 2(F), 3(4). This is a small
change (software change) to the fuse map that initiates a hardware change (reprogramming of
fuses) inside the device.

8.2.5 Designing with PLAs
A PLA requires two fuse maps to implement a function. One fuse map is for the AND array
connections and a different fuse map is for the OR array connections. Because there is a fuse

ADDRESS
(Hexidecimal)

DATA
(Hexidecimal)

0 A

1 F

2 7

3 4

TABLE 8.3 Hexadecimal

listing of the address and

data for the PROM or LUT

implementation shown in

Figure 8.6

216 Chapter 8 Circuit Implementation Techniques

 PLA implementations are usually made by software designed to allow product-term expres-
sion sharing to occur. Notice in the K-maps in Figure 8.8 that the product-term expressions are
chosen for the AND array connections and then shared in the OR array connections.

x x x

x

x x

x x x x

x x x

A B

Programmed
connections

Programmed
connections

F1 F2 F3 F4

p1 = A
-

p3 = A

p2 = A
-

p4 = A⋅B
-

⋅B

FIGURE 8.7 Implementation for a NOT
function, an OR function, a NAND function,
and an XOR function with a PLA

8.2.6 Designing with PALs or GALs
The circuit for a PAL or GAL has a programmable AND array and a fixed OR array. As a result,
only one fuse map is required for the AND array. To use a minimum number of gates on the
chip, functions are generally minimized prior to creating the fuse map. To create the fuse map,
the NOT, OR, NAND, and XOR functions in Table 8.2 are written in the following minimized
forms:

F1 5 A , F2 5 A 1 B, F3 5 A 1 B, and F4 5 A #B 1 A #B

 Figure 8.9 shows how the functions in Table 8.2 are implemented with a PAL or GAL. To pro-
vide a product term of 0, we simply keep all fuses intact (not blown) in the AND array connections.

A
0 1

0
0

1 3

2
0

01

1

1

F1(A,B) F2(A,B) F3(A,B) F4(A,B)

NOT function OR function NAND function XOR function

B
A

B
A

B
A

B

e1 = A
-

e2 = A e4 = A⋅B
-

e4 = A⋅B
-

F1 = e1 = A
-

0 1

0
0

1 3

2
1

11

0

1

e3 = A
-

F2 = e2 + e3

= A + A
-

⋅B

= A + B

= A⋅B

0 1

0
0

1 3

2
1

01

1

1

e1 = A
-

F3 = e1 + e4

= A
-

 + A⋅B
-

= A
-

 + B
-

= A ⊕ B

0 1

0
0

1 3

2
1

01

0

1

e3 = A
-

F4 = e3 + e4

= A
-

⋅B + A⋅B
-

⋅B ⋅B

FIGURE 8.8 Product-term
expression sharing for PLA
implementation

map for the OR array, product-term expressions are shared. Figure 8.7 shows how the functions
in Table 8.2 can be implements with a PLA.

www.itpub.net

 8.3 Positive Logic Convention and Direct Polarity Indication 217

 With these examples in mind, you should be able to create a fuse map for any type of PLD
to implement Boolean functions.

8.3 POSITIVE LOGIC CONVENTION AND DIRECT
POLARITY INDICATION

Up until now we have only used logic symbols and signal names that correspond to the positive
logic convention (PLC) system. Only positive logic signals are used in the PLC system. In the
PLC system, the logic level H represents the logic state of 1 and the logic level L represents the
logic state of 0, or H 5 1 and L 5 0.
 Some books and data sheets provided by manufacturers use a different signal naming
notation and logic symbol notation. This system is referred to as the direct polarity indication
(DPI) system. In the DPI system, each signal name is assigned a suffix of either H or L to indi-
cate the logic convention chosen for the signal name. These signal names are called polarized
signals. A suffix with H indicates a positive logic signal, while a suffix with L indicates a nega-
tive logic signal. Both positive logic signals and negative logic signals exist in the DPI system.
For negative logic signals, L 5 1 and H 5 0.
 Engineers who prefer to work with 1s and 0s usually choose the PLC system while those
who prefer to work with voltage levels usually choose the DPI system. We prefer to work with
1s and 0s and therefore have chosen to use the PLC system throughout this text, except in this
section of the text.
 Knowledge of both the PLC system and the DPI system will provide you with a better
understanding when reading technical literature or when conversing with other engineers who
use the DPI system.

8.3.1 Signal Names
Polarized signals have two parts, the expression part and the suffix part. In the polarized
signal name X(H), the expression part is X and the suffix part is H. In the polarized signal name

A

B

A

B

F1

Fixed
connections

Programmed
connections

F2

F3

F4

0

A
-

A
-

 B
-

 A
-

A⋅B
-

A⋅B

FIGURE 8.9
Implementation for the
NOT, OR, NAND, and
XOR functions with a
PAL or GAL

218 Chapter 8 Circuit Implementation Techniques

Y 1H 2 , the expression part is Y and the suffix part is H. In the polarized signal name A?B(L) the
expression part is A?B and the suffix part is L.
 Table 8.4 shows a summary of the signals used in the PLC system and in the DPI system.

TABLE 8.4 Summary of the signals used in the PLC system

and in the DPI system

Signal name in the PLC system Equivalent polarized signal name in the DPI system

X 5 X(H) X 1H 2 5 X 1L 2

Y 5 Y 1H 2 Y 1H 2 5 Y 1L 2

A #B 5 A #B 1H 2 A #B 1H 2 5 A #B 1L 2

 Double complementation can be used to obtain equivalent signal names for polarized sig-
nals in the DPI system as follows:

X 1H 2 5 X 1H 2
1

2

5 X
1
1H 2

2
5 X 1L 2

Y 1H 2 5 Y 1H 2
1

2

5 Y
1

1H 2
2

5 Y 1L 2

A #B 1H 2 5 A #B 1H 2
1

2

5 A #B
1

1H 2
2

5 A #B 1L 2

 There is a slight difference in graphics notation for each system. The PLC system uses a
bubble or negation symbol in a circuit to indicate complementation. The presence or absence
of a bubble in the PLC system is a negation indicator.
 The DPI system uses a wedge or polarity symbol in a circuit. If a wedge or polarity symbol
is present at an input or output, that input or output is active low. If a wedge or polarity symbol
is not present at an input or output, that input or output is active high. The presence or absence
of a wedge in the DPI system is a polarity indicator.

8.3.2 Analyzing Equivalent Circuits for the PLC and the DPI Systems
Figure 8.10 shows a circuit using the PLC system in NAND/NAND form.

 Things you should notice about the circuit in Figure 8.10:

• The circuit is drawn using the PLC system.
• Signals A and D are normal signals, while signals B and C are complemented signals. Sig-

nal F is a normal signal.
• Negation indicators matching along internal signal lines are not important.

 The Boolean function for the circuit in Figure 8.10 is F 5 A?B 1 C?D. A simple way to
specify the available signals that are applied to the inputs in the circuit and the available signal

A

C
-

D

F

PLC

 B
-

FIGURE 8.10 Circuit
using the PLC system in
NAND/NAND form

www.itpub.net

 8.3 Positive Logic Convention and Direct Polarity Indication 219

at the output of the circuit is by a list called the signal list (SL). The signal list for the circuit
in Figure 8.10 is SL: A,B,C,D,F. Combining the Boolean function and the signal list provide a
complete description of the circuit in Figure 8.10 as F 5 A?B 1 C?D; SL: A, B,C,D,F.
 You can convert a circuit drawn in the PLC system to the DPI system by simply changing
all bubbles to wedges. You must also write the equivalent polarized signals at the inputs and
output of the circuit. Polarity/indicator (P/I) matching at the beginning and ending of each
internal signal line is sometimes recommended. This is helpful but not really necessary.
 Figure 8.11 shows the same circuit in Figure 8.10 using the DPI system in NAND/NAND
form. Equivalent signal names for the inputs and the outputs are shown in the circuit in
Figure 8.11, and we have provided polarity/indicator (P/I) matching for this example.

 Figure 8.12 shows how we obtain the Boolean function for the circuit in Figure 8.11.

A(H)

F(H)

B(L)

C(L)
D(H) DPI

Internal signal line
with matched polarity
indicators, i.e., with wedges

Internal signal line
with matched polarity
indicators, i.e., no wedges

FIGURE 8.11 Circuit
using the DPI system in
NAND/NAND form

 The Boolean function for the circuit in Figure 8.12 is F(H) 5 A?B 1 C?D(H) and the signal
list is SL: A(H), B(L), C(L), D(H), F(H).
 To analyze the circuit in Figure 8.12 and obtain its Boolean function, we used a con-
cept called signal/indicator (S/I) matching. S/I matching exists throughout the circuit in
Figure 8.12, which made it easy to analyze. This was done on purpose. If the polarity indicator
on a logic line contains a wedge or polarity symbol, a signal with the suffix (L) is required to
provide an S/I match. If the polarity indicator on a logic line does not contain a wedge or polar-
ity symbol, a signal with the suffix (H) is required to provide an S/I match. If a signal’s suffix
on a logic line does not match the polarity indicator on that logic line, then there is a mismatch.
To analyze a circuit, S/I matching should be provided throughout the circuit (as it does in
Figure 8.12). To provide a match, if one does not occur, simply use the equivalent polarized
signal name to obtain a match of the suffix with the polarity indicator. After matching all the
suffixes with the polarity indicators in the circuit, the Boolean function for the circuit is simply
written using the expression parts of the polarized signal names.
 Figure 8.13 shows a circuit using DPI. Observe in this example that polarity/indicator (P/I)
matching does not occur on the signal line between the output of the OR gate, which does not
contain a wedge, and the input to the AND gate, which does have a wedge.

A(H) A⋅B(L)

A⋅B + C⋅D(H)

C⋅D(L)

B(H)

C(H)
F(H)

B(L)

C(L)
D(H)

FIGURE 8.12
Obtaining the
Boolean function
for the circuit in
Figure 8.11

220 Chapter 8 Circuit Implementation Techniques

 To analyze the circuit, first provide signal/indicator (S/I) matching on all the inputs and
outputs in the circuit. Figure 8.14 shows the circuit in Figure 8.13 with S/I matching at the inputs
and output of the circuit.

A(L)

F(H)

DPI

B(H)

C(L)

FIGURE 8.13 Circuit
using DPI

 Next, write the Boolean signals throughout the circuit using S/I matching. The key to
analyzing a circuit in the DPI system is to mentally think of (or write down) the required polar-
ized signals to obtain S/I matching on each signal line throughout the circuit, as shown in
Figure 8.15.

(H)

F(H)

DPI

B(H)

C
-

(H)

A
-FIGURE 8.14

Circuit using DPI
with S/I matching at
the inputs and out-
put of the circuit

 The Boolean function for the circuit in Figure 8.15 is F1H 2 5 A #B #C 1H 2 . The signal list
for the circuit is SL: A(L), B(H), C(L), F(H). Notice that all of the signals in the signal list are
written in their simplest form—that is, as noncomplemented polarized signals.
 To check our analysis, let’s convert the circuit in Figure 8.13 that uses the DPI system to a
circuit that uses the PLC system. You can convert a circuit drawn in the DPI system to the PLC
system by simply changing all wedges to bubbles. You must also write the equivalent positive
logic signals at the inputs and output of the circuit. Matching or not matching negation indica-
tors is not important in the PLC system. Equivalent signal names for the inputs and the outputs
are shown in the circuit in Figure 8.16 in the PLC system.

A
-

 (H)

A
-

 + B(H)

F(H)

DPI

B(H)

C
-

(H)

= A
-

 + B(L)

(A
-

 + B)⋅C
-

(H)

= (A⋅B
-

)⋅C
-

(H)

= A⋅B
-

⋅C
-

(H)

C
-

(L)

FIGURE 8.15 Circuit
using DPI with S/I
matching throughout
the circuit and the
resulting Boolean
signals for the circuit

A
-

F

PLC

B

C
- C

A
-

 + B⋅C
-

A
-

 + B

= (A⋅B
-

)⋅C
-

= A⋅B
-

⋅C
-

FIGURE 8.16
Circuit using PLC in
Figure 8.13 drawn
using PLC system

www.itpub.net

 8.4 More about MUXs and DMUXs 221

 The Boolean function for the circuit in Figure 8.16 is F 5 A #B #C. The signal list for the
circuit is SL: A,B,C,F. Observe that the Boolean functions and the signal lists that we obtained
for the circuits in Figure 8.13 and Figure 8.16 are equivalent.
 If you read a book or a data sheet that uses the DPI system you should know how to analyze
the circuit. Given a circuit in the DPI system, we prefer to convert the circuit to the PLC system
and then analyze the circuit in the PLC system.

8.4 MORE ABOUT MUXS AND DMUXS

Sometimes it is important to know how to design a circuit that reduces the number of signal
lines when routing signals from one location (the source) to another location (the destination).
Figure 8.17 shows a data transmission routing scheme for this type of application that uses
an 8-to-1 MUX (multiplexer) and a 3-to-8 DMUX (demultiplexer). Remember that a demul-
tiplexer is a decoder with an enable input. At any one time for this data transmission routing
scheme, only one data source (DS) signal gets routed to a data destination (DD) signal at the
output; DSi effectively gets routed to DDi, for i 5 0 to 7. This circuit provides a form of time-
division multiplexing.

 This type of data transmission routing scheme can be used across an IC (integrated circuit),
across a PC (printed circuit) board, or even across an office or a longer distance to reduce the
number of signal lines from the source to the destination. In Figure 8.17, only four signal lines
(MUX_OUT, S2, S1, and S0) are required, rather than eight signal lines (DS7 down to DS0).
 Listing 8.1 (on the next page) shows a complete VHDL design for the data transmission
routing scheme (DTRS) using MUX and DMUX circuits as shown in Figure 8.17.
 Things you should notice about the VHDL design in Listing 8.1:

• Vector notation was used for the inputs to provide less typing when writing the VHDL
code.

• Internal signal MUX_OUT is placed in the entity with mode inout so it will be shown in the
simulation.

• Because a CSA and a process were used in the architecture of the design, we called this a
mixed design style.

• A concatenation operator was use in the if statement to form the signal S&MUX_OUT,
which consist of 4 bits—that is, the 4 bits required for the inputs to the DMUX circuit.

 Waveform 8.1 shows the simulation with the correct functionality of design entity DTRS.

Source
Reduced number of
signal lines from a
source to a destination

MUX_OUT

MUX
DS0
DS1
DS2

S0S1S2

DS3
DS4
DS5
DS6
DS7

0
1
2

0
1

2012

S
3
4
5
6
7

0
1
2
3
4
5
6
7

DD0
DD1
DD2
DD3
DD4
DD5
DD6
DD7

DMUX

EN

Destination FIGURE 8.17 Data transmission
routing scheme using MUX and
DMUX circuits

222 Chapter 8 Circuit Implementation Techniques

 Things you should notice about the Waveforms in Waveform 8.1:

• All the vector signals are displayed in hexadecimal values.
• Observe that signal ds[i] effectively gets routed to the output signal dd[i] for i 5 0 to 7, for

each value of the select input s when mux_out 5 1. When mux_out 5 0, output signal dd[i]
5 00 for i 5 0 to 7, for each value of the select input s.

• The simulation was not an exhaustive simulation run, but it does show that the data trans-
mission routing scheme is correct for the selected inputs.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DTRS is port (
 ds : in std_logic_vector(7 downto 0);
 s : in std_logic_vector(2 downto 0);
 mux_out : inout std_logic;
 dd : out std_logic_vector(7 downto 0)
);
end DTRS;

architecture Mixed of DTRS is
begin
 mux_out ,5 ds(0) when s ,5 “000” else
 ds(1) when s ,5 “001” else
 ds(2) when s ,5 “010” else
 ds(3) when s ,5 “011” else
 ds(4) when s ,5 “100” else
 ds(5) when s ,5 “101” else
 ds(6) when s ,5 “110” else
 ds(7);

process (s,mux_out)
begin
 if s&mux_out 5 “0001” then dd ,5 “00000001”;
 elsif s&mux_out 5 “0011” then dd ,5 “00000010”;
 elsif s&mux_out 5 “0101” then dd ,5 “00000100”;
 elsif s&mux_out 5 “0111” then dd ,5 “00001000”;
 elsif s&mux_out 5 “1001” then dd ,5 “00010000”;
 elsif s&mux_out 5 “1011” then dd ,5 “00100000”;
 elsif s&mux_out 5 “1101” then dd ,5 “01000000”;
 elsif s&mux_out 5 “1111” then dd ,5 “10000000”;
 else dd ,5 “00000000”;
 end if;
end process;
end Mixed;

LISTING 8.1
Complete VHDL
design for a data
transmission rout-
ing scheme (project:
DTRS)

+

+

+

+

01 01

10 2 3 4 5 6 7 10 2 3 4 5 6 7 0 1 2

02 04 08 10 20 40 80 fe fd fb f7 ef df bf 7f ff fe

01 02 04 08 10 20 40 80 00 0001 02

00ds(7:0)

1mux_out

dd(7:0)

s(2:0)

01

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns 1,000 ns

WAVEFORM 8.1 Simulation with the correct functionality of design entity DTRS

www.itpub.net

 8.4 More about MUXs and DMUXs 223

 It is also important in some cases to be able to design larger MUXs and DMUXs. The fol-
lowing sections cover an introduction to designing MUX trees and DMUX trees via a modular
design technique.

8.4.1 Designing MUX Trees
Figure 8.18 shows a design for a 4-to-1 MUX tree that uses three 2-to-1 MUXs to form the tree.
The 4-to-1 MUX tree is equivalent to a 4-to-1 MUX with data inputs D3:D0—that is, D3, D2,
D1, D0, select inputs A(MSB), B(LSB), and output F.

 Larger MUX trees can be also be designed using this modular design technique.
 The propagation delay time for the signal to propagate through this MUX tree is twice the
propagation delay time as a single MUX design that performs the same function. This is the
disadvantage of a MUX tree design. In general, you should only design a MUX tree when you
can’t find a MUX for your design requirement or when your design tools do not provide a MUX
that is large enough for your design requirement.

8.4.2 Designing DMUX Trees
Figure 8.19 shows a gate-level circuit for a 1-to-2 DMUX with its corresponding logic symbol.

≡
F

A B

S

Select inputs

F

A

B

B

D0

D1

D2

D3

D0

D1

D2

D3

0

1

0

1

0

1

0

1

01

2

3

FIGURE 8.18 4-to-1 MUX tree using
three 2-to-1 MUXs

 The modular design technique for designing a DMUX tree is very similar to the design
technique for designing MUX trees.
 Figure 8.20 shows a 2-to-4 DMUX tree using three 1-to-2 DMUXs to form the tree. The
2-to-4 DMUX tree is equivalent to a 2-to-4 DMUX with input DS (data source), select inputs
A(MSB), B(LSB), and outputs D3:D0—that is, D3, D2, D1, D0.

A

A
(a) (b)

D0

D1

DS

DS EN D0

D1

0
0 1

FIGURE 8.19 1-to-2 DMUX: (a) gate-level
circuit; (b) logic symbol

B

A
D0
D1
D2
D3

DS DS

EN

EN

D0

D1

0
0 1

0
1
2
3

0
1

B

B

EN D2

D3

0
0 1

EN 0
0

Select inputs

A
≡1

FIGURE 8.20 2-to-4
DMUX tree using three
1-to-2 DMUXs

224 Chapter 8 Circuit Implementation Techniques

 Larger DMUX trees can be also be designed using this modular design technique.
 The propagation delay time for the signal to propagate through this DMUX tree is twice the
propagation delay time as a single DMUX design that performs the same function. This is the
disadvantage of a DMUX tree design. In general, you should only design a DMUX tree when
you can’t find a DMUX for your design requirement or when your design tools do not provide a
DMUX that is large enough for your design requirement.

correct intact fuse connections with 3s—that is, provide
the fuse map connections, for (a) an XNOR function
using inputs Y and Z for F1; (b) an odd number of 1s
function using inputs X, Y, and Z for F2; and (c) an OR
function using inputs X, Y, and Z for F3. Observe that the
simple PAL has active low outputs—that is, the outputs
of the OR gates are inverted.

Section 8.2 Programmable Logic Devices
 8.1 Which gate form of architecture does a PLD have?

Can equations written in POS form directly fi t into this
architecture?

 8.2 What PLD has programmable AND array connections
and also programmable OR array connections? Discuss
the advantages and disadvantages of having two pro-
grammable array connections.

 8.3 When several PLDs are included on the same chip, the
resulting device is called a CPLD. What types of PLDs
are used to make a CPLD?

 8.4 Describe the form of the equations that can be fi t into a
PAL or GAL. (Hint: Equations are in the form of sum of
products or in the form of product of sums.)

 8.5 Use the same PROM architecture shown in Figure P8.5
to design a circuit for the following functions. Show the
correct intact fuse connections with 3s—that is, provide
the fuse map connections, for (a) an XOR function using
inputs X and Z for F1; (b) a majority of 0s function using
inputs X, Y, and Z for F2; and (c) an AND function using
inputs X, Y, and Z for F3.

PROBLEMS

FIGURE P8.5
F1

X Y Z

XYZ = 000

XYZ = 001

XYZ = 010

XYZ = 011

XYZ = 100

XYZ = 101

XYZ = 110

XYZ = 111

F2 F3

Fixed
connections
(address)

Programmed
connections
(data)

 8.6 Design a circuit for the following functions using the
small PAL in Figure P8.6. Only equations for the 0s of
functions can be implemented with this PAL. Show the

FIGURE P8.6

F1

X Y Z

F2

F3

Fixed
connections

Programmed
connections

 8.7 Show a design for the following Boolean functions using
the simple 4-input, 4-output PAL shown in Figure P8.7.
Observe that the simple PAL has active high outputs—
that is, the outputs of the OR gates are not inverted.

F1(A,B,C,D) 5 Sm(6,7,9,11,12,13)

F2(A,B,C,D) 5 Sm(0,2,3,4,5,10,11,13,15)

F3(A,B,C,D) 5 Sm(2,3,6,7,10,11,14,15)

www.itpub.net

 Problems 225

OR gate output. Which type of equation must have an
inverter added at the output of the OR gate (an equation
for the 1s of the function or for the 0s of the function)?
Provide an example that supports your answer.

 8.10 Which type of output (inverted or noninverted) is
required when implementing a function for its 0s in a
PAL? Show why, using a simple example.

 8.11 Which type of output (inverted or noninverted) is
required when implementing a function for its 1s in a
PAL? Use a simple example to show your reasoning.

Section 8.3 Positive Logic Convention and Direct
Polarity Indication
 8.12 Only positive logic signals are used in the PLC system.

True or False?
 8.13 What do the logic levels H and L represent in the PLC

system?
 8.14 Both positive logic signals and negative logic signals

exist in the DPI system. True or False?
 8.15 What is a signal name called that is written with a suffi x

of either H or L?
 8.16 What type of signal in the DPI system is written with the

suffi x H? Defi ne H and L.
 8.17 What type of signal in the DPI system is written with the

suffi x L? Defi ne L and H.
 8.18 Name the two parts of a polarized signal.
 8.19 Use double complementation to obtain the equivalent

signal names for the following polarized signals:
 a. A(L)
 b. A 1 B(H)
 c. C?D(L)
 d. A #B 1 C 1H 2

 8.20 What symbol is used as the negation indicator in the
PLC system in a circuit?

 8.21 What symbol is used as the polarity indicator in the DPI
system in a circuit? What does a wedge or polarity sym-
bol represent in a circuit?

 8.22 When a wedge or polarity symbol is not present in the
DPI system in a circuit, what does that represent?

 8.23 Convert the circuit in Figure P8.23 into a circuit in the
DPI system. Use polarized signals for the DPI system.
Analyze the converted circuit to obtain its function and
its corresponding signal list.

 8.8 Repeat problem 8.7 using the simple 4-input, 4-output
PAL shown in Figure P8.8. Observe that the simple PAL
has active low outputs—that is, the outputs of the OR
gates are inverted. (Hint: Use 0s of functions.)

FIGURE P8.7
F1

A B C D

F2 F3 F4

FIGURE P8.8

F1

A B C D

F2 F3 F4

 8.9 PALs are available today that have the capability to pro-
gram the polarity of the output. This means that the soft-
ware can choose to add or not to add an inverter on each

FIGURE P8.23

F

A

B
-

C

D
-

226 Chapter 8 Circuit Implementation Techniques

Section 8.4 More about MUXs and DMUXs
 8.28 Draw a data transmission scheme to reduce the number

of signal lines from 16 down to 5 for data that must be
moved from one side of a PC board to the other side of
the board. (Hint: Show the circuit that uses a 16-to-1
MUX and a 4-to-16 DMUX to provide the data trans-
mission scheme.)

 8.29 Describe the difference between a decoder and a
demultiplexer.

 8.30 Draw and label the circuit for an 8-to-1 MUX tree design
that uses two 4-to-1 MUXs and one 2-to-1 MUX. Make
the data inputs D7:D0; the select inputs X(MSB), Y,
Z(LSB); and the output F. (Hint: Use the modular design
technique discussed in the book.)

 8.31 Draw and label the circuit for an 8-to-1 MUX tree design
that uses four 2-to-1 MUXs and one 4-to-1 MUX. Make
the data inputs D7:D0; the select inputs X(MSB), Y,
Z(LSB); and the output F. (Hint: Use the modular design
technique discussed in the book.)

 8.32 Draw and label the circuit for a 16-to-1 MUX tree design
that uses two 8-to-1 MUXs and one 2-to-1 MUX. Make
the data inputs D16:D0; the select inputs W(MSB), X, Y,
Z(LSB); and the output F. (Hint: Use the modular design
technique discussed in the book.)

 8.33 Draw and label the circuit for a 3-to-8 DMUX tree
design that uses one 1-to-2 DMUX and two 2-to-4
DMUXs. Make the input DS; the select inputs X(MSB),
Y, Z(LSB); and the outputs D7:D0. (Hint: Use the modu-
lar design technique discussed in the book.)

 8.34 Draw and label the circuit for a 3-to-8 DMUX tree
design that uses one 2-to-4 DMUX and four 1-to-2
DMUXs. Make the input DS; the select inputs X(MSB),
Y, Z(LSB); and the outputs D7:D0. (Hint: Use the modu-
lar design technique discussed in the book.)

 8.35 Draw and label the circuit for a 4-to-16 DMUX tree
design that uses one 1-to-2 DMUX and two 3-to-8
DMUXs. Make the input DS; the select inputs W(MSB),
X, Y, Z(LSB); and the outputs D15:D0. (Hint: Use the
modular design technique discussed in the book.)

 8.24 Convert the circuit in Figure P8.24 into a circuit in the
DPI system. Use polarized signals for the DPI system.
Analyze the converted circuit to obtain its function and
its corresponding signal list.

F

A0

B0

A1

B1

FIGURE P8.24

 8.25 Convert the circuit in Figure P8.25 into a circuit in the
DPI system. Use polarized signals for the DPI system.
Analyze the converted circuit to obtain its function and
its corresponding signal list.

FIGURE P8.25

Q
S

R

 8.26 Convert the circuit in Figure P8.26 into a circuit in the
PLC system. Write the signals for the circuit using the
PLC system. Analyze the converted circuit to obtain its
function and its corresponding signal list.

FIGURE P8.26

F(L)

X(L)

W(H)

Y(H)

Z
-

(H)

 8.27 Convert the circuit in Figure P8.27 into a circuit in the
PLC system. Write the signals for the circuit using the
PLC system. Analyze the converted circuit to obtain its
function and its corresponding signal list.

FIGURE P8.27

F(H)

B(H)

D(H)

A(L)

C(L)

www.itpub.net

C h aa p t e rr

Complex Finite State Machine
Design with VHDL

Chapter Outline

 9.1 Introduction 227

 9.2 Designing with the Two-Process PS/NS Method 228

 9.3 Explanation of CPLDs and FPGAs and State Machine Encoding Styles 231

 9.4 Summary of Finite State Machine Models 234

 9.5 Designing Compact Encoded State Machines with Moore Outputs 235

 9.6 Designing One-Hot Encoded State Machines with Moore Outputs 237

 9.7 Designing Compact Encoded State Machines with Moore and Mealy Outputs 241

 9.8 Designing One-Hot Encoded State Machines with Moore and Mealy Outputs 243

 9.9 Using the Algorithmic Equation Method to Design Complex State Machines 245

 9.10 Improving the Reliability of Complex State Machine Designs 251

 9.11 Additional State Machine Design Methods 255

 Problems 262

9.1 INTRODUCTION

In this chapter, you will learn how to apply VHDL to design complex finite state machines
(CFSMs) with the two-process PS/NS method. Our definition of a complex finite state
machine is a state machine that has external inputs to change the state sequence, excluding the
SET, RESET, and INITIALIZE inputs. The following description is an example of a complex
state machine: If a state sequence requires a binary up counter at one time and a binary down
counter at a different time, then an external input called UP can be included in the design to
allow switching between the two state sequences. Complex finite state machines, or complex
state machines (CSMs), and simple state machines are sometimes called controllers, because
they are often used to control other circuits. In addition to flip-flop outputs, Moore and Mealy
outputs are presented for complex state machines.
 Synchronizers are introduced to improve the reliability of complex state machines. To
complete our the discussion, we present two additional state machine design methods: the two-
assignment PS/NS method and the hybrid PS/SN method. You can implement and download the
last complex state machine design example, to observe it working in hardware, if you so desire.

rr 9

227

228 Chapter 9 Complex Finite State Machine Design with VHDL

9.2 DESIGNING WITH THE TWO-PROCESS PS/NS METHOD

Throughout this chapter, we will place our emphasis on designing complex state machines that
are driven by a clock—that is, synchronous or clock mode digital circuits. The two-process
PS/NS method is very versatile and can be used to design either simple or complex state
machines. When you use this method, you do not have to obtain the excitation equations and
draw the circuit. You simply use the method and let the VHDL software do the work. You can
always observe the circuit that is produced using either View RTL Schematic or View Technol-
ogy Schematic if you are using Xilinx software. Other software vendors have a similar option
to allow you to view the resulting schematic.
 Figure 9.1 shows a circuit model for the two-process PS/NS method. The two-process
PS/NS method uses a behavioral design style with two processes. The first process is called
the synchronous process (sync_proc), and the second process is called the combinational pro-
cess (comb_proc). The synchronous process generates D flip-flops for the design, while the
combinational process decodes the next-state (NS) functions for the D flip-flop inputs and also
provides the flip-flop outputs as shown in Figure 9.1.

 A SET, RST, or INIT input is not shown for the flip-flops in Figure 9.1, because this state
machine model may be designed with a SET input, a RST input, or INIT input—that is, the
required input is provided in the design specification.
 The synchronous process generates the D flip-flops for the state machine design and the
following signals:

 1. The present-state (PS) value after SET, RESET, or INITIALIZATION (a SET, RST, or INIT
input is not shown in Figure 9.1).

 2. The present-state (PS) value after the next rising edge (or falling edge) of the clock—that is,
the value of the next state, or PS ,5 NS.

 The combinational process generates the following signals:

 1. The next-state (NS) value—that is, the decoded next state functions—based on the present-
state (PS) value and the external inputs (EIs) via the cloud of combinational logic.

 2. The flip-flop output values for Qs or Ys.
 3. The Moore and Mealy output values (covered later).

 The two-process PS/NS method requires less hardware understanding, but a more detailed
understanding of VHDL. The two-process PS/NS method is considered the preferred VHDL
coding style for complex state machine designs. By following this coding style, someone can
easily understand the code that you write, and you can understand someone else’s code.
 Figure 9.2 shows a complex state machine named binary up/down counter (2 bits) with
an external input UP that is used to change the state sequence. “State name” is shortened to
“Name” in Figure 9.2. The state names are a, b, c, and d.

DFFs
PSNS

D

CLK C

Q

External
inputs (EIs)

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

FIGURE 9.1 Circuit model for
the two-process PS/NS method

www.itpub.net

 9.2 Designing with the Two-Process PS/NS Method 229

 A complex state machine can be represented either as a state sequence diagram (or count-
ing sequence diagram) in tabular form or as an equivalent state diagram, as illustrated in
Figure 9.2. It is a good idea to obtain either a state sequence diagram or a state diagram for a
complex state machine design prior to writing the VHDL code for the complex state machine.
 The VHDL code for the binary up/down (BUD) counter in Figure 9.2 is shown in Listing
9.1 using the two-process PS/NS method. The two-process PS/NS method is a specific coding
style. Other coding styles are possible, but we will predominantly use this coding style for com-
plex state machine designs.

≡

Name
Q1 Q2

Legend

 EIa
00

d
11

c
10

b
01

UP

UP

UP
UP

UP

UP

UP

UP
UP

UP

UP

UP

RST
(asyn)

RST
(asyn)

Name, Q1 Q0
0
1
0
1

0
0

1
1

a,
b,
c,
d,

UP

UP

UP

UP

State diagramState sequence diagram

FIGURE 9.2 State
sequence diagram in
tabular form and equiva-
lent state diagram for
binary up/down counter
(2 bits)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity BUD_counter is port (
 rst,clk, up : in std_logic;
 q : out std_logic_vector (1 downto 0)
);
end BUD_counter;
architecture behavioral of BUD_counter is
 type state_type is (a,b,c,d);
 signal ps, ns: state_type;
begin

sync_proc:
process (rst,clk)
begin
 if rst 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;

comb_proc:
process (ps,up)
begin
 case ps is
 when a .5 q ,5 “00”; if up 5 ‘1’ then ns ,5 b;
 else ns ,5 d;
 end if;
 when b .5 q ,5 “01”; if up 5 ‘1’ then ns ,5 c;
 else ns ,5 a;
 end if;

LISTING 9.1
Complete VHDL
design entity for
BUD_counter (proj-
ect: BUD_counter)

(Continued)

230 Chapter 9 Complex Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 9.1:

• The flip-flop outputs Q(1) and Q(0) in the entity declaration are specified as a std_logic_
vector Q. This requires less writing to enter the flip-flop output values. The mode for Q is
out, because Q only needs to be written (assigned a value), but not read.

• An enumerated data type called state_type is used to define the states a through d. Using
an enumerated type removes the requirement of obtaining excitation equations for the
design. It also allows the state sequence to be easily changed—that is, from a binary up/
down counter to a binary Gray code up/down counter, or from one state sequence to any
other state sequence. The signals present state (PS) and next state (NS) are internal signals
and are declared to be of type state_type. The declaration for the type state_type and the
internal signals PS and NS must appear between architecture and the first begin. The sig-
nals PS and NS can only be assigned the values of state_type—that is, these values are a, b,
c, and d. The signal PS can also be assigned the signal NS because their types are the same.

• Only the inputs RST and CLK are required in the sensitivity list of the synchronous process
(sync_proc), because the process only generates D flip-flops, which are completely con-
trolled just by these two inputs.

• The synchronous process generates a clock-independent reset input that resets the state
machine to state a via PS ,5 a, which is the reset state. Recall that the reset input RST must
be placed before rising_edge (CLK) so that RST will be clock independent. The synchro-
nous process is also used to assign a new value to the present state—that is, the value of the
next state, or PS ,5 NS, after the next rising edge of the clock.

• Observe that the last else in the if statement in the synchronous process is inferred and
therefore is not present. The inference means that PS ,5 PS is implied between clock ticks,
so the flip-flop outputs maintain their current values until the next clock tick.

• The combinational process (comb_proc) contains all the inputs in its sensitivity list that
must be read—that is, (PS, UP), in the combinational process.

• The major statement (the first statement in this case) in the combinational process (comb_
proc) is the case statement with the select input PS. An if statement could be used as the
major statement, but this generally results in more logic gates because an if statement has
prioritized conditions, while a case statement only selects one condition; hence, a case
statement with the select input PS is preferred as the major statement rather than an if
statement.

• The combinational process (comb_proc) is used to assign the flip-flop outputs—that is, the
Q(1) and Q(0) outputs—and the next-state (NS) outputs based on the present state (PS) and
the synchronous external input UP. Therefore, the case statement (with accompanying if
statements) in the combinational process is written to precisely follow the description speci-
fied by the state sequence.

 when c .5 q ,5 “10”; if up 5 ‘1’ then ns ,5 d;
 else ns ,5 b;
 end if;
 when d .5 q ,5 “11”; if up 5 ‘1’ then ns ,5 a;
 else ns ,5 c;
 end if;
 end case;
end process;
end behavioral;

www.itpub.net

 9.3 Explanation of CPLDs and FPGAs and State Machine Encoding Styles 231

• Observe that a when others clause is not required as the last choice value in the case state-
ment because the data type of the select signal PS is state_type, and state_type only has the
values of a, b, c and d, and no other values.

• The order for listing the two processes is not important, because process statements in
VHDL execute concurrently.

 Each state in a state diagram has a distinct state name that is different from all other states
in the state diagram. In VHDL, state names can be defined using an enumerated data type as
shown in Listing 9.1 and repeated in the following clauses:

type state_type is (a,b,c,d);
signal PS, NS: state_type;

In the first clause, state_type (the name placed between type and is) is declared as an enumer-
ated data type, and the state names for state_type are listed as a, b, c, and d (these represent a set
of ordered values; i.e., the values have a default ordering beginning on the left and ending on the
right). The data types used the most in VHDL are std_logic and std_logic_vector. For our simple
examples, we did not name the states with intuitive or meaningful names. To use meaningful
state names, we could use reset instead of a, one instead of b, two instead of c, and three instead
of d. Using meaningful state names helps make our designs more readable and reusable.
 In the second clause, the signals PS and NS are declared to be of the type state_type. This
means that the signals PS and NS can only have the values that are assigned to state_type—that
is, a, b, c, and d, and no other values.
 Waveform 9.1 shows the correct functionality of design entity BUD_counter (binary up/
down counter, 2 bits) for Listing 9.1.

 The state of the counter is shown inside the waveform signal q(1:0) in Waveform 9.1.
 The counter starts in state 0 because the signal rst is asserted (rst 5 1). Pay attention to the
direction of the counting sequence provided by output q(1:0) in relationship to the signal up.
When rst is not asserted (rst 5 0), the counter begins counting up through the sequence (1, 2, 3,
0), because signal up is asserted (up 5 1). When up is not asserted (up 5 0), the counter begins
to count down through the sequence (3, 2, 1). When up is asserted again, the counter begins to
count up through the sequence (2, 3, 0, 1). When rst is asserted at the end of the simulation, the
counter goes to state 0.

9.3 EXPLANATION OF CPLDS AND FPGAS
AND STATE MACHINE ENCODING STYLES

Figure 9.3 shows a simplified representation of part of a CPLD (complex programmable logic
device).

+

+

+

+

+ 1rst

up
clk

q[1:0]

clk_period

1

0 0 1 2 3 0 3 2 1 2 3 0 1 0

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns WAVEFORM 9.1
Simulation for the correct
functionality of design
entity BUD_counter for
Listing 9.1

232 Chapter 9 Complex Finite State Machine Design with VHDL

 Notice in Figure 9.3 that there are a large number of inputs and a large number of gates to
provide the combinational logic for each D flip-flop. The interconnections are made via special
transistors that store a charge to allow the interconnections to remain when power is removed
and reapplied to the device. CPLDs of this type are classified as nonvolatile because the inter-
connections for a design remain when power is removed and reapplied. These special transistors
have a large area requirement and thus limit the amount of total logic gates and D flip-flops that
can be contained on the device chip.
 The advantage of CPLDs is their very low power requirements and their wide gating or
large number of input gates. This is provided at the expense of a small number of D flip-flops
compared to FPGAs with the same chip size.
 Figure 9.4 (on the facing page) shows a simplified representation of part of an FPGA (field
programmable gate array).
 Notice in Figure 9.4 that there are just a few inputs to provide the logic for each D flip-flop.
However, the circuit is replicated many, many times so there are a very large number of D flip-
flops. In the FPGA, the interconnections as well as the combinational logic (called LUTs or
look-up tables) are made via SRAM (static random-access memory). SRAM has a much smaller
area requirement and thus provides more space for D flip-flops compared to CPLDs with the
same chip size. Because interconnections are not maintained when power is removed and reap-
plied to the device, SRAM-type FPGAs are classified as volatile.
 To minimize the number of flip-flops required to implement a design, a compact encod-
ing style (or full encoding style) can be used. This type of encoding style is considered best for
CPLDs (complex programmable logic devices) that have a limited number of D flip-flops (or
registers) and usually have very fast predictable timing paths through the PLD. The relationship
2#FFs $ # States can be used to determine the minimum number of state variables or flip-flops

D Q

C

D Q

C

FIGURE 9.3
Simplified repre-
sentation of part
of a CPLD

www.itpub.net

 9.3 Explanation of CPLDs and FPGAs and State Machine Encoding Styles 233

(#FFs) required for a specified number of states (# States) for a compact encoded state machine.
The relationship can also be used to determine the number of states given the number of state
variables or flip-flops for a compact encoded state machine.
 A state machine that has a dedicated flip-flop for each state is one-hot encoded. The rela-
tionship for the required number of state variables or flip-flops and the number of states for a
one-hot encoded state machine is # FFs 5 # States. This type of encoding style is considered
best for FPGAs that have an abundance of D flip-flops (or are register rich). With one dedicated
flip-flop for each state, decoding logic is reduced for both the next-state functions and the output
functions, and this encoding style can increase performance compared to using a compact or
full encoding style for FPGAs.
 Compact-encoded state machines generally require a minimum number of flip-flops and
can require many gates. One-hot encoded state machines generally require a maximum number
of flip-flops and just a few gates. A compact encoding style was used in the design of the binary
counter in Chapter 6 and the binary up/down counter in Chapter 9, Figure 9.2, because only two
flip-flops were used for the four states. A one-hot encoding style was used in the design of the
one-hot counter in Chapter 6, because four flip-flops were used for the four states.
 CAD (computer-aided design) tools from manufactures such as Xilinx-, Synplify-, Exem-
plar-, Synopsys-, and others include different types of encoding styles such as Auto, Compact,
Sequential/binary, One-hot, Gray, Zero One-hot, Johnson, Two-hot, User, and Random.
These tools allow a user to specify an encoding style for the states of a state machine via a GUI
(graphical user interface) option provided by the tool. You need to learn the method for selecting
the encoding style for the CAD tool you are using. For the Xilinx ISE software tool, right click
on Synthesis S Process Properties S HDL Options S FSM Encoding Algorithm, then
select Compact for compact encoding or One-Hot for one-hot encoding. The default is Auto,
which “Selects the needed optimization algorithms during the synthesis process.”
 To determine which encoding style Synthesize—XST chose for the BUD_counter design in
Listing 9.1 for the default encoding style Auto, click Project S S Design Summary/Reports,
or click on the icon S and look at the logic utilization summary table and observe the row
labeled “Number of Slice Flip Flops.” The row lists 2 Used and 9,312 Available for the Spartan
3E on the NEXYS 2 board that we used to run out test. Because there are four states and only
two flip-flops used, the encoding style is compact.

C

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

LUT
(SRAM)

D Q

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

LUT
(SRAM)

D Q

C

FIGURE 9.4
Simplified represen-
tation of part of an
FPGA

234 Chapter 9 Complex Finite State Machine Design with VHDL

 To automatically change the BUD_counter design in Listing 9.1 to a one-hot encoding
style via the Xilinx ISE software tool, right click on Synthesis S Process Properties S HDL
Options S FSM Encoding Algorithm, then select One-Hot. Rerun Synthesize—XST, and
observe the row labeled “Number of Slice Flip Flops.” The row lists 4 Used and 9,312 Available
for the Spartan 3E on the NEXYS 2 board that we used to run out test. Because there are four
states and four flip-flops used, the encoding style is one-hot. Change the encoding style back to
Auto if you elected to run the test.
 The logic utilization summary table also shows the number of LUTs (Look-up tables) used
in a design. The LUTs provide the logic gates for FPGA designs.
 The S Design Summary/Reports allows a user to compare the utilization of the program-
mable logic area that will be used on the chip called the fabric for different encoding styles.
 To observe the circuit diagram for the design in Listing 9.1, either click View RTL (Reg-
ister Transfer Level) Schematic, or click View Technology Schematic, which is under
Synthesize—XST, and follow the instructions on the screen.

9.4 SUMMARY OF FINITE STATE MACHINE MODELS

Figure 9.5 shows a summary of six different finite state machine models. A SET, RST, or INIT
input is not shown for the flip-flops in Figure 9.5 because each state machine model may be
designed with a SET input, a RST input, or INIT input—that is, the required input is provided in
the design specification.

Moore
outputs

Moore
outputs

Moore
outputsMealy

outputs

Mealy
outputs

DFFs
PSNS

D

CLK C

Q
Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

DFFs
PSNS

D

CLK C

Q
Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

DFFs
PSNS

D

CLK C

Q

External
inputs (EIs)

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

DFFs
PSNS

D

CLK C

Q

External
inputs (EIs)

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

DFFs
PSNS

D

CLK C

Q

External
inputs (EIs)

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

Combinational
logic

(decoded FF
output functions)

Combinational
logic

(decoded FF
output functions

with external
inputs)

DFFs
PSNS

D

CLK C

Q

External
inputs (EIs)

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions

with external
inputs)

(a)

(c)

(e)

(b)

(d)

(f)

FIGURE 9.5 Finite state machine models: (a) simple FSM; (b) simple FSM with Moore Outputs; (c) complex FSM;
(d) complex FSM with Moore outputs; (e) complex FSM with Mealy outputs; (f) complex FSM with Moore and
Mealy outputs

www.itpub.net

 9.5 Designing Compact Encoded State Machines with Moore Outputs 235

 The state machine models in Figures 9.5a and 9.5c only have flip-flop outputs. State
machine models with Moore outputs (see Figures 9.5b and 9.5d) are referred to as Moore-type
state machines in honor of Edward Moore, a famous pioneer in sequential design in the 1950s.
Notice that the Moore outputs are decoded functions of only the flip-flop outputs—that is,
Moore outputs are state dependent. For example, a Moore output signal ZMoore 5 Q1 #Q2 would
be a valid output for a state machine with 2 or more bits.
 The state machine model with Mealy outputs (see Figure 9.5e) is referred to as a Mealy-type
state machine in honor of G. H. Mealy, another famous pioneer in sequential design, also in the
1950s. Notice that the Mealy outputs are decoded functions of both the flip-flop outputs as well
as the external inputs. For example, a Mealy output signal ZMealy 5 Q1 #Q2 #UP would be a valid
output for a state machine with 2 or more bits with an external input signal called UP; Mealy
outputs are transition dependent.
 The state machine model in Figure 9.5f contains both Moore and Mealy outputs.

9.5 DESIGNING COMPACT ENCODED STATE MACHINES
WITH MOORE OUTPUTS

Figure 9.6 shows the state sequence diagram (or counting sequence diagram) and an equivalent
state diagram for a Moore type complex state machine (a compact encoded stoppable Johnson
counter (2 bits)). The counting sequence for a Johnson counter is marching 1s, as shown in
the state sequence diagram and also in the state diagram. The external input STOP is used to
change the state sequence. Suppose we wish to know when the machine is in state a and also
when the machine is in state c. Moore outputs Z1 and Z2 are the signals used to provide that
information. Z1 is the decoded FF output that indicates when the machine is in state c, while Z2
is the decoded FF output that indicates when the machine is in state a. Keep in mind that Moore
outputs are always shown inside the state bubbles in a state diagram.

 You should observe that the counting sequence of a Johnson counter (2 bits) is exactly the
same as a binary Gray code up counter (2 bits). Do you think the counting sequence is the same
for these two counters with a higher number of bits, say, 3 bits?
 The VHDL code for the compact encoded stoppable Johnson counter (2 bits) represented
by the state sequence diagram or state diagram in Figure 9.6 is shown in Listing 9.2 using the
two-process PS/NS method.

 a
00
01

c
11
10

b

d
10
00

RST
(asyn)

STOP

STOP

STOP

STOP

STOP

STOP

STOP

STOP

RST
(asyn)

Name,

a, 0 1

0 0

1 0

0

0

1

1

0,

1,

1,

0, 0 0

b,

c,

d,

Q0,Q1 Z1 Z2

01
00

Q1 Q0
Z1 Z2

Legend

EIName

≡
STOP

STOP

STOP

STOP

STOP

STOP

STOP

STOP

State sequence diagram

State diagram

FIGURE 9.6 State
sequence diagram
and equivalent state
diagram for a compact
encoded stoppable
Johnson counter (2
bits) with two Moore
outputs

236 Chapter 9 Complex Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 9.2:

• The Moore outputs Z(1) and Z(2) are declared in the entity declaration as mode out because
Z only needs to be written (assigned a value), but not read. The Moore outputs are also listed
as data type std_logic_vector (1 to 2).

• The combinational process (comb_proc) contains all the inputs in its sensitivity list that
must be read—that is, (PS, STOP), in the combinational process.

• Get in the habit of including default values for Moore and/or Mealy outputs that are used
in the case statement for the combinational process. The default values are placed before

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Johnson_counter is port (
 rst,clk,stop : in std_logic;
 q : out std_logic_vector (1 downto 0);
 z : out std_logic_vector (1 to 2)
);
end Johnson_counter;

architecture behavioral of Johnson_counter is
 type state_type is (a,b,c,d);
 signal ps, ns: state_type;
begin

sync_proc:
process (rst,clk)
begin
 if rst 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;

comb_proc:
process (ps,stop)
begin
 z ,5 “00”;--default values for Moore outputs for case statement
 case ps is
 when a 5. q ,5 “00”; z ,5 “01”; if stop 5 ‘1’ then ns ,5 a;
 else ns ,5 b;
 end if;
 when b 5. q ,5 “01”; if stop 5 ‘1’ then ns ,5 b;
 else ns ,5 c;
 end if;
 when c 5. q ,5 “11”; z ,5 “10”; if stop 5 ‘1’ then ns ,5 c;
 else ns ,5 d;
 end if;
 when d 5. q ,5 “10”; if stop 5 ‘1’ then ns ,5 d;
 else ns ,5 a;
 end if;
 end case;
end process;
end behavioral;

LISTING 9.2
Complete VHDL
design entity for
Johnson_counter
(compact encoded
stoppable Johnson
counter, 2 bits) (proj-
ect: Johnson_
counter)

www.itpub.net

 9.6 Designing One-Hot Encoded State Machines with Moore Outputs 237

the case statement in the combinational process (comb_proc). Default values help ensure
that inferred latches will not be generated for these outputs if you write incomplete case
statements or if statements.

• The case statement with the select input PS in the combinational process (comb_proc) is
written to precisely follow the description specified by the state sequence diagram or state
diagram. Either if statements or additional case statements can be used to describe the
actions required by the state diagram.

• The flip-flop output values for Q and the Moore output values for Z are assigned for each
state a through d in the case statement. Observe that flip-flop outputs and Moore outputs
are not placed within an if statement.

• The NS (next state) is assigned its state value based on the external input signal STOP—that
is, if STOP is true then NS maintains the same state, but if STOP is false then NS is assigned
the next-state value in the state sequence diagram or state diagram.

 Waveform 9.2 shows the correct functionality of design entity Johnson_counter (compact
encoded stoppable Johnson counter, 2 bits) for Listing 9.2.

 An alternate method for designing the state machine in Figure 9.6 is to design it as a one-hot
encoded state machine, then add two additional Moore outputs to provide the required marching
1s counting sequence.

9.6 DESIGNING ONE-HOT ENCODED STATE MACHINES
WITH MOORE OUTPUTS

Figure 9.7 shows a one-hot encoded version of the state machine in Figure 9.6. The flip-flop
outputs are Y3, Y2, Y1, and Y0. The Moore outputs Z1 and Z2 are the same as in Figure 9.6.
Two additional Moore outputs Q1 and Q0 have been added to provide the required marching 1s
counting sequence.
 The VHDL code for the one-hot encoded stoppable Johnson counter (4 bits) represented by
the state diagram in Figure 9.7 is shown in Listing 9.3 using the two-process PS/NS method.
 Things you should notice about the VHDL design in Listing 9.3:

• The following changes were made in the entity declaration: (1) the entity name was changed
to OH_JC; (2) the signal RST was changed to INIT (initialize); and (3) the state variable Y
is declared as mode out with a data type of std_logic_vector (3 downto 0). Output Q was
the state variable for the compact encoded counter, but for this one-hot encoded counter it
provides the Moore outputs—that is, the decoded FF outputs.

• In the synchronous process (sync_proc), the input RST (reset) was changed to INIT (initial-
ize) in the sensitivity list. Only the inputs INIT and CLK are required in the sensitivity list
of the synchronous process (sync_proc), because the process only generates D flip-flops,
which are completely controlled by just these two inputs.

• In the synchronous process (sync_proc), the signal INIT (initialize) is used to asynchro-
nously initialize the counter to state a.

+

+

+

+

+

+ 1rst

stop

clk

q[1:0]

z[1:2]

clk_period

0

1

0 0 1 3 2 0 3 21 230 1 0

1 0 2 0 1 2 00 021 0 1

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns WAVEFORM 9.2
Simulation for the
correct functional-
ity of design entity
Johnson_counter for
Listing 9.2

238 Chapter 9 Complex Finite State Machine Design with VHDL

 0001
0100

0100
1011

d
1000
0010

INIT
(asyn)

STOP

STOP

STOP

STOP

STOP

STOP

STOP

STOP

0010
0001

Z1 Z2 Q1 Q0

Legend

EI (external input)Name
a

b

c

Y3 Y2 Y1 Y0

FIGURE 9.7 State diagram for
a one-hot encoded stoppable
Johnson counter (4 bits) with four
Moore outputs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OH_JC is port (
 init,clk,stop : in std_logic;
 y : out std_logic_vector (3 downto 0);
 z : out std_logic_vector (1 to 2);
 q : out std_logic_vector (1 downto 0)
);
end OH_JC;

architecture behavioral of OH_JC is
 type state_type is (a,b,c,d);
 signal ps, ns: state_type;
begin

sync_proc:
process (init,clk)
begin
 if init 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;

comb_proc:
process (ps,stop)
begin
 z ,5 “00”; q ,5 “00”; -- default values for Moore outputs for

case statement

LISTING 9.3
Complete VHDL
design entity for OH_
JC (one-hot encoded
stoppable Johnson
counter, 4 bits) (proj-
ect: OH_JC)

www.itpub.net

 9.6 Designing One-Hot Encoded State Machines with Moore Outputs 239

• In the combinational process (comb_proc), the state Y is assigned the one-hot code shown
in the state diagram in Figure 9.7. Observe that the output value of Q provides the marching
1s counting sequence.

• No other changes were required—that is, the rest of the code is identical to the VHDL code
in Listing 9.2.

 The reason the designs in Listings 9.2 and 9.3 are only slightly different is because the two-
process PS/NS method uses an enumerated type for the state names. An enumerated type allows
the binary values of the states to be easily changed from compact encoding to one-hot encoding.
 The purpose of the design in Figure 9.7 was to provide the same identical outputs as those
provided in Figure 9.6 with a one-hot encoding style rather than a full encoding style. The major
difference was the addition of the flip-flop outputs Y3 through Y0. The flip-flop outputs can be
removed from the combinational process and provided via a selected signal assignment (SSA)
as shown in Listing 9.4.

 case ps is
 when a 5. y ,5 “0001”; z ,5 “01”; if stop 5 ‘1’ then ns ,5 a;
 else ns ,5 b;
 end if;
 when b 5. y ,5 “0010”; q ,5 “01”; if stop 5 ‘1’ then ns ,5 b;
 else ns ,5 c;
 end if;
 whe n c 5. y ,5 “0100”; q ,5 “11”; z ,5 “10”;
 if stop 5 ‘1’ then ns ,5 c;
 else ns ,5 d;
 end if;
 when d 5. y ,5 “1000”; q ,5 “10”; if stop 5 ‘1’ then ns ,5 d;
 else ns ,5 a;
 end if;
 end case;
end process;
end behavioral;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OH_JC_MOD is port (
 init,clk,stop : in std_logic;
 y : out std_logic_vector (3 downto 0);
 z : out std_logic_vector (1 to 2);
 q : out std_logic_vector (1 downto 0)
);
end OH_JC_MOD;

architecture mixed of OH_JC_MOD is
 type state_type is (a,b,c,d);
 signal ps, ns : state_type;
begin
sync_proc:
process (init,clk)

LISTING 9.4
Complete VHDL
design entity for OH_
JC_MOD (one-hot
encoded stoppable
Johnson counter, 4
bits, with a selected
signal assignment)
(project: OH_JC_
MOD)

(Continued)

240 Chapter 9 Complex Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 9.4:

• The state variable Y or flip-flop outputs have been removed from the case statement in the
combinational process (comb_proc). This tends to make the combinational process easier
to write because the flip-flop output values need not be considered until later.

• The state variable Y or flip-flop outputs are provided in the selected signal assignment
(SSA) after the combinational process. This tends to make the flip-flop output values
easier to write because they are kept together in one selected signal assignment statement.
Observe that a when others clause is not required as the last choice value in the SSA
because the data type of the select signal ps is state_type, and state_type only has the values
of a, b, c, and d and no other values.

• Observe that this design is a mixed architecture description because it contains both a
behavioral design style and a dataflow design style in the same architecture description.

• This is an alternate way of providing the state variable (or flip-flop) output values. If we
decide later that we do not want to provide the state variable output values, we can simply
comment out the selected signal assignment (SSA) without altering the combinational pro-
cess (comb_proc).

begin
 if init 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;
comb_proc:
process (ps,stop)
begin
 z ,5 “00”; q ,5 “00”; -- default values for Moore outputs for

case statement
 case ps is
 when a 5. z ,5 “01”; if stop 5 ‘1’ then ns ,5 a;
 else ns ,5 b;
 end if;
 when b 5. q ,5 “01”; if stop 5 ‘1’ then ns ,5 b;
 else ns ,5 c;
 end if;
 when c 5. q ,5 “11”; z ,5 “10”; if stop 5 ‘1’ then ns ,5 c;
 else ns ,5 d;
 end if;
 when d 5. q ,5 “10”; if stop 5 ‘1’ then ns ,5 d;
 else ns ,5 a;
 end if;
 end case;
end process;

with ps select
 y ,5 “0001” when a,
 “0010” when b,
 “0100” when c,
 “1000” when d;
end mixed;

www.itpub.net

 9.7 Designing Compact Encoded State Machines with Moore and Mealy Outputs 241

 Waveform 9.3 shows the correct functionality of design entities OH_JC and OH_JC_MOD
for Listings 9.3 and 9.4.

 The simulations are the same for the VHDL code in Listings 9.3 and 9.4. Observe that
the Y outputs follow a one-hot sequence; the Z1 and Z2 outputs are active only in states c and
a, respectively; and the Q outputs follow the Johnson counter marching 1s sequence—that is,
marching from right to left, as shown in the state diagram in Figure 9.7.

9.7 DESIGNING COMPACT ENCODED STATE MACHINES
WITH MOORE AND MEALY OUTPUTS

Figure 9.8 shows the state diagram for a complex state machine that contains both Moore and
Mealy outputs (a compact encoded shortened binary down [SBD] counter [2 bits]). The synchro-
nized external input signal SHORTEN is used to change the counting sequence from 11, 10, 01,
00 to just 11, 10, 01. Suppose we wish to know when the sequence is being shortened. Mealy
output Z1 is the signal used to provide that information. Keep in mind that Mealy outputs are
always shown with the external inputs beside the transition lines in a state diagram. Suppose we
also wish to know when the machine uses the entire sequence. Moore output Z2 is the signal
used to provide that information.

+

+

+

+

+

+

+ 1init

stop

clk

y[3:0]

z[1:2]

q[1:0]

clk_period

0

0

1

1 1 2 4 8 1 4 82 41 2 1

1 0 2 0 1 2 0

8

00 21 0 1

0 1 3 2 0 3 2 21 30 1 0

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns WAVEFORM 9.3
Simulation for the
correct functional-
ity of design enti-
ties OH_JC and
OH_JC_MOD for
Listings 9.3 and 9.4

SET
(asyn)

1

(b)

SHORTEN

SHORTEN

0

0

11
a

10

0100
Z2

c

Z1

Legend

EI (external input)
Q1 Q0

Moore output

Name
Mealy output

SET
(asyn)

Legend

EI (external input)
Q1 Q0
Name

Z1

(a)

a

00
1

d
01
0

11
0

10
0

SHORTEN

0

0

b

cd

b
Z2

SHORTEN

FIGURE 9.8 State diagram
for a compact encoded
shortened binary down (SBD)
counter (2 bits) with both
Moore and Mealy outputs;
(a) using the Show Where
True signal convention for
Moore and Mealy outputs;
(b) using the Show All Values
signal convention for Moore
and Mealy outputs

242 Chapter 9 Complex Finite State Machine Design with VHDL

 In Figure 9.8a, Mealy output Z1 is true—that is, Z1 5 1, when the machine is in state c
and SHORTEN is true. For all other transitions Z1 is false—that is, Z1 5 0. Moore output Z2 is
true—that is, Z2 5 1—in state d and false—that is, Z2 5 0—in all other states. We refer to this
signal convention as the Show Where True signal convention. This convention helps simplify a
state diagram because the Mealy and Moore outputs for all the false values need not be shown.
Signals without overbars in state diagrams are active high signals, while signals with overbars
are active low signals. Z1 is an active high signal because it does not have an overbar. Z2 is also
an active high signal because it does not have an overbar.
 An active low output signal Z 1Moore2 can be used in a state diagram. Everywhere the output
Z 1Moore2 would be shown in the state diagram, Z 1Moore2 5 1 would be true, and for all other states
it would be false—that is, Z 1Moore2 5 0. An active low output signal Z 1Mealy 2 can also be used in a
state diagram. Everywhere the output Z 1Mealy 2 would be shown in the state diagram, Z 1Mealy 2 5 1
would be true, and for all other states it would be false—that is, Z 1Mealy 2 5 0. Recall that X 5 1
means that X 5 0 via Boolean algebra, and X 5 0 means that X 5 1.
 Figure 9.8b shows an alternate signal convention for listing the Moore and Mealy output
values in terms of 1s and 0s. We refer to the alternate signal convention as Show All Values
signal convention. This signal convention shows all signals at a glance but is more detailed.
 The VHDL code for the compact encoded SBD counter (2 bits) in Figure 9.8 is shown in
Listing 9.5 using the two-process PS/NS method.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity SBD_counter is port (
 set,clk, shorten : in std_logic;
 q : out std_logic_vector (1 downto 0);
 z1, z2 : out std_logic
);
end SBD_counter;

architecture behavioral of SBD_counter is
 type state_type is (a,b,c,d);
 signal ps, ns: state_type;
begin
sync_proc:
process (set,clk)
begin
 if set 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;
comb_proc:
process (ps,shorten)
begin
 z1 ,5 ‘0’; z2 ,5 ‘0’; -- default values for Moore and Mealy

outputs for case statement
 case ps is
 when a 5. q ,5 “11”; ns ,5 b;
 when b 5. q ,5 “10”; ns ,5 c;

LISTING 9.5
Complete VHDL
design entity for
SBD_counter (com-
pact encoded short-
ened binary down
counter, 2 bits) (proj-
ect: SBD_counter)

www.itpub.net

 9.8 Designing One-Hot Encoded State Machines with Moore and Mealy Outputs 243

 Things you should notice about the VHDL design in Listing 9.5:

• State variable Q of data type std_logic_vector (1 downto 0) provides the flip-flop outputs.
• Output Z1 of data type std_logic provides the Mealy output—that is, the decoded FF output

with the external input SHORTEN.
• Output Z2 of data type std_logic provides the Moore output—that is, the decoded FF output

in state d.
• Because the SET input is asynchronous, if set 5 '1' then PS ,5 a is placed before ris-

ing_edge (clk) in the synchronous process (sync_proc).
• The combinational process (comb_proc) contains all the inputs in its sensitivity list that

must be read—that is, (PS, SHORTEN), in the combinational process.
• The case statement (with accompanying if statements) in the combinational process (comb_

proc) is written to precisely follow the description specified by the state diagram.
• Observe that the Mealy output Z1 is placed within or inside an if statement, because

the Mealy output is a function of the external input SHORTEN, which is tested by an if
statement.

 Waveform 9.4 shows the correct functionality of design entity SBD_counter (compact
encoded shortened binary down counter, 2 bits) for Listing 9.5.

 when c 5. q ,5 “01”; if shorten 5 ‘1’ then z1 ,5 ‘1’;
ns ,5 a;

 else ns ,5 d;
 end if;
 when d 5. q ,5 “00”; z2 ,5 ‘1’; ns ,5 a;
 end case;
end process;
end behavioral;

 Observe that the counter follows the state diagram in Figure 9.8 as expected. When
SHORTEN is active or 1, Q follows the sequence 3, 2, 1, 3, 2, 1 . . . , and when SHORTEN is
inactive or 0, Q follows the sequence 3, 2, 1, 0, 3, 2, 1, 0 Z1 is only active when SHORTEN
is active and the counter is in state c. Z2 is only active when the counter is in state d, as shown
in Figure 9.8.

9.8 DESIGNING ONE-HOT ENCODED STATE MACHINES
WITH MOORE AND MEALY OUTPUTS

Figure 9.9 shows a one-hot version of the state machine in Figure 9.8. The flip-flop outputs are Y3
Y2 Y1 and Y0. The Mealy output Z1 and Moore output Z2 are the same as in Figure 9.8. Two addi-
tional Moore outputs Q1 and Q0 have been added to provide the binary down counting sequence.

+

+

+

+

+

+

+ 1set

shorten

clk

q[1:0]

z1

z 2

clk_period

0

0

0

3 3 2 1 3 2 1 3 2 0 31 02 1 33 2

50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns

50000 ps

WAVEFORM 9.4
Simulation for the
correct functional-
ity of design entity
SBD_counter for
Listing 9.5

244 Chapter 9 Complex Finite State Machine Design with VHDL

 The VHDL code for the one-hot shortened binary down counter (OH_SBD_ counter) (4
bits) in Figure 9.9 is shown in Listing 9.6 using the two-process PS/NS method.

Y3 Y2 Y1Y0
Moore output

Q1Q0

INIT
(asyn)

SHORTEN

SHORTEN

a
0010
10

0100
01

1000
Z2 00

Z1

Legend

EI (external input)Name

Mealy output
b

cd

0001
11

FIGURE 9.9 State diagram
for a one-hot shortened
binary down counter (4 bits)
with both Moore and Mealy
outputs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OH_SBD_counter is port (
 init,clk,shorten : in std_logic;
 y : out std_logic_vector (3 downto 0);
 q : out std_logic_vector (1 downto 0);
 z1, z2 : out std_logic
);
end OH_SBD_counter;

architecture mixed of OH_SBD_counter is
 type state_type is (a,b,c,d);
 signal ps, ns : state_type;
begin

sync_proc:
process (init,clk)
begin
 if init 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;

comb_proc:
process (ps,shorten)
begin
 z1 ,5 ‘0’; z2 ,5 ‘0’; -- default values for Moore and Mealy

outputs for case statement
 case ps is
 when a 5. q ,5 “11”; ns ,5 b;
 when b 5. q ,5 “10”; ns ,5 c;
 when c 5. q ,5 “01”; if shorten 5 ‘1’ then z1 ,5 ‘1’; ns ,5 a;
 else ns ,5 d;
 end if;
 when d 5. q ,5 “00”; z2 ,5 ‘1’; ns ,5 a;
 end case;
end process;

LISTING 9.6
Complete VHDL
design entity for
OH_SBD_counter
(one-hot shortened
binary down coun-
ter, 4 bits) (project:
OH_SBD_counter)

www.itpub.net

 9.9 Using the Algorithmic Equation Method to Design Complex State Machines 245

 Things you should notice about the VHDL design in Listing 9.6:

• The signal SET was changed to INIT (initialize) in the entity declaration in Listing 9.5.
• The state variable Y or flip-flop outputs are declared as external signals with a data type of

std_logic_vector (3 downto 0). Only external signals show up in a simulation of the design.
• In the synchronous process (sync_proc), the signal SET was changed to INIT in the sensitiv-

ity list. Only the inputs INIT and CLK are required in the sensitivity list of the synchronous
process (sync_proc), because the process only generates D flip-flops, which are completely
controlled by just these two inputs.

• In the synchronous process (sync_proc), the signal INIT (initialize) is used to asynchro-
nously initialize the counter to State a.

• No changes were made in the combinational process (comb_proc).
• The value of Y, which is the state variable, is assigned the one-hot code shown in the state

diagram in Figure 9.9 in a selected signal assignment.

 Waveform 9.5 shows the correct functionality of design entity OH_SBD_counter (one-hot
shortened binary down counter, 4 bits) for Listing 9.6.

with ps select
 y ,5 “0001” when a,
 “0010” when b,
 “0100” when c,
 “1000” when d;
end mixed;

 If signal Y(3:0) is removed from the timing diagram in Waveform 9.5, then the remaining
waveform signals provide the correct waveform for Figure 9.8, which uses compact encoding for
the flip-flop outputs with the exception of the signal INIT. The signal INIT was used to initial-
ize the one-hot encoded counter to state 0001, while the signal SET was used to initialize the
compact encoded counter to state 11.

9.9 USING THE ALGORITHMIC EQUATION METHOD TO DESIGN
COMPLEX STATE MACHINES

You should be able to draw the D flip-flops and the clouds of combinational logic for the
decoded next-state functions for the circuit of a complex state machine using the algorithmic
equation (AE) method. The clouds of combinational logic can easily be obtained by using a
modified form of the Set OR Hold 1 equation that includes the external inputs for the design.

+

+

+

+

+

+

+

+ 1init

shorten

clk

y[3:0]

z1

z2

q[1:0]

clk_period

0

0

0

3

1 1 2 4 1 2 4 1 2 8 14 82 4 11 2

3 2 1 3 2 1 3 2 0 31 02 1 33 2

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns WAVEFORM 9.5
Simulation for the
correct functional-
ity of design entity
OH_SBD_counter for
Listing 9.6

246 Chapter 9 Complex Finite State Machine Design with VHDL

 The algorithm for the Set OR Hold 1 method for a complex state machine can be expressed
by the following Set OR Hold 1 equation:

D 5 S(PS expression for a set transition)?(External input condition)

 1 S(PS expression for a hold 1 transition)?(External input condition)

Always remember when using the Set OR Hold 1 equation that the D in the equation represents
the next-state value, which is Q1 or Q(NS).
 Observe that the Set OR Hold 1 equation has been modified to include the external input
condition that may occur for each set or hold 1 transition. If an external input condition occurs
for a set or hold 1 transition, the condition must be ANDed, hence the “?,” with the PS expres-
sion. If an external input condition such as SHORTEN or SHORTEN does not appear beside a
transition line in a state sequence or state diagram, then the external input condition in the Set
OR Hold 1 equation is simply ignored, because SHORTEN 1 SHORTEN 5 1, which indi-
cates that no external input condition is required to change to the next state.
 The D excitation equations can be written by inspection using the state sequence diagram
or the state diagram for the design.
 Once the D excitation equations are obtained, you can draw the complete circuit diagram
for the complex state machine. You can also use the D excitation equations to write the VHDL
code for the design. If the state diagram has Moore or Mealy outputs, you must also write the
equations for these outputs and include the equations in the circuit diagram and the VHDL code.
 The disadvantage of using the algorithmic equation method for D flip-flops compared to
using the two-process PS/NS method is the hassle of obtaining the correct D excitation equa-
tions and drawing the circuit diagram.
 Figure 9.10 shows a modified form of the state diagram in Figure 9.9. Observe that the
flip-flop output signals rather than the flip-flop output signal values are place in each state,
which provides a more compact state machine design description—especially for larger one-hot
encoded designs.

 Using the Set OR Hold 1 equation for a complex state machine, we can write the excitation
equation for the D3 input as follows:

D3 5 (PS expression for a 0 S 1 transition from state c to state d)?SHORTEN

which results in D3 5 Y 2 #SHORTEN.
 The excitation equation for the D2 is written as follows:

D2 5 (PS expression for a 0 S 1 transition from state b to state c)

which results in D2 5 Y1
 The excitation equation for the D1 is written as follows:

D1 5 (PS expression for a 0 S 1 transition from state a to state b)

Y0
11

FF outputs
Moore output

Q1Q0

INIT
(asyn)

SHORTEN

a
Y1
10

Y2
01

Y3
Z2 00

Z1

Legend

EI (external input)Name

Mealy output
b

cd

SHORTEN

FIGURE 9.10 State diagram
for a one-hot shortened
binary down counter (4 bits)
with both Moore and Mealy
outputs

www.itpub.net

 9.9 Using the Algorithmic Equation Method to Design Complex State Machines 247

which results in D1 5 Y0
 The excitation equation for the D0 is written as follows:

D0 5 (PS expression for a 0 S 1 transition from state d to state a)
1 (PS expression for a 0 S 1 transition from state c to state a)?SHORTEN

which results in D0 5 Y3 1 Y2?SHORTEN
 You might observe that flip-flop output signals (Y3, Y2, Y1, and Y0) in each of the D excita-
tion equations are always noninverted—that is, they do not contain overbars. If you remember
this fact, this may help you catch errors when you write the D excitation equations. Also observe
that each PS expression for one-hot encoding only requires one state variable, for each Set tran-
sition or each Hold 1 transition.
 The equations for the Moore outputs for Q1 and Q0 can be written by inspection from the
state diagram:

Q1 5 Y0 1 Y1

Q0 5 Y0 1 Y2

 The Mealy output Z1 and the Moore output Z2 can also be written by inspection from the
state diagram:

Z1 5 Y2?SHORTEN

Z2 5 Y3

 Figure 9.11a shows the circuit model for the one-hot shortened binary down counter, while
Figure 9.11b shows the final circuit for the one-hot shortened binary down (4 bits). The D excita-
tion equations in the final circuit provide the signals for the next state (NS) shown in the circuit
model.
 The VHDL code for the one-hot shortened binary down counter in Figure 9.11b is shown in
Listing 9.7 using a dataflow design style.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OH_SBD_counter_AEM is port (
 init,clk,shorten : in std_logic;
 y : inout std_logic_vector (3 downto 0);
 q : out std_logic_vector (1 downto 0);
 z1,z2 : out std_logic
);
end OH_SBD_counter_AEM;

architecture dataflow of OH_SBD_counter_AEM is
 signal d3,d2,d1,d0: std_logic;
begin
 d3 ,5 y(2) and not shorten;
 d2 ,5 y(1);
 d1 ,5 y(0);
 d0 ,5 y(3) or (y(2) and shorten);

 y ,5 “0001” when init 5 ‘1’ else
 (d3&d2&d1&d0) when rising_edge (clk);

 q(1) ,5 y(0) or y(1);
 q(0) ,5 y(0) or y(2);

LISTING 9.7
Complete VHDL
design entity for OH_
SBD_counter_AEM
(4 bits) using a data-
flow design style
(project: OH_SBD_
counter_AEM)

(Continued)

248 Chapter 9 Complex Finite State Machine Design with VHDL

CLK

NS
DFFs

PS
D Q

C

Flip-flop
outputs

(Qs or Ys)
External
inputs (EIs)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

Combinational
logic

(decoded FF
output functions

with external
inputs)

Moore
outputs

Mealy
outputs

(a)

Flip-flop
outputs

Cloud of
combinational
logic

Cloud of
combinational
logic

External
input (EI)

SHORTEN

External
input (EI)

SHORTEN

SHORTEN

CLK C

D Q
PRE

Y0

Y0

D0

CLK C

D Q

CLR

Y1
D1

Y2
Y3

INIT
(asyn)

INIT
(asyn)Cloud of

combinational
logic

Y1

Y3

CLK C

D Q

CLR

Y2
D2

INIT
(asyn)

Cloud of
combinational
logic

Y2

CLK C

D Q

CLR

Y3
D3

INIT
(asyn)

Cloud of
combinational
logic

Cloud of
combinational
logic

Cloud of
combinational
logic

Y0
Q1

Q0

Y1

Y0

Y2

Y2
Z1

Z2

Moore
outputs

Moore
output

Mealy
output

(b)

FIGURE 9.11 (a) Circuit
model for the one-hot
shortened binary down
counter; (b) the final circuit
for the one-hot shortened
binary down counter (4
bits)

 z1 ,5 y(2) and shorten;
 z2 ,5 y(3);
end dataflow;

www.itpub.net

 9.9 Using the Algorithmic Equation Method to Design Complex State Machines 249

 Things you should notice about the VHDL design in Listing 9.7:

• Y must be assigned the mode inout.
• Signals D3, D2, D1, and D0 are internal signals and are declared between architecture and

the first begin.
• The excitation inputs D3, D2, D1, and D0 are written using Boolean equations.
• A dataflow design style is used in the architecture declaration.
• The concatenation operator “&”is used to assign the D excitation signals as shown in the

expression (D3&D2&D21&D0) to Y in the conditional signal assignment. The order of the
elements in the concatenation expression is very important. The most significant element
must be placed on the left, because the elements for Y are declared as Y(3 downto 0). An
alternate way to handle the D excitation signals is to declare D as a std_logic_vector with
the range (3 downto 0). This will change the individual equations from D3 to D(3), D2 to
D(2), and so on.

• Notice that the VHDL code has fewer lines than the VHDL code required for the two-
process PS/NS method. For large complex state machine designs, it is generally much
easier to use the two-process PS/NS method than the algorithmic equation method due to
the hassle of obtaining the D excitation equations and drawing the circuit diagram prior to
writing the VHDL code.

 The simulation for Listing 9.7 is the same as Waveform 9.5 obtained earlier. This proves that
the algorithmic equation method and the two-process PS/NS method provide the same result.
 Figure 9.12 shows the state diagram for the binary up/down counter shown earlier in
Figure 9.2.

 Using the Set OR Hold 1 equation for a complex state machine, we can write the excitation
equation for the D1 input as follows:

D1 5 (PS expression for a 0 S 1 transition from state a to state d)?UP

 1 (PS expression for a 1 S 1 transition from state d to state c)?UP

 1 (PS expression for a 1 S 1 transition from state c to state d)?UP

 1 (PS expression for a 0 S 1 transition from state b to state c)?UP

which results in

D1 5 Q1 #Q0 #UP 1 Q1 #Q0 #UP

 1 Q1 #Q0 #UP 1 Q1 #Q0 #UP

 5 Q1!Q0 #UP 1 Q1!Q0 #UP 5 Q1!Q0!UP

 Although the D1 excitation equation cannot be minimized via Boolean algebra, it can be
organized in terms of XOR operators (! s) via a three-variable K-map. To see how this is done,
first fill in an odd function in a three-variable K-map and observe how the function can be orga-
nized in terms of XOR, AND, and OR operators. Next fill in an even function in a three-variable
K-map and observe how the function can be organized in terms of XOR, AND, and OR operators.

Name
Q1 Q0

Legend

EI (external input)a
00

d
11

c
10

b
01

UP

UP

UP

UP

UP
UP

UP

UP

RST
(asyn)

FIGURE 9.12 State diagram for
the binary up/down counter (2 bits)

250 Chapter 9 Complex Finite State Machine Design with VHDL

D1 is an even function. With a little practice, you can write odd and even functions just in terms
of XOR operators.
 The excitation equation for the D0 input can be written as follows:

D0 5 (PS expression for a 0 S 1 transition from state a to state d)?UP

 1 (PS expression for a 0 S 1 transition from state c to state d)?UP

 1 (PS expression for a 0 S 1 transition from state c to state b)?UP

 1 (PS expression for a 0 S 1 transition from state a to state b)?UP

which results in

D0 5 Q1 #Q0 #UP 1 Q1 #Q0 #UP

 1 Q1 #Q0 #UP 1 Q1 #Q0 #UP

 5 Q0 #UP 1 Q0 #UP 5 Q0

 Figure 9.13a shows the circuit model for the binary up/down counter, while Figure 9.13b
shows the final circuit for the binary up/down counter (2 bits). The D excitation equations in the
final circuit provide the signals for the next state (NS) shown in the circuit model.

 The VHDL code for the binary up/down counter in Figure 9.13b is shown in Listing 9.8
using a dataflow design style.

External
inputs (EIs) CLK

NS
DFFs

PS
D Q

CLK

D

C
CLR

Q

CLK

D

C
CLR

Q

C

(a)

Combinational
logic

(decoded next-
state functions)

Flip-flop
outputs

(Qs or Ys)

(b)

Flip-flop
outputs

Cloud of
combinational
logic D0

Q0Q0

Cloud of
combinational
logic

D1
Q1

RST
(asyn)

External
input (EI)

RST
(asyn)

Q0
UP

Q1

FIGURE 9.13
(a) Circuit model for the
binary up/down coun-
ter; (b) the final circuit
for the binary up/down
counter (2 bits)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity BUD_counter_AEM is port (
 rst,clk,up : in std_logic;
 q : inout std_logic_vector (1 downto 0)
);
end BUD_counter_AEM;

architecture dataflow of BUD_counter_AEM is
 signal d0,d1: std_logic;
begin
 d1 ,5 not (q(1) xor q(0) xor up);
 d0 ,5 not q(0);
 q ,5 “00” when rst 5 ‘1’ else
 (d1,d0) when rising_edge (clk);
end dataflow;

LISTING 9.8
Complete VHDL
design entity for
BUD_counter_AEM
(2 bits) using a data-
flow design style
(project: BUD_
counter_AEM)

www.itpub.net

 9.10 Improving the Reliability of Complex State Machine Designs 251

 Things you should notice about the VHDL design in Listing 9.8:

• Q must be assigned the mode inout.
• Signals D0 and D1 are internal signals and are declared between architecture and begin.
• The excitation inputs D0 and D1 are written using Boolean equations.
• A dataflow design style is used in the architecture declaration.
• The aggregate (D1,D0) is used to assign the D excitation signals to Q in the conditional

signal assignment. The order of the elements in the aggregate is very important. The most
significant element must be placed on the left, because the elements for Q are declared
as Q(1 downto 0). An alternate way to handle the D excitation signals is to declare D as
a std_logic_vector with the range (1 downto 0). This will change the individual equations
from D1 to D(1) and D0 to D(0).

• Notice that the VHDL code has fewer lines than the VHDL code required for the two-
process PS/NS method. For large complex state machine designs, it is generally much
easier to use the two-process PS/NS method than the algorithmic equation method due to
the hassle of obtaining the D excitation equations and drawing the circuit diagram prior to
writing the VHDL code.

 Using the algorithmic equation method, the D excitation equations are usually easier to
write for one-hot encoded state machines than for compact encoded state machines, as you have
observed in these last two examples. Compact encoded (or full encoded) designs have fewer D
excitation equations, but they also contain more than one flip-flop output variable for each Set
or each Hold 1 transition, which can either be inverted or noninverted. This makes the equations
a little harder to write for compact encoded designs.
 The simulation for Listing 9.8 is the same as Waveform 9.1 obtained earlier. This proves that
the algorithmic equation method and the two-process PS/NS method provide the same result.

9.10 IMPROVING THE RELIABILITY OF COMPLEX
STATE MACHINE DESIGNS

The output of a flip-flop has a high-voltage range, which is referred to as 1 or High, and a low-
voltage range, which is referred to as 0 or Low. When the setup or hold time of a flip-flop is not
met, the output of the flip-flop can go to a mid-voltage range between the high- and low-voltage
range, which is undesirable. When the flip-flop is in the mid-voltage range, it is unstable or in a
metastable state. The output of the flip-flop that is in a metastable state will eventually go to the
stable state of 1 or to the stable state of 0. If the stable state it goes to is not the desired state, then
the circuit will fail to perform as expected. The reliability of a circuit is improved by helping
to keep flip-flops from going into a metastable state. To be a little more specific, operating a D
flip-flop by changing its D and CLK inputs too close together can cause in an internal function
hazard to occur that creates a runt pulse (a glitch), which can place the D flip-flop output in a
metastable state.
 Figure 9.14 illustrates how the Q output of a D flip-flop can go into a metastable state—and
what happens afterwards—for a setup time violation.
 When a flip-flop in a state machine goes into a metastable state, the circuit may fail to oper-
ate properly if its state sequence (or counting sequence) is interrupted. Metastability can occur
in a complex state machine when a D input, of one of its internal D flip-flops, does not meet
setup or hold time (or the D input changes during the data sampling time), thus forcing the flip-
flop into a metastable state, as shown in Figure 9.14 for a setup time violation. The interruption
occurs for the period of time tm that the flip-flop is in the metastable state.
 It is not possible to prevent metastability from occurring, but it is possible to reduce meta-
stability. Metastability is an event that doesn’t happen very often, but when it does the circuit

252 Chapter 9 Complex Finite State Machine Design with VHDL

fails to perform correctly. The time that it takes for a circuit to resolve itself has been shown to
decrease exponentially with time t—that is, k1e

2k2t, where k1 and k2 are empirically determined.
 For the setup time violation shown in Figure 9.14, if tm , TCLK 2tsu a problem occurs only
if the D flip-flop resolves itself to a 0 after the metastability state—that is, it fails to detect the 1
due to the setup time violation. This may cause the D flip-flop to miss one of its counting states,
thus causing the circuit to fail. If the flip-flop resolves itself to a 1, then it detected the 1 even
though it violated setup time. If tm . TCLK 2tsu, the D flip-flop will probably not have enough
time to resolve itself and may miss one or more of its counting states, causing the circuit to fail.
 Mean time between failures (MTBF) indicates the time between metastable state failures.
MTBF has been shown to be inversely proportional to both the flip-flop clock frequency and
the data frequency—that is, 1/(fCLK?fd). At low clock frequencies, which we will be working
with in this book, the MTBF can be measured in years, but you never know when metastability
will happen. At very high clock frequencies, the MTBF can be measured in hours or even a few
seconds. Designers of high-frequency digital circuits need to seriously investigate and study the
problem of metastablilty in much more depth than what we briefly cover in this section.
 To help prevent the internal flip-flops in a complex state machine from going into a meta-
stable state, it is common practice to use the synchronizer circuit shown in Figure 9.15. This
circuit provides partial isolation for a single asynchronous external input from the combina-
tional logic cloud that provides the decoded next-state functions (NS) for the flip-flops. If a
complex state machine design has n asynchronous external inputs, then n synchronizer circuits
are required. The logic symbol for the synchronizer circuit shown in Figure 9.15 can be used to
simplify drawings.
 If the first basic synchronizer’s output in Figure 9.15 is forced into a metastable state, the
second basic synchronizer’s output will most likely not become metastable itself. Cascading two
basic synchronizers—that is, two D flip-flops as shown in Figure 9.15—to synchronize each
asynchronous external input is considered a good way to reduce metastability of a complex state
machine’s internal flip-flops and thus improve reliability. Synchronous external inputs—that is,
inputs that have been synchronized with the clock—do not cause metastability, but asynchronous
external inputs can cause metastability. State machines should be driven by synchronous signals,
not asynchronous signals. Synchronizing each asynchronous external input supplied to a complex
state machine via the synchronizer circuit in Figure 9.15 greatly improves the state machine’s
reliability by helping to keep its internal flip-flops from going into a metastable state. Do not use
a synchronizer circuit to synchronize clock independent inputs such as RST, SET, or INIT.

FIGURE 9.14 Q output of D flip-
flops going into a metastable
state

Time

Resolves to a low?

Resolves to a high?

Metastable
state

t
m

t
ht

su

Setup time violation

D

CLK

1 or High

Q

0 or Low

Data sampling
time

Hold
time

Setup
time

T
CLK

www.itpub.net

 9.10 Improving the Reliability of Complex State Machine Designs 253

 For the synchronizer circuit in Figure 9.15, it is important to remember that an asynchro-
nous input that is supplied to a state machine is delayed by three clock ticks. Because the syn-
chronized input signal occurs at the second clock tick after an asynchronous input event, the
synchronized input—that is, the output of the synchronizer circuit—will be applied to the state
machine that it is driving at the third clock tick.
 After the asynchronous input signal is synchronized, it will most likely not cause metasta-
bility of the state machine’s internal flip-flops. If the second flip-flop in the synchronizer circuit
goes into a metastable state, which is highly unlikely, this may force an internal flip-flop in the
state machine to go into a metastable state. If this should happen, it may be necessary to reset
the state machine.
 Up to this point, we have assumed that all external input signals that are used to change
the state sequence of a state machine are synchronous signals. If these input signals are asyn-
chronous, we use the notation “A_” (or “a_”) in front of the signal names. To synchronize an
asynchronous input, use the synchronizer circuit in Figure 9.15. For consistency, we use the fol-
lowing signal labeling scheme: A_,signal name. is the name used for the asynchronous input
signal, ,signal name.1 is the name used for the output signal of the first basic synchronizer,
and ,signal name. is the name used for the output signal of the second basic synchronizer as
shown in Figure 9.15. Example: If UP is an asynchronous signal, then A_UP is the input signal
to the first basic synchronizer, UP1 is the output signal of the first basic synchronizer, and UP
is the output signal of the second basic synchronizer (the synchronous input signal or synchro-
nized input signal). If we wanted to synchronize an output signal with a synchronizer circuit,
we would use the notation ,signal name._S as the synchronous output signal from the second
basic synchronizer. This notation is used later in the book in two of the experiments (Experi-
ments 17L and 25L).
 Listing 9.9 shows how to add the synchronizer circuit in Figure 9.15 to synchronize an
asynchronous input signal UP (A_UP) for the binary up/down counter (2 bits) in Figure 9.12.

Binary
up/down
counter

Binary
up/down
counter

Synchronizer circuit

Asynchronous
external
input signal

Possible
metastable
state here

Synchronized
input signal to
complex state
machine

Basic
synchronizer

Basic
synchronizer

Improbable
metastable
state here at
low clock
frequencies Complex state

machine

Complex state
machine

2

2

Q(1:0)

Q(1:0)

OR

D

CCLK
CLK

A_UP D Q

CCLK

UP1 UP

CLK
CCLK

A_UP
UP

Logic symbol for
synchronizer circuit

Q

Sync
circuit

FIGURE 9.15
Synchronizer circuit,
two basic synchronizers
cascaded

254 Chapter 9 Complex Finite State Machine Design with VHDL

 Things you should notice about the VHDL design in Listing 9.9:

• In the entity declaration in Listing 9.1, the signal UP was changed to A_UP (asynchronous
UP).

• Two internal signals, UP and UP1, of data type std_logic were added to the design between
architecture and the first begin. UP1 represents the output signal of the first basic syn-

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity BUD_counter_A_UP is port (
 rst, clk, a_up : in std_logic;
 q : out std_logic_vector (1 downto 0)
);
end BUD_counter_A_UP;

architecture behavioral of BUD_counter_A_UP is
 signal up,up1: std_logic;
 type state_type is (a,b,c,d);
 signal ps, ns: state_type;
begin

Synchronize_proc: process (clk)
begin
 if rising_edge (clk) then up ,5 up1; up1 ,5 a_up;
 end if;
end process;

sync_proc: process (rst, clk)
begin
 if rst 5 ‘1’ then ps ,5 a;
 elsif rising_edge (clk) then ps ,5 ns;
 end if;
end process;

comb_proc: process (ps, up)
begin
 case ps is
 when a 5. q ,5 “00”; if up 5 ‘1’ then ns ,5 b;
 else ns ,5 d;
 end if;
 when b 5. q ,5 “01”; if up 5 ‘1’ then ns ,5 c;
 else ns ,5 a;
 end if;
 when c 5. q ,5 “10”; if up 5 ‘1’ then ns ,5 d;
 else ns ,5 b;
 end if;
 when d 5. q ,5 “11”; if up 5 ‘1’ then ns ,5 a;
 else ns ,5 c;
 end if;
 end case;
end process;
end behavioral;

LISTING 9.9
Complete VHDL
design entity for
BUD_counter_A_UP
(binary up/down
counter, 2 bits) with
a synchronizer circuit
to synchronize signal
A_UP (project: BUD_
counter_A_UP)

www.itpub.net

 9.11 Additional State Machine Design Methods 255

chronizer, and UP represents the output signal of the second basic synchronizer, which is
the synchronized version of A_UP delayed by two clock cycles. The synchronized input UP
will be applied to the state machine it is driving at the third clock tick.

• A new process called synchronize process (synchronize_proc) was added to generate the
synchronizer circuit shown in Figure 9.15, which is two basic synchronizers connected in
cascade.

• Only the input CLK is required in the sensitivity list of the synchronize process (synchro-
nize_proc), because the process only generates D flip-flops, which are completely con-
trolled by just the clock input.

• No other changes were required—that is, the rest of the code is identical to the VHDL code
in Listing 9.1.

 Waveform 9.6 shows the correct functionality of design entity BUD_counter_A_UP
(binary up/down counter) for Listing 9.9.

 The signal UP is derived from the synchronizer circuit shown in Figure 9.15 that is used to
synchronize the asynchronous signal A_UP. The signal UP is not shown in Waveform 9.6. The
signal UP follows the signal A_UP after the third clock tick.
 Observe that the counter begins counting up when A_UP changes to 1 after the third clock
tick, as shown by the arrows; when A_UP changes back to 0, the counter begins to count down
after the third clock tick, as shown by the arrows.
 Pay attention to the direction of the counting sequence provided by output q in Waveform
9.6. Initially, the counter begins counting down until A_UP is asserted, and then the counter
begins counting up. It continues to count up until A_UP is not asserted (A_UP 5 0), and then
the counter begins to count down. Observe that the change doesn’t take place until after the third
clock tick when A_UP changes to 1 and also after the third clock tick when A_UP changes to 0.
 The signals UP1 and UP are not shown in Waveform 9.6 because they are internal signals
in Listing 9.9. If you would like to display signals UP1 and UP in a simulation waveform, simply
include the signals UP1 and UP in the entity in Listing 9.9 with a mode of inout and remove
them as internal signals; then run a new simulation.

9.11 ADDITIONAL STATE MACHINE DESIGN METHODS

This section provided two additional coding methods that may be used to design state machines.
We refer to the methods as the two-assignment PS/NS method and the hybrid PS/NS method.
Many other coding methods are possible for state machine design with VHDL. Just remember
to verify that the coding style that you elect to use provides correct functionality by simulating
your design and checking for correct functionality.

+

+

+

+

+ 1rst

a_up

clk

q[1:0]

clk_period

0

0 0 3 2 1 0 1 2 3 1 00 3 02 1

40000 ps 40000 ps

0

Name Value 0 ns 200 ns 400 ns

A UP = 1
A UP = 0

For A UP = 1 and A UP = 0, the asynchronous input A UP is
delayed be three clock ticks (rising edge of clock) before being
applied to the state machine.

WAVEFORM 9.6
Simulation for the
correct functional-
ity of design entity
BUD_counter_A_UP
(binary up/down
counter, 2 bits) with
a synchronizer circuit
to synchronize signal
A_UP for Listing 9.9

256 Chapter 9 Complex Finite State Machine Design with VHDL

9.11.1 Two-Assignment PS/NS Method
Figure 9.16 shows a circuit model for a complex state machine with just Moore outputs. No flip-
flop outputs or Mealy outputs are provided in this circuit model.

 If a single pulse called ONE_PULSE is supplied as the external input to complex state
machine 1 shown in Figure 9.17a, the function of the state machine is to generate a signal called
TWO_PULSES on its output, as shown in the counting sequence diagram in Figure 9.17b. The
circuit model in Figure 9.16 represents this type of complex state machine.

External
inputs (EIs)

NS
DFFs

CLK

PSCombinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

Moore
outputs

D Q

C

FIGURE 9.16 Circuit model for
a complex state machine with
just Moore outputs

 Things you should notice about complex state machine 1 in Figure 9.17:

• The logic symbol for complex state machine 1 has an asynchronous reset input signal RST,
a clock input signal CLK, a synchronous input signal ONE_PULSE, and a Moore output
signal TWO_PULSES.

• The state sequence diagram shows that complex state machine 1 is reset to state v when
RST is 1. When RST is 0, complex state machine 1 follows the counting sequence at the
frequency of the signal CLK. When ONE_PULSE is 0 the state machine stays in state v.
When ONE_PULSE is 1, the state machine transitions to state w to state x to state y and
then to state z, where it remains until ONE_PULSE returns to 0; and then it transitions
back to state v. For the state sequence to occur, it is assumed that the duration of the signal
ONE_PULSE .. the period of CLK.

• While the state machine transitions from state v through state z, the output signal TWO_
PULSES goes from 0 to 1 to 0 to 1 to 0—that is, the output signal TWO_PULSES generates
two positive pulses. The signal TWO_PULSES is a Moore output because it is state depen-
dent and not transition dependent.

• In effect, the state machine produces an output with two pulses via a signal called TWO_
PULSES each time the signal ONE_PULSE occurs at its input.

 Listing 9.10 shows a complete VHDL design for complex state machine 1 in Figure 9.17
using a procedure similar to the two-process PS/NS method which we call the two-assignment

ONE_PULSE

ONE_PULSE
ONE_PULSE

ONE_PULSE

ONE_PULSETWO_PULSES

CLK

RST (asyn)

RST (asyn)

Complex state
machine 1

(a) (b)

Name, TWO_PULSES (Moore output)

0

1

0

1

0

v,

w,

x,

y,

z,

FIGURE 9.17 Complex state
machine 1: (a) logic symbol;
(b) state sequence diagram

www.itpub.net

 9.11 Additional State Machine Design Methods 257

PS/NS method. The two-assignment PS/NS method shown in Listing 9.10 uses a dataflow
design style rather than a behavioral design style.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CSM1 is port (
 rst,clk, one_pulse : in std_logic;
 two_pulses : out std_logic
);
end CSM1;

architecture dataflow of CSM1 is
 type state_type is (v,w,x,y,z);
 signal ps, ns: state_type;
begin

Sync_assign:
 ps ,5 v when rst 5 ‘1’ else
 ns when rising_edge (clk);

Comb_assign:
 ns ,5 v when ps 5 v and one_pulse 5 ‘0’ else
 w when ps 5 v and one_pulse 5 ‘1’ else
 x when ps 5 w else
 y when ps 5 x else
 z when ps 5 y or (ps 5 z and one_pulse 5 ‘1’) else
 v;

 two_pulses ,5 ‘0’ when ps 5 v else
 ‘1’ when ps 5 w else
 ‘0’ when ps 5 x else
 ‘1’ when ps 5 y else
 ‘0’;
end dataflow;

LISTING 9.10
Complete VHDL
design for complex
state machine 1
(CSM1) using the
two-assignment PS/
NS method (project:
CSM1)

 Things you should notice about the VHDL design in Listing 9.10:

• The design for the two-assignment PS/NS method is analogous to the two-process PS/NS
method covered earlier in the book.

• The synchronous process is replaced by the synchronous assignment, and the combina-
tional process is replaced by the combinational assignment—which are both conditional
signal assignments (CSAs).

• We used one conditional signal assignment to write the Sync_assign (synchronous assign-
ment) for the signal PS and a different conditional signal assignment to write the Comb_
assign (combinational assignment) for the signal NS signal. Observe that the conditional
signal assignment for the signal NS requires a final else or terminating else (else v;), so a
latch circuit will not be generated for the signal NS. Without the final else, a latch circuit
with 5 bits will be generated for the signal NS, which is not desirable. Remember: A latch
circuit will be generated for a combinational logic circuit that uses a conditional signal
assignment when the final else in the assignment is left out.

• The output signal TWO_PULSES was written using a conditional signal assignment
rather than a selected signal assignment that we normally use with the two-process PS/NS

258 Chapter 9 Complex Finite State Machine Design with VHDL

method. Observe that the conditional signal assignment for TWO_PULSES also requires
the final else (else '0';), so a latch circuit will not be generated for the signal TWO_PULSES.

 Waveform 9.7 shows the correct functionality of design entity CSM1 for Listing 9.10.

 Things you should notice about the waveforms in Waveform 9.7:

• RST is first set to 1 and then set to 0 to reset complex state machine 1.
• ONE_PULSE is set to 1 which may represent a push button that has been pressed to gen-

erate an active high signal. Observe that two positive pulses are generated at the output
TWO_PULSES during the time that ONE_PULSE is 1.

• ONE_PULSE is set to 0, which may represent a push button that has been released. During
the time that ONE_PULSE is 0 the output TWO_PULSES stays at 0.

• Each time ONE_PULSE is set to 1, two positive pulses are generated at the output
TWO_PULSES.

 A complex state machine 1 system (CSM1S) diagram is shown in Figure 9.18. This system
diagram allows you to test a hardware implementation of the CSM1 design. A frequency divider
is added to the design of CSM1, so that its operation can be verified via push button switches
(one push-button switch for the input RST and another for input ONE_PULSE) and a single
LED (to display the output signal TWO_PULSES).

+

+

+

+

+ 1rst

one_pulse

clk

two_pulses

clk_period

0

0

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 nsWAVEFORM 9.7
Simulation for the
correct functional-
ity of design entity
CSM1 for Listing 9.10

 If you elect to use a hardware board, you will observe that after reset is asserted via its
push-button switch, each time the push-button switch for ONE_PULSE is pressed, the LED for
TWO_PULSES will blink twice, verifying that CSM1 works as indicated in Waveform 9.7.
 The 50 MHz shown in Figure 9.18 for the signal CLK is the frequency provided on an
FPGA board such as a BASYS2 or NEXYS2 board. The frequency for SLOW_CLK is (50 3
106)/222 5 11.9209 Hz, or about 12 cycles per second. If this circuit is operated at a slower fre-
quency it may not function properly because the duration of the signal ONE_PULSE may not be
.. the period of SLOW_CLK. If the circuit is operated too fast, you will not be able to observe
blinking of the LED, which is provided by the signal TWO_PULSES.

CLK
(50 MHz)

FD

CSM1S

CSM1

ONE_PULSE

TWO_PULSESSLOW_CLK
(∼12Hz)

RST (asyn)

To
LED

Frequency
divider

Complex state
machine

COUNT(21)

FIGURE 9.18 Complex
state machine 1 system
(CSM1S) diagram (proj-
ect: CSM1S)

www.itpub.net

 9.11 Additional State Machine Design Methods 259

9.11.2 Hybrid PS/NS Method
Figure 9.19 shows a circuit model for a complex state machine with flip-flop outputs and Moore
outputs. No Mealy outputs are provided in this circuit model.

 Figure 9.20 shows a slightly modified version of complex state machine 1 in Figure 9.17
that includes flip-flop outputs. This state machine is called complex state machine 2. The circuit
model in Figure 9.19 represents this type of complex state machine.

External
inputs (EIs)

NS

DFFs

CLK

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

PS Flip-flop
outputs

(Qs or Ys)

Moore
outputs

D Q

C

FIGURE 9.19 Circuit
model for a complex state
machine with flip-flop out-
puts and Moore outputs

 Things you should notice about complex state machine 2 in Figure 9.20:

• The logic symbol for complex state machine 2 has an asynchronous reset input signal RST, a
clock input signal CLK, a synchronous input signal ONE_PULSE, flip-flop outputs Q(2:0),
and a Moore output signal TWO_PULSES.

• The state sequence diagram shows that complex state machine 2 is reset to state v (with
flip-flop outputs Q2 Q1 Q0 5 000) when RST is 1. When RST is 0, complex state machine
2 follows the counting sequence at the frequency of the signal CLK. When ONE_PULSE is
0, the state machine stays in state v. When ONE_PULSE is 1, the state machine transitions
to state w (Q2 Q1 Q0 5 001), to state x (Q2 Q1 Q0 5 010), to state y (Q2 Q1 Q0 5 011), and
then to state z (Q2 Q1 Q0 5 100), where it remains until ONE_PULSE returns to 0; then it
transitions back to state v. For the state sequence to occur, it is assumed that the duration of
the signal ONE_PULSE .. the period of CLK.

 Listing 9.11 shows a complete VHDL design for complex state machine 2 (CSM2) in Figure
9.20 using a hybrid PS/NS method. In this method, a CSA (conditional signal assignment) is
used for the synchronous assignment (Sync_assign), and a process with a case statement is used
for the combinational process (Comb_proc). The order could be reversed—that is, use a process
with an if statement for the synchronous process (Sync_proc), as shown commented out, and a
CSA for the combinational assignment (Comb_assign), as shown commented out.

ONE_PULSE

TWO_PULSES

Q (2:0)

CLK

RST (asyn)

Complex state
machine 2

ONE_PULSE
ONE_PULSE

ONE_PULSE

ONE_PULSE

RST (asyn)

(b)

Name, Q2 Q1 Q0, TWO_PULSES (Moore output)

000,

001,

010,

011,

100,

v,

w,

y,

z,

(a)

x,

0

1

0

1

0

FIGURE 9.20 Complex
state machine 2: (a) logic
symbol; (b) state sequence
diagram

260 Chapter 9 Complex Finite State Machine Design with VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CSM2 is port (
 rst, clk, one_pulse : in std_logic;
 q : out std_logic_vector (2 downto 0);
 two_pulses : out std_logic
);
end CSM2;

architecture mixed of CSM2 is
 type state_type is (v,w,x,y,z);
 signal ps, ns: state_type;
begin

Sync_assign:
 ps ,5 v when rst 5 ‘1’ else
 ns when rising_edge (clk);
--Sync_proc:
--process (rst, clk)
--begin
-- if rst 5 ‘1’ then ps ,5 v;
-- elsif rising_edge (clk) then ps ,5 ns;
-- end if;
--end process;

Comb_proc:
process (ps, one_pulse)
begin
 case ps is
 when v 5. if one_pulse 5 ‘0’ then ns ,5 v;
 else ns ,5 w;
 end if;
 when w 5. ns ,5 x;
 when x 5. ns ,5 y;
 when y 5. ns ,5 z;
 when z 5. if one_pulse 5 ‘1’ then ns ,5 z;
 else ns ,5 v;
 end if;
 end case;
end process;
--Comb_assign:
-- ns ,5 v when ps 5 v and one_pulse 5 ‘0’ else
-- w when ps 5 v and one_pulse 5 ‘1’ else
-- x when ps 5 w else
-- y when ps 5 x else
-- z when ps 5 y or (ps 5 z and one_pulse 5 ‘1’) else
-- v;
Outputs: -- these could be included within the Comb_proc, but not

the Comb_assign

LISTING 9.11
Complete VHDL
design for com-
plex state machine
2 (CSM2) using
a hybrid PS/NS
method (project:
CSM2)

www.itpub.net

 9.11 Additional State Machine Design Methods 261

 Things you should notice about the VHDL design in Listing 9.11:

• The design for the hybrid PS/NS method uses part of the two-process PS/NS method and
part of the two-assignment PS/NS method.

• We used one conditional signal assignment to write the Sync_assign (synchronous assign-
ment) for the signal PS, and a process with a case statement to write the Comb_process
(combinational process).

• The output signal Q was written using a conditional signal assignment rather than a selected
signal assignment that we normally use with the two-process PS/NS method. Observe that
the conditional signal assignment for Q requires the final else (i.e., else "100";), so a latch
circuit will not be generated for the signal Q.

• The output signal TWO_PULSES was written using a conditional signal assignment rather
than a selected signal assignment that we normally use with the two-process PS/NS method.
Observe that the conditional signal assignment for TWO_PULSES requires the final else
(i.e., else '0';), so a latch circuit will not be generated for the signal TWO_PULSES.

 Waveform 9.8 shows the correct functionality of design entity CSM2 for Listing 9.11.

 q ,5 “000” when ps 5 v else
 “001” when ps 5 w else
 “010” when ps 5 x else
 “011” when ps 5 y else
 “100”;

 two_pulses ,5 ‘0’ when ps 5 v else
 ‘1’ when ps 5 w else
 ‘0’ when ps 5 x else
 ‘1’ when ps 5 y else
 ‘0’;
end mixed;

 Things you should notice about the waveforms in Waveform 9.8:

• RST is first set to 1 and then set to 0 to reset complex state machine 1.
• ONE_PULSE is set to 1, which may represent a push button that has been pressed to gen-

erate an active high signal. Observe that two positive pulses are generated at the output
TWO_PULSES during the time that ONE_PULSE is 1.

• ONE_PULSE is set to 0, which may represent a push button that has been released. During
the time that ONE_PULSE is 0, the output TWO_PULSES is at 0.

• Each time ONE_PULSE is set to 1, two positive pulses are generated at the output
TWO_PULSES.

• Observe that the flip-flop outputs Q(2:0)are included in Waveform 9.8, which allows one
to easily confirm that the waveforms represent the correct functionality for design entity
CSM2.

+

+

+

+

+

+ 1rst

one_pulse

two_pulses

clk

q[2:0]

clk_period

0

0

0 0 1 2 3 4 20 1 03 4

50000 ps 50000 ps

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns WAVEFORM 9.8
Simulation for the
correct functional-
ity of design entity
CSM2 for Listing 9.11

262 Chapter 9 Complex Finite State Machine Design with VHDL

 To allow you to observe the operation of the CSM2 design working on a hardware board,
replace CSM1 in Figure 9.18 with CSM2 and remove the signal Q(2:0), or comment it out,
because it is not required to observe the output TWO_PULSES (project: CSM2S). If you keep
Q(2:0) in the design of CSM2S, you will also see Q(2:0) swiftly move through the state sequence
each time you press the push button to generate the signal TWO_PULSES.

Section 9.1 Introduction
 9.1 How do we defi ne a complex state machine?
 9.2 When are complex state machines and simple state machines called controllers?

Section 9.2 Designing with the Two-Process PS/NS Method
 9.3 What type of fl ip-fl op is generated by the synchronous process of the two-process PS/NS method?
 9.4 What signals are generated by the synchronous process of the two-process PS/NS method?
 9.5 What signals are generated by the combinational process of the two-process PS/NS method?
 9.6 Where does the declaration for the type state_type and the internal signals PS (present state) and

NS (next state) have to be placed in the architecture declaration?
 9.7 Is a when others clause required as the last choice value in the case statement for the select signal

PS, which is an enumerated data type? Discuss your answer.
 9.8 Write a behavioral architecture declaration for the partially stoppable binary up counter circuit

in Figure P9.8 using the two-process PS/NS method. Assign values to the fl ip-fl op outputs in the
combinational process. Is this state machine simple or complex? Provide an explanation for your
answer.

PROBLEMS

FIGURE P9.8

Name, Q1 Q0
RST
(asyn)

a,
b,
c,
d,

S

S
S

0 0
0 1
1 0
1 1

S

 9.9 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the counter circuit in Figure P9.8.

 9.10 Combine your code for problems 9.8 and 9.9 to form a complete VHDL design. Obtain a simulation
waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.3 Explanation of CPLDs and FPGAs and State Machine Encoding Styles
 9.11 Why are CPLDs classifi ed as nonvolatile?
 9.12 Which state machine encoding style requires a minimum number of fl ip-fl ops?
 9.13 Which state machine encoding style requires a maximum number for fl ip-fl ops? Explain your

answer.
 9.14 How many states can a compact encoded state machine have if there are fi ve state bits?
 9.15 What is the minimum number of fl ip-fl ops required for a compact encoded state machine with

seven states?
 9.16 How many states can a one-hot encoded state machine have if there are nine state bits?
 9.17 What is the number of fl ip-fl ops required for a one-hot encoded state machine with 14 states?
 9.18 Is the state machine in Figure P9.18 compact encoded or one-hot encoded? Provide an explanation

for your answer.

www.itpub.net

 Problems 263

 9.20 Is the state machine in Figure P9.20 compact encoded or one-hot encoded? Provide an explanation
for your answer.

 9.19 Is the state machine in Figure P9.19 compact encoded or one-hot encoded? Provide an explanation
for your answer.

FIGURE P9.18

a
01
Z1

b

INIT
(asyn)

10
Z2

M
Z3

Q1 Q0
Moore
outputs

Legend

EI (external input)Name

Mealy
outputs

M
Z4

FIGURE P9.19

Q1 Q0

Legend

EI (external input)

Moore
outputs

Mealy
outputs

Name

00
Z2

S
Z4

S
Z3

RST
(asyn)

01
Z1

S

11
c

a

b

S

S

Z3
S

FIGURE P9.20

a
Q

Q

b

Name
FF output

EIs (external inputs)

Mealy
outputsLegend

IN1 + IN2

Z1

Z2

IN1⋅IN2

IN1 + IN2

Z2

Z1

RST
(asyn)

IN1⋅IN2

264 Chapter 9 Complex Finite State Machine Design with VHDL

 9.21 Is the state machine in Figure P9.21 compact encoded or one-hot encoded? Provide an explanation
for your answer.

FIGURE P9.25

Mealy
outputs

DFFs
PSNS

CLK

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions

with external
inputs)

D

C

Q

External
inputs (EIs)

FIGURE P9.22

INIT
(asyn) STOP STOP

Z1

Legend

EI
Mealey outputY1

Z2

a

Y3
Z2

d

Y0
b

Y2
c

Name
FF outputs

Moore outputs

FIGURE P9.21

INIT
(asyn)

0

0
0

0
1

1

0
0
1

 Q1 Q0

CE CE

CE
CECE

CE

 Q2

FIGURE P9.23

DFFs
PSNS

CLK

Flip-flop
outputs
(Qs or Ys)

Combinational
logic

(decoded next-
state functions)

Combinational
logic

(decoded FF
output functions)

Moore
outputs

D

C

Q

 9.22 Is the state machine in Figure P9.22 compact encoded or one-hot encoded? Provide an explanation
for your answer.

Section 9.4 Summary of Finite State Machine Models
 9.23 Is the state machine model in Figure P9.23 simple or complex? What type of outputs does this state

machine model have?

 9.24 What is the difference between fl ip-fl op outputs and Moore outputs in Figure P9.23?
 9.25 Is the state machine model in Figure P9.25 simple or complex? What type of outputs does this state

machine model have?

 9.26 What is the difference between Moore outputs and Mealy outputs? Provide an example of each
output type.

www.itpub.net

 Problems 265

Section 9.5 Designing Compact Encoded State Machines with Moore Outputs
 9.27 Where are the Moore outputs always shown in a state diagram?
 9.28 Write the state sequence diagram for a stoppable Johnson counter (3 bits) with marching 1s from

the right with an asynchronous reset input and also for a Gray code up counter (3 bits) with an
asynchronous reset input.

 9.29 Figure P9.29 shows the circuit diagram for a 3-bit counter that has been referred to in the literature
by the following names: twisted ring counter, switch tail ring counter, Johnson counter, or mobius
counter. Write the state sequence diagram for the counter. (Hint: Obtain the next-state equations for
the circuit by obtaining the excitation equations.) Remember that the next-state value Y1 for each D
fl ip-fl op is the D excitation input—that is, Yi1 5 Di for i 5 0, 1, etc. After you obtain each next-state
value Y1 for each D fl ip-fl op, you can determine the next-state values of the counter. Use the format
S,decimal value for the state. for each state name in the state sequence diagram. Is the counter a
simple counter or a complex counter? Provide an explanation for your answer.

FIGURE P9.29

D

CLR
CLK

D

CLR
CLK

Y0 Y1 Y2

CLR
CLK

RST
(asyn)

SIX

DQ Q Q

 9.30 Draw a state diagram for the Johnson Counter shown in Figure P9.29. (Hint: Obtain the next-state
equations for the circuit by obtaining the excitation equations.) Remember that the next-state value
Y1 for each D fl ip-fl op is the D excitation input—that is, Yi1 5 Di for i 5 0, 1, etc. After you obtain
each next-state value Y1 for each D fl ip-fl op, you can determine the next-state values of the counter.
Use the format S,decimal value for the state. for each state name in the state diagram.

 9.31 Figure P9.31A shows a block diagram for a toy candy machine that requires that a nickel be
dropped into the coin detection mechanism to cause the release of a candy bar by the candy bar
release mechanism—that is, a candy bar costs 5 cents. A state diagram for the toy candy machine
controller, called candy machine 1 (CM_1), with compact encoding is shown in Figure P9.31B (top
of next page). The time it takes for the nickel to drop through the coin detection mechanism is actu-
ally much greater than the period of the signal CLK. Write a behavioral architecture declaration in
VHDL for CM_1 using the two-process PS/NS method.

 9.32 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for toy candy machine controller CM_1 in Figure P9.31b.

 9.33 Combine your code for problems 9.31 and 9.32 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

CLK Y

N CB

CM_1

RST
(asyn)

Coin detection
mechanism

Candy bar
release

mechanism
Toy candy

machine controller
(complex FSM)

(a)

FIGURE P9.31A

266 Chapter 9 Complex Finite State Machine Design with VHDL

Section 9.6 Designing One-Hot Encoded State Machines with Moore Outputs
 9.34 Write a mixed architecture declaration for the partially stoppable counter circuit in Figure P9.34

using the two-process PS/NS method. Assign values to the present state outputs in a selected signal
assignment (SSA). Is this state machine compact encoded or one-hot encoded? Provide an explana-
tion for your answer.

FIGURE P9.31B

S1
1
1

S0
0
0

Name
Y

CB

RST
(asyn)

N
N

Legend

EI

N

N

(b)

FIGURE P9.37

Q0 Q1 Q2

TWO

PRE
D

CLK

D

CLK
CLR

D

CLK
CLR

INIT
(asyn)

Q Q Q

 9.38 Draw a state diagram for the ring counter shown in Figure P9.37. (Hint: Obtain the next-state equa-
tions for the circuit by obtaining the excitation equations.) Remember that the next-state value Q1
for each D fl ip-fl op is the D excitation input—that is, Q1 5 DI for i 5 0, 1, etc. After you obtain
each next-state value Q1 for each D fl ip-fl op, you can determine the next-state values of the counter.
Use the format S,decimal value for the state. for each state name in the state diagram.

 9.39 Do the fl ip-fl op outputs always have to be included in the combinational process? Discuss your
answer.

FIGURE P9.34

Name, Q3 Q2 Q1 Q0, MAX
INIT

(asyn)
a,
b,

c,
d,

0 0 0
0 1

1
0

0
0

1,
0,

0,
0,

0
0

0
1

0

0
1

S

S

S

S

 9.35 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the counter circuit in Figure P9.34.

 9.36 Combine your code for problems 9.34 and 9.35 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

 9.37 Figure P9.37 shows the circuit diagram for a 3-bit counter called a ring counter. Write the state
sequence diagram for the counter. (Hint: Obtain the next-state equations for the circuit by obtaining
the excitation equations.) Remember that the next-state value Q1 for each D fl ip-fl op is the D excita-
tion input—that is, Qi1 5 Di for i 5 0, 1, etc. After you obtain each next-state value Q1 for each D
fl ip-fl op, you can determine the next-state values of the counter. Use the format S,decimal value
for the state. for each state name in the state sequence diagram. Is the counter a simple counter or
a complex counter? Provide an explanation for your answer. What would be a good name for this
counter based on its counting sequence?

www.itpub.net

 Problems 267

 9.40 Figure P9.40a shows a block diagram for a toy candy machine that requires that a nickel be dropped
into the coin detection mechanism to cause the release of a candy bar by the candy bar release
mechanism—that is, a candy bar costs 5 cents. A state diagram for the toy candy machine control-
ler, called candy machine 2 (CM_2), with one-hot encoding is shown in Figure P9.40b. The time it
takes for the nickel to drop through the coin detection mechanism is actually much greater than the
period of the signal CLK. Write a behavioral architecture declaration in VHDL for CM_2 using the
two-process PS/NS method.

FIGURE P9.40

CLK Y(1:0)

N CB

CM_2

INIT
(asyn)

Coin detection
mechanism Toy candy

machine controller
(complex FSM)

Candy bar
release

mechanism

2

(a)

S1
1 0
1

Name
Y1 Y0

CB

INIT
(asyn)

N
N

Legend

EIS0
0 1
0

N

N

(b)

 9.41 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for toy candy machine controller CM_2 in Figure P9.40b.

 9.42 Combine your code for problems 9.40 and 9.41 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.7 Designing Compact Encoded State Machines with Moore and Mealy Outputs
 9.43 Which signal convention—the Show Where True or Show All Values—helps simplify a state dia-

gram? Explain your answer.
 9.44 Convert the Moore and Mealy outputs in the state diagram in Figure P9.44 from the Show All Val-

ues signal convention to an equivalent Show Where True signal convention. Is this state machine
simple or complex? Provide an explanation for your answer.

a
0 1
1 0

M
10

b
1 0
0 1

Name
Q1 Q0
Z1 Z2

Legend

M
01

M + M

EI (external input)

Z3 Z4

INIT
(asyn)

00

FIGURE P9.44

268 Chapter 9 Complex Finite State Machine Design with VHDL

 9.45 Convert the Moore and Mealy outputs in the state diagram in Figure P9.45 from the Show Where
True signal convention to an equivalent Show All Values signal convention. Is this state machine
simple or complex? Provide an explanation for your answer.

FIGURE P9.45

Name
Y1 Y2

Moore output

RST
(asyn)

Legend

EIa
00
Z0

c
10

b
01

d
11

Mealy output
STOP

Z1

STOP

STOP

Z1

STOP

 9.46 Write a mixed architecture declaration for the state machine in Figure P9.46 using the two-
process PS/NS method. Assign values to the fl ip-fl op outputs in a selected signal assignment (SSA).

FIGURE P9.46

RST
(asyn)

Legend

EI (external input)a
00
01

b
01
10

c
11
00

Z3 Z4

S

01

S

10

S

00

S

00

S

00

S

10

Name
Q1 Q0
Z1 Z2

 9.47 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the state machine in Figure P9.46.

 9.48 Combine your code for problems 9.46 and 9.47 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

 9.49 Figure P9.49a shows a block diagram for a toy candy machine that requires that a dime, two nick-
els, or a nickel and a dime be dropped into the coin detection mechanism to cause the release of a
candy bar by the candy bar release mechanism—that is, a candy bar costs 10 cents. If you fi rst drop
a nickel then a dime, the change release mechanism will return a nickel. A state diagram for the
toy candy machine controller, called candy machine 3 (CM_3), with compact encoding is shown
in Figure P9.49b. The time it takes for each coin to drop through the coin detection mechanism is

www.itpub.net

 Problems 269

actually much greater than the period of the signal CLK. Write a behavioral architecture declara-
tion in VHDL for CM_3 using the two-process PS/NS method.

FIGURE P9.49

CLK Y

N

D

CM_3

RST
(asyn)

Coin detection
mechanism

Toy candy
machine controller

(complex FSM)

Candy bar
release

mechanism

Change
release

mechanism

CH

CB

(a)

RST
(asyn)

N⋅D + N⋅D

N⋅D

N∙D

N⋅D + N⋅D

N⋅D + N⋅D + N⋅D

N⋅D + N⋅D + N⋅D
CH

N⋅D
N⋅D

N⋅D

N⋅D

Note: Can’t happen
(two coins cannot be
dropped in at the same
time)

Legend

EIs

Mealy output

Note: When one coin is dropped
in the coin detection mechanism,
another coin cannot be dropped in
until the first coin clears
the mechanism.

S3
11
CB

S0
00

S1
01

S2
10

Y1 Y0
Moore output

Name

(b)

 9.50 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for toy candy machine controller CM_3 in Figure P9.49b.

 9.51 Combine your code for problems 9.49 and 9.50 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.8 Designing One-Hot Encoded State Machines with Moore and Mealy Outputs
 9.52 There is one place where you can simplify a state diagram that uses a one-hot encoding scheme.

By writing a single state variable in each state bubble, you can reduce the number of variables in
each state. Only the active or asserted state variable needs to appear in each state bubble. The state
diagram in Figure P9.52 is a simple one-hot encoded state machine. Modify the state diagram in
Figure P9.52 so that a single state variable (fl ip-fl op output Q2, Q1, or Q0)—that is, the one that is
asserted—is used in each state bubble.

270 Chapter 9 Complex Finite State Machine Design with VHDL

 9.53 Write a behavioral architecture declaration for the state machine in Figure P9.53 using the two-
process PS/NS method.

FIGURE P9.52

S1
001
0

S2
010
1

S4
100
0

INIT
(asyn)

Name
Q2 Q1 Q0

TWO

Legend

FIGURE P9.53

Legend

M
Z4

M
Z3

INIT
(asyn) a

01
Z1

b
10
Z2

Name
Q1 Q0

Moore outputs

EI (external input)
Mealy outputs

 9.54 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the state machine in Figure P9.53.

 9.55 Combine your code for problems 9.53 and 9.54 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

 9.56 Figure P9.56a shows a block diagram for a toy candy machine that requires that a nickel and a
dime, two nickels and a dime, or three nickels be dropped into the coin detection mechanism to
cause the release of a candy bar by the candy bar release mechanism—that is, a candy bar costs 15
cents. If you fi rst drop two nickels and a dime, the change release mechanism will return a nickel.
A state diagram for the toy candy machine controller, called candy machine 4 (CM_4), with one-
hot encoding is shown in Figure P9.56b. The time it takes for each coin to drop through the coin
detection mechanism is actually much greater than the period of the signal CLK. Write a behavioral
architecture declaration in VHDL for CM_3 using the two-process PS/NS method.

 9.57 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for toy candy machine controller CM_4 in Figure P9.56b.

 9.58 Combine your code for problems 9.56 and 9.57 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.9 Using the Algorithmic Equation Method to Design Complex State Machines
 9.59 What is the disadvantage of using the algorithmic equation method compared to using the two-

process PS/NS method?
 9.60 Write the Set OR Hold 1 equation for a complex state machine. What is the Set OR Hold 1 equation

used for? What does the D represent in the Set OR Hold 1 equation?

www.itpub.net

 Problems 271

 9.61 What is the procedure for obtaining the VHDL code for a state machine when using the algorithmic
equation method?

 9.62 Figure P9.62a shows a bus arbiter that is used to controls the enable inputs for a 3-state circuit.
Either data on bus A or data on bus B is supplied to a common bus, depending on the outputs of
the bus arbiter or controller. Figure P9.62b shows a state diagram that is one-hot encoded for the
bus arbiter, which is a complex state machine. Use the Set OR Hold 1 equation to write the excita-
tion equations for the bus arbiter. Write the Moore output equations. Draw a clouds-of-logic circuit
model for the bus arbiter.

CM_4

N

D

CB

CH

YCLK

INIT
(asyn)

Coin detection
mechanism

Toy candy
 machine controller

(complex FSM)

Candy bar
release

mechanism

Change
release

mechanism

(a)
Note: Can’t happen
(two coins cannot be
dropped in at the same
time)

Legend

EIs

Mealy output

Note: When one coin is dropped
in the coin detection mechanism,
another coin cannot be dropped in
until the first coin clears
the mechanism.

S1
Y0

S2
Y1S4

Y2

S8
Y3

S16
Y4

S32
Y5

S64
Y6
CB

FF outputs
Moore output

Name
N⋅D + N⋅D + N⋅D

INIT
(asyn)

N⋅D + N⋅D

N⋅D

N⋅D

N⋅D

N⋅D

N⋅D

N⋅D

N⋅D + N⋅D

N⋅D + N⋅D + N⋅D

N⋅D + N⋅D + N⋅D

N⋅D

N⋅D + N⋅D

N⋅D + N⋅D + N⋅D

N∙D
CH

N⋅D

N⋅D

(b)

FIGURE P9.56

272 Chapter 9 Complex Finite State Machine Design with VHDL

 9.63 Write a datafl ow architecture in VHDL for the bus arbiter (controller) shown in the state diagram
in Figure P9.62b using the equations obtained in problem 9.62.

 9.64 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the bus arbiter (controller) in Figure P9.62b.

 9.65 Combine your code for problems 9.63 and 9.64 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

 9.66 Figure P9.66a shows a bus arbiter that is used to controls the enable inputs for a 3-state circuit.
Either data on bus A or data on bus B is supplied to a common bus, depending on the outputs of
the bus arbiter or controller. Figure P9.66b shows a state diagram that is compact encoded for the
bus arbiter, which is a complex state machine. Use the Set OR Hold 1 equation to write the excita-
tion equations for the bus arbiter. Write the Moore output equations. Draw a clouds-of-logic circuit
model for the bus arbiter.

 9.67 Write a datafl ow architecture in VHDL for the bus arbiter (controller) shown in the state diagram
in Figure P9.66b using the equations obtained in problem 9.66.

 9.68 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the bus arbiter (controller) in Figure P9.66b.

 9.69 Combine your code for problems 9.67 and 9.68 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.10 Improving the Reliability of Complex State Machine Designs
 9.70 What causes a circuit to fail due to metastability?
 9.71 What is the relationship of the fl ip-fl op’s clock frequency and the fl ip-fl op’s data frequency in rela-

tionship to MTBF?
 9.72 What can be added to a complex state machine design with an external asynchronous input to

improve its reliability? Briefl y discuss your answer.
 9.73 Can a synchronizer circuit be used to improve the reliability of a simple state machine? Briefl y

discuss your answer.

BA

INIT
(asyn)

EA
EB

CLK

Bus arbiter
(controller) A_ON

BUS_A
B_ON

BUS_B

8 8

8

8 8

3-state circuit

BUS_C

(a)

Name
FF outputs

Moore outputs

Legend

EIs
INIT

(asyn)

(b)

S0
Y0

S1
Y2

A_ON

S2
Y1

B_ON
EA

EA EB

EB

EA⋅EB EA⋅EB

EA⋅EB

EA⋅EB

EA⋅EB

FIGURE P9.62

www.itpub.net

 Problems 273

 9.74 On which clock tick is the output of a synchronizer circuit applied to the input of a complex state
machine? Briefl y discuss your answer.

 9.75 Write a mixed architecture declaration for the state machine in Figure P9.75 using the two-process
PS/NS method. The synchronous CE (clock enable) input for the design must be obtained from the
asynchronous input A_CE via a synchronizer circuit provided in the VHDL code. Assign values to
the fl ip-fl op outputs in a selected signal assignment (with-select-when statement). Let the name of
the design entity be OHD_counter_A_CE.

FIGURE P9.66

BA

RST
(asyn)

EA
EB

CLK

Bus arbiter
(controller) A_ON

BUS_A
B_ON

BUS_B

8 8

8

8 8

3-state circuit

BUS_C

(a)

Name
Q1 Q0

Moore outputs

Legend

EIs
RST

(asyn)

S0
00

S1
01

A_ON

S2
10

B_ON
EA

EA EB

EB

EA⋅EB EA⋅EB

EA⋅EB

EA⋅EB

EA⋅EB

(b)

FIGURE P9.75

Name, Q2 Q1 Q0
four,
two,
one,

1 0 0
0 1 0
0 0 1

INIT
(asyn)

CE CE

CECE

CE

CE

 9.76 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the state machine in Figure P9.75.

 9.77 Combine your code for problems 9.75 and 9.76 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

 9.78 Write a mixed architecture declaration for the one-hot encoded state machine controller circuit and
the controlled circuit in Figure P9.78 using the two-process PS/NS method. The controller state
diagram in Figure P9.78a represents a state machine that is controlling the controlled circuit, which
is represented by the truth table in Figure P9.78b. This design can be thought of as a decomposi-
tion of a more complicated state machine with additional Moore outputs (M4, M3, M2, M1, and
M0) represented by the outputs in the truth table. In this decomposed design, the Moore outputs
are generated by the controlled circuit. Observe that there is one fl ip-fl op dedicated to each state,
and the Show Where True signal convention is used. Assign values to the fl ip-fl op outputs and the
Moore output Z2 in selected signal assignments (SSAs). Use a selected signal assignment (SSA) for
the controlled circuit. Assume that the input signal STOP must be obtained from the asynchronous

274 Chapter 9 Complex Finite State Machine Design with VHDL

input signal A_STOP via a synchronizer circuit provided in the VHDL code. Let the name of the
design entity be OHD_counter_A_STOP.

FIGURE P9.78

Legend

EI
Mealy output

Y3 Y2 Y1 Y0 M4 M3 M2 M1 M0

1 0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1

0
0

Controlled circuit truth table

(b)

INIT
(asyn)

S8
Y3
Z2

S4
Y2

STOP STOP
Z1

Name

FF outputs

Moore output

Controller circuit state diagram

(a)

S1
Y0
Z2

S2
Y1

 9.79 Write the required library clause, use clause (for the package IEEE.STD_LOGIC_1164), and entity
declaration for the state machine in Figure P9.78.

 9.80 Combine your code for problems 9.78 and 9.79 to form a complete VHDL design. Obtain a simula-
tion waveform diagram that shows correct functionality for the complete VHDL design.

Section 9.11 Additional State Machine Design Methods
 9.81 Show complete VHDL code for the marching 1s counter represented by the state diagram in

Figure P9.81. Notice that this counter counts in the following sequence in decimal 0, 4, 6, 7, 3, 1,
0, In binary the sequence is 000, 100, 110, 111, 011, 001, 000, The counter gets its name
from the binary sequence, where it appears that 1s are marching from left to right when the signal
EN (Enable) is asserted—that is, EN is 1. When EN is 0, the counter holds the present count. Show
a simulation for your design to verify that your VHDL code works. Name the design entity M1sC.

FIGURE P9.81

Name
Q2 Q1 Q0RST (asyn)

Legend

EI

EN

EN
EN

EN

EN

EN

EN

EN EN

EN

EN

EN

a
000

f
001

e
011

d
111

c
110

b
100

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 9.82 Show complete VHDL code for the compact encoded one-pulse circuit represented by the state

diagram in Figure P9.82. When input X is 1, a single pulse is generated. Show a simulation for your
design to verify that your VHDL code works. Name the design entity OPC_CE.

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 9.83 Show complete VHDL code for the one-hot encoded one-pulse circuit represented by the state

diagram in Figure P9.83. When input X is 1, a single pulse is generated. Show a simulation for your
design to verify that your VHDL code works. Name the design entity OPC_OHE.

www.itpub.net

 Problems 275

FIGURE P9.82

c
11

a
00

b
01

PULSE

RST (asyn)

Legend

EI
Name
Q1 Q0

Moore output

X

X

X

X

FIGURE P9.83

c
Q0

a
Q2

b
Q1

PULSE

INIT (asyn)

Legend

EI
Name

FF outputs

Moore output

X

X

X

X

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 c. Show your design using the hybrid PS/NS method.
 9.84 Show complete VHDL code for the simple fi xed combinational lock circuit represented by the

state diagram in Figure P9.84. The combination for the lock is CB5 CB4 CB3 CB2 CB1 CB0
5 101101. When the input for the combination is applied, the signal OPEN_L is asserted—that is,
OPEN_L 5 1. If the correct inputs are not applied, then output signal ERROR is asserted—that is,
ERROR 5 1. Show a simulation for your design to verify that your VHDL code works. Name the
design entity FCLC.

FIGURE P9.84

a
000

c
010

b
001

d
011

e
100

f
101

g
110

OPEN_L

h
111

ERROR

Legend

RST (asyn)
Name

Q2 Q1 Q0

Moore outputs EIs
CB5

CB4

CB4

CB5

CB3

CB3

CB2

CB1 CB2

CB1

CB5

CB5

CB0

CB0

276 Chapter 9 Complex Finite State Machine Design with VHDL

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 c. Show your design using the hybrid PS/NS method.
 9.86 Show complete VHDL code for the one-hot encoded two-pulse circuit represented by the state

diagram in Figure P9.86. When input X is 1, two pulses are generated. Show a simulation for your
design to verify that your VHDL code works. Name the design entity TPC_OHE.

FIGURE P9.85

a
00

c
11

b
01

PULSE

RST (asyn)

Legend

EI
Name
Q1 Q0

Moore output

X

X

X

X
d
10

PULSE

FIGURE P9.86

a
Q3

c
Q1

b
Q2

PULSE

INIT (asyn)

Legend

EI
Name

FF outputs

Moore output

X

X

X

X
d

Q0

PULSE

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 c. Show your design using the hybrid PS/NS method.
 9.87 Show complete VHDL code for a very basic traffi c light controller and controlled circuit.

Figure P9.87a shows a drawing for the traffi c light sequence and an acronym key. Sensors are
assumed to be embedded on each side of the intersection in street A and also on each side of the
intersection in street B. The signal SSA is the sensor for street A, and the signal SSB is the sen-
sor for street B. A sensor is asserted—that is, the sensor output is 1—when a car passes over the
sensor. Figure P9.87b shows the state diagram for the traffi c light controller and the truth table for
the controlled circuit. The controlled circuit shows the truth table for light signals for each of the
streets—that is, RA, YA, and GA are the light signals for street A while, RB, YB, and GB are the
light signals for street B via Figure P9.87a. Show a simulation for your design to verify that your
VHDL code works. Name the design entity TLC_CC.

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 c. Show your design using the hybrid PS/NS method.
 9.85 Show complete VHDL code for the compact encoded two-pulse circuit represented by the state

diagram in Figure P9.85. When input X is 1, two pulses are generated. Show a simulation for your
design to verify that your VHDL code works. Name the design entity TPC_CE.

www.itpub.net

 Problems 277

FIGURE P9.87

R R R R

G G

Y Y

SA SB SA SB SA SB SA SB

State name SA
(normal

flow)

CSA
(changes

due to
sensor
SSA)

SB
(normal

flow)

CSB
(changes

due to
sensor
SSB)

Acronym Key:
SA = street A
CSA = change street A
SB = street B
CSB = change street B
SSA = sensor in street A
SSB = sensor in street B

SA
00

CSA
01

SB
10

CSB
11

RST (asyn)

SSB

SSB

SSA

Name
Q1 Q0

Moore outputs

Legend

EIs

Q1 Q0 RA YA GA RB YB GB

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
0

1
0
0
0

1
1
0
0

0
0
0
1

0
0
1
0

SSA

Traffic light controller
state diagram

Controlled circuit
truth table

(b)

 a. Show your design using the two-process PS/NS method.
 b. Show your design using the two-assignment PS/NS method.
 c. Show your design using the Hybrid PS/NS Method.
 9.88 Show complete VHDL code for the complex state machine system shown in Figure P9.88a. The

frequency divider is added to the complex state machine to slow down the clock so that you
can observe the circuit working in hardware on a BASYS 2 board or a NEXYS 2 board. In this
problem, the complex state machine in problem 9.87 is used. If you did not work problem 9.87,
then you need to work that problem fi rst to verify that it works correctly and then include the fre-
quency divider. If you did work problem 9.87, simply expand your code to include the frequency
divider. Use the arithmetic method for the design of the frequency divider. Name the design entity
TLC_CC_with_f_divider.

 To observe your design working on a BASYS 2 board or a NEXYS 2 board make a label to
set above the single green LEDs as shown in Figure P9.88b to indicate their intended color and/or
outputs. Use colored highlighters to highlight R (red), Y (yellow), and G (green) if you have these
colors.

(a)

278 Chapter 9 Complex Finite State Machine Design with VHDL

 a. Show the complex state machine using the two-process PS/NS method.
 b. Show the complex state machine using the two-assignment PS/NS method.
 c. Show the complex state machine using the hybrid PS/NS method.

Street A Street B
G R Y G Q1 Q0R Y

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

(b)

Frequency divider
(binary up counter, 29 bits)

COUNT(28)CLK
(50 MHz)

SSA

SSB

SLOW_CLK

(93.1 mHz)

RST
(asyn)

Traffic light
controller

CLR

Q0

Q1

Controlled
circuit

RA

RB

YB

GB

YA

GA

R

Y

G

R

Y

G

Traffic
lights

Street A

Street B

Complex state machine

Recommended I/O on BASYS 2 board or NEXYS 2 board for this design: SSA(SW1), SSB(SW0),
 RST(BTN3), RA(LD7), YA(LD6), GA(LD5), RB(LD4), YB(LD3), GB(LD2), Q1(LD1), and Q0(LD0).

(a)

FIGURE P9.88

www.itpub.net

C h aa p t e rr

Basic Computer Architectures

Chapter Outline

 10.1 Introduction 279

 10.2 Generic Data-Processing System or Computer 279

 10.3 Harvard-Type Computer and RISC Architecture 280

 10.4 Princeton (von Neumann)-Type Computer and CISC Architecture 282

 10.5 Overview of VBC1 (Very Basic Computer 1) 283

 10.6 Design Philosophy of VBC1 283

 10.7 Programmer’s Register Model for VBC1 286

 10.8 Instruction Set Architecture for VBC1 287

 10.9 Format for Writing Assembly Language Programs 289

 Problems 290

10.1 INTRODUCTION

In this chapter you will learn how to identify each of the parts of a Harvard-type computer and
RISC architecture, and how it compares to a Princeton-type computer and CISC architec-
ture. You will be introduced to the programmer’s register model (PRM) and the instruction
set architecture (ISA) of a very basic Harvard-type computer called VBC1 (Very Basic Com-
puter 1). A block diagram and partial schematic diagram are provided for VBC1. The format
for writing assembly language programs for VBC1 is also presented. You will be introduced to
an editor, assembler, and simulator—which we call EASY1—that will allow you to test your
assembly language programs.

10.2 GENERIC DATA-PROCESSING SYSTEM OR COMPUTER

We refer to a digital computer as a device in which a program (a series of instructions or
commands) can be stored and then executed serially—that is, one instruction followed by the
next. Each instruction consists of a set of bits referred to as machine code. Instructions are
performed by executing a series of transfer functions or micro-operations, where each transfer
function represents a digital circuit. This will be discussed later when we talk about computer
design. The instruction set—that is, the list of instructions (or commands) that the computer
can execute—is selected by the computer designer(s). After you learn how to design VBC1,
you can select your own instruction set and design your own computer. The instruction set for
VBC1 only contains eight instructions. This makes learning the instruction set rather easy, as
you will see.

rr 10

279

280 Chapter 10 Basic Computer Architectures

 Figure 10.1 shows the functional units of a generic data-processing system or computer.

Instructions

Address

Legend

CPU

Output unitInput unit

Control unit

Data path
unit

Memory
unit Control

Data/address

FIGURE 10.1 Functional units of a
generic data-processing system or
computer

 The program for the generic computer is stored in the memory unit, and instructions are
supplied to the control unit. The control unit directs the operation of the computer via the con-
trol lines. The data path unit receives external inputs from the input unit. The data path unit sup-
plies external outputs to the output unit. The data path unit contains registers for temporary data
storage and performs arithmetic operations, logic operations, shift operations, and so on. The
control unit and the data path unit make up what is generally called the CPU (central processing
unit).
 If you are using a computer that does not have a particular instruction that you need, you
may be able to create a software algorithm to emulate the instruction by executing a series of
instructions in the instruction set that is provided. This technique is used at the end of this chap-
ter to create a subtraction instruction and also an unconditional jump instruction from the set of
existing instructions for VBC1.
 Rather than adding a series of instructions via a software algorithm, you can add a com-
puter peripheral to do a task. Suppose we wanted to use a keyboard to input data. A software
algorithm could be created to read and detect which button is pressed. An alternate solution
would be to add a peripheral (a keyboard encoder) to handle the conversion.
 Suppose we wanted to drive a 7-segment display to output data. A software algorithm could
also be created to handle this conversion. An alternate solution would be to add a peripheral
(a BCD to 7-segment decoder) to handle the conversion. The trend today is to add computer
peripherals on the same die or chip to save designers the trouble of adding them externally.
Computer execution time can be improved by adding peripherals to the same die. This is the
approach we use in this book for the BCD to 7-segment display decoder.

10.3 HARVARD-TYPE COMPUTER AND RISC ARCHITECTURE

Figure 10.2 shows the 6 basic units that make up a Harvard-type computer.
 The symbols that make up each unit in Figure 10.2 are simple memory joggers. The instruc-
tion memory unit and the data memory unit are represented as separate rectangular blocks that
contain arrays of flip-flops for storage. The control unit is shown as a state machine via a state
diagram. The data path unit is shown as an ALU (arithmetic logic unit) schematic symbol. The
input unit is shown as inputs from slide switches and push-button switches. The output unit is
shown as outputs to light emitting diodes (LEDs) and a 7-segment display. The control unit, the
data memory unit, and the data path unit make up the CPU.
 Things you should know about the basic units of a Harvard-type computer and a RISC
(reduced instruction set computer) architecture:

www.itpub.net

 10.3 Harvard-Type Computer and RISC Architecture 281

• First and foremost, a Harvard-type computer has a separate instruction path and data
path. One bus is used for the instruction path, and a second bus is used for the data path.
VBC1 is a Harvard-type computer that contains an instruction path of 8 bits and a data path
of 4 bits. Howard Aiken is credited for inventing the Harvard-type computer in the 1940s at
Harvard University. The computer was named the Mark-III, and an improved version was
named Mark-IV.

• The instruction memory unit is where a program is saved for execution.
• The registers in the data path unit (or in the data memory unit) are used for temporary data

storage during program execution.
• Harvard-type computers usually have a large number of registers in the CPU dedicated

for fast temporary data storage. (VBC1 is a Harvard-type computer that has only two 4-bit
registers for temporary data storage.)

• The number of bits for the instruction memory unit is usually larger than the number of
bits for the data memory unit as emphasized by the widths of the rectangular blocks in
the instruction memory unit compared to the widths of the rectangular blocks in the data
memory unit.

• Operands usually have to be placed in registers in the CPU. This is sometimes referred to
as a register-register architecture.

• The number of bits for the instruction memory unit is chosen so that each instruction resides
at only one address (or location) in the instruction memory unit—that is, each instruction
has a fixed length or fixed number of bits. Commercial Harvard-type computers, called
microcontrollers, are RISC architectures. A microcontroller is a computer on a chip.
These types of computers have a small number of simple instructions, and each instruction
is generally executed in just one machine cycle or instruction cycle. A machine cycle rep-
resents a specified number of clock cycles.

• RISC architectures normally have few addressing modes for their instructions. Address-
ing modes are different ways in which operands are specified—that is, immediate, direct,
indirect, and so on.

8

Instruction
memory unit

Data
memory unit

Data 0

Data 1

Data 2

Data 3

Control unit

Input unit Data path unit Output unit

Arithmetic logic unit
(ALU) 7-segment display

LEDs

Slide switches

Push-button switches

State diagram

Instruction 0

Instruction 1

Instruction 2

Instruction 3

FIGURE 10.2 Six basic
units that make up a
Harvard-type computer

282 Chapter 10 Basic Computer Architectures

10.4 PRINCETON (VON NEUMANN)-TYPE COMPUTER
AND CISC ARCHITECTURE

How does a Harvard-type computer and a RISC architecture compare to a Princeton-type com-
puter? Figure 10.3 shows the five basic units that make up a Princeton-type computer.

 Things you should know about the basic units of a Princeton (or von Neumann)-type
computer:

• First and foremost, a Princeton (or von Neumann)-type computer has a single memory unit
for storing programs and data; thus, it has only one memory bus to communicate with the
CPU. This is sometimes referred to as the von Neumann bottleneck. Because instructions
and data must be accessed in sequential order, a Princeton-type computer requires a higher
clock frequency to execute an equivalent number of instructions compared to a Harvard-
type computer. John von Neumann is credited for inventing the first stored program com-
puter in 1947 at the Institute for Advanced Study in Princeton, New Jersey, which is just a
short distance away from Princeton University. The computer was called the IAS machine.

• The number of bits for the instruction memory is the same as the number of bits for the data
memory because the same memory unit is used for both instructions and data.

• Princeton-type computers normally have just a few registers in the CPU dedicated for fast
temporary data storage.

• Operands can either be placed in a dedicated register called the accumulator or be placed
in instruction memory. This is sometimes referred to as register-memory architecture.

• Each instruction in a Princeton-type computer often requires more than one address (or
location) in the instruction memory unit. Commercial Princeton-type computers called
microcontrollers are CISC (complex instruction set computer) architectures. These types

8

Instruction memory
unit

Data 0

Data 1

Data 2

Data 3

Control unit

Input unit Data path unit Output unit

Arithmetic logic unit
(ALU) 7-segment display

LEDs

Slide switches

Push-button switches

State diagram

Instruction 0

Instruction 1

Instruction 2

Instruction 3

FIGURE 10.3 Five basic
units of a Princeton (or
von Neumann)-type
computer

www.itpub.net

 10.6 Design Philosophy of VBC1 283

of computers have a large number of simple as well as complex instructions. The instruc-
tion length is not fixed, and complex instructions generally require more clock cycles to
complete their execution compared to simple instructions.

• CISC architectures usually have many different addressing modes for the instructions.

 Many different types of hybrid architecture computers exist today. These styles borrow
from the Harvard-type and the Princeton-type computers in addition to adding other features
that are not found in either the Harvard or Princeton computer. A RISC architecture can be
designed in a Princeton-type computer, while a CISC architecture can be designed in a Harvard-
type computer. We place our emphasis on the Harvard-type computer with a RISC architecture.

10.5 OVERVIEW OF VBC1 (VERY BASIC COMPUTER 1)

Figure 10.4 shows a rather simple but general block diagram for VBC1. VBC1 is a Harvard-type
computer.

 Observe that the data path unit is 4 bits wide, while the instruction memory unit is 8 bits wide.
The instruction memory unit can contain only 16 instructions because the Program Counter (PC)
only has 4 bits (24 5 16 locations or addresses). The instructions stored in the instruction memory
unit tell the computer what operations to do. The external input for VBC1 is 4 slide switches and
the external output is 4 LEDs. The ALU provides the logic for the instructions LOADI, ADDI,
ADD, and SR0. Four additional instructions are also available: IN, OUT, MOV, and JNZ. VBC1
is a basic programmable 4-bit computer with 8 different instructions with 22 variations. You will
learn how to program VBC1 with assembly language in Experiment 10 in Appendix A using the
editor/assembler/simulator 1, which we call EASY1. For a tutorial on EASY1, see Appendix D.

10.6 DESIGN PHILOSOPHY OF VBC1

VBC1 is a very simple computer with just a few instructions that can be easily learned. VBC1 is
designed using the hardware description language VHDL to allow the hardware implementation
of VBC1 to be downloaded into a FPGA for testing.

Control unitInstructional memory unit (RAM)

16 instuctions (8 bits)

0
1
2
3

E
F

R0
OPR1

3 2 1 0

3 2 1 0
3 2 1 0

7 6 5 4

Data path unit

ALU provides logic for the instructions
LOADI, ADDI, ADD, and SR0 (4 bits)

R1 (4 bits)

R0 (4 bits)

Control
signals
(9 bits)

Program counter (PC)
(4 bits),

instruction decoder

Input unit

Set of 2
registers

and
steering
circuits
(4 bits)

D1
(4 bits)

Operand 1
(4 bits)

Operand 2
(4 bits)

Result
(4 bits)

Output port
(4 bits)

R0/R1 (4 bits)

Immediate
data/address

(4 bits)

Data input
(input is 4 slide

switches)

PC
(4 bits)

IR
(8 bits)

Output unit

Output is 4 LEDs
OP

(4 bits)

FIGURE 10.4 Block
diagram for VBC1

284 Chapter 10 Basic Computer Architectures

 A simple loading program counter (LPC) is used to load instructions into instruction
memory. The instruction memory for VBC1 is 16 by 8: only 16 instructions can be placed in
the instruction memory and each instruction is only 8 bits wide. A multiplexed display system
is used to display the program counter (PC) and the instruction register (IR) when loading the
instructions via machine code.
 We refer to the normal program counter (PC) for VBC1 as the running program counter
(RPC) to distinguish it from the simple loading program counter. The PC provides the correct
address when instructions are executed. An assembly language program can be executed one
instruction at a time (single stepped) or run at the specified frequency of the signal SPEED.
 Because the data path consists of 4 bits, and the instruction path consists of 8 bits, VBC1
has the form of a Harvard-type computer. The input is just 4 bits supplied by 4 dedicated slide
switches. The output is just 4 bits connected to four dedicated single LEDs. This keeps the
design very simple but is restricted to one input port and one output port. VBC1 does not have a
data memory unit.
 An annotated schematic is provided for each module of VBC1. VHDL code is written for
each logic module to form a final hardware design. The hardware design can be compiled and
downloaded into an FPGA. The hardware design for VBC1 can be tested by writing an assem-
bly language program, loading the machine code for the program into instruction memory, and
executing the program by either single stepping through the program or running the program at
the specified frequency of the signal SPEED.
 We designed VBC1 with VHDL using a flat design approach, which consists of part data-
flow design style and part behavioral design style. A structural design style could be used for
various modules. Schematic capture could be also used to draw each module by using library
parts supplied by the schematic capture program. VBC1 could also be designed with Verilog
HDL. As you can see, there are many ways the hardware design for VBC1 could be generated
that differ from the way we elected to design VBC1.
 Figures 10.5a and 10.5b show a partial schematic for VBC1.
 The partial schematic for VBC1 provides a little more detail of some of the actual circuits
we will cover in the following chapters. Figure 10.5a shows the data path circuit (4 bits) and
Figure 10.5b shows the control (9 bits) and instruction path circuit (8 bits). The entire schematic or
circuit diagram will be implemented via VHDL code. The I/O key shows the slide switches, push-
button switches, and LEDs that are used on either a BASYS or NEXYS board (see Appendix C).
 We will briefly discuss the circuits in Figure 10.5a and b so that you may gain a better
understanding of the hardware and the instructions that VBC1 can execute. The circuit in
Figure 10.5a can be described as follows:

• MUXs (multiplexers) act as steering circuits.
• Register R0 and register R1 are data registers with 4 bits.
• MUXs 1, 2, and 3 provide the data path for the data registers labeled register R0 and register

R1.
• The ALU is where the instructions LOADI, ADDI, ADD, and SR0 are implemented.
• MUXs 2, 4, and 5 provide the data path for the two 4-bit operands supplied to the ALU.
• The block labeled Input switches 4 bits provides the data input.
• The block labeled Output port drives the 4 LED outputs.

 The circuit in Figure 10.5b can be described as follows:

• MUX 6 is enabled to allow the JNZ instruction to pass a new address to the Adder in the
program counter (PC).

• If MUX6 is disabled, then the current value of the PC is incremented to point to the next
instruction.

• The PC generates the address for the instruction memory, which is where the instructions
are placed.

www.itpub.net

 10.6 Design Philosophy of VBC1 285

0

1

0

1

0

1

MUX 2

LOAD_OP

LOAD_R0

RST: BTN3

I/O Key

Data input: SW3,SW2,SW1,SW0

Data output: LD3,LD2,LD1,LD0

MUX 1
MUX 3

0

1

MUX 5

(Immediate data)

LOADI

ADDI

ADD

SR0

0

1

MUX 4

Register R0
(4 bits)

Output port
(4 bits)

Output
LEDs
(4 bits)

Register R1
(4 bits)

ALU
(4 bits)

Data input
(input

switches
4 bits)

M2

RST

M1

M5

(a)

M4

IR(7:5) IR(3:0)

M3

RST
(asyn)

RST
LOAD_R1

LOAD_MEM

I/O Key

MUX 6
1 0

Loadable register
(4 bits)

Instruction decoder

Program counter (PC)
(4 bits)

8 switches
(8 bits to load
instructions)

Load memory
push button

To manually
load memory

Write enable
push button

Instruction memory
(16 addresses by

8 bits wide)
and

instruction register
(IR)

Adder
(4 bits)

Single step/run
switch

Single-step
push button

Reset
push button

(b)

IR (7:0)

IR (3:0)
(NEW_A)

R0 (3:0)

RST

SEL_ADDR

SINGLE_STEP

SINGLE_STEP: SW7
SEL_ADDR: BTN1

LOAD_MEM: BTN2

INS (7:0): SW7 ... SW0

RST: BTN3

WEI: BTN0

M6

R1 (3:0)

M1 M2 M3 M4 M5 M6 LOAD_R0 LOAD_R1 LOAD_OP

WEI

INS (7:0)

INC

FIGURE 10.5 Partial
schematic for VBC1:
(a) data path circuit;
(b) control and instruc-
tion path circuit

286 Chapter 10 Basic Computer Architectures

• The instruction memory provides the instructions for VBC1 via the instruction register
(IR).

 For this design, the instruction register is simply the current contents of the instruction
memory.

• The instruction decoder decodes the IR to provide the control for driving the MUXs
(1 through 6) and the data registers R0, R1, and the output port.

• The instructions IN, OUT, MOV, and JNZ are implemented by the way the circuit is
formed—that is, the architecture—controlled by the instruction decoder.

 The rest of the book is about the design and programming of VBC1. We will begin with the
programming of VBC1.

10.7 PROGRAMMER’S REGISTER MODEL FOR VBC1

A programmer’s register model (PRM) shows the input, the output, the important registers
required for a computer, the program counter, and the bit range of each register (i.e., 3 down to 0
for R0). The PRM does not provide the details of how the computer is designed or implemented
in logic. The design of VBC1 in VHDL will be presented later.
 Figure 10.6 shows a programmer’s register model for VBC1.

 The PRM, or simply the register model, shows the registers R0 (register 0) and R1 (register
1), the Output, and the Input. Because OP (output port) is connected directly to the Output (4
LEDs) in VBC1, OP is not included in the PRM. The register model also shows the PC (pro-
gram counter), the IR (instruction register), and the instruction memory. To run a program, the
machine code or object code for the program is first placed into instruction memory. The PC is
cleared to 0000, and the computer can either be single stepped or run to execute each instruction.
 For VBC1, the PC provides the 4-bit address of the next instruction to be executed. The
value in the PC always provides or points to the address of the next instruction to be executed in
the instruction memory. The value in the IR always provides or shows the machine code for the
instruction that will be executed next.
 Register 0 (R0) and register 1 (R1) provide temporary storage for a program (4 bits for
VBC1). The Output is where the computer provides the external output (again, 4 bits for VBC1),
and the Input is where the computer gets its external data (4 bits for VBC1). The number of bits
for the width of the data is the same as the data path for the computer (4 bits for VBC1). The
output port is simply the gateway to the four output LEDs. The 4-bit value placed in the OP is
directly outputted to the four LEDs for VBC1.

00

1

2

3

4

E

F

5

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0

3 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

0 0 0 0

3 0

7 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 10.6
Programmer’s
register model
for VBC1

www.itpub.net

 10.8 Instruction Set Architecture for VBC1 287

10.8 INSTRUCTION SET ARCHITECTURE FOR VBC1

An instruction set architecture (ISA) is a programmer’s view of a computer. The ISA provides
detailed information of all the commands (or instructions) that a computer can execute. VBC1
has eight different instructions with 22 variations. Each instruction is presented in three dif-
ferent forms: (1) assembly language form (ALF), (2) transfer function form (TFF), and
(3) machine code form (MCF). A programmer writes assembly language programs for VBC1
using the assembly language form. The transfer function form (sometime called register transfer
language form) is used to explain exactly what each instruction does. The machine code form
shows the instructions in terms of 1s and 0s. Remember that all digital logic circuits work with
only binary data. The machine code form is loaded into the instruction memory for execution.
 Table 10.1 shows the assembly language form for all the instructions for VBC1 with a brief
description in English of each instruction. The instructions in Table 10.1 are shown in the order
in which they will be presented. DR represents the destination register, which may be either
R0 or R1. SR represents the source register, which may be either R0 or R1.

TABLE 10.1 The instructions in assembly language form and a brief description

of each instruction for VBC1

Instructions in assembly
language form (ALF) Brief description of the instructions

IN DR Input the 4 slide switch values (data input) into DR

OUT DR Output the contents of DR to output port (OP) to four LEDs

MOV DR,SR Move the contents of SR into DR

LOADI DR,Data Load immediate Data into DR

ADDI DR,Data Add immediate Data to the contents of DR, and place the result in DR

ADD DR,SR Add the contents of SR to the contents of DR, and place the result in DR

SR0 DR,SR Shift the contents of SR to the right 1 bit with 0 fill of the MSB, then place the result into DR

JNZ DR,Address Jump if the contents of DR is not 0 to Address, else execute the next instruction

 Table 10.2 shows the instructions in transfer function form. The transfer function form pro-
vides a concise description in a mathematical or symbolic form of each instruction.

TABLE 10.2 The instructions in assembly language form and in transfer

function form for VBC1

Instructions in assembly language form
(ALF) Instructions in transfer function form (TFF)

IN DR DR d DI(3:0)

OUT DR OP d DR

MOV DR,SR DR d SR

LOADI DR,Data DR d IR(3:0) where Data 5 IR(3:0)

ADDI DR,Data DR d DR 1 IR(3:0) where Data 5 IR(3:0)

ADD DR,SR DR d DR 1 SR

SR0 DR,SR DR d 0 SR(3:1)

JNZ DR,Address PC d IR(3:0), if DR 2 0 where Address 5 IR(3:0)

else PC d PC 1 1

288 Chapter 10 Basic Computer Architectures

 The transfer functions for each of the instructions work as follows: the 4-bit content on the
right side of the gets, takes on, or goes into symbol, “d”, is simply transferred to the register
on the left side of the symbol. The previous value of the register on the left side of the symbol is
overwritten.
 VBC1 is a very basic small 4-bit digital computer. Table 10.3 shows the complete detailed
instruction set for VBC1 in alphabetical order for easy reference. The machine code form has
been added to the table to provide the binary or object code for each instruction.

1 0 1 0/1 0 0 0 0

0ADD DR,SR DR DR + SR

PC + 1

DR DR + IR(3:0)

DR DI(3:0)

DR IR(3:0)

DR 0 SR(3:1)

DR SR

OP DR

PC
else PC

IR(3:0), if DR ≠ 0

ADDI DR,Data

IN DR

JNZ DR,Address

LOADI DR,Data

MOV DR,SR

OUT DR

SR0 DR,SR

7
7:5 OPCODE

3:0 Immediate Data (Source)

3:0 Immediate Data (Source)

3:0 Address (Destination)

Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

Source Reg

Source Reg

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

6 5 4 3 2 1 0

1 0 0/1 0/1 0 0 0

0

7 6 5 4 3 2 1 0

1 1 0/1 D D D D

7 6 5 4 3 2 1 0

1

7 6 5 4 3 2 1 0

1 1 0/1 A A A A

0

7 6 5 4 3 2 1 0

0 1 0/1 D D D D

0

7 6 5 4 3

Source Reg

2 1 0

0 0 0/1 0/1 0 0 0

1

7 6 5 4 3 2 1 0

1 0 0/1 0 0 0 0

1

7 6 5 4 3 2 1 0

0 0 0/1 0/1 0 0 0

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

TABLE 10.3 Complete detailed instruction set for VBC1 in alphabetical order

in assembly language form (ALF), transfer function form (TFF), and machine code

form (MCF)

 In Table 10.3, the abbreviations in the column “Transfer function form (TFF)” are as fol-
lows: DR is destination register, SR is source register, IR is instruction register, DI is data input,
PC is program counter, and OP is output port.

www.itpub.net

 10.9 Format for Writing Assembly Language Programs 289

10.9 FORMAT FOR WRITING ASSEMBLY LANGUAGE PROGRAMS

Assembly language for VBC1 is written in four fields as shown in Table 10.4.

TABLE 10.4 Assembly language for VBC1 is written

in four fields

Field 1 Field 2 Field 3 Field 4

[label:] mnemonic operands [;comment]

 The brackets are not part of assembly language and are used to represent fields that are
optional. Do not use the brackets when writing programs. The first field is the label field, and
it always begins with a letter and ends with a colon (:). The second field is the mnemonic field,
which is the instruction. The third field is the operands field that contains operands that are
needed by the instruction. In an instruction with two operands, the operands must be separated
by a comma (,). The last field is the comment field, and it always begins with a semicolon (;).
 A very simple program is a single instruction which contains only the mnemonic field
(field 2) and the operands field (field 3) as shown in Program 10.1.

 To add a label called “start” and a comment “input switch values to R1” to Program 10.1,
change the program as shown in Program 10.2.

PROGRAM 10.1
Very simple program

Fields 2 & 3

IN R1

 The assembler (the program that is used to convert the assembly language program into
machine code) will generate the same machine code for the single instruction IN R1 with two
fields as the instruction with four fields. The assembler generates the address for the label
“start” based on its location in the program and allows the user to refer to that address as “start.”
The assembler translates the instruction IN R1 into its machine code, which is 10110000. The
assembler simply ignores the comment field. The comment field is used to explain what the
instruction is doing so that the program is understandable to the program writer at a later time
or to another person trying to understand the program for the first time.
 Each program—whether it is written as one line of assembly language or multiple lines
of assembly language—is treated in the same manner by the assembler. The end result of the
assembler is simply to translate each instruction into machine code, which is the 1s and 0s that
the computer needs to operate its logic gates.
 To obtain machine code for an assembly language program, the program is written with a
text editor. The program is assembled using an assembler. The result produced by the assembler
is a program translated or assembled into machine code for a specific computer. The machine
code can then be placed into the RAM to allow the instructions to be run by the computer.
VBC1 can either be run by single stepping—that is, running each instruction one at a time in the

PROGRAM 10.2 Add a label called “start” and a comment “input
switch values to R1” to Program 10.1

Field 1 Fields 2 & 3 Field 4

start: IN R1 ;input switch values to R1

290 Chapter 10 Basic Computer Architectures

sequence that the program is written—or run at a predetermined frequency (SPEED) to allow
its output to be observed by the output LEDs.
 To write assembly language programs and check your programs, you can use EASY1
(editor/assembler/simulator 1), discussed in Appendix D (EASY1 Tutorial).

 10.17 Which block in the block diagram for VBC1 provides
the control signals for VBC1? In which unit does this
block reside?

 10.18 Which instructions are performed by the ALU for
VBC1?

 10.19 What instructions are available that are not performed
by the ALU for VBC1?

Section 10.6 Design Philosophy of VBC1
 10.20 What does MUX stand for, and how many MUXs are

shown in the partial schematic for VBC1?
 10.21 Which devices provide the Input and Output for VBC1?
 10.22 Which block in the partial schematic for VBC1 tells

the computer what operation to do?
 10.23 Does VBC1 have a data memory unit?

Section 10.7 Programmer’s Register Model for VBC1
 10.24 What does a programmer’s register model (or PRM)

show about a computer?
 10.25 Draw a programmer’s register model for VBC1, and

label the registers (including memory). Specify the bit
range for each register.

 10.26 What does the value in the PC (program counter)
always represent?

 10.27 What does the value in the IR (instruction register)
always represent?

Section 10.8 Instruction Set Architecture for VBC1
 10.28 Name the three different forms that are used for each

instruction for VBC1.
 10.29 What instruction form does a programmer use to write

code for VBC1?
 10.30 What is the purpose of the transfer function form for an

instruction?
 10.31 How are instructions presented in machine code form?
 10.32 Which form for an instruction is loaded into instruc-

tion memory?
 10.33 Explain what happens to the value of the register on the

left side of the transfer function form after a transfer
takes place.

 10.34 In the complete detailed instruction set for VBC1, list
what the following abbreviations represent: DR, SR,
IR, DI, PC, and OP.

Section 10.2 Generic Data-Processing System
or Computer
 10.1 What is a digital computer?
 10.2 Name the fi ve units for a generic data-processing sys-

tem or computer.
 10.3 Which two units make up the CPU (central processing

unit) in a computer?

Section 10.3 Harvard-Type Computer
and RISC Architecture
 10.4 How does the Harvard-type computer differ from the

generic computer?
 10.5 Which type of computer does the following state-

ment describe? The instruction memory and the data
memory have a different number of bits.

 10.6 What does reduced instruction set computer (or RISC)
architecture imply?

Section 10.4 Princeton (von Neumann)-Type
Computer and CISC Architecture
 10.7 Does a Princeton-type computer have a separate data

memory similar to the Harvard-type computer? What
problem is associated with a Princeton-type computer?

 10.8 Which type of computer does the following statement
describe? The instructions in memory and the data in
memory have the same number of bits.

 10.9 What does complex instruction set computer (or CISC)
architecture imply?

Section 10.5 Overview of VBC1 (Very Basic
Computer 1)
 10.10 Is VBC1 classifi ed as a Harvard-type computer or

a Princeton-type computer? Give a reason for your
answer.

 10.11 How many bits is the data path for VBC1?
 10.12 How many bits is the instruction path for VBC1?
 10.13 How many different instructions does VBC1 have, and

how many variations are there?
 10.14 Name the units for VBC1. What is the unit that is

missing in VBC1 that is contained in a Harvard-type
computer?

 10.15 What is the maximum number of instructions that can
be used in a program for VBC1? What limits the num-
ber of instructions?

 10.16 List the two temporary registers for VBC1 that can be
used for operands for the ALU.

PROBLEMS

www.itpub.net

 Problems 291

 10.40 Write the assembly language instruction for VBC1 that
inputs the 4 slide switch values (data input) into regis-
ter R1. Use a comment fi eld with the comment “input
to R1.”

 10.41 Write the assembly language instruction for VBC1 that
outputs the value in R0 to the output port (OP) to four
LEDs. Use a comment fi eld with the comment “output
R0.”

 10.42 Write the assembly language instruction for VBC1 that
loads the immediate value 5 into register R1. Use a
comment fi eld with the comment “load 5 in R1.”

 10.43 Write the assembly language instruction for VBC1 that
adds the value in register R1 to the value in register R0
and places the result in R0. Use a comment fi eld with
the comment “add R1 to R0.”

 10.44 Write the assembly language instruction for VBC1 that
adds the value in register R0 to the value in register R1
and places the result in R1. Use a comment fi eld with
the comment “add R0 to R1.”

 10.45 Write the assembly language instruction for VBC1 that
shifts the value in register R0 to the right 1 bit with a 0
fi ll bit then places the result in R0. Use a label fi eld with
the label named “shift.” Use a comment fi eld with the
comment “shift R0 right one bit.”

Section 10.9 Format for Writing Assembly Language
Programs
 10.35 What is the maximum number of fi elds that can be

used when writing an assembly language instruction
for VBC1? What is the minimum number of fi elds for
VBC1?

 10.36 Write the assembly language instruction for VBC1 that
shifts the value in register R1 to the right 1 bit with a
0 fi ll bit then places the result in R0. Use a label fi eld
with the label named “start.” Use a comment fi eld with
the comment “shift R1 right one bit and place result in
R0.”

 10.37 Write the assembly language instruction for VBC1 that
adds an immediate value of 5 to the value in register
R1. Use a label fi eld with the label named “next.” Use a
comment fi eld with the comment “add 5 to R1.”

 10.38 Write the assembly language instruction for VBC1 that
jumps to the address at the label “start” when the value
in R0 is not 0. Use a comment fi eld with the comment
“jump to start if R0 !5 0.”

 10.39 Write the assembly language instruction for VBC1 that
moves a value placed in register R1 to register R0. Use
a comment fi eld with the comment “move R1 to R0.”

CC h a p t e r

Assembly Language
Programming for VBC1

Chapter Outline

 11.1 Introduction 292

 11.2 Instruction Set for VBC1 292

 11.3 The IN Instruction 293

 11.4 The OUT Instruction 296

 11.5 The MOV Instruction 298

 11.6 The LOADI Instruction 300

 11.7 The ADDI Instruction 301

 11.8 The ADD Instruction 303

 11.9 The SR0 Instruction 304

 11.10 The JNZ Instruction 306

 11.11 Programming Examples and Techniques for VBC1 308

 Problems 312

11.1 INTRODUCTION

In this chapter, you will learn each of the instructions for VBC1 by reviewing each instruction in
detail. You will be introduced to each instruction in assembly language form and in machine
code form. The transfer function form is then used to show how each instruction works via the
programmer’s register model (PRM). Simple programs will be used to illustrate how instruc-
tions work together to do a task. Programming examples and techniques will show you how to
write more interesting programs for VBC1.

11.2 INSTRUCTION SET FOR VBC1

As you learned in the previous chapter, VBC1 is a very basic small 4-bit digital computer.
Table 11.1 shows the complete detailed instruction set for VBC1 arranged in the order that the
instructions are presented in this chapter.
 In Table 11.1, the abbreviations in the column “Transfer function form (TFF)” are as fol-
lows: DR is destination register, DI is data input, OP is output port, SR is source register, IR is
instruction register, and PC is program counter.

CC11

292

www.itpub.net

 11.3 The IN Instruction 293

TABLE 11.1 Complete detailed instruction set for VBC1 in assembly language

form (ALF), transfer function form (TFF), and machine code form (MCF)

0 0 0 0/1 0/1 0 0 0

1 0 1 0/1 0 0 0 0

1 1 0 0/1 0 0 0 0

0 0 1 0/1 D D D D

0 1 1 0/1 D D D D

0 1 0 0/1 0/1 0 0 0

1 0 0 0/1 0/1 0 0 0

1 1 1 0/1 A A A A

3:0 Immediate Data (Source)

3:0 Immediate Data (Source)

3:0 Address (Destination)

Source Reg

Source Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7
7:5 OPCODE Dest.Reg

Source Reg

Machine
code
form (MCF)

6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

IN DR

DR DR + SR

DR DR + IR(3:0)

DR IR(3:0)

DR DI(3:0)

DR 0 SR(3:1)

DR SR

OP DR

PC + 1
PC
else PC

IR(3:0), if DR ≠ 0

OUT DR

MOV DR,SR

LOADI DR,Data

ADDI DR,Data

ADD DR,SR

SR0 DR,SR

JNZ DR,Address

Transfer
function
form (TFF)

Assembly
language
form (ALF)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

11.3 THE IN INSTRUCTION

Once you write a program for VBC1 in assembly language, the program must be assembled.
To assemble a program means to convert the assembly language program into its machine code
form. If a program is assembled by hand, this is referred to as hand assembly. A program called
an assembler can automatically assemble an assembly language program into its machine code
form. After the program is assembled, the machine code can then be placed into the instruction
memory for execution either by manual loading or by using a program called a loader. In this
chapter, you will learn how to do hand assembly and load the machine code into the instruction
memory of the PRM (programmer’s register model). The transfer function form will then be
used to show how each instruction works.
 To check that your hand assembly is correct, you can use EASY1 in Appendix D (EASY1
Tutorial). You can also execute a single instruction, or a program, via the EASY1 simulator to
check for proper program execution.
 As we discuss each instruction, we will present its assembly language form and its machine
code form, beginning with the IN (input) instruction, as shown in Form 11.1.

294 Chapter 11 Assembly Language Programming for VBC1

1 0 1 0/1 0 0 0 0

0 = R0
1 = R1

7

OPCODE bits (7:5) NOT USED bits (3:0)Dest. Reg

6 5 4 3 2 1 0

IN DR

FORM 11.1 The IN instruction

 The IN instruction provides a means to input an external value into the computer. The
external input for VBC1 is provided by four switches. The input value is either placed in R0 or
R1—that is, the destination register DR. The transfer function form for IN DR is DR d DI(3:0),
where DI is data input.
 The actual assembly language program for the IN R1 instruction is shown in two fields:
the first field is the mnemonic field, and the second field is the operands field as shown in
Program 11.1.

Mnemonic field Operands field
IN R1

PROGRAM 11.1 Assembly language program
for the IN R1 instruction

 If we were using two or more input ports, there would be a second operand listed to specify
the port number. With only one input, the second operand is not required.
 In the machine code form, bits 7:5 or bit 7 downto bit 5 are designated the OPCODE
(operation code) bits because they provide the binary code that specifies the operation that
the instruction performs—that is, the IN instruction in this case. The OPCODE bits for the
IN instruction are 101. The OPCODE bits for VBC1 were arbitrarily assigned as shown in
Table 11.1. The choice of the bit values of the OPCODE bits is up to the designer. One set of
assignments may be better than another, from a decoding standpoint, but any set of assignments
for the OPCODE bits will work. A summary of the instructions and the OPCODE bit assign-
ments for VBC1 is shown in Table 11.2.

TABLE 11.2 Summary of instructions and

OPCODE bit assignments for VBC1

Instructions OPCODE bit assignments

MOV 000

LOADI 001

ADD 010

ADDI 011

SR0 100

IN 101

OUT 110

JNZ 111

 In the machine code for the IN instruction, the destination register is bit 4. When bit 4 is
0 the destination register is R0, and when bit 4 is 1 the destination register is R1. Bits (3:0) are
not used and are set to 0. The unused bits can be used to provide up to 16 different input ports.
Because we are only using one input port (four switches) for VBC1, we elected not to specify a
port address in the assembly language form.
 If we had elected to include two or more input ports, the IN instruction would be of the form
IN DR,Port_address (it would require two operands) where IN DR,0 would allow an input from

www.itpub.net

 11.3 The IN Instruction 295

port 0 while IN DR,1 would allow an input from port 1. To keep VBC1 as simple as possible, we
elected to use only one port; hence, we do not have to specify the port address because there is
only one port.
 Assembly 11.1 shows all the versions of the IN instruction listed in assembly language and
in machine code for VBC1.

 The machine code shows the bit patterns for the IN instructions as they must be placed in
instruction memory to be executed. The machine code has the same OPCODE of 101 for bits 7:5
for all versions of the IN instruction. Note: When bit 4 is 0, the destination register is R0; when
bit 4 is 1, the destination register is R1.
 In Figure 11.1, the machine code for the instruction IN R1 is manually loaded in the
instruction memory beginning at address 0 in the programmer’s register model. All instruction
memory locations are cleared that are not loaded with a machine code instruction. The PC is
cleared to address 0 (0000) and the IR shows the machine code value at address 0 (10110000).
Registers R0, R1, and the Output in the programmer’s register model are also cleared. The input
switches are set to the value of 0110 or 6.

Assembly language Machine code
IN R0 10100000

IN R1 10110000

ASSEMBLY 11.1 All versions of the IN instruction

 When the instruction IN R1 is executed, the transfer function form indicates what happens
to the various registers of VBC1. The transfer function form for the IN R1 instruction is R1 d
DI(3:0) or R1 d DI(3) DI(2) DI(1) DI(0). In Figure 11.2, the value at the Input (4 switches) is
transferred to register R1 after executing the instruction IN R1 as shown in the programmer’s
register model.

1 0 1 1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.1 Result in the PRM after
manually loading the instruction IN
R1 into VBC1 at instruction memory
address 0 with the input switches set
to 6

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 1

0 1 1 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.2 Result in the PRM after
executing the instruction IN R1 for VBC1

296 Chapter 11 Assembly Language Programming for VBC1

 In Figure 11.2, we observe that the PC is automatically incremented to the next address
(address 1) after the first instruction at address 0 is executed. The IR now shows the machine
code value at address 1 (00000000) in the instruction memory. The PC always points to the
address for the next instruction, and the IR always lists the machine code for the next instruc-
tion. The IN R1 instruction moved the value 0110 (6) at the Input (4 switches) into register 1
(R1), which is what should have occurred. The instruction (or command) IN R1 caused no other
actions to occur.
 What we have illustrated in Figures 11.1 and 11.2 is how to manually load the machine code
for a simple assembly language instruction IN R1 into the instruction memory of VBC1 and how
the computer executes that instruction. All instructions for VBC1 can be executed in this manner
to observe the resulting action taken by VBC1—that is, one at a time via single stepping. If we had
executed the instruction IN R0 rather than IN R1, the value 0110 (6) would have been transferred
into register 0 (R0) from the Input (4 switches). Simply changing the value of the Input prior to
executing the instruction allows a different value to be transferred to the specified register.

11.4 THE OUT INSTRUCTION

Form 11.2 shows the assembly language form and the machine code form for the OUT (output)
instruction.

1 1 0 0/1 0 0 0 0

0 = R0
1 = R1

7

OPCODE bits (7:5) NOT USED bits (3:0)Dest. Reg

6 5 4 3 2 1 0

OUT DR

FORM 11.2 The OUT
instruction

 The OUT instruction provides a means to output an internal value from the computer. The
external output for VBC1 is provided by four LEDs. The output value is either supplied by R0 or
R1—that is, the destination register DR. The transfer function form for OUT DR is OP d DR,
where OP is output port.
 The actual assembly language instruction OUT R1 is shown in two fields: the first field is
the mnemonic field, and the second field is the operands field as shown in Program 11.2.

Mnemonic fields Operands field
OUT R1

PROGRAM 11.2 Assembly language program for the
OUT R1 instruction

 The OPCODE bits for the OUT instruction are 110. In the machine code, the destination
register is bit 4. When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destination
register is R1. Bits (3:0) are not used and are set to 0. The unused bits can be used to provide up
to 16 different output ports. Because we are only using one output port (four LEDs) for VBC1,
we elected not to specify a port address in the assembly language form.
 Assembly 11.2 shows all versions of the OUT instruction listed in assembly language and
in machine code for VBC1.

Assembly language Machine code
OUT R0 1 1 0 0 0 0 0 0

OUT R1 1 1 0 1 0 0 0 0

ASSEMBLY 11.2 All versions of the OUT instruction

www.itpub.net

 11.4 The OUT Instruction 297

 The machine code shows the bit patterns for the OUT instructions as they must be placed
in instruction memory to be executed. The machine code has the same OPCODE of 110 for
bits(7:5) for all versions of the OUT instruction. Note: When bit 4 is 0, the destination register is
R0; when bit 4 is 1, the destination register is R1.
 Program 11.3 shows a simple assembly language program with two instructions using the
instructions IN and OUT.

 In Figure 11.3, the machine codes for the instructions IN R1 and OUT R1 in Program 11.3
are manually loaded in the instruction memory beginning at address 0 in the programmer’s
register model. All instruction memory locations are cleared that are not loaded with a machine
code instruction. The PC is cleared to address 0 (0000), and the IR shows the machine code
value at address 0 (10110000). Registers R0, R1, and the Output in the programmer’s register
model are also cleared. The input switches are set to the value of 0111 or 7.

IN R1
OUT R1

PROGRAM 11.3 A simple assembly language
program using the instructions IN and OUT

 When the instruction IN R1 is executed, its transfer function performs the operation R1
d DI(3:0), placing the value 7 into R1. When the instruction OUT R1 is executed, its transfer
function performs the operation OP d R1. In Figure 11.4, the value at the Input (4 switches) or
0111(7) is transferred to register R1 and then transferred to the Output (4 LEDs) after executing
the instruction OUT R1, as shown in the programmer’s register model.

1 0 1 1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.3 Result in the PRM
after loading the machine code for
Program 11.3 into VBC1 at instruc-
tion memory address 0 with the input
switches set to 7

 What we have illustrated in Figures 11.3 and 11.4 is how to manually load the machine code
for a simple assembly language program into the instruction memory of VBC1 and how the

0 0 0 0 0 0 0 0

0 1 1 1

0 0 0 0

0 1 1 1

0 0 1 0

0 1 1 1

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.4 Result in the PRM after
executing Program 11.3 for VBC1

298 Chapter 11 Assembly Language Programming for VBC1

computer executes that program. All programs for VBC1 can be executed in this manner—that
is, one at a time via single stepping, to observe the resulting actions taken by VBC1. If we had
executed the assembly language program IN R0, OUT R0 rather than IN R1, OUT R1, the value
0111 (7) would have been transferred into register 0 (R0) from the Input (4 switches) and then
transferred to the Output (4 LEDs). Simply changing the value of the Input (4 slide switches)
prior to executing the program allows a different value to be transferred to the specified regis-
ter—that is, either R0 or R1.

11.5 THE MOV INSTRUCTION

Form 11.3 shows the assembly language form and the machine code form for the MOV (move)
instruction.

 The MOV instruction moves the value in the source register to the destination register. The
source register and the destination register can be either R0 or R1. The transfer function form
for MOV DR,SR is DR d SR.
 The actual assembly language instruction MOV R1,R0 is shown in two fields: the first field
is the mnemonic field, and the second field is the operands field as shown in Program 11.4.

0 0 0 0/1 0/1 0 0 0

0 = R0
1 = R1

0 = R0
1 = R1

7

OPCODE bits (7:5) NOT USED bits (2:0)Dest. Reg Source Reg

6 5 4 3 2 1 0

MOV DR,SR

FORM 11.3 The MOV
instruction

Mnemonic field Operands field
MOV R1,R0

PROGRAM 11.4 Assembly language program for
the MOV R1,R0 instruction

 The OPCODE bits for the MOV instruction are 000. In the machine code, the destination
register is bit 4. When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destination
register is R1. In the machine code, the source register is bit 3. When bit 3 is 0, the source register
is R0, and when bit 3 is 1, the source register is R1. Bits (2:0) are not used and are set to 0.
 Bits that are not used can be used to extend the OPCODE to provide more instructions. This
concept will be utilized later when we discuss adding instructions to VBC1 to make VBC1-E.
The OPCODE for VBC1 will only utilize the three bits 7:5 to keep the coding as simple as
possible.
 Assembly 11.3 shows all versions of the MOV instruction listed in assembly language and
in machine code for VBC1.

Assembly Language Machine code
MOV R0,R0 0 0 0 0 0 0 0 0

MOV R0,R1 0 0 0 0 1 0 0 0

MOV R1,R0 0 0 0 1 0 0 0 0

MOV R1,R1 0 0 0 1 1 0 0 0

ASSEMBLY 11.3 All versions of the MOV instruction

 The machine code shows the bit patterns for the MOV instructions as they must be placed
in the instruction memory to be executed. The machine code has the same OPCODE of 000 for
bits 7:5 for all versions of the MOV instruction.

www.itpub.net

 11.5 The MOV Instruction 299

 Program 11.5 shows a simple assembly language program using the instructions IN, MOV,
and OUT.

IN R1
MOV R0,R1
OUT R0

PROGRAM 11.5 A simple assembly language
program using the instructions IN, MOV, and OUT

 In Figure 11.5, the machine codes for the instructions in Program 11.5 are manually loaded
in the instruction memory beginning at address 0 in the programmer’s register model. All
instruction memory locations are cleared that are not loaded with a machine code instruction.
The PC is cleared to address 0 (0000), and the IR shows the machine code value at address
0 (10110000). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 1110 or 14.

 When the instruction IN R1 is executed, its transfer function performs the operation R1 d
DI(3:0), placing the value 14 into R1. When the instruction MOV R0,R1 is executed, its transfer
function performs the operation R0 d R1, placing the value of 14 into R0. When the instruction
OUT R0 is executed, its transfer function performs the operation OP d R0.
 In Figure 11.6 the value at the Input (4 switches) or 1110(14) is transferred to register R1 and
then transferred to register R0 and finally transferred to the Output (4 LEDs), as shown in the
programmer’s register model after executing the simple program.

1 0 1 1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.5 Result in the PRM
after loading the machine code in
Program 11.5 into VBC1 at instruc-
tion memory address 0 with the input
switches set to 14

 Observe that the MOV instruction can also be used to move the contents of R0 into R0, R0
into R1, and R1 into R1. MOV R0,R0 and MOV R1,R1 are instructions that appear to cause no
change in the source register and the destination register. These instructions can be used as NOP
(no operation) instructions. A NOP instruction is an instruction that causes no change to occur

0 0 0 0 0 0 0 0

1 1 1 0

1 1 1 0

1 1 1 0

0 0 1 1

1 1 1 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.6 Result in the PRM after
executing Program 11.5 for VBC1

300 Chapter 11 Assembly Language Programming for VBC1

and therefore can be used to simply waste time in VBC1. If you are writing a program and want
the program to wait a period of time before doing a command, you can insert MOV R0,R0 or
MOV R1,R1 into the program to create a delay. EASY1 supports NOP as an alias for MOV R0,R0.

11.6 THE LOADI INSTRUCTION

Form 11.4 shows the assembly language form and the machine code form for the LOADI (load
immediate) instruction.

 The LOADI instruction provides a means to transfer immediate data, or data that is sup-
plied as part of the instruction in bits(3:0), into the destination register. The data can be any
value 0 through 15. The destination register can be either R0 or R1. The transfer function form
for LOADI DR,Data is DR d IR(3:0).
 The actual assembly language instruction LOADI R0,5 is shown in two fields: the first field
is the mnemonic field, and the second field is the operands field as shown in Program 11.6.

0 0 1 0/1 D D D D

0 = R0
1 = R1

7

OPCODE bits (7:5) Immediate Data bits (3:0)Dest. Reg

6 5 4 3 2 1 0

LOADI DR,Data

FORM 11.4 The LOADI
instruction

Mnemonic field Operands field
LOADI R0,5

PROGRAM 11.6 Assembly language program for
the LOADI R0,5 instruction

 The OPCODE bits for the LOADI instruction are 001. In the machine code, the destination
register is bit 4. When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destination
register is R1. For the instruction LOADI R0,5, the data are provided in decimal.
 Assembly 11.4 shows all versions of the LOADI R0,Data instruction listed in assembly
language and machine code for VBC1, where Data is the decimal value of the data.

Assembly language Machine code
LOADI R0,0 0 0 1 0 0 0 0 0

LOADI R0,1 0 0 1 0 0 0 0 1

LOADI R0,2 0 0 1 0 0 0 1 0

LOADI R0,3 0 0 1 0 0 0 1 1

LOADI R0,4 0 0 1 0 0 1 0 0

LOADI R0,5 0 0 1 0 0 1 0 1

LOADI R0,6 0 0 1 0 0 1 1 0

LOADI R0,7 0 0 1 0 0 1 1 1

LOADI R0,8 0 0 1 0 1 0 0 0

LOADI R0,9 0 0 1 0 1 0 0 1

LOADI R0,10 0 0 1 0 1 0 1 0

LOADI R0,11 0 0 1 0 1 0 1 1

LOADI R0,12 0 0 1 0 1 1 0 0

LOADI R0,13 0 0 1 0 1 1 0 1

LOADI R0,14 0 0 1 0 1 1 1 0

LOADI R0,15 0 0 1 0 1 1 1 1

ASSEMBLY 11.4 All versions of the LOADI R0,Data instruction

www.itpub.net

 11.7 The ADDI Instruction 301

 The machine code shows the bit patterns for the LOADI instructions as they must be placed
in instruction memory to be executed. The machine code has the same OPCODE of 001 for bits
7:5 for all versions of the LOADI instruction.
 Program 11.7 shows a simple assembly language program using the instructions LOADI,
NOP, and OUT.

LOADI R1,9
NOP ;MOV R0,R0 is used as the NOP instruction
OUT R1

PROGRAM 11.7 A simple assembly language program using the instruc-
tions LOADI, NOP, and OUT

 In Figure 11.7, the machine codes for the instructions in Program 11.7 are manually loaded
in the instruction memory beginning at address 0 in the programmer’s register model. All
instruction memory locations are cleared that are not loaded with a machine code instruction.
The PC is cleared to address 0 (0000), and the IR shows the machine code value at address
0 (00111001). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 0000 or 0. The program is then single stepped
three times to execute each of the three instructions.

 Observe that 9 or binary 1001 is placed in R1 and then transferred to the output. The NO
OPERATION instruction (NOP) is used to simply delay the time it takes until the binary value
1001 occurs on the Output while executing the program. After single stepping through each of
the three instructions, the PC points to the address of the next instruction (0011), and the IR
contains the instruction to be executed next (00000000).

11.7 THE ADDI INSTRUCTION

Form 11.5 shows the assembly language form and the machine code form for the ADDI (add
immediate) instruction.

0 0 0 0 0 0 0 0

1 0 0 1

0 0 0 0

1 0 0 1

0 0 1 1

0 0 0 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 1 0 0 100

1

2

3

4

E

F

5

0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.7 Result in the PRM after
manually loading and then executing
Program 11.7 for VBC1 with the input
switches set to 0

 The ADDI instruction adds the value in the destination register to the data in bits (3:0) in
the instruction and places the result in the destination register. The destination register can be
either R0 or R1, and data can be any value 0 through 15. The transfer function form for ADDI

0 1 1 0/1 D D D D

0 = R0
1 = R1

7

OPCODE bits (7:5) Immediate Data bits (3:0)Dest. Reg

6 5 4 3 2 1 0

ADDI DR,Data

FORM 11.5 The ADDI
instruction

302 Chapter 11 Assembly Language Programming for VBC1

DR,Data is DR d DR 1 IR(3:0). To keep the hardware design for VBC1 as simple as possible,
no carry-out bit is included for the ADDI instruction.
 The actual assembly language instruction ADDI R1,7 is shown in two fields: the first field
is the mnemonic field, and the second field is operands field as shown in Program 11.8.

Mnemonic field Operands field
ADDI R1,7

PROGRAM 11.8 Assembly language program for
the ADDI R1,7 instruction

 The OPCODE bits for the ADDI instruction are 011. In the machine code, the destination
register is bit (4). When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destina-
tion register is R1.
 Assembly 11.5 shows all versions of the ADDI R1,Data instruction listed in assembly lan-
guage and machine code for VBC1, where Data is the decimal value of the data.

Assembly language Machine code
ADDI R1,0 0 1 1 1 0 0 0 0

ADDI R1,1 0 1 1 1 0 0 0 1

ADDI R1,2 0 1 1 1 0 0 1 0

ADDI R1,3 0 1 1 1 0 0 1 1

ADDI R1,4 0 1 1 1 0 1 0 0

ADDI R1,5 0 1 1 1 0 1 0 1

ADDI R1,6 0 1 1 1 0 1 1 0

ADDI R1,7 0 1 1 1 0 1 1 1

ADDI R1,8 0 1 1 1 1 0 0 0

ADDI R1,9 0 1 1 1 1 0 0 1

ADDI R1,10 0 1 1 1 1 0 1 0

ADDI R1,11 0 1 1 1 1 0 1 1

ADDI R1,12 0 1 1 1 1 1 0 0

ADDI R1,13 0 1 1 1 1 1 0 1

ADDI R1,14 0 1 1 1 1 1 1 0

ADDI R1,15 0 1 1 1 1 1 1 1

ASSEMBLY 11.5 All version of the ADDI R1,Data instruction

 The machine code shows the bit patterns for the ADDI instructions as they must be placed
in instruction memory to be executed. For clarity, EASY1 supports INC R0 as an alias for ADDI
R0,1 and INC R1 as an alias for ADDI R1,1. The machine code has the same OPCODE of 011
for bits 7:5 for all versions of the ADDI instruction.
 Program 11.9 shows a simple assembly language program using the instructions IN, ADDI,
MOV, and OUT.

IN R0
ADDI R0,4
MOV R1,R0
OUT R1

PROGRAM 11.9 A simple assembly language program
using the instructions IN, ADDI, MOV, and OUT

 In Figure 11.8, the machine codes for the instructions in Program 11.9 are manually loaded
in the instruction memory beginning at address 0 in the programmer’s register model. All
instruction memory locations are cleared that are not loaded with a machine code instruction.
The PC is cleared to address 0 (0000), and the IR shows the machine code value at address

www.itpub.net

 11.8 The ADD Instruction 303

0 (10100000). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 0011 or 3. The program is then single stepped
four times to execute each of the four instructions.

 After the instruction IN R0 is executed with 3 or 0011 at the INPUT, R0 first receives the
value 3. After the instruction ADDI R0, 4 is executed, R0 receives the value 3 1 4 or 7. After
the instruction MOV R1,R0 is executed, R1 receives the value 7. After the instruction OUT
R1 is executed, the Output receives the value 7. After single stepping through each of the four
instructions, the PC points to the address of the next instruction (0100), and the IR contains the
instruction to be executed next (00000000).

11.8 THE ADD INSTRUCTION

Form 11.6 shows the assembly language form and the machine code form for the ADD instruction.

0 0 0 0 0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

0 1 0 0

0 0 1 1

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 0 0 0 0 010

1

2

3

4

E

F

5

0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 0

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.8 Result in the PRM after
manually loading and then executing
Program 11.9 for VBC1 with the input
switches set to 3

 The ADD instruction adds the value in the source register to the value in the destination
register and places the result in the destination register. The source register can be either R0 or
R1, and the destination register can also be either R0 or R1. The transfer function form for ADD
DR,SR is DR d SR 1 DR. To keep the hardware design for VBC1 as simple as possible, no
carry-out bit is included for the ADD instruction.
 The actual assembly language instruction ADD R1,R0 is shown in two fields: the first field
is the mnemonic field, and the second field is the operands field as shown in Program 11.10.

0 1 0 0/1 0/1 0 0 0

0 = R0
1 = R1

0 = R0
1 = R1

7

OPCODE bits (7:5) NOT USED bits (2:0)Dest. Reg Source Reg

6 5 4 3 2 1 0

ADD DR,SR

FORM 11.6 The ADD
instruction

 The OPCODE bits for the ADD instruction are 010. In the machine code, the destination
register is bit (4). When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the desti-
nation register is R1. When bit 3 is 0, the source register is R0, and when bit 3 is 1, the source
register is R1.

Mnemonic field Operands field
ADD R1,R0

PROGRAM 11.10 Assembly language program for
the ADD R1,R0 instruction

304 Chapter 11 Assembly Language Programming for VBC1

 Assembly 11.6 shows all versions of the ADD instruction listed in assembly language and
machine code for VBC1.

Assembly language Machine code
ADD R0,R0 0 1 0 0 0 0 0 0

ADD R0,R1 0 1 0 0 1 0 0 0

ADD R1,R0 0 1 0 1 0 0 0 0

ADD R1,R1 0 1 0 1 1 0 0 0

ASSEMBLY 11.6 All versions of the ADD instruction

 The machine code shows the bit patterns for the ADD instructions as they must be placed
in instruction memory to be executed. The machine code has the same OPCODE of 010 for bits
7:5 for all versions of the ADD instruction.
 Program 11.11 shows a simple assembly language program using the instructions IN and
ADD.

IN R1
ADD R1,R1

PROGRAM 11.11 A simple assembly language
program using the instructions IN, and ADD

 In Figure 11.9, the machine codes for the instructions in Program 11.11 are manually
loaded in the instruction memory beginning at address 0 in the programmer’s register model.
All instruction memory locations are cleared that are not loaded with a machine code instruc-
tion. The PC is cleared to address 0 (0000), and the IR shows the machine code value at address
0 (10110000). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 0010 or 2. The program is then single stepped
two times to execute each of the two instructions.

 After the instruction IN R1 is executed with 2 or 0010 at the Input, R1 receives the value
2. After the instruction ADD R1,R1 is executed, R1 receives the value 2 1 2 or 4. After single
stepping through each of the two instructions, the PC points to the address of the next instruc-
tion (0010). The IR contains the instruction to be executed next (00000000).

11.9 THE SR0 INSTRUCTION

Form 11.7 shows the assembly language form and the machine code form for the SR0 (shift
right with 0 fill) instruction. The instruction SR0 may also be referred to as a logical right shift
with a 0 fill.

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 1 0 0 0 010

1

2

3

4

E

F

5

0 1 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.9 Result in the PRM after
manually loading and then executing
Program 11.11 for VBC1 with the input
switches set to 2

www.itpub.net

 11.9 The SR0 Instruction 305

 The SR0 instruction takes the value in the source register and shifts it to the right by one
bit position, then fills the most significant bit position with 0, and finally places the result in the
destination register. The source register and the destination register can be either R0 or R1. The
transfer function form for SR0 DR,SR is DR d 0 SR(3:1).
 The actual assembly language instruction SR0 R0,R1 is shown in two fields: the first field
is the mnemonic field, and the second field is the operands field as shown in Program 11.12.

1 0 0 0/1 0/1 0 0 0

0 = R0
1 = R1

0 = R0
1 = R1

7

OPCODE bits (7:5) NOT USED bits (2:0)Dest. Reg Source Reg

6 5 4 3 2 1 0

SR0 DR,SR

FORM 11.7 The SR0
instruction

 The OPCODE bits for the SR0 instruction are 100. In the machine code, the destination regis-
ter is bit 4. When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destination register
is R1. When bit 3 is 0, the source register is R0, and when bit 3 is 1, the source register is R1.
 Assembly 11.7 shows all versions of the SR0 instruction listed in assembly language and
machine code for VBC1.

Mnemonic field Operands field
SR0 R0,R1

PROGRAM 11.12 Assembly language program for
the SR0 R0,R1 instruction

Assembly language Machine code
SR0 R0,R0 1 0 0 0 0 0 0 0

SR0 R0,R1 1 0 0 0 1 0 0 0

SR0 R1,R0 1 0 0 1 0 0 0 0

SR0 R1,R1 1 0 0 1 1 0 0 0

ASSEMBLY 11.7 All versions of the SR0 instruction

 The machine code shows the bit patterns for the SR0 instructions as they must be placed in
instruction memory to be executed. The machine code has the same OPCODE of 100 for bits
7:5 for all versions of the SR0 instruction.
 Program 11.13 shows a simple assembly language program using the instructions LOADI,
SR0, and OUT.

LOADI R0,8
SR0 R1,R0
OUT R1

PROGRAM 11.13 A simple assembly
language program using the instruc-
tions LOADI, SR0, and OUT

 In Figure 11.10, the machine codes for the instructions in Program 11.13 are manually
loaded in the instruction memory beginning at address 0 in the programmer’s register model.
All instruction memory locations are cleared that are not loaded with a machine code instruc-
tion. The PC is cleared to address 0 (0000), and the IR shows the machine code value at address
0 (00101000). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 0000 or 0. The program is then single stepped
two times just to execute the first two instructions.

306 Chapter 11 Assembly Language Programming for VBC1

 After the instruction LOADI R0,8 is executed, R0 receives the value 8. After the instruction
SR0 R1,R0 is executed, R1 receives the value 4. At this time, the PC points to the address of the
next instruction (0010), and the IR contains the instruction to be executed next (11010000).

11.10 THE JNZ INSTRUCTION

Form 11.8 shows the assembly language form and the machine code form for the JNZ (jump if
not zero) instruction.

1 1 1 0/1 A A A A

0 = R0
1 = R1

7

OPCODE bits (7:5) Address (Destination) bits (3:0)Dest. Reg

6 5 4 3 2 1 0

JNZ DR,Address

FORM 11.8 The JNZ
instruction

 The JNZ instruction analyzes the value in the destination register bit 4 to determine if its
value is not zero. If the value is not zero, the JNZ instruction loads the program counter with the
value of the address in bits (3:0). This will cause the program counter to execute the instruction
at the address specified in the bits (3:0)—that is, to jump to the address specified in the bits (3:0).
If the value in the destination register is zero, then the JNZ instruction is simply skipped and the
instruction following it is executed. When the JNZ instruction is skipped, this can be referred to
as simply falling through the JNZ instruction. The transfer function form for JNZ DR,Address
is PC d IR(3:0), if DR 2 0 else PC d PC 1 1.
 The actual assembly language instruction JNZ R1,9 is shown in two fields: the first field is
the mnemonic field, and the second field is the operands field as shown in Program 11.14.

Mnemonic field Operands field
JNZ R1,9

PROGRAM 11.14 Assembly language
program for the JNZ R1,9 instruction

 The OPCODE bits for the JNZ instruction are 111. In the machine code, the destination
register is bit 4. When bit 4 is 0, the destination register is R0, and when bit 4 is 1, the destination
register is R1. In the machine code, the address is in bits (3:0).
 Assembly 11.8 shows all versions of the JNZ R1,Address instruction listed in assembly
language and machine code for VBC1, where Address is the decimal value of the address.

1 1 0 1 0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 0 1 0 0 000

1

2

3

4

E

F

5

1 0 0 1 0 0 0 0

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.10 Result in the
PRM after manually loading and
then executing just the first two
instructions in Program 11.13 for
VBC1 with the input switches set
to 0

www.itpub.net

 11.10 The JNZ Instruction 307

 The machine code shows the bit patterns for the JNZ instructions as they must be placed in
instruction memory to be executed. The machine code has the same OPCODE of 111 for bits 7:5
for all versions of the JNZ instruction.
 Program 11.15 shows a simple assembly language program using the instructions IN, JNZ,
LOADI, and OUT.

Assembly language
JNZ R1,0
JNZ R1,1
JNZ R1,2
JNZ R1,3
JNZ R1,4
JNZ R1,5
JNZ R1,6
JNZ R1,7
JNZ R1,8
JNZ R1,9
JNZ R1,10
JNZ R1,11
JNZ R1,12
JNZ R1,13
JNZ R1,14
JNZ R1,15

Machine code
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 1
1 1 1 1 0 0 1 0
1 1 1 1 0 0 1 1
1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 1
1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 1
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

ASSEMBLY 11.8 All versions of the JNZ
R1,Address instruction

start: IN R0
 JNZ R0,start
 LOADI R1,10
 OUT R1

PROGRAM 11.15 A simple assembly language program
using the instructions JNZ, LOADI, and OUT

 In Figure 11.11, the machine codes for the instructions in Program 11.15 are manually
loaded in the instruction memory beginning at address 0 in the programmer’s register model.
All instruction memory locations are cleared that are not loaded with a machine code instruc-
tion. The PC is cleared to address 0 (0000), and the IR shows the machine code value at address
0 (10100000). Registers R0, R1, and the Output in the programmer’s register model are also
cleared. The input switches are set to the value of 0011 or 3. The program is then single stepped
four times to execute the instructions.

1 0 1 0 0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 1 1

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 0 0 0 0 010

1

2

3

4

E

F

5

1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 0

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.11 Result in the PRM
after manually loading and then
single stepping Program 11.15 four
times with the input switches set
to 3

308 Chapter 11 Assembly Language Programming for VBC1

 After the instruction IN R0 is executed with 3 or 0011 at the Input, R0 receives the value 3.
After the instruction JNZ R0,start is executed, the PC receives the value 0, which is the address
of the first instruction at the label "start." Single stepping two more times causes the program to
loop through the first two instructions, never getting to the third instruction. After single step-
ping four times, the R0 receives the value 3, the PC points to the address of the next instruction
(0000), and the IR contains the instruction to be executed next (10100000).
 Figure 11.12 shows the machine codes for the instructions in Program 11.15 loaded in the
programmer’s register model. The input switches are set to the value of 0, and the program is
then single stepped four times to execute the instructions.

 After the instruction IN R0 is executed with 0 or 0000 at the Input, R0 receives the value 0.
After the instruction JNZ R0,start is executed, the PC receives the value 2 or 0010, which is the
address of the second instruction. After the instruction LOADI R1,10 is executed, R1 receives
the value 10. After the instruction OUT R1 is executed, Output receives the value 10 or 1010
in binary, the PC points to the address of the next instruction (0100), and the IR contains the
instruction to be executed next (00000000).

11.11 PROGRAMMING EXAMPLES AND TECHNIQUES FOR VBC1

We have provided a few program examples and techniques in this section to encourage you
to think up programs and write them yourself. Your programs can be written, assembled, and
simulated using EASY1 for VBC1 (see Appendix D).

11.11.1 Unconditional Jump
VBC1 does not have an unconditional jump instruction of the form JMP Address. A JMP
Address instruction simply jumps unconditionally to the address specified in the instruction.
Most computers have an unconditional jump instruction. The instructions LOADI R1,1 and
JNZ R1,Address are the equivalent VBC1 instructions to use for the nonexisting unconditional
jump instruction JMP Address. Placing the instruction LOADI R1,1 before the instruction
JNZ R1,Address forces an unconditional jump. When writing an assembly language program
for VBC1, an unconditional jump can be used to confine your program so that it only runs the
instructions that you write and does not roam through instruction memory.

11.11.2 Labels
Names in the first field of an assembly language program followed by a colon “:” are referred to
as labels. A label is simply a name that can be used to represent an address. The first line of code

0 0 0 0 0 0 0 0

1 0 1 0

0 0 0 0

1 0 1 0

0 1 0 0

0 0 0 0

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0 1 0 0 0 0 010

1

2

3

4

E

F

5

1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 0

1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

7 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

FIGURE 11.12 Result in the PRM
after manually loading and then sin-
gle stepping Program 11.15 four times
with the input switches set to 0

www.itpub.net

 11.11 Programming Examples and Techniques for VBC1 309

in an assembly language program is at address 0, the second line of code is at address 1, and so
on. If the address is 0, then the machine code is placed at address 0 in the instruction memory; if
the address is 1, then the machine code is placed at address 1 in the instruction memory. If you
use the JNZ instruction to jump to a particular line of code in a program, it is considered a good
programming practice to use a label rather than to manually count the lines of code to determine
an address. The instruction JNZ R0,0 will jump to address 0 if R0 is not zero. If the instruction
at address 0 has the label “start,” then the instruction JNZ R0,start will do the same operation.
If “loop” is at address 7, then the instruction JNZ R1,loop will jump to address 7 if R1 is not
zero. Using labels in programs takes less thought in writing programs because the programmer
does not have to determine and list the numerical addresses for the JNZ instructions. Programs
can be written to jump forward or to jump backward. In either case, a label should be used when
writing programs for VBC1 to jump forward or backward.

11.11.3 Loop Counter
Very small programs can be written to perform the same instructions over and over, but this
inline programming technique is considered inefficient for large programs. Because VBC1
only has 16 instruction memory locations, you can run out of memory in some cases if you do
not use a loop counter.
 Program 11.16 shows an inline program for a 3-bit MOD 6 (six states, 0 to 5) binary up
counter. This inline program is quite inefficient because it uses more instruction memory than
necessary.

; 3-bit MOD 6 binary up counter with inline program
start: LOADI R0,0 ; initialize output value
 OUT R0 ; output R0 to LEDs or 0
 ADDI R0,1 ; increment R0
 OUT R0 ; output R0 to LEDs or 1
 ADDI R0,1 ; increment R0
 OUT R0 ; output R0 to LEDs or 2
 ADDI R0,1 ; increment R0
 OUT R0 ; output R0 to LEDs or 3
 ADDI R0,1 ; increment R0
 OUT R0 ; output R0 to LEDs or 4
 ADDI R0,1 ; increment R0
 OUT R0 ; output R0 to LEDs or 5
 LOADI R0,1 ; force unconditional jump
 JNZ R0,start ; jump back to start

PROGRAM 11.16 Inline program for a 3-bit MOD 6 (six states, 0 to 5) binary up counter

 Writing a program with an internal loop(s) is considered a good programming practice
rather than writing an inline program that performs the same instructions over and over. One
technique is simply to dedicate a register as a loop counter. A simple routine is written to incre-
ment or decrement the register’s value and test for loop completion with the JNZ instruction. If
the loop is not completed, the loop repeats until the loop counter arrives at 0, at which time the
JNZ instruction leaves the loop (because the loop is completed), and the instruction immedi-
ately following the JNZ instruction is executed.
 In some cases, a loop counter is not necessary, but the JNZ instruction for testing for inter-
nal loop completion is still required.

310 Chapter 11 Assembly Language Programming for VBC1

 Program 11.17 shows an equivalent program for the 3-bit MOD 6 (six states, 0 to 5) binary
up counter using an internal loop with a loop counter. This program is much more efficient
because it uses less instruction memory (i.e., fewer instructions).

; 3-bit MOD 6 binary up counter
; with a loop counter
start: LOADI R0,0 ; initialize output value
 LOADI R1,10 ; initialize loop counter
 ; 10 = 16 2 (# of loops) = 16 2 6
loop: OUT R0 ; output R0 to LEDs
 INC R0 ; increment output value
 INC R1 ; increment loop counter
 JNZ R1,loop ; test for loop completion
 LOADI R0,1 ; force unconditional jump
 JNZ R0,start ; jump back to start

PROGRAM 11.17 Loop counter program for a 3-bit MOD 6 (six states, 0 to
5) binary up counter

11.11.4 Program Runs Amuck
When a program runs amuck, we mean a program runs in an area of memory where instruc-
tions are not specified. If a program is not designed well, it can roam through memory, where
instructions are not present. This is bad programming practice because a program that roams
through memory may fail its intended purpose. Observe in Programs 11.16 and 11.17 that the
programs do not run amuck or roam through memory. In each case, the LOADI R0,1 instruction
is used to force an unconditional jump when the JNZ R0,start instruction is executed. In other
words, the JNZ R0,start instruction can never fall through to the address immediately following
it and roam through memory.
 If VBC1 executes an instruction past the last instruction in memory, then the program runs
amuck. Consider this example. If all the memory locations contain 0s past the last instruction in
the program, and VBC1 executes these instructions, each memory location contains the instruc-
tion MOV R0, R0 (which represents all 0s). Each MOV R0,R0 would be executed repeatedly
until the program rolls over to 0000 after address 1111. This doesn’t cause a problem except for
timing, because each instruction MOV R0, R0 acts as a NOP. The point we are making is that
you should always strive to write well-written programs that do not run amuck or roam through
memory past the last instruction.

11.11.5 Subtraction Instruction
VBC1 does not have a subtraction instruction or any of the logic instructions such as AND, OR,
XOR, etc. A subtraction can be accomplished indirectly by using an ADDI instruction. This
technique is called indirect subtraction by addition. Logic instructions will be added later
when we introduce an extended version of VBC1 called VBC1-E in Chapter 18.
 For VBC1, we can only work with 4-bit numbers because the data path only has 4 bits.
Consider the following relationship for decrementing a 4-bit number in register R0, which is the
same as subtracting 1 from a 4-bit number in register R0:

R0 2 1 5 R0 1 (21) 5 R0 1 (2’s complement of 0001) 5 R0 1 ((1’s complement of 0001) 1 1)

Notice that 21 5 (1’s complement of 0001) 1 1 5 1110 1 1 5 1111 or (all ones). This technique
works for any word size—for example, for a 4-bit number, 21 5 1111, or for a 5-bit number, 21
5 11111, and so on.

www.itpub.net

 11.11 Programming Examples and Techniques for VBC1 311

 Because R0 2 1 5 R0 1 1111, the instruction ADDI R0,15 can be used to effectively per-
form the task of a nonexisting instruction SUBI R0,1.
 To subtract 2 from a 4-bit number in register R0 do the following:

R0 2 2 5 R0 1 (22) 5 R0 1 (1’s complement of 0010) 1 1

 Because 22 5 (1’s complement of 0010) 1 1 5 1101 1 1 5 1110 and R0 2 2 5 R0 1 1110,
the instruction ADDI R0,14 can be used to effectively perform the task of a nonexisting instruc-
tion SUBI R0,2.
 Table 11.3 shows a nonexisting instruction SUBI R0,P, where P represents the number to be
subtracted from register R0, and its equivalent instruction ADDI R0,Q, where Q represents the
number to be added to register R0.

TABLE 11.3 Nonexisting instruction and equivalent

VBC1 instruction for subtraction

Nonexisting instruction Equivalent VBC1 instruction

SUBI R0,0 ADDI R0,0

SUBI R0,1 ADDI R0,15

SUBI R0,2 ADDI R0,14

SUBI R0,3 ADDI R0,13

SUBI R0,4 ADDI R0,12

SUBI R0,5 ADDI R0,11

SUBI R0,6 ADDI R0,10

SUBI R0,7 ADDI R0,9

SUBI R0,8 ADDI R0,8

SUBI R0,9 ADDI R0,7

SUBI R0,10 ADDI R0,6

SUBI R0,11 ADDI R0,5

SUBI R0,12 ADDI R0,4

SUBI R0,13 ADDI R0,3

SUBI R0,14 ADDI R0,2

SUBI R0,15 ADDI R0,1

 To obtain the correct difference, observe that the value subtracted from R1 and the value
added to R1 must sum to 16 in decimal, or 1(subtracted) 1 15(added) 5 16.
 EASY1 supports all the nonexisting SUBI instructions in Table 11.3 as aliases in addition
to the corresponding R1 versions. For clarity, EASY1 supports DEC R0 as an alias for ADDI
R0,15 and DEC R1 as an alias for ADDI R1,15.
 Program 11.18 shows the 3-bit MOD 6 binary up counter with a loop counter converted to
a 3-bit MOD 6 (six states, 5 down to 0) binary down counter. The loop counter is also decre-
mented rather than incremented.

312 Chapter 11 Assembly Language Programming for VBC1

11.11.6 Multiply Instruction
VBC1 does not have a multiply instruction. Multiplication by 2 can be accomplished by using
the ADD R0,R0 instruction to add a number to itself, because 0 1 0 5 0 3 2 5 0, 1 1 1 5 1 3
2 5 2, 2 1 2 5 2 3 2 5 4, 3 1 3 5 3 3 2 5 6, 4 1 4 5 4 3 2 5 8, and so on. The nonexisting
instruction MUL R0,2, where R0 contains the contents of the number to be multiplied by 2, is
the same as ADD R0,R0. For the instruction ADD R0,R0 to work properly, the value of R0 must
be in the range of 0 through 7. Example: MUL R0,2 when R0 is 6 is the same as ADD R0, R0,
and the result is 12. If R0 is 8, then the result for ADD R0,R0 (or 8 multiplied by 2) is 16 and
cannot be represented in just 4 bits, so it results in an overflow condition. Larger numbers for
R0 also provide an overflow condition.

11.11.7 Divide Instruction
VBC1 does not have a divide instruction. Division by 2 can be accomplished by using the SR0
R0,R0 instruction to shift an even number to the right with 0 fill. Because, 1110 (14) shifted right
with 0 fill 5 0111 (7), 1100 (12) shifted right with 0 fill 5 0110 (6), 1010 (10) shifted right with 0
fill 5 0101(5), and so on. The nonexisting instruction DIV R0,2, where R0 contains the contents
of an even number to be divided by 2, is the same as SR0 R0,R0. For the instruction SR0 R0,R0
to work properly, the value of R0 must be an even number in the range of 14 down to 2. Example:
DIV R0,2 when R0 is 6 is the same as SR0 R0,R0, and the result is 3.
 As you can see from the examples presented in this section, there are many different ways
to write assembly language programs. One programmer may prefer one style over another.
Documenting your program so that others may understand your style is considered a necessity
for writing good programs.

; 3-bit MOD 6 binary down counter
; with a loop counter
start: LOADI R0,5 ; initialize output value
 LOADI R1,6 ; initialize loop counter
loop: OUT R0 ; output value to LEDs
 DEC R0 ; decrement output value
 DEC R1 ; decrement loop counter
 JNZ R1,loop ; test for loop completion
 LOADI R0,1 ; force unconditional jump
 JNZ R0,start ; repeat sequence

PROGRAM 11.18 Loop counter program for a 3-bit MOD 6 (six
states, 5 down to 0) binary down counter

 11.3 As a designer, can you choose a set of assignments for
the OPCODE bits that is different than the set used in
this book?

 11.4 Which bits are dedicated for the OPCODE bits in the
machine code form for VBC1?

 11.5 Which bit is dedicated for the destination register in
the machine code form for VBC1?

 11.6 What are unused bits assigned in the machine code
form for VBC1?

Section 11.3 The IN Instruction
 11.1 After the assembly of the assembly language, where is

the machine code placed for execution?
 11.2 To do hand assembly of an instruction, you must

know the organization of the machine code form,
have a good understanding of the instruction, and
know the OPCODE for the instruction. Make a list of
the OPCODEs for the eight different instructions for
VBC1.

PROBLEMS

www.itpub.net

 Problems 313

Section 11.9 The SR0 Instruction
 11.18 Write the transfer function form and the machine

code form for the SR0 R1,R0 instruction. Assume R0
5 1011, and list the value of register R1 after the
instruction is executed.

Section 11.10 The JNZ Instruction
 11.19 Which bits are dedicated for the address in the machine

code form for the instruction JNZ for VBC1?
 11.20 Write the transfer function form and the machine code

form for the JNZ R0,Address instruction. Assume
Address 5 0011, R0 5 0010, and the current value of
the PC 5 0111. List the value of register PC after the
instruction is executed.

Section 11.11 Programming Examples and Techniques
for VBC1
 11.21 Hand assemble the simple program in Program P11.21.

Load the program beginning at address 0, and show
all the values in the programmer’s register model in
Register_Model P11.21 after the last instruction is
executed. Set Input (4 switches) 5 0000 before execut-
ing the program.

LOADI R0,6
OUT R0

 PROGRAM P11.21

 11.7 Is the DR (destination register) or the SR (source regis-
ter) used in the IN instruction?

 11.8 How many port addresses are possible for the IN
instruction?

 11.9 Write the transfer function form and the machine code
form for the IN R0 instruction. Use the signal DI(3:0)
as the input data from four switches. Assume DI(3:0)
5 0111, and list the value of register R0 after the
instruction is executed.

Section 11.4 The OUT Instruction
 11.10 Is the DR (destination register) or the SR (source regis-

ter) used in the OUT instruction?
 11.11 Write the transfer function form and the machine

code form for the OUT R0 instruction. Use the signal
OP(3:0) as the output to the four LEDs. Assume R0
5 1100, and list the value of register OP after the
instruction is executed.

Section 11.5 The MOV Instruction
 11.12 Write the transfer function form and the machine code

form for the MOV R0,R1 instruction. Assume R1
5 0101, and list the value of register R0 after the
instruction is executed.

Section 11.6 The LOADI Instruction
 11.13 Which bits are dedicated for the immediate data in

the machine code form for the instruction LOADI for
VBC1?

 11.14 Write the transfer function form and the machine
code form for the LOADI R1,Data instruction. Assume
Data 5 0011, and list the value of register R1 after the
instruction is executed.

Section 11.7 The ADDI Instruction
 11.15 Which bits are dedicated for the immediate data in

the machine code form for the instructions ADDI for
VBC1?

 11.16 Write the transfer function form and the machine code
form for the ADDI R0,Data instruction. Assume R0
5 0011 and Data 5 1001, and list the value of register
R0 after the instruction is executed.

Section 11.8 The ADD Instruction
 11.17 Write the transfer function form and the machine

code form for the ADD R0,R1 instruction. Assume R0
5 0011 and R1 5 0001, and list the value of register R0
after the instruction is executed.

REGISTER_MODEL P11.21

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0

1

2

3

4

E

F

5

7 0

314 Chapter 11 Assembly Language Programming for VBC1

 LOADI R0,8
loop: OUT R0
 SR0 R0,R0
 JNZ R0,loop
 LOADI R1,15
 OUT R1

 PROGRAM P11.24

 11.22 Hand assemble the simple program in Program P11.22.
Load the program beginning at address 0, and show
all the values in the programmer’s register model in
Register_Model P11.22 after the last instruction is
executed. Set Input (4 switches) 5 0101 before execut-
ing the program.

IN R1
ADDI R1,5
OUT R1

 PROGRAM P11.22

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0

1

2

3

4

E

F

5

7 0

REGISTER_MODEL P11.22

 11.23 Hand assemble the program in Program P11.23. Load
the program beginning at address 0, and show all
the values in the programmer’s register model in
Register_Model P11.23 after the last instruction is
executed. Set Input (4 switches) 5 0010 before execut-
ing the program.

 IN R0
back: SR0 R0,R0
 JNZ R0,back
 OUT R0

 PROGRAM P11.23

REGISTER_MODEL P11.23

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0

1

2

3

4

E

F

5

7 0

 11.24 Hand assemble the program in Program P11.24. Load
the program beginning at address 0, and show all the
values in the programmer’s register model in Regis-
ter_Model P11.24 after the last instruction is executed.
Set Input (4 switches) 5 0000 before executing the
program.

Instruction
memory
(16 × 8)

R0

R1

PC

IR

Output

4 LEDs

4 switches

Input

3 0

3 0

3 0

7 0

0

1

2

3

4

6

F

5

7 0

REGISTER_MODEL P11.24

 11.25 Show the Output sequence as the program shown in
Program P11.25 is single stepped.

 LOADI R0,8
loop: OUT R0
 SR0 R0,R0
 JNZ R0,loop
 LOADI R1,15
 OUT R1

 PROGRAM P11.25
 11.26 Show the Output sequence as the program shown in

Program P11.26 is single stepped.

start: LOADI R1,4 ;initialize loop counter
 LOAD I R0,3 ;initialize output value
loop: OUT R0 ;output R0 to LEDs
 DEC R0 ;decrement R0
 DEC R1 ;decrement loop counter
 JNZ R1,loop ;test for loop completion
 LOAD I R1,1 ;force unconditional jump
 JNZ R1,start ;jump back to start

PROGRAM P11.26

www.itpub.net

 Problems 315

contents of register R1 by 1. What simple observation
can be made concerning the value to be subtracted
and the value to be added to R1 to obtain the correct
difference? Write the assembly language instruction
for VBC1 that will perform this decrement operation.
Write the EASY1 alias for decrementing the contents
of register R1 by 1.

 11.33 Show how to calculate the value needed to perform
indirect subtraction by addition for subtracting 5 from
the contents of register R0. What simple observation
can be made concerning the value to be subtracted
and the value to be added to R0 to obtain the correct
difference? Write the assembly language instruction
for VBC1 that will perform this subtraction operation.
Write the EASY1 alias for subtracting 5 from the con-
tent of register R0.

 11.34 Write the instructions for VBC1 that provides the same
result as the nonexisting multiply instruction MUL
R1,2.

 11.35 Write the instructions for VBC1 that provides the same
result as the nonexisting divide instruction DIV R1,2.

 11.27 Write the instructions for VBC1 that provide the same
result as the nonexisting unconditional jump instruc-
tion JMP Address. Discuss where the program jumps
to, in terms of the machine code bits, when JMP
Address is executed.

 11.28 Which is considered a good programming practice: to
write programs with labels or to write programs with-
out labels for JNZ instructions?

 11.29 In a program using a loop counter (a dedicated register)
with the JNZ instruction, when does the JNZ instruc-
tion leave the loop to execute the instruction immedi-
ately following it?

 11.30 What does it mean for a program to run amuck? Is it
considered a good program practice for a program to
run amuck?

 11.31 VBC1 does not have a subtraction instruction. Write
an assembly language instruction for VBC1 that will
subtract 12 from the value in R1. Write the EASY1
alias for this instruction.

 11.32 Show how to calculate the value needed to perform
indirect subtraction by addition for decrementing the

CC h a p t e r

Designing Input/Output
Circuits

Chapter Outline

 12.1 Introduction 316

 12.2 Designing Steering Circuits 316

 12.3 Designing Bus Steering Circuits 318

 12.4 Designing Loadable Register Circuits 319

 12.5 Designing Input Circuits 321

 12.6 Designing Output Circuits 324

 12.7 Combining Input and Output Circuits to Form a Simple I/O System 329

 12.8 Alternate VHDL Design Styles 332

 Problems 333

12.1 INTRODUCTION

In this chapter, you will learn how to write VHDL to handle steering circuits, loadable register
circuits, and input/output (I/O) circuits for VBC1. A documentation style is introduced that will
enable you to expand your VHDL source code to include additional circuitry so that you, as well
as others, can easily read and understand your code. Input and output circuits are combined to
form a simple I/O system. Alternate VHDL design styles are presented to show different ways
to write equivalent VHDL code.

12.2 DESIGNING STEERING CIRCUITS

A MUX (multiplexer) is a steering circuit. Another name for a MUX is a data selector because
it selects or steers which input signal gets to the output of the MUX. Figure 12.1 shows a 2-to-1
MUX steering circuit.

CC12

316

A

B

C

0

1

SEL

A

B

C

0

1

SEL = 0

(c)(b)(a)

A

B

C

0

1

SEL = 1

FIGURE 12.1 (a) Schematic for a 2-to-1 MUX steering circuit; (b) steering input A to
output C; (c) steering input B to output C

www.itpub.net

 12.2 Designing Steering Circuits 317

 The 2-to-1 MUX steering circuit in Figure 12.1 can be described by the wordy or verbose
statement: input A is transferred to output C if SEL 5 0 else input B is transferred to output C. A
transfer function represents a concise mathematical description of a wordy or verbose statement
for a circuit.
 The 2-to-1 MUX steering circuit can be described by the following concise transfer
function:

C d A if SEL 5 0 else

C d B

 Things you should notice about the transfer function we used for the 2-to-1 MUX steering
circuit:

• A transfer occurs based on the SEL (SELECT) input.
• The transfer operation C d A is only performed when SEL is 0.
• The transfer operation C d B is only performed when SEL is 1.
• This is a combinational logic circuit because there is no clock input.

 The VHDL code for the 2-to-1 MUX steering circuit is shown in Listing 12.1. The design
uses a dataflow architecture declaration with a conditional signal assignment (CSA).

+

+

+

+

0 ns 200 nsName Value 400 ns

0

0

0

0

a

b

sel

c

WAVEFORM 12.1
Simulation with the
correct functionality
of design entity
scalar_steering

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity scalar_steering is port (
 a,b : in std_logic;
 sel: in std_logic;
 c : out std_logic
);
end scalar_steering;

architecture dataflow of scalar_steering is
begin
 c ,5 a when sel 5 ‘0’ else
 b;
end dataflow;

LISTING 12.1
Complete VHDL
design entity for the
2-to-1 MUX steering
circuit (project:
scalar_steering)

 Things you should notice about the VHDL design in Listing 12.1:

• In the entity, each of the signals A, B, and C are declared as a scalar—that is, a signal for a
single line. The mode for A and B is in and the mode for C is out.

• The resulting circuit consists of a 2-to-1 MUX controlled by the select input SEL.
• This is a combinational logic circuit because there is no clock input.

Waveform 12.1 shows the simulation with the correct functionality of design entity scalar_steering.

 Observe that C follows A when SEL is 0, but it follows B when SEL is 1. Waveform 12.1
shows that the VHDL design in Listing 12.1 does in fact provide the correct design for the 2-to-1
MUX steering circuit.

318 Chapter 12 Designing Input/Output Circuits

12.3 DESIGNING BUS STEERING CIRCUITS

A bus is a set or collection of wires that carries multiple bits of information. A 4-bit bus steer-
ing circuit is shown in Figure 12.2. This circuit is an array of 4 2-to-1 MUXs (multiplexers or
data selectors). BA stands for BUS A, BB stands for BUS B, and BC stands for BUS C.

 This circuit can be described by the following transfer function:

BC d BA if SEL 5 0 else

BC d BB

 Things you should notice about the transfer function we used for the bus steering circuit:

• A transfer occurs based on the SEL (SELECT) input.
• The transfer operation BC d BA is only performed when SEL is 0.
• The transfer operation BC d BB is only performed when SEL is 1.
• This is a combinational logic circuit because there is no clock input.
• BA, BB, and BC all have the same bus size, and the bus size is 3:0 or 3 down to 0.

 The VHDL code for the bus steering circuit in Figure 12.2 is shown in Listing 12.2. The
design uses a dataflow architecture declaration with a conditional signal assignment (CSA).

(b)(a)

SEL

BA(0)

BB(0)
BC(0)

0

1

SEL

BA(1)

BB(1)
BC(1)

0

1

SEL

BA(2)

BB(2)
BC(2)

0

1

SEL

BA(3)

BB(3)
BC(3)

0

1

or

SEL

BA(3:0)

BB(3:0)
BC(3:0)

0
4

4
4

1

FIGURE 12.2 (a) Schematic for a
4-bit bus steering circuit; (b) sim-
plified schematic for a 4-bit bus
steering circuit

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bus_steering is port (
 ba,bb : in std_logic_vector (3 downto 0);
 sel: in std_logic;
 bc : out std_logic_vector (3 downto 0)
);
end bus_ steering;

LISTING 12.2
Complete VHDL
design entity for a
4-bit bus steering
circuit (project: bus_
steering)

www.itpub.net

 12.4 Designing Loadable Register Circuits 319

 Things you should notice about the VHDL design in Listing 12.2:

• In the entity, each of the signals BA, BB, and BC are declared as 4-bit buses—that is, vec-
tors. The mode for BA and BB is in and the mode for BC is out.

• The resulting circuit consists of four 2-to-1 MUXs all controlled by the select input SEL.

 Waveform 12.2 shows the simulation with the correct functionality of design entity
bus_steering.

architecture dataflow of bus_ steering is
begin
 bc ,5 ba when sel 5 ‘0’ else
 bb;
end dataflow;

 Observe that BC follows BA when SEL is 0, but it follows BB when SEL is 1. Waveform 12.2
shows that the VHDL design in Listing 12.2 does in fact provide the correct design for the bus
steering circuit.

12.4 DESIGNING LOADABLE REGISTER CIRCUITS

In the following discussion, a register is a set of flip-flops that stores information. A 4-bit load-
able register circuit is shown in Figure 12.3.

+

+

+

+

0 ns 200 nsName Value 400 ns

0 2 4 8

8 12 14 15

1 3 5 9

0 2 4 8 6 5 97

6 5 97

0

8

0

ba[3:0]

0

bb[3:0]

sel

bc[3:0]

WAVEFORM 12.2
Simulation with the
correct functionality
of design entity bus_
steering

 Things you should notice about the 4-bit loadable register circuit shown in Figure 12.3b:

• Remember that the inputs D, CE (clock enable), C, and CLR, and the output Q inside the
rectangle for the loadable register circuit are labels, not signals. When writing VHDL code,
only signals are used, not labels. The signals in Figure 12.3b are D, LOAD_R, CLK, RST,
and R.

• The MUX is a bus steering circuit.
• Output R of the D flip-flop is connected (fed back) to the 0 input of the MUX.
• Input LOAD_R of the MUX selects either the 0 input (when LOAD_R 5 0) or the 1 input

(when LOAD_R 5 1).

(b)(a)

or

0
4

4
4 4

D

D1
D RR Q

CLK

4 2-to-1 MUXs
4 DFFs with
a clear input

4 loadable
DFFs with
a clear input

CLR

RST
(asyn)

44
D

CE

Q

CLK
CLR

RST
(asyn)

LOAD_R

D

LOAD_R
1

C C

FIGURE 12.3 (a) Schematic
for the 4-bit loadable reg-
ister circuit; (b) equivalent
circuit for the 4-bit loadable
register circuit

320 Chapter 12 Designing Input/Output Circuits

• If the 0 input is selected, the D flip-flop stores the value R, because D1 5 R, each time the
clock ticks—that is, rising_edge (CLK).

• If the 1 input is selected, the D flip-flop stores the value D, because D1 5 D, each time the
clock ticks.

• RST overrides the control input C of the D flip-flop.
• This is a synchronous sequential logic circuit because there is a control input driven by a

clock.

 The loadable register circuit in Figure 12.3a or Figure 12.3b can be described by the follow-
ing transfer function:

R d 0 if RST 5 1 else

R d D if (LOAD_R 5 1 and c CLK) else

R d R

 The transfer function description represents the following wordy or verbose statement: zero
is transferred to R(Register) if RST (RESET) 5 1 else D(Data) is transferred to R if LOAD_R
5 1 at the next rising edge of the clock else R retains its current value.
 Things you should know about the transfer function we used for the 4-bit loadable register
circuit:

• The directed arrow shows the direction of the transfer.
• Because RST precedes the clock, it is an asynchronous input and overrides the clock—that

is, it is independent of the clock.
• The number of bits for D and R are currently specified as 4 bits. If desired, we can either

specify the number of bits in parentheses as D(3:0) and R(3:0)—where 3:0 represents 4 bits
with the range 3 downto 0—or simply say that D and R are both 4-bit buses.

• D is transferred to R only if LOAD_R 5 1 at the next rising edge of the clock.
• R retains its current value if RST 5 0, or LOAD_R 5 0, or between clock ticks.

 Listing 12.3 shows the VHDL code for the 4-bit loadable register circuit in Figure 12.3a. the
design uses a dataflow architecture declaration with a conditional signal assignment (CSA).

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity load_reg is port (
 rst, clk, load_r : in std_logic;
 d : in std_logic_vector (3 downto 0);
 r : inout std_logic_vector (3 downto 0)
);
end load_reg;

architecture dataflow of load_reg is
begin
 r ,5 “0000” when rst 5 ‘1’ else
 d when load_r 5 ‘1’ and rising_edge (clk);
end dataflow;

LISTING 12.3
Complete VHDL
design entity for the
4-bit loadable reg-
ister circuit (project:
load_reg)

 Things you should notice about the VHDL design in Listing 12.3:

• Both D and R are data type std_logic_vector (3 downto 0), which explicitly shows that these
are 4-bit buses.

• Signal mode inout is required for signal R in the entity. This is because of the inferred
conditional signal assignment R ,5 R in the architecture declaration.

www.itpub.net

 12.5 Designing Input Circuits 321

• To transfer D to R, both LOAD_R and rising_edge (CLK) must be true.
• Else R is not included in the conditional signal assignment because it is inferred. When

else R is left off of the conditional signal assignment, the present-state output value of R is
simply retained or R ,5 R.

 If an 8-bit bus were needed, this would only require us to change D and R in Listing 12.3
to data type std_logic_vector (7 downto 0). The vector range for an n-bit bus would be ((n -1)
downto 0). All the buses and registers in the data path circuit for VBC1 are 4 bits. Any number
of bits can be used to make larger bus sizes and a larger number of flip-flops. The number of
flip-flops required for a register with n bits is n flip-flops. A 64-bit loadable register circuit
would require 64 flip-flops.
 Waveform 12.3 shows the correct functionality of design entity load_reg.

 You should closely analyze the output waveform R(3:0) in Waveform 12.3 to verify that
waveform R(3:0) accurately shows the correct functionality of design entity load_reg for all
inputs. A clock tick is the next rising edge of signal CLK.

12.5 DESIGNING INPUT CIRCUITS

We will now draw a schematic to perform the following instruction using individual logic
components: IN DR, where IN represents the instruction IN and DR represents the destination
register (or where the input data will be placed). The input data are DI(3), DI(2), DI(1), and DI(0).
Table 12.1 shows the IN instruction in both assembly language form and transfer function form
for VBC1.

+

+

+

+

+

+

0 ns 200 nsName Value 400 ns

50000ps50000 ps

0

0

0

0

1

clk_period

r[3:0]

d[3:0]

load_r

clk

rst

0

0 12 14 7 10 01

12 9 1 14 7 10

Load 14 at
the next
clock tick

Load 12 at
the next
clock tick

Load 1 at
the next
clock tick

Load 7 at
the next
clock tick

Load 10 at
the next
clock tick

WAVEFORM 12.3
Simulation for the cor-
rect functionality of
design entity load_reg

TABLE 12.1 The IN instruction in assembly language

form and in transfer function form

Instruction
in assembly
language form Instruction in transfer function form

IN DR DR d DI(3:0) or DR d DI(3) DI(2) DI(1) DI(0)

 Figure 12.4 is a schematic for an input circuit that performs the operation indicated by the
IN DR instruction. The input data are driven or supplied by four slide switches.

322 Chapter 12 Designing Input/Output Circuits

 Things you should notice about the schematic in Figure 12.4:

• There are two logic modules in the diagram—buffers (module 1) and loadable D flip-flops
(module 2).

• The slide switches provide a high input voltage when the wiper is in the up position as
shown in the diagram and a low input voltage when the wiper is in the down position.

• The input signals to the buffers are from the slide switches SW3, SW2, SW1, and SW0, and
the output signals from the buffers are the data inputs DI3, DI2, DI1, and DI0. The buffers
are used so that we can change the names of the signals at the inputs and the outputs for
easier documentation. Buffers also provide additional current drive, or what I like to call
“oomph,” at their outputs.

• The loadable D flip-flop (FF) allows the output (Q) to be changed to the data input value
(D) only when the FF’s clock enable input (CE) is enabled by a high voltage. Output Q will
change to the data input value D at the next rising edge of the clock, provided the FF’s clear
input (CLR) is not enabled by a high voltage. The clock enable input (CE) is clock depen-

CLK

DR0
DI0SW0

Module 1 Module 2

Loadable
DFF

Slide switch
with resistor

RST
(asyn)

V
CC

GND

Buffer

D

CE

Q

CLR

LOAD_DR

CLK

DR1
DI1SW1

Slide switch
with resistor

RST
(asyn)

V
CC

D

CE

Q

CLR

LOAD_DR

CLK

DR2
DI2SW2

Slide switch
with resistor

RST
(asyn)

V
CC

D

CE

Q

CLR

LOAD_DR

CLK

DR3
DI3SW3

Slide switch
with resistor

RST
(asyn)

V
CC

D

CE

Q

CLR

LOAD_DR

C

C

C

C

FIGURE 12.4 Schematic for an input
circuit driven by four slide switches

www.itpub.net

 12.5 Designing Input Circuits 323

dent and therefore a synchronous input. The inputs D, CE, C, CLR, and Q are terminal
labels, not signals.

• When the FF’s clear input (CLR) is enabled by a high voltage, the output (Q) is cleared to
0; that is, the FF’s clear input (CLR) is clock independent, and therefore, an asynchronous
input, because it overrides the control or clock input (C).

• The data input signals DI3, DI2, DI1, and DI0 are supplied to the D inputs of the loadable
D flip-flops, which have the outputs DR3, DR2, DR1, and DR0.

12.5.1 Designing an Input Circuit Driven by Four Slide Switches
Figure 12.5 shows a simplified schematic for the input circuit driven by the four slide switches
shown earlier in Figure 12.4.

 Listing 12.4 shows a design for the input circuit shown in Figure 12.5. The design uses a
dataflow architecture declaration with a Boolean equation, and a conditional signal assignment
(CSA).

CLK

DR(3:0)
DI(3:0)SW(3:0)

Module 1 Module 2

4 loadable
DFFs

4 slide switches
with resistors

RST
(asyn)

V
CC

GND
4 buffers

4 4 4

D

CE

Q

CLR

LOAD_DR

C

FIGURE 12.5 Simplified
schematic for an input
circuit driven by four slide
switches

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity IN_Inst_4b is port (
 rst, clk, load_dr : in std_logic;
 sw : in std_logic_vector (3 downto 0);
 dr : inout std_logic_vector (3 downto 0)
);
end IN_Inst_4b;

architecture dataflow of IN_Inst_4b is

--Modules 1 and 2 internal signal, di
 signal di: std_logic_vector (3 downto 0);
begin

--Module 1 code, buffer
 di ,5 sw;

--Module 2 code, loadable DFFs with a clear input
 dr ,5 “0000” when rst 5 ‘1’ else
 di when load_dr 5 ‘1’ and rising_edge (clk);
end dataflow;

LISTING 12.4
Complete VHDL
design entity for the
schematic of the
input circuit shown in
Figure 12.5 (project:
IN_Inst_4b)

 Pay particular attention to the documentation style in Listing 12.4, because this will show
you how to mark where each internal signal is placed and how to mark where each section of
code is placed, for each circuit element (or module), in a large VHDL design. We will call this
documentation style M (DSM), where the M reminds us to mark internal signals and code

324 Chapter 12 Designing Input/Output Circuits

locations for each module. For easy reference, notice in Listing 12.4 that the code modules are
listed in numerical order so that they can be more easily found in a large design. If documenta-
tion style M is accurately used in a VHDL design, this allows anyone to easily draw a schematic
for the design.
 Things you should notice about the VHDL design in Listing 12.4:

• The signals SW, DI, and DR are data type std_logic_vector (3 downto 0), which explicitly
shows that these are 4-bit buses.

• Signal mode inout is required for signal DR in the entity. This is because of the inferred
conditional signal assignment DR ,5 DR in the architecture declaration.

• To transfer DI to DR, both LOAD_DR and rising_edge (CLK) must be true.
• Else DR is not included in the conditional signal assignment because it is inferred. When

else DR is left off of the conditional signal assignment, the present-state output value DR is
simply retained or DR ,5 DR.

• Note that DSM is used to show where the internal signal (signal DI) is placed and which
modules it is between (modules 1 and 2 in this case). Documentation style M also shows
where the code for each circuit element (modules 1 and 2 in this case) is placed and its
name, which indicates what the code does. This documentation style thus allows you to
easily locate each internal signal and each section of code, for each circuit element, in your
VHDL design. For easier readability, provide a blank line between each internal signal sec-
tion and each code section, as shown in Listing 12.4.

• Observe that this design uses a flat design approach because each of the modules in the
system are included within a single architecture declaration.

12.6 DESIGNING OUTPUT CIRCUITS

We will now draw a schematic to perform the following instruction using individual logic com-
ponents: OUT DR, where OUT represents the instruction OUT, which places the content of DR
into an output port register OP. The content of DR is DR(3), DR(2), DR(1), and DR(0) and is
provided by a destination register DR. The output port register signals are OP(3), OP(2), OP(1),
and OP(0). Table 12.2 shows the OUT instruction in both assembly language form and transfer
function form for VBC1.

TABLE 12.2 The OUT instruction in assembly language form and

in transfer function form

Instruction in assembly
language form Instruction in transfer function form

OUT DR OP d DR

or OP(3) OP(2) OP(1) OP(0) d DR(3) DR(2) DR(1) DR(0)

 Figure 12.6 is a schematic for an output circuit that performs the operation indicated by the
OUT DR instruction. The output port signals are driving four LEDs.
 Things you should notice about the schematic in Figure 12.6:

• There are two logic modules in the diagram—loadable D flip-flops (module 1) and buffers
(module 2).

• The loadable D flip-flop’s output signals OP(3:0) are supplied to the buffers, and the out-
put signal from the buffers are the signals LD(3:0), which drive the LEDs. The buffers are
used so that we can change the names of the signals at the inputs and the outputs for easier
documentation. Remember that buffers also provide additional current drive, or oomph, at
their outputs.

www.itpub.net

 12.6 Designing Output Circuits 325

• The LEDs light, or turn on, when a high-input voltage signal is applied to them, and they
turn off when a low-input voltage is applied to them.

12.6.1 Designing an Output Circuit to Drive Four LEDs
Figure 12.7 shows a simplified schematic for the OUT instruction shown earlier in Figure 12.6.

CLK

OP0
DR0

LD0

Module 1 Module 2

Loadable
DFF

LED with
protection

resistor

RST
(asyn)

GND
Buffer

D

CE

Q

CLR

LOAD_OP

CLK

OP1
DR1

LD1 LED with
protection

resistor

RST
(asyn)

D

CE

Q

CLR

LOAD_OP

CLK

OP2
DR2

LD2 LED with
protection

resistor

RST
(asyn)

D

CE

Q

CLR

LOAD_OP

CLK

OP3
DR3

LD3 LED with
protection

resistor

RST
(asyn)

D

CE

Q

CLR

LOAD_OP

C

C

C

C

FIGURE 12.6 Schematic for an output circuit driving four LEDs

 Listing 12.5 shows a design for the output circuit shown in Figure 12.7. The design uses
a dataflow architecture declaration with a conditional signal assignment (CSA) and a Boolean
equation.

CLK

OP(3:0) 44 4

DR(3:0)
LD(3:0)

Module 1 Module 2

4 loadable
DFFs

4 LEDs
with

protection
resistors

RST
(asyn)

GND
4 buffers

D

CE

Q

CLR

LOAD_OP

C

FIGURE 12.7 Simplified
schematic for an output cir-
cuit driving four LEDs

326 Chapter 12 Designing Input/Output Circuits

 Things you should notice about the VHDL design in Listing 12.5:

• The signals DR, OP, and LD are data type std_logic_vector (3 downto 0), which explicitly
shows that these are 4-bit buses.

• To transfer DR to OP, both LOAD_OP and rising_edge (CLK) must be true.
• Else OP is not included in the conditional signal assignment because it is inferred. When

else OP is left off of the conditional signal assignment, the present-state output value OP is
simply retained, or OP ,5 OP.

• DSM shows where the internal signal (signal OP) is placed and which modules it is between
(modules 1 and 2 in this case). Documentation style M also shows where the code for each
circuit element (modules 1 and 2 in this case) is placed and its name, which indicates what
the code does.

12.6.2 Designing an Output Circuit to Drive a 7-Segment Display
Figure 12.8 shows a simplified schematic for an output circuit driving a 7-segment display via a
HEX (hexadecimal) display decoder.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OUT_Inst_4b is port (
 rst, clk, load_op : in std_logic;
 dr : in std_logic_vector (3 downto 0);
 ld : out std_logic_vector (3 downto 0)
);
end OUT_Inst_4b;

architecture dataflow of OUT_Inst_4b is

--Modules 1 and 2 internal signal, op
 signal op: std_logic_vector (3 downto 0);
begin

--Module 1 code, loadable DFFs with a clear input
 op ,5 “0000” when rst 5 ‘1’ else
 dr when load_op 5 ‘1’ and rising_edge (clk);
--Module 2 code, buffer
 ld ,5 op;
end dataflow;

LISTING 12.5
Complete VHDL
design entity for the
schematic of the out-
put circuit shown in
Figure 12.7 (project:
OUT_Inst_4b)

 Things you should notice about the schematic in Figure 12.8:

• There are four logic modules in the diagram—four loadable D flip-flops (module 1); the
HEX display decoder, or binary to 7-segment decoder (module 2); the seven NOT gates
(module 3); and the single NOT gate (module 4).

8
CLR

CLK

OP(3:0) D7S(6:0) SEG(6:0)

AN0

SEG

Display 0
a

b

c

d

e

f

g

dp

SEG
CA
CB
CC
CD
CE
CF
CG
DP

0
1
2
3
4
5
6
7

Bit

ANX

EN_DISP

4 4 7 7

7 NOT
gates

NOT
gate

DR(3:0)

Module 1 Module 2 Module 3

Module 4

4 loadable

DFFs

Binary to

7-segment

decoder

HEX

display

decoder

7-segment display

Legend

(Segments DP through CA
and AN0 are active low
inputs)

RST

(asyn)

D

CE

Q

LOAD_OP

C

FIGURE 12.8
Simplified schematic
for an output circuit
driving a 7-segment
display via a HEX
(hexadecimal) display
decoder

www.itpub.net

 12.6 Designing Output Circuits 327

• The loadable D flip-flop’s output signals OP(3:0) are supplied to the HEX display decoder.
The HEX display decoder output signals D7S(6:0) are supplied to the seven NOT gates. The
HEX display decoder output signal ANX is supplied to the single NOT gate. The NOT gate
outputs SEG(6:0) drive the segments of the 7-segment display. The single NOT gate output
EN_DISP drives the enable input of the display (input AN0). The individual segments A
through G light, or turn on, when a low voltage is applied to them only if the enable input
of the display (AN0) has a low voltage applied to it.

• The NOT gates are used to allow the active high outputs from the HEX display decoder
to drive the active low inputs of the individual segments A through G and the enable input
AN0 of the display. The NOT gates allow us to work with active high signals when design-
ing the output signals for the HEX display decoder.

 Listing 12.6 shows a design for the output circuit shown in Figure 12.8. This design uses
a dataflow architecture declaration with conditional signal assignments (CSAs) and Boolean
equations.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity OUT_Inst_4b_7s is port (
 rst, clk, load_op : in std_logic;
 dr : in std_logic_vector (3 downto 0);
 seg : out std_logic_vector (6 downto 0);
 en_disp : out std_logic
);
end OUT_Inst_4b_7s;

architecture dataflow of OUT_Inst_4b_7s is

--Modules 1 and 2 internal signal, op
 signal op: std_logic_vector (3 downto 0);

--Modules 2 and 3 internal signal, d7s
 signal d7s: std_logic_vector (6 downto 0);

--Modules 2 and 4 internal signal, anx
 signal anx: std_logic;
begin

--Module 1 code, loadable DFFs with a clear input
 op ,5 “0000” when rst 5 ‘1’ else
 dr when load_op 5 ‘1’ and rising_edge (clk);

--Module 2 code, HEX display decoder
 d7s ,5 “0111111” when op 5 “0000” else
 “0000110” when op 5 “0001” else
 “1011011” when op 5 “0010” else
 “1001111” when op 5 “0011” else
 “1100110” when op 5 “0100” else
 “1101101” when op 5 “0101” else
 “1111101” when op 5 “0110” else
 “0000111” when op 5 “0111” else
 “1111111” when op 5 “1000” else
 “1101111” when op 5 “1001” else
 “1110111” when op 5 “1010” else
 “1111100” when op 5 “1011” else

LISTING 12.6
Complete VHDL
design entity for the
schematic of the out-
put circuit shown in
Figure 12.8 (project:
OUT_Inst_4b_7s)

(Continued)

328 Chapter 12 Designing Input/Output Circuits

 Things you should notice about the VHDL design in Listing 12.6:

• The signals DR and OP are data type std_logic_vector (3 downto 0), which explicitly shows
that these are 4-bit buses.

• The signals D7S and SEG are data type std_logic_vector (6 downto 0), which explicitly
shows that these are 7-bit buses.

• To transfer DR to OP, both LOAD_OP and rising_edge (CLK) must be true.
• Else OP is not included in the conditional signal assignment because it is inferred. When

else OP is left off of the conditional signal assignment, the present state output value OP is
simply retained.

• In module 2 (HEX display decoder), a 1 in each D7S assignment represents a segment that
will be lighted or turned on while a 0 represents a segment that will be turned off. In the
case of 0111111, segment G will be turned off, while segments A through F will be turned
on. The value 0 will be displayed on the 7-segment display when the output ANX is 1. The
Boolean equations SEG ,5 not D7S and EN_DISP ,5 not ANX convert the active high
signals (D7S and ANX) to the active low signals (SEG and EN_DISP) required by the inputs
to the 7-segment display.

• Documentation style M shows where the internal signals (signals OP, D7S, and ANX in this
case) are placed and which modules they are between. Documentation style M also shows
where the code for each circuit element (modules 1, 2, 3, and 4 in this case) is placed along
with its name, which indicates what the code does. This documentation style allows you to
easily locate all of the internal signals and code associated with each circuit element in your
VHDL design.

12.6.3 A Closer Look at the Circuitry for Display 0
Figure 12.9 shows the 7-segment display in Figure 12.8 with the required circuitry to function
properly. Display 0 is wired up as a common anode display because all the anodes are con-
nected to a common point. The LED for the decimal point is also shown in Figure 12.9. The
LED segments are protected by protection resistors to limit current flow through the segments.
The anodes of the LEDs are driven by the N-doped semiconductor material between two layers
of P-doped material (PNP) transistor, called a BJT (bipolar junction transistor). The anodes of
the LEDs could also be driven by a P-doped semiconductor material channel (P-channel) tran-
sistor, called a FET (field effect transistor) as illustrated in the figure.
 CA means cathode A, CB means cathode B, and so on. Applying a low voltage or logic 0 to
input CA through CG will turn on the respective LED segments a through g provided that a low
voltage or logic 0 is also applied to the base of the BJT via input AN0. The display will not turn
on (none of the segments will turn on) when a high voltage or logic 1 is applied at input AN0.
Inputs CA through CG and input AN0 are active low inputs.

 “0111001” when op 5 “1100” else
 “1011110” when op 5 “1101” else
 “1111001” when op 5 “1110” else
 “1110001”;
 anx ,5 ‘1’;

--Module 3 code, NOT gates
 seg ,5 not d7s;

--Module 4 code, NOT gate
 en_disp ,5 not anx;

end dataflow;

www.itpub.net

 12.7 Combining Input and Output Circuits to Form a Simple I/O System 329

12.7 COMBINING INPUT AND OUTPUT CIRCUITS TO FORM
A SIMPLE I/O SYSTEM

Figure 12.10 shows a simple I/O system consisting of the input circuit in Figure 12.5 and the
output circuits in Figures 12.7 and 12.8.

V
CC

V
CC

(Source)

(Drain)
(Gate)

FET

(Emitter)

(Collector)
(Base)

Display 0

BJTAN0

a

bf

e

CA

CB
CC
CD
CE
CF
CG
DP g

c

d dp

Protection
resistor

Protection
resistor

Protection
resistors

FIGURE 12.9 Common
anode circuitry for display 0
in Figure 12.8.

V
CC

8
CLR

CLK

OP2(3:0) D7S(6:0) SEG(6:0)

AN0

SEG

Display 0
a

b

c

d

e

f

g

dp

SEG
CA
CB
CC
CD
CE
CF
CG
DP

0
1
2
3
4
5
6
7

Bit

ANX

EN_DISP

4 4 7 7

Module 5 Module 6 Module 7

Module 8

HEX

display

decoder

Legend

(Segments DP through CA
and AN0 are active low
inputs)

D

CE

Q

CLK

OP1(3:0) 44 4 LD(3:0)

Module 3 Module 4

4 LEDs
with

protection
resistors

RST (asyn)
(BTN3)

RST (asyn)
(BTN3)

RST (asyn)
(BTN3)

D

CE

Q

CLR

LOAD_OP1 (BTN1)

LOAD_OP2 (BTN2)

CLK

DR(3:0)DI(3:0)SW(3:0)

Module 1 Module 2
4 slide switches
with resistors 4 4 4

D

CE

Q

CLR

LOAD_DR (BTN0)

C

C

C

FIGURE 12.10 A
simple I/O system

330 Chapter 12 Designing Input/Output Circuits

 Things you should notice about the schematic in Figure 12.10:

• The logic modules are numbered 1 through 8.
• The external input and output signals—that is, the port signals for the entity in VHDL—

are SW(3:0), LOAD_DR, CLK, RST, LOAD_OP1, LD(3:0), LOAD_OP2, SEG(6:0), and
EN_DISP.

• The internal signals, for the architecture in VHDL, are DI(3:0), DR(3:0), OP1(3:0),
OP2(3:0), D7S(6:0), and ANX.

• Modules 1 and 2 provide a data input port.
• Modules 3 and 4 provide data output port 1, which drives four LEDs.
• Modules 5, 6, 7, and 8 provide data output port 2, which drives a 7-segment display.
• BTN0 through BTN3 are provided to indicate recommended push buttons to use if you

decide to download the VHDL design in Listing 12.7 on a BASYS 2 board or a NEXYS
2 board. If you download the design in Listing 12.7, you can verify that the VHDL code
works in hardware.

 Listing 12.7 shows a design for the simple I/O system shown in Figure 12.10. The VHDL
code consists of the code for the input circuit in Listing 12.4, the code for the output circuit in
Listing 12.5, and the code for the output circuit in Listing 12.6 documented using modules 1
through 8 in Figure 12.10.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Simple_IO_System is port (
 sw : in std_logic_vector (3 downto 0);
 load_dr, clk, rst, load_op1, load_op2 : in std_logic;
 ld : out std_logic_vector (3 downto 0);
 seg : out std_logic_vector (6 downto 0);
 en_disp : out std_logic
);
end Simple_IO_System;

architecture dataflow of Simple_IO_System is

--Modules 1 and 2 internal signal, di
 signal di: std_logic_vector (3 downto 0);

--Modules 2 and 3, Modules 2 and 5 internal signal, dr
 signal dr: std_logic_vector (3 downto 0);

--Modules 3 and 4 internal signal, op1
 signal op1: std_logic_vector (3 downto 0);

--Modules 5 and 6 internal signal, op2
 signal op2: std_logic_vector (3 downto 0);

--Modules 6 and 7 internal signal, d7s
 signal d7s: std_logic_vector (6 downto 0);

--Modules 6 and 8 internal signal, anx
 signal anx: std_logic;
begin

--Module 1 code, buffer
 di ,5 sw;

LISTING 12.7
Complete VHDL
design entity for the
schematic of the
simple I/O system
shown in Figure 12.10
(project: Simple_IO_
System)

www.itpub.net

 12.7 Combining Input and Output Circuits to Form a Simple I/O System 331

 Things you should notice about the VHDL design in Listing 12.7:

• The entity specifies all the external input signals (SW, LOAD_DR, CLK, RST, LOAD_OP1,
LOAD_OP2) and the external output signals (LD, SEG, EN_DISP). The signal SW is data
type std_logic_vector (3 downto 0), while the rest of the inputs are data type std_logic.
The signal LD is data type std_logic_vector (3 downto 0). The signal SEG is data type
std_logic_vector (6 downto 0). The signal EN_DISP is data type std_logic.

• The internal signal declarations must be placed between architecture and the first begin.
Observe that DSM is used for each internal signal. This shows where each internal signal
is placed and the modules each internal signal is between. This documentation style allows
us to easily keep track of where each internal signal is located in the VHDL design.

--Module 2 code, loadable DFFs with a clear input
 dr ,5 “0000” when rst 5 ‘1’ else
 di when load_dr 5 ‘1’ and rising_edge (clk);

--Module 3 code, loadable DFFs with a clear input
 op1 ,5 “0000” when rst 5 ‘1’ else
 dr when load_op1 =’1’ and rising_edge (clk);

--Module 4 code, buffer
 ld ,5 op1;

--Module 5 code, loadable DFFs with a clear input
 op2 ,5 “0000” when rst 5 ‘1’ else
 dr when load_op2 5 ‘1’ and rising_edge (clk);

--Module 6 code, HEX display decoder
 d7s ,5 “0111111” when op2 5 “0000” else
 “0000110” when op2 5 “0001” else
 “1011011” when op2 5 “0010” else
 “1001111” when op2 5 “0011” else
 “1100110” when op2 5 “0100” else
 “1101101” when op2 5 “0101” else
 “1111101” when op2 5 “0110” else
 “0000111” when op2 5 “0111” else
 “1111111” when op2 5 “1000” else
 “1101111” when op2 5 “1001” else
 “1110111” when op2 5 “1010” else
 “1111100” when op2 5 “1011” else
 “0111001” when op2 5 “1100” else
 “1011110” when op2 5 “1101” else
 “1111001” when op2 5 “1110” else
 “1110001”;
 anx ,5 ‘1’;

--Module 7 code, NOT gates
 seg ,5 not d7s;

--Module 8 code, NOT gate
 en_disp ,5 not anx;
end dataflow;

332 Chapter 12 Designing Input/Output Circuits

• Observe that DSM is used for each section of code. This shows where each section of code
is placed for each circuit element. This documentation style allows us to easily keep track
of where the code for each circuit element is located in the VHDL design.

• As your VHDL code for a design grows, due to the design of larger circuits or systems, it
is very important to follow a consistent documentation style that marks the location of each
internal signal and the section of code for each circuit element (or module) in your VHDL
design.

12.8 ALTERNATE VHDL DESIGN STYLES

It is usually easier to design a D flip-flop circuit, such as a loadable register, using a conditional
signal assignment. If statements and case statements can also be used to design a D flip-flop
circuit, but these statements also require a few more lines of code. When you write more lines of
VHDL code, this sometimes contributes to the possibility of more errors in your code that must
be found and corrected. Listing 12.8 shows an alternate design of module 2 (in Figure 12.10).
The design uses a behavioral design style with two if statements.

--Module 2 code, loadable DFFs with a clear input
process (rst, clk)
begin
 if rst 5 ‘1’ then dr ,5 “0000”;
 elsif rising_edge (clk) then
 if load_dr 5 ‘1’ then dr ,5 di;
 end if;
 end if;
end process;

LISTING 12.8
Module 2 code using
two if statements for
Figure 12.10

 Listing 12.9 shows an alternate design of module 3 (in Figure 12.10). This design uses a
behavioral design style with one if statement and one case statement.

--Module 3 code, loadable DFFs with a clear input
process (rst, clk)
begin
 if rst 5 ‘1’ then op1 ,5 “0000”;
 elsif rising_edge (clk) then
 case load_op1 is
 when ‘1’ 5. op1 ,5 dr;
 when ‘0’ 5. op1 ,5 op1;
 when others 5. null;
 end case;
 end if;
end process;

LISTING 12.9
Module 3 code using
one if statement and
one case statement
for Figure 12.10

 Listing 12.10 shows an alternate design of module 5 (in Figure 12.10). This design uses a
behavioral design style with one if statement and two case statements.
 In each of these examples, you can see that using a conditional signal assignment to gener-
ate a D flip-flop circuit requires less code and generally results in fewer errors. As a student, you
should strive to learn the many different ways to write VHDL code.

www.itpub.net

 Problems 333

--Module 5 code, loadable DFFs with a clear input
process (rst, clk)
begin
 case rst is
 when ‘1’ 5. op2 ,5 “0000”;
 when ‘0’ 5. if rising_edge(clk) then
 case load_op2 is
 when ‘1’ 5. op2 ,5 dr;
 when ‘0’ 5. op2 ,5 op2;
 when others 5. null;
 end case;
 end if;
 when others 5. null;
 end case;
end process;

LISTING
12.10 Module 5
code using one if
statement and two
case statements for
Figure 12.10

 12.10 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity dec-
laration for the behavioral architecture declaration in
problem 12.9.

Section 12.5 Designing Input Circuits
 12.11 What is the IN instruction in both assembly language

form and transfer function form for VBC1?
 12.12 How are the input data supplied for the IN instruction

for VBC1?
 12.13 Why are the buffers used in the input circuit in Section

12.5, Figure 12.4? Provide two reasons.
 12.14 Are the fl ip-fl op inputs that are driven by the signal

RST in the input circuit in Section 12.5, Figure 12.4,
synchronous or asynchronous inputs? Are the clear
inputs (CLR) active high or active low input?

 12.15 What input in the loadable DFF allows the output (Q)
to be changed to the data input (D) in the input circuit
in Section 12.5, Figure 12.4? Under what conditions
can the output (Q) be changed to the data input (D)?

 12.16 Draw a simplifi ed schematic for a 64-bit input cir-
cuit (or an input circuit driven by 64 slide switches).
To make the circuit as simple as possible, do not
include the buffers. Be sure to completely label the
circuit—that is, DI with its range, DR with its range,
LOAD_DR, CLK, and RST (asyn). How many loadable
D fl ip-fl ops are required for the circuit?

 12.17 What is the range for the std_logic_vector for the sig-
nal DR (destination register) for the 64-bit input circuit
in problem 12.16?

 12.18 Describe how the location of an internal signal in
the circuit in Section 12.5.1, Figure 12.5, is marked
in VHDL using documentation style M. Provide an
example for signal DI using documentation style M.
Also include the declaration for the signal.

Section 12.2 Designing Steering Circuits
 12.1 Write the transfer function for a 1-bit steering circuit,

and draw an annotated circuit diagram for the steering
circuit.

 12.2 Write a behavioral architecture declaration with an if
statement for the transfer function in problem 12.1.

 12.3 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity dec-
laration for the behavioral architecture declaration in
problem 12.2.

Section 12.3 Designing Bus Steering Circuits
 12.4 Write the transfer function for a 4-to-1 bus steering

circuit with the following signals: inputs are BA, BB,
BC, BD, and BSEL, and the output is BE. Draw a MUX
array circuit that represents the transfer function if
each data input BA through BD is 8 bits.

 12.5 Write a datafl ow architecture declaration with a con-
ditional signal assignment for the transfer function in
problem 12.4.

 12.6 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity dec-
laration for the datafl ow architecture declaration in
problem 12.5.

Section 12.4 Designing Loadable Register Circuits
 12.7 What is a register?
 12.8 What is the transfer function for a loadable register

circuit with inputs RST (asyn), D, LOAD_R, CLK, and
output R?

 12.9 Write a behavioral architecture declaration with a sin-
gle if statement for the transfer function in problem
8 for a 2-bit loadable register circuit that uses two D
fl ip-fl ops.

PROBLEMS

334 Chapter 12 Designing Input/Output Circuits

the 7-segment display. To make the circuit as simple
as possible, do not include the buffers and the invert-
ers. With modules 1, 4, 7, and 8 removed—that is, the
buffers and inverters—what changes must be made to
the remaining modules? What changes must be made
to the port signals in the entity and the internal signals
in the architecture? Include complete VHDL code for
your design.

Section 12.8 Alternate VHDL Design Styles
 12.31 What is the transfer function for a loadable register

that receives its input from eight switches (BA7 through
BA0) and stores the switch values at its output (RA7
through RA0) at the next rising edge of the clock when
LOAD_A is asserted? If LOAD_A is not asserted, RA
retains its current value.

 12.32 Write the simplest datafl ow architecture declaration
for the transfer function

RA d BA if (LOAD_A 5 1 and c CLK) else
RA d RA

 12.33 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity dec-
laration for the datafl ow architecture declaration in
problem 12.32 for 8 bits.

 12.34 Combine your VHDL code for problems 12.32 and
12.33, and show a simulation for your design.

 12.35 Write a behavioral architecture declaration with two if
statements for the transfer function

RA d BA if (LOAD_A 5 1 and c CLK) else
RA d RA

 12.36 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the behavioral architecture declaration in prob-
lem 12.35.

 12.37 Combine your VHDL code for problems 12.35 and
12.36, and show a simulation for your design.

 12.38 Repeat problem 12.35 using a behavioral architecture
declaration with one if statement and one case statement.

 12.39 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for the behavioral architecture declaration in prob-
lem 12.38.

 12.40 Combine your VHDL code for problems 12.38 and
12.39, and show a simulation for your design.

 12.19 Where do internal signals have to be placed in the
VHDL architecture?

 12.20 Describe how the location of a section of code repre-
sented by module 1 in the circuit in Section 12.5.1, Fig-
ure 12.5, is marked in VHDL using documentation style
M. Provide an example for the code for module 1 using
documentation style M. Also include the VHDL code.

Section 12.6 Designing Output Circuits
 12.21 What is the OUT instruction in both assembly lan-

guage form and transfer function form for VBC1?
 12.22 Where does the output data go for the OUT instruction

for VBC1?
 12.23 Do the LEDs in Section 12.6, Figure 12.6, have active

high inputs or active low inputs? Provide the reason for
your answer, and also discuss the purpose of the resis-
tors associated with the LEDs.

 12.24 What type of VHDL design style is used in the archi-
tecture in Section 12.6.1, Listing 12.5? What type of
VHDL statement is used in the section of code for
module 1?

 12.25 How would you change the signals DR, OP, and LD for
the output circuit in Section 12.6.1, Listing 12.5, from
4 bits to 12 bits? Are any other changes in the VHDL
design required?

 12.26 What is the purpose of the inverters in Section 12.6.2,
Figure 12.8? Is it possible to design the output circuit
without the inverters? Discuss what must be done if the
inverters are not used.

 12.27 Can a process be used with a case statement for the
section of code for module 2 in Section 12.6.2, List-
ing 12.6? If so, what signal must be included in the
sensitivity list of the process that contains the case
statement for the section of code for module 2.

 12.28 What are the active levels of inputs CA through CG
and AN0 in Section 12.6.3, Figure 12.9? Discuss what
causes segments a through g to light or turn on.

 12.29 What is the function of the protection resistors in Sec-
tion 12.6.3, Figure 12.9?

Section 12.7 Combining Input and Output Circuits to
Form a Simple I/O System
 12.30 Draw a simplifi ed schematic for a simple I/O system

like the one shown in Section 12.7, Figure 12.10, that
reads 8 bits via 8 switches, displays the upper 4 bits
on the single LEDs, and displays the lower 4 bits on

www.itpub.net

C h aa p t e rr

Designing Instruction Memory,
Loading Program Counter, and
Debounced Circuit

Chapter Outline

 13.1 Introduction 335

 13.2 Designing an Instruction Memory 335

 13.3 Designing a Loading Program Counter 342

 13.4 Designing a Debounced One-Pulse Circuit 345

 13.5 Design Verification for a Debounced One-Pulse Circuit 348

 Problems 355

13.1 INTRODUCTION

In this chapter, you will learn how to write VHDL code for an instruction memory for stor-
ing instructions. Next, you will learn how to design a loading program counter for addressing
memory to store instructions. Then, you will learn how to design a debounced one-pulse circuit
for loading the instruction memory one instruction at a time. Finally, you will design a press-to-
increment circuit, to allow verification of the debounce one-pulse circuit.

13.2 DESIGNING AN INSTRUCTION MEMORY

Instruction memory is important because that is where the instructions for a program are placed
to be executed. Figure 13.1 shows a logic symbol with the necessary inputs and outputs for the
instruction memory for VBC1.

rr 13

335

CLK

WE WE

C

Q

D

ADDR

Instruction memory

(RAM 16 × 8)
4

8

8

INST(7:0)

IR(7:0)
PC_ADDR(3:0)

FIGURE 13.1
Logic symbol
diagram for the
instruction mem-
ory for VBC1

336 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

 Things you should notice about the instruction memory in Figure 13.1:

• Input ADDR (address) selects the location of where an instruction is placed in the memory.
• Input D (data) provides the instruction that is placed in the memory.
• Input WE (write enable) enables data (an instruction) to be written into the memory at the

next rising edge of the clock.
• Input C (control) provides the clock for storing (writing) instructions in the memory.
• Output Q provides the flip-flop outputs for the memory.
• ADDR, D, WE, C, and Q are labels.
• The signals for the memory are inputs PC_ADDR (program counter address), INST

(instruction), WE (write enable), CLK (clock), and output IR (instruction register).
• The instruction memory map contains 16 memory locations, and each location has a storage

capacity of 8 bits (or 1 byte) as shown in Figure 13.2.
• The instruction memory is referred to as a RAM (random-access memory) 16 by 8 (or 16

3 8). Because 16 5 24, a minimum of four address lines are required to determine the
address for each location in memory.

• The instruction memory is synchronous because storing (writing) data into each address
location in the memory requires a clock tick (a rising edge of the signal CLK).

 Figure 13.2 shows the instruction memory map for VBC1.

 Listing 13.1 shows a complete VHDL design for the instruction memory in Figure 13.1.

Instruction memory
(RAM 16 × 8)

Memory contents or instruction for address 0

Memory contents or instruction for address 1

Memory contents or instruction for address 14

Memory contents or instruction for address 15

Address

0

0 Bits1234567

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FIGURE 13.2 Instruction memory map
for VBC1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity instruction_memory is port (
 pc_addr : in std_logic_vector (3 downto 0);
 inst : in std_logic_vector (7 downto 0);
 we, clk : in std_logic;

LISTING 13.1
Complete VHDL
design for the
instruction memory
for VBC1 (project:
Instruction_Memory)

www.itpub.net

 13.2 Designing an Instruction Memory 337

 Things you should notice about the VHDL design in Listing 13.1:

• The use clause use IEEE.STD_LOGIC_UNSIGNED.ALL is required because it contains
the definition for the conversion function conv_integer, which is used in the design.

• A new data type called mem_type is used to declare an array of vectors for the instruction
memory. Mem_type is called an enumerated data type with the ordered values array (0
to 15) of the data type std_logic_vector (7 downto 0), and it is a unique new data type. An
internal signal mem is declared as the data type called mem_type. Signal mem is also a
unique new signal of type mem_type, not of the type std_logic or std_logic_vector.

• Only the signal CLK is necessary in the sensitivity list of the process because there is no
reset or initialization signal. The synchronous signals WE and PC_ADDR cannot be read
until the clock ticks, and so they are not required in the sensitivity list.

• The conversion function conv_integer converts the signal PC_ADDR from a 4-bit Boolean
signal of type std_logic_vector to a decimal integer for the array of type mem_type.

• The design style is a mixed design style because a process and the Boolean equation IR ,5
MEM (conv_integer (pc_addr)) are used in the architecture declaration of the design.

 Waveform 13.1 shows the correct functionality of design entity instruction_memory.
 Things you should notice about the waveforms in Waveform 13.1:

• In the waveform diagrams in panel a, the memory address is changed from 0 through 15 via
the input signal PC_ADDR.

• Random values of data that represent instructions (machine code instructions) are written
into the instruction memory each time the clock ticks because WE is set to 1 as shown by
the output signal IR.

• In the waveform diagrams in panel b, WE is set to 0, which allows the instruction memory
to be read. By closely observing the waveform diagrams, it can be seen that the data written
into each memory address in panel a is read correctly in panel b confirming that the instruc-
tion memory is working properly.

13.2.1 Coding Alterations for Instruction Memory
Listing 13.2 shows the complete VHDL design for the instruction memory in Figure 13.1 with
some coding alterations to show a slightly different design style.

 ir : out std_logic_vector (7 downto 0)
);
end instruction_memory;

architecture Mixed of instruction_memory is
 type mem_type is array (0 to 15) of std_logic_vector (7 downto 0);
 signal mem : mem_type;
begin
process (clk)
begin
 if rising_edge (clk) then
 if we 5 ‘1’ then mem (conv_integer (pc_addr)) ,5 inst;
 end if;
 end if;
end process;
 ir ,5 mem (conv_integer (pc_addr));
end Mixed;

338 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 0 ns 200 ns

0 1 2 3 4 5 6 7

14150 13 12 11 10 9 8

1415U 13 12 11 10 9 8

400 ns 600 ns 800 ns

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 1,000 ns

0

1234567

1234567

14 15 01312111098

15

1,200 ns 1,400 ns 1,600 ns

(a)

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 1,800 ns

9 8 7101112131415

6 7 8543210

0 1

2,000 ns 2,200 ns 2,400 ns

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 2,600 ns

1 0234567

14 151312111098

2 3

2,800 ns 3,000 ns 3,200 ns

(b)

WAVEFORM 13.1 Simulation for the correct functionality of design entity instruction_memory:
(a) writing instructions into memory; (b) reading previously written instructions from the memory

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity instruction_memory_mod is port (
 pc_addr : in std_logic_vector (3 downto 0);
 inst : in std_logic_vector (7 downto 0);
 we, clk : in std_logic;
 ir : out std_logic_vector (7 downto 0)
);
end instruction_memory_mod;

LISTING 13.2
Altered complete
VHDL design for the
instruction memory
for VBC1 (project:
Instruction_Memory_
MOD)

www.itpub.net

 13.2 Designing an Instruction Memory 339

 Can you spot the changes? Things you should notice about the VHDL design in Listing 13.2:

• The design style was changed from mixed to behavioral. Now the architecture declara-
tion only contains a process—that is, the Boolean equation IR ,5 MEM (conv_integer
(PC_ADDR)) is no longer outside the process.

• The assignment IR ,5 MEM (conv_integer (PC_ADDR)) has been moved inside the pro-
cess. Because the assignment for IR is not located inside the process, the signal MEM must
be added to the sensitivity list of the process so that the value of signal MEM is read during
the rising edge of CLK and assigned to IR.

• The name of the architecture was changed from mixed to behavioral to indicate that the
design is now behavioral—that is, the design consists of only a process.

 The simulation for the altered complete VHDL design in Listing 13.2 is the same as Wave-
form 13.1. So, the VHDL code for Listing 13.1 or 13.2 can be use as the instruction memory for
VBC1.
 Waveform 13.2 shows what happens when the signal MEM is left out of the sensitivity list
in the VHDL code for Listing 13.2 (project: IM_MOD_WARNING).
 Things you should notice about the Waveforms in Waveform 13.2:

• Observe that the instruction memory stores the correct values on the falling edge of the
clock pulse, not the rising edge of the clock pulse as it should. This caused a warning to
be reported after running Synthesize—XST. To correct this problem, MEM must be added
to the sensitivity list of the process, or the assignment IR ,5 MEM (conv_integer (PC_
ADDR)) must be placed outside the process—that is, not between process and end process.

• The values that are stored in the instruction memory are read correctly. Leaving necessary
signals out of the sensitivity list may result in hardware designs that do not follow your
design specification.

• Code verification for a design is very important. A simulation shows you if your code gen-
erates the expected result. To verify the correct functionality of a design, get in the habit of
running a simulation for your design.

13.2.2 Initializing Instruction Memory for VBC1 at Startup
Instruction Memory can be initialized at startup—that is, when you download a program into
an FPGA.

architecture Behavioral of instruction_memory_mod is
 type mem_type is array (0 to 15) of std_logic_vector (7 downto 0);
 signal mem : mem_type;
begin
process (clk, mem)
begin
 if rising_edge (clk) then
 if we 5 ‘1’ then mem (conv_integer (pc_addr)) ,5 inst;
 end if;
 end if;
 ir ,5 mem (conv_integer (pc_addr));
end process;
end Behavioral;

340 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 200 ns0 ns

10

0

2 3 4 5 6 7

1415 13 12 11 10 9 8

1415 13 12 11 10 9 8UUU U U U U U

400 ns 600 ns 800 ns

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 1,000 ns

1

0

234567

14 151312111098

7 6 5 4 3 2 1UU U U U U U 0 15U

1,200 ns 1,400 ns 1,600 ns

(a)

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 1,800 ns

1

8

0

6 7543210

15 14 13 12 11 10 9 8 7

2,000 ns 2,200 ns 2,400 ns

+

+

+

+

+

+

pc_addr[3:0]

inst[7:0]

ir[7:0]

we

clk

clk_period

0

0

U

0

0

100000 ps 100000 ps

Name Value 2,600 ns

32

14 151312111098

7 6 5 4 3 2 1 0

2,800 ns 3,000 ns 3,200 ns

(b)

WAVEFORM 13.2 Simulation with the signal MEM left out of the sensitivity list in Listing 13.2:
(a) writing instructions into memory; (b) reading previously written instruction from the memory

type mem_type is array (0 to 15) of std_logic_vector (7 downto 0);
signal mem: mem_type := (
 --stoppable 4-bit binary-up counter program
 X”20”, X”c0”, X”b0”, X”f2”,X”61”, X”e1”, X”21”, X”e0”,
 X”00”, X”00”, X”00”, X”00”, X”00”, X”00”, X”00”, X”00”);

LISTING 13.3
Initializing instruction
memory for a stop-
pable 4-bit binary-up
counter program

 The following VHDL code shows how to initialize the instruction memory for VBC1 at
startup. Listing 13.3 shows how to initialize instruction memory for a stoppable 4-bit binary-up
counter program.

 Using this technique, a value must be specified for each of the 16 locations in instruction
memory. The operator “:5” is called an assignment operator and is used to assign initial val-

www.itpub.net

 13.2 Designing an Instruction Memory 341

ues. Each value represents a VBC1 instruction in machine code. Uppercase X specifies that the
machine code is provided in hexadecimal. To observe the machine code in hexadecimal, choose
Hex in the Display section of EASY1.
 The state sequence diagram for the stoppable 4-bit binary-up counter is presented in
Appendix D in Figure D.14, and the assembly language program is presented in Appendix D in
Program D.4. In the Programmer’s Register Model part of EASY1, we chose Hex in the Display
section to display the machine code in hexadecimal. The machine code in hexadecimal was then
inserted as shown in Listing 13.3 to initialize the instruction memory at startup.
 An easier way to obtain the machine code is to use the EASY1 Save button, which saves a
copy of the machine code shown in the instruction memory into a file (choose a text file). After
you save the file, simply open the file then copy and paste the machine code into the VHDL
code for the instruction memory on the line following the signal for the memory. The assem-
bly language program is also provided as a handy reference. If you elect to copy and paste the
machine code, remember to change the semicolon “;” after mem_type to “:5 (”. This procedure
is used in the following example.
 Figure 13.3 shows the output 4-bit LED sequence for a robot eye program for VBC1.

 Program 13.1 shows an assembly language program for the robot eye output sequence in
Figure 13.3 using inline programming; that is, no internal loops or no loop counters are used in
the program.

Key

LED off

This sequence
is repeated

over and over.

LED on

FIGURE 13.3 Output
4-bit LED sequence for
a robot eye program

; robot eye program
; inline programming, i.e., no internal loops

start: loadi r1,1
 out r1
 loadi r1,2
 out r1
 loadi r1,4
 out r1
 loadi r1,8
 out r1
 loadi r1,4
 out r1
 loadi r1,2
 out r1
 jnz r1, start

PROGRAM 13.1 Assembly language program for a robot eye program

 Be sure to study the assembly language program so that you know how it works. To obtain
the machine code for the assembly language program in Program 13.1, enter the program in the

342 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

Assembly part of EASY1, then assemble and load the program by clicking on the Assemble and
Load button. To observe the machine code in hexadecimal in the instruction memory of EASY1,
choose Hex in the Display section of EASY1. You may elect to copy each machine code value
into your VHDL code in the format shown in Listing 13.3, or you may elect to copy and paste
the machine code into your VHDL code. If you elect to copy and paste the machine code, click
on the EASY1 Save button and save the file. Open the saved file and copy and paste the machine
code after the statement signal mem: mem_type;. Be sure to change the semicolon “;” after
mem_type to “:5 (” as shown in Listing 13.4.

type mem_type is array (0 to 15) of std_logic_vector (7 downto 0);
signal mem: mem_type :5 (

 -- ; robot eye program
 -- ; inline programming, i.e., no internal loops
 --
X"31",-- start: loadi r1,1
X"d0",-- out r1
X"32",-- loadi r1,2
X"d0",-- out r1
X"34",-- loadi r1,4
X"d0",-- out r1
X"38",-- loadi r1,8
X"d0",-- out r1
X"34",-- loadi r1,4
X"d0",-- out r1
X"32",-- loadi r1,2
X"d0",-- out r1
X"f0",-- jnz r1, start
 --

X"00",X"00",X"00");

LISTING 13.4
Initializing instruction
memory for the robot
eye program via copy
and paste

 Each of the instructions that are used in the initialization of the instruction memory must
be implemented in hardware in order for the program to run successfully when the VHDL code
is downloaded into an FPGA.
 Initializing instruction memory is useful when you want to load a program automatically
at startup or when you want to load a program and there are not enough hardware switches to
design the circuitry to manually load a program. We used 8 bits for the instructions for VBC1
because there were eight hardware switches available on the hardware boards we elected to use.
Using the eight hardware switches along with some additional pushbutton switches, we will
design the circuitry to manually load our programs after startup for VBC1.
 Additional comment about counter design: The last two counter designs could be designed
from scratch using VHDL code. After we complete the design for VBC1, it is often easier to
write a program to generate a digital design using VBC1 rather than start from scratch and gen-
erate the design via VHDL code.

13.3 DESIGNING A LOADING PROGRAM COUNTER

VBC1 uses two program counters (PCs). The first type of program counter we will discuss is a
loading program counter (LPC). The LPC is used to load instructions manually into instruction

www.itpub.net

 13.3 Designing a Loading Program Counter 343

memory via a set of slide switches. The second type of program counter, which we will discuss
in Chapter 17, is a running program counter (RPC). The RPC is used to manually single step
through a program and also to run a program at a specified frequency.
 Figure 13.4 shows the logic symbol with the necessary inputs and output for a loading
program counter for VBC1. The LPC is used to load instructions manually into the instruction
memory of VBC1.

 Things you should notice about the LPC in Figure 13.4:

• An asynchronous reset signal RST (asyn) is used to reset the LPC.
• A signal called ONE_PULSE is supplied to the control (or clock) input of the loading pro-

gram counter. The clock signal is generated manually for VBC1 by a push-button switch,
which will be discussed later.

• The signal PC_ADDR is a 4-bit output that supplies an address to the instruction memory
for loading the instruction memory.

• Because the LPC has 16 states, it is referred to as a modulo 16 counter.
• The LPC is a simple state machine because its counting sequence is fixed—that is, it has no

external inputs to affect its counting sequence.

 Figure 13.5 shows the counting sequence diagram or state sequence diagram and the
equivalent state diagram for the LPC. Observe that the LPC is a binary-up counter. Because the
loading program counter has 16 states, it is referred to as a modulo 16 counter; that is, a modulo
n counter is a counter with n states where n . 1.

CLR

RST
(asyn)

ONE_PULSE PC_ADDR (3:0)C Q
4

Loading program
counter (LPC)

(modulo 16 counter)

FIGURE 13.4
Logic symbol
for a loading
program coun-
ter for VBC1

Counting sequence diagram
or state sequence diagram State diagram

00 0 0
00 0 1 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00 1 0
00 1 1
10 0 0
10 0 1
10 1 0
10 1 1

01 0 1
01 1 0
01 1 1
11 0 0
11 0 1
11 1 0
11 1 1

01 0 0

Q3 Q2 Q1 Q0
Q3 Q2 Q1 Q0RST

(asyn) RST
Legend(asyn)

FIGURE 13.5 Counting
sequence diagram or
state sequence diagram
and equivalent state dia-
gram for the loading pro-
gram counter for VBC1

344 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

 Listing 13.5 shows a complete VHDL design for the loading program counter in Figure 13.5.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity LPC is port (
 rst, one_pulse : in std_logic;
 pc_addr : out std_logic_vector (3 downto 0)
);
end LPC;

architecture Mixed of LPC is
 signal q : std_logic_vector (3 downto 0);
begin
process (rst, one_pulse)
begin
 if rst 5 ‘1’ then q ,5 “0000”;
 elsif rising_edge (one_pulse) then q ,5 q 1 1;
 end if;
end process;
 pc_addr ,5 q;
end Mixed;

LISTING 13.5
Complete VHDL
design for the LPC
for VBC1 (project:
LPC)

 Things you should notice about the VHDL design in Listing 13.5:

• The use clause use IEEE.STD_LOGIC_UNSIGNED.ALL is required because it contains
the definition for “+” operator, which is used in the design.

• The internal signal Q is used to agree with variable Q specified in the counting sequence
or state diagram for the loading program counter. It is not necessary to use Q if the variable
PC_ADDR is used as the variable in the counting sequence or state diagram.

• Only RST and ONE_PULSE are required in the sensitivity list of the process, because they
are the only signals required to wake up the process. The signal Q is not required because
it is a synchronous signal that is controlled by the clock signal ONE_PULSE.

• The arithmetic method is used in an if statement.
• The output signal PC_ADDR is assigned the value of the internal signal Q outside the pro-

cess—that is, not between process and end process.
• The design style is a mixed design style because a process and the Boolean equation PC_

ADDR ,5 Q are used in the architecture declaration of the design.
• It would not be a good design practice to include the Boolean equation inside the process

without including Q in the sensitivity list, because PC_ADDR would not get assigned Q
until the clock goes low, thus delaying the output PC_ADDR assignment by half a clock
cycle. Failing to include Q in the sensitivity list for this design would be a design error,
because the intention of the design is to provide a state change on the rising edge of the
clock cycle not the falling edge of the clock cycle.

 Waveform 13.3 shows the correct functionality of design entity LPC (loading program
counter).

+

+

+

+

rst

one_pulse

pc_addr[3:0]

one_pulse_period

1

50000 ps 50000 ps

0

0

Name Value 200 ns0 ns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

400 ns 600 ns 800 nsWAVEFORM 13.3
Simulation for the
correct functionality
of design entity LPC

www.itpub.net

 13.4 Designing a Debounced One-Pulse Circuit 345

 Notice that Waveform 13.3 shows that each state change occurs when RST 5 0 after the
rising edge of the clock signal ONE_PULSE—that is, after each clock tick—as expected.
 Waveform 13.4 shows an incorrect functionality of design entity LPC. In the VHDL code for
this simulation, the assignment PC_ADDR ,5 Q was moved inside the process in Listing 13.5
just before end process without including Q in the sensitivity list (project: RPC_WARNING).

 Things you should notice about the waveforms in Waveform 13.4:

• Notice that Waveform 13.4 shows that each state change occurs when RST 5 0 after the
falling edge of the clock signal ONE_PULSE, not the rising edge of the clock signal as it
should be. This caused a warning to be reported after running Synthesize—XST.

• The LPC also does not reset asynchronously like it should as shown in Waveform 13.3. To
correct this problem, Q must be added to the sensitivity list of the process, or the assign-
ment PC_ADDR ,5 Q must be placed outside the process—that is, not between process
and end process.

• This is another reminder that code verification for a design is very important. To verify the
correct functionality of a design, you need to run a simulation for the design.

13.4 DESIGNING A DEBOUNCED ONE-PULSE CIRCUIT

In this section, we will design a debounced one-pulse circuit (DOPC) for single stepping
through the memory for VBC1. The output of the DOPC should generate just one pulse each
time a push-button switch is pressed. Before the switch is pressed, the output should be zero.
When the push-button switch is pressed and continuously held down, one pulse should be gen-
erated—that is, the output should go from zero to one and back to zero. After the push-button
switch is released, the output should remain at zero until the push button is pressed again to
generate another pulse.
 Figure 13.6 shows a push-button switch and a logic symbol for a debounced one-pulse
circuit. A push-button switch or practically any switch bounces on its contacts as it is closed or
opened. Figure 13.6 also shows the switch output waveform SEL_ADDR when the push button
is not pressed, then pressed and held, and finally released, and the DOPC outputs ONE_PULSE.
Notice that the waveform SEL_ADDR shows multiple pulses when the push button is pressed
and released due to the bouncing of the switch contacts—that is, contact bounce—while the
waveform ONE_PULSE shows one clean pulse.
 Figure 13.7 shows a register transfer level (RTL) circuit for a debounced one-pulse circuit.
 Things you should notice about the RTL circuit for the DOPC:

• If the signal SEL_ADDR is 1 (or high) longer than two clock ticks, then the output ONE_
PULSE goes to 1 because Q1 and Q2 are 1 and Q3 is 0. Output ONE_PULSE remains a 1
only for the duration of one clock cycle, or TCLK 5 1/fCLK.

• The following things can cause the signal SEL_ADDR to be 1 (or high) longer than two
clock ticks: (a) when contact bounce of the push-button switch is 1 (or high) longer than two
clock ticks and (b) when the push-button switch is held down longer than two clock ticks.

+

+

+

+

rst

one_pulse

pc_addr[3:0]

one_pulse_period

1

50000 ps 50000 ps

U

0

Name Value 200 ns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

400 ns 600 ns 800 ns WAVEFORM 13.4
Simulation with the
signal Q left out of
the sensitivity list in
Listing 13.5

346 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

• To help prevent contact bounce from causing the select signal SEL_ADDR to be a 1 (or
high) longer than two clock ticks simply requires reducing the frequency of CLK (by
experimentation, i.e., trial and error), so that the longest duration of contact bounce is less
than TCLK(or the duration of TCLK is longer than the longest duration of contact bounce). If
the frequency of CLK is fixed, then a frequency divider can be used to supply a reduced fre-
quency of SLOW_CLK to the register transfer level circuit so that the duration of TSLOW_CLK
is longer than the longest duration of contact bounce.

• An RTL circuit is generally referred to as any synchronous digital circuit that transfers data
via flip-flops, which are registers, to a combinational logic circuit.

 Listing 13.6 shows a complete VHDL design for the debounced one-pulse circuit in Figure
13.7.

V
CC

CLK

RST

CLK

Q1

Q2

Q3

SEL_ADDR

ONE_PULSE

SEL_ADDR

First clock tick with
SEL_ADDR = 1 Second clock tick with

SEL_ADDR = 1

Push-button switch
with resistors

Push button
not pressed

Single
pulse

Contact
bounce

Contact
bounce

{
See
gate-
level
circuit
for
signals
Q1, Q2,
and Q3

Push button
released

Push button
pressed and held

Debounced
one-pulse

circuit
ONE_PULSE

RST
(asyn)

FIGURE 13.6 Push-button switch, logic symbol for a debounced one-pulse circuit
and input and output waveforms for the DOPC

CLK

Q1 Q2 Q3
D

C
CLR

SEL_ADDR

ONE_PULSE

RST
(asyn)

D

C
CLR

D Q Q Q

C
CLR

FIGURE 13.7 Register transfer level circuit for a DOPC

www.itpub.net

 13.4 Designing a Debounced One-Pulse Circuit 347

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity debounced_OPC is port (
 rst, clk, sel_addr : in std_logic;
 Q1, Q2, Q3 : inout std_logic;
 one_pulse : out std_logic
);
end debounced_OPC;

architecture Mixed of debounced_OPC is
begin
process (rst, clk)
begin
 if rst 5 ‘1’ then Q1 ,5 ‘0’; Q2 ,5 ‘0’; Q3 ,5 ‘0’;
 elsif (clk’event and clk 5 ‘1’) then Q1 ,5 sel_addr;

Q2 ,5 Q1; Q3 ,5 Q2;
 end if;
end process;
 one_pulse ,5 Q1 and Q2 and not Q3;
end Mixed;

LISTING 13.6
Complete VHDL
design for the DOPC
(project: debounced_
OPC)

 Things you should notice about the VHDL design in Listing 13.6:

• The internal signals Q1, Q2, and Q3 are placed in the entity, so they can be displayed in the
simulation.

• In the process, the expression (clk'event and clk 5 '1') is used instead of rising_edge (clk).
When VHDL was first introduced, this was the only way to represent rising_edge (clk). An
alternate way of writing falling_edge (clk) may be written as (clk'event and clk 5 '0'). You
may see these alternate expressions in references and books, and you need to know their
meaning. The expression “clk'event” should be read as “clk tick event.”

• From analyzing the VHDL code, you may observe that ONE_PULSE provides an output of
1 only when Q1 and Q2 are 1 and Q3 is 0.

 Waveform 13.5 shows the correct functionality of design entity debounced_OPC (debounced
one-pulse circuit).

+

+

+

+

+

+

+

+

Duration:
~3 clock
cycles

Keystroke

1
st

Keystroke

2
nd

Keystroke

3
rd

Duration:
~2.5 clock
cycles

Duration:
~4 clock
cycles

Contact bounce causes an error,
i.e., a pulse

rst

clk

sel_addr

q1

q2

q3

one_pulse

clk_period

1

20000 ps 20000 ps

0

0

0

0

0

0

Name Value 200 ns0 ns 400 ns

WAVEFORM 13.5
Simulation for the
correct functional-
ity of design entity
debounced_OPC

348 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

 Notice that the signal SEL_ADDR is the keystroke output for the push-button switch cir-
cuit, which is also the input to the debounced one-pulse circuit. For the first keystroke, there are
two narrow pulses (contact bounce) followed by a longer pulse (the push button is held down)
followed by three narrow pulses (contact bounce). The output signal ONE_PULSE provides a
single pulse, as it should. For the second keystroke, there are two narrow pulses (contact bounce)
followed by a longer pulse (the push button is held down) followed by two narrow pulses (contact
bounce). The output signal ONE_PULSE provides a single pulse, as it should. For the third key-
stroke, there is one wide pulse (contact bounce) followed by one narrow pulse (contact bounce)
followed by a longer pulse (the push button held down) followed by two narrow pulses (contact
bounce). The output signal ONE_PULSE provides a single pulse for the wide pulse (contact
bounce) and a second single pulse for the longer pulse (push button is held down). The simula-
tion is correct because the wide pulse (contact bounce) and the longer pulse (push button is held
down) both last longer than two clock ticks.

13.5 DESIGN VERIFICATION FOR A DEBOUNCED ONE-PULSE CIRCUIT

Figure 13.8 shows a press-to-increment circuit (PTIC) that will allow verification of the DOPC
by testing an actual hardware implementation.

8

V
CC

Push-button switch
with resistors

f

CG
CF

b

CB

e

CE

C
CLR

Module 1

Module 2
Module 3 Module 4

Module 5

Q

C

D

C

D

C

DQ Q Q

CE
c

CCa

CA

SEG

SEG

SEG(7:0)
(DP...CA)

EN_DISP
(AN0)

PC_ADDR(3:0)

ONE_PULSE

SLOW_CLK

SEL_ADDR
(BTN0)

(Debounced one-pulse circuit)

SLOW_CLK

RST (asyn)

CLK
(50 MHz)

D7S(7:0)

A

Q1 Q2 Q3

Bit

Display 0

d

CD

g

dp
DP

6
5

1

4

2

0

88
4

3

7

Legend

(Segments DP through CA
and AN0 are active low

inputs)

All flip-flops in Module 2 must
contain a CE input that is

connected to ONE_PULSE

Loading program
counter (LPC)

(modulo 16 counter)
HEX

display
decoder

AN0

Frequency
divider

COUNT(18)

FIGURE 13.8 Press-
to-increment circuit

 Things you should notice about the press-to-increment circuit in Figure 13.8:

• Module 1 is the debounced one-pulse circuit in Figure 13.7 with a frequency divider
added. The frequency divider must be added to the register transfer level circuit to reduce
the frequency of CLK—that is, 50 MHz—to a slower frequency—that is, SLOW_CLK—
to help prevent contact bounce from causing unintentional output pulses. We chose
to reduce the frequency of CLK by 219, which results in a period for SLOW_CLK of
TSLOW_CLK 5 1/fSLOW_CLK 5 1/[(fclk)/2

19] 5 1/[(50 3 106 Hz)/219] 5 10.5 ms. With this
period, contact bounce, via the push-button switch, must not last longer than TSLOW_CLK
5 10.5 ms, which is considered a long duration compared to the contact bounce duration
of most small push-button switches.

www.itpub.net

 13.5 Design Verifi cation for a Debounced One-Pulse Circuit 349

• Module 2 is a modified version of the loading program counter in Figure 13.4 with a CE
(clock enable) input. The CE input is used to enable the clock input of the LPC. If signal
ONE_PULSE were to be supplied directly to the dynamic input C (or clock input) as shown
in Figure 13.4, this would create a gated clock circuit or simply a gated clock. A gated
clock is considered a bad design and should not be used. In general, if a clock net is sourced
by a combinational circuit output, the circuit is called a gated clock. Applying signal ONE_
PULSE to the CE input of module 2 and applying signal SLOW_CLK to the clock input as
shown in Figure 13.8 removes the gated clock. A gated clock circuit will be discussed later.
If you get a gated clock warning in your designs, you need to remove the warning by remov-
ing the gated clock.

• Modules 4 and 5 are used to drive the 7-segment display. An additional bit is added to the
HEX display decoder to turn off the decimal point DP.

• For the circuit to work correctly, each push-button keystroke should provide a single pulse
and increment the loading program counter by 1. This should be observed via display 0.

 Listing 13.7 shows a complete VHDL design for the press-to-increment circuit in Figure
13.8.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity PTIC is port (
 rst,clk,sel_addr: in std_logic;
 seg : out std_logic_vector (7 downto 0);
 en_disp : out std_logic;
 en_disp1 : out std_logic;--added to turn off Display1
 en_disp2 : out std_logic;--added to turn off Display2
 en_disp3 : out std_logic --added to turn off Display3
);
end PTIC;

architecture Mixed of PTIC is
--Module 1 internal signal, count, q1, q2, q3
 signal count : std_logic_vector (18 downto 0);
 signal q1, q2, q3 : std_logic;
--Modules 1 and 2 internal signal, one_pulse, slow_clk
 signal one_pulse, slow_clk : std_logic;
--Module 2 internal signal, q
 signal q : std_logic_vector (3 downto 0);
--Module 2 and 3 internal signal, pc_addr
 signal pc_addr : std_logic_vector (3 downto 0);
--Module 3 and 4 internal signal, d7s
 signal d7s : std_logic_vector (7 downto 0);
--Module 3 and 5 internal signal, a
 signal a : std_logic;
begin

--Module 1 code, Debounced One_Pulse Circuit
 count ,5 count 1 1 when rising_edge (clk) else
 count;
 slow_clk ,5 count (18);
process (slow_clk)

LISTING 13.7
Complete VHDL
design for the PTIC
(project: PTIC)

(Continued)

350 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

 Things you should notice about the VHDL design in Listing 13.7:

• The signals EN_DISP1, EN_DISP2, and EN_DISP3 are declared in the entity so that dis-
plays 1 through 3 can be turned off. These displays turn on when they are not provided with
signals that disable them.

• A mixed design style is used in the architecture declaration.

begin
 if rising_edge (slow_clk) then q1 ,5 sel_addr; q2 ,5 q1;

q3 ,5 q2;
 end if;
end process;
 one_pulse ,5 q1 and q2 and not q3;

--Module 2 code, Loading Program Counter
process (rst, slow_clk)
begin
 if rst 5 ‘1’ then q ,5 “0000”;
 elsif rising_edge(slow_clk) and one_pulse 5 ‘1’ then q ,5 q 1 1;
 end if;
end process;
 pc_addr ,5 q;

--Module 3 code, HEX Display Decoder
 d7s ,5 “00111111” when pc_addr 5 “0000” else
 “00000110” when pc_addr 5 “0001” else
 “01011011” when pc_addr 5 “0010” else
 “01001111” when pc_addr 5 “0011” else
 “01100110” when pc_addr 5 “0100” else
 “01101101” when pc_addr 5 “0101” else
 “01111101” when pc_addr 5 “0110” else
 “00000111” when pc_addr 5 “0111” else
 “01111111” when pc_addr 5 “1000” else
 “01101111” when pc_addr 5 “1001” else
 “01110111” when pc_addr 5 “1010” else
 “01111100” when pc_addr 5 “1011” else
 “00111001” when pc_addr 5 “1100” else
 “01011110” when pc_addr 5 “1101” else
 “01111001” when pc_addr 5 “1110” else
 “01110001”;
 a ,5 ‘1’;

--Module 4 code, inverter
 seg ,5 not d7s;

--Module 5 code, inverter
 en_disp ,5 not a;

--Added to turn off Displays 1, 2, and 3
 en_disp1 ,5 ‘1’;--added to turn off Display1
 en_disp2 ,5 ‘1’;--added to turn off Display2
 en_disp3 ,5 ‘1’;--added to turn off Display3
end Mixed;

www.itpub.net

 13.5 Design Verifi cation for a Debounced One-Pulse Circuit 351

• The internal signals in the design are declared between the architecture and the first begin
using documentation style M presented earlier in Chapter 12, Section 12.5.1.

• The VHDL code for modules 1 through 5 is listed in numerical order and is marked using
documentation style M presented earlier in Chapter 12, Section 12.5.1.

• The code for modules 1 and 2 uses processes with if statements. The code for module 3 uses
a conditional signal assignment. The code for modules 4 and 5 uses Boolean equations.

 If you elect to download the design on a hardware board, you will observe that the display
increments each time you press and release the push-button switch. After resetting the program
counter, each pushbutton keystroke will provide the sequence 1, 2, 3, . . . , D, E, F, 0, 1, 2, 3, . . .
on the 7-segment display. Each push-button keystroke should provide only one pulse and will
not skip through the counting sequence.
 Figure 13.9 shows a bad circuit; that is, this is one form of a gated clock circuit. In this cir-
cuit, the flip-flop can be triggered by a glitch; that is, a glitch is an undesirable momentary pulse
that occurs at the output of the AND gate, as illustrated in the waveform diagram in Figure 13.9.

 In the waveform diagram in Figure 13.9, observe that the C input of the counter gets two ris-
ing edges for a single rising edge of the CLK signal when EN 5 1 due to the glitch at the output
of the AND gate. Any combinational circuit output regulating a clock signal that is supplied to
the C input of a single flip-flop or a set of flip-flops such as a counter is called a gated clock,
and this type of circuit can produce or create a glitch, which may result in a false trigger. When
a gated clock is used in your VHDL design, this usually causes a warning to be issued by the ISE
software that this is not good design practice. As we mentioned earlier, if you get a gated clock
warning in your designs, you need to remove the warning by removing the gated clock circuit.
 Figure 13.10 shows a good circuit that can be used to remove the gated clock circuit shown
in Figure 13.9. This circuit does not produce a false trigger at its C input.

Bad circuit Waveform diagram
(Gated clock circuit)

COMBEN
CLK

CLK

EN

COMB

C input

Glitch

False
trigger

OUTPUT
Counter

or
D flip-flop

C

FIGURE 13.9 Bad gated clock cir-
cuit and corresponding waveform
diagram

 In the waveform diagram in Figure 13.10, observe that the C input of the counter gets only
one rising edge, or the C input causes the counter to only count for each rising edge of the CLK
signal when EN 5 1. Because the circuit in Figure 13.10 does not have a combinational circuit
output regulating a clock signal that is supplied to the C input, no warning will be issued by the
ISE software when this circuit is used in a VHDL design.
 The good circuit in Figure 13.10 is used in the press-to-increment circuit in Figure 13.8 to
prevent a gated clock error message from occurring.
 Figure 13.11 shows a modification to the PTIC in Figure 13.8.
 Things you should notice about the modified press-to-increment circuit in Figure 13.11:

• The circuit in Figure 13.11 allows you to observe what happens when the signal CLK is not
slowed down enough before it is applied to the first flip-flop in the debounced one-pulse
circuit.

CLK

Good circuit Waveform diagram

EN
CLK

EN

C input

OUTPUT
Counter

or
D flip-flop

C

CE

FIGURE 13.10 Good circuit
to control the C input via an
EN signal and corresponding
waveform diagram

352 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

• MUX_E is added to the design to allow you to switch between the frequencies SLOW_CLK
and COUNT(0) via a slide switch, which provides the signal ERROR. When the signal
ERROR is 1, a push-button keystroke may cause the circuit to skip through the binary-up
counting sequence when it is pressed. When the signal ERROR is 0, each push-button key-
stroke provides only one pulse as it does for the design in Listing 13.7 and, therefore, does
not skip through the sequence.

• Because the output of a flip-flop that is synchronized with a clock does not create glitches,
the flip-flop output for the signal F_S_CLKD (which represents F_S_CLK delayed) is used
to drive the clock inputs of the flip-flops for Q1, Q2, and Q3 and the clock input of module
2 so that a gated clock warning is not issued. In other words, if F_S_CLK were connected
to the clock inputs of Q1, Q2, and Q3 and the clock input of module 2, then a gated clock
warning would be issued for net F_S_CLK.

• The signal COUNT(0) (which represents half the frequency of CLK or CLK divided by 2)
is required in the circuit, because CLK cannot be used to delay itself via a flip-flop, due to
the setup time required by the flip-flop—that is, for F_S_CLKD.

 Listing 13.8 shows a complete VHDL design for the modified press-to-increment circuit in
Figure 13.11.

8

V
CC

Push-button switch
with resistors

f

CG
CF

b

CB

e

CE

CLR
C

Module 1

Module 2
Module 3 Module 4

Module 5

Q

C

D

C

D

C

DQ Q Q

C

D Q
1

0

CE
c

CCa

CA

SEG

SEG

SEG(7:0)
(DP...CA)

EN_DISP
(AN0)

PC_ADDR(3:0)

ONE_PULSE

SLOW_CLK
F_S_CLK F_S_CLKD

ERROR
(SW0)

CLK

COUNT(0)

MUX_E

SEL_ADDR
(BTN0)

(Debounced one-pulse circuit)

F_S_CLKD

RST (asyn)

CLK
(50 MHz)

D7S(7:0)

A

Q1 Q2 Q3

Bit

Display 0

d

CD

g

dp
DP

6
5

1

4

2

0

88
4

3

7

Legend

(Segments DP through CA
and AN0 are active low

inputs)

All flip-flops in Module 2 must
contain a CE input that is
connected to ONE_PULSE

Adding this FF
removes a gated
clock for net
F_S_CLK

Loading program
counter (LPC)

(modulo 16 counter)

Frequency
divider

COUNT(0)

HEX
display
decoder

AN0

COUNT(18)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity PTIC_MOD is port (
 rst,clk,sel_addr : in std_logic;
 seg : out std_logic_vector (7 downto 0);
 en_disp : out std_logic;

LISTING 13.8
Complete VHDL
design for the PTIC
modified (project:
PTIC_Modified)

FIGURE 13.11
Modified PTIC

www.itpub.net

 13.5 Design Verifi cation for a Debounced One-Pulse Circuit 353

 en_disp1 : out std_logic; --added to turn off Display1
 en_disp2 : out std_logic; --added to turn off Display2
 en_disp3 : out std_logic; --added to turn off Display3
 error : in std_logic --added to select either count(0)

--or slow_clk
);
end PTIC_MOD;

architecture Mixed of PTIC_MOD is

--Module 1 internal signals, count, slow_clk, q1, q2, q3,f_s_clk
 signal count : std_logic_vector (18 downto 0);
 signal slow_clk, q1, q2, q3, f_s_clk : std_logic;

--Modules 1 and 2 internal signals, one_pulse, f_s_clkd
 signal one_pulse, f_s_clkd : std_logic;

--Module 2 internal signal, q
 signal q : std_logic_vector (3 downto 0);

--Module 2 and 3 internal signal, pc_addr
 signal pc_addr : std_logic_vector (3 downto 0);

--Module 3 and 4 internal signal, d7s
 signal d7s : std_logic_vector (7 downto 0);

--Module 3 and 5 internal signal, a
 signal a : std_logic;
begin

--Module 1 code, Debounced One_Pulse Circuit
 count ,5 count 1 1 when rising_edge (clk) else
 count;
 slow_clk ,5 count (18);
 f_s_clk ,5 slow_clk when error 5 ‘0’ else
 count(0);
 f_s_clkd ,5 f_s_clk when rising_edge (clk) else
 f_s_clkd;
process (f_s_clkd)
begin
 if rising_edge (f_s_clkd) then q1 ,5 sel_addr; q2 ,5 q1;

q3 ,5 q2;
 end if;
end process;
 one_pulse ,5 q1 and q2 and not q3;

--Module 2 code, Loading Program Counter
process (rst, f_s_clkd)
begin
 if rst 5 ‘1’ then q ,5 “0000”;
 elsif rising_edge(f_s_clkd) and one_pulse 5 ‘1’ then q ,5 q 1 1;
 end if;
end process;
 pc_addr ,5 q;

--Module 3 code, HEX Display Decoder
 d7s ,5 “00111111” when pc_addr 5 “0000” else (Continued)

354 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

 Things you should notice about the VHDL design in Listing 13.8:

• The signal ERROR is added to the entity of the design.
• The signal F_S_CLKD is added as an internal signal between modules 1 and 2.
• In the code for module 1, a steering circuit (a 2-to-1 MUX) is added to steer the signal

SLOW_CLK to F_S_CLK when ERROR is 0 or steer the signal COUNT(0) to F_S_CLK
when ERROR is 1.

• In the code for module 1, the signal SLOW_CLK is changed to the signal F_S_CLKD in the
process.

• In the code for module 1, flip-flop F_S_CLKD is added to prevent a gated clock.
• In the code for module 2, the signal SLOW_CLK is changed to the signal F_S_CLKD in the

process.

 See if you can discover an alternate way to remove the gated clock warning for the VHDL
code in Listing 13.8 without using flip-flop F_S_CLKD. [Hint: Use D flip-flops with clock
enable inputs (CE inputs)].
 Clock skew is the delay of the clock signal to a flip-flop from the clock source such that all
flip-flops are not triggered at the same time, as they should be. This can cause problems for high-
speed digital circuits. For digital circuits that operate at a slower speed, clock skew is generally
not a problem. VHDL compilers generate an error message for a clock net that may have exces-
sive clock skew. If loads on the net are OK for your design and the timing constrain requirement
on the net is met, then the clock skew warning can be safely ignored. In the design for Listing 13.7,
an excessive clock skew warning is issued for CLK net: COUNT(18), indicating that certain CLK
pins failed to route using a CLK template. This is simply a warning and can be safely ignored.

 “00000110” when pc_addr 5 “0001” else
 “01011011” when pc_addr 5 “0010” else
 “01001111” when pc_addr 5 “0011” else
 “01100110” when pc_addr 5 “0100” else
 “01101101” when pc_addr 5 “0101” else
 “01111101” when pc_addr 5 “0110” else
 “00000111” when pc_addr 5 “0111” else
 “01111111” when pc_addr 5 “1000” else
 “01101111” when pc_addr 5 “1001” else
 “01110111” when pc_addr 5 “1010” else
 “01111100” when pc_addr 5 “1011” else
 “00111001” when pc_addr 5 “1100” else
 “01011110” when pc_addr 5 “1101” else
 “01111001” when pc_addr 5 “1110” else
 “01110001”;
 a ,5 ‘1’;

--Module 4 code, inverter
 seg ,5 not d7s;

--Module 5 code, inverter
 en_disp ,5 not a;

--Added to turn off Displays 1, 2, and 3
 en_disp1 ,5 ‘1’;--added to turn off Display1
 en_disp2 ,5 ‘1’;--added to turn off Display2
 en_disp3 ,5 ‘1’;--added to turn off Display3
end Mixed;

www.itpub.net

 Problems 355

 13.19 In the design in Section 13.3, Listing 13.5, would the
design be correct if PC_ADDR ,5 Q were included
inside the process—that is, before end process;,—
without any other changes to the VHDL code? Provide
a solution if one is needed.

Section 13.4 Designing a Debounced One-Pulse
Circuit
 13.20 What problem can occur when a push-button switch is

pressed to generate a single pulse in a circuit?
 13.21 In a circuit that uses a single push-button switch to gen-

erate a single output pulse, what circuit is used to help
prevent multiple output pulses from being generated?

 13.22 For the debounced one-pulse circuit in Section 13.4,
Figure 13.6, and the register transfer level circuit in
Section 13.4, Figure 13.7, what is the restriction on the
duration of contact bounce to help prevent more than a
single output pulse from occurring when a push-button
switch is pressed that drives the signal SEL_ADDR?

 13.23 In Section 13.4, Listing 13.6, use three conditional sig-
nal assignments to write the VHDL code for fl ip-fl op
outputs Q1 through Q3.

 13.24 In Section 13.4, Listing 13.6, use a single conditional
signal assignment to write the VHDL code for fl ip-
fl op outputs Q1 through Q3. Assume the declaration
signal Q1, Q2, Q3 : std_logic; is replaced by the
declaration signal Q : std_logic_vector (1 to 3);. Also
make the required changes to the Boolean equation
ONE_PULSE.

 13.25 Show another way to represent rising_edge (CLK)
using the clock tick event.

 13.26 Show another way to represent falling_edge (CLK)
using the clock tick event.

Section 13.5 Design Verifi cation for a Debounced
One-Pulse Circuit
 13.27 What would be the duration for TCLK in Section 13.5,

Figure 13.8, if a frequency divider is not used?
 Do you think that contact bounce would occur?
 13.28 In Section 13.5, Figure 13.8 when a frequency divider

is used to divide the frequency of CLK by 219, what
is the duration for TSLOW_CLK to help prevent contact
bounce from causing unintentional output pulses?

 13.29 What is a gated clock? What should you do if you get a
gated clock warning in your design?

 13.30 What is the purpose of modules 4 and 5 in the VHDL
code in Section 13.5, Listing 13.7?

 13.31 What is the purpose of the signals EN_DISP1, EN_
DISP2, and EN_DISP3 in the VHDL code in Sec-
tion 13.5, Listing 13.7? How can the same thing be
accomplished differently?

 13.32 Does the ISE software provide any indication that your
VHDL code may contain a gated clock? If so, what is
the warning that is issued?

Section 13.2 Designing an Instruction Memory
 13.1 What is the name of the unit that contains the instruc-

tions that VBC1 can execute?
 13.2 How many instructions can be loaded into the instruc-

tion memory of VBC1, and how many bits are used in
each instruction?

 13.3 How many address bits are contained in the instruction
memory of VBC1? How many locations does this num-
ber of bits have access to in the instruction memory?

 13.4 Explain how a single instruction is loaded into instruc-
tion memory.

 13.5 What is instruction memory called or referred to as,
and what is the size of the instruction memory for
VBC1?

 13.6 Write the VHDL code for an enumerated data type for
an instruction memory of 32 by 16.

 13.7 Write a VHDL signal declaration for the signal called
NEW_MEM of type mem_type.

 13.8 What would happen if you included the Boolean equa-
tion IR ,5 MEM(conv_integer(PC_ADDR)); inside
the process in Section 13.2, Listing 13.1 and did not
include MEM in the sensitivity list for the process?

 13.9 Write the VHDL code for an instruction memory of 16
by 8 to replace the code in Section 13.2, Listing 13.1,
using a conditional signal assignment for MEM and a
Boolean equation for IR.

 13.10 Show a template for initializing instruction memory
for VBC1 at startup.

 13.11 Is it necessary to initialize the instruction memory?
If it is not necessary, show how to write the VHDL
code for instruction memory for VBC1 that is not
initialized.

 13.12 Can you name some advantages of initializing the
instruction memory?

Section 13.3 Designing a Loading Program Counter
 13.13 How many program counters does VBC1 have, and

what are their names? Discuss what each program
counter does.

 13.14 How many states does a modulo 5 counter have? How
many states does a modulo j counter have?

 13.15 Is a program counter a binary-up counter or a binary-
down counter? Provide a brief explanation to support
your answer in terms of the VBC1 architecture.

 13.16 Is the loading program counter for VBC1 a simple state
machine or is it a complex state machine? Provide an
explanation for your answer.

 13.17 What is the name of the signal that drives the control or
clock input of the loading program counter for VBC1?

 13.18 The arithmetic method is one of the easiest ways to
design a simple program counter. Write a conditional
signal assignment for output Q of the LPC in Sec-
 tion 13.3, Listing 13.5, using the arithmetic method.

PROBLEMS

356 Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit

gram showing CLK as input 1 of MUX_E. When
signal ERROR is 1, show the waveform diagram for
F_S_CLK and the output waveform diagram for F_S_
CLKD. Now draw another waveform diagram show-
ing COUNT(0) as input 1 of MUX_E. When signal
ERROR is 1, also show the waveform diagrams for
CLK, F_S_CLK, and F_S_CLKD.

 13.41 Provide an alternate way to remove the gated clock
warning for the VHDL code in Listing 13.8 without
using fl ip-fl op F_S_CLKD. Draw a circuit that has
the same functionality as the circuit in Figure 13.11.
Use the circuit symbol shown in Figure P13.41 for the
debounced one-pulse circuit. (Hint: Use two DOPCs
and two LPCs. Steer the signals out of the LPCs to the
HEX display decoder.

 13.42 Obtain the VHDL code for your circuit diagram
in problem 13.41 and implement the design using a
BASYS 2 board or a NEXYS 2 board to ensure that it
works the same as the circuit in Figure 13.11.

 13.43 What is clock skew? Can clock skew be ignored for
digital circuits that operate at a high speed? Can clock
skew be ignored for digital circuits that operate at a
slower speed?

 13.33 Draw the bad gated clock circuit that is shown in the
book. Why is the use of a gated clock considered a bad
design practice?

 13.34 What is a glitch, as defi ned in the book?
 13.35 Draw the good circuit that is shown in the book for

controlling a clock signal to a counter or D fl ip-fl op
via an EN signal that does not produce a glitch. If the
recommended circuit is used in a VHDL design, is a
warning issued by the ISE software indicating that the
circuit contains a gated clock?

 13.36 What is the purpose of the modifi cation to the press-to-
increment circuit shown in Figure 13.11?

 13.37 What is the value for the signal ERROR in Figure 13.11
that causes the circuit to skip through the binary-up
counting sequence?

 13.38 What is the value for the signal ERROR in Figure 13.11
that allows each push-button keystroke to provide only
one pulse?

 13.39 Does the output of a fl ip-fl op that is synchronized with
a clock create glitches? What fl ip-fl op is used in Fig-
ure 13.11 so that a gated clock warning is not issued?

 13.40 Explain why the signal COUNT(0) must be supplied
to MUX_E in Figure 13.11 and not the signal CLK.
Illustrate this principle by drawing a waveform dia-

INPUT
INPUT

Q1 Q2 Q3
D

C

D

C

D QQQ

Debounced
one-pulse

circuit

Debounced
one-pulse

circuit

CE

CE

≡ CE CE

C

C

FIGURE P13.41

www.itpub.net

C h aa p t e rr

Designing Multiplexed Display
Systems

Chapter Outline

 14.1 Introduction 357

 14.2 Multiplexed Display System for Four 7-Segment LED Displays 357

 14.3 Designing a Multiplexed Display System Using VHDL 360

 14.4 Complete Design of a Multiplexed Display System Using a Flat Design
Approach 364

 14.5 Complete Design of a Multiplexed Display System Using a Hierarchal Design
Approach 367

 14.6 Designing a Word Display System Using a Flat Design Approach 372

 Problems 377

14.1 INTRODUCTION

In this chapter you will learn how to write VHDL for a multiplexed display system. Each mod-
ule in the circuit will be designed separately. The modules will first be combined to form a flat
design approach and then combined to form a hierarchal design approach. Documentation
style M (introduced in Chapter 12) will continue to be stressed as we combine our VHDL source
code to include additional modules. The chapter ends with the design of a word display system
using a flat design approach for displaying words on four 7-segment LED displays.

14.2 MULTIPLEXED DISPLAY SYSTEM FOR FOUR 7-SEGMENT LED
DISPLAYS

We will design a multiplexed display system using four 7-segment LED displays as shown in
Figure 14.1. The displays are called Disp 3 through Disp 0 (short for display 3 through display
0) and are used to simultaneously display four different bus signals almost at the same time.
This is the purpose of a multiplexed display system. The bus signals are the input signals DIS-
PLAY_3, DISPLAY_2, DISPLAY_1, and DISPLAY_0. The purpose of the 4-to-1 MUX array is to
steer or route each one of the input bus signals to its output, one at a time (called time-division
multiplexing). Because the input bus signals in Figure 14.1 are fixed at the values F, A, 9, and 0,
the values that appear on the four 7-segment LED displays will be F, A, 9, and 0, respectively,
reading left to right. The values are not actually displayed at the same time, but they appear to
be displayed at the same time when the frequency of SLOW_CLK is correctly chosen due to

rr 14

357

358 Chapter 14 Designing Multiplexed Display Systems

the persistence of vision of human eyes. The purpose of the frequency divider is to reduce the
frequency of the system clock CLK to a proper frequency—that is, SLOW_CLK. The frequency
of SLOW_CLK must be chosen to allow the individual displays to turn on and off fast enough to
remove blinking but slow enough to remove bleeding, which causes the displayed symbols to
be overlaid and thus appear indistinguishable.

 The operation of the circuit is fairly straightforward. A signal SLOW_CLK drives a 2-bit
counter that continuously cycles through its four states 0 through 3. When the 2-bit counter is
in state 0, the 4-to-1 MUX array guides the signal DISPLAY_0 to its output. The HEX display
decoder decodes the value of DISPLAY_0, a fixed signal with the constant value of 0. The sig-
nal D7S (display 7-segment) supplies the 7-segment decoded value 0 to all four of the 7-segment
displays—display 3 through 0.
 The display that lights is selected by the 2-to-4 decoder. The 2-to-4 decoder provides the
signal AN0 to light display 0 when the 2-bit counter is in state 0 and also provides the signals
AN1 through AN3 to turn off displays 1 through 3. When the 2-bit counter changes to state 1,
then the signal AN1 is provided to light display 1 and 9 is lighted (all the other displays are
turned off). When the 2-bit counter changes to state 2, then the signal AN2 is provided to light
display 2 and A is lighted (all the other displays are turned off), and so on. The purpose of the
2-bit counter is to supply a binary-up counting signal, COUNT_2B, to the select input (SEL) of
the 4-to-1 MUX array and to the code input (CODE) of the 2-to-4 decoder.
 To make a blinking display appear as though it is not blinking requires the display to be
turned on and off at a rate of approximately 24 cycles per second or faster. If the rate is slower
than this, you will see the display blinking. For n displays sequentially blinking on and off in
sequence (as a result of the 2-to-4 Decoder), each display must be turned on and off at a rate of
approximately 24 cycles per second or faster. In the circuit in Figure 14.1, the 2-to-4 decoder
must be driven by a counter with a minimum frequency of n times 24 cycles per second, or
n 3 24 Hz 5 4 3 24 Hz 5 96 Hz, or 96 cycles per second or faster to observe no blinking.
 In Figure 14.1, the frequency of SLOW_CLK must be approximately 96 cycles per second
or faster for displays 3 through 0 to appear to be on, showing the characters FA90. A frequency
for SLOW_CLK below 96 cycles per second will result in each display alternating blinking in

Module 1
Module 2

Module 3 Module 4

DISPLAY_0(3:0) = 0

DISPLAY_1(3:0) = 9

DISPLAY_2(3:0) = A

DISPLAY_3(3:0) = F

4-to-1
MUX
array

2-to-4
decoder

SEL

0

1

2

3

0

1

2

3

HEX display
decoder

BIN D7S
ADDR_BIN 4

4

4

4

4

8

CODE

RST
(asyn)

D7S(7:0)

Four multiplexed
7-segment display

AN0

AN1

AN2

AN3

SEG
Disp 3

SEG
Disp 2

SEG
Disp 1

SEG
Disp 0

AN3 AN2 AN1 AN0

CLK

Frequency
divider

COUNT
SLOW_CLK

2-bit
counter

CLR

COUNT_2B 2

SEG
CA
CB
CC
CD
CE
CF
CG
DP

Bit
0
1
2
3
4
5
6
7

(Segments DP through CA
and AN3 through AN0 are

active low inputs)

F A 9 0
Legend

FIGURE 14.1 Multiplexed display system for displaying F, A, 9, 0 on four 7-segment LED displays display 3 through
display 0

www.itpub.net

 14.2 Multiplexed Display System for Four 7-Segment LED Displays 359

the sequence 0, 9, A, followed by F and then back to 0, and so on. If you elect to implement the
circuit on a hardware board, it is interesting to change the frequency of SLOW_CLK to observe
the multiplexing operation working at a frequency of approximately 96 Hz or faster and also at
a frequency much slower than 96 Hz. At the minimum frequency of 96 Hz, flicker will probably
occur when you move your head or move the display slightly while observing the multiplexed
display. To prevent flicker, simply increase the frequency until no flicker is observed.
 A four multiplexed 7-segment display is a standard item on the Digilent BASYS 2 and
NEXYS 2 boards as illustrated in Figure 14.2a. Figure 14.2b shows four separate 7-segment
displays like those found on the Altera DE1 and DE2 boards. Figure 14.2c shows a design for
a four multiplexed 7-segment display using 7 3 4, or 28 three-state buffers and four separate
7-segment displays.

 Multiplexed displays are often used to minimize the number of wires or conductors on a
PC board. Observe in Figure 14.2a that only 8 1 4 or 12 wires are required to access the four
multiplexed 7-segment display. The four separate 7-segment displays in Figure 14.2b require
7 3 4 or 28 wires to access the displays. When the four separate 7-segment displays are con-
nected as shown in Figure 14.2c, only 7 1 4 or 11 wires are required to access the four multi-
plexed 7-segment display. Reminder: The segment inputs for both the Digilent boards and the
Altera boards are active low inputs. The enable inputs for the Digilent multiplexed 7-segment
display in Figure 14.2a are also active low inputs. The enable inputs for the multiplexed 7-
segment display in Figure 14.2c are also active low inputs. The design in Figure 14.2c can be
substituted for the four multiplexed 7-segment display in Figure 14.2a minus the ability to light
the decimal points because the decimal points are not connected.

88 88 88 88 88 88 88 88

88 88 88 88

Disp 0Disp 1Disp 2

(b)(a)

Disp 3Disp 0Disp 1Disp 2Disp 3

Disp 0Disp 1Disp 2Disp 3

7-segment
inputs

7-segment
inputs

7-segment
inputs

7-segment
inputs

Internal
connections

8-segment
inputs

8

7-segment
inputs

7

7 7 7 7

7 7 7 7

Enable
Disp 3

Enable
Disp 2

Enable
Disp 1

Enable
Disp 0

(c)

Enable
Disp 3

Enable
Disp 2

Enable
Disp 1

Enable
Disp 0

Decimal points are not connected

 Power connections to V

CC
are not shown

FIGURE 14.2 (a) A
four multiplexed 7-
segment display;
(b) four separate
7-segment displays;
(c) a design for a four
multiplexed 7-segment
display using 28 three-
state buffers and four
separate 7-segment
displays

360 Chapter 14 Designing Multiplexed Display Systems

14.3 DESIGNING A MULTIPLEXED DISPLAY SYSTEM USING VHDL

In this section, we will design each of modules 1 through 4 for the multiplexed display system in
Figure 14.1 using either a dataflow or a behavioral design style. In the next section, we combine
the four modules together in one file using a flat design approach.

14.3.1 Designing Module 1: A 4-to-1 MUX Array
Listing 14.1 shows a complete VHDL design for module 1 using a behavioral design style with
a case statement.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity MUX_Array is port (
 count_2b : in std_logic_vector (1 downto 0);
 addr_bin : out std_logic_vector (3 downto 0)
);
end MUX_Array;

architecture Behavioral of MUX_Array is
begin
process (count_2b)
begin
 case count_2b is
 when “00” 5. addr_bin ,5 “0000”;
 when “01” 5. addr_bin ,5 “1001”;
 when “10” 5. addr_bin ,5 “1010”;
 when “11” 5. addr_bin ,5 “1111”;
 when others 5. null;
 end case;
end process;
end Behavioral;

LISTING 14.1
Complete VHDL
design for module 1
using a behavioral
design style with a
case statement (proj-
ect: MUX_Array)

 Things you should notice about the VHDL design in Listing 14.1:

• Signals DISPLAY_0 through DISPLAY_3 all have a constant value and must not be placed
in the entity declaration or in the sensitivity list for the process.

• When others is required in the case statement and null may be used to indicate a do noth-
ing action.

 Waveform 14.1 shows a simulation with the correct functionality of design entity
MUX_ARRAY.

+

+

0 1 2 3

00

0

09 a f

0 ns 200 nsName Value

count_2b[1:0]

addr_bin [3:0]

0

WAVEFORM 14.1 Simulation for the
correct functionality of design entity
MUX_ARRAY

 Things you should notice about the waveforms in Waveform 14.1:

• The values for the signal COUNT_2B are displayed in Waveform 14.1 as unsigned decimal
values.

• The values for the signal ADDR_BIN are displayed in Waveform 14.1 as hexadecimal
values.

www.itpub.net

 14.3 Designing a Multiplexed Display System Using VHDL 361

14.3.2 Designing Module 2: A HEX Display Decoder
Listing 14.2 shows a complete VHDL design for module 2 using a dataflow design style with a
conditional signal assignment.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity HEX_Display_Decoder is port (
 addr_bin : in std_logic_vector (3 downto 0);
 d7s : out std_logic_vector (7 downto 0)
);
end HEX_Display_Decoder;

architecture Dataflow of HEX_Display_Decoder is
begin
d7s ,5 “11000000” when addr_bin 5 “0000” else
 “11111001” when addr_bin 5 “0001” else
 “10100100” when addr_bin 5 “0010” else
 “10110000” when addr_bin 5 “0011” else
 “10011001” when addr_bin 5 “0100” else
 “10010010” when addr_bin 5 “0101” else
 “10000010” when addr_bin 5 “0110” else
 “11111000” when addr_bin 5 “0111” else
 “10000000” when addr_bin 5 “1000” else
 “10010000” when addr_bin 5 “1001” else
 “10001000” when addr_bin 5 “1010” else
 “10000011” when addr_bin 5 “1011” else
 “11000110” when addr_bin 5 “1100” else
 “10100001” when addr_bin 5 “1101” else
 “10000110” when addr_bin 5 “1110” else
 “10001110”;
end Dataflow;

LISTING 14.2
Complete VHDL
design for module
2 using a dataflow
design style with a
conditional signal
assignment (proj-
ect: HEX_Display_
Decoder)

 Things you should notice about the VHDL design in Listing 14.2:

• The signal D7S is a std_logic_vector (7 downto 0). Bit 7 is the decimal point DP.
• All the bits for the signal D7S are entered as active low—that is, logic 0 turns a segment on

and logic 1 turns a segment off.
• The decimal point DP is disabled by setting D7S(7) to logic 1.
• The signal ADDR_BIN is represented as a 4-bit bus, and the relational operator “=” is

required rather than the assignment operator “,5”. An assignment operator “,5” is often
used by accident.

• When others is not allowed in a conditional signal assignment statement. Using when oth-
ers is a common mistake made when writing conditional signal assignment statements.

 Waveform 14.2 shows a simulation with the correct functionality of design entity
HEX_Display_Decoder.

+

+

0 ns 200 ns 400 ns 600 ns 800 nsName Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
c0 f9c0

addr_bin[3:0]

d7s[7:0] a4 b0 99 92 82 f8 80 90 88 83 c6 a1 86 8e c0
0

WAVEFORM 14.2 Simulation for the correct functionality of design entity HEX_Display_Decoder

362 Chapter 14 Designing Multiplexed Display Systems

 Things you should notice about the waveforms in Waveform 14.2:

• The values for the signal ADDR_BIN are displayed in Waveform 14.2 as unsigned decimal
values.

• The values for the signal D7S are displayed in Waveform 14.2 as hexadecimal values.

14.3.3 Designing Module 3: A 2-bit Counter and a Frequency Divider
Listing 14.3 shows a partial VHDL design for module 3 for a 2-bit counter with a behavioral
design style with an if statement—that is, using the arithmetic method with a “1” arithmetic
operator. This design does not include the frequency divider and thus allows us to verify the
functionality of the 2-bit counter by running a simulation using CLK—that is, the system clock
frequency. A simulation obtained with a frequency divider takes more clock cycles because of
the frequency division thus making the simulation harder to obtain and analyze. We will add the
frequency divider circuit after we verify that the 2-bit counter works as expected.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter is port (
 rst, clk : in std_logic; --clk is the system clock signal for

--the 2-bit counter
 count_2b : inout std_logic_vector (1 downto 0)
);
end Counter;

architecture behavioral of Counter is
begin
process (rst, clk)
begin
 if rst 5 ‘1’ then count_2b ,5 “00”;
 elsif rising_edge (clk) then count_2b ,5 count_2b 1 1;
 end if;
end process;
end behavioral;

LISTING 14.3 Partial
VHDL design for
module 3 just for the
2-bit counter with a
behavioral design
style with an arith-
metic “1” operator
(project: Counter)

 Things you should notice about the VHDL design in Listing 14.3:

• Because the “1” arithmetic operator is used in this design, the package “IEEE.STD_
LOGIC_UNSIGNED” is required to define the “1” arithmetic operator. Leaving out the
use clause statement “use IEEE.STD_LOGIC_UNSIGNED.ALL;” is a common error.

• The signal RST (RESET) must be included in the sensitivity list of the design for the counter
process. It is a common error to leave out signals in the sensitivity list that must be read to
perform the process.

 Waveform 14.3 shows a simulation with the correct functionality of design entity Counter.
This simulation does not include the frequency divider.

+

+

+

+

0 ns 200 nsName Value

0 1 2 3

50000 ps50000 ps

0

0

1

clk_period

count_2b[1:0]

clk

rst

0 01

WAVEFORM 14.3 Simulation
for the correct functionality of
design entity Counter

www.itpub.net

 14.3 Designing a Multiplexed Display System Using VHDL 363

 Things you should notice about the waveforms in Waveform 14.3:

• The signal RST is an asynchronous signal that overrides the signal CLK.
• The values for the signal COUNT_2b are displayed in Waveform 14.3 as unsigned decimal

values.

 Listing 14.4 shows a complete VHDL design for module 3. This design includes a frequency
divider with an internal signal SLOW_CLK of ~1Hz for CLK 5 50 MHz.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Module3 is port (
 rst,clk : in std_logic;
 count_2b : inout std_logic_vector (1 downto 0)
);
end Module3;
architecture behavioral of Module3 is

--Module 3 internal signals, count, slow_clk
 signal count: std_logic_vector (24 downto 0) ;
 signal slow_clk: std_logic;
begin
--Module 3 code, Frequency Divider
process (clk, count)
begin
 if rising_edge (clk) then count ,5 count 1 1;
 end if;
--the frequency of slow_clk is 1.49 Hz for clk 5 50 MHz (50 M/2^25
--Hz 5 1.49 Hz)
 slow_clk ,5 count (24);
end process;
--Module 3 code, 2-bit Counter
process (rst, slow_clk)
begin
 if rst 5 ‘1’ then count_2b ,5 “00”;
 elsif rising_edge (slow_clk) then count_2b ,5 count_2b 1 1;
 end if;
end process;
end behavioral;

LISTING 14.4
Complete VHDL
design for module 3
using a behavioral
design style with an
arithmetic “1” opera-
tor (project: Module3)

 Things you should notice about the VHDL design in Listing 14.4:

• The signals COUNT and SLOW_CLK are internal signals and must be placed between
architecture and the first begin. One common error is to list internal signals in the entity.
Another common error is to include a mode—that is, in, out, inout, or buffer—for internal
signals. Do not provide a mode for an internal signal.

• Documentation style M marks the location for each internal signal (COUNT and SLOW_
CLK) and the location for each section of code for the circuit elements (the frequency
divider and the 2-bit counter) in the VHDL design for each module so that you can easily
find them.

364 Chapter 14 Designing Multiplexed Display Systems

14.3.4 Designing Module 4: A 2-to-4 Decoder
Listing 14.5 shows a complete VHDL design for module 4 using a behavioral design style with
a case statement.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Decoder is port (
 count_2b : in std_logic_vector (1 downto 0);
 AN : out std_logic_vector (3 downto 0)
);
end Decoder;

architecture Behavioral of Decoder is
begin
process (count_2b)
begin
 case count_2b is
 when “00” 5. AN ,5 “1110”; --Light only Display 0
 when “01” 5. AN ,5 “1101”; --Light only Display 1
 when “10” 5. AN ,5 “1011”; --Light only Display 2
 when “11” 5. AN ,5 “0111”; --Light only Display 3
 when others 5. null;
 end case;
end process;
end Behavioral;

LISTING 14.5
Complete VHDL
design for module 4
using a behavioral
design style with a
case statement (proj-
ect: Decoder)

 Things you should notice about the VHDL design in Listing 14.5:

• The signal values for AN are shown as active low signals, where 0 turns a display on and 1
turns a display off.

• Notice that the keyword is follows the entity name in the architecture and also follows the
signal name after case. It is a common error to leave off the keyword is in either one of these
places.

 Waveform 14.4 shows a simulation with the correct functionality of design entity Decoder.

 Things you should notice about the waveforms in Waveform 14.4:

• The values for the signal COUNT_2B are displayed in Waveform 14.4 as unsigned decimal
values.

• The values for the signal AN are displayed in Waveform 14.4 as 4-bit binary values. The sig-
nal values for AN(3:0) are shown as active low signals. Active low signals for AN are required
to drive the four 7-segment LED displays on a BASYS 2 board and a NEXYS 2 board.

14.4 COMPLETE DESIGN OF A MULTIPLEXED DISPLAY SYSTEM
USING A FLAT DESIGN APPROACH

Listing 14.6 shows a complete VHDL design for the multiplexed display system in Figure 14.1
using a flat design approach. In this design, each of the separate modules is placed within a

+

+

0 ns 100 ns 200 nsName Value

0

1110 111011011110an[3:0]

count_2b[1:0]

1011 0111

1 2 3 0 0

WAVEFORM 14.4 Simulation
for the correct functionality of
design entity Decoder

www.itpub.net

 14.4 Complete Design of a Multiplexed Display System Using a Flat Design Approach 365

single architecture. Documentation style M is used to mark the location for each internal signal
and the location for each section of code for the circuit elements in the VHDL design for each
module. Marking these locations makes it easier to better understand large VHDL designs.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--use clause required for arithmetic operator “1”
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Multi_Display_System is port (
 rst, clk : in std_logic;
 d7s : out std_logic_vector(7 downto 0);
 AN : out std_logic_vector (3 downto 0)
);
end Multi_Display_System;

architecture Mixed of Multi_Display_System is

--Modules 1 and 2 internal signal, addr_bin
 signal addr_bin : std_logic_vector (3 downto 0);

--Modules 1, 3, and 4 internal signal, count_2b
 signal count_2b : std_logic_vector (1 downto 0);

--Module 3 internal signals, count, slow_clk
 signal count: std_logic_vector (24 downto 0) ;
 signal slow_clk: std_logic;
begin

--Module 1 code, MUX_Array
process (count_2b)
begin
 case count_2b is
 when “00” 5. addr_bin ,5 “0000”;
 when “01” 5. addr_bin ,5 “1001”;
 when “10” 5. addr_bin ,5 “1010”;
 when “11” 5. addr_bin ,5 “1111”;
 when others 5. null;
 end case;
end process;

--Module 2 code, HEX Display Decoder
d7s ,5 “11000000” when addr_bin 5 “0000” else
 “11111001” when addr_bin 5 “0001” else
 “10100100” when addr_bin 5 “0010” else
 “10110000” when addr_bin 5 “0011” else
 “10011001” when addr_bin 5 “0100” else
 “10010010” when addr_bin 5 “0101” else
 “10000010” when addr_bin 5 “0110” else
 “11111000” when addr_bin 5 “0111” else
 “10000000” when addr_bin 5 “1000” else
 “10010000” when addr_bin 5 “1001” else
 “10001000” when addr_bin 5 “1010” else
 “10000011” when addr_bin 5 “1011” else
 “11000110” when addr_bin 5 “1100” else

LISTING 14.6
Complete VHDL
design for a mul-
tiplexed display
system using a flat
design approach
(project: Multi_
Display_System)

(Continued)

366 Chapter 14 Designing Multiplexed Display Systems

 “10100001” when addr_bin 5 “1101” else
 “10000110” when addr_bin 5 “1110” else
 “10001110”;

--Module 3 code, Frequency Divider
process (clk, count)
begin
 if rising_edge (clk) then count ,5 count 1 1;
 end if;
--the frequency of slow_clk is 1.49 Hz for clk 5 50 MHz (50 M/2^25
--Hz 5 1.49 Hz)
 slow_clk ,5 count (24); --display blinks
--the frequency of slow_clk is 762.94 Hz for clk 5 50 MHz (50
--M/2^16 Hz 5 762.94 Hz)
-- slow_clk ,5 count (15); --display without flicker
end process;

--Module 3 code, 2-bit Counter
process (rst, slow_clk)
begin
 if rst 5 ‘1’ then count_2b ,5 “00”;
 elsif rising_edge (slow_clk) then count_2b ,5 count_2b 1 1;
 end if;
end process;

--Module 4 code, 2-to-4 Decoder
process (count_2b)
begin
 case count_2b is
 when “00” 5. AN ,5 “1110”; --Lights only Display 0
 when “01” 5. AN ,5 “1101”; --Lights only Display 1
 when “10” 5. AN ,5 “1011”; --Lights only Display 2
 when “11” 5. AN ,5 “0111”; --Lights only Display 3
 when others 5. null;
 end case;
end process;
end Mixed;

 Things you should notice about the VHDL design in Listing 14.6:

• The individual modules or circuit elements that were designed earlier in this chapter for the
multiplexed display system are combined in this design under a single entity and a single
architecture.

• DSM is used to mark the location for each internal signal in the VHDL design for each
module.

• DSM is also used to mark the location for each section of code for the circuit elements in
the VHDL design for each module.

 If you elect to use a hardware board, you will observe that each display blinks in the
sequence 0, 9, A, followed by F and then back to 0, and so on, with SLOW_CLK 5 COUNT(24).
To see all the characters F, A, 9, and 0 displayed at the same time without flicker, make SLOW_
CLK 5 COUNT(15) so that SLOW_CLK has a frequency of 762.94 Hz (50 M/216 Hz). At this

www.itpub.net

 14.5 Complete Design of a Multiplexed Display System Using a Hierarchal Design Approach 367

frequency, the human eye cannot tell that each display actually turns off and on, and we perceive
that the total display has all the characters turned on at the same time, which is the desired result
for a multiplexed display.

14.5 COMPLETE DESIGN OF A MULTIPLEXED DISPLAY SYSTEM
USING A HIERARCHAL DESIGN APPROACH

Figure 14.3 shows the same schematic for the multiplexed display system shown earlier in
Figure 14.1—with some small modifications. Since we use a hierarchal design approach or
structural design style in this section, each module is represented in the structural design as a
component—that is, module 1 is component 1, module 2 is component 2, and so on.

SEG
Disp 2

AN2

SEG
Disp 1

AN1

SEG
Disp 0

AN0

SEG
Disp 3

AN3 CG
CF

CB

CE

CC

CA
SEG Bit

CD

DP
6
5

1

4

2

0

3

7

Legend

Module 1
(component 1) Module 2

(component 2)

Module 3
(component 3)

Module 4
(component 4)

(Segments DP through CA
and AN3 through AN0 are

active low inputs)

Four multiplexed
7-segment display

HEX display
decoder

Frequency
divider 2-bit

counter

2-to-4
decoder

4-to-1
MUX
array

SEL

BIN

COUNT

CLR

CODE
1

2

3

0

D7S
D7S(7:0)ADDR_BIN

SLOW_CLK

DISPLAY_0(3:0) = 0

DISPLAY_1(3:0) = 9

DISPLAY_2(3:0) = A

DISPLAY_3(3:0) = F

AN0

AN1

AN2

AN3

CLK

RST
(asyn)

COUNT_2B

84

4
0

1

2

3

4

4

4

2

FIGURE 14.3 Multiplexed display system for displaying F, A, 9, 0 on four 7-segment LED displays
3 through 0

 The formal signals for the components are shown in Figure 14.4 (on the next page). The
formal signal names can be chosen to be any name desired (except a keyword). For simplicity,
we elected to make the formal signal names the same as the actual signal names.
 Listing 14.7 (on the next page) shows a design for the multiplexed display system in
Figure 14.2 using a structural design style with components. The components are installed
or instantiated and then interconnected using port map statements in a manner similar to
wiring components via a schematic. The formal signals (the input and output signals for each
component) are mapped to the actual signals (the port signals and the internal signals).
 Things you should notice about the VHDL design in Listing 14.7:

• The individual components or circuit elements that were designed earlier in this chapter for
the multiplexed display system are combined in this design using a structural design style.
The separate designs are the component definitions in a structural design.

• Each component declaration is obtained from its corresponding entity declaration in the
component definition section by doing the following: (1) simply copy the entity declaration
and place it between architecture and the first begin in the top level of the structural design,
and (2) change entity to component and change end ,name of entity. to end component.

368 Chapter 14 Designing Multiplexed Display Systems

Component 1 Component 2

Component 3 Component 4

HEX display
decoder

Frequency
divider 2-bit

counter

2-to-4
decoder

4-to-1
MUX
array

Formal signals Actual signals

SEL

BIN

CLR

CODE
1

2

3

0

D7S
D7S

D7S(7:0)
ADDR_BINADDR_BINADDR_BIN

COUNT_2B

COUNT_2B
SLOW_CLK

0

9

A

F

AN0

AN1

AN2

AN3

AN0

AN1

AN2

AN3

CLK
COUNT

CLK

RST
(asyn)

RST

COUNT 2B COUNT 2B

84

0

1

2

3

2

FIGURE 14.4 Formal signals for components versus actual signals

--Component 1 definition, MUX_Array
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity MUX_Array is port (
 count_2b : in std_logic_vector (1 downto 0);
 addr_bin : out std_logic_vector (3 downto 0)
);
end MUX_Array;

architecture behavioral of MUX_Array is
begin
process (count_2b)
begin
 case count_2b is
 when “00” 5. addr_bin ,5 “0000”;
 when “01” 5. addr_bin ,5 “1001”;
 when “10” 5. addr_bin ,5 “1010”;
 when “11” 5. addr_bin ,5 “1111”;
 when others 5. null;
 end case;
end process;
end behavioral;

--Component 2 definition, HEX Display Decoder
library IEEE;

LISTING 14.7
Complete VHDL
design for a mul-
tiplexed display
system using a
hierarchal design
approach (project:
Multi_Display_
System_Stru)

www.itpub.net

 14.5 Complete Design of a Multiplexed Display System Using a Hierarchal Design Approach 369

use IEEE.STD_LOGIC_1164.ALL;

entity HEX_Display_Decoder is port (
 addr_bin : in std_logic_vector(3 downto 0);
 d7s : out std_logic_vector(7 downto 0)
);
end HEX_Display_Decoder;

architecture dataflow of HEX_Display_Decoder is
begin
d7s ,5 “11000000” when addr_bin 5 “0000” else
 “11111001” when addr_bin 5 “0001” else
 “10100100” when addr_bin 5 “0010” else
 “10110000” when addr_bin 5 “0011” else
 “10011001” when addr_bin 5 “0100” else
 “10010010” when addr_bin 5 “0101” else
 “10000010” when addr_bin 5 “0110” else
 “11111000” when addr_bin 5 “0111” else
 “10000000” when addr_bin 5 “1000” else
 “10010000” when addr_bin 5 “1001” else
 “10001000” when addr_bin 5 “1010” else
 “10000011” when addr_bin 5 “1011” else
 “11000110” when addr_bin 5 “1100” else
 “10100001” when addr_bin 5 “1101” else
 “10000110” when addr_bin 5 “1110” else
 “10001110”;
end dataflow;
--Component 3 definition, Counter
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter is port (
 clk : in std_logic;
 rst : in std_logic;
 count_2b : inout std_logic_vector (1 downto 0)
);
end Counter;

architecture behavioral of Counter is
 signal count: std_logic_vector (24 downto 0) ;
 signal slow_clk: std_logic;
begin

--Component 3 code, Frequency Divider
process (clk, count)
begin
 if rising_edge (clk) then count ,5 count 1 1;
 end if;
--the frequency of slow_clk is 1.49 Hz for clk 5 50 MHz (50 M/2^25
--Hz 5 1.49 Hz)

(Continued)

370 Chapter 14 Designing Multiplexed Display Systems

 slow_clk ,5 count (24); --display blinks
--the frequency of slow_clk is 762.94 Hz for clk 5 50 MHz (50
--M/2^16 Hz 5 762.94 Hz)
-- slow_clk ,5 count (15); --display without flicker
end process;

--Component 3 code, 2-bit Counter
process (rst, slow_clk)
begin
 if rst 5 ‘1’ then count_2b ,5 “00”;
 elsif rising_edge (slow_clk) then count_2b ,5 count_2b 1 1;
 end if;
end process;
end behavioral;

--Component 4 definition, 2-to-4 Decoder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Decoder is port (
 count_2b : in std_logic_vector (1 downto 0);
 AN : out std_logic_vector (3 downto 0)
);
end Decoder;

architecture behavioral of Decoder is
begin
process (count_2b)
begin
 case count_2b is
 when “00” 5. AN ,5 “1110”; --Lights only Display 0
 when “01” 5. AN ,5 “1101”; --Lights only Display 1
 when “10” 5. AN ,5 “1011”; --Lights only Display 2
 when “11” 5. AN ,5 “0111”; --Lights only Display 3
 when others 5. null;
 end case;
end process;
end behavioral;

--Structural Design (top level)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--use clause required for arithmetic operator “1”
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Multi_Display_System_Stru is port (
 rst,clk : in std_logic;
 d7s : out std_logic_vector (7 downto 0);
 AN : out std_logic_vector (3 downto 0)
);

www.itpub.net

 14.5 Complete Design of a Multiplexed Display System Using a Hierarchal Design Approach 371

(Continued)

end Multi_Display_System_Stru;

architecture Structural of Multi_Display_System_Stru is

--Components 1 and 2 internal signal, addr_bin
 signal addr_bin : std_logic_vector (3 downto 0);

--Components 1, 3, and 4 internal signal, count_2b
 signal count_2b : std_logic_vector (1 downto 0);

--Component 1 declaration, MUX_Array
component MUX_Array is port (
 count_2b : in std_logic_vector (1 downto 0);
 addr_bin : out std_logic_vector (3 downto 0)
);
end component;

--Component 2 declaration, HEX Display Decoder
component HEX_Display_Decoder is port (
 addr_bin : in std_logic_vector(3 downto 0);
 d7s : out std_logic_vector(7 downto 0)
);
end component;

--Component 3 declaration, Counter
component Counter is port (
 clk : in std_logic;
 rst : in std_logic;
 count_2b : inout std_logic_vector (1 downto 0)
);
end component;

--Component 4 declaration, 2-to-4 Decoder
component Decoder is port (
 count_2b : in std_logic_vector (1 downto 0);
 AN : out std_logic_vector (3 downto 0)
);
end component;
begin

--Component installation and connections (formally called component
--instantiations)
 C1: MUX_Array port map (count_2b 5. count_2b,

addr_bin 5. addr_bin);
 C2: HEX_Display_Decoder port map (addr_bin 5. addr_bin,

d7s 5.d7s);
 C3: Counter port map (clk 5. clk, rst 5. rst,

count_2b 5. count_2b);
 C4: Decoder port map (count_2b 5. count_2b, an 5. an);
--NOTE: it’s OK to use the same names for the formal and actual
--signals as we have done here
end Structural;

372 Chapter 14 Designing Multiplexed Display Systems

• Documentation style M is used to mark the location for (1) each internal signal and (2) each
component declaration that must be placed between architecture and the first begin in the
VHDL design. Only internal signals that connect to other components need to be included
in the top level of the structure design file, Multi_Display_System_Stru. The internal sig-
nals SLOW_CLK and COUNT that are only associated with component 3 do not have to be
included in the top level of the structural design file.

• The actual signals are the external input signals and the internal signals. The same names
are used for the formal signals and the actual signals as shown in the design. Even when
the same names are used, the mapping for the formal signals and the actual signals must be
shown via the port map.

 A hierarchal design approach or structural design style is a form of top-down or bottom-
up design. In a top-down or bottom-up design, there is a top level and sublevels. For large
systems, a hierarchal design approach can be worked on by different engineers assigned to the
same project. The design is partitioned so that each engineer is assigned a part or parts of the
design. The sublevels of a hierarchal design approach can be designed and simulated indepen-
dently to check their functionalities. A flat design approach does not have sublevels because the
complete design is contained inside one architecture. Individual modules in a flat design should
also be designed and simulated separately to check their functionalities prior to including them
in the flat design.
 As we mentioned earlier, a hierarchal design approach is basically a netlist description of a
schematic. We believe that a flat design approach is easier to read and easier to understand, and
it generally requires fewer lines of code than a netlist description of a schematic in VHDL. For
these three reasons, we chose to use a flat design approach for our VHDL design of VBC1. Both
the hierarchal design approach and the flat design approach work well and can be used to design
any system in VHDL.

14.6 DESIGNING A WORD DISPLAY SYSTEM USING
A FLAT DESIGN APPROACH

Figure 14.5 shows the schematic for a word display system that flashes words on four 7-segment
LED displays at a specified frequency.
 Things you should notice about the word display system in Figure 14.5:

• Modules 1 through 4 provide the words.
• Module 5 is the master MUX that drives the individual segments of the four 7-segment

LED displays.
• Module 6 is a frequency divider that divides the input frequency CLK (50 MHz) by 213 for

SLOW_CLK and by 226 for VERY_SLOW_CLK.
• Module 7 is a 2-bit counter that drives the select inputs of modules 1 through 4 and the code

input of module 9 in order to scan a word across the four 7-segment LED displays.
• Module 8 is a second 2-bit Counter that drives the master MUX to change the word that is

being displayed.
• The words that can be displayed on the four 7-segment LED displays in the circuit in Fig-

ure 14.5 are HI GUYS And GALS (note lowercase n and d). Each of the letters in a word
are provided as a constant that consists of 8 bits, the bits necessary to form each required
letter—that is, H, I, G, U, Y, S, A, n, d, and L. Bit 7 turns off the decimal point DP.

• The inputs to the display are all active low inputs.

www.itpub.net

 14.6 Designing a Word Display System Using a Flat Design Approach 373

SEG
Disp 2

AN2

SEG
Disp 1

AN1

SEG
Disp 0

AN0

SEG
Disp 3

DISP(3) DISP(2) DISP(1) DISP(0)

AN3

Module 5 (master MUX)Module 4 (GALS MUX)

Module 2 (GUYS MUX)

Module 1 (HI MUX)

Module 3 (And MUX)

Module 9
Module 7

Module 8

Module 6

Frequency
divider 2-bit

counter

2-to-4
decoder

4-to-1
MUX
array

SEL

CLR

CODE DISP

DISP_SIGNAL(7:0)

Four multiplexed
7-segment display

DISP(3:0)SLOW_CLK

VERY_SLOW_CLK COUNT_2B_2

BLANK

BLANK

I

H

COUNT(12)

COUNT(25)

CLK
(50 MHz)

RST
(asyn)

2-bit
counter

CLR

RST
(asyn)

COUNT_2B

0

1

2

3

4-to-1
MUX
array

SEL

S

Y

U

G

0

1

2

3

4-to-1
MUX
array

SEL

BLANK

d

n

A

0

1

2

3

4-to-1
MUX
array

SEL

S

L

A

G

0

1

2

3

4-to-1
MUX
array

SEL

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

0

1

2

3

2

2

4

CG
CF

CB

CE

CC

CA
SEG Bit

CD

DP
6
5

1

4

2

0

3

7

Legend

(Segments DP through CA
and AN3 through AN0
are active low inputs)

DISP_SIGNAL_1

DISP_SIGNAL_2

DISP_SIGNAL_3

DISP_SIGNAL_4

FIGURE 14.5 Schematic for a word display system

374 Chapter 14 Designing Multiplexed Display Systems

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity HI_GUYS_And_GALS is port (
 rst,clk : in std_logic;
 Disp_signal: out std_logic_vector (7 downto 0);
 disp: out std_logic_vector (3 downto 0)
);
end HI_GUYS_And_GALS;

architecture Mixed of HI_GUYS_And_GALS is

--Modules 1 and 5 internal signal, Disp_signal_1
 signal Disp_signal_1: std_logic_vector (7 downto 0);

--Modules 2 and 5 internal signal, Disp_signal_2
 signal Disp_signal_2: std_logic_vector (7 downto 0);

--Modules 3 and 5 internal signal, Disp_signal_3
 signal Disp_signal_3: std_logic_vector (7 downto 0);

--Modules 4 and 5 internal signal, Disp_signal_4
 signal Disp_signal_4: std_logic_vector (7 downto 0);

--Modules 6 and 7 internal signal, slow_clk
 signal slow_clk: std_logic;

--Modules 6 and 8 internal signal, very_slow_clk
 signal very_slow_clk: std_logic;

--Modules 7,1,2,3,4, and 9 internal signal, count_2b
 signal count_2b: std_logic_vector (1 downto 0);

--Modules 8 and 5 internal signal, count_2b_2
 signal count_2b_2: std_logic_vector (1 downto 0);

--Module 6 internal signal, count
 signal count: std_logic_vector (25 downto 0);
begin

--Module 1 code, HI MUX
process (count_2b)
begin
 case count_2b is --Drives active low inputs
 when “00” 5. Disp_signal_1 ,5 not “00000000”; --Blank
 when “01” 5. Disp_signal_1 ,5 not “00000000”; --Blank
 when “10” 5. Disp_signal_1 ,5 not “00000110”; --I
 when “11” 5. Disp_signal_1 ,5 not “01110110”; --H
 when others 5. null;
 end case;
end process;

LISTING 14.8
Complete VHDL
design for the word
display system (proj-
ect: HI_GUYS_And_
GALS)

 Listing 14.8 shows a complete VHDL design for the word display system using a flat design
approach.

www.itpub.net

 14.6 Designing a Word Display System Using a Flat Design Approach 375

--Module 2 code, GUYS MUX
process (count_2b)
begin
 case count_2b is --Drives active low inputs
 when “00” 5. Disp_signal_2 ,5 not “01101101”; --S
 when “01” 5. Disp_signal_2 ,5 not “01100110”; --Y
 when “10” 5. Disp_signal_2 ,5 not “00111110”; --U
 when “11” 5. Disp_signal_2 ,5 not “00111101”; --G
 when others 5. null;
 end case;
end process;

--Module 3 code, And MUX
process (count_2b)
begin
 case count_2b is --Drives active low inputs
 when “00” 5. Disp_signal_3 ,5 not “00000000”; --Blank
 when “01” 5. Disp_signal_3 ,5 not “01011110”; --d
 when “10” 5. Disp_signal_3 ,5 not “01010100”; --n
 when “11” 5. Disp_signal_3 ,5 not “01110111”; --A
 when others 5. null;
 end case;
end process;

--Module 4 code, GALS MUX
process (count_2b)
begin
 case count_2b is --Drives active low inputs
 when “00” 5. Disp_signal_4 ,5 not “01101101”; --S
 when “01” 5. Disp_signal_4 ,5 not “00111000”; --L
 when “10” 5. Disp_signal_4 ,5 not “01110111”; --A
 when “11” 5. Disp_signal_4 ,5 not “00111101”; --G
 when others 5. null;
 end case;
end process;

--Module 5 code, Master MUX
process (count_2b_2, Disp_signal_1, Disp_signal_2, Disp_signal_3,

Disp_signal_4)
begin
 case count_2b_2 is
 when “00” 5. Disp_signal ,5 Disp_signal_1;
 when “01” 5. Disp_signal ,5 Disp_signal_2;
 when “10” 5. Disp_signal ,5 Disp_signal_3;
 when “11” 5. Disp_signal ,5 Disp_signal_4;
 when others 5. null;
 end case;
end process;

--Module 6 code, Frequency Divider
process (clk, count)
begin
 if rising_edge (clk) then count ,5 count 1 1;
 end if;
 slow_clk ,5 count(12);
 very_slow_clk ,5 count(25);
end process; (Continued)

376 Chapter 14 Designing Multiplexed Display Systems

--Module 7 code, 2-bit counter
process (rst, slow_clk)
begin
 if rst 5 ‘1’ then count_2b ,5 “00”;
 elsif rising_edge (slow_clk) then count_2b ,5 count_2b 1 1;
 end if;
end process;

--Module 8 code, 2-bit counter
 count_2b_2 ,5 “00” when rst 5 ‘1’ else
 count_2b_2 1 1 when rising_edge (very_slow_clk);

--Module 9 code, 2-to-4 Decoder
process (count_2b)
begin
 case count_2b is --Drives active low inputs
 when “00” 5. disp ,5 not “0001”; --Turn on Display 0
 when “01” 5. disp ,5 not “0010”; --Turn on Display 1
 when “10” 5. disp ,5 not “0100”; --Turn on Display 2
 when “11” 5. disp ,5 not “1000”; --Turn on Display 3
 when others 5. null;
 end case;
end process;
end Mixed;

 Things you should notice about the VHDL design in Listing 14.8:

• The VHDL design uses both dataflow and behavioral design styles and therefore is speci-
fied as a mixed design style.

• DSM is consistently followed to mark each internal signal and each section of code for the
circuit elements.

• The inputs to the display are all active low inputs; however, the output signals that drive the
display are written as active high signals and then complemented. Logic 1 turns a segment
off while logic 0 turns a segment on. To turn all of the segments off—that is, blank the
display—we wrote DISP_SIGNAL_1 ,5 not "00000000", which evaluates to DISP_SIG-
NAL_1 ,5 "11111111". The input "11111111" is the required signal for active low inputs to
turn off all the segments.

• For the letter H, active high output signals are used and then complemented—that is, not
"01110110". For the letter I, active high output signals are used and then complemented—
that is, not "00000110". All the other letters are formed in the VHDL design in the same
way. Bit 7 turns off the decimal point DP.

• A frequency divider is used to obtain the signals SLOW_CLK and VERY_SLOW_CLK.
• The internal signal SLOW_CLK is assigned the internal signal count(12), which provides a

frequency of 50 MHz/213 5 6,104 Hz for a system clock with a frequency of 50 MHz. The
frequency of the internal signal SLOW_CLK determines the character scan rate of the dis-
play—that is, how fast the characters are turned on and off across the four 7-segment LED
displays.

• The internal signal VERY_SLOW_CLK is assigned the internal signal count(25), which
provides a frequency of 50 MHz/226 5 0.7451 Hz for a system clock with a frequency of 50
MHz. The frequency of the internal signal VERY_SLOW_CLK determines the word display
rate of the display—that is, how fast the words are turned on and off on the four 7-segment
LED displays.

www.itpub.net

 Problems 377

• Logic 1 turns a display off while logic 0 turns a display on. To turn only display 0 on and all
other displays off, we write DISP ,5 not "0001", which evaluates to "1110". To turn only
display 1 on and all other displays off, we write DISP ,5 not "0010", which evaluates to
"1101". Displays 2 and 3 are treated in a similar manner.

 If you elect to use a hardware board, you will observe the words HI GUYS And GALS
sequentially displayed on the four 7-segment LED displays. Other words or characters can be
displayed by providing the bit patterns for each of the letters of the word. There are a few let-
ters—such as K, M, N, Q, T, V, W, X, and Z—that cannot be displayed on a 7-segment LED
display because of insufficient segments or segments that are not in the required position or
location. Lowercase letters or numbers can be used to display certain letters, such as r for the
letter R, n for the letter N, 4 for the letter Y, and 5 for the letter S.

 14.13 What is the error in changing ADDR_BIN 5 "0000" to
ADDR_BIN ,5 "0000" in Listing P14.12?

 14.14 Can when others be used in a conditional signal assign-
ment statement? Name two other statements where
when others can be used.

 14.15 What use clause is required for the section of code in
Listing P14.15 to defi ne the “1” arithmetic operator,
and why is it required?

Section 14.2 Multiplexed Display System for Four
7-Segment LED Displays
 14.1 What is the purpose of the multiplexed display system

in Figure 14.1?
 14.2 What is the purpose of the frequency divider in Fig-

ure 14.1?
 14.3 What SLOW_CLK frequency is necessary to light all

the displays simultaneously for the multiplexed display
system in Figure 14.1 to observe no blinking?

 14.4 What SLOW_CLK frequency would be necessary to
light all the displays simultaneously for the multi-
plexed display system in Figure 14.1 if it were set up
to light nine displays rather than four to observe no
blinking?

 14.5 What is the purpose of the 4-to-1 MUX array in Fig-
ure 14.1?

 14.6 What is the purpose of the HEX display decoder in
Figure 14.1?

 14.7 What is the purpose of the 2-to-4 decoder in Fig-
ure 14.1? What signal controls the output of the 2-to-4
decoder?

 14.8 What signal controls the output of the 4-to-1 MUX
array in Figure 14.1?

 14.9 What is the purpose of the 2-bit counter in Figure 14.1?

Section 14.3 Designing a Multiplexed Display System
Using VHDL
 14.10 How are the signals DISPLAY_0 through DISPLAY_3

in Figure 14.1 entered into the VHDL code for the
design of the 4-to-1 MUX array?

 14.11 In Waveform 14.1 for the MUX_ARRAY, how are the
values displayed for the signal COUNT_2B(1:0)? How
are the values displayed for the signal ADDR_BIN(3:0)?

 14.12 Analyze the partial section of code in Listing P14.12
for the HEX display decoder in Figure 14.1. What are
the active levels (active high or active low) of the out-

PROBLEMS

d7s <= “11 000000” when addr_bin =
“0000” else

 “11 111001” when addr_bin =
“0001” else

 “10 100100” when addr_bin =
“0010” else

LISTING P14.12

LISTING P14.15

process (rst, clk)
begin
 if rst = ‘1’ then count_2b <= “00”;
 elsif rising_edge (clk) then

count_2b <= count_2b 1 1;
 end if;
end process;

 14.16 Why are the two signals RST and CLK necessary in the
sensitivity list for the process in Listing P14.15?

puts of the HEX display decoder that drives the inputs
of the 7-segment display as determined from the code?

378 Chapter 14 Designing Multiplexed Display Systems

 14.18 In what location must internal signals be placed in
VHDL? What is a common error that is sometimes
made when listing internal signals?

 14.19 Find the errors in the architecture declaration shown in
Listing P14.19 for a 2-to-4 decoder.

LISTING P14.17

process (clk, count)
begin
 if ri sing_edge (clk) then count <=

count + 1;
 end if;
--the frequency of slow_clk is 1.49 Hz
--for clk = 50 MHz (50 M/2^25 Hz = 1.49
--Hz)
 Slow_clk <= count (24);
end process;

LISTING P14.27

C1: MUX_Array port map (count_2b =>
count_2b, addr_bin => addr_bin);

LISTING P14.19

architecture Behavioral of Decoder
begin
process (count_2b)
begin
 case count_2b
 when “00” => AN <= “1110”;

--Lights only Display 0
 when “01” => AN <= “1101”;

--Lights only Display 1
 when “10” => AN <= “1011”;

--Lights only Display 2
 when “11” => AN <= “0111”;

--Lights only Display 3
 when others => null;
 end case;
end process;

 14.22 What frequency must SLOW_CLK be in order to acti-
vate four multiplexed displays at least 24 times per
second? What is the slowest frequency if the system
clock is 50 MHz? What assignment is required to make
this frequency available for SLOW_CLK?

Section 14.5 Complete Design of a Multiplexed
Display System Using a Hierarchal Design Approach
 14.23 In our example of a hierarchal design approach for

the multiplexed display system, how are modules
represented?

 14.24 Is it necessary to label the formal signals (the input
and output signals for each component) in a structural
design?

 14.25 If the component defi nitions are fi rst defi ned in the
component defi nition section of a structural design,
how can the component declarations be easily
obtained?

 14.26 What does documentation style M mark in a hierarchal
design approach?

 14.27 Listing P14.27 provides the VHDL code for the
installed or instantiated component C1. Describe what
part of the circuit this component represents for the
multiplexed display system and how it is intercon-
nected in the circuit.

 14.20 How can the code in Listing P14.19 easily be modifi ed
to drive four 7-segment LED displays that have active
high inputs?

Section 14.4 Complete Design of a Multiplexed
Display System Using a Flat Design Approach
 14.21 Provide the two main reasons for using documentation

style M in a fl at design approach.

Section 14.6 Designing a Word Display System Using
a Flat Design Approach
 14.28 In the schematic for a word display system in Fig-

ure 14.5, how many bits are used for each letter or char-
acter that is displayed and each word that is displayed?

 14.29 How is the frequency selected for the signal VERY_
SLOW_CLK in Figure 14.5? Calculate the period of the
frequency for the signal VERY_SLOW_CLK.

 14.30 Calculate the period of the frequency for the signal
SLOW_CLK in Figure 14.5.

 14.31 What is the bit pattern required to display the letter n in
the word display system in Figure 14.5?

 14.32 How many fl ip-fl ops are required in the design of the
Frequency Divider in the word display system in Fig-
ure 14.5?

 14.33 Do you think it is possible to redesign the word display
system in Figure 14.5 so that words can be scrolled
across Disp 3, Disp 2, Disp 1, and Disp 0 from right
to left?

 14.17 Listing P14.17 shows a section of code for a frequency
divider that provides a frequency for SLOW_CLK that
is ~1 Hz. Write a simple signal assignment (Boolean
equation) for SLOW_CLK that will be closer to 1 Hz
than the statement for SLOW_CLK that is shown in
Listing P14.17.

www.itpub.net

C h aa p t e rrrr 15

379

Designing Instruction
Decoders

Chapter Outline

 15.1 Introduction 379

 15.2 Purpose of the Instruction Decoder 379

 15.3 Instruction Decoder Truth Tables for the IN, OUT, and MOV Instructions 380

 15.4 Designing an Instruction Decoder for the IN Instruction 382

 15.5 Designing an Instruction Decoder for the OUT and MOV Instructions 383

 15.6 Instruction Decoder Truth Table for the LOADI Instruction 384

 15.7 Instruction Decoder Truth Table for the ADDI Instruction 385

 15.8 Instruction Decoder Truth Table for the ADD Instruction 386

 15.9 Instruction Decoder Truth Table for the SR0 Instruction 387

 15.10 Designing an Instruction Decoder for the SR0 Instruction 388

 15.11 Instruction Decoder Truth Table for the JNZ Instruction 389

 15.12 Designing an Instruction Decoder for the JNZ Instruction 391

 15.13 Designing an Instruction Decoder for VBC1 393

 Problems 393

15.1 INTRODUCTION

In this chapter, you will learn about the instruction decoder, how to obtain instruction decoder
truth tables, and how to write VHDL code for an instruction decoder for VBC1.

15.2 PURPOSE OF THE INSTRUCTION DECODER

The instruction decoder is a combinational logic circuit that provides the control signals (or
control bits) to operate the data path unit and the control unit of a computer. Figure 15.1 shows
a logic symbol for the instruction decoder for VBC1.

Instruction decoder

M1

R0(3:0)

IR(7:0)

R1(3:0)

M2 M3 M4 M5 M6 LOAD_R0 LOAD_R1 LOAD_OP

FIGURE 15.1
Logic Symbol
for the instruc-
tion decoder
for VBC1

380 Chapter 15 Designing Instruction Decoders

 The inputs to the instruction decoder are provided by the instruction register (IR) bits 7:0,
R0 bits 3:0, and R1 bits 3:0. IR bits 7:0 are the current content of the instruction memory, and
R0 bits 3:0 and R1 bits 3:0 are the outputs of the data registers R0 and R1, respectively. Recall
that the bits in the IR represent the machine code for a single instruction in the instruction set
of VBC1 and that each instruction in a program will be interpreted—that is, decoded—one
instruction at a time. The outputs of the instruction decoder are the control bits M1, M2, M3,
M4, M5, M6, LOAD_R0, LOAD_R1, and LOAD_OP, and these control bits supply the inputs to
the data path unit and the control unit to cause each instruction to be executed.
 We will determine the instruction decoder truth table for each instruction and then write the
Boolean equations for the control bits. Once the Boolean equations are generated, we can write
the VHDL code for the instruction decoder.

15.3 INSTRUCTION DECODER TRUTH TABLES FOR THE IN, OUT,
AND MOV INSTRUCTIONS

Figure 15.2 shows the schematic for a partial data path circuit for VBC1. We can write the truth
table for the IN instruction using this schematic.

 Table 15.1 shows the instruction decoder truth table for the IN instruction for VBC1.

CE

D

C
CLR

Reg R1

CE4 4

4

4

4

4

4

4

0

MUX 3

1

0

MUX 1

1

0

MUX 2

1

4
D Q

C
CLR

CLK

Reg
output
port

LOAD_R1

CLK

RST(asyn)

CE

D

Q

Q

C
CLR

Reg R0

LOAD_R0

R_ALU_DI

R_ALU

ALU_OUT(3:0)

R0

R1
DI(3:0)

M1 M2

M3

RST

RST

OP(3:0)

LOAD_OP

R0_R1

FIGURE 15.2 Schematic for a partial data path circuit for VBC1

TABLE 15.1 Instruction decoder truth table for the IN instruction

for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

IN R0 1 0 1 0 0 0 0 0 1 0* 0* 1 0 0

IN R1 1 0 1 1 0 0 0 0 1 0* 0* 0 1 0

*Actual value does not matter

 Things you should notice about the instruction decoder truth table for the IN instruction in
Table 15.1:

www.itpub.net

 15.3 Instruction Decoder Truth Tables for the IN, OUT, and MOV Instructions 381

• The values for the IR bits for the instruction decoder are the machine code bits for the IN
instruction. The values for the control bits for the instruction decoder truth table are deter-
mined by ensuring that the control bits perform the transfer function form for the IN DR
instruction, which is DR d DI(3:0).

• The instruction IN R0, which loads data input DI into register R0, requires control bit M1 to
be set to 1 and control bit LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must
be set to 0 so the contents of register R1 do not change.

• The instruction IN R1, which loads data input DI into register R1, requires control bit M1 to
be set to 1 and control bit LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must
be set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the IN instruction are

 M1 5 1, M2 5 0, M3 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

We can also write the truth table for the OUT instruction using the schematic for the partial data
path circuit for VBC1 shown in Figure 15.2. Table 15.2 shows the instruction decoder truth table
for the OUT instruction for VBC1.

TABLE 15.2 Instruction decoder truth table for the OUT instruction

for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

OUT R0 1 1 0 0 0 0 0 0 0* 0 0* 0 0 1

OUT R1 1 1 0 1 0 0 0 0 0* 1 0* 0 0 1

*Actual value does not matter

 Things you should notice about the instruction decoder truth table for the OUT instruction
in Table 15.2:

• The values for the IR bits for the instruction decoder are the machine code bits for the OUT
instruction. The values for the control bits for the instruction decoder truth table are deter-
mined by ensuring that the control bits perform the transfer function form for the OUT DR
instruction, which is OP d DR.

• The instruction OUT R0, which loads register R0 into output port OP, requires control bit
M2 to be set to 0 and control bit LOAD_OP to be set to 1. During this instruction, LOAD_
R0 and LOAD_R1 must be set to 0 so that the values of registers R0 and R1 are not changed.

• The instruction OUT R1, which loads register R1 into the output port OP, requires con-
trol bit M2 to be set to 1 and control bit LOAD_OP to be set to 1. During this instruction,
LOAD_R0 and LOAD_R1 must be set to 0 so that the values of registers R0 and R1 are not
changed.

 The Boolean equations for the control bits for the OUT instruction are

 M1 5 0, M2 5 IR(4), M3 5 0

 LOAD_R0 5 0, LOAD_R1 5 0, LOAD_OP 5 1

We can write the truth table for the MOV instruction using the schematic for the partial data
path circuit for VBC1 shown in Figure 15.2. Table 15.3 shows the instruction decoder truth table
for the MOV instruction for VBC1.

382 Chapter 15 Designing Instruction Decoders

 Things you should notice about the instruction decoder truth table for the MOV instruction
in Table 15.3:

• The values for the IR bits for the instruction decoder are the machine code bits for the MOV
instruction. The values for the control bits for the instruction decoder truth table are deter-
mined by ensuring that the control bits perform the transfer function form for the MOV
DR,SR instruction which is DR d SR.

• The instruction MOV R0,R0, which moves the contents of source register R0 to destination
register R0, requires control bit M2 to be set to 0, control bit M3 to be set to 0, control bit
M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must be
set to 0 so the contents of register R1 do not change.

• The instruction MOV R0,R1, which moves the contents of source register R1 to destination
register R0, requires control bit M2 to be set to 1, control bit M3 to be set to 0, control bit
M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must be
set to 0 so the contents of register R1 do not change.

• The instruction MOV R1,R0, which moves the contents of source register R0 to destination
register R1, requires control bit M2 to be set to 0, control bit M3 to be set to 0, control bit
M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must be
set to 0 so the contents of register R0 do not change.

• The instruction MOV R1,R1, which moves the contents of source register R1 to destination
register R1, requires control bit M2 to be set to 1, control bit M3 to be set to 0, control bit
M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must be
set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the MOV instruction are

 M1 5 0, M2 5 IR(3), M3 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

15.4 DESIGNING AN INSTRUCTION DECODER
FOR THE IN INSTRUCTION

To design an instruction decoder, we recommend using Procedure ID, which is listed as fol-
lows: (1) use a process with a case statement to select each instruction by its OPCODE, (2) spec-
ify the default instruction decoder output values before the case statement, and (3) use Boolean
equations for the control bits within the case statement. (Note: Only the control bits that are dif-
ferent from the default instruction decoder output values need to be added to the case statement.)
 Procedure ID will now be used for the design of the instruction decoder for the IN instruc-
tion. The OPCODE is 101 for the IN instruction.
 As obtained earlier, the Boolean equations for the control bits for the IN instruction are

TABLE 15.3 Instruction decoder truth table for the MOV instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

MOV R0,R0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

MOV R0,R1 0 0 0 0 1 0 0 0 0 1 0 1 0 0

MOV R1,R0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

MOV R1,R1 0 0 0 1 1 0 0 0 0 1 0 0 1 0

www.itpub.net

 15.5 Designing an Instruction Decoder for the OUT and MOV Instructions 383

 M1 5 1, M2 5 0, M3 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

 Listing 15.1 shows a partial VHDL design for an instruction decoder for the IN instruction
using a behavioral design style—that is, a process with a case statement.

process (ir)
begin
 --default instruction decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is
 --for the IN instruction
 when “1 01” 5. m1 ,5 ‘1’; load_r0 ,5 not ir(4);

load_r1 ,5 ir(4);
 when others 5. null;
 end case;
end process;

LISTING 15.1 Partial
VHDL design for an
instruction decoder
for the IN instruction
using a behavioral
design style

 Things you should notice about the partial VHDL design in Listing 15.1:

• Default instruction decoder output values are assigned to all control bits before the case
statement to ensure proper circuit operation—that is, so that inferred latches will not be
generated, when different instructions are selected in the case statement.

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR, which is the
OPCODE for the IN instruction.

• When the OPCODE 101 for the IN instruction is true, assignments are made to the control
bits following the symbol 5.. The assignments to the control bits establish the data paths
necessary for the IN instruction to be performed by the VBC1 architecture.

• One can write a CSA rather that a process with a case statement for each of the control bits
for the output of the instruction decoder. This is not a good idea because any additional
instructions that are added will require changing the CSA for each of the current control
bits. We use a process with a case statement for writing the control bits so that the current
control bits do not have to be changed as additional instructions are added.

15.5 DESIGNING AN INSTRUCTION DECODER FOR THE OUT
AND MOV INSTRUCTIONS

Procedure ID will now be used for the design of the instruction decoder for the OUT and MOV
instructions. The OPCODE is 110 for the OUT instruction and 000 for the MOV instruction.
 As obtained earlier, the Boolean equations for the control bits for the OUT instruction are

 M1 5 0, M2 5 IR(4), M3 5 0

 LOAD_R0 5 0, LOAD_R1 5 0, LOAD_OP 5 1

 As obtained earlier, the Boolean equations for the control bits for the MOV instruction are

 M1 5 0, M2 5 IR(3), M3 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

 Listing 15.2 shows a partial VHDL design for an instruction decoder for the OUT and MOV
instructions using a behavioral design style—that is, a process with a case statement.

384 Chapter 15 Designing Instruction Decoders

process (ir)
begin
 --default instruction decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is
 --for the OUT instruction
 when “110” 5. m2 ,5 ir(4); load_op ,5 ‘1’;
 --for the MOV instruction
 when “000” 5. m2 ,5 ir(3); load_r0 ,5 not ir(4);

load_r1 ,5 ir(4);
 when others 5. null;
 end case;
end process;

LISTING 15.2 Partial
VHDL design for an
instruction decoder
for the OUT and MOV
instructions using
a behavioral design
style

 Things you should notice about the partial VHDL design in Listing 15.2:

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR, which is the
OPCODE for the OUT and MOV instructions.

• When the OPCODE 110 for the OUT instruction is true, assignments are made to the con-
trol bits following the symbol 5.. The assignments to the control bits establish the data
paths necessary for the OUT instruction to be performed by the VBC1 architecture.

• When the OPCODE 000 for the MOV instruction is true, assignments are made to the
control bits following the symbol 5.. The assignments to the control bits establish the data
paths necessary for the MOV instruction to be performed by the VBC1 architecture.

15.6 INSTRUCTION DECODER TRUTH TABLE
FOR THE LOADI INSTRUCTION

Figure 15.3 shows the schematic for the complete data path circuit for VBC1. We can write the
truth table for the LOADI instruction using this schematic.
 Table 15.4 shows the instruction decoder truth table for the LOADI instruction for VBC1.

TABLE 15.4 Instruction decoder truth table for the LOADI instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

LOADI R0,Data 0 0 1 0 D D D D 0 0* 1 0* 1 1 0 0

LOADI R1,Data 0 0 1 1 D D D D 0 0* 1 0* 1 0 1 0

*Actual value does not matter

 Things you should notice about the instruction decoder truth table for the LOADI instruc-
tion in Table 15.4:

• The values for the IR bits for the instruction decoder are the machine code bits for the
LOADI instruction. The values for the control bits for the instruction decoder truth table
are determined by ensuring that the control bits perform the transfer function form for the
LOADI DR,Data instruction, which is DR d IR(3:0).

• The instruction LOADI R0,Data, which moves the contents of instruction register bits 3:0
to destination register R0, requires control bit M5 to be set to 1, control bit M3 to be set
to 1, control bit M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction,
LOAD_R1 must be set to 0 so the contents of register R1 do not change.

• The instruction LOADI R1,Data, which moves the contents of instruction register bits 3:0
to destination register R1, requires control bit M5 to be set to 1, control bit M3 to be set

www.itpub.net

 15.7 Instruction Decoder Truth Table for the ADDI Instruction 385

R_ALU_DI

IR(7:5)

3

CE

D

C
CLR

Reg R1

CE4 4

44

4

4

4

4

4

0

MUX 3

1

0

MUX 1

1

0

MUX 5

ALU

LOADI
ADDI

(001)
(011)
(010)
(100)

ADD
SR0

1

0

MUX 2

1

4
D Q

C
CLR

CLK

Reg
output
port

LOAD_R1

CLK

RST(asyn)

CE

D

Q

Q

C
CLR

Reg R0

LOAD_R0

R_ALU

R0

R1

R0_1

R0_R1

DI(3:0)

M1

M5

0

MUX 4

1

M4

M2

M3

ALU_OUT

R_IR

RST

RST

OP(3:0)

IR(3:0)

LOAD_OP

4

FIGURE 15.3 Schematic for the complete data path circuit for VBC1

to 1, control bit M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction,
LOAD_R0 must be set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the LOADI instruction are

 M1 5 0, M2 5 0, M3 5 1, M4 5 0, M5 5 1

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

15.7 INSTRUCTION DECODER TRUTH TABLE FOR THE ADDI INSTRUCTION

We can write the truth table for the ADDI instruction using the schematic shown in Figure 15.3
for the complete data path circuit for VBC1. Table 15.5 shows the instruction decoder truth table
for the ADDI instruction for VBC1.

TABLE 15.5 Instruction decoder truth table for the ADDI instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

ADDI R0,Data 0 1 1 0 D D D D 0 0 1 0* 1 1 0 0

ADDI R1,Data 0 1 1 1 D D D D 0 1 1 0* 1 0 1 0

*Actual value does not matter

386 Chapter 15 Designing Instruction Decoders

 Things you should notice about the instruction decoder truth table for the ADDI instruction
in Table 15.5:

• The values for the IR bits for the instruction decoder are the machine code bits for the
ADDI instruction. The values for the control bits for the instruction decoder truth table
are determined by ensuring that the control bits perform the transfer function form for the
ADDI DR,Data instruction, which is DR d DR 1 IR(3:0).

• The instruction ADDI R0,Data, which adds the contents of destination register R0 with
instruction register bits 3:0 and places the result in destination register R0, requires control
bit M2 to be set to 0, control bit M5 to be set to 1, control bit M3 to be set to 1, control bit
M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must be
set to 0 so the contents of register R1 do not change.

• The instruction ADDI R1,Data, which adds the contents of destination register R1 with
instruction register bits 3:0 and places the result in destination register R1, requires control
bit M2 to be set to 1, control bit M5 to be set to 1, control bit M3 to be set to 1, control bit
M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must be
set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the ADDI instruction are

M1 5 0, M2 5 IR(4), M3 5 1, M4 5 0, M5 5 1

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

15.8 INSTRUCTION DECODER TRUTH TABLE FOR THE ADD INSTRUCTION

We can write the truth table for the ADD instruction using the schematic shown in Figure 15.3
for the complete data path circuit for VBC1. Table 15.6 shows the instruction decoder truth table
for the ADD instruction for VBC1.

 Things you should notice about the instruction decoder truth table for the ADD instruction
in Table 15.6:

• The values for the IR bits for the instruction decoder are the machine code bits for the
ADD instruction. The values for the control bits for the instruction decoder truth table are
determined by ensuring that the control bits perform the transfer function form for the ADD
DR,SR instruction, which is DR d DR 1 SR.

• The instruction ADD R0,R0, which adds the contents of destination register R0 with source
register R0 and places the result in destination register R0, requires control bit M2 to be
set to 0, control bit M4 to be set to 0, control bit M5 to be set to 0, control bit M3 to be set
to 1, control bit M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction,
LOAD_R1 must be set to 0 so the contents of register R1 do not change.

• The instruction ADD R0,R1, which adds the contents of destination register R0 with source
register R1 and places the result in destination register R0, requires control bit M2 to be

TABLE 15.6 Instruction decoder truth table for the ADD instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

ADD R0,R0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

ADD R0,R1, 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0

ADD R1,R0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0

ADD R1,R1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0

www.itpub.net

 15.9 Instruction Decoder Truth Table for the SR0 Instruction 387

set to 0, control bit M4 to be set to 1, control bit M5 to be set to 0, control bit M3 to be set
to 1, control bit M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction,
LOAD_R1 must be set to 0 so the contents of register R1 do not change.

• The instruction ADD R1,R0, which adds the contents of destination register R1 with source
register R0 and places the result in destination register R1, requires control bit M2 to be
set to 1, control bit M4 to be set to 0, control bit M5 to be set to 0, control bit M3 to be set
to 1, control bit M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction,
LOAD_R0 must be set to 0 so the contents of register R0 do not change.

• The instruction ADD R1,R1, which adds the contents of destination register R1 with source
register R1 and places the result in destination register R1, requires control bit M2 to be
set to 1, control bit M4 to be set to 1, control bit M5 to be set to 0, control bit M3 to be set
to 1, control bit M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction,
LOAD_R0 must be set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the ADD instruction are

M1 5 0, M2 5 IR(4), M3 5 1, M4 5 IR(3), M5 5 0

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

15.9 INSTRUCTION DECODER TRUTH TABLE
FOR THE SR0 INSTRUCTION

We can write the truth table for the SR0 instruction using the schematic shown in Figure 15.3
for the complete data path circuit for VBC1. Table 15.7 shows the instruction decoder truth table
for the SR0 instruction for VBC1.

TABLE 15.7 Instruction decoder truth table for the SR0 instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

SR0 R0,R0 1 0 0 0 0 0 0 0 0 0* 1 0 0 1 0 0

SR0 R0,R1 1 0 0 0 1 0 0 0 0 0* 1 1 0 1 0 0

SR0 R1,R0 1 0 0 1 0 0 0 0 0 0* 1 0 0 0 1 0

SR0 R1, R1 1 0 0 1 1 0 0 0 0 0* 1 1 0 0 1 0

*Actual value does not matter

 Things you should notice about the instruction decoder truth table for the SR0 instruction
in Table 15.7:

• The values for the IR bits for the instruction decoder are the machine code bits for the
SR0 instruction. The values for the control bits for the instruction decoder truth table are
determined by ensuring that the control bits perform the transfer function form for the SR0
DR,SR instruction, which is DR d 0 SR(3:1).

• The instruction SR0 R0,R0, which shifts the contents of source register R0 to the right by
one bit then fills the MSB with a 0 and places the result in destination register R0, requires
control bit M4 to be set to 0, control bit M5 to be set to 0, control bit M3 to be set to 1, control
bit M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must
be set to 0 so the contents of register R1 do not change.

• The instruction SR0 R0,R1, which shifts the contents of source register R1 to the right by
one bit then fills the MSB with a 0 and places the result in destination register R0, requires

388 Chapter 15 Designing Instruction Decoders

control bit M4 to be set to 1, control bit M5 to be set to 0, control bit M3 to be set to 1, control
bit M1 to be set to 0, and LOAD_R0 to be set to 1. During this instruction, LOAD_R1 must
be set to 0 so the contents of register R1 do not change.

• The instruction SR0 R1,R0, which shifts the contents of source register R0 to the right by
one bit then fills the MSB with a 0 and places the result in destination register R1, requires
control bit M4 to be set to 0, control bit M5 to be set to 0, control bit M3 to be set to 1, control
bit M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must
be set to 0 so the contents of register R0 do not change.

• The instruction SR0 R1,R1, which shifts the contents of source register R1 to the right by
one bit then fills the MSB with a 0 and places the result in destination register R1, requires
control bit M4 to be set to 1, control bit M5 to be set to 0, control bit M3 to be set to 1, control
bit M1 to be set to 0, and LOAD_R1 to be set to 1. During this instruction, LOAD_R0 must
be set to 0 so the contents of register R0 do not change.

 The Boolean equations for the control bits for the SR0 instruction are

 M1 5 0, M2 5 0, M3 5 1, M4 5 IR(3), M5 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

15.10 DESIGNING AN INSTRUCTION DECODER
FOR THE SR0 INSTRUCTION

Procedure ID will now be used for the design of the instruction decoder for the SR0 instruction.
The OPCODE is 100 for the SR0 instruction.
 As obtained earlier, the Boolean equations for the control bits for the SR0 instruction are

 M1 5 0, M2 5 0, M3 5 1, M4 5 IR(3), M5 5 0

 LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), LOAD_OP 5 0

 Listing 15.3 shows a partial VHDL design for an instruction decoder for the SR0 instruction
using a behavioral design style—that is, a process with a case statement.

process (ir)
begin
 --default instruction decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is
 --for the SR0 instruction
 when “ 100” 5. m3 ,5 ‘1’; m4 ,5 ir(3);

load_r0 ,5 not ir(4);
 load_r1 ,5 ir(4);
 when others 5. null;
 end case;
end process;

LISTING 15.3 Partial
VHDL design for an
instruction decoder
for the SR0 instruc-
tion using a behav-
ioral design style

 Things you should notice about the partial VHDL design in Listing 15.3:

• When the OPCODE 100 for the SR0 instruction is true, assignments are made to the control
bits following the symbol 5.. The assignments to the control bits establish the data paths
necessary for the SR0 instruction to be performed by the VBC1 architecture.

www.itpub.net

 15.11 Instruction Decoder Truth Table for the JNZ Instruction 389

15.11 INSTRUCTION DECODER TRUTH TABLE
FOR THE JNZ INSTRUCTION

Figure 15.4 shows a partial schematic for the control circuit for VBC1.

M6
MUX 6

1 0

SPEED

Adder
(4 bits)

INC

IR(3:0)
(NEW_A)

IR(3:0) if M6 = 1, or
PC(3:0) + 1 if M6 = 0{ {

Program counter (PC)
(4 bits)

Loadable register
(4 bits)

Address for
instruction memory

Program
counter
output

FIGURE 15.4 Partial schematic for the control circuit for VBC1

 The value of the control bit M6 determines how the JNZ instruction JNZ DR,Address is
executed. If M6 is 1, then the JNZ instruction jumps to the address IR(3:0) specified in the
instruction; however, if M6 is 0, then the JNZ instruction falls through or simply executes the
next instruction at the address PC(3:0) 1 1.
 The value of M6 is dependent of the value of register R0 or register R1—that is, the destina-
tion register (DR).
 The transfer function form for the JNZ instruction JNZ DR,Address is PC d IR(3:0) if
DR 2 0 else PC d PC 1 1. In order to execute the JNZ instruction, we must design circuits for
VBC1 that sample both registers R0 and R1 to determine when their values are 0000 or not 0000.
 Figure 15.5 (on the next page) shows the complete circuit design of comparator circuits that
sample the outputs of registers R0 and R1. The comparator circuit in Figure 15.5a provides an
output Z0 5 1 when register R0 5 0000. The comparator circuit in Figure 15.5b provides an
output Z1 5 1 when register R1 5 0000.
 Things you should notice about the design of the comparator circuits in Figure 15.5:

• When comparing the value of the 4-bit registers R0 and R1 with the value 0000, the Compar-
ators circuits can be reduced via Boolean algebra to simple Decoders circuits—for example,

 Z0 5 R0 10 2!0 #R0 11 2!0 #R0 12 2!0 #R0 13 2!0 5 R0 10 2 #R0 11 2 #R0 12 2 #R0 13 2
Z1 5 R1 10 2!0 #R1 11 2!0 #R1 12 2!0 #R1 13 2!0 5 R1 10 2 #R1 11 2 #R1 12 2 #R1 13 2

• Output Z0 5 1 when R0 5 0000 and output Z0 5 0 when R0 2 0000.
• Output Z1 5 1 when R1 5 0000 and output Z1 5 0 when R1 2 0000.

390 Chapter 15 Designing Instruction Decoders

• Z0 5 1 acts as flags to indicate when R0 5 0000, and Z1 5 1 acts as flags to indicate when
R1 5 0000.

• Observe that the comparator circuits for Z0 and Z1 reduces to simple decoder circuits.

 Table 15.8 shows the instruction decoder truth table for the JNZ instruction for VBC1 using
the inputs Z0 and Z1—that is, the outputs of the comparator (or decoder) circuits.

R0(0)
R0(1)
R0(2)
R0(3)

R0(0)

Z0Z0

0

R0(1)
0

R0(2)
0

R0(3)
0

OR

Reduced circuit for Z0

(a)

Comparator circuit for Z0

Z0 = R0(0)⋅R0(1)⋅R0(2)⋅R0(3)

R1(0)
R1(1)
R1(2)
R1(3)

R1(0)

Z1Z1

0

R1(1)
0

R1(2)
0

R1(3)
0

OR

Reduced circuit for Z1

(b)

Comparator circuit for Z1

Z1 = R1(0)⋅R1(1)⋅R1(2)⋅R1(3)

FIGURE 15.5 Design of
comparator circuits that
sample both registers R0
and R1: (a) comparator
circuit for register R0;
(b) comparator circuit
for register R1

TABLE 15.8 Instruction decoder truth table for the JNZ instruction for VBC1

IR Control bits

7 6 5 4 3 2 1 0 Z1 Z0 M1 M2 M3 M4 M5 M6 LOAD_R0 LOAD_R1 LOAD_OP

JNZ R0,Address 1 1 1 0 A A A A 0 0 0* 0* 0* 0* 0* 1 0 0 0

JNZ R0,Address 1 1 1 0 A A A A 0 1 0* 0* 0* 0* 0* 0 0 0 0

JNZ R0,Address 1 1 1 0 A A A A 1 0 0* 0* 0* 0* 0* 1 0 0 0

JNZ R0,Address 1 1 1 0 A A A A 1 1 0* 0* 0* 0* 0* 0 0 0 0

JNZ R1,Address 1 1 1 1 A A A A 0 0 0* 0* 0* 0* 0* 1 0 0 0

JNZ R1,Address 1 1 1 1 A A A A 0 1 0* 0* 0* 0* 0* 1 0 0 0

JNZ R1,Address 1 1 1 1 A A A A 1 0 0* 0* 0* 0* 0* 0 0 0 0

JNZ R1,Address 1 1 1 1 A A A A 1 1 0* 0* 0* 0* 0* 0 0 0 0

*Actual value does not matter

 Things you should notice about the instruction decoder truth table for the JNZ instruction
in Table 15.8:

• The values for the IR bits for the instruction decoder are the machine code bits for the JNZ
instruction. The values for Z1 and Z0 represent all possible values for these bits for each
JNZ instruction. The values for the control bits for the instruction decoder truth table are

www.itpub.net

 15.12 Designing an Instruction Decoder for the JNZ Instruction 391

determined by ensuring that the control bits perform the transfer function form for the JNZ
DR,Address instruction, which is PC d IR(3:0) if DR 2 0 else PC d PC 1 1.

• The instruction JNZ R0,Address will load a new address into the PC if R0 2 0. This
requires that control bit M6 must be 1 when IR(4) is 0 and Z0 is 0.

• The instruction JNZ R0,Address will increment the PC if R0 5 0. This requires that control
bit M6 must be 0 when IR(4) is 0 and Z0 is 1.

• The instruction JNZ R1,Address will load a new address into the PC if R1 2 0. This
requires that control bit M6 must be 1 when IR(4) is 1 and Z1 is 0.

• The instruction JNZ R1,Address will increment the PC if R1 5 0. This requires that control
bit M6 must be 0 when IR(4) is 1 and Z1 is 1.

 The Boolean equation for the control bit for M6 for the JNZ instruction is

 M6 5 IR 14 2 #Z0 1 IR 14 2 #Z1

 where Z0 5 R0 10 2 #R0 11 2 #R0 12 2 #R0 13 2 and Z1 5 R1 10 2 #R1 11 2 #R1 12 2 #R1 13 2

 so

 M6 5 IR 14 2 #R0 10 2 #R0 11 2 #R0 12 2 #R0 13 2 1 IR 14 2 #R1 10 2 #R1 11 2 #R1 12 2 #R1 13 2

 or
 M6 5 IR 14 2 # 1R0 10 2 1 R0 11 2 1 R0 12 2 1 R0 13 2 2

 1 IR 14 2 # 1R1 10 2 1 R1 11 2 1 R1 12 2 1 R1 13 2 2

 The Boolean equations for the control bits for the JNZ instruction are

 M1 5 0, M2 5 0, M3 5 0, M4 5 0, M5 5 0,

 M6 5 IR 14 2 # 1R0 10 2 1 R0 11 2 1 R0 12 2 1 R0 13 2 2

 1 IR 14 2 # 1R1 10 2 1 R1 11 2 1 R1 12 2 1 R1 13 2 2

 LOAD_R0 5 0, LOAD_R1 5 0, LOAD_OP 5 0

15.12 DESIGNING AN INSTRUCTION DECODER
FOR THE JNZ INSTRUCTION

Procedure ID will now be used for the design of the instruction decoder for the JNZ instruction.
The OPCODE is 111 for the JNZ instruction.
 As obtained earlier, the Boolean equations for the control bits for the JNZ instruction are

 M1 5 0, M2 5 0, M3 5 0, M4 5 0, M5 5 0,

 M6 5 IR 14 2 # 1R0 10 2 1 R0 11 2 1 R0 12 2 1 R0 13 2 2

 1 IR 14 2 # 1R1 10 2 1 R1 11 2 1 R1 12 2 1 R1 13 2 2

 LOAD_R0 5 0, LOAD_R1 5 0, LOAD_OP 5 0

 Listing 15.4 shows a partial VHDL design for an instruction decoder for the JNZ instruc-
tion using a behavioral design style—that is, a process with a case statement.

process (ir, r0, r1)
begin
 --default instruction decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’;

m6 ,5 ‘0’; load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is

LISTING 15.4 Partial
VHDL design for an
instruction decoder
for the JNZ instruc-
tion using a behav-
ioral design style

(Continued)

392 Chapter 15 Designing Instruction Decoders

 Things you should notice about the partial VHDL design in Listing 15.4:

• When the OPCODE 111 for the JNZ instruction is true, an assignment is made to the
control bit M6 following the symbol 5.. The assignment to the control bit establishes the
address path necessary for the JNZ instruction to be performed by the VBC1 architecture.

 Listing 15.5 shows a partial VHDL design for an instruction decoder for the JNZ instruc-
tion using a behavioral design style—that is, a process with a case statement with if statements
to specify the control bit M6 without using the Boolean equation obtained earlier.

process (ir, r0, r1)
begin
 --default instruction decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’; m6 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is
 --for the JNZ instruction
 when “11 1” 5. if ir(4) 5 ‘0’ then if r0 /5 “0000” then m6 ,5 ‘1’; --jump
 else m6 ,5 ‘0’; --increment
 end if;
 elsif ir(4) 5 ‘1’ then if r1 /= “0000” then m6 ,5 ‘1’; --jump
 else m6 ,5 ‘0’; --increment
 end if;
 end if;
 when others 5. null;
 end case;
end process;

LISTING 15.5 Partial VHDL design for an instruction decoder for the JNZ instruction using a behavioral design style with if
statements

 --for the JNZ instruction
 when “11 1” 5. m6 ,5 (not ir(4) and (r0(0) or r0(1) or

r0(2) or r0(3))) or (ir(4) and (r1(0)
 or r1(1) or r1(2) or r1(3)));
 when others 5. null;
 end case;
end process;

 Things you should notice about the partial VHDL design in Listing 15.5:

• When the OPCODE 111 for the JNZ instruction is true, if statements are used to specify
the control bit M6 following the symbol 5.. The if statements for the control bit M6
establish the address path necessary for the JNZ instruction to be performed by the VBC1
architecture.

• The first if statement checks the value of IR(4) to see if the destination register is R0. The
second if statement checks to see if the value of R0 is not 0. The operator /5 means not
equal in VHDL. If the destination register is R0 and its value is not 0, M6 takes on the value
of 1; otherwise, M6 takes on the value of 0.

• The elsif statement checks the value of IR(4) to see if the destination register is a R1. The
third if statement checks to see if the value of R1 is not 0. If the destination register is R1
and its value is not 0, M6 takes on the value of 1; otherwise, M6 takes on the value of 0.

www.itpub.net

 Problems 393

15.13 DESIGNING AN INSTRUCTION DECODER FOR VBC1

An instruction decoder for VBC1 can be written by combining the VHDL code for each sepa-
rate instruction decoder for the instructions of VBC1. The VHDL code for each individual case
statement can be placed in one case statement under one process. This decreases the number of
lines of code for the instruction decoder for VBC1. An example of this technique was provided
earlier for the instruction decoder for the OUT and MOV instructions.
 Listing 15.6 shows a general format or template for the instruction decoder for VBC1.

process (ir, r0, r1)
begin
 --put default instruction decoder output values here, e.g., m1 ,5 ‘0’ m2 ,5

--‘0’, etc.
 case IR (7 downto 5) is--the OPCODE for each instruction is in bits (7:5) in the IR

 --the IN instruction has the OPCODE 101
 when “101” 5. --put output equations for the IN instruction here

 --the OUT instruction has the OPCODE 110
 when “110” 5. --put output equations for the OUT instruction here

 --the MOV instruction has the OPCODE 000
 when “000” 5. --put output equations for the MOV instruction here

 --the LOADI instruction has the OPCODE 001
 when “001” 5. --put output equations for the LOADI instruction here

 --the ADDI instruction has the OPCODE 011
 when “011” 5. --put output equations for the ADDI instruction here

 --the ADD instruction has the OPCODE 010
 when “010” 5. --put output equations for the ADD instruction here

 --the SR0 instruction has the OPCODE 100
 when “100” 5. --put output equations for the SR0 instruction here

 --the JNZ instruction has the OPCODE 111
 when “111” 5. --put output equations for the JNZ instruction here
 when others 5. null;
 end case;
end process;

LISTING 15.6 General format or template for the instruction decoder for VBC1

Section 15.2 Purpose of the Instruction Decoder
 15.1 What is the purpose of the instruction decoder for VBC1?
 15.2 Is the instruction decoder a combinational or a sequential logic circuit?
 15.3 What are the input signals to the instruction decoder for VBC1?
 15.4 How many control bits are generated by the instruction decoder for VBC1? List the control bits

generated by the instruction decoder for VBC1.

Section 15.3 Instruction Decoder Truth Tables for the IN, OUT, and MOV Instructions
 15.5 The instruction decoder truth table for the IN instruction for VBC1 is shown in Table P15.5 (on

the next page). Explain why the actual values of the control bits M2 and M3 do not matter for the
IN instruction. (Hint: Refer to the schematic in Section 15.3, Figure 15.2.)

PROBLEMS

394 Chapter 15 Designing Instruction Decoders

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

IN R0 1 0 1 0 0 0 0 0 1 0* 0* 1 0 0

IN R1 1 0 1 1 0 0 0 0 1 0* 0* 0 1 0

*Actual value does not matter

TABLE P15.5

 15.6 List the instructions where the control bit M2 must be used based on the schematic in
Section 15.3, Figure 15.2.

 15.7 Write the transfer function form for the IN DR instruction for VBC1.
 15.8 One way to write the Boolean equation for the control bit for M1 in Table P15.5 is M1 5 1. List

three different ways of writing the Boolean equation for the control bit for M1 with a minimum
number of bits in terms of the inputs IR(7:5).

 15.9 The instruction decoder truth table for the OUT instruction for VBC1 is shown in Table P15.9.
Explain why the control bit LOAD_OP must be set to 1 for the OUT instruction. (Hint: Refer to
the schematic in Section 15.3, Figure 15.2.)

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

OUT R0 1 1 0 0 0 0 0 0 0* 0 0* 0 0 1

OUT R1 1 1 0 1 0 0 0 0 0* 1 0* 0 0 1

*Actual value does not matter

TABLE P15.9

 15.10 In the instruction decoder truth table for the OUT instruction for VBC1 shown in Table P15.9,
explain why LOAD_R0 and LOAD_R1 must be set to 0.

 15.11 Write the transfer function form for the OUT DR instruction for VBC1.
 15.12 In the instruction decoder truth table for the OUT instruction for VBC1 shown in Table P15.9,

explain why M2 has the value 0 and also 1. (Hint: Refer to the schematic in Section 15.3,
Figure 15.2.)

 15.13 In the instruction decoder truth table for the OUT instruction for VBC1 shown in Table P15.9,
explain why the actual value of the control signal M3 does not matter. (Hint: Refer to the sche-
matic in Section 15.3, Figure 15.2.)

 15.14 In the instruction decoder truth table for the MOV instruction for VBC1 shown in Table P15.14,
explain why M1 has the value 0. (Hint: Refer to the schematic in Section 15.3, Figure 15.2.)

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 LOAD_R0 LOAD_R1 LOAD_OP

MOV R0,R0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

MOV R0,R1 0 0 0 0 1 0 0 0 0 1 0 1 0 0

MOV R1,R0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

MOV R1,R1 0 0 0 1 1 0 0 0 0 1 0 0 1 0

TABLE P15.14

 15.15 In the instruction decoder truth table for the MOV instruction for VBC1 shown in Table P15.14,
explain why LOAD_R1 has the value 0 and also 1. (Hint: Refer to the schematic in Section 15.3,
Figure 15.2.)

 15.16 Write the transfer function form for the MOV DR,SR instruction for VBC1.

www.itpub.net

 Problems 395

 15.17 In the instruction decoder truth table for the MOV instruction for VBC1 shown in Table P15.14,
explain why M2 has the value of 0 and also 1. (Hint: Refer to the schematic in Section 15.3,
Figure 15.2.)

Section 15.4 Designing an Instruction Decoder for the IN Instruction
 15.18 List the steps for Procedure ID, which we use to design an instruction decoder.

Section 15.5 Designing an Instruction Decoder for the OUT and MOV Instructions
 15.19 Show a partial VHDL design for an instruction decoder for the OUT instruction in Table P15.9 for

VBC1 using Procedure ID.
 15.20 Show a partial VHDL design for an instruction decoder for the MOV instruction in Table P15.14

for VBC1 using Procedure ID.
 15.21 Why are default instruction decoder output values placed before the case statement when writing

the VHDL code for the instruction decoder?

Section 15.6 Instruction Decoder Truth Table for the LOADI Instruction
 15.22 In the instruction decoder truth table for the LOADI instruction for VBC1 shown in Table P15.22,

explain why M3 has the value 1. (Hint: Refer to the schematic in Section 15.6, Figure 15.3.)

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

LOADI R0,Data 0 0 1 0 D D D D 0 0* 1 0* 1 1 0 0

LOADI R1,Data 0 0 1 1 D D D D 0 0* 1 0* 1 0 1 0

*Actual value does not matter

TABLE P15.22
 15.23 Write the transfer function form for the LOADI DR,Data instruction for VBC1.
 15.24 What is the value of control bit M5 for the LOADI instruction for VBC1 shown in Table P15.22?

Explain your answer. (Hint: Refer to the schematic in Section 15.6, Figure 15.3.)
 15.25 One way to write the Boolean equations for the control bits for M3 and M5 in Table P15.22 is M3

5 1 and M5 5 1, respectively. List a different way to write the Boolean equations for the control
bits for M3 and M5 with a minimum number of bits in terms of the inputs IR(7:5).

 15.26 Show a partial VHDL design for an instruction decoder for the LOADI instruction in
Table P15.22 for VBC1 using a Procedure ID.

Section 15.7 Instruction Decoder Truth Table for the ADDI Instruction
 15.27 In the instruction decoder truth table for the ADDI instruction for VBC1 shown in Table P15.27,

write the Boolean equations for all the control bits with a minimum number of bits in terms of the
inputs IR(7:4).

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

ADDI R0,Data 0 1 1 0 D D D D 0 0 1 0* 1 1 0 0

ADDI R1,Data 0 1 1 1 D D D D 0 1 1 0* 1 0 1 0

*Actual value does not matter

TABLE P15.27
 15.28 Write the transfer function form for the ADDI DR,Data instruction for VBC1.
 15.29 In Tables P15.22 and P15.27 for the LOADI and ADDI instructions, the immediate data are shown

as DDDD. What signal does DDDD represent for both the LOADI instruction and the ADDI
instruction, and where does this immediate data come from?

 15.30 In Tables P15.22 and P15.27 for the LOADI and ADDI instructions, the value of the control bit M4
does not matter. Explain why this is true. (Hint: Refer to the schematic in Section 15.6, Figure 15.3.)

396 Chapter 15 Designing Instruction Decoders

Section 15.8 Instruction Decoder Truth Table for the ADD Instruction
 15.31 In the instruction decoder truth table for the ADD instruction for VBC1 shown in Table P15.31,

write the Boolean equation six different ways for the control bit M3 with a minimum number of
bits in terms of the inputs IR(7:0).

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

ADD R0,R0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

ADD R0,R1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0

ADD R1,R0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0

ADD R1,R1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0

TABLE P15.31

 15.32 Write the transfer function form for the ADD DR,SR instruction for VBC1.
 15.33 Write a partial VHDL design for an instruction decoder for the ADD instruction in Table P15.31

for VBC1 using Procedure ID.
 15.34 Show a partial VHDL design for an instruction decoder with one process with a case statement for

the LOADI, ADDI, and ADD instructions in Tables P15.22, P15.27, and P15.31 for VBC1 using
Procedure ID.

Section 15.9 Instruction Decoder Truth Table for the SR0 Instruction
 15.35 In the instruction decoder truth table for the SR0 instruction for VBC1 shown in Table P15.35,

write the Boolean equation six different ways for the control bit M5 with a minimum number of
bits in terms of the inputs IR(7:0).

 15.36 Write the transfer function form for the SR0 DR,SR instruction for VBC1.
 15.37 A different version of an instruction decoder truth table is shown in Table P15.37. Write simple

Boolean equations for the control bits for M1, M2, and M3.

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

SR0 R0,R0 1 0 0 0 0 0 0 0 0 0* 1 0 0 1 0 0

SR0 R0,R1 1 0 0 0 1 0 0 0 0 0* 1 1 0 1 0 0

SR0 R1,R0 1 0 0 1 0 0 0 0 0 0* 1 0 0 0 1 0

SR0 R1,R1 1 0 0 1 1 0 0 0 0 0* 1 1 0 0 1 0

*Actual value does not matter

TABLE P15.35

IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 LOAD_OP

SRO R0,R0 1 0 0 0 0 0 0 0 0 0 1 0* 0* 1 0 0

SR0 R0,R1 1 0 0 0 1 0 0 0 0 1 1 0* 0* 1 0 0

SR0 R1,R0 1 0 0 1 0 0 0 0 0 0 1 0* 0* 0 1 0

SR0 R1,R1 1 0 0 1 1 0 0 0 0 1 1 0* 0* 0 1 0

*Actual value does not matter

TABLE P15.37

www.itpub.net

 Problems 397

Section 15.10 Designing an Instruction Decoder for the SR0 Instruction
 15.38 Write a partial VHDL design for an instruction decoder for the SR0 instruction in Table P15.37

for VBC1 using Procedure ID.

Section 15.11 Instruction Decoder Truth Table for the JNZ Instruction
 15.39 For the partial schematic of the control circuit for VBC1 shown in Figure 15.4, what is the value

of the control bit M6 that causes the JNZ instruction JNZ DR,Address to fall through or simply
execute the next instruction? Write an expression for the address for the JNZ instruction when
DR 5 0. Explain how the address for instruction memory for the JNZ instruction is generated via
Figure 15.4 when DR 5 0.

 15.40 For the partial schematic for VBC1 shown in Figure 15.4, what is the value of the control bit M6
that causes the JNZ instruction JNZ DR,Address to jump to the address specifi ed in the instruc-
tion? Write an expression for the address for the JNZ instruction when DR 2 0. Explain how the
address for instruction memory for the JNZ instruction is generated via Figure 15.4 when DR 2 0.

 15.41 Write the transfer function form for the JNZ DR,Address instruction for VBC1.
 15.42 In order to execute the JNZ instruction, we must design circuits for VBC1 that sample both reg-

isters R0 and R1 to determine when their values are not 0000 or are 0000. What is the name of a
circuit that performs this type of operation?

 15.43 Show a comparator circuit design that will compare the output of an 8-bit register R(7:0) to see if
the register’s output is 0. Let Z be the output of the comparator; Z 5 1 indicates that the register’s
output is 0, and Z 5 0 indicates that the register’s output is 2 0. Show a reduced circuit for the
fi nal design and its Boolean equation.

Section 15.12 Designing an Instruction Decoder for the JNZ Instruction
 15.44 Listing P15.44 shows an incomplete partial VHDL design for an instruction decoder for the JNZ

instruction. Here, Z0 is a fl ag that indicates that R0 is 0000—that is, Z0 5 1 when R0 5 0000
else Z0 5 0; Z1 is a fl ag that indicates that R1 is 0000—that is, Z1 5 1 when R1 5 0000 else Z1
5 0. Write the simple signal assignment statements for Z0 and Z1 that must be added to the code
for it to work correctly for VBC1.

process (ir, r0, r1)
begin
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’; m6 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; load_op ,5 ‘0’;
 case ir (7 downto 5) is
 when “111” 5. z0 ,5

 z1 ,5

 if ir(4) 5 ‘0’ then if z0 5 ‘0’ then m6 ,5 ‘1’; --jump
 else m6 ,5 ‘0’; --fall through
 end if;
 elsif ir(4) 5 ‘1’ then if z1 5 ‘0’ then m6 ,5 ‘1’; --jump
 else m6 ,5 ‘0’; --fall through
 end if;
 end if;
 when others 5. null;
 end case;
end process;

LISTING P15.44

 15.45 What do the if statements that contain the control bit M6 establish in the code in Listing P15.44?

CC h a p t e r

Designing Arithmetic
Logic Units
Chapter Outline

 16.1 Introduction 398

 16.2 Utilization of the Arithmetic Logic Unit 398

 16.3 Designing the LOADI Instruction Part of the ALU 399

 16.4 Designing the ADDI Instruction Part of the ALU 400

 16.5 Designing the ADD Instruction Part of the ALU 401

 16.6 Designing the SR0 Instruction Part of the ALU 401

 16.7 Designing an ALU for VBC1 402

 16.8 Additional Circuit Designs with VHDL 403

 Problems 414

16.1 INTRODUCTION

In this chapter, you will learn about the arithmetic logic unit (ALU), how to obtain both arith-
metic and logic functions, and how to write VHDL code for an arithmetic logic unit for VBC1.
You will also learn how to design an ALU with a carry-out output, shifter circuits, barrel shifter
circuits, and shift register circuits in VHDL.

16.2 UTILIZATION OF THE ARITHMETIC LOGIC UNIT

The arithmetic logic unit is a combinational logic circuit that provides both arithmetic and logic
functions for a computer. Figure 16.1 shows a logic symbol for the arithmetic logic unit for
VBC1.

CC16

398

4

4

4

ALU

LOADI
ADDI

(001)
(011)
(010)
(100)

ADD
SR0

ALU_OUT

R0_R1
(Operand 1)

R_IR
(Operand 2)

IR(7:5)

3

FIGURE 16.1
Logic Symbol for
the ALU for VBC1

www.itpub.net

 16.3 Designing the LOADI Instruction Part of the ALU 399

 Observe that the operands and the output of the ALU in Figure 16.1 have a data path of only
4 bits. The inputs to the arithmetic logic unit are provided by R0_R1 (operand 1), R_IR (operand
2), and IR(7:5). The instruction that the ALU performs is determined by the OPCODE for the
instruction—that is, bits 7:5 in the IR. The output of the arithmetic logic unit is ALU_OUT. The
ALU for VBC1 is rather simple because it only has two arithmetic functions (ADDI and ADD)
and two logic functions (LOADI and SR0).
 Figure 16.2 shows an annotated schematic for the complete data path circuit for VBC1.

 The arithmetic function ADDI uses data supplied by operand 1 (the contents of a register)
and data supplied by operand 2 (the contents of immediate data in the ADDI instruction) to
obtain the ALU output. The arithmetic function ADD uses data supplied by operand 1 (the
contents of a register) and data supplied by operand 2 (also the contents of a register) to obtain
the ALU output. The logic function LOADI uses data supplied by operand 2 (the contents of
immediate data in the LOADI instruction) to obtain the ALU output. The logic function SR0
uses data supplied by operand 2 (the contents of a register) to obtain the ALU output.

16.3 DESIGNING THE LOADI INSTRUCTION PART OF THE ALU

The transfer function form for the LOADI DR,Data instruction is DR d IR(3:0). The func-
tion LOADI uses data supplied by operand 2 (the contents of immediate data in the LOADI

CE

D

C
CLR

Reg R1

CE4 4

44

4

4

4

4

4

4

0

MUX 3

1

0

MUX 1

1

0

MUX 5

ALU

LOADI
ADDI

(001)
(011)
(010)
(100)

ADD
SR0

1

0

MUX 2

1

4
D

C
CLR

CLK

Reg
output
port

LOAD_R1

CLK

RST(asyn)

CE

D

Q

Q

Q

C
CLR

Reg R0

LOAD_R0

R_ALU

R0

R1

R0_1

R0_R1

DI(3:0)

M1

M5

0

MUX 4

1

M4

M2

M3

ALU_OUT

R_IR

RST

RST

OP(3:0)

IR(3:0)

LOAD_OP

R_ALU_DI

IR(7:5)

3

FIGURE 16.2 Annotated schematic for the complete data path circuit for VBC1

400 Chapter 16 Designing Arithmetic Logic Units

instruction) to obtain the ALU output. Observe that the right side of the transfer function form
for the LOADI instruction indicates which signal the ALU output will receive: ALU_OUT d
R_IR. R_IR receives the signal IR(3:0), and destination register R0 or R1 stores the signal ALU_
OUT during the LOADI instruction via the control bits supplied by the instruction decoder.
 Listing 16.1 shows a partial VHDL design for an arithmetic logic unit for the LOADI
instruction using a behavioral design style—that is, a process with a case statement.

alu_process:
process (ir(7 downto 5), r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating

--inferred latches
 case ir(7 downto 5) is
 when “001” 5. alu_out ,5 r_ir; --LOADI
 when others 5. null;
 end case;
end process alu_process;

LISTING 16.1 Partial
VHDL design for an
ALU for the LOADI
instruction using a
behavioral design
style

 Things you should notice about the partial VHDL design in Listing 16.1:

• A default arithmetic logic unit output value is listed for the process after begin. The default
value is assigned before the case statement to ensure proper circuit operation—that is, so
that inferred latches will not be created.

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR that contain
the OPCODE for the LOADI instruction.

• When the OPCODE 001 for the LOADI instruction is true, the assignment is made to the
ALU output signal ALU_OUT following the symbol 5.. For the LOADI instruction to be
performed by the ALU, the ALU output ALU_OUT must be assigned the signal R_IR—
that is, ALU_OUT ,5 R_IR.

16.4 DESIGNING THE ADDI INSTRUCTION PART OF THE ALU

The transfer function form for the ADDI DR,Data instruction is DR d DR 1 IR(3:0). The
function ADDI uses data supplied by operand 1 (the contents of a register) and data supplied by
operand 2 (the contents of immediate data in the ADDI instruction) to obtain the ALU output.
Observe that the right side of the transfer function form for the ADDI instruction indicates which
signals the ALU output will receive: ALU_OUT d R0_R1 1 R_IR. R0_R1 receives the signal
R0 or R1, R_IR receives the signal IR(3:0), and destination register R0 or R1 stores the signal
ALU_OUT during the ADDI instruction via the control bits supplied by the instruction decoder.
 Listing 16.2 shows a partial VHDL design for an arithmetic logic unit for the ADDI instruc-
tion using a behavioral design style—that is, a process with a case statement.

alu_process:
process (ir(7 downto 5), r0_r1, r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating

--inferred latches
 case ir(7 downto 5) is
 when “011” 5. alu_out ,5 r0_r1 1 r_ir; --ADDI
 when others 5. null;
 end case;
end process;

LISTING 16.2 Partial
VHDL design for an
ALU for the ADDI
instruction using a
behavioral design
style

www.itpub.net

 16.6 Designing the SR0 Instruction Part of the ALU 401

 Things you should notice about the partial VHDL design in Listing 16.2:

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR that contain
the OPCODE for the ADDI instruction.

• When the OPCODE 011 for the ADDI instruction is true, the assignment is made to the
ALU output signal ALU_OUT following the symbol 5.. For the ADDI instruction to be
performed by the ALU, the ALU output ALU_OUT must be assigned the expression R0_R1
1 R_IR—that is, ALU_OUT d R0_R1 1 R_IR.

16.5 DESIGNING THE ADD INSTRUCTION PART OF THE ALU

The transfer function form for the ADD DR,SR instruction is DR d DR 1 SR. The function
ADD uses data supplied by operand 1 (the contents of a register) and data supplied by operand
2 (also the contents of a register) to obtain the ALU output. Observe that the right side of the
transfer function form for the ADD instruction indicates which signals the ALU output will
receive: ALU_OUT d R0_R1 1 R_IR. R0_R1 receives the signal R0 or R1, R_IR receives the
signal R0 or R1, and destination register R0 or R1 stores the signal ALU_OUT during the ADD
instruction via the control bits supplied by the instruction decoder.
 Listing 16.3 shows a partial VHDL design for an arithmetic logic unit for the ADD instruc-
tion using a behavioral design style—that is, a process with a case statement.

alu_process:
process (ir(7 downto 5), r0_r1, r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating

--inferred latches
 case ir(7 downto 5) is
 when “010” 5. alu_out ,5 r0_r1 1 r_ir; --ADD
 when others 5. null;
 end case;
end process;

LISTING 16.3 Partial
VHDL design for an
ALU for the ADD
instruction using a
behavioral design
style

 Things you should notice about the partial VHDL design in Listing 16.3:

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR that contain
the OPCODE for the ADD instruction.

• When the OPCODE 010 for the ADD instruction is true, the assignment is made to the
ALU output signal ALU_OUT following the symbol 5.. For the ADD instruction to be
performed by the ALU, the ALU output ALU_OUT must be assigned the expression R0_R1
1 R_IR—that is, ALU_OUT d R0_R1 1 R_IR.

16.6 DESIGNING THE SR0 INSTRUCTION PART OF THE ALU

The transfer function form for the SR0 DR,SR instruction is DR d 0 SR(3:1). The logic func-
tion SR0 uses data supplied by operand 2 (the contents of the source register) to obtain the ALU
output. Observe that the right side of the transfer function form for the SR0 instruction indicates
which signal the ALU output will receive: ALU_OUT (3) d 0, ALU_OUT(2:0) d R_IR(3:1).
R_IR receives the signal R0 or R1 and destination register R0 or R1 stores the signal ALU_OUT
during the SR0 instruction via the control bits supplied by the instruction decoder for the SR0
instruction.
 Listing 16.4 shows a partial VHDL design for an arithmetic logic unit for the SR0 instruc-
tion using a behavioral design style—that is, a process with a case statement.

402 Chapter 16 Designing Arithmetic Logic Units

 Things you should notice about the partial VHDL design in Listing 16.4:

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR that contain
the OPCODE for the SR0 instruction.

• When the OPCODE 100 for the SR0 instruction is true, the assignment is made to the ALU
output signal ALU_OUT following the symbol 5.. For the SR0 instruction to be performed
by the ALU, the ALU output ALU_OUT must be assigned the expression 0 R_IR(3:1)—that
is, ALU_OUT (3) d 0, ALU_OUT(2:0) d R_IR(3:1).

• The alternate statement simplifies the assignment for ALU_OUT by using the concatena-
tion operator &.

16.7 DESIGNING AN ALU FOR VBC1

Listing 16.5 shows a general format or template for the ALU for VBC1.

alu_process:
process (ir(7 downto 5), r_ir)
begin
 alu_out ,5 “0000”; -- default value to prevent creating inferred latches
 case ir(7 downto 5) is
 when “100” 5. alu _out(3) ,5 ‘0’; alu_out(2 downto 0) ,5 r_ir(3 downto 1); --SR0
 --when “100” 5. alu_out ,5 ‘0’ & r_ir (3 downto 1); --alternate statement
 when others 5. null;
 end case;
end process;

LISTING 16.4 Partial VHDL design for an ALU for the SR0 instruction using a behavioral design style

process (ir(7 downto 5), r0_r1, r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating inferred latches
 case ir(7 downto 5) is --the OPCODE for each ALU instruction is in bits (7:5) in

--the IR

 --the LOADI instruction has the OPCODE 001
 when “001” 5. -- enter the ALU output equation for the LOADI instruction here

 --the ADDI instruction has the OPCODE 011
 when “011” 5. -- enter the ALU output equation for the ADDI instruction here

 --the ADD instruction has the OPCODE 010
 when “010” 5. -- enter the ALU output equation for the ADD instruction here

 --the SR0 instruction has the OPCODE 100
 when “100” 5. -- enter the ALU output equation for the SR0 instruction here
 when others 5. null;
 end case;
end process;

LISTING 16.5 General format or template for the ALU for VBC1

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 403

16.8 ADDITIONAL CIRCUIT DESIGNS WITH VHDL

The following circuits are presented to give you a better understanding of some additional com-
puter circuits that are a little more complex. The circuits are designed with VHDL and simulated
to show that they are functionally correct. The circuits in this section are not used in the design
of VBC1.

16.8.1 Designing Additional ALU Circuits
An ALU performs as follows: (1) it has word-wise arithmetic operations such as ADD (ADDi-
tion), INC (INCrement), SUB (SUBtraction), and DEC (DECrement), and (2) it has bit-wise
logic operations such as AND, OR, and NAND. For word-wise operations, each bit position has
a carry-out bit (or borrow bit) that must be used to accomplish the arithmetic operation.
 For bit-wise operations, there are no carry-out bits (or borrow bits) that must be used to
accomplish the operations, so the final carry-out bit for the overall result (or borrow bit) should
be ignored.
 Table 16.1 shows a summary of the operator symbols that we use throughout this chapter in
transfer functions.

TABLE 16.1 Operator symbols

Operation Operator symbol Comment

Addition 1 Word-wise operation

Subtraction 2 Word-wise operation

AND ` Bit-wise operation

OR ~ Bit-wise operation

XOR ! Bit-wise operation

XNOR ! Bit-wise operation

 An addition circuit is represented by the following transfer function:

 BC d BA 1 BB

 Things you should know about the transfer function we use for the addition circuit:

• Bus B (BB) is added to bus A (BA) and the result is transferred to bus C (BC).
• Addition is a word-wise operation.
• A carry-out bit may be generated for the MSB (most significant bit) of the result—that is,

signal BC.
• This is a combinational logic circuit because there is no clock input.

 An increment circuit is represented by the following transfer function:

 BC d BA 1 1

 Things you should know about the transfer function we use for the increment circuit:

• A 1 is added to bus A (BA) and the result is transferred to bus C (BC).
• Increment is a word-wise operation.
• A carry-out bit may be generated for the MSB of the result—that is, signal BC.
• This is a combinational logic circuit because there is no clock input.

404 Chapter 16 Designing Arithmetic Logic Units

 An AND circuit is represented by the following transfer function:

 BC d BA ` BB

 Things you should know about the transfer function we use for the AND circuit:

• Bus B (BB) is ANDed with bus A (BA) and the result is transferred to bus C (BC).
• AND is a bit-wise operation.
• No carry-out bit can be generated for the MSB of the result—that is, signal BC.
• This is a combinational logic circuit because there is no clock input.

 An XOR circuit is represented by the following transfer function:

 BC d BA!BB

 Things you should know about the transfer function we use for the XOR circuit:

• Bus B (BB) is XORed with bus A (BA) and the result is transferred to bus C (BC).
• XOR is a bit-wise operation.
• No carry-out bit can be generated for the MSB of the result—that is, signal BC.
• This is a combinational logic circuit because there is no clock input.

 A function table for an ALU that uses the four transfer functions just discussed is shown in
Table 16.2.

TABLE 16.2 Function table for an ALU

S(1:0) Output: BC(1:0) Comment

00 BC d BA 1 BB Arithmetic operation (ADD), BC(1) is the carry-out bit

01 BC d BA 1 1 Arithmetic operation (INC), BC(1) is the carry-out bit

10 BC d BA ` BB Logic operation (AND), ignore carry-out bit BC(1)

11 BC d BA!BB Logic operation (XOR), ignore carry-out bit BC(1)

When S(1:0) 5 00, ADD is performed; when S(1:0) 5 01, INC is performed; when S(1:0) 5 10,
AND is performed; and when S(1:0) 5 11, XOR is performed.
 Figure 16.3 shows a logic symbol for the ALU in Table 16.2 with a word size of 1 bit.

2

2

ALU

00
01
10
11

(INC)
(AND)

(ADD)

(XOR)

BC(1:0)
(result)

BA
(operand 1)

BB
(operand 2)

S(1:0)

FIGURE 16.3 Logic
symbol for the ALU
in Table 16.2 with a
word size of 1 bit

 Listing 16.6 shows the VHDL code for a 1-bit version of the ALU in Figure 16.3 using a
dataflow architecture declaration with a conditional signal assignment (CSA).

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 405

 Things you should notice about the VHDL design in Listing 16.6:

• Observe that the buses BA and BB are 1-bit buses represented by the data type std_logic_
vector (0 downto 0). These 1-bit buses could also be represented by the data type std_logic.
Using vector data types allows the code to be easily changed to provide wider buses.

• The ampersand symbol “&” is a concatenation operator. The concatenation operator is used
to connect or link signals together. With this operator, we have padded bus BA to extend its
width. The padding or extension is on the left side to allow for the carry-out bit during the
addition operation. There is no carry-out bit for the AND and the XOR operations, because
a carry-out bit cannot be generated for bit-wise operations.

• Bus BC(1:0) contains the sum in bit position 0 and carry-out bit in bit position 1.
• This is a combinational logic circuit because there is no clock input.

 Waveform 16.1 shows a simulation with the correct functionality of design entity
ALU_wcarry_bit.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ALU_wcarry_bit is port (
 s : in std_logic_vector (1 downto 0);
 ba, bb : in std_logic_vector (0 downto 0);
 bc : out std_logic_vector (1 downto 0)
);
end ALU_wcarry_bit;

architecture dataflow of ALU_wcarry_bit is
begin
 bc ,5 (‘0’& ba) 1 bb when s 5 “00” else
 (‘0’& ba) 1 1 when s 5 “01” else
 ‘0’& (ba and bb) when s 5 “10” else
 ‘0’& (ba xor bb);
end dataflow;

LISTING 16.6
Complete VHDL
design entity for a
1-bit version of the
ALU in Table 16.2
(project: ALU_wcarry_
bit)

 Things you should notice about the waveforms in Waveform 16.1:

• For the section of Waveform 16.1 marked ADD where S(1:0) 5 0 (in decimal), observe that
the output or result for BC(1:0) (in decimal) is BA 1 BB.

• For the section of Waveform 16.1 marked INC where S(1:0) 5 1 (in decimal), observe that
the output or result for BC(1:0) (in decimal) is BA 1 1.

• For the section of Waveform 16.1 marked AND where S(1:0) 5 2 (in decimal), observe that
the output or result for BC(1:0) (in decimal) is BA ` BB.

• For the section of Waveform 16.1 marked XOR where S(1:0) 5 3 (in decimal), observe that
the output or result for BC(1:0) (in decimal) is BA!BB.

+

+

+

+

ADD INC AND XOR

s[1:0]

ba[0:0]

bb[0:0]

bc[1:0]

0

0

0

0

Name Value 0 ns 200 ns

0

0

1

11

0

0

1

1 0 1 0 1 0 1 0 1 0 1 0

1 0

1

1

0 1

0 1 0

0

1 0 1

2

2 2

3

400 ns 600 ns 800 ns

WAVEFORM 16.1 Simulation for the correct functionality of design entity ALU_wcarry_bit

406 Chapter 16 Designing Arithmetic Logic Units

 An ALU with a larger word size can be easily designed by simply changing the vector
ranges of the signals BA, BB, and BC in the entity declaration. To increase the number of bits
in the word size of the design of the ALU in Listing 16.6 from 1 bit to 4 bits, simply change the
range of the vector for BA and BB from (0 downto 0) to (3 downto 0) and change the range of
the vector for BC from (1 downto 0) to (4 downto 0).

16.8.2 Designing Shifter Circuits
A function table for a shifter circuit that uses two transfer functions is shown in Table 16.3.

 MODE 5 0 is a shift-right operation with a 0 fill bit. If BA has a bus width of 4 bits and
contains 1111, then after the shift-right operation BC contains 0111—that is, a 0 fill bit is added
to the MSB (most significant bit). MODE 5 1 is a shift-left operation with a 0 fill bit. Assuming
BA has a bus width of 4 bits and contains 1111, then after the shift-left operation, BC contains
1110, i.e., a 0 fill bit is added to the LSB (Least Significant Bit). Notice that a shift-right opera-
tion discards the LSB, and a shift-left operation discards the MSB in this shifter circuit.
 Figure 16.4 shows a logic symbol for a 4-bit version of the shifter circuit with a 0 fill bit in
Table 16.3.

TABLE 16.3 Function table for a shifter circuit with a 0 fill bit

MODE Output: BC Comment

0 BC d shift right BA w0 fill Shift right operation with a fill bit of 0 for MSB

1 BC d shift left BA w0 fill Shift left operation with a fill bit of 0 for LSB

 For this design, we will use the VHDL shift operators srl and sll (see Chapter 4, Figure 4.10
for a list of supported operators.) To use the VHDL shift operators, here is the information you
need to know: b srl i means to shift right logical the bit_vector b, i bit positions where i is an
integer. The result is a bit_vector. The declaration b: bit_vector (n 21 downto 0) must be placed
in the entity, where n is the width of the vector b. Only 0 fill bits are used for the srl operator.
The sll operator has the same requirements only it shifts left logical with 0 fill bits.
 Listing 16.7 shows the VHDL code for a Shifter Circuit with a 0 fill bit using a dataflow
architecture declaration with a selected signal assignment (SSA).

4

4
Shifter

(w0 fill)

(right = 0
left = 1)

MODE

BC(3:0)

BA(3:0)

MODE

FIGURE 16.4 Logic
symbol for a 4-bit
version of the shifter
circuit with a 0 fill bit
in Table 16.3

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Shifter_W0F is port (
 mode : in std_logic;
 ba : in bit_vector (3 downto 0);
 bc : out bit_vector (3 downto 0)
);
end Shifter_W0F;

LISTING 16.7
Complete VHDL
design entity for the
shifter circuit with
a 0 fill bit (project:
Shifter_W0F)

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 407

 Things you should notice about the VHDL design in Listing 16.7:

• The signal MODE in the entity has a data type of std_logic. It could have a data type of bit.
• The signals BA and BC must be data type bit_vector with the range 3 downto 0 for a 4-bit

bus because the VHDL operators srl and sll require these data types.
• A 1 is used for the integer i for a single-bit shift.
• The shifter circuit is bidirectional because it shifts one bit position to the right with a 0 fill

bit and also shifts one bit position to the left with a 0 fill bit.
• This is a combinational logic circuit because there is no clock input.

 Waveform 16.2 shows a simulation with the correct functionality of design entity
Shifter_W0F.

architecture dataflow of Shifter_W0F is
begin
with mode select
 bc ,5 ba srl 1 when ‘0’,
 ba sll 1 when ‘1’,
 ba when others;
end dataflow;

 Things you should notice about the waveforms in Waveform 16.2:

• For the section of Waveform 16.2 marked MODE 5 0 (shift right w0 fill), observe that the
output or result for BC(3:0) (in decimal) is shift right BA(3:0) w0 fill in each case for BA(3:0)
0 through 7 (in decimal).

• For the section of Waveform 16.2 marked MODE 5 1 (shift left w0 fill), observe that the
output or result for BC(3:0) (in decimal) is shift left BA(3:0) w0 fill in each case for BA(3:0)
8 through 15 (in decimal).

• To generate Waveform 16.2, be sure to change the VHDL test bench code to data type
bit_vector for signals ba(3:0) and bc(3:0), if the test bench code is set up to use data type
std_logic_vector for all signals.

 The VHDL operators srl and sll will work just fine for some designs. Remember that you
must use a data type of bit_vector for these operators. Both operators srl and sll only provide a
fill bit of 0. The following approach allows you to use the data type of std_logic_vector to create
designs that provide a fill bit of 0 or a fill bit of 1 as illustrated in Table 16.4.

+

+

+

0 1 2 3

0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 0

0 2 4 6 8 10 12 14 0

0

ba[3:0]

mode

bc[3:0] 0

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns

MODE = 0
(Shift right w0 fill)

MODE = 1
(Shift left w0 fill)

WAVEFORM 16.2
Simulation for the
correct functional-
ity of design entity
Shifter_W0F

TABLE 16.4 Function table for a shifter circuit with a 1-fill bit

MODE Output: BC Comment

0 BC d shift right BA w1 fill Shift-right operation with a fill bit of 1 for MSB

1 BC d shift left BA w1 fill Shift-left operation with a fill bit of 1 for LSB

 Figure 16.5 shows a logic symbol for a 4-bit version of the shifter circuit with a 1-fill bit in
Table 16.4.

408 Chapter 16 Designing Arithmetic Logic Units

 Listing 16.8 shows the VHDL code for a shifter circuit with a 1-fill bit using a behavioral
architecture declaration with a case statement.

4

4
Shifter

(w1 fill)

MODE

BC(3:0)

BA(3:0)

(right = 0
left = 1)

MODE

FIGURE 16.5 Logic
symbol for a 4-bit
version of the shifter
circuit with a 1-fill bit
in Table 16.4

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Shifter_W1F is port (
 mode : in std_logic;
 ba: in std_logic_vector (3 downto 0);
 bc: out std_logic_vector (3 downto 0)
);
end Shifter_W1F;
architecture behavioral of Shifter_W1F is

begin
process (mode, ba)
begin
 case mode is
 --this is a right shift with 1 fill
 when ‘0’ 5. bc(3),5‘1’; bc(2),5ba(3); bc(1),5ba(2); bc(0),5ba(1);
 --this is a left shift with 1 fill
 when ‘1’ 5. bc(3),5ba(2); bc(2),5ba(1); bc(1),5ba(0); bc(0),5‘1’;
 when others 5. null;
 end case;
end process;
end behavioral;

LISTING 16.8 Complete VHDL design entity for the shifter circuit with a 1-fill bit (project: Shifter_W1F)

 Things you should notice about the VHDL design in Listing 16.7:

• All the signals in the design are standard logic data types.
• Alternate assignments for a right shift with 1 fill are bc(3) ,5 '1'; bc(2 downto 0) ,5

ba(3 downto 1); and bc ,5 '1' & ba(3 downto 1).
• Alternate assignments for a left shift with 1 fill are bc(3 downto 1) ,5 ba(2 downto 0);

bc(0),5'1'; and bc ,5 ba(2 downto 0) & '1'.

 Waveform 16.3 shows a simulation with the correct functionality of design entity
Shifter_W1F.

+

+

+

0 1 2 3

8 9 10 11

4 5 6 7 8 9 10 11 12 13 14 15

1 3 5 7 9 11 13 15

0

ba[3:0]

mode

bc[3:0] 8

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns

MODE = 0
(Shift right w1 fill)

MODE = 1
(Shift left w1 fill)

WAVEFORM 16.3
Simulation for the
correct functional-
ity of design entity
Shifter_W1F

 Things you should notice about the waveforms in Waveform 16.3:

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 409

• For the section of Waveform 16.3 marked MODE 5 0 (shift right w1 fill) where MODE 5 0,
observe that the output or result for BC(3:0) (in decimal) is shift right BA(3:0) w1 fill in each
case for BA(3:0) 0 through 7 (in decimal).

• For the section Waveform 16.3 marked MODE 5 1 (shift left w1 fill) where MODE 5 1,
observe that the output or result for BC(3:0) (in decimal) is shift left BA(3:0) w1 fill in each
case for BA(3:0) 8 through 15 (in decimal).

 The designs we show for shifter circuits only shift one bit position either right or left. By
adding select inputs to the design, we could design a shifter circuit that would shift the data
input BA(3:0) multiple bit positions based on the select inputs. For example, when S(1:0) 5 00,
the 4-bit data input gets transferred to the output with no shift; when S(1:0) 5 01, the 4-bit data
input gets transferred to the output shifted by 1 bit position; when S(1:0) 5 10, the data input
gets transferred to the output shifted by 2 bit positions; and when S(1:0) 5 11, the data input gets
transferred to the output shifted by 3 bit positions. The direction for the shift can be fixed or be
dependent on the MODE—that is, right or left. The fill bits can be a 0, a 1, or supplied by an
additional input. As you can see, shifter circuits can be designed in various ways depending on
the designer’s needs.

16.8.3 Designing Barrel Shifter Circuits
Table 16.5 shows a function table for a 4-bit barrel shifter circuit with eight transfer functions.

TABLE 16.5 Function table for a 4-bit barrel shifter circuit

MODE S(1:0) Output: BC Comment

0 00 BC d rotate right BA 0 bits No rotation

0 01 BC d rotate right BA 1 bit Rotate right 1 bit

0 10 BC d rotate right BA 2 bits Rotate right 2 bits

0 11 BC d rotate right BA 3 bits Rotate right 3 bits

1 00 BC d rotate left BA 0 bits No rotation

1 01 BC d rotate left BA 1 bit Rotate left 1 bit

1 10 BC d rotate left BA 2 bits Rotate left 2 bits

1 11 BC d rotate left BA 3 bits Rotate left 3 bits

 A barrel shifter circuit is similar to the shifter circuit discussed earlier, with one major dif-
ference. The output of a barrel shifter circuit rotates the data bits right (LSB back to the MSB
in a circle or around a barrel) or rotates the data bits left (MSB back to the LSB in a circle). The
output of a shifter circuit simply shifts the data bits right or left and thus requires fill bits to fill
vacant spaces after each shift. A barrel shifter circuit is commonly used as part of the circuitry
for high-speed graphics hardware in the computer industry.
 Figure 16.6 shows a logic symbol for the barrel shifter circuit in Table 16.5.

4

2

4

Barrel
shifter

MODE
(right = 0
left = 1)

MODE

BA(3:0)

S(1:0)

BC(3:0)

FIGURE 16.6 Logic
symbol for the 4-bit
barrel shifter circuit in
Table 16.5

410 Chapter 16 Designing Arithmetic Logic Units

 Listing 16.9 shows the VHDL code for a 4-bit barrel shifter circuit with standard logic vec-
tors (SLVs) using a behavioral architecture declaration with a case statement.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Barrel_Shifter_SLVs is port (
 mode : in std_logic;
 s : in std_logic_vector (1 downto 0);
 ba: in std_logic_vector(3 downto 0);
 bc: out std_logic_vector(3 downto 0)
);
end Barrel_Shifter_SLVs;

architecture behavioral of Barrel_Shifter_SLVs is
begin
process (mode, s, ba)
begin
 if mode 5 ‘0’ then
 case s is
 when “ 00” 5. bc(3),5 ba(3); bc(2),5ba(2);

bc(1),5ba(1); bc(0),5ba(0);
 when “ 01” 5. bc(3),5 ba(0); bc(2),5ba(3);

bc(1),5ba(2); bc(0),5ba(1);
 when “ 10” 5. bc(3),5 ba(1); bc(2),5ba(0);

bc(1),5ba(3); bc(0),5ba(2);
 when “ 11” 5. bc(3),5 ba(2); bc(2),5ba(1);

bc(1),5ba(0); bc(0),5ba(3);
 when others 5. null;
 end case;
 else
 case s is
 when “ 00” 5. bc(3),5 ba(3); bc(2),5ba(2);

bc(1),5ba(1); bc(0),5ba(0);
 when “ 01” 5. bc(3),5 ba(2); bc(2),5ba(1);

bc(1),5ba(0); bc(0),5ba(3);
 when “ 10” 5. bc(3),5 ba(1); bc(2),5ba(0);

bc(1),5ba(3); bc(0),5ba(2);
 when “ 11” 5. bc(3),5 ba(0); bc(2),5ba(3);

bc(1),5ba(2); bc(0),5ba(1);
 when others 5. null;
 end case;
 end if;
end process;
end behavioral;

LISTING 16.9
Complete VHDL
design entity for a
4-bit barrel shifter
(project: Barrel_
Shifter_SLVs)

 Waveform 16.4 shows a simulation with the correct functionality of design entity
Barrel_Shifter_SLVs.
 Things you should notice about the waveforms in Waveform 16.4:

• When S(1:0) is 0, no rotation occurs.
• Observe that output BC(3:0) provides the correct value in all cases for the specified inputs.

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 411

 To simplify the VHDL code in Listing 16.9, you may elect to use the ror (rotate right) and
rol (rotate left) operators. Listing 16.10 shows the VHDL code for a 4-bit barrel shifter circuit
with bit vectors (BVs) using a behavioral architecture description with the ror and rol opera-
tors. To use these operators, you must define the data input signal BA(3:0) and the output signal
BC(3:0) in the entity declaration as bit_vectors.

+

+

+

+

0 1 2 3 0 1 2 3 0 1 2 3 0 01 2 3

8 4 2 1 8

8

1 2 4 12 6 3 9 12

12

0

0

9 3 6

0

s[1:0]

mode

ba[3:0]

bc[3:0]

8

8

0

Name Value 0 ns 200 ns 400 ns 600 ns 800 ns

MODE = 0
(Rotate right)

MODE = 1
(Rotate left)

MODE = 0
(Rotate right)

MODE = 1
(Rotate left)

WAVEFORM 16.4 Simulation for the correct functionality of design entity Barrel_Shifter_SLVs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Barrel_Shifter_BVs is port (
 mode : in std_logic;
 s : in std_logic_vector (1 downto 0);
 ba: in bit_vector (3 downto 0);
 bc: out bit_vector (3 downto 0)
);
end Barrel_Shifter_BVs;

architecture behavioral of Barrel_Shifter_BVs is
begin
process (mode, s, ba)
begin
 if mode 5 ‘0’ then
 case s is
 when “00” 5. bc ,5ba ror 0;
 when “01” 5. bc ,5ba ror 1;
 when “10” 5. bc ,5ba ror 2;
 when “11” 5. bc ,5ba ror 3;
 when others 5. null;
 end case;
 else
 case s is
 when “00” 5. bc ,5ba rol 0;
 when “01” 5. bc ,5ba rol 1;
 when “10” 5. bc ,5ba rol 2;
 when “11” 5. bc ,5ba rol 3;
 when others 5. null;
 end case;
 end if;
end process;
end behavioral;

LISTING 16.10
Complete VHDL
design entity for a
4-bit barrel shifter
with the ror and rol
operators (project:
Barrel_Shifter_BVs)

412 Chapter 16 Designing Arithmetic Logic Units

 The simulation for Listing 16.10 is the same as Waveform 16.4 obtained earlier. This proves
that using standard logic vectors or bit vectors provide the same result. To generate the wave-
forms for Listing 16.10 using bit_vectors, be sure to change the VHDL test bench code to data
type bit_vector for signals BA(3:0) and BC(3:0), if the test bench code is set up to use data type
std_logic_vector for all signals.
 In some applications, it may be desirable to provide an output enable (OE) input that allows
the barrel shifter’s output BC to be tri-stated. Barrel shifter circuits can also be designed with a
larger number of data bits for the input and output. For a design like the one in Listing 16.10, 3
select inputs would be required for a barrel shifter circuit with 8 data bits, 4 select inputs for 16
data bits, and so on.

16.8.4 Designing Shift Register Circuits
A function table for a shift register circuit that uses four transfer functions is shown in Table
16.6.

TABLE 16.6 Function table for a shift register circuit

RST (sync) S(1:0) Output: RC Comment

1 33 RC d 0 Synchronous reset

0 00 RC d RC Hold operation

0 01 RC d shift right RC wSRSI fill Shift-right operation

0 10 RC d shift left RC wSLSI fill Shift-left operation

0 11 RC d BA Load operation

 Register C (RC) is the output of a group of D flip-flops. RST is a synchronous reset—that
is, the reset occurs (RC 5 0) when RST 5 1 after the next rising edge of the signal CLK. When
RST 5 0, the select signal S determines which operation occurs at the next rising edge of the
signal CLK. S(1:0) 5 00 is a hold operation that holds the current value in register C (RC). S(1:0)
5 01 is a shift-right operation with an input signal SRSI (shift-right serial input) as a fill bit to
the MSB of RC. S(1:0) 5 10 is a shift-left operation with an input signal SLSI (shift-left serial
input) as a fill bit to the LSB of RC. S(1:0) 5 11 is a load operation that loads register C (RC)
with new data from bus A (BA).
 The shifter register circuit represented in Table 16.6 is sometimes called a universal shift
register circuit because it is an all-purpose circuit that can be cleared (reset) and can also hold
current data, shift current data to the right, shift current data to the left, or load new data. A
shifter register circuit is a complex state machine because it has external inputs to change its
state sequence.
 Figure 16.7 shows a logic symbol for a 4-bit version of the shift register circuit in Table 16.6.

4

2

4

Shifter
register

BA(3:0)

S(1:0)
SRSI
SLSI

CLK

RST
(sync)

RC(3:0)

FIGURE 16.7 Logic
symbol for a 4-bit
version of the shifter
register circuit in
Table 16.6

www.itpub.net

 16.8 Additional Circuit Designs with VHDL 413

 Listing 16.11 shows the VHDL code for the 4-bit version of the shift register circuit in
Table 16.6 using a behavioral architecture declaration with a single process, two if statements,
and a case statement.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Shift_Register is port (
 rst, clk : in std_logic;
 s : in std_logic_vector (1 downto 0);
 ba: in std_logic_vector(3 downto 0);
 srsi, slsi : in std_logic;
 rc: inout std_logic_vector(3 downto 0)
);
end Shift_Register;

architecture behavioral of Shift_Register is
begin
process (clk)
begin
 if rising_edge (clk) then
 if rst 5 ‘1’ then rc ,5 “0000”;
 else
 case s is
 when “00” 5. rc ,5 rc;
 when “ 01” 5. rc(3),5 srsi; rc(2),5 rc(3);

rc(1),5 rc(2); rc(0),5 rc(1);
 when “ 10” 5. rc(3),5 rc(2); rc(2),5 rc(1);

rc(1),5 rc(0); rc(0),5 slsi;
 when “11” 5. rc ,5 ba;
 when others 5. null;
 end case;
 end if;
 end if;
end process;
end behavioral;

LISTING 16.11
Complete VHDL
design entity for a
shift register circuit
with 4 bits (project:
Shift_Register)

 Things you should notice about the VHDL design in Listing 16.11:

• The signal RST is synchronous and must not be included in the sensitivity list.
• The reset signal RST is synchronous and therefore must be placed after rising_edge (CLK)

in the process.
• The signals BA and RC are data type std_logic_vector with the range 3 downto 0 for a 4-bit

bus.
• This is a sequential logic circuit because there is a clock input.

 Waveform 16.5 shows a simulation with the correct functionality of design entity
Shift_Register.
 Things you should notice about the waveforms in Waveform 16.5:

• The shift register circuit is a completely synchronous circuit that only responds to the input
signals at the tick of the clock, which is the rising edge of the clock signal CLK for this design.

• RST is a synchronous reset that can only occur after a clock tick when RST 5 1 or high.

414 Chapter 16 Designing Arithmetic Logic Units

• When RST goes low, the select signal S determines the next operation performed by the
shift register circuit after each clock tick, where S 5 0 (hold), S 5 1 (shift right), and S 5 2
(shift left), and S 5 3 (load).

• Observe that the each operation of the shift register circuit follows Table 16.6, which indi-
cates the proper functionality of design entity Shift_Register.

+

+

+

+

+

+

+

+

s[1:0]

ba[3:0]

rc[3:0]

rst

clk

srsi

clk_period

slsi

0

0

0

0

0

U

50000 ps 50000 ps

1

Name Value 200 ns0 ns 100 ns

0 3 0 1 0 3 0 2 0 03

0

0 7 11 10 5 6 0

7 10 12 6

U

300 ns 400 ns 500 ns

WAVEFORM 16.5 Simulation for the correct functionality of design entity Shift_Register

Section 16.6 Designing the SR0 Instruction Part
of the ALU
 16.11 For Figure 16.2, write the VHDL code for the output

signal assignments for the ALU in terms of the required
input signals for the logic function SR0. Also provide
an alternate way using the concatenation operator.

 16.12 Why is it important to include a default value before the
case statement for the output of an ALU when writing
the VHDL code with a process and a case statement?

Section 16.7 Designing an ALU for VBC1
 16.13 Show a partial VHDL design for an ALU for VBC1

for the LOADI and ADDI instructions using a single
process and a case statement.

 16.14 Show a partial VHDL design for an ALU for VBC1 for
the ADD and SR0 instructions using a single process
and a case statement.

Section 16.8 Additional Circuit Designs with VHDL
 16.15 Is the INC (increment) operation a bit-wise or word-

wise operation? Explain your answer by showing exam-
ples for a single-bit position for the INC operation.

 16.16 Is the XNOR operation a bit-wise or word-wise opera-
tion? Explain your answer by showing examples for a
single-bit position for the XNOR operation.

 16.17 Show the transfer function for a subtraction circuit with
input buses BA and BB and output bus BC. Is the sub-
traction operation a bit-wise or a word-wise operation?

 16.18 Show the transfer function for an ADD circuit and an
AND circuit with input buses BX and BY and the output
bus BZ. Which circuit is a bit-wise operation and which
circuit is a word-wise operation?

 16.19 What is the purpose of the ampersand symbol “&” in
VHDL?

Section 16.2 Utilization of the Arithmetic Logic Unit
 16.1 What is an arithmetic logic unit (ALU)?
 16.2 List all the logic functions (instructions) that are asso-

ciated with the ALU for VBC1.
 16.3 How are the different functions selected by the ALU

for VBC1?
 16.4 What OPCODE selects the LOADI instruction for the

ALU for VBC1?
 16.5 What OPCODE selects the ADDI instruction for the

ALU for VBC1?
 16.6 What OPCODE selects the ADD instruction for the

ALU for VBC1?
 16.7 What OPCODE selects the SR0 instruction for the

ALU for VBC1?

Section 16.3 Designing the LOADI Instruction Part
of the ALU
 16.8 For Figure 16.2, write the VHDL code for the output

signal assignment for the ALU in terms of the required
input signal for the logic function LOADI.

Section 16.4 Designing the ADDI Instruction Part
of the ALU
 16.9 For Figure 16.2, write the VHDL code for the output

signal assignment for the ALU in terms of the required
input signals for the arithmetic function ADDI.

Section 16.5 Designing the ADD Instruction Part
of the ALU
 16.10 For Figure 16.2, write the VHDL code for the output

signal assignment for the ALU in terms of the required
input signals for the arithmetic function ADD.

PROBLEMS

www.itpub.net

 Problems 415

a datafl ow design style with simple signal assignment
statements.

 16.29 How does a barrel shifter circuit differ from a shifter
circuit?

 16.30 Is a barrel shifter circuit a combinational or sequential
logic circuit? Provide a reason for your answer.

 16.31 Explain how the ror operator works in the following
statement BC ,5 BA ror 2, where BC represents the
signal on bus C and BA represents the signal on bus A.
Determine BC for BA 5 10111.

 16.32 Explain how the rol operator works in the following
statement BC ,5 BA rol 3, where BC represents the
signal on bus C and BA represents the signal on bus A.
Determine BC for BA 5 10111.

 16.33 What data type must be used for signals that use the ror
and rol operators? Show the data type required for the
statement BC ,5 BA rol 1 if BA is 101111.

 16.34 Show complete VHDL code for a simple 8-bit barrel
shifter circuit called RR_4b for the transfer function
BC d rotate right BA for 4 bits. Use a datafl ow design
style with simple signal assignment statements.

 16.35 What is the function of the input MODE for a shifter
circuit or a barrel shifter circuit?

 16.36 Is a shift register circuit a combinational or sequential
logic circuit? Provide a reason for your answer.

 16.37 Does the shift register circuit discussed in Section
16.8.4, Figure 16.7, have a synchronous or an asynchro-
nous reset? Where must RST appear in the VHDL code
to handle this reset—before rising_edge (clk) or after
rising_edge (clk)?

 16.38 Discuss what the transfer function RC d BA does in a
shift register circuit.

 16.39 Discuss what the transfer function RC d RC does in a
shift register circuit.

 16.40 Discuss what the transfer function RC d shift right RC
wSRSI fi ll does in a shift register circuit.

 16.41 Discuss what the transfer function RC d shift left RC
wSLSI fi ll does in a shift register circuit.

 16.42 Show complete VHDL code for a simple shift register
circuit called SRC_SR for the transfer function RC d
shift right RC wSRSI fi ll with 8 bits. Provide a synchro-
nous reset signal RST for the design. Use a behavioral
design style with a process, an if statement, and simple
signal assignment statements.

 16.43 Show complete VHDL code for a simple shift register
circuit called SRC_SL for the transfer function RC d
shift left RC wSLSI fi ll with 6 bits. Provide an asyn-
chronous reset signal RST for the design. Use a behav-
ioral design style with a process, an if statement, and
simple signal assignment statements.

 16.44 Show complete VHDL code for a simple shift register
circuit called SRC_SRL with the transfer functions RC
d shift right RC wSRSI fi ll and RC d BA with 8 bits.
Provide a synchronous reset signal RST for the design.
Use a behavioral design style with a process, an if state-
ment, and a case statement.

 16.20 Show a partial VHDL design for a 4-bit version of the
ALU with the function table in Table P16.20 called ALU_
DF. Show only the architecture declaration, and use a
datafl ow design style with a conditional signal assignment.

TABLE P16.20

S(1:0) Output: BC(4:0) Comment

00 BC d BB 1 1 Arithmetic operation (INC),
BC(4) is the carry-out bit

01 BC d BB 2 BA Arithmetic operation (SUB),
BC(4) is the carry-out bit

10 BC d BA ~ BB Logic operation (OR), ignore
carry-out bit BC(4)

11 BC d BA!BB Logic operation (XNOR),
ignore carry-out bit BC(4)

 16.21 Write the required library clause, use clauses, and
entity declaration for ALU_DF in problem 16.20.

 16.22 Show a partial VHDL design for an 8-bit version of
the ALU with the function table in Table P16.22 called
ALU_BEH. Show only the architecture declaration,
and use a behavioral design style with a process and a
case statement.

TABLE P16.22

S(1:0) Output: BC(8:0) Comment

00 BC d BA 2 BB Arithmetic operation (SUB),
BC(8) is the carry-out bit

01 BC d BA 1 BB Arithmetic operation (ADD),
BC(8) is the carry-out bit

10 BC d BA ` BB Logic operation (AND),
ignore carry-out bit BC(8)

11 BC d BA ~ BB Logic operation (OR), ignore
carry-out bit BC(8)

 16.23 Write the required library clause, use clauses, and
entity declaration for ALU_BEH in problem 16.22.

 16.24 Is a shifter circuit a combinati0onal or sequential logic
circuit? Provide a reason for your answer.

 16.25 Explain how the srl operator works in the following
statement BC ,5 BA srl 2, where BC represents the
signal on bus C and BA represents the signal on bus A.
Determine BC for BA 5 10111.

 16.26 Explain how the sll operator works in the following
statement BC ,5 BA sll 3, where BC represents the
signal on bus C and BA represents the signal on bus A.
Determine BC for BA 5 10111.

 16.27 What data type must be used for signals that use the srl
and sll operators? Show the data type required for the
statement BC ,5 BA srl 1 if BA is 10111110.

 16.28 Show complete VHDL code for a simple 8-bit shifter
circuit called SR_w1f_2b for the transfer function BC
d shift right BA w1 fi ll that shifts two bit positions. Use

CC h a p t e r

Completing the Design
for VBC1

Chapter Outline

 17.1 Introduction 416

 17.2 Designing a Running Program Counter 416

 17.3 Combining a Loading and a Running Program Counter 419

 17.4 Designing a Run Frequency Circuit and a Speed Circuit 421

 17.5 Designing Circuits to Provide a Loader for Instruction Memory for VBC1 423

 Problems 424

17.1 INTRODUCTION

In this chapter, we present circuits for a final hardware design of VBC1. A Running program
counter is added to allow loading an address for the JNZ instruction. Circuits are added to com-
bine the loading program counter and the running program counter. A run frequency circuit is
added to slow down the frequency for VBC1 to allow the output to be observed via four LEDs
and also to allow single stepping through a program.

17.2 DESIGNING A RUNNING PROGRAM COUNTER

Figure 17.1 shows the circuit with the necessary inputs and output for a running program counter
(RPC). The purpose of the RPC is to manually single step programs and also to run programs
for VBC1 at a specified frequency.

CC17

416

4

1

0
4 4 4

4
Adder

A D Q

C
CLR

SUM

MUX

NEW_A

SEL_A
PROG_A

SUM

INC

LOAD_NEW_A
(this is M6)

INC

RST(asyn)

SPEED

FIGURE 17.1 Circuit for an RPC for VBC1

www.itpub.net

 17.2 Designing a Running Program Counter 417

 Things you should notice about the Running program counter in Figure 17.1:

• An asynchronous reset signal RST (asyn) is used to reset the RPC.
• The loadable D flip-flops store the value of the signal SUM, which is the next address of the

program counter via the output signal PROG_A at the next rising edge of the clock signal
SPEED when RST is 0.

• A signal called SPEED is supplied to the control (or clock) input of the running program
counter. The signal SPEED is provided by a push-button switch or by a frequency divider
circuit. The push-button switch allows programs to be single stepped, while the frequency
divider circuit allows programs to be run at a fixed frequency.

• The signal PROG_A (program address) is a 4-bit output that supplies an address to the
instruction memory for single stepping or running programs.

• The running program counter has 16 states, which provide the addresses 0000 through 1111
for VBC1. It is a complex state machine because its state sequence can be changed by the
external inputs NEW_A (new address) and LOAD_NEW_A. When a new address is loaded,
this changes the counting sequence of the RPC.

• When the input signal LOAD_NEW_A (this is M6) is set to 0, the RPC is incremented
for each clock tick at the control input C. Incrementing the RPC is required to execute all
the instructions for VBC1. The JNZ instruction is a special instruction that also requires
the RPC to load a new address for the condition R0 2 0 or R1 2 0. When the input signal
LOAD_NEW_A is set to 1, the RPC is loaded with the signal NEW_A. Loading the signal
NEW_A into the RPC will cause VBC1 to jump to that address at the next clock tick at the
control input C. These are the two important operations that the RPC performs.

• The Adder may be thought of as an array of half adders with inputs A and B connected as
a 4-bit ripple-carry adder labeled as input A and INC (increment or carry-in). The signal
SEL_A is connected to input A, and signal INC is connected to input B(0). The rest of the
B inputs are connected to the carry-outs from the adjacent half adders. SUM(3:0) 5 A(3:0)
1 INC 5 SEL_A(3:0) 1 INC.

 Listing 17.1 shows a complete VHDL design for the running program counter in Figure 17.1.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RPC is port (
 rst, speed, load_new_a : in STD_LOGIC;
 new_a : in STD_LOGIC_VECTOR (3 downto 0);
 prog_a : inout STD_LOGIC_VECTOR (3 downto 0)
);
end RPC;

architecture Mixed of RPC is
 signal sel_a : std_logic_vector (3 downto 0);
 signal inc : std_logic;
 signal sum : std_logic_vector (3 downto 0);
begin
 sel_a ,5 prog_a when load_new_a 5 ‘0’ else
 new_a;
 inc ,5 not load_new_a;
 sum ,5 sel_a + inc when inc 5 ‘1’ else
 sel_a;

process (rst, speed)

LISTING 17.1
Complete VHDL
design for the RPC
for VBC1 (project:
RPC)

(Continued)

418 Chapter 17 Completing the Design for VBC1

 Things you should notice about the VHDL design in Listing 17.1:

• The use clause use IEEE.STD_LOGIC_UNSIGNED.ALL is required because it contains
the definition for “1” operator, which is used in the design.

• Signal mode inout is required for signal PROG_A in the entity. This is because the signal
PROG_A is fed back to the MUX and also because the conditional signal assignment
PROG_A ,5 PROG_A is inferred in the process.

• The internal signals SEL_A, INC, and SUM are declared between architecture and the
first begin.

• The code for each element in the RPC—that is, the MUX, the inverter, the Adder, and
loadable D flip-flop—is declared in the architecture after the first begin. The design style
for the architecture is declared as mixed, because the elements MUX, inverter, and Adder
are declared using a dataflow design style and the element loadable D flip-flop is declared
using a process.

 Waveform 17.1 shows the correct functionality of design entity RPC.

begin
 if rst 5 ‘1’ then prog_a ,5 “0000”;
 elsif rising_edge (speed) then prog_a ,5 sum;
 end if;
end process;
end Mixed;

 Things you should notice about the waveforms in Waveform 17.1:

• Notice that RPC is incremented when RST 5 0 and LOAD_NEW_A 5 0 at each rising edge
of the clock signal SPEED, as expected.

• When RST 5 0 and LOAD_NEW_A 5 1, then NEW_A is transferred to PROG_A at each
rising edge of the clock signal SPEED, as expected.

• A machine cycle or instruction cycle is the period of time it takes to fetch and execute
each assembly language instruction. Fetch means to get the instruction from instruction
memory while execute means to decode and execute the instruction. Each assembly lan-
guage instruction for VBC1 is fetched and executed at the frequency SPEED, so the period
of time for a machine cycle or instruction cycle is Tmc 5 TSPEED 5 1/fSPEED.

• The simulation was run at the frequency 20 MHz (fSPEED 5 1/TSPEED 5 1/50000ps 5 20
MHz). In practice, we will run VBC1 at the frequency of approximately 12 Hz, so we can
observer the LED outputs.

new_a[3:0]

prog_a[3:0]

rst

speed

load_new_a

speed_period

0

0

0

0

50000 ps 50000 ps

1

Name Value 400 ns0 ns 200 ns

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 12 9 1 14

9 1 1412

600 ns 800 ns 1,000 ns

Rising edge
of the clock
signal SPEED

Rising edge
of the clock
signal SPEED

WAVEFORM 17.1 Simulation for the correct functionality of design entity RPC

www.itpub.net

 17.3 Combining a Loading and a Running Program Counter 419

17.3 COMBINING A LOADING AND A RUNNING PROGRAM COUNTER

To load an instruction into the instruction memory, a loading program counter (LPC) must
supply an address to the instruction memory. The LPC must increment the address to allow the
machine code for each instruction to be entered into consecutive locations in instruction mem-
ory. To execute an instruction that is already loaded into instruction memory, a running program
counter (RPC) must supply an address to the instruction memory. The RPC must increment the
address or load a new address based on the instruction that is being executed.
 Figure 17.2 shows the combined circuits for a loading program counter, a running program
counter, and a steering circuit that steers (or routes) the output of each program counter to the
instruction memory of VBC1.

 Things you should notice about the combined circuits in Figure 17.2:

• The loading program counter can be reset so that it starts loading machine code at the first
address in instruction memory, which is 0. When LOAD_MEM is asserted or pulled to a 1,
the output of the LPC supplies its output PC_ADDR to MEM_ADDR, which is the signal
for the address of the instruction memory. The signal SLOW_CLK1 increments the address
of the LPC each time a single pulse (ONE_PULSE) is supplied at the CE input.

• The running program counter can be reset so that it starts executing machine code at the
beginning of the first address, which is 0 in instruction memory. When LOAD_MEM is
not asserted or pulled to a 0, the output of the RPC supplies its output PROG_A to MEM_
ADDR, which is the signal for the address of the instruction memory.

• The signal SPEED controls the RPC. All the instructions for VBC1 (IN, OUT, MOV,
LOADI, ADDI, ADD, SR0, and JNZ) only require one clock cycle of the signal SPEED to
be fetched from instruction memory and executed.

 Listing 17.2 shows a complete VHDL design for the combined circuits in Figure 17.2.

1

0

1

0

44
4

4

4

4

4

Adder

Loading program
counter

To instruction
memory

A D Q

Q

C

CLR

C

CE

CLR

SUM

MUX

NEW_A

SEL_A

PROG_A

SUM

INC

LOAD_NEW_A
(this is M6)

LOAD_MEM

ONE_PULSE

SLOW_CLK1

PC_ADDR

MEM_ADDR

INC

RPC

LPC

Steering
circuit

RST(asyn)

RST(asyn)

SPEED

FIGURE 17.2 Combined Circuits for an LPC, an RPC, and a steering circuit that steers (or routes) the output of each pro-
gram counter to the instruction memory

420 Chapter 17 Completing the Design for VBC1

 Things you should notice about the VHDL design in Listing 17.2:

• Each individual part of the VHDL code is marked by the name of the circuit followed by a
colon (:)—that is, Steering_Circuit:, LPC:, and RPC:. This is a valid form of documentation

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Com_Ckts is port (
 rst, speed : in std_logic;
 load_mem : in std_logic;
 new_a : in std_logic_vector (3 downto 0);
 load_new_a : in std_logic;
 slow_clk1, one_pulse : in std_logic;
 mem_addr : out std_logic_vector (3 downto 0)
);
end Com_Ckts;

architecture Mixed of Com_Ckts is
 signal q : std_logic_vector (3 downto 0);
 signal pc_addr : std_logic_vector (3 downto 0);
 signal sel_a : std_logic_vector (3 downto 0);
 signal inc : std_logic;
 signal sum : std_logic_vector (3 downto 0);
 signal prog_a : std_logic_vector (3 downto 0);
begin

Steering_Circuit:
 mem_addr ,5 pc_addr when load_mem 5 ‘1’ else

prog_a;

LPC:
process (rst, slow_clk1)
begin
 if rst 5 ‘1’ then q ,5 “0000”;
 elsif (rising_edge (slow_clk1) and one_pulse 5 ‘1’) then q ,5

q + 1;
 end if;
end process LPC;
 pc_addr ,5 q;

RPC:
 sel_a ,5 prog_a when load_new_a 5 ‘0’ else

new_a;
 inc ,5 not load_new_a;
 sum ,5 sel_a + inc when inc 5 ‘1’ else

sel_a;
process (rst, speed)
begin
 if rst 5 ‘1’ then prog_a ,5 “0000”;
 elsif rising_edge (speed) then prog_a ,5 sum;
 end if;
end process;
end Mixed;

LISTING 17.2
Complete VHDL
design for the
combined circuits
for VBC1 (project:
Com_Ckts)

www.itpub.net

 17.4 Designing a Run Frequency Circuit and a Speed Circuit 421

using VHDL. Notice that the LPC process is ended with end process LPC; but the RPC
process is simply ended with end process;, which shows that either method of ending a
process is valid.

• We used both conditional signal assignments and processes to provide a variety of VHDL
coding styles.

• We used the arithmetic method in a process to keep the design of the LPC simple.

 Waveform 17.2 shows the correct functionality of design entity Com_Ckts.

 Things you should notice about the waveforms in Waveform 17.2:

• RST is first set to 1 (asserted) and then to 0 (de-asserted) to clear the RPC and the LPC.
• LOAD_MEM is initially set to 0 so that MEM_ADDR follows the output of the RPC.
• When NEW_A 5 9 and LOAD_NEW_A 5 1, the new address is loaded into the RPC and

the RPC counts up after the new address is loaded as expected—that is, from 9 to 10 to 11,
and so on.

• When NEW_A 5 3 and LOAD_NEW_A 5 1, the new address is loaded into the RPC and
the RPC counts up after the new address is loaded as expected—that is, from 3 to 4, to 5,
and so on.

• RST is asserted then de-asserted, which clears RPC and LPC.
• LOAD_MEM is set to 1 so that MEM_ADDR follows the output of the LPC.
• Each time ONE_PULSE is asserted and the rising edge of SLOW_CLK1 occurs, the LPC

counts up as expected—that is, from 0 to 1 and then from 1 to 2.

17.4 DESIGNING A RUN FREQUENCY CIRCUIT AND A SPEED CIRCUIT

Figure 17.3 shows the run frequency circuit and the speed circuit for VBC1.

+

+

+

+

+

+

+

+

+

RPC output LPC output

new_a[3:0]

mem_addr[3:0]

load_new_a

rst

speed

speed_period

load_mem

slow_clk1

one_pulse

0

0

0

0

0

0

0

40000 ps 40000 ps

1

Name Value 400 ns0 ns 200 ns

0 1 9 10 11 12 3 4 5 6 0

009 30

1 2

600 ns 800 ns

WAVEFORM 17.2 Simulation for the correct functionality of design entity Com_Ckts

To input C of
instruction memory

RST
(asyn)

Frequency
divider

COUNT3 (21)

To input C of
RPC

CLK
(50 MHz) SLOW_CLK3

ONE_PULSE

SINGLE_STEP

Run frequency circuit

Speed circuit

D Q

0

1
C

CLR
CLK

SPEEDRATE

FIGURE 17.3 Run fre-
quency circuit and speed
circuit for VBC1

422 Chapter 17 Completing the Design for VBC1

 Things you should notice about the run frequency circuit and the speed circuit in
Figure 17.3:

• Signal CLK supplies the frequency 50 MHz to the instruction memory.
• The frequency of SLOW_CLK3 is obtained from a frequency divider circuit.
• The output of the frequency divider is selected so that the output signals to the LEDs (the

four output LEDs) can be visually observed when a program is running—that is, not blink-
ing too fast for observation. For a clock frequency of 50 MHz, we chose a frequency of
SLOW_CLK3 of 11.9209 Hz (50 M/222 Hz). At this frequency, each instruction is fetched
and executed at 11.9209 Hz.

• When the signal SINGLE_STEP is 0, the signal SLOW_CLK3 is steered to the output of the
MUX. The flip-flop SPEED is used to prevent a gated clock from occurring in the circuit.
Only one clock cycle of the frequency SPEED is required to fetch and execute each instruc-
tion in instruction memory. The RPC determines the address of the instruction that will be
fetched and executed.

• When the signal SINGLE_STEP is 1, the signal ONE_PULSE is steered to the output of
the MUX. Only one pulse is required for VBC1 to fetch and execute each instruction in
Instruction Memory when single stepping.

• As a reminder, the LPC determines the address of the instruction that will be manually
loaded into instruction memory, and the RPC determines the address of the instruction that
will be fetched and executed from instruction memory.

 Listing 17.3 shows a complete VHDL design for the run frequency circuit and the speed
circuit in Figure 17.3 with the signal COUNT3(21) changed to COUNT3(2) to show “proof of
concept” of the circuits. Remember, SLOW_CLK3 5 COUNT3.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity RFC_SC is port (
 rst, clk, one_pulse, single_step : in std_logic;
 speed : out std_logic
);
end RFC_SC;

architecture dataflow of RFC_SC is
 signal count3: std_logic_vector (2 downto 0);
 signal slow_clk3, rate: std_logic;
begin

Run_Frequency_Circuit:
 count3 ,5 count3 + 1 when rising_edge(clk) else

count3;
 slow_clk3 ,5 count3(2);

Speed_Circuit:
 rate ,5 one_pulse when single_step 5 ‘1’ else

slow_clk3;
 speed ,5 ‘0’ when rst 5 ‘1’ else

rate when rising_edge (clk);
end dataflow;

LISTING
17.3 Complete
VHDL design for the
run frequency circuit
and speed circuit
for VBC1 (project:
RFC_SC)

 Things you should notice about the complete VHDL design in Listing 17.3:

www.itpub.net

 17.5 Designing Circuits to Provide a Loader for Instruction Memory for VBC1 423

• Each individual part of the VHDL code is marked by the name of the circuit followed by a
colon (:)—that is, Run Frequency Circuit: and Speed Circuit:.

• We used a dataflow design style for each circuit in the design—that is, only conditional
signal assignments and Boolean equations are used.

• The frequency of the signal COUNT3(21) is too slow compared to the frequency of the
signal CLK to provide an observable simulation output for SPEED. To show a simulation
output that provides a “proof of concept” of the circuits in Figure 17.3, we changed the sig-
nal COUNT3(21) to COUNT3(2). COUNT3(2) divides the frequency CLK by 23(or 8), while
COUNT3(21) divides the frequency of CLK by 222 (or 4,194,304), which would be stretched
out too far to observe via a simulation waveform diagram.

 Waveform 17.3 shows the correct functionality of design entity RFC_SC.

 Things you should notice about the waveforms in Waveform 17.3:

• SINGLE_STEP is first set to 0 to allow the signal SLOW_CLK3 to be steered to the output
of the speed circuit. The frequency of SLOW_CLK3 is the frequency of CLK divided by 8
as observed in the waveform for the signal SPEED.

• SINGLE_STEP is then set to 1 to allow the signal ONE_PULSE to be steered to the output
of the speed circuit. The signal SPEED is the same as the signal ONE_PULSE as observed
in the waveform for SPEED.

• Waveform 17.3 was obtained using a post-route simulation. A behavioral simulation failed
to provide an output for the signal SPEED, so a post-route simulation was used.

17.5 DESIGNING CIRCUITS TO PROVIDE A LOADER FOR INSTRUCTION
MEMORY FOR VBC1

Experiment 17L is an experiment designed to provide the capability to load a program into
the instruction memory of VBC1 via a file created by the Save button in EASY1. Additional
circuitry must be added to VBC1 to create VBC1-L. After VBC1-L is downloaded into the
FPGA on a BASYS 2 board or on a NEXYS 2 board, the machine code for a program can be
loaded into the instruction memory via the USB connector on the board. Experiment 17L is self-
contained and shows the additional circuitry necessary to design VBC1-L.
 In order to load instruction memory contents via the USB connector, a computer software
program is required. From this textbook’s website, download the installer for the VBC1-L
(VBC1-EL) Memory Loader to your computer, and install the software.
 The machine code file that is generated by EASY1 can be entered into the VBC1-L (VBC1-
EL) Memory Loader. Then the machine code can be automatically loaded into the instruction
memory of VBC1-L by clicking on the Load Memory button. For more information, see Appen-
dix E, Section E.3, Loading Memory via the Memory Loader Program.

+

+

+

+

+

+

Output is SLOW_CLK3 Output is
ONE_PULSE

one_pulse

speed

rst

clk

single_step

clk_period

0

0

0

0

40000 ps 40000 ps

1

Name Value 400 ns0 ns 200 ns 600 ns 800 ns

WAVEFORM 17.3 Post-Route Simulation for the correct functionality of design entity RFC_SC

424 Chapter 17 Completing the Design for VBC1

tecture declaration, and use the PS/NS tabular method
even though this is not the most compact method for
this circuit design.

 17.20 Write the required library clause, use clauses, and entity
declaration for LPC_PSNS in problem 17.19. Combine
the VHDL code in problems 17.19 and 17.20 and obtain
a simulation for the design entity LPC_PSNS to show
correct functionality of your VHDL design. To make
the simulation realistic, only allow ONE_PULSE to
exist for one clock cycle of SLOW_CLK1.

 17.21 Show a partial VHDL design called RPC_MIXED for
the RPC for VBC1 in Figure 17.2. Show only the archi-
tecture declaration, and use a process for the MUX, a
process for the NOT gate, a process for the Adder, and
a conditional signal assignment for the D fl ip-fl ops.

 17.22 Write the required library clause, use clauses, and entity
declaration for RPC_MIXED in problem 17.21. Com-
bine the VHDL code in problems 17.21 and 17.22 and
obtain a simulation for the Design Entity RPC_MIXED
to show correct functionality of your VHDL design.

Section 17.4 Designing a Run Frequency Circuit and a
Speed Circuit
 17.23 Write a complete VHDL design for the run frequency

circuit for VBC1 shown in Figure 17.3. In the architec-
ture declaration, use the arithmetic method within a pro-
cess with an if statement. Also use a Boolean equation.

 17.24 Obtain a simulation for your design in problem 17.23
with the signal COUNT3(21) changed to COUNT3(1) to
show “proof of concept.” What is the frequency of the
signal COUNT3(1) compared to the frequency of CLK?

 17.25 Write a complete VHDL design just for the speed cir-
cuit in Figure 17.3. In the architecture declaration, use
a process with a case statement for the MUX and an if
statement for the D fl ip-fl op.

 17.26 Obtain a behavioral simulation and a post-route simu-
lation for your design in problem 17.25. How is a
post-route simulation different from a behavioral simu-
lation? Hint: Refer to Chapter 5, Section 5.4.

 17.27 Write a complete VHDL design for the run frequency
circuit and the speed circuit in Figure 17.3. Use a data-
fl ow design style for the complete design. Show a simu-
lation for the design for proof of concept of the circuit
with COUNT3(21) changed to COUNT3(0). What is
the frequency of the signal COUNT3(0) compared to
the frequency of CLK?

Section 17.2 Designing a Running Program Counter
 17.1 What is the purpose of the running program counter

circuit for VBC1 shown in Figure 17.1?
 17.2 What are the two important operations that are per-

formed by the RPC circuit in Figure 17.1?
 17.3 What is the purpose of the Adder in the RPC circuit in

Figure 17.1?
 17.4 What is the purpose of the MUX in the RPC circuit in

Figure 17.1?
 17.5 What are the instructions that cause the signal NEW_A

to be supplied to the signal SEL_A in the RPC circuit
in Figure 17.1? Be sure to show complete instructions
and provide the required register and the contents of
the register.

 17.6 What is the purpose of the loadable D fl ip-fl ops in the
RPC circuit in Figure 17.1?

 17.7 Write a conditional signal assignment for the loadable
D fl ip-fl ops described by the process in Figure 17.1.

 17.8 How can the RPC circuit in Figure 17.1 be used as a
loading program counter?

Section 17.3 Combining a Loading and a Running
Program Counter
 17.9 What is the purpose of the loading program counter

(LPC) for VBC1?
 17.10 How many clock cycles of the signal SPEED are required

to fetch and execute each instruction for VBC1?
 17.11 For the combined circuits in Figure 17.2, what is the

name of the logic device used for the steering circuit?
What is the name of the input signal to the steering
circuit that provides the steering?

 17.12 In the steering circuit in Figure 17.2, what signal is
steered to the signal MEM_ADDR—that is, the output of
the steering circuit—when the signal LOAD_MEM is 1?

 17.13 In the steering circuit in Figure 17.2, what signal is
steered to signal MEM_ADDR—that is, the output of
the steering circuit—when the signal LOAD_MEM is 0?

 17.14 In Figure 17.2, why is there a reset signal required for
the LPC?

 17.15 In Figure 17.2, why is there a reset signal required for
the RPC?

 17.16 In Figure 17.2, what signals increment the LPC?
 17.17 In Figure 17.2, what signal clocks the RPC?
 17.18 In the design of the RPC for VBC1, how long does it take

to fetch and execute each instruction in Waveform 17.2?
 17.19 Show a partial VHDL design called LPC_PSNS for

the LPC for VBC1 in Figure 17.2. Show only the archi-

PROBLEMS

www.itpub.net

C h aa p t e rr

Assembly Language
Programming for VBC1-E

Chapter Outline

 18.1 Introduction 425

 18.2 Instruction Summary 425

 18.3 Input, Output, and Interrupt Instructions 427

 18.4 Data Memory Instructions 432

 18.5 Arithmetic and Logic Instructions 434

 18.6 Shift and Rotate Instructions 437

 18.7 Jump, Jump Relative, and Halt Instructions 439

 18.8 More about Interrupts and Assembler Directives 443

 18.9 Complete Instruction Set Summary for VBC1-E 448

 Problems 449

18.1 INTRODUCTION

In this chapter, you will learn each of the instructions for VBC1-E by reviewing each instruction
in detail. VBC1-E is an enhanced version of VBC1 that has modified input and output instruc-
tions (IN and OUT). The enhanced version also has data memory. New instructions (STORE
and FETCH) access data memory. The enhanced version has a new subtraction instruction
(SUB) and several new logic instructions (NOT, AND, OR, and XNOR). Several new shift
instructions (SR1, SL0, and SL1) have also been added with two new rotate instructions (RR
and RL). The enhanced version has three new unconditional jump instructions (JMP, JMPR,
and HALT). The enhanced version also has a software and hardware interrupt. New instructions
(INT and IRET) provide software interrupt capability. In addition, the assembler for VBC1-E
has two basic assembler directives to assist in programming VBC1-E. In the last section, we
present the complete instruction set for VBC1-E.

18.2 INSTRUCTION SUMMARY

Like VBC1, VBC1-E is still a very basic small 4-bit digital computer. Table 18.1 shows a
brief summary of instructions and OPCODE bit assignments for VBC1-E. In the instructions
for VBC1, the three instructions LOADI, ADDI, and JNZ use all of the machine bits. These
instructions remain the same for VBC1-E—that is, they are unchanged instructions. To enhance
VBC1 to make VBC1-E for just 4 bits is a little tricky. The remaining five instructions for VBC1

rr 18

425

426 Chapter 18 Assembly Language Programming for VBC1-E

each have unused machine code bits that were arbitrarily set to 0. Some of these unused machine
code bits are now used for VBC1-E as OPCODE extension bits.

TABLE 18.1 Brief summary of instructions and OPCODE bit

assignments for VBC1-E

Instructions
Unchanged, modified,
or new instruction

OPCODE bit assignments
7:5 plus extension bits

MOV Modified 000 00 Extension bits 1:0

STORE New 000 01 Extension bits 1:0

FETCH New 000 10 Extension bits 1:0

LOADI Unchanged 001

ADD Modified 010 000 Extension bits 2:0

SUB New 010 001 Extension bits 2:0

NOT New 010 100 Extension bits 2:0

AND New 010 101 Extension bits 2:0

OR New 010 110 Extension bits 2:0

XNOR New 010 111 Extension bits 2:0

ADDI Unchanged 011

SR0 Modified 100 000 Extension bits 2:0

SR1 New 100 001 Extension bits 2:0

SL0 New 100 010 Extension bits 2:0

SL1 New 100 011 Extension bits 2:0

RR New 100 100 Extension bits 2:0

RL New 100 101 Extension bits 2:0

IN Modified 101 10 Extension bits 3:2

OUT Modified 101 00 Extension bits 3:2

INT New 101 01 Extension bits 3:2

IRET New 101 11 Extension bits 3:2

JMP New 110 0 Extension bit 4

JMPR New 110 1 Extension bit 4

HALT New 110 10000 Extension bits 4:0

JNZ Unchanged 111

 In Table 18.1, there are only 3 instructions for VBC1-E that are exactly the same as for
VBC1. All the other instructions for VBC1-E have been modified, or they are new instructions.
Observe that 5 of the VBC1 instructions are modified, and there are 17 new instructions. VBC1-
E has a total of 25 instructions.
 Observe in Table 18.1 that the OUT instruction no longer has the OPCODE 110 as it did for
VBC1. The OUT instruction for VBC1-E has the OPCODE 101 00 with the extension bits 3:2.
This change allows us to use the OPCODEs 110 0 and 110 1 to provide the new instructions JMP

www.itpub.net

 18.3 Input, Output, and Interrupt Instructions 427

(unconditional jump), JMPR (unconditional jump relative), and HALT (unconditional jump
to itself).
 Table 18.2 provides a summary of the three instructions that are unchanged for VBC1-E.

 In Table 18.2, the abbreviations in the transfer function form column are as follows: DR is
destination register, IR is instruction register, and PC is program counter.

18.3 INPUT, OUTPUT, AND INTERRUPT INSTRUCTIONS

Table 18.3 shows the modified input and output instructions and the new interrupt instructions
for VBC1-E.

0 0 1 0/1 D D D D

7 6 5 4

Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

3:0 Immediate Data (Source)

3:0 Address (Destination)

7:5 OPCODE

LOADI DR,Data DR IR(3:0)

DR DR + IR(3:0)

PC(3:0)
else PC(3:0) PC(3:0) + 1

IR(3:0), if DR ≠ 0

ADDI DR,Data

JNZ DR,Address

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 1 0/1 D D D D

1 1 1 0/1 A A A A

TABLE 18.2 Unchanged instructions for VBC1-E in ALF, TFF, and MCF

1 0 1 0/1 1 0 IPA IPA

7 6 5 4
Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

3:2 OPCODE
Extension7:5 OPCODE 1:0 Port Address

IN DR,Port_A DR IP[IR(1:0)]

OP[IR(1:0)] DR

RETA(3:0)
PC(3:0) 0000, IPROC 1

PC(3:0) + 1

PC(3:0)
IPROC 0

RETA(3:0)

OUT DR,Port_A

INT

IRET

Hardware interrupt: Signal TRIG_INT causes RETA(3:0) PC(3:0), PC(3:0) 0000, IPROC 1

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

1 0 1 0 0 1 0 0

Bits 1:0
not used

Bits 1:0
not used

Bit 4
not used

Bit 4
not used

7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 0

TABLE 18.3 Modified input and output instructions and the new interrupt

instructions for VBC1-E in ALF, TFF, and MCF

 In Table 18.3, the abbreviations in the transfer function form column are as follows: DR is
destination register, IP is input port, IR is instruction register, OP is output port, RETA is return
address, PC is program counter, and IPROC is interrupt process.

428 Chapter 18 Assembly Language Programming for VBC1-E

 The machine code bits 3:0 are not used for the IN instruction for VBC1. Taking advantage
of this fact allows us to simply change the machine code such that bits 3:2 are converted to
OPCODE extension bits. In addition, machine code bits 1:0 are converted to input port address
(IPA) bits for the IN instruction. The assembly language form, transfer function form, and
machine code form for the IN instruction are all different for VBC1-E compared to VBC1.
 The new OPCODE for the modified IN instruction is 101 10. The first 3 bits for the new
OPCODE are 101, which represent bits 7:5 (the OPCODE bits), and the last 2 bits are 10, which
represent bits 3:2 (the OPCODE extension bits). Using OPCODE extension bits, we can now
add three new instructions with the following new OPCODEs: 101 00, 101 01, and 101 11. We
elected to add the modified instruction (OUT) and two new instructions (INT and IRET) as
shown in Table 18.3.
 In this section, we will cover both the modified IN and OUT instructions. We will present
the new instructions INT (interrupt) and IRET (interrupt return) and also discuss the hardware
interrupt later. INT represents a software interrupt instruction and IRET represents an interrupt
return instruction.
 Form 18.1 shows the assembly language form and the machine code form for the IN DR,1
instruction for VBC1-E.

 The IN (input) instruction provides a means to input an external value into the computer.
The external input for VBC1-E can be supplied from four different locations or input ports, each
with a different port address. Each location provides just 4 bits such as the inputs from four slide
switches. The input value is either placed in R0 or R1—that is, the destination register DR. The
transfer function form for IN DR,Port_A is DR d IP[IR(1:0)], where IP is the input port. For the
instruction IN DR,1 shown in Form 18.1, the port address is 1. For the IN instruction, VBC1-E
has four different input port addresses, 00, 01, 10, and 11, or 0 through 3 in decimal.
 The actual assembly language for the IN instruction IN R1,1 is shown in two fields: the first
field is the mnemonic field, and the second field is the operands field as shown in Program 18.1.

OPCODE
Extension bits 3:2

Input Port
Address bits 1:0OPCODE bits (7:5) Dest.Reg

IN DR,1

7 6 5 4 3 2 1 0

1 0 1 0/1 1 0 0 1

0 = R0
1 = R1

FORM 18.1 The IN DR,1 instruc-
tion for VBC1-E

Mnemonic field Operands field
IN R1,1

PROGRAM 18.1 Assembly language program for
the IN R1,1 instruction for VBC1-E

 Notice that two operands are required; the first operand specifies a destination register, and
the second operand specifies the port address. When writing assembly language for VBC1-E,
you must specify the port address for the IN instruction.
 Assembly 18.1 shows all versions of the IN R0,Port_A instruction listed in assembly lan-
guage and in machine code for VBC1-E.

Assembly language Machine code
IN R0,0 1 0 1 0 1 0 0 0

IN R0,1 1 0 1 0 1 0 0 1

IN R0,2 1 0 1 0 1 0 1 0

IN R0,3 1 0 1 0 1 0 1 1

ASSEMBLY 18.1 All versions of the IN R0,Port_A instruction for VBC1-E

 Assembly 18.2 shows all versions of the IN R1,Port_A instruction listed in assembly lan-
guage and in machine code for VBC1-E.

www.itpub.net

 18.3 Input, Output, and Interrupt Instructions 429

Assembly language Machine code
IN R1,0 1 0 1 1 1 0 0 0

IN R1,1 1 0 1 1 1 0 0 1

IN R1,2 1 0 1 1 1 0 1 0

IN R1,3 1 0 1 1 1 0 1 1

ASSEMBLY 18.2 All versions of the IN R1,Port_A instruction for VBC1-E

 The machine code shows the bit patterns for the IN instructions as they must be placed in
instruction memory to be executed.
 In the programmer’s register model for VBC1-E shown in Figure 18.1, the machine code
for the instruction IN R1,1 is manually loaded in the instruction memory at address 0. All other
instruction memory locations are cleared. The PC (program counter) is cleared to address 0, and
the IR (instruction register) shows the machine code value at address 0 (10111001). Registers R0,
R1, and all the outputs in the programmer’s register model are cleared. The input at port address
1 (IP1) is set to the value of 0110 or 6, and all other inputs in the programmer’s register model
are set to 0. The programmer’s register model in Figure 18.1 does not include the data memory,
which will be added later.

 After executing an instruction, the transfer function form indicates what happens to the
various registers of VBC1-E. When the instruction IN R1,1 is executed, its transfer function
form performs the operation R1 d IP1, which places the value 0110(6) into R1.
 So, in Figure 18.2, after executing the instruction IN R1,1, the value 0110(6) is transferred to
register R1, as shown in the programmer’s register model. The PC is now pointing to the address
of the next instruction (0001), and the IR now contains the machine code for the next instruction
(00000000).

1 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 01

2

3

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 1 Instruction
memory
(16 × 8)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0 3 0

3 0

7 0

0 1 1 1 0 0 110

0 0 0 0 0 0 001

0 0 0 0 0 0 002

0 0 0 0 0 0 003

0 0 0 0 0 0 004

0 0 0 0 0 0 005

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0
FIGURE 18.1 Result in the programmer’s
register model after manually loading the
instruction IN R1,1 into VBC1-E instruction
memory at address 0 with IP1 set to 6

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 1 1 01

2

3

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0 Instruction
memory
(16 × 8)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0 3 0

3 0

7 0

0 1 1 1 0 0 110

0 0 0 0 0 0 001

0 0 0 0 0 0 002

0 0 0 0 0 0 003

0 0 0 0 0 0 004

0 0 0 0 0 0 005

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0
FIGURE 18.2 Result in the Programmer’s
Register Model after executing the instruc-
tion IN R1,1 for VBC1-E

430 Chapter 18 Assembly Language Programming for VBC1-E

 Form 18.2 shows the assembly language form and the machine code form for the OUT
DR,2 instruction for VBC1-E.

OPCODE
Extension bits 3:2

Output Port
Address bits 1:0OPCODE bits (7:5) Dest.Reg

OUT DR,2

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 1 0

0 = R0
1 = R1

FORM 18.2 The OUT DR,2
instruction for VBC1-E

 The OUT (output) instruction provides a means to output an internal value from the com-
puter. The external output for VBC1-E can be supplied to four different locations or output
ports, each with a different port address. Each location receives just 4 bits such as the outputs to
four LEDs. The output value is either supplied by R0 or R1—that is, the destination register DR.
The transfer function form for OUT DR,Port_A is OP[IR(1:0)] d DR, where OP is the output
port. For the OUT DR,2 instruction shown in Form 18.2, the port address is 2. For the OUT
instruction, VBC1-E has four different output port addresses, 00, 01, 10, and 11, or 0 through 3
in decimal.
 The actual assembly language for the OUT R0,2 instruction is shown in two fields: the first
field is the mnemonic field, and the second field is the operands field as shown in Program 18.2.

Mnemonic field Operands field
OUT R0,2

PROGRAM 18.2 Assembly language program for the OUT R0,2 instruction for VBC1-E

 Notice that two operands are required; the first operand specifies a destination register, and
the second operand specifies the port address. When writing assembly language for VBC1-E,
you must specify the port address for the OUT instruction.
 Assembly 18.3 shows all versions of the OUT R0,Port_A instruction listed in assembly
language and in machine code for VBC1-E.

Assembly language Machine code
OUT R0,0 1 0 1 0 0 0 0 0

OUT R0,1 1 0 1 0 0 0 0 1

OUT R0,2 1 0 1 0 0 0 1 0

OUT R0,3 1 0 1 0 0 0 1 1

ASSEMBLY 18.3 All versions of the OUT R0,Port_A instruction for VBC1-E

 Assembly 18.4 shows all versions of the OUT R1,Port_A instruction listed in assembly
language and in machine code for VBC1-E.

 The machine code shows the bit patterns for the OUT instructions as they must be placed
in instruction memory to be executed.
 Program 18.3 shows a simple assembly language program using the instructions IN,
LOADI, and OUT.

Assembly language Machine code
OUT R1,0 1 0 1 1 0 0 0 0

OUT R1,1 1 0 1 1 0 0 0 1

OUT R1,2 1 0 1 1 0 0 1 0

OUT R1,3 1 0 1 1 0 0 1 1

ASSEMBLY 18.4 All versions of the OUT R1,Port_A instruction for VBC1-E

IN R1,1
LOADI R0,9
OUT R0,2

PROGRAM 18.3 A simple assembly language program
using the instructions IN, LOADI, and OUT for VBC1-E

www.itpub.net

 18.3 Input, Output, and Interrupt Instructions 431

 In the programmer’s register model for VBC1-E shown in Figure 18.3, the machine codes
for the instructions in Program 18.3 are manually loaded in the instruction memory beginning
at address 0. All other instruction memory locations are cleared. The PC (program counter) is
cleared to address 0, and the IR (instruction register) shows the machine code value at address
0 (10111001). Registers R0 and R1 are cleared. The input at port address 1 (IP1) is set to the
value of 1111 or 15, and all other inputs and outputs in the programmer’s register model are set
to 0.

 After executing each instruction in Program 18.3, the transfer function form indicates what
happens to the various registers of VBC1-E.
 The following is a detailed description for the execution of each instruction in Pro-
gram 18.3. When the instruction IN R1,1 is executed, its transfer function performs the opera-
tion R1 d IP1, which places the value 1111(15) into R1. When the instruction LOADI R0,9 is
executed, its transfer function performs the operation R0 d 9, which places the value 9 into
R0. When the instruction OUT R0,2 is executed, its transfer function performs the operation
OP2 d R0, which places the value 9 in output port 2.
 So, in Figure 18.4, after executing the instruction IN R1,1, the value at input port 1, the
value 1111(15) is transferred to R1. After executing the instruction LOADI R0,9, the value 9
is loaded into R0. After executing the instruction OUT R0,2, the value 1001(9) is transferred
to output port 2, as shown in the programmer’s register model. The PC is now pointing to the
address of the next instruction to be executed which is 3, and the IR now contains the machine
code for the next instruction at address 3, which is 00000000.

1 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 11

2

3

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 1 Instruction
memory
(16 × 8)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0 3 0

3 0

7 0

0 1 1 1 0 0 110

0 1 0 1 0 0 101

0 1 0 0 0 1 012

0 0 0 0 0 0 003

0 0 0 0 0 0 004

0 0 0 0 0 0 005

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0
FIGURE 18.3 Result in the programmer’s
register model after manually loading the
instructions in Program 18.3 into VBC1-E
instruction memory beginning at address 0
with IP1 set to 15

0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

1 1 1 11

2

3

0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1

0 0 0 0

1 1 1 1

1 0 0 1

0 0 0 0 Instruction
memory
(16 × 8)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0 3 0

3 0

7 0

0 1 1 1 0 0 110

0 1 0 1 0 0 101

0 1 0 0 0 1 012

0 0 0 0 0 0 003

0 0 0 0 0 0 004

0 0 0 0 0 0 005

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0
FIGURE 18.4 Result in the programmer’s
register model after executing the instruc-
tions in Program 18.3 for VBC1-E

432 Chapter 18 Assembly Language Programming for VBC1-E

18.4 DATA MEMORY INSTRUCTIONS

Table 18.4 shows the modified MOV instruction and the new STORE and FETCH instructions
for VBC1-E.

0 0 0 0/1 0/1 0 0 0

7 6 5 4
Dest.Reg

Source
Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

1:0 OPCODE
Extension7:0 OPCODE

MOV DR,SR DR SR

DM[IR(3:2)] DR

DM[IR(3:2)]DR

STORE DR,Addr

FETCH DR, Addr

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 0 0 0/1 A A 0 1

0 0 0 0/1 A A 1 0

3:2 Addr of Data
Memory (DM)

3:2 Addr of Data
Memory (DM)

TABLE 18.4 MOV, STORE, and FETCH instructions for VBC1-E in ALF, TFF,

and MCF

 In Table 18.4, the abbreviations in the transfer function form column are as follows: DR is
destination register, SR is source register, DM is data memory, and IR is instruction register.
 The MOV instruction for VBC1 does not use the machine code bits 2:0. Taking advantage
of this fact allows us to simply modify the machine code such that bits 1:0 are converted to
OPCODE extension bits. The assembly language form and the transfer function form for the
modified MOV instruction for VBC1-E are the same as the MOV instruction for VBC1, but the
machine code form is different because of the OPCODE extension bits.
 The new OPCODE for the modified MOV instruction is 000 00. The first 3 bits for the new
OPCODE are 000, which represent bits 7:5 (the OPCODE bits), and the last 2 bits are 00, which
represent bits 1:0 (the OPCODE extension bits). Using OPCODE extension bits, we can now
add three new instructions with the following new OPCODEs: 000 01, 000 10, and 000 11. We
elected to add two new instructions (STORE and FETCH) to access a data memory as shown in
Table 18.4.
 Observe in Table 18.4 that the address for the data memory in the machine code is con-
tained in IR bits 3:2.
 Notice in Table 18.4 that the OPCODE for the STORE instruction is 000 01 and the
OPCODE for the FETCH instruction is 000 10. The OPCODEs for these instructions have the
form (OPCODE bits) plus the (OPCODE extension bits).
 Figure 18.5 shows the data memory map for VBC1-E. The STORE instruction is used to
place data (4 bits) in one of four locations in the data memory, and the FETCH instruction is used
to retrieve data (4 bits) from one of the four locations in data memory. Data memory provides a
small amount of temporary memory for storing data values during the execution of a program.

Data memory
(RAM 4 × 4)

Address Bits

Memory contents or data for address 0

Memory contents or data for address 1

Memory contents or data for address 2

Memory contents or data for address 3

0

1

2

3

0123

FIGURE 18.5 Data memory map for
VBC1-E

www.itpub.net

 18.4 Data Memory Instructions 433

 Program 18.4 shows a simple assembly language program using the instructions IN,
STORE, FETCH, and OUT.

 In the programmer’s register model for VBC1-E shown in Figure 18.6, the machine codes
for the instructions in Program 18.4 are manually loaded into the instruction memory beginning
at address 0. All other instruction memory locations are cleared. The PC (program counter) is
cleared to address 0, and the IR (instruction register) shows the machine code value at address
0 (10111000). Registers R0, R1, and all the outputs in the programmer’s register model are
cleared. The input at port address 0 (IP0) is set to the value of 0110(6), and all other inputs in the
programmer’s register model are set to 0. This programmer’s register model includes the data
memory. All the data memory locations are cleared.

IN R1,0
STORE R1,0
FETCH R0,0
OUT R0,1

PROGRAM 18.4 A simple assembly language program using
the instructions IN, STORE, FETCH, and OUT for VBC1-E

 After executing each instruction in Program 18.4, the transfer function form indicates what
happens to the various registers of VBC1-E.
 The following is a detailed description for the execution of each instruction in Pro-
gram 18.4. When the instruction IN R1,0 is executed, its transfer function performs the opera-
tion R1 d IP0, which places the value 0110(6) into R1. When the instruction STORE R1,0 is
executed, its transfer function performs the operation DM0 d R1, which places the value of
0110(6) into data memory 0. When the instruction FETCH R0,0 is executed, its transfer function
performs the operation R0 d DM0, which places the value 0110(6) into R0. When the instruc-
tion OUT R0,1 is executed, its transfer function performs the operation OP1 d R0, which places
the value 0110(6) in output port 1.

1 0 1 1

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 1 1 0 0 01

0 0 1 0 0 0 10

0 0 0 0 0 1 00

0 1 0 0 0 0 11

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

E

F

7 0
FIGURE 18.6 Result in the pro-
grammer’s register model after
manually loading the instructions
in Program 18.4 into VBC1-E
instruction memory at address 0
with IP0 set to 6

434 Chapter 18 Assembly Language Programming for VBC1-E

 So, in Figure 18.7, after executing the instruction IN R1,0, the value at input port 0 or 0110(6)
is transferred to register R1. After executing the instruction STORE R1,0, the value 0110(6) is
transferred to data memory 0. After executing the instruction FETCH R0,0, the value 0110(6) is
transferred to R0. After executing the instruction OUT R0,1, then the value 0110(6) is transferred
to output port 1, as shown in the programmer’s register model. The PC is now pointing to the
address of the next instruction to be executed which is 4, and the IR now contains the machine
code for the next instruction at address 4, which is 00000000.

18.5 ARITHMETIC AND LOGIC INSTRUCTIONS

Table 18.5 shows the modified ADD instruction and the new SUB, NOT, AND, OR, and XNOR
instructions for VBC1-E.
 In Table 18.5, the abbreviations in the transfer function form column are as follows: DR is
destination register, and SR is source register.
 The ADD instruction for VBC1 does not use the machine code bits 2:0. Taking advantage
of this fact allows us to simply change the machine code such that bits 2:0 are converted to
OPCODE extension bits. The assembly language form and the transfer function form for the
modified ADD instruction for VBC1-E are the same as the ADD instruction for VBC1, but the
machine code form is different because of the OPCODE extension bits.
 The new OPCODE for the modified ADD instruction is 010 000. The first 3 bits for the new
OPCODE are 010, which represent bits 7:5 (the OPCODE bits), and the last 3 bits are 000, which
represent bits 2:0 (the OPCODE extension bits). Using OPCODE extension bits, we can now add
seven new instructions with the following new OPCODEs: 010 001, 010 010, 010 011, 010 100,
010 101, 010, 110, and 010 111. We elected to add five new instructions (SUB, NOT, AND, OR,
and XNOR) as shown in Table 18.5.
 Program 18.5 shows an assembly language program using the instructions IN, STORE,
FETCH, NOT, OUT, and OR.
 In the programmer’s register model for VBC1-E shown in Figure 18.8, the machine codes
for the instructions in Program 18.5 are manually loaded into the instruction memory beginning
at address 0. All other instruction memory locations are cleared. The PC (program counter) is

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 1 1 0

0 1 1 0

0 1 0 0

0 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 1 1 0 0 01

0 0 1 0 0 0 10

0 0 0 0 0 1 00

0 1 0 0 0 0 11

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

E

F

7 0
FIGURE 18.7 Result in the program-
mer’s register model after executing
the instructions in Program 18.4 for
VBC1-E

www.itpub.net

 18.5 Arithmetic and Logic Instructions 435

cleared to address 0 and the IR (instruction register) shows the machine code value at address 0
(10101000). Registers R0, R1, and all the outputs in the programmer’s register model are
cleared. The input at port address 0 (IP0) is set to the value of 0101 or 5, and all other inputs in
the programmer’s register model are set to 0. All the data memory locations are cleared.
 After executing each instruction in Program 18.3, the transfer function form indicates what
happens to the various registers of VBC1-E.
 The following is a detailed description for the execution of each instruction in Pro-
gram 18.5. When the instruction IN R0,0 is executed, its transfer function performs the opera-
tion R0 d IP0, which places the value 0101(5) into R0. When the instruction STORE R0,0
is executed, its transfer function performs the operation DM0 d R0, which places the value
0101(5) into data memory 0. When the instruction FETCH R1,0 is executed, its transfer function
performs the operation R1 d DM0, which places the value 0101(5) in R1. When the instruction
NOT R0,R0 is executed, its transfer function performs the operation R0 d !R0, which places the
value 1010(10) in R0. When the instruction OUT R0,0 is executed, its transfer function performs

IN R0,0
STORE R0,0
FETCH R1,0
NOT R0,R0
OUT R0,0
OR R1,R0
OUT R1,1

PROGRAM 18.5 An assembly language program using the
instructions IN, STORE, FETCH, NOT, OUT, and OR for VBC1-E

0 1 0 0/1 0/1 0 0 0

7 6 5 4
Dest.Reg

Source
Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE 2:0 OPCODE Extension

ADD DR,SR DR DR + SR

DR DR – SRSUB DR,SR

DR !SRNOT DR,SR

DR !(DR ⊕ SR)XNOR DR,SR

DR DR ⋀ SRAND DR,SR

DR DR ⋁ SROR DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 0 0 1

0 1 0 0/1 0/1 1 0 0

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 1 0 1

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 1 1 0

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 1 1 1

TABLE 18.5 ADD, SUB, NOT, AND, OR, and XNOR instructions for VBC1-E in

ALF, TFF, MCF

436 Chapter 18 Assembly Language Programming for VBC1-E

the operation OUT0 d R0, which places the value 1010(10) in output port 0. When the instruc-
tion OR R1,R0 is executed, its transfer function performs the operation R1 d R1 ~ R0, which
places the value 1111(15) into R1. When the instruction OUT R1,1 is executed, its transfer func-
tion performs the operation OP1 d R1, which places the value 1111(15) in output port 1.
 So, in Figure 18.9, after executing the instruction IN R0,0, the value at input port 0 or
0101(5) is transferred to register R0. After executing the instruction STORE R0,0, the value
0101(5) is transferred to data memory 0. After executing the instruction FETCH R1,0, the value

0 0 0 0

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

1 0 1 0

1 1 1 1

0 1 1 1

0 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 1 0 0 01

0 0 0 0 0 0 10

0 0 1 0 0 1 00

1 0 0 0 1 0 00

0 1 0 0 0 0 01

1 0 1 0 1 1 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

0 1 1 0 0 0 11

0 0 0 0 0 0 00

6

7

E

F

7 0
FIGURE 18.9 Result in the program-
mer’s register model after executing
the instructions in Program 18.5 for
VBC1-E

1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 1 0 0 01

0 0 0 0 0 0 10

0 0 1 0 0 1 00

1 0 0 0 1 0 00

0 1 0 0 0 0 01

1 0 1 0 1 1 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

0 1 1 0 0 0 11

0 0 0 0 0 0 00

6

7

E

F

7 0
FIGURE 18.8 Result in the pro-
grammer’s register model after
manually loading the instructions
in Program 18.5 into VBC1-E
instruction memory at address 0
with IP0 set to 5

www.itpub.net

 18.6 Shift and Rotate Instructions 437

0101(5) is transferred to R1. After executing the instruction NOT R0,R0, the value 1010(10) is
transferred to R0. After executing the instruction OUT R0,0, the value 1010(10) is transferred
to output port 0. After executing the instruction OR R1,R0, the value 1111(15) is transferred to
R1. After executing the instruction OUT R1,1, the value 1111(15) is transferred to output port 1,
as shown in the programmer’s register model. The PC is now pointing to the address of the next
instruction to be executed which is 7, and the IR now contains the machine code for the next
instruction at address 7, which is 00000000.

18.6 SHIFT AND ROTATE INSTRUCTIONS

Table 18.6 shows the modified SR0 instruction and the new SR1, SL0, SL1, RR, and RL instruc-
tions for VBC1-E.

1 0 0 0/1 0/1 0 0 0

7 6 5 4
Dest.Reg

Source
Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE 2:0 OPCODE Extension

SR0 DR,SR DR 0 SR(3:1)

DR 1 SR(3:1)SR1 DR,SR

DR SR(2:0) 0SL0 DR,SR

DR SR(2:0) SR(3)RL DR,SR

DR SR(2:0) 1SL1 DR,SR

DR SR(0) SR(3:1)RR DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 0 0/1 0/1 0 0 1

1 0 0 0/1 0/1 0 1 0

7 6 5 4 3 2 1 0

1 0 0 0/1 0/1 0 1 1

7 6 5 4 3 2 1 0

1 0 0 0/1 0/1 1 0 0

7 6 5 4 3 2 1 0

1 0 0 0/1 0/1 1 0 1

TABLE 18.6 SR0, SR1, SL0, SL1, RR, and RL instructions for VBC1-E in ALF,

TFF, and MCF

 In Table 18.6, the abbreviations in the transfer function form column are as follows: DR is
destination register, and SR is source register.
 The SR0 instruction for VBC1 does not use the machine code bits 2:0. Taking advantage
of this fact allows us to simply change the machine code such that bits 2:0 are converted to
OPCODE extension bits. The assembly language form and the transfer function form for the
modified SR0 instruction for VBC1-E are the same as the SR0 instruction for VBC1, but the
machine code form is different because of the OPCODE extension bits.
 The new OPCODE for the modified SR0 instruction is 100 000. The first 3 bits for the new
OPCODE are 100, which represent bits 7:5 (the OPCODE bits), and the last 3 bits are 000, which
represent bits 2:0 (the OPCODE extension bits). Using the OPCODE extension bits, we can now

438 Chapter 18 Assembly Language Programming for VBC1-E

add seven new instructions with the following new OPCODEs: 100 001, 100 010, 100 011, 100
100, 100 101, 100 110, and 100 111. We elected to add five new instructions (SR1, SL0, SL1, RR,
and RL) as shown in Table 18.6.
 Program 18.6 shows an assembly language program using the instructions LOADI,
STORE, SL1, OUT, RR, and FETCH.

 Observe that numeric operands can be expressed in binary as 0011b or 11b, in decimal as
3d or 3, and also in hexadecimal as 3h.
 In the programmer’s register model for VBC1-E shown in Figure 18.10, the machine codes
for the instructions in Program 18.6 are manually loaded into the instruction memory beginning
at address 0. All other instruction memory locations are cleared. The PC (program counter) is
cleared to address 0 and the IR (instruction register) shows the machine code value at address
0 (00100011). Registers R0, R1, and all the outputs in the programmer’s register model are
cleared. All the inputs in the programmer’s register model are set to 0. All the data memory
locations are cleared.

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 0 0 1 10

0 1 1 1 0 1 00

0 0 0 0 0 0 10

0 0 0 0 0 1 11

0 1 0 0 0 0 01

0 0 1 1 1 0 01

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

0 1 1 0 0 0 11

0 0 0 0 0 1 00

6

7

0 1 0 0 0 1 01

0 0 0 0 0 0 00

8

9

E

F

7 0
FIGURE 18.10 Result in the pro-
grammer’s register model after
manually loading the instructions
in Program 18.6 into VBC1-E
instruction memory at address 0
with all the inputs set to 0

LOADI R0, 0011b
LOADI R1, 1010b
STORE R0,0
SL1 R0,R0
OUT R0,0
RR R1,R1
OUT R1,1
FETCH R0,0
OUT R0,2

PROGRAM 18.6 An assembly language program using the
instructions LOADI, STORE, SL1, OUT, RR, and FETCH for VBC1-E

 After executing each instruction in Program 18.6, the transfer function form indicates what
happens to the various registers of VBC1-E.
 The following is a detailed description for the execution of each instruction in Program 18.6.
When the instruction LOADI R0, 0011b is executed, its transfer function performs the operation

www.itpub.net

 18.7 Jump, Jump Relative, and Halt Instructions 439

R0 d 0011b, which places the value 0011(3) into R0. When the instruction LOADI R1, 1010b
is executed, its transfer function performs the operation R1 d 1010b, which places the value
1010(10) into R1. When the instruction STORE R0,0 is executed, its transfer function performs
the operation DM0 d R0, which places the value 0011(3) into data memory 0. When SL1 R0,R0
is executed, its transfer function performs the operation R0 d R0(2:0) 1, which places 0111(7)
into R0. When OUT R0,0 is executed, its transfer function performs the operation OP0 d R0,
which places the value 0111(7) in Output Port 0. When the instruction RR R1,R1 is executed,
its transfer function performs the operation R1 d R1(0) R1(3:1), which places the value 0101(5)
into R1. When the instruction OUT R1,1 is executed, its transfer function performs the operation
OP1 d R1, which places the value 0101(5) into output port 1. When the instruction FETCH R0,0
is executed, its transfer function performs the operation R0 d DM0, which transfers the value
0011(3) into R0, When the instruction OUT R0,2 is executed, its transfer function performs the
operation OP2 d R0, which places the value 0011(3) into output port 2.
 So, in Figure 18.11, after the instruction LOADI R0,0011b is executed, the value 0011b is
transferred to register R0. After the instruction LOADI R1,1010b is executed, the value 1010b
is transferred to register R1. After the instruction STORE R0,0 is executed, the value 0011(3) is
transferred to data memory 0. After the instruction SL1 R0,R0 is executed, the value 0111(7) is
transferred to R0. After the instruction OUT R0,0 is executed, the value 0111(7) is transferred
to output port 0. After instruction RR R1,R1 is executed, the value 0101(5) is transferred to R1.
After the instruction OUT R1,1 is executed, the value 0101(5) is transferred to output port 1.
After the instruction FETCH R0,0 is executed, the value 0011(3) is transferred to R0. After the
instruction OUT R0,2 is executed, the value 0011(3) is transferred to output port 2, as shown in
the programmer’s register model. The PC is now pointing to the address of the next instruction
to be executed which is 9, and the IR now contains the machine code for the next instruction at
address 9, which is 00000000.

18.7 JUMP, JUMP RELATIVE, AND HALT INSTRUCTIONS

The OUT instruction was modified to use OPCODE 101 with extension bits 3:2 in Section 18.3.
This change allows us to use OPCODE 110 for new instructions.

0 0 0 0

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 1

0 0 1 1

0 0 0 0

1

2

3

1

0

2

3

0 0 1 1

0 1 0 1

1 0 0 1

0 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 0 0 1 10

0 1 1 1 0 1 00

0 0 0 0 0 0 10

0 0 0 0 0 1 11

0 1 0 0 0 0 01

0 0 1 1 1 0 01

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

0 1 1 0 0 0 11

0 0 0 0 0 1 00

6

7

0 1 0 0 0 1 01

0 0 0 0 0 0 00

8

9

E

F

7 0
FIGURE 18.11 Result in the program-
mer’s register model after executing
the instructions in Program 18.6 for
VBC1-E

440 Chapter 18 Assembly Language Programming for VBC1-E

 Three new instructions JMP (unconditional jump), JMPR (unconditional jump relative)
and HALT (unconditional jump to itself) for VBC1-E are shown in Table 18.7.

1 1 0 0 A A A A

7 6 5 4

OPCODE
Extension 3:0 Address (Destination)7:5 OPCODE

JMP Addr PC(3:0) IR(3:0)

PC(3:0) PC(3:0) + IR(3:0)

PC(3:0) PC(3:0)

JMPR OffSet

HALT

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 1 0 1 OS OS OS OS

1 1 0 1 0 0 0 0

3:0 Off Set to Destination

4:0 OPCODE Extension

TABLE 18.7 Three new instructions JMP, JMPR, and HALT for VBC1-E

 In Table 18.7, the abbreviations in the transfer function form column are as follows: PC is
program counter, and IR is instruction register.
 The new instruction JMP (unconditional jump) provides an unconditional jump to the
address specified in the address bits of the instruction. When the instruction JMP 0 is executed,
this causes jump to address 0 in instruction memory. When the instruction JMP 6 is executed,
this causes an unconditional jump to address 6 in instruction memory.
 The new instruction JMPR (unconditional jump relative) provides an unconditional jump
relative to the current address pointed to by the program counter (PC) to an address calculated
by adding four offset bits to the current value of the program counter. As you will see in the
next section, the actual program counter for VBC1-E will be increased from 4 bits to 5 bits to
allow for additional program storage in extended instruction memory. The new address in the
program counter for the instruction JMPR is determined as follows: New Address 5 Current
address 1 Offset. When the actual program counter overflows to more than 4 bits, only the bot-
tom 4 bits of the resulting addition are used for the destination address in the program counter.
Jumping backward is accomplished by a forward jump. For example, JMPR 3 represents an
unconditional jump forward of three instructions or a jump backward of 13 instructions from
the current PC address in the instruction memory or extended instruction memory. Observe
that 3 1 13 5 16, which is the maximum number of addresses in the instruction memory or
extended instruction memory after dropping PC(4), the 5th bit.
 Table 18.8 shows all the possibilities for the instruction JMPR i, where i ranges from 0
through 15 for a jump forward or a jump backwards from the current PC address.
 When the value of the offset bits is 0, the instruction JMPR 0 is executed over and over. The
new instruction HALT (unconditional jump to itself) provides the same operation as JMPR 0.
When the instruction HALT is executed, the instruction HALT is executed over and over, which
effectively halts the program.
 Program 18.7 shows an assembly language program using the instructions LOADI, STORE,
JMPR, SR0, OUT, JMP, FETCH, and HALT. Notice that this program is well written, because
it does not run amuck or roam through memory.
 In the programmer’s register model for VBC1-E shown in Figure 18.12, the machine codes
for the instructions in Program 18.7 are manually loaded into the instruction memory beginning
at address 0. All other instruction memory locations are cleared. The PC (program counter) is
cleared to address 0, and the IR (instruction register) shows the machine code value at address 0
(00100111). Registers R0, R1, and all the outputs in the programmer’s register model are cleared.

www.itpub.net

 18.7 Jump, Jump Relative, and Halt Instructions 441

TABLE 18.8 All possibilities for the instruction JMPR

i, where i ranges from 0 through 15 and the number of

instructions the JMPR i will jump forward or jump backward

from the current PC address

Instruction
Jump forward from
current PC address

Jump backward from
current PC address

JMPR 0 0 16

JMPR 1 1 15

JMPR 2 2 14

JMPR 3 3 13

JMPR 4 4 12

JMPR 5 5 11

JMPR 6 6 10

JMPR 7 7 9

JMPR 8 8 8

JMPR 9 9 7

JMPR 10 10 6

JMPR 11 11 5

JMPR 12 12 4

JMPR 13 13 3

JMPR 14 14 2

JMPR 15 15 1

LOADI R0,7
STORE R0,0
JMPR 4
SR0 R0,R0
OUT R0,0
JMP 7
JMPR 13
FETCH R0,0
OUT R0,1
HALT

PROGRAM 18.7 An assembly language
program using the instructions LOADI,
STORE, JMPR, SR0, OUT, JMP, FETCH,
and HALT for VBC1-E

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 0 1 1 10

0 0 0 0 0 0 10

1 0 1 0 1 0 01

0 0 0 0 0 0 01

0 1 0 0 0 0 01

1 0 0 0 1 1 11

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

1 0 1 1 1 0 11

0 0 0 0 0 1 00

6

7

0 1 0 0 0 0 11

1 0 1 0 0 0 01

8

9

0 0 0 0 0 0 00A

E

F

7 0

FIGURE 18.12 Result in the programmer’s register model after
manually loading the instructions in Program 18.7 into VBC1-E
instruction memory at address 0 with all the inputs set to 0

442 Chapter 18 Assembly Language Programming for VBC1-E

All the inputs in the programmer’s register model are set to 0. All the data memory locations
are cleared.
 After executing each instruction in Program 18.7, the transfer function form indicates what
happens to the various registers of VBC1-E.
 The following is a detailed description for the execution of each instruction in Program 18.7.
When the instruction LOADI R0, 7 is executed, its transfer function performs the operation R0
d 7, which places the value 0111(7) into R0. When the instruction STORE R0,0 is executed,
its transfer function performs the operation DM0 d R0, which places the value 0111(7) into
data memory 0. When the instruction JMPR 4 is executed, its transfer function performs the
operation PC d PC 1 4, which jumps forward four instructions to instruction JMPR 13. When
the instruction JMPR 13 is executed, its transfer function performs the operation PC d PC 1
13, which jumps forward 13 instructions or backward 3 instructions to instruction SR0 R0,R0.
When the instruction SR0 R0,R0 is executed, its transfer function performs the operation R0 d
0 R0(2:0), which places 0011(3) into R0. When the instruction OUT R0,0 is executed, its trans-
fer function performs the operation OP0 d 0011(3), which places 0011(3) into output port 0.
When instruction JMP 7 is executed, its transfer function performs the operation PC d 7, which
jumps to address 7 to instruction FETCH R0,0. When the instruction FETCH R0,0 is executed,
its transfer function performs the operation R0 d DM0, which places the value 0111(7) in R0.
When OUT R0,1 is executed, its transfer function performs the operation OP1 d R0, which
places the value 0111(7) in output port 1. When the instruction HALT is executed, its transfer
function performs the operation PC d PC, which repeats the instruction HALT over and over.
 So, in Figure 18.13, after the instruction LOADI R0,7 is executed, the value 0111(7) is
transferred to register R0. After the instruction STORE R0,0 is executed, the value 0111(7) is
transferred to data memory 0. After the instruction JMPR 4 is executed, the program counter
is changed to jump forward four instructions to instruction JMPR 13. After the instruction
JMPR 13 is executed, the program counter is changed to jump forward 13 instructions or back-

1 1 0 1

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1

0 0 0 0

0 0 0 0

1

2

3

1

0

2

3

0 1 1 1

0 0 0 0

1 0 0 1

0 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

3 0

3 0

3 0

7 0

0 1 0 0 1 1 10

0 0 0 0 0 0 10

1 0 1 0 1 0 01

0 0 0 0 0 0 01

0 1 0 0 0 0 01

1 0 0 0 1 1 11

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

1

2

3

4

5

1 0 1 1 1 0 11

0 0 0 0 0 1 00

6

7

0 1 0 0 0 0 11

1 0 1 0 0 0 01

8

9

0 0 0 0 0 0 00A

E

F

7 0
FIGURE 18.13 Result in the program-
mer’s register model after executing the
instructions in Program 18.7 for VBC1-E

www.itpub.net

 18.8 More about Interrupts and Assembler Directives 443

ward 3 instructions to instruction SR0 R0,R0. After the instruction SR0 R0,R0 is executed,
the value 0011(3) is loaded into R0. After executing the instruction OUT R0,0 is executed, the
value 0011(3) is transferred to output port 0. After the instruction JMP 7 is executed, the pro-
gram counter is changed to jump forward to address 7 to instruction FETCH R0,0. After the
instruction FETCH R0,0 is executed, the value 0111(7) is transferred to R0. After the instruc-
tion OUT R0,1 is executed, the value 0111(7) is transferred to output port 1. After the instruc-
tion HALT is executed, the program counter is changed to jump backward to instruction
HALT, as shown in the programmer’s register model. The PC is now pointing to the address
of the next instruction to be executed, which is 9, and the IR now contains the machine code
for the next instruction at address 9, which is 11010000.

18.8 MORE ABOUT INTERRUPTS AND ASSEMBLER DIRECTIVES

The interrupt instructions are repeated in Table 18.9.

3:2 OPCODE
Extension7:5 OPCODE

RETA(3:0)
PC(3:0) 0000, IPROC 1

PC(3:0) + 1

PC(3:0)
IPROC 0

RETA(3:0)

INT

IRET

Hardware interrupt: Signal TRIG_INT causes RETA(3:0) PC(3:0), PC(3:0) 0000, IPROC 1

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 0

Bits 1:0
not used

Bits 1:0
not used

Bit 4
not used

Bit 4
not used

7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 0

TABLE 18.9 Interrupt instructions

 In Table 18.9, the abbreviations in the transfer function form column are as follows: RETA
is return address, PC is program counter, and IPROC is interrupt process.
 Instruction INT provides a means to execute instructions in an extended instruction
memory, thus providing more programming capability for VBC1-E. When the instruction INT
is executed, its transfer function performs the following three actions: (1) first, the value of the
return address in instruction memory (the address of the instruction immediately following the
instruction INT) is moved to the register named RETA (return address); (2) next, the PC (bits
3:0) is loaded with 0000 or 0 in decimal; and (3) then, the 5th bit in the PC named IPROC (inter-
rupt process) or PC(4) is set to 1, or the actual program counter, PC(4:0), is set to 1 0000, which
is the address for the first instruction in extended instruction memory.
 In assembly language, an assembler directive named BIPROC (begin interrupt process)
must be used to notify the assembler that all the subsequent instructions belong in the interrupt
service routine. Assembly instructions occurring before the assembler directive BIPROC are
placed in the first half of instruction memory (0 0000 through 0 1111). Assembly instructions
occurring after the BIPROC directive are placed in the last half of instruction memory (1 0000
through 1 1111), which we call extended instruction memory.
 The instruction INT should only be used in the instruction memory. The instruction IRET
should only be used in the extended instruction memory, to allow the program to return to
instruction memory.

444 Chapter 18 Assembly Language Programming for VBC1-E

 When instruction IRET is executed, its transfer function must perform the following two
actions: (1) place the return address in register RETA in the PC (bits 3:0) and (2) the 5th bit in
the PC named IPROC is set to 0 as bits 3 through 0 in the PC are set to the return address.
 Up to 16 instructions can be included in the interrupt routine. All instructions in VBC1-E
are 8-bit instructions just as they were for VBC1. All the instructions for VBC1-E operate within
the memory section in which they are placed—that is, at address 0 0000 through 0 1111 (section
0) for instruction memory or between address 1 0000 through 1 1111 (section 1) for extended
instruction memory.
 When a normal program is running, the 5th bit in the PC for VBC1-E, named IPROC, is
0 and the instructions are executed in instruction memory (section 0), but when the interrupt
routine is running, IPROC is 1 and instructions are executed in extended instruction memory
(section 1).
 Figure 18.14 shows a sample layout for a program using the instructions INT, IRET, and
the assembler command or directive BIPROC. Remember: The assembler command or direc-
tive BIPROC tells the assembler to place the instructions following the directive BIPROC in
extended instruction memory.

;Normal program in Instruction Memory (16x8)
;for these instructions IPROC is 0 which represents Section 0
Instruction at address 0
Instruction at address 1
Instruction at address 2
.
.
.
INT ;at address x, executes next instruction at 0000 in Extended

;Instruction Memory (Section 1)
Instruction at address x 1 1; return address
Instruction at address x 1 2
Instruction at address x 1 3
.
.
.
Instruction at address F ;last address in Instruction Memory

;Program in Extended Instruction Memory (16x8)
;for these instructions IPROC is 1 which represents Section 1
BIPROC ;assembler command, interrupt service routine to follow
Instruction at address 0
Instruction at address 1
.
.
.
IRET ;at address y, returns program to Instruction Memory (Section 0)
Instruction at address y 1 1
Instruction at address y 1 2
.
.
.
Instruction at address F ;last address in Extended Instruction Memory

FIGURE 18.14
Sample layout for a
program using the
instructions INT,
IRET, and the assem-
bler command or
directive BIPROC

www.itpub.net

 18.8 More about Interrupts and Assembler Directives 445

 Observe in Figure 18.14 that the instruction IRET does not have to be the last instruction
in the extended instruction memory in section 1, but it must be the last instruction executed in
order to allow the program to return to instruction memory in section 0.
 For VBC1-E, it is illegal to execute the instruction INT inside extended instruction
memory—that is, after the assembler directive BIPROC. It is also illegal to use the assem-
bler directive BIPROC more than once and to execute the instruction IRET outside extended
instruction memory. The Assembler for VBC1-E, which we call EASY1-E, is designed to flag
some of these basic errors.
 An interrupt can also be caused by an external input interrupt signal. This type of interrupt
is called a hardware interrupt. For VBC1-E, a hardware interrupt causes the normal program
to jump to an interrupt service routine that is placed in the extended instruction memory. When
the instruction IRET in the interrupt service routine is executed, the normal program begins
executing again at the return address until another hardware interrupt occurs. The return address
is loaded into register RETA. The return address is the current address of the program counter in
instruction memory (section 0) when the external input interrupt signal TRIG_INT is applied.
 A hardware interrupt monitors an external signal called TRIG_INT (trigger interrupt). When
TRIG_INT is true (a single positive pulse), a hardware interrupt is initiated, which saves the cur-
rent value of PC(3:0) in RETA(3:0) then loads PC(4:0) with the value 1 0000, which is the address
for the first instruction in extended instruction memory. This action is expressed by the transfer
functions RETA(3:0) d PC(3:0), PC(3:0) d 0000, IPROC d 1.
 A hardware interrupt allows another program (the interrupt service routine) to be executed
at the request of an external input interrupt signal at any time during the execution of the normal
program. This type of interrupt is important because it provides a means for an external input
interrupt signal to initiate a process for servicing an I/O device. The process for servicing an I/O
device is placed in extended instruction memory.
 In addition to the assembler directive BIPROC, there is one more assembler directive avail-
able for the assembler for VBC1-E. The assembler directive EQU can be used to define a new
constant variable. EQU can be used as a simple convenience for writing assembly language code
for VBC1-E. The format for using EQU is ,variable name. EQU ,value., which can be used
for assigning a variable name a given value. The variable name can then be used in the assem-
bly language program. When the program is assembled, the assembler substitutes the value for
the variable name in the assembly language code. Assembler directives do not appear in the
machine code after it is assembled.

Example:

X EQU 5 ; creates the variable ‘X’ and gives it the value 5
ADDI R0,X ; adds X(5) to R0;

 Program 18.8 shows an assembly language program using the assembler directives EQU
and BIPROC. Notice that this program is well written, because it does not run amuck or roam
through memory.
 In the programmer’s register model for VBC1-E shown in Figure 18.15, the machine codes
for the instructions in Program 18.8 are manually loaded into the instruction memory begin-
ning at address 0 and into the extended instruction memory beginning at address 0. All other
instruction memory locations and extended instruction memory locations are cleared. The PC
(program counter) is cleared to address 0 in instruction memory, and the IR (instruction register)
shows the machine code value at address 0 (00100011). Registers R0 and R1 are cleared, all the
outputs are cleared in the programmer’s register model. The input at port address 0 (IP0) is set
to the value 1111 or 15, and all the other inputs in the programmer’s register model are set to 0.
Data memory is cleared.
 After executing each instruction in Program 18.8, the transfer function form indicates what
happens to the various registers of VBC1-E.

446 Chapter 18 Assembly Language Programming for VBC1-E

 The following is a detailed description for the execution of each instruction in Pro-
gram 18.8. When the assembler directive X EQU 3 is performed, X is assigned the value 3.
When the assembler directive Y EQU 10 is performed, Y is assigned the value 10. When the
instruction LOADI R0,X is executed, its transfer function performs the operation R0 d 3, which
places the value 0011(3) into R0. When the instruction LOADI R1,Y is executed, its transfer
function performs the operation R1 d 10, which places the value 1010(10) into R1. When the
instruction STORE R1,0 is executed, its transfer function performs the operation DM0 d R1,
which places the value 1010(10) into data memory 0. When the instruction XNOR R1,R1 is

; Assembler directives
X EQU 3
Y EQU 10

; Instruction Memory
LOADI R0,X
LOADI R1,Y
STORE R1,0
XNOR R1,R1

FETCH R1,0
INT
OUT R0,2
HALT

; Extended Instruction Memory
BIPROC
OUT R0,0
OUT R1,1
IN R0,0 ;set IP0 to 1111
IRET

PROGRAM 18.8 An assembly language program
using the assembler directives BIPROC and EQU

0 0 1 0

1

2

3

1

0

2

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 1
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

RETA

IPROC

Push-button
switch

Extended
instruction
memory
(16 × 8)

TRIG_INT

R1

R0

3 0

3 0

3 0

3 0

3 0

3 0

7 0

0 1 0 0 0 1 100

0 1 1 1 0 1 001

0 0 1 0 0 0 102

1 0 1 1 1 1 103

0 0 1 0 0 1 004

0 1 0 0 1 0 015

0 1 0 0 0 1 016

1 0 1 0 0 0 017

0 0 0 0 0 0 008

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

0 1 0 0 0 0 010

0 1 1 0 0 0 111

0 1 0 1 0 0 012

0 1 0 1 1 0 013

0 0 0 0 0 0 004

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0

7 0

4 (of PC)

FIGURE 18.15 Result in the pro-
grammer’s register model after
manually loading the instructions
in Program 18.8 into VBC1-E
instruction memory at address 0
with IP0 set to 15

www.itpub.net

 18.8 More about Interrupts and Assembler Directives 447

executed, its transfer function performs the operation R1 d 1111(15), which places 1111(15)
into R1. When the instruction FETCH R1,0 is executed, its transfer function performs the
operation R1 d DM0, which places 1010(10) into R1. When the instruction INT is executed,
its transfer function performs the following operations: (1) RETA d PC 1 1, which places
the return address 0110(6) into RETA; (2) PC d 0000, which transfers the address 0000(0) in
extended instruction memory into the PC; and (3) IPROC d 1, which sets IPROC to 1. When
the instruction OUT R0,0 is executed, its transfer function performs the operation OP0 d R0,
which places the value 0011(3) in output port 0. When the instruction OUT R1,1 is executed, its
transfer function performs the operation OP1 d R1, which places the value 1010(10) in output
port 1. When the instruction IN R0,0 is executed, its transfer function performs the operation
R0 d IP0, which places the value 1111(15) into R0. When the instruction IRET is executed, its
transfer function performs the following operations: (1) PC d RETA, which places the return
address 0110(6) into PC, and (2) IPROC d 0, which sets IPROC to 0. When the instruction OUT
R0, 2 is executed, its transfer function performs the operation OP2 d R0, which places the value
1111(15) in output port 2. When the instruction HALT is executed, its transfer function performs
the operation PC d PC, which loads the PC with the address of the instruction HALT.
 So, in Figure 18.16, because X is equal to 3, after executing the instruction LOADI R0,
X, the value 0011(3) is transferred to register R0. Because Y is equal to 10, after executing the
instruction LOADI R1,Y, the value 1010(10) is transferred to R1. After executing the instruction
STORE R1,0, the value 1010(10) is transferred to data memory 0. After executing the instruction
XNOR R1,R1, the value 1111(15) is transferred to R1. After executing the instruction FETCH
R1,0, 1010(10) is transferred to R1. After executing the instruction INT, the return address 0110(6)
is transferred to RETA, the address 0000(0) is transferred to PC, and 1 is transferred to IPROC.
After executing the instruction OUT R0,0, the value 0011(3) is transferred to output port 0. After
executing the instruction OUT R1,1, the value 1010(10) is transferred to output port 1. After
executing the instruction IN R0,0, the value 1111(15) is transferred to R0. After executing the
instruction IRET, the return address 0110(6) is transferred to PC, and 0 is transferred to IPROC.
After the instruction OUT R0,2, the value 1111(15) is transferred to output port 2. After executing
the instruction HALT, the program loads the PC with the address of the instruction HALT. The

1 1 0 1

1

2

3

1
0

2
3

1 1 1 1

1 0 1 0

0 1 1 1

0 0 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 0 1 0

1 1 1 1

0 0 0 0

1 0 1 0

0 1 1 0

0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

RETA

IPROC

Push-button
switch

Extended
instruction
memory
(16 × 8)

TRIG_INT

R1

R0

3 0

3 0

3 0

3 0

3 0

3 0

7 0

0 1 0 0 0 1 100

0 1 1 1 0 1 001

0 0 1 0 0 0 102

1 0 1 1 1 1 103

0 0 1 0 0 1 004

0 1 0 0 1 0 015

0 1 0 0 0 1 016

1 0 1 0 0 0 017

0 0 0 0 0 0 008

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

0 1 0 0 0 0 010

0 1 1 0 0 0 111

0 1 0 1 0 0 012

0 1 0 1 1 0 013

0 0 0 0 0 0 004

0 0 0 0 0 0 00E

0 0 0 0 0 0 00F

7 0

7 0

4 (of PC)

FIGURE 18.16 Result in the program-
mer’s register model after executing
the instructions in Program 18.8 for
VBC1-E

448 Chapter 18 Assembly Language Programming for VBC1-E

PC is now pointing to the address of the next instruction to be executed, which is 7, and the IR
now contains the machine code for the next instruction at address 7, which is 11010000.

18.9 COMPLETE INSTRUCTION SET SUMMARY FOR VBC1-E

Table 18.10 shows the complete instruction set summary for VBC1-E as a handy reference. The
instructions are provided in alphabetical order.

0 1 0 0/1 0/1 0 0 0

0 1 1 0/1 D D

A A

D D

0 1 0 0/1 0/1 1 0 1

0 0 0 0/1 1 0

1 1 0 1 0 0 0 0

1 0 1 0/1 1 0 IPA IPA

1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 0

1 1 0 0 A A A A

1 1 0 1 OS OS OS OS

0 0 1 0/1 D D D D

1 1 1 0/1 A A A A

0 0 0 0/1 0/1 0 0 0

0 1 0 0/1 0/1 1 0 0

0 1 0 0/1 0/1 1 1 0

1 0 1 0/1 0 0 OPA OPA

1 0 0 0/1 0/1 1 0 1

1 0 0 0/1 0/1 1 0 0

1 0 0 0/1 0/1 0 1 0

1 0 0 0/1 0/1 0 1 1

1 0 0 0/1 0/1 0 0 0

1 0 0 0/1 0/1 0 0 1

0 1 0 0/1 0/1 0 0 1

0 0 0 0/1 A A 0 1

0 1 0 0/1 0/1 1 1 1

7 6 5 4

ADD DR,SR DR DR + SR

ADDI DR,Data DR DR + IR(3:0)

AND DR,SR DR DR ⋀ SR

DR DM[IR(3:2)]FETCH DR,Addr

DR IP[IR(1:0)]IN DR,Port_A

PC(3:0) PC(3:0)

PC(3:0) IR(3:0)

HALT

INT

DR SR(2:0) SR(3)RL DR,SR

DR SR(0) SR(3:1)RR DR,SR

DR SR(2:0) 0SL0 DR,SR

DR SR(2:0) 1SL1 DR,SR

DR 0 SR(3:1)SR0 DR,SR

DR 1 SR(3:1)SR1 DR,SR

DR DR – SRSUB DR,SR

DR !(DR ⊕ SR)XNOR DR,SR

DM[IR(3:2)] DRSTORE DR,Addr

OP[IR(1:0)] DROUT DR,Port_A

JMP Addr

PC(3:0) PC(3:0) + IR(3:0)JMPR OffSet

PC(3:0) IR(3:0), if DR ≠ 0
else PC(3:0) PC(3:0) + 1JNZ DR,Address

DR IR(3:0)LOADI DR,Data

DR SRMOV DR,SR

DR !SRNOT DR,SR

DR DR ⋁ SROR DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

RETA(3:0)
PC(3:0) 0000, IPROC 1

PC(3:0) + 1

PC(3:0)
IPROC 0

RETA(3:0)IRET

Hardware interrupt: Signal TRIG_INT causes RETA(3:0) PC(3:0), PC(3:0) 0000, IPROC 1

TABLE 18.10
Complete instruction

set summary

for VBC1-E in

alphabetical order

www.itpub.net

 Problems 449

Section 18.1 Introduction
 18.1 Does VBC1-E have a data memory? If so, name the instructions that access the data memory.
 18.2 Does VBC1-E have logic instructions? If so, name the logic instructions.
 18.3 Does VBC1-E have unconditional jump instructions? If so, name the unconditional jump

instructions.
 18.4 Does VBC1-E have interrupt capability? If so, name the instructions that provide software inter-

rupt capability.

Section 18.2 Instruction Summary
 18.5 How many of the instructions in VBC1 are the same in VBC1-E?
 18.6 List the instructions that are the same in VBC1 and VBC1-E.
 18.7 What is the trick to changing some of the instructions for VBC1 to obtain new instructions for

VBC1-E?
 18.8 How many instructions in VBC1 have unused machine code bits?
 18.9 How many new instructions are there, and what is the total number of instructions for VBC1-E?
 18.10 What value is assigned to the unused bits in the machine code form for VBC1?
 18.11 List the OPCODE for the STORE instructions for VBC1-E. List the extension bits for the STORE

instruction.
 18.12 List the OPCODE for the OR instruction for VBC1-E. List the extension bits for the OR

instruction.
 18.13 List the OPCODE for the RR instruction for VBC1-E. List the extension bits for the RR

instruction.
 18.14 List the OPCODE for the OUT instruction for VBC1-E. List the extension bits for the OUT

instruction.
 18.15 List the OPCODE for the JMP instruction for VBC1-E. List the extension bit for the JMP

instruction.

Section 18.3 Input, Output, and Interrupt Instructions
 18.16 The IN instruction for VBC1 has been modifi ed so that it contains OPCODE bits 7:5 and exten-

sion OPCODE bits 3:2. What is the OPCODE for the IN instruction for VBC1-E?
 18.17 Which bits in the IN instruction are used for the input port address?
 18.18 How many input ports can be used with the IN instruction for VBC1-E?
 18.19 The OUT instruction for VBC1 has been modifi ed so that it contains OPCODE bits 7:5 and exten-

sion OPCODE bits 3:2. What is the OPCODE for the OUT instruction for VBC1-E?
 18.20 Which bits in the OUT instruction are used for the output port address?
 18.21 How many output ports can be used with the OUT instruction for VBC1-E?
 18.22 Two new instructions use 101 as the OPCODE bits 7:5 with 01 and 11, respectively, as the exten-

sion OPCODE bits 3:2. What are the names of these new instructions for VBC1-E?
 18.23 What type of operations do the new instructions INT and IRET represent?
 18.24 What are the input port addresses for the IN instruction?
 18.25 Write the transfer function form for the instruction IN DR,Port_A.
 18.26 Specify what occurs when the instruction IN R0,3 is executed.
 18.27 Where are the instructions that must be executed by VBC1-E placed, and how many bits make up

each instruction?
 18.28 What are the output port addresses for the OUT instruction?
 18.29 Write the transfer function form for the instruction OUT DR,Port_A.
 18.30 Specify what occurs when the instruction OUT R1,1 is executed.
 18.31 Table P18.31 shows a partial instruction set for VBC1-E. Hand assemble the program in Program

P18.31. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.31 after the last instruction JNZ is executed the fi rst time.
Set input port 1 to 0001 or 1 before executing the program.

PROBLEMS

450 Chapter 18 Assembly Language Programming for VBC1-E

TABLE P18.31

1 0 1 0/1 1 0 IPA IPA

7 6 5 4
Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE
3:2 OPCODE

Extension 1:0 Port Address

3:0 Immediate Data (Source)

3:0 Address (Destination)

IN DR,Port_A DR IP[IR(1:0)]

OP[IR(1:0)] DROUT DR,Port_A

DR IR(3:0)LOADI DR,Data

DR DR + IR(3:0)ADDI DR,Data

PC(3:0) IR(3:0), if DR ≠ 0
else PC(3:0) PC(3:0) + 1JNZ DR,Address

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

0 0 1 0/1 D D D D

7 6 5 4 3 2 1 0

0 1 1 0/1 D D D D

7 6 5 4 3 2 1 0

1 1 1 0/1 A A A A

Dest.Reg7:5 OPCODE

back:
in r0,1
addi r0,14
out r0,0
loadi r0,1
jnz r0,back

PROGRAM P18.31

1

2

3

Instruction
memory
(16 × 8)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0 3 0

3 0

7 0

0

1

2

3

4

5

E

F

7 0

REGISTER_MODEL P18.31

Section 18.4 Data Memory Instructions
 18.32 The MOV instruction for VBC1 has been modifi ed so that it contains OPCODE bits 7:5 and exten-

sion OPCODE bits 1:0. What is the OPCODE for the MOV instruction for VBC1-E?
 18.33 With the modifi ed MOV instruction and its extension bits, how many new instructions can be

added?
 18.34 What are the new instructions that use OPCODE bits 7:5 as 000 and extension OPCODE bits 1:0

of 01 and 10, respectively?
 18.35 Write the transfer function form for the instruction STORE DR,Addr.
 18.36 Specify what occurs when the instruction STORE R0, 1 is executed.
 18.37 Write the transfer function form for the instruction FETCH DR,Addr.
 18.38 Specify what occurs when the instruction FETCH R1, 0 is executed.
 18.39 How many addresses does the data memory contain for VBC1-E? List the addresses for data

memory.

www.itpub.net

 Problems 451

0 0 1 0/1 D D D D

7 6 5 4
Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE 3:0 Immediate Data (Source)

Dest.Reg7:5 OPCODE 1:0 Port Address
3:2 OPCODE

Extension

Dest.Reg7:5 OPCODE
Source

Reg
1:0 OPCODE

Extension

3:2 Addr of Data
Memory (DM)

3:2 Addr of Data
Memory (DM)

LOADI DR,Data DR IR(3:0)

OP[IR(1:0)] DROUT DR,Port_A

DR SR

DR DM[IR(3:2)]

MOV DR,SR

DM[IR(3:2)] DRSTORE DR,Addr

FETCH DR,Addr

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

0 0 0 0/1 0/1 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0/1 A A 0 1

7 6 5 4 3 2 1 0

0 0 0 0/1 A A 1 0

TABLE P18.40

loadi r0,6
store r0,0
fetch r1,0
loadi r0,0
mov r0,r1
out r0,1

PROGRAM P18.40

 18.40 Table P18.40 shows a partial instruction set for VBC1-E. Hand assemble the program in Program
P18.40. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.40 after the last instruction OUT is executed.

1

2

3

1

0

2

3

Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

3 0

3 0

3 0

7 0

0

1

2

3

4

5

6

F

7 0

REGISTER_MODEL P18.40

452 Chapter 18 Assembly Language Programming for VBC1-E

Section 18.5 Arithmetic and Logic Instructions
 18.41 The ADD instruction for VBC1 has been modifi ed so that it contains OPCODE bits 7:5 and exten-

sion OPCODE bits 2:0. What is the OPCODE for the ADD instruction for VBC1-E?
 18.42 With the modifi ed ADD instruction and its extension bits, how many new instructions can be

added?
 18.43 What are the new instructions that use OPCODE bits 7:5 and extension OPCODE bits 2:0 of 001,

100, 101, 110, and 111, respectively?
 18.44 Write the transfer function form for the instruction SUB DR,SR.
 18.45 Specify what occurs when the instruction SUB R0,R1 is executed.
 18.46 Write the transfer function form for the instruction NOT DR,SR.
 18.47 Specify what occurs when the instruction NOT R1,R0 is executed.
 18.48 Write the transfer function form for the instruction AND DR,SR.
 18.49 Specify what occurs when the instruction AND R0,R1 is executed.
 18.50 Write the transfer function form for the instruction OR DR,SR.
 18.51 Specify what occurs when the instruction OR R1,R0 is executed.
 18.52 Write the transfer function form for the instruction XNOR DR,SR.
 18.53 Specify what occurs when the instruction XNOR R0,R1 is executed.
 18.54 Table P18.54 shows a partial instruction set for VBC1-E. Hand assemble the program in Program

P18.54. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.54 after the last instruction OUT is executed.

0 0 1 0/1 D D D D

7 6 5 4
Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE 3:0 Immediate Data (Source)

Dest.Reg7:5 OPCODE 1:0 Port Address
3:2 OPCODE

Extension

Dest.Reg7:5 OPCODE
Source

Reg 2:0 OPCODE Extension

LOADI DR,Data DR IR(3:0)

OP[IR(1:0)] DROUT DR,Port_A

DR DR – SRSUB DR,SR

DR DR ⋀ SRAND DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

0 1 0 0/1 0/1 0 0 1

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 1 0 1

TABLE P18.54

www.itpub.net

 Problems 453

Section 18.6 Shift and Rotate Instructions
 18.55 The SR0 instruction for VBC1 has been modifi ed so that it contains OPCODE bits 7:5 and exten-

sion OPCODE bits 2:0. What is the OPCODE for the SR0 instruction for VBC1-E?
 18.56 With the modifi ed SR0 instruction and its extension bits, how many new instructions can be

added?
 18.57 What are the new instructions that use OPCODE bits 7:5 and extension OPCODE bits 2:0 of 001,

010, 011, 100, and 101, respectively?
 18.58 Write the transfer function form for the instruction SR1 DR,SR.
 18.59 Specify what occurs when the instruction SR1 R1,R0 is executed.
 18.60 Write the transfer function form for the instruction SL0 DR,SR.
 18.61 Specify what occurs when the instruction SL0 R0,R1 is executed.
 18.62 Write the transfer function form for the instruction SL1 DR,SR.
 18.63 Specify what occurs when the instruction SL1 R1,R0 is executed.
 18.64 Write the transfer function form for the instruction RR DR,SR.
 18.65 Specify what occurs when the instruction RR R0,R1 is executed.
 18.66 Write the transfer function form for the instruction RL DR,SR.
 18.67 Specify what occurs when the instruction RL R1,R0 is executed.

loadi r0,4
loadi r1,10
sub r1,r0
out r1,0
and r1,r0
out r1,1

PROGRAM P18.54

1

2

3

1

0

2

3

Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

3 0

3 0

3 0

7 0

0

1

2

3

4

5

6

F

7 0

REGISTER_MODEL P18.54

454 Chapter 18 Assembly Language Programming for VBC1-E

 18.68 Table P18.68 shows a partial instruction set for VBC1-E. Hand assemble the program in Program
P18.68. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.68 after the last instruction OUT is executed.

0 0 1 0/1 D D D D

7 6 5 4
Dest.Reg

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

0 = R0
1 = R1

7:5 OPCODE 3:0 Immediate Data (Source)

Dest.Reg7:5 OPCODE 1:0 Port Address
3:2 OPCODE

Extension

Dest.Reg7:5 OPCODE
Source

Reg 2:0 OPCODE Extension

LOADI DR,Data DR IR(3:0)

OP[IR(1:0)] DROUT DR,Port_A

DR 1 SR(3:1)SR1 DR,SR

DR SR(2:0) SR(3)RL DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

1 0 0 0/1 0/1 0 0 1

7 6 5 4 3 2 1 0

1 0 0 0/1 0/1 1 0 1

TABLE P18.68

loadi r0,6h
sr1 r0,r0
out r0,0
loadi r1,8h
rl r1,r1
out r1,1

PROGRAM P18.68

1

2

3

1

0

2

3

Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

3 0

3 0

3 0

7 0

0

1

2

3

4

5

6

F

7 0

REGISTER_MODEL P18.68

www.itpub.net

 Problems 455

Section 18.7 Jump, Jump Relative, and Halt Instructions
 18.69 The OUT instruction in VBC1 has the OPCODE 110. In VBC1-E the OUT instruction was modi-

fi ed to use OPCODE 101 with extension bits 3:2. This freed up OPCODE 110 to be used for new
instructions for VBC1-E. List the new instructions.

 18.70 Is the new JMP instruction conditional or unconditional?
 18.71 Write the transfer function form for the instruction JMP Addr.
 18.72 Specify what occurs when the instruction JMP 9 is executed.
 18.73 Write the transfer function form for the instruction JMPR OffSet.
 18.74 Specify what occurs when the instruction JMPR 5 is executed.
 18.75 Write the transfer function form for the instruction HALT.
 18.76 Specify what occurs when the instruction HALT is executed.
 18.77 Table P18.77 shows a partial instruction set for VBC1-E. Hand assemble the program in Pro-

gram P18.77. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.77 after the last instruction JMPR is executed the second time.

0 0 1 0/1 D D D D

7 6 5 4
Dest.Reg

0 = R0
1 = R1

7:5 OPCODE 3:0 Immediate Data (Source)

3:0 Address (Destination)

3:0 Off Set to Destination

Dest.Reg7:5 OPCODE 1:0 Port Address
3:2 OPCODE

Extension

Dest.Reg7:5 OPCODE

7:5 OPCODE

Source
Reg 2:0 OPCODE Extension

OPCODE
Extension

LOADI DR,Data DR IR(3:0)

OP[IR(1:0)] DROUT DR,Port_A

DR SR(2:0) 0

PC(3:0) PC(3:0) + IR(3:0)

SL0 DR,SR

PC(3:0) IR(3:0)JMP Addr

JMPR OffSet

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

1 0 0 0/1 0/1 0 1 0

7 6 5 4 3 2 1 0

1 1 0 0 A A A A

7 6 5 4 3 2 1 0

1 1 0 1 OS OS OS OS

TABLE P18.77

loadi r0,3
jmp 3
sl0 r1,r0
out r0,0
out r1,1
jmpr 13

PROGRAM P18.77

456 Chapter 18 Assembly Language Programming for VBC1-E

 18.78 Is program P18.77 in Problem 18.77 well written—that is, does it run amuck or roam through
memory when it is executed?

Section 18.8 More about Interrupts and Assembler Directives
 18.79 Write the transfer function form for the instruction INT.
 18.80 Specify what occurs when the instruction INT is executed.
 18.81 Write the transfer function form for the instruction IRET.
 18.82 Specify what occurs when the instruction IRET is executed.
 18.83 What is the purpose of the assembler directive BIPROC?
 18.84 List the address range for section 0 for instruction memory.
 18.85 List the address range for section 1 for extended instruction memory.
 18.86 How many instructions can be placed in extended instruction memory?
 18.87 Can the instruction IRET be placed outside of extended instruction memory?
 18.88 Can the instruction INT be placed inside extended instruction memory?
 18.89 Can the assembler directive BIPROC be used more than once in a program?
 18.90 When an external input interrupt signal TRIG_INT is applied, what does this cause?
 18.91 Write the transfer function form for a hardware interrupt.
 18.92 Specify what occurs when an external input interrupt signal TRIG_INT is applied.
 18.93 Show the format for the assembler directive EQU. Provide an example of how to use the EQU

assembler directive with the instruction LOADI for a constant variable Y 5 7.
 18.94 Table P18.94 shows a partial instruction set for VBC1-E. Hand assemble the program in Program

P18.94. Load the program beginning at address 0, and show all the values in the programmer’s
register model in Register_Model P18.94 after the last instruction HALT is executed.

 18.95 Is Program P18.94 in problem 18.94 well written—that is, does it run amuck or roam through
memory when it is executed?

1

2

3

1

0

2

3

Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

R1

R0

3 0

3 0

3 0

3 0

3 0

7 0

0

1

2

3

4

5

6

F

7 0

REGISTER_MODEL P18.77

www.itpub.net

 Problems 457

0 0 1 0/1 D D D D

7 6 5 4
Dest.Reg

0 = R0
1 = R1

Bit 4
not used

Bit 1:0
not used

4:0 OPCODE Extension

0 = R0
1 = R1

0 = R0
1 = R1

Bit 4
not used

Bit 1:0
not used

7:5 OPCODE 3:0 Immediate Data (Source)

Dest.Reg7:5 OPCODE 1:0 Port Address
3:0 OPCODE

Extension

OUT DR,Port_A OP[IR(1:0)] DR

RETA(3:0) PC(3:0) + 1
PC(3:0) 0000
IPROC 1INT

DR IR(3:0)LOADI DR,Data

IRET

PC(3:0) PC(3:0)

IPROC 0
PC(3:0) RETA(3:0)

HALT

DR DR ⋁ SROR DR,SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 1 0/1 0 0 OPA OPA

1 0 1 0 0 1 0 0

7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0

7 6 5 4 3 2 1 0

0 1 0 0/1 0/1 1 1 0

7 6 5 4 3 2 1 0

1 0 1 0 1 1 0 0

TABLE P18.94

1

2

3

1

0

2

3

Instruction
memory
(16 × 8)

Data
memory
(4 × 4)

IR

Output

Output

Input

Input
Ports

PC

PA

RETA

IPROC

Push-button
switch

Extended
instruction
memory
(16 × 8)

TRIG_INT

R1

R0

3 0

3 0

3 0

3 0

3 0

3 0

7 0

0

1

2

3

4

5

6

7

8

E

F

0

1

2

3

4

E

F

7 0

7 0

4 (of PC)

REGISTER_MODEL P18.94

;assembler directive
z equ 7

;main program in Instruction Memory
loadi r0,z
out r0,0
int
halt

;interrupt process in Extended
;Instruction Memory
BIPROC
loadi r1,8
or r0,r1
out r0,1
iret

PROGRAM P18.94

CC h a p t e r

Designing Input/Output
Circuits for VBC1-E

Chapter Outline

 19.1 Introduction 458

 19.2 Designing the Input Circuit for VBC1-E 458

 19.3 Instruction Decoder Truth Table for the Modified IN Instruction for VBC1-E 460

 19.4 Designing the Output Circuit for VBC1-E 462

 19.5 Instruction Decoder Truth Table for the Modified OUT Instruction for VBC1-E 464

 19.6 Designing an Instruction Decoder for the Modified IN and OUT Instructions for
VBC1-E 466

 19.7 Designing an Instruction Decoder for the LOADI, ADDI, and JNZ Instructions for
VBC1-E 467

 Problems 468

19.1 INTRODUCTION

This is the first in a series of chapters that teaches you how to expand the design of VBC1 to
make VBC1-E, which is an enhanced version of VBC1. In this chapter, you will learn how to
design the input circuit for VBC1-E. You will also learn how to design the output circuit for
VBC1-E. The input instruction for VBC1-E requires a port number to specify one of four sepa-
rate input ports, and the output instruction for VBC1-E also requires a port number to specify
one of four separate output ports. This allows VBC1-E to input data from four separate locations
and output data to four separate locations. Port numbers for inputs and outputs increase the
functionality of VBC1-E compared to VBC1. Enhancing the design for VBC1 to handle a larger
number of modified and/or additional instructions is not a giant step, but it does take some plan-
ning before writing the code, and it also takes perseverance to verify your design changes work
properly by simulating the designs to verify their correct functionality.

19.2 DESIGNING THE INPUT CIRCUIT FOR VBC1-E

The input circuitry for VBC1-E can be performed by a MUX bus steering circuit. Figure 19.1
shows a 4-to-1 MUX bus steering circuit, where IP stands for INPUT PORT and DI stands for
DATA INPUT.

CC19

458

www.itpub.net

 19.2 Designing the Input Circuit for VBC1-E 459

 The 4-to-1 MUX bus steering circuit in Figure 19.1 can be described by the following con-
cise transfer function:

DI d IP0 if SEL 5 00 else

DI d IP1 if SEL 5 01 else

DI d IP2 if SEL 5 10 else

DI d IP3

 Things you should notice about the transfer function for the 4-to-1 MUX bus steering circuit:

• A transfer occurs based on the SEL (SELECT) input.
• The transfer operation DI d IP0 is only performed when SEL is 00.
• The transfer operation DI d IP1 is only performed when SEL is 01.
• The transfer operation DI d IP2 is only performed when SEL is 10.
• The transfer operation DI d IP3 is only performed when SEL is 11.
• A MUX is a combinational logic circuit because there is no clock input.

 Listing 19.1 shows a complete VHDL design, for the 4-to-1 MUX bus steering circuit using
a behavioral design with a case statement.

4
MUX

4
IP0

4
IP1

DI4
IP2

4

0

1

2

3IP3

DI1 DI0 (SEL)

S1
S0

FIGURE 19.1 Schematic for a 4-to-1
MUX bus steering circuit.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity BUS_STEERING_CIRCUIT is port (
 di1,di0 : in std_logic;
 ip0, ip1, ip2, ip3 : in std_logic_vector(3 downto 0);
 di : out std_logic_vector(3 downto 0)
);
end BUS_STEERING_CIRCUIT;

architecture Behavioral of BUS_STEERING_CIRCUIT is
 signal sel :std_logic_vector (1 downto 0);
begin
 sel ,5 di1&di0;
process (sel,ip0,ip1,ip2,ip3)
begin
 case sel is
 when “00” 5. di ,5 ip0;
 when “01” 5. di ,5 ip1;
 when “10” 5. di ,5 ip2;
 when “11” 5. di ,5 ip3;
 when others 5. null;

end case;
end process;
end Behavioral;

LISTING 19.1
Complete VHDL
design for a 4-to-1
MUX bus steering
circuit using a behav-
ioral design with a
case statement

460 Chapter 19 Designing Input/Output Circuits for VBC1-E

 Things you should notice about the VHDL design in Listing 19.1:

• DI1 and DI0 are scalar signals.
• IP3 down to IP0 are vector signals with the range 3 downto 0.
• DI is a vector signal with the range 3 downto 0.
• SEL is an internal vector signal with the range 1 downto 0.
• The concatenation operator & is used to form the internal vector signal SEL from the scalar

signals DI1 and DI0. Because DI1 is on the left of the concatenation operator, it is the MSB
(most significant bit), and DI0 is the LSB (least significant bit) of the vector signal SEL.

• A process with a case statement is used to specify the code for the 4-to-1 MUX bus steering
circuit.

 Waveform 19.1 shows a simulation with the correct functionality of design entity
BUS_STEERING_CIRCUIT.

 Things you should notice about the waveforms in Waveform 19.1:

• All the vector signals are displayed in unsigned decimal values.
• Observe in each case that the output DI of the BUS_STEERING_CIRCUIT has the correct

value IP0 through IP3 for SEL 5 DI1&DI0 5 00 through 11, respectively.

19.3 INSTRUCTION DECODER TRUTH TABLE FOR THE MODIFIED IN
INSTRUCTION FOR VBC1-E

For the modified IN instruction to work properly, we must redesign the instruction decoder
truth table to provide the necessary control bits, so that the data path unit will operate correctly.
Figure 19.2 shows where the modified input circuit in Figure 19.1 must be added to the design
of VBC1-E.
 As a review, the ALF, TFF, and MCF for the modified IN instruction for VBC1-E are
shown in Table 19.1.

+

+

+

+

+

+

+

ip1[3:0]

ip2[3:0]

di1

di0

ip0[3:0]

ip3[3:0]

di[3:0]

0

0

1

2

3

0

0

Name Value 400 ns0 ns 200 ns

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

600 nsWAVEFORM 19.1
Simulation with the
correct functionality
of design entity BUS_
STEERING_CIRCUIT

1 0 1 0/1 1 0 IPA IPA

7 6 5 4

0 = R0
1 = R1

Dest.Reg
3:2 OPCODE

Extension 1:0 Port Address7:5 OPCODE

IN DR,Port_ A DR IP[IR(1:0)]

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

TABLE 19.1 The ALF, TFF, and MCF for the IN instruction for VBC1-E

 Table 19.2 shows the instruction decoder truth table for the modified IN instruction for
VBC1-E.

www.itpub.net

 19.3 Instruction Decoder Truth Table for the Modifi ed IN Instruction for VBC1-E 461

MUX

4
IP0

4
IP1

DI4
IP2

4

0

1

2

3IP3

DI1

M3

M1 M2

RST

R0

LOAD_R0

ALU_OUT(3:0)

R_ALU

DI0 (SEL)

S1
S0

MUX 34

4

0

1

MUX 24

4 4

4

0

1

MUX 1

CE

Reg R0
D Q

Q

Q

C
CLR

RST

OP(3:0)

LOAD_OP

CE

Reg
output
port

D

C
CLR

RST (asyn)

NOTE: New input circuit
added to the data path unit
of VBC1-E

R1

R_ALU_DI

R0_R1
LOAD_R1

SPEED

SPEED

CE

Reg R1
D

C
CLR

4

4

4
0

1

FIGURE 19.2 Modified input circuit added to the Data Path Unit of VBC1-E

TABLE 19. 2 Instruction decoder truth table for the modified IN

instruction for VBC1-E

IR Control bits

7 6 5 4 3 2 1 0 M1 LOAD_R0 LOAD_R1 DI1 DI0

IN R0,0 1 0 1 0 1 0 0 0 1 1 0 0 0

IN R0,1 1 0 1 0 1 0 0 1 1 1 0 0 1

IN R0,2 1 0 1 0 1 0 1 0 1 1 0 1 0

IN R0,3 1 0 1 0 1 0 1 1 1 1 0 1 1

IN R1,0 1 0 1 1 1 0 0 0 1 0 1 0 0

IN R1,1 1 0 1 1 1 0 0 1 1 0 1 0 1

IN R1,2 1 0 1 1 1 0 1 0 1 0 1 1 0

IN R1,3 1 0 1 1 1 0 1 1 1 0 1 1 1

 Things you should notice about the instruction decoder truth table for the modified IN
instruction in Table 19.2:

• The inputs to the instruction decoder for the modified IN instruction are the instruction
register bits 7:0 or IR(7), IR(6), IR(5), IR(4), IR(3), IR(2), IR(1), and IR(0), and the outputs
are the control bits M1, LOAD_R0, LOAD_R1, DI1, and DI0. The values for the IR bits
for the instruction decoder are the machine code bits for the modified IN instruction. The
values for the control bits for the instruction decoder truth table are determined by ensuring

462 Chapter 19 Designing Input/Output Circuits for VBC1-E

that the control bits perform the transfer function form for the modified IN instruction IN
DR,Port_A, which is DR dIP[IR(1:0)].

• The instruction IN R0,Port_A, which loads the input ports (port addresses 0 through 3) into
register R0 via DI1 and DI0, requires control bit M1 to be set to 1 and control bit LOAD_R0
to be set to 1. During this instruction, LOAD_R1 must be set to 0 so the contents of register
R1 do not change.

• The instruction IN R1,Port_A, which loads the input ports (port addresses 0 through 3) into
register R1 via DI1 and DI0, requires control bit M1 to be set to 1 and control bit LOAD_R1
to be set to 1. During this instruction, LOAD_R0 must be set to 0 so the contents of register
R0 do not change.

 The Boolean equations for the control bits for the modified IN instruction are

M1 5 1, LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR 14 2 ,

DI1 5 IR(1), DI0 5 IR(0)

19.4 DESIGNING THE OUTPUT CIRCUIT FOR VBC1-E

The output circuitry for VBC1-E can be performed by an array of loadable D flip-flops. Fig-
ure 19.3 shows an array of four loadable D flip-flops, where OP stands for OUTPUT PORT.

RST
(asyn)

LOAD_OP(0)

SPEED

Loadable
DFF 0

R0_R1 OP0D

4 4

Q

CE

C
CLR

RST
(asyn)

LOAD_OP(1)

SPEED

Loadable
DFF 1

R0_R1 OP1D

4 4

Q

CE

C
CLR

RST
(asyn)

LOAD_OP(2)

SPEED

Loadable
DFF 2

R0_R1 OP2D

4 4

Q

CE

C
CLR

RST
(asyn)

LOAD_OP(3)

SPEED

Loadable
DFF 3

R0_R1 OP3D

4 4

Q

CE

C
CLR

FIGURE 19.3 Array of
four loadable D flip-flops,
where OP stands for
OUTPUT PORT

www.itpub.net

 19.4 Designing the Output Circuit for VBC1-E 463

 Things you should notice about the schematic in Figure 19.3:

• Four separate outputs are required to provide the output circuitry for VBC1-E.
• All four of the loadable D flip-flops are cleared by the same signal, RST (asyn).
• The data input to each loadable D flip-flop is R0_R1, which is 4 bits.
• All four of the control inputs (C) to the loadable D flip-flops are driven by the clock signal

SPEED.
• The clock-enable input (CE) to each loadable D flip-flops are enabled by a separate signal

LOAD_OP (0 through 3).

Each loadable D flip-flop in Figure 19.3 can be described by the following concise transfer
function:

OP d 0000 if RST 5 1 else

OP d R0_R1 if (LOAD_OP 5 1 and c SPEED) else

OP d OP

 Things you should notice about the transfer function for each loadable D flip-flop:

• The directed arrow shows the direction of the transfer.
• Because RST precedes the clock signal SPEED, it is an asynchronous input and overrides

the clock signal SPEED—that is, it is independent of the clock signal SPEED.
• R0_R1 is transferred to OP only if LOAD_OP 5 1 at the next rising edge of the clock signal

SPEED.
• OP retains its current value if RST 5 0, or LOAD_OP 5 0, or between clock ticks.

 Listing 19.2 shows the complete VHDL design, for the array of four loadable D flip-flops
using a behavioral design with if statements.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity LOADABLE_DFFs is port (
 rst, speed : in std_logic;
 r0_r1, load_op : in std_logic_vector(3 downto 0);
 op0, op1, op2, op3 : out std_logic_vector(3 downto 0)
);
end LOADABLE_DFFs;

architecture Behavioral of LOADABLE_DFFs is
begin
process (rst, speed)
begin

--loadable DFF 0
 if rst 5 ‘1’ then op0 ,5 “0000”;
 elsif (load_op(0) 5 ‘1’ and rising_edge (speed)) then op0 ,5

r0_r1;
 end if;

--loadable DFF 1
 if rst 5 ‘1’ then op1 ,5 “0000”;
 elsif (load_op(1) 5 ‘1’ and rising_edge (speed)) then op1 ,5

r0_r1;
 end if;

LISTING 19.2
Complete VHDL
design for the array
of four loadable D
flip-flops using a
behavioral design
with if statements

(Continued)

464 Chapter 19 Designing Input/Output Circuits for VBC1-E

 Things you should notice about the VHDL design in Listing 19.2:

• Both R0_R1 and OP0 through OP3 are data type std_logic_vector (3 downto 0), which
explicitly shows that these are 4-bit buses.

• To transfer R0_R1 to OP0 through OP3, both LOAD_OP and rising_edge (SPEED) must
be true.

• Four separate loadable D flip-flops are required because each one is enabled by a different
LOAD_OP signal to provide an output to a different output port.

 Waveform 19.2 shows a simulation with the correct functionality of design entity
LOADABLE_DFFs.

--loadable DFF 2
 if rst 5 ‘1’ then op2 ,5 “0000”;
 elsif (load_op(2) 5 ‘1’ and rising_edge (speed)) then op2 ,5

r0_r1;
 end if;

--loadable DFF 3
 if rst 5 ‘1’ then op3 ,5 “0000”;
 elsif (load_op(3) 5 ‘1’ and rising_edge (speed)) then op3 ,5

r0_r1;
 end if;
end process;
end Behavioral;

 Things you should notice about the waveforms in Waveform 19.2:

• All the vector signals are displayed in unsigned decimal values.
• At the rising edge of the clock signal SPEED, observe that the outputs OP0(3:0), OP1(3:0),

OP2(3:0), and OP3(3:0) load the correct value of R0_R1 5 1 for LOAD_OP(3:0); load the
correct value of R0_R1 5 2 for LOAD_OP(3:0); load the correct value of R0_R1 5 3 for
LOAD_OP(3:0), and load the correct value of R0_R1 5 4 for LOAD_OP(3:0), respectively.

• This partial simulation shows that design entity LOADABLE_DFFs is functionally correct.

19.5 INSTRUCTION DECODER TRUTH TABLE FOR THE MODIFIED OUT
INSTRUCTION FOR VBC1-E

For the modified OUT instruction to work properly, we must redesign the instruction decoder
truth table to provide the necessary control bits, so that the data path unit will operate correctly.
Figure 19.4 shows where the modified output circuit in Figure 19.3 must be added to the design
of VBC1-E.

+

+

+

+

+

+

+

+

+

load_op[3:0]

op3[3:0]

op0[3:0]

rst

speed

speed_period

r0_r1[3:0]

op1[3:0]

op2[3:0]

0

0

0

0

0

0

0

40000 ps 40000 ps

1

Name Value 400 ns0 ns 200 ns

0

0 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

600 nsWAVEFORM 19.2
Simulation with the cor-
rect functionality of
design entity LOADABLE_
DFFs

www.itpub.net

 19.5 Instruction Decoder Truth Table for the Modifi ed OUT Instruction for VBC1-E 465

 As a review, the ALF, TFF, and MCF for the modified OUT instruction for VBC1-E are
shown in Table 19.3.

Loadable
DFF

OP0

OP1

OP2

OP3

CLR

D Q

CE

C
CLR

D Q

CE

C
CLR

D Q

CE

C
CLR

D Q

CE

C

4 4

4 4

4 4

4 4

RST (asyn)

LOAD_OP(0)

SPEED

RST (asyn)

LOAD_OP(1)

SPEED

RST (asyn)

LOAD_OP(2)

SPEED

RST (asyn)

LOAD_OP(3)

SPEED

MUX

4
IP0

4
IP1

DI4
IP2

4

0

1

2

3IP3

DI1

M3

M1
M2

RST

R0

LOAD_R0

ALU_OUT(3:0)

R_ALU

R_ALU_DI

DI0 (SEL)

S1 S0

MUX 34

4

0

1

MUX 24

4

4
0

1

MUX 1

CE

Reg R0
D Q

Q

C
CLR

RST (asyn)

NOTE: New output circuit
added to the data path unit
of VBC1-E

R1 R0_R1

LOAD_R1

SPEED

CE

Reg R1
D

C
CLR

4

4

4
0

1

FIGURE 19.4 Modified output circuit added to the data path unit of VBC1-E

1 0 1 0/1 0 0 OPA OPA

7 6 5 4

0 = R0
1 = R1

Dest.Reg
3:2 OPCODE

Extension 1:0 Port Address7:5 OPCODE

OUT DR,Port_ A DROP[IR(1:0)]

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

TABLE 19.3 The ALF, TFF, and MCF for the OUT instruction for VBC1-E

 Table 19.4 shows the instruction decoder truth table for the modified OUT instruction for
VBC1-E.

TABLE 19.4 Instruction decoder truth table for the modified OUT instruction for VBC1-E

IR Control bits

7 6 5 4 3 2 1 0 M2 LOAD_OP(0) LOAD_OP(1) LOAD_OP(2) LOAD_OP(3)

OUT R0,0 1 0 1 0 0 0 0 0 0 1 0 0 0

OUT R0,1 1 0 1 0 0 0 0 1 0 0 1 0 0

OUT R0,2 1 0 1 0 0 0 1 0 0 0 0 1 0

OUT R0,3 1 0 1 0 0 0 1 1 0 0 0 0 1

OUT R1,0 1 0 1 1 0 0 0 0 1 1 0 0 0

OUT R1,1 1 0 1 1 0 0 0 1 1 0 1 0 0

OUT R1,2 1 0 1 1 0 0 1 0 1 0 0 1 0

OUT R1,3 1 0 1 1 0 0 1 1 1 0 0 0 1

466 Chapter 19 Designing Input/Output Circuits for VBC1-E

 Things you should notice about the instruction decoder truth table for the modified OUT
instruction in Table 19.4:

• The values for the IR bits for the instruction decoder are the machine code bits for the modi-
fied OUT instruction. The values for the control bits for the instruction decoder truth table
are determined by ensuring that the control bits perform the transfer function form for the
modified OUT instruction OUT DR,Port_A, which is OP[IR(1:0)] d DR.

• The instruction OUT R0,Port_A, which loads the register R0 into the output ports (port
addresses 0 through 3), requires control bit M2 to be set to 0.

• The instruction OUT R1,Port_A, which loads the register R1 into the output ports (port
addresses 0 through 3), requires control bit M2 to be set to 1.

 The Boolean equations for the control bits for the modified OUT instruction are

M2 5 IR 14 2 , LOAD_OP10 2 5 IR 11 2 # IR 10 2 ,

LOAD_OP11 2 5 IR 11 2 # IR 10 2 , LOAD_OP12 2 5 IR 11 2 # IR 10 2 , LOAD_OP(3) 5 IR(1)?IR(0)

The Boolean equations for the control bits for LOAD_OP(0 through 3) are written using just the
bits IR(1) and IR(0)—that is, the output port address bits. This is assuming that we will use the
procedure for designing the instruction decoder, as shown in Section 19.6 where the complete
OPCODE is specified for the modified OUT instruction prior to listing the Boolean equations.

19.6 DESIGNING AN INSTRUCTION DECODER FOR THE MODIFIED IN
AND OUT INSTRUCTIONS FOR VBC1-E

Procedure ID that we recommend using for the design of the instruction decoder is repeated as
follows: (1) use a process with a case statement to select each instruction by its OPCODE, (2) spec-
ify the default instruction decoder output values before the case statement, and (3) use Boolean
equations for the control bits within the case statement. (Note: Only the control bits that are dif-
ferent from the default instruction decoder output values need to be added to the case statement.)

For the modified IN instruction, the OPCODE is IR(7:5) 5 101 and IR(3:2) 5 10. An easy
way to specify the location of the OPCODE bits for the modified IN instruction is to
write an 8-bit sequence for the OPCODE bits with the letter V (for Void) placed in each
bit position that has no OPCODE bit. The 8-bit sequence for the OPCODE bits for the
modified IN instruction is 101V10VV.

For the modified OUT instruction, the OPCODE is IR(7:5) 5 101 and IR(3:2) 5 00. The
8-bit sequence for the OPCODE bits for the modified OUT instruction is 101V00VV,
where V (for Void) is placed in each bit position that has no OPCODE bit.

 As obtained earlier, the Boolean equations for the control bits for the modified IN instruc-
tion are

M1 5 1, LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR 14 2 ,

DI1 5 IR(1), DI0 5 IR(0)

 As obtained earlier, the Boolean equations for the control bits for modified OUT instruction
are

M2 5 IR 14 2 , LOAD_OP10 2 5 IR 11 2 # IR 10 2 ,

LOAD_OP11 2 5 IR 11 2 # IR 10 2 , LOAD_OP12 2 5 IR 11 2 # IR 10 2 , LOAD_OP(3) 5 IR(1)?IR(0)

 Listing 19.3 shows a partial VHDL design for an instruction decoder, for the modified IN
and modified OUT instructions using a behavioral design style—that is, a process with a case
statement.

www.itpub.net

 19.7 Designing an Instruction Decoder for the LOADI, ADDI, and JNZ Instructions for VBC1-E 467

decode_process:
process (ir)
begin
 --default Instruction Decoder output values
 m1,5 ‘0’; m2,5 ‘0’; load_r0,5 ‘0’; load_r1,5 ‘0’;
 di1,5 ‘0’; di0,5 ‘0’; load_op,5”0000”;
 case ir(7 downto 5) is
 --provides the control bits for the modified IN and modified OUT instructions
 when “101” 5. if ir(3 downto 2) 5 “10” then m1 ,5 ‘1’; load_r0 ,5 not ir(4);
 load_r1 ,5 ir(4);
 di1 ,5 ir(1); di0 ,5 ir(0);
 elsif ir(3 downto 2) 5 “00” then m2 ,5 ir(4);
 load_op(0) ,5 not ir(1) and not ir(0);
 load_op(1) ,5 not ir(1) and ir(0);
 load_op(2) ,5 ir(1) and not ir(0);
 load_op(3) ,5 ir(1) and ir(0);
 end if;
 when others 5. null;
 end case;
end process decode_process;

LISTING 19.3 Partial VHDL design for an instruction decoder for the modified IN and modified OUT instructions using a
behavioral design style

 Things you should notice about the partial VHDL design in Listing 19.3:

• Default instruction decoder output values are assigned to all the control bits before the case
statement to ensure proper circuit operation—that is, so that inferred latches will not be
generated.

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR, which is
part of the OPCODE for both the modified IN and modified OUT instructions. The if state-
ment evaluates the signal IR(3 downto 2) or the bits 3:2 and assigns the correct control bits
values for the modified IN instruction and the modified OUT instruction.

• When the OPCODE is IR(7:5) 5 101 and IR(3:2) 5 10 for the modified IN instruction,
the assignments are made to the control bits. The assignments to the control bits establish
the data paths necessary for the modified IN instruction to be performed by the VBC1-E
architecture.

• When the OPCODE is IR(7:5) 5 101 and IR(3:2) 5 00 for the modified OUT instruction,
the assignments are made to the control bits. The assignments to the control bits establish
the data paths necessary for the modified OUT instruction to be performed by the VBC1-E
architecture.

19.7 DESIGNING AN INSTRUCTION DECODER FOR THE LOADI, ADDI,
AND JNZ INSTRUCTIONS FOR VBC1-E

The instructions LOADI, ADDI, and JNZ are the same for VBC1 and VBC1-E.

For the LOADI instruction, the OPCODE is IR(7:5) 5 001. The 8-bit sequence for the
OPCODE bits for the LOADI instruction is 101VVVVV, where V (for Void) is placed in
each bit position that has no OPCODE bit.

468 Chapter 19 Designing Input/Output Circuits for VBC1-E

For the ADDI instruction, the OPCODE is IR(7:5) 5 011. The 8-bit sequence for the
OPCODE bits for the ADDI instruction is 011VVVVV, where V (for Void) is placed in
each bit position that has no OPCODE bit.

For the JNZ instruction, the OPCODE is IR(7:5) 5 111. The 8-bit sequence for the
OPCODE bits for the JNZ instruction is 111VVVVV, where V (for Void) is placed in
each bit position that has no OPCODE bit.

 As obtained earlier in Chapter 15, Section 15.6, the Boolean equations for the control bits
for the LOADI instruction are

M1 5 0, M2 5 0, M3 5 1, M4 5 0, M5 5 1

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR 14 2 , LOAD_OP 5 0

 As obtained earlier in Chapter 15, Section 15.7, the Boolean equations for the control bits
for the ADDI instruction are

M1 5 0, M2 5 IR(4), M3 5 1, M4 5 0, M5 5 1

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR 14 2 , LOAD_OP 5 0

 As obtained earlier in Chapter 15, Section 15.11, the Boolean equations for the control bits
for the JNZ instruction are

M 1 5 0, M2 5 0, M3 5 0, M4 5 0, M5 5 0

M6 5 IR 14 2 # 1R0 10 2 1 R0 11 2 1 R0 12 2 1 R0 13 2 2
 1 IR 14 2 # 1R1 10 2 1 R1 11 2 1 R1 12 2 1 R1 13 2 2

LOAD_R0 5 0, LOAD_R1 5 0, LOAD_OP 5 0

 Listing 19.4 shows just the case statement for Procedure ID for the instructions LOADI,
ADDI, and JNZ for VBC1-E—that is, the default instruction decoder output values are not
shown in Listing 19.4.

case ir (7 downto 5) is
 --provides the control bits for the LOADI instruction
 when “001” 5. m3 ,5 ‘1’; m5 ,5 ‘1’; load_r0 ,5 not ir(4);

load_r1 ,5 ir(4);

 --provides the control bits for the ADDI instruction
 when “011” 5. m2 ,5 ir(4); m3 ,5 ‘1’; m5 ,5 ‘1’; load_r0 ,5

not ir(4); load_r1 ,5 ir(4);

 --provides control bit m6 for the JNZ instruction
 when “111” 5. m6 ,5 (not ir(4) and (r0(0) or r0(1) or r0(2)

or r0(3))) or
 (ir(4) and (r1(0) or r1(1) or r1(2) or r1(3)));
 when others 5. null;
end case;

LISTING 19.4 Case
statement for
Procedure ID for the
instructions LOADI,
ADDI, and JNZ for
VBC1-E

 19.3 What do IP and DI stand for in the input circuitry for
VBC1-E?

 19.4 Write a concise transfer function for a 4-to-1 MUX bus
steering circuit.

Section 19.2 Designing the Input Circuit for VBC1-E
 19.1 How many different INPUT PORTS does VBC1-E

have?
 19.2 Name the logic circuit that is used to perform the input

for VBC1-E.

PROBLEMS

www.itpub.net

 Problems 469

 19.23 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for OUTPUT_PORT4 in problem 19.22.

 19.24 Combine your code for problems 19.22 and 19.23 to
form a complete VHDL design. Obtain a simulation
waveform diagram that shows correct functionality for
the complete VHDL design.

Section 19.5 Instruction Decoder Truth Table for the
Modifi ed OUT Instruction VBC1-E
 19.25 Where is the modifi ed output circuit added to the data

path unit of VBC1-E?
 19.26 What are the control bits for the modifi ed OUT

instruction?
 19.27 Can the new OUTPUT PORTS for VBC1-E be cleared?

Explain why or why not.
 19.28 Write the transfer function form for the modifi ed OUT

instruction OUT DR,Port_A for VBC1-E.
 19.29 In Figure 19.4, what are the values of each of the

control bits M2, LOAD_OP(0), LOAD_OP(1), LOAD_
OP(2), and LOAD_OP(3) when the modifi ed OUT
instructions OUT R0,0 and OUT R1,2 are executed?

 19.30 In Figure 19.4, what are the values of each of the
control bits M2, LOAD_OP(0), LOAD_OP(1), LOAD_
OP(2), and LOAD_OP(3) when the modifi ed OUT
instructions OUT R1,1 and OUT R0,3 are executed?

Section 19.6 Designing an Instruction Decoder for the
Modifi ed IN and OUT Instructions for VBC1-E
 19.31 Write the OPCODE for the modifi ed IN instruction.
 19.32 Write an 8-bit sequence for the OPCODE bits for the

modifi ed IN instruction with the letter V placed in each
bit position that has no OPCODE bit.

 19.33 Show a partial VHDL design for an instruction decoder
for VBC1-E just for the modifi ed IN instruction using
Procedure ID.

 19.34 Write the OPCODE for the modifi ed OUT instruction.
 19.35 Write an 8-bit sequence for the OPCODE bits for the

modifi ed OUT instruction with the letter V placed in
each bit position that has no OPCODE bit.

 19.36 Show a partial VHDL design for an instruction decoder
for VBC1-E just for the modifi ed OUT instruction
using Procedure ID.

Section 19.7 Designing an Instruction Decoder for the
LOADI, ADDI, and JNZ Instructions for VBC1-E
 19.37 Write the OPCODE for the LOADI instruction for

VBC1-E.
 19.38 Write an 8-bit sequence for the OPCODE bits for the

LOADI instruction with the letter V placed in each bit
position that has no OPCODE bit.

 19.39 Write the Boolean equations for the control bits M3, M1,
LOAD_R0, LOAD_R1, and M5 for the LOADI instruc-
tion for VBC1-E after you obtain the proper truth table
via Figure 16.2 in Chapter 16 (Section 16.2).

 19.5 Write a concise transfer function for an 8-to-1 MUX
bus steering circuit with inputs IP0 through IP7, SEL
inputs (000 through 111), and output DI.

 19.6 Show a partial VHDL design called MUX_BUS4 for
the 4-to-1 MUX bus steering circuit in Figure 19.1, in
Section 19.2. Use just one conditional signal assignment.

 19.7 Write the required library clause, use clause (for the
package IEEE.STD_LOGIC_1164), and entity declara-
tion for MUX_BUS4 in problem 19.6.

 19.8 Combine your code for problems 19.6 and 19.7 to form
a complete VHDL design. Obtain a simulation wave-
form diagram that shows correct functionality for the
complete VHDL design.

 19.9 In the concatenation operation of A&B&C, which sig-
nal is the MSB and which signal is the LSB in the fi nal
result?

 19.10 What must be changed in the code for the complete
design called MUX_BUS4 in problem 19.6 to expand
the designs to make the input circuits for the design
contain 8 bits, 16 bits, and 32 bits, respectively?

Section 19.3 Instruction Decoder Truth Table for the
Modifi ed IN Instruction for VBC1-E
 19.11 Where is the modifi ed input circuit added to the data

path unit of VBC1-E?
 19.12 What are the control bits for the modifi ed IN instruction?
 19.13 Which input signals provide the steering for the input

ports (port addresses 0 through 3) in Figure 19.2, in
Section 19.3?

 19.14 Write the transfer function form for the modifi ed IN
instruction IN DR,Port_A for VBC1-E.

 19.15 In Figure 19.2, what are the values of each of the
control bits DI1, DI0, M1, LOAD_R0, and LOAD_R1
when the modifi ed IN instructions IN R0,0 and IN R1,2
are executed?

 19.16 In Figure 19.2, what are the values of each of the
control bits DI1, DI0, M1, LOAD_R0, and LOAD_R1
when the modifi ed IN instructions IN R1,1 and IN R0,3
are executed?

Section 19.4 Designing the Output Circuit for VBC1-E
 19.17 Name the logic circuit that is used to perform the out-

put for VBC1-E.
 19.18 How many bits are used for each OUTPUT PORT for

VBC1-E?
 19.19 What is the name of the clock signal that drives each

OUTPUT PORT for VBC1-E?
 19.20 What is the name of the signal that drives the D inputs

of each OUTPUT PORT for VBC1-E?
 19.21 Write a concise transfer function for each loadable D

fl ip-fl op of each OUTPUT PORT for VBC1-E.
 19.22 Show a partial VHDL design called OUTPUT_PORT4

for the array of four loadable D fl ip-fl ops in Figure 19.3,
in Section 19.4. Use four separate conditional signal
assignments—that is, one for each of the output ports.

470 Chapter 19 Designing Input/Output Circuits for VBC1-E

 19.46 Use the following Boolean equations for the control bits,
and write just the case statement for Procedure ID for the
ADDI instruction for VBC1-E. Discuss how the Boolean
equation for the control bit M0 should be handled.

M3 5 1, M1 5 0, LOAD_R0 5 IR 14 2 ,
LOAD_R1 5 IR(4), M2 5 IR(4), M5 5 1

 19.47 Use the following Boolean equation for the control bit
M6, and write just the case statement for Procedure ID
for the JNZ instruction for VBC1-E.

M6 5 IR 14 2 # 1R0 10 2 1 R0 11 2 1 R0 12 2
 1 R0(3)) 1 IR(4)?(R1(0) 1 R1(1)
 1 R1(2) 1 R1(3))

 19.40 Write the OPCODE for the ADDI instruction for
VBC1-E.

 19.41 Write an 8-bit sequence for the OPCODE bits for the
ADDI instruction with the letter V placed in each bit
position that has no OPCODE bit.

 19.42 Write the Boolean equations for the control bits M3,
M1, LOAD_R0, LOAD_R1, M2, and M5 for the ADDI
instruction for VBC1-E after you obtain the proper
truth table via Figure 16.2 in Chapter 16 (Section 16.2).

 19.43 Write the OPCODE for the JNZ instruction for VBC1-E.
 19.44 Write an 8-bit sequence for the OPCODE bits for the

JNZ instruction with the letter V placed in each bit
position that has no OPCODE bit.

 19.45 Use the following Boolean equations for the control bits,
and write just the case statement for Procedure ID for the
LOADI instruction for VBC1-E. Discuss how the Bool-
ean equation for the control bit M0 should be handled.

M3 5 1, M1 5 0, LOAD_R0 5 IR 14 2 ,
LOAD_R1 5 IR(4), M5 5 1

www.itpub.net

C h aa p t e rr

Designing the Data Memory
Circuit for VBC1-E

Chapter Outline

 20.1 Introduction 471

 20.2 Designing the Data Memory for VBC1-E 471

 20.3 Designing Circuits to Select the Registers and Data for VBC1-E 475

 20.4 Instruction Decoder Truth Tables for the STORE and FETCH Instructions
for VBC1-E 475

 20.5 Designing an Instruction Decoder for the STORE and FETCH Instructions
for VBC1-E 478

 20.6 Designing an Instruction Decoder for the MOV Instruction for VBC1-E 479

 Problems 480

20.1 INTRODUCTION

This is the second in the series of chapters that teaches you how to expand the design of VBC1 to
make VBC1-E. In this chapter, you will learn how to design a data memory circuit for VBC1-E.

20.2 DESIGNING THE DATA MEMORY FOR VBC1-E

Data memory allows a programmer to store data and then fetch the data as needed in a program.
VBC1 does not have a data memory; however, VBC1-E has a small data memory with four stor-
age locations.
 Figure 20.1 shows a logic symbol with the necessary inputs and output for the data memory
for VBC1-E.

rr 20

471

Data memory
(RAM 4 × 4)

ADDR DMO

WE

C
CLR

D

IR(3:2)

DM_IN(3:0)

DM_VALUE(3:0)

STO_DM

CLK

RST (asyn)

2

4

4

FIGURE 20.1 Logic symbol for
the data memory for VBC1-E with
an asynchronous reset input

472 Chapter 20 Designing the Data Memory Circuit for VBC1-E

 Things you should notice about the data memory in Figure 20.1:

• Input ADDR (address) selects the location of where data is placed in the data memory.
• Input D (data) provides the data that is placed in the data memory.
• Input WE (write enable) enables data (the data to be stored) to be written into the memory

at the next rising edge of the clock signal CLK.
• Input C (control) provides the clock for writing memory.
• Input CLR provides an asynchronous reset capability to clear the data memory.
• Output DMO provides the outputs for the memory.
• ADDR, D, WE, C, CLR, and DMO are labels.
• The signals for the memory are inputs IR (instruction register), DM_IN (data), STO_DM

(store data memory), CLK (clock), RST (asyn), and output DM_VALUE (data memory value).
• The data memory map contains four memory locations and each location has a storage

capacity of 4 bits (or 1/2 byte) as shown in Figure 20.2.
• The data memory is referred to as a RAM (random-access memory) 4 by 4 (or 4 3 4).

Because 4 5 22, a minimum of two address lines are required to determine the address for
each location in data memory.

• The data memory is stored (written) synchronously at each rising edge of the signal CLK
when signal STO_DM is 1 and retrieved (read) from the signal DM_VALUE.

• When RST (asyn) 5 1, the entire data memory is cleared asynchronously to “0000” at every
address—that is, 0 through 3.

 Figure 20.2 shows the data memory map for VBC1-E.

Data memory
(RAM 4 × 4)

Address
Bits

Memory contents or data for address 0

Memory contents or data for address 1

Memory contents or data for address 2

Memory contents or data for address 3

2

3

1

0

23 1 0

FIGURE 20.2 Data memory map for VBC1-E

 Figure 20.3 shows a circuit for the 4 3 4 data memory represented by the logic symbol in
Figure 20.1.
 Things you should notice about the gate level circuit for the 4 3 4 data memory:

• The decoder selects a D flip-flop in the loadable D flip-flop array that the data DM_IN is
written into. The location that the data is written or stored in the data memory is specified
by the IR bits 3 down to 2. The AND array only allows data to be written or stored when
the control signal STO_DM 5 1.

• The loadable D flip-flops in the loadable D flip-flop array can be asynchronously cleared
by the signal RST, at any time independent of the clock.

• The MUX provides the output of the data memory via the signal DM_VALUE. The IR bits
3 down to 2 specify the location of the data that is read or fetched from the data memory.

 Listing 20.1 shows a complete VHDL design for the data memory for VBC1-E in Figure 20.3.
 Things you should notice about the VHDL design in Listing 20.1:

• The list of internal signals in the design is shown between architecture and the first begin.
The list includes the following signals: DEC_OUT, CE, Q0, Q1, Q2, and Q3.

• The design for the decoder is shown with four Boolean equations in terms of the inputs
IR(3) and IR(2).

• The design for the And array is shown with four Boolean equations in terms of the inputs
STO_DM, DEC_OUT(0), DEC_OUT(1), DEC_OUT(2), and DEC_OUT(3),

www.itpub.net

 20.2 Designing the Data Memory for VBC1-E 473

Loadable D
flip-flop array

AND array

Decoder
MUX

Q044
D Q

CE

C

CE(0)

CLR
CLK

RST (asyn)

DM_IN(3:0)

DEC_OUT(0)

DEC_OUT(1)
IR(2)

IR(3)

IR(2)IR(3)

1

0 1

0

3

2

1
0

1

0

3

2

STO_DM

STO_DM

Q144
D Q

CE

C

CE(1)

CLR
CLK

RST (asyn)

DM_IN(3:0)

DM_VALUE(3:0)

DEC_OUT(2)

STO_DM

Q24
4

4
D Q

CE

C

CE(2)

CLR
CLK

RST (asyn)

DM_IN(3:0)

DEC_OUT(3)

STO_DM

Q344
D Q

CE

C

CE(3)

CLR
CLK

RST (asyn)

DM_IN(3:0)

FIGURE 20.3 Circuit for the 4 3 4 data memory represented by the logic symbol in Figure 20.1 for VBC1-E

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Data_Memory is port (
 rst, clk : in STD_LOGIC;
 ir : in STD_LOGIC_VECTOR (3 downto 2);
 dm_in : in STD_LOGIC_VECTOR (3 downto 0);
 sto_dm : in STD_LOGIC;
 dm_value : out STD_LOGIC_VECTOR (3 downto 0)
);
end Data_Memory;

architecture Mixed of Data_Memory is
 signal dec_out, ce: std_logic_vector (3 downto 0);
 signal q0: std_logic_vector (3 downto 0);
 signal q1: std_logic_vector (3 downto 0);
 signal q2: std_logic_vector (3 downto 0);
 signal q3: std_logic_vector (3 downto 0);
begin

--Decoder
 dec_out(0) ,5 not ir(3) and not ir(2);
 dec_out(1) ,5 not ir(3) and ir(2);

(Continued)

LISTING 20.1
Complete VHDL
design for the data
memory for VBC1-E
(project: Data_
Memory)

474 Chapter 20 Designing the Data Memory Circuit for VBC1-E

• The design for the loadable D flip-flops is shown with a process using an if statement for
each of the loadable D flip-flops in terms of the inputs RST, CE(0), CE(1), CE(2), CE(3),
CLK, and DM_IN. The data memory is asynchronously cleared via the signal RST. Remem-
ber that this is accomplished by placing the RST condition prior to the rising_edge (CLK)
condition in the if statements.

• The design for the MUX is shown with a conditional signal assignment in terms of the
inputs Q0, Q1, Q2, Q3, IR(3), and IR(2).

 Waveform 20.1 shows the correct functionality of design entity Data_Memory.

 dec_out(2) ,5 ir(3) and not ir(2);
 dec_out(3) ,5 ir(3) and ir(2);

--And Array
 ce(0) ,5 sto_dm and dec_out(0);
 ce(1) ,5 sto_dm and dec_out(1);
 ce(2) ,5 sto_dm and dec_out(2);
 ce(3) ,5 sto_dm and dec_out(3);

--Loadable D Flip-Flops
process (rst, clk)
begin
 if rst 5 ‘1’ then q0 ,5 “0000”;
 elsif ce(0) 5 ‘1’ and rising_edge (clk) then q0 ,5 dm_in;
 end if;

 if rst 5 ‘1’ then q1 ,5 “0000”;
 elsif ce(1) 5 ‘1’ and rising_edge (clk) then q1 ,5 dm_in;
 end if;

 if rst 5 ‘1’ then q2 ,5 “0000”;
 elsif ce(2) 5 ‘1’ and rising_edge (clk) then q2 ,5 dm_in;
 end if;

 if rst 5 ‘1’ then q3 ,5 “0000”;
 elsif ce(3) 5 ‘1’ and rising_edge (clk) then q3 ,5 dm_in;
 end if;
end process;

--MUX
 dm_value ,5 q0 when ir(3 downto 2) 5 “00” else
 q1 when ir(3 downto 2) 5 “01” else
 q2 when ir(3 downto 2) 5 “10” else
 q3;
end Mixed;

dm_in[3:0]

sto_dm

rst

clk

clk_period

ir[3:2]

dm_value[3:0]

0

0

0

0

0

40000 ps 40000 ps

1

Name Value 200 ns0 ns 100 ns

0

0

0

0

1 2 1 2

1 2 4

1 2 3

41 2 3

4 02

3 0

1

3

2 31 4

0 3000 3

300 ns 400 ns 500 ns

WAVEFORM 20.1 Simulation for the correct functionality of design entity Data Memory.

www.itpub.net

 20.4 Instruction Decoder Truth Tables for the STORE and FETCH Instructions for VBC1-E 475

 Things you should notice about the waveforms in Waveform 20.1:

• First, the data memory is asynchronously cleared by the signal RST.
• The memory address is cycled from 0 through 3 via the input signal IR(3:2).
• Random values of data (1, 2, 3, and 4) are written into the data memory during the first four

clock ticks after RST goes to 0 when STO_DM is set to 1, as shown by the output signal
DM_VALUE.

• In the waveform diagrams, during the next four clock ticks when STO_DM is set to 0, the
data memory is read. By closely observing the waveform diagrams, it can be seen that the
data written into each memory address (0, 1, 2, and 3) is read correctly, confirming that
the data memory is working properly.

• When RST 5 1 at the end of the simulation, the data memory is asynchronously cleared.

20.3 DESIGNING CIRCUITS TO SELECT THE REGISTERS AND DATA
FOR VBC1-E

Figure 20.4 shows the circuit select register that is used to perform the STORE instruction—
that is, STORE DR, Addr. Observe that the content of register R0 or R1 is supplied to the data
memory via the MUX named select register, and the value of the data memory is monitored
by the circuit data memory monitor via the signal DM(3:0). Figure 20.4 also shows the circuit
select data that is used to perform the FETCH instruction—that is, FETCH DR, Addr. For the
FETCH instruction, the value in the data memory is placed in the destination register when the
signal FET_DM 5 1.
 Things you should notice about the circuits for selecting registers and data:

• The MUX for the circuit select register is used to direct the data from R0 or R1 into the data
memory where the data is stored when the STORE instruction is executed.

• The circuit data memory monitor is used to monitor the contents of data memory via four
LEDs at the address specified by the IR bits 3 down to 2 when a STORE or FETCH instruc-
tion is executed.

• The MUX for the circuit select data is used to direct the data supplied from R_ALU_DI or
DM_VALUE into register R0 or R1.

20.4 INSTRUCTION DECODER TRUTH TABLES FOR THE STORE
AND FETCH INSTRUCTIONS FOR VBC1-E

For the STORE instructions to work properly, we must specify the instruction decoder truth
tables to provide the control signals so that the data path unit will operate correctly. Figure 20.4
shows the control signals required for the design of VBC1-E for the STORE instruction—that
is, STO_DR (store destination register), and STO_DM (store data memory).
 As a review, the ALF, TFF, and MCF for the STORE instruction for VBC1-E are shown in
Table 20.1.

0 0 0 0/1 A A 0 1

7 6 5 4

0 = R0
1 = R1

Dest.Reg
1:0 OPCODE

Extension

3:2 Addr of Data
Memory (DM)

7:5 OPCODE

STORE DR,Addr DRDM[IR(3:2)]

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

TABLE 20.1
 The ALF, TFF, and

MCF for the STORE

instruction for

VBC1-E

476 Chapter 20 Designing the Data Memory Circuit for VBC1-E

 Table 20.2 shows the instruction decoder truth table for the STORE instruction for VBC1-E.
 Things you should notice about the instruction decoder truth table for the STORE instruc-
tion in Table 20.2:

• The values for the IR bits for the instruction decoder are the machine code bits for the
STORE instruction. The values for the control bits for the instruction decoder truth table

Data memory monitor

Select register

Select data

DM_NEXTDM_IN

DM_IN(3:0)

IR(3:2)
R0

R1

R0

R1

FET_DM

STO_DM

STO_DR

STO_DM

DM_VALUE

R_ALU_DI

DM_VALUE

SEL_DATA

LOAD_R0

Note: change
signal named
R_ALU_DI to

SEL_DATA

LOAD_R1

FET_DM

SPEED

DM_VALUE(3:0)

1
0

1

0

1

0

1

0

0000

0000 3

2

DM(3:0)
To 4 LEDs

44

4

4
2

4

4

4

4

4

4

4

4

4

4

4

D Q

D

DMO
ADDR

Data memory
(RAM 4 × 4)

WE

CE

C

CLR

CLR

D Q

Q

C

Reg R0

CLR

CE

D

C

Reg R1

CLR

CLK

CCLK

RST (asyn)

RST (asyn)

RST

RST (asyn)

FIGURE 20.4 Circuits for selecting registers and data for VBC1-E

www.itpub.net

 20.4 Instruction Decoder Truth Tables for the STORE and FETCH Instructions for VBC1-E 477

are determined by ensuring that the control bits perform the transfer function form for the
STORE instruction STORE DR,Addr, which is DM[IR(3:2)] d DR.

• The instruction STORE R0,Addr, which stores the value in the destination register at
location Addr in data memory, requires control bit STO_DR to be set to 0 and control bit
STO_DM to be set to 1.

• The instruction STORE R1,Addr, which stores the value in the destination register at
location Addr in data memory, requires control bit STO_DR to be set to 1 and control bit
STO_DM to be set to 1.

• The control signal STO_DM is used in the circuit data memory monitor to display the value
of the data memory each time a STORE instruction is executed when STO_DM 5 1.

 The Boolean equations for the control bits for the STORE instruction are

STO_DR 5 IR(4), STO_DM 5 1

 For the FETCH instructions to work properly, we must also specify the instruction decoder
truth tables to provide the control signals so that the data path unit will operate correctly. Figure
20.4 shows the control signals required for the design of VBC1-E for a FETCH instruction—
that is, FET_DM (fetch data memory), LOAD_R0, and LOAD_R1.
 As a review, the ALF, TFF, and MCF for the FETCH instruction for VBC1-E are shown in
Table 20.3.

TABLE 20.2 Instruction decoder truth table for

the STORE instruction for VBC1-E

IR Control bits

7 6 5 4 3 2 1 0 STO_DR STO_DM

STORE R0,0 0 0 0 0 0 0 0 1 0 1

STORE R0,1 0 0 0 0 0 1 0 1 0 1

STORE R0,2 0 0 0 0 1 0 0 1 0 1

STORE R0,3 0 0 0 0 1 1 0 1 0 1

STORE R1,0 0 0 0 1 0 0 0 1 1 1

STORE R1,1 0 0 0 1 0 1 0 1 1 1

STORE R1,2 0 0 0 1 1 0 0 1 1 1

STORE R1,3 0 0 0 1 1 1 0 1 1 1

0 0 0 0/1 A A 1 0

7 6 5 4

0 = R0
1 = R1

Dest.Reg
1:0 OPCODE

Extension

3:2 Addr of Data
Memory (DM)

7:5 OPCODE

FETCH DR,Addr DR DM[IR(3:2)]

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

TABLE 20.3 The ALF, TFF, and MCF for the FETCH instruction

for VBC1-E

 Table 20.4 shows the instruction decoder truth table for the FETCH instruction for VBC1-E.

478 Chapter 20 Designing the Data Memory Circuit for VBC1-E

 Things you should notice about the instruction decoder truth table for the FETCH instruc-
tion in Table 20.4:

• The values for the IR bits for the instruction decoder are the machine code bits for the
FETCH instruction. The values for the control bits for the instruction decoder truth table
are determined by ensuring that the control bits perform the transfer function form for the
FETCH instruction FETCH DR,Addr, which is DR d DM[IR(3:2)].

• The instruction FETCH R0,Addr, which stores the value in the data memory at location
Addr in register R0, requires control bit FET_DM to be set to 1, control bit LOAD_R0 to be
set to 1, and control bit LOAD_R1 to be set to 0.

• The instruction FETCH R1,Addr, which stores the value in the data memory at location
Addr in register R1, requires control bit FET_DM to be set to 1, control bit LOAD_R0 to be
set to 0, and control bit LOAD_R1 to be set to 1.

• The control signal FET_DM is used in the circuit data memory monitor to display the value
of the data memory each time a FETCH instruction is executed when FET_DM 5 1.

 The Boolean equations for the control bits for the FETCH instruction are

FET_DM 5 1, LOAD_R0 5 IR 14 2 ,
LOAD_R1 5 IR(4)

20.5 DESIGNING AN INSTRUCTION DECODER FOR THE STORE
AND FETCH INSTRUCTIONS FOR VBC1-E

Procedure ID will now be used for the design of the instruction decoder for the STORE and
FETCH instructions.

The OPCODE for the STORE instruction is IR(7:5) 5 000 and IR(1:0) 5 01. An easy
way to specify the location of the OPCODE bits for the STORE instruction is to write
an 8-bit sequence for the OPCODE bits with the letter V for Void placed in each bit
position that has no OPCODE bit. The 8-bit sequence for the OPCODE bits for the
STORE instruction is 000VVV01.

The OPCODE for the FETCH instruction is IR(7:5) 5 000 and IR(1:0) 5 10. The 8-bit
sequence for the OPCODE bits for the FETCH instruction is 000VVV10, where V for
Void is placed in each bit position that has no OPCODE bit.

TABLE 20.4 Instruction decoder truth table for the FETCH

instruction for VBC1-E

IR Control bits

7 6 5 4 3 2 1 0 FET_DM LOAD_R0 LOAD_R1

FETCH R0,0 0 0 0 0 0 0 1 0 1 1 0

FETCH R0,1 0 0 0 0 0 1 1 0 1 1 0

FETCH R0,2 0 0 0 0 1 0 1 0 1 1 0

FETCH R0,3 0 0 0 0 1 1 1 0 1 1 0

FETCH R1,0 0 0 0 1 0 0 1 0 1 0 1

FETCH R1,1 0 0 0 1 0 1 1 0 1 0 1

FETCH R1,2 0 0 0 1 1 0 1 0 1 0 1

FETCH R1,3 0 0 0 1 1 1 1 0 1 0 1

www.itpub.net

 20.6 Designing an Instruction Decoder for the MOV Instruction for VBC1-E 479

 The Boolean equations for the control bits for the STORE instruction, as obtained earlier, are

STO_DR 5 IR(4), STO_DM 5 1

 The Boolean equations for the control bits for the FETCH instruction, as obtained earlier, are

FET_DM 5 1, LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4)

 Listing 20.2 shows a partial VHDL design for an instruction decoder for the STORE and
FETCH instructions using a behavioral design style—that is, a process with a case statement.

--Instruction Decoder
process (ir)
begin
 --default Instruction Decoder output values
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’;
 sto_dr ,5 ‘0’; sto_dm ,5 ‘0’; fet_dm ,5 ‘0’;
 case ir(7 downto 5) is
 when “000 ” 5. if ir(1 downto 0) 5 “01” then sto_dr ,5 ir(4); sto_dm ,5 ‘1’;
 elsif ir(1 downto 0) 5 “10” then fet_dm ,5 ‘1’;
 load_r0 ,5 not ir(4);
 load_r1 ,5 ir(4);
 end if;
 when others 5. null;
 end case;
end process;

LISTING 20.2 Partial VHDL design for an instruction decoder for the STORE and FETCH instructions using a behavioral
design style

 Things you should notice about the partial VHDL design in Listing 20.2:

• Default instruction decoder output values are assigned to all the control bits before the case
statement to ensure proper circuit operation—that is, so that inferred latches will not be
generated.

• The case statement evaluates the signal IR(7 downto 5) or the bits 7:5 in the IR, which is
part of the OPCODE for both the STORE and FETCH instructions. The if statement evalu-
ates the signal IR(1 downto 0) or the bits 1:0 and assigns the correct control bits values for
the STORE instruction and the FETCH instruction.

• When the OPCODE is IR(7:5) 5 000 and IR(1:0) 5 01 for the STORE instruction, the
assignments are made to the control bits. The assignments to the control bits establish
the data paths necessary for the STORE instruction to be performed by the VBC1-E
architecture.

• When the OPCODE is IR(7:5) 5 000 and IR(1:0) 5 10 for the FETCH instruction, the
assignments are made to the control bits. The assignments to the control bits establish
the data paths necessary for the FETCH instruction to be performed by the VBC1-E
architecture.

20.6 DESIGNING AN INSTRUCTION DECODER FOR THE MOV
INSTRUCTION FOR VBC1-E

The instruction MOV has the same control equations for VBC1 and VBC1-E only when FET_
DM 5 0. The OPCODE needs to be modified for the instruction MOV.

480 Chapter 20 Designing the Data Memory Circuit for VBC1-E

For the modified MOV instruction, the OPCODE is IR(7:5) 5 000 and IR(1:0) 5 00. The
8-bit sequence for the OPCODE bits for the MOV instruction is 000VVV00, where V
for Void is placed in each bit position that has no OPCODE bit.

 As obtained earlier, the Boolean equations for the control bits for the MOV instruction are

M1 5 0, M2 5 IR(3), M3 5 0

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR 14 2 , LOAD_OP 5 0, FET_DM 5 0 (added)

 As a review, the ALF, TFF, and MCF for the MOV instruction for VBC1-E are shown in
Table 20.5.

 A case statement for the instruction decoder for the instruction MOV for VBC1-E uses the
OPCODE bits IR (7 downto 5) followed by an if statement for the OPCODE bits IR(1 downto
0) as shown in Listing 20.3. FET_DM 5 0 may be included in the default list.

0 0 0 0/1 0/1 0 0 0

7 6 5 4

0 = R0
1 = R1

0 = R0
1 = R1

Dest.Reg
Source

Reg
1:0 OPCODE

Extension7:5 OPCODE

MOV DR,SR DR SR

Machine
code
form (MCF)

Transfer
function
form (TFF)

Assembly
language
form (ALF)

3 2 1 0

TABLE 20.5 The ALF, TFF, and MCF for the MOV instruction for VBC1-E

case ir(7 downto 5) is
 --provides the data path control signals for the MOV instruction
 when “000” 5. if ir(1 downto 0) 5 “00” then m2 ,5 ir(3); load_r0 ,5 not ir(4);

load_r1 ,5 ir(4); fet_dm ,5 '0';
 when others 5. null;
end case;

LISTING 20.3 Case statement for the instruction decoder for the instruction MOV for VBC1-E

 20.8 In Figure 20.3, what component provides the output for
the 4 3 4 data memory for VBC1-E?

 20.9 In Figure 20.3, what control signals are used to select
the D fl ip-fl ops that store and fetch the data?

 20.10 In Figure 20.3, what control signal is used to store the
data in the D fl ip-fl ops?

 20.11 In Figure 20.3, write the VHDL code for just the
decoder using a conditional signal assignment.

 20.12 In Figure 20.3, write the VHDL code for just the load-
able D fl ip-fl op array using four conditional signal
assignments.

 20.13 In Figure 20.3, write the VHDL code for just the MUX
using four Boolean equations. (Hint: First draw the
gate-level circuit diagram for the MUX, and write the
Boolean equations from the circuit.)

Section 20.2 Designing the Data Memory for VBC1-E
 20.1 What is the purpose of the data memory?
 20.2 How many address bits are contained in the data

memory for VBC1-E? How many locations do those
bits have access to in the data memory?

 20.3 What is data memory called or referred to as, and what
is the size of the data memory for VBC1-E?

 20.4 Is the data written into data memory for VBC1-E writ-
ten synchronously or asynchronously?

 20.5 Is the data memory for VBC1-E cleared synchronously
or asynchronously, and what signal is used to clear the
data memory?

 20.6 What is the total number of bits that can be stored in
the data memory of VBC1-E?

 20.7 In Figure 20.3, what component selects a D fl ip-fl op
in the loadable D fl ip-fl op array when STO_DM is
asserted?

PROBLEMS

www.itpub.net

 Problems 481

 20.24 In Figure 20.4, what values of the control signals
FET_DM and STO_DM cause the data memory moni-
tor circuit to display the value of the data memory each
time a FETCH instruction is executed?

 20.25 Write the transfer function form for the FETCH
instruction FETCH DR,Addr for VBC1-E.

Section 20.5 Designing an Instruction Decoder for the
STORE and FETCH Instructions for VBC1-E
 20.26 Write the OPCODE for the STORE instruction.
 20.27 Write an 8-bit sequence for the OPCODE bits for the

STORE instruction with the letter V placed in each bit
position that has no OPCODE bit.

 20.28 Show a partial design for an instruction decoder
for VBC1-E just for the STORE instruction using
Procedure ID.

 20.29 Write the OPCODE for the FETCH instruction.
 20.30 Write an 8-bit sequence for the OPCODE bits for the

FETCH instruction with the letter V placed in each bit
position that has no OPCODE bit.

 20.31 Show a partial design for an instruction decoder
for VBC1-E just for the FETCH instruction using
Procedure ID.

Section 20.6 Designing an Instruction Decoder for the
MOV Instruction for VBC1-E
 20.32 Write the OPCODE for the MOV instruction for

VBC1-E.
 20.33 Write an 8-bit sequence for the OPCODE bits for the

MOV instruction with the letter V placed in each bit
position that has no OPCODE bit.

 20.34 What is different about the control equations for VBC1
and VBC1-E for the instruction MOV?

Section 20.3 Designing Circuits to Select the
Registers and Data for VBC1-E
 20.14 In Figure 20.4, what component supplies the contents

of register R0 or R1 to the data memory?
 20.15 In Figure 20.4, write the VHDL code for just the MUX

labeled select register using four Boolean equations.
(Hint: First draw the gate level circuit diagram for
the MUX, and write the Boolean equations from the
circuit.)

 20.16 In Figure 20.4, write the VHDL code for just the data
memory monitor using conditional signal assignments.

 20.17 In Figure 20.4, which control signal allows the data
memory to be placed in the destination register for the
FETCH instruction?

Section 20.4 Instruction Decoder Truth Tables for the
STORE and FETCH Instructions for VBC1-E
 20.18 In Figure 20.4, what value of the control signal STO_

DR causes the value of register R0 to be stored in data
memory?

 20.19 In Figure 20.4, what value of the control signal STO_
DR causes the value of register R1 to be stored in data
memory?

 20.20 In Figure 20.4, what values of the control signals
FET_DM and STO_DM cause the data memory moni-
tor circuit to display the value of the data memory each
time a STORE instruction is executed?

 20.21 Write the transfer function form for the STORE
instruction STORE DR,Addr for VBC1-E.

 20.22 In Figure 20.4, what value of the control signal FET_
DM causes the MUX named select data to store the
signal R_ALU_DI in register R0 or R1?

 20.23 In Figure 20.4, what value of the control signal FET_
DM causes the MUX named select data to store the
signal DM_VALUE in register R0 or R1?

CC h a p t e r

Designing the Arithmetic,
Logic, Shift, Rotate,
and Unconditional Jump
Circuits for VBC1-E

Chapter Outline

 21.1 Introduction 482

 21.2 Designing the Arithmetic and Logic Instructions Part of the ALU for VBC1-E 482

 21.3 Designing the Instruction Decoder for the Arithmetic and Logic Instructions for
VBC1-E 484

 21.4 Designing the Shift and Rotate Instructions Part of the ALU for VBC1-E 485

 21.5 Designing the Instruction Decoder for the Shift and Rotate Instructions for
VBC1-E 486

 21.6 Designing the JMP and JMPR Circuits for VBC1-E 488

 21.7 Designing the Instruction Decoder for the JMP and JMPR Instructions for
VBC1-E 489

 Problems 490

21.1 INTRODUCTION

This is the third in the series of chapters that teaches you how to expand the design of VBC1 to
make VBC1-E. In this chapter, you will learn how to design the arithmetic, logic, shift, rotate,
and unconditional jump circuits for VBC1-E. This includes the circuits for the arithmetic and
logic instructions ADD, SUB, NOT, AND, OR, and XNOR; the circuits for the shift and rotate
instructions SR0, SR1, SL0, SL1, RR, and RL; and the circuits for the unconditional jump
instructions JMP and JMPR.

21.2 DESIGNING THE ARITHMETIC AND LOGIC INSTRUCTIONS PART
OF THE ALU FOR VBC1-E

Figure 21.1 shows the data path unit for the arithmetic and logic instructions ADD, SUB, NOT,
AND, OR, and XNOR for VBC1-E. Observe that each instruction shown inside the ALU logic

CC21

482

www.itpub.net

 21.2 Designing the Arithmetic and Logic Instructions Part of the ALU for VBC1-E 483

symbol is followed by an 8-bit sequence that indicates the OPCODE bits for that instruction,
with the letter V for Void placed in each bit position that has no OPCODE bit.

 Each of the arithmetic and logic instructions must be written from their transfer function
forms in terms of the ALU signals ALU_OUT, R0_R1, and R_IR. For consistency, R0_R1 is
used as the destination register and R_IR is used as the source register on the right-hand side of
the transfer function form for each of the following arithmetic and logic instructions:

The transfer function form for the ADD DR,SR instruction is DR d DR 1 SR, so the ALU
ADD instruction must be written as ALU_OUT d R0_R1 1 R_IR.

The transfer function form for the SUB DR,SR instruction is DR d DR 2 SR, so the ALU
SUB instruction must be written as ALU_OUT d R0_R1 2 R_IR.

The transfer function form for the NOT DR,SR instruction is DR d !SR, so the ALU NOT
instruction must be written as ALU_OUT d !R_IR.

The transfer function form for the AND DR,SR instruction is DR d DR ` SR, so the ALU
AND instruction must be written as ALU_OUT d R0_R1 ` R_IR.

The transfer function form for the OR DR,SR instruction is DR d DR ~ SR, so the ALU
OR instruction must be written as ALU_OUT d R0_R1 ~ R_IR.

The transfer function form for the XNOR DR,SR instruction is DR d !(DR ! SR), so the
ALU XNOR instruction must be written as ALU_OUT d !(R0_R1 ! R_IR).

CLR

LOAD_R1

CE

D

C

CLR

Reg R1

4

4

4
4

4

4

4

4

4

4

4

4

0

MUX 3

1

0

MUX 1
Select data

1

0
MUX 5

ALU

ADD
SUB

(010VV000)
(010VV001)
(010VV100)
(010VV101)
(010VV110)
(010VV111)

NOT
AND
OR
XNOR

1

0

1

0

1

MUX 2

4

FET_DM

SPEED

RST (asyn)

CE

D

Q

Q

C

Reg R0

LOAD_R0

R_ALU

R_ALU_DI

DM_VALUE

R0

R1

R0_1

R0_R1
Choose this

operand
signal as

the
destination

register
(DR)

Choose this
operand
signal as

the source
register

(SR)

DI

M1

M5

0

MUX 4

1

M4

M2

M3

ALU_OUT

R_IR

RST

IR(3:0)

SEL_DATA

IR(7:0)

8

FIGURE 21.1 Data path unit for the arithmetic and logic instructions ADD, SUB, NOT, AND, OR, and XNOR for VBC1-E

484 Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E

 Listing 21.1 shows a partial VHDL design for an arithmetic logic unit for the ADD and SUB
instructions for VBC1-E using a behavioral design style—that is, a process with a case statement.

alu_process:
process (ir, r0_r1, r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating inferred latches
 case ir(7 downto 5) is
 --for the ADD and SUB instructions
 when “010” 5. if ir(2 downto 0) 5 “000” then alu_out ,5 r0_r1 1 r_ir;
 elsif ir(2 downto 0) 5 “001” then alu_out ,5 r0_r 1- r_ir;
 end if;
 when others 5. null;
 end case;
end process alu_process;

LISTING 21.1 Partial VHDL design for an arithmetic logic unit for the ADD and SUB instructions for VBC1-E using a behav-
ioral design style

 Things you should notice about the VHDL design in Listing 21.1:

• The default value of 0000 is used for the signal alu_out to ensure proper circuit operation—
that is, so that inferred latches will not be generated.

• The ADD OPCODE IR(7:5) 5 010 and IR(2:0) 5 000 is used to select the ADD instruction
in the ALU via a case statement followed by an if statement.

• The SUB OPCODE IR(7:5) 5 010 and IR(2:0) 5 001 is used to select the SUB instruction
in the ALU via the case statement followed by an elsif statement.

21.3 DESIGNING THE INSTRUCTION DECODER FOR THE ARITHMETIC
AND LOGIC INSTRUCTIONS FOR VBC1-E

In Figure 21.1, when writing the input signals for the ALU, we consistently made the operand
signal R0_R1 the destination register (DR) and the operand signal R_IR the source register (SR),
for each of the arithmetic and logic instructions ADD, SUB, NOT, AND, OR, and XNOR for
VBC1-E. Because the operand signal R0_R1 is DR and the operand signal R_IR is SR for each
of the arithmetic and logic instructions, the instruction decoder truth table for each of the arith-
metic and logic instructions can be represented by the generalized truth table shown in Table
21.1. The Ext bits are the extension bits. Observe that the Boolean equations for the control bits
can be calculated without using the extension bits.

TABLE 21.1 Generalized instruction decoder truth table for the arithmetic

and logic instructions

Arithmetic or logic
instruction (X) IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 FET_DM

X R0,R0 0 1 0 0 0 Ext bits 0 0 1 0 0 1 0 0

X R0,R1 0 1 0 0 1 Ext bits 0 0 1 1 0 1 0 0

X R1,R0 0 1 0 1 0 Ext bits 0 1 1 0 0 0 1 0

X R1,R1 0 1 0 1 1 Ext bits 0 1 1 1 0 0 1 0

www.itpub.net

 21.4 Designing the Shift and Rotate Instructions Part of the ALU for VBC1-E 485

 To obtain the Boolean equations for the control bits for each of the arithmetic and logic
instructions, substitute ADD, SUB, NOT, AND, OR, and XNOR for X in turn in Table 21.1.
Observe that the Boolean equations for the control bits for each instruction can be written identi-
cally (in the exact same way), because each instruction has the same truth table.
 The Boolean equations for the control bits for each of the arithmetic and logic instructions
ADD, SUB, NOT, AND, OR, and XNOR can be written as:

M1 5 0, M2 5 IR(4), M3 5 1, M4 5 IR(3), M5 5 0

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), FET_DM 5 0.

Keep in mind that bit IR(4) specifies the destination register and bit IR(3) specifies the source
register in the machine code form of an instruction for each of the arithmetic and logic
instructions.
 Procedure ID will now be used for the design of the instruction decoder for the ADD and
SUB instructions.
 Listing 21.2 shows a partial VHDL design for an instruction decoder for the ADD and
SUB instructions for VBC1-E using a behavioral design style—that is, a process with a case
statement.

process (ir)
begin
 --default Instruction Decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; fet_dm ,5 ‘0’;
 case ir (7 downto 5) is
 --for the ADD and SUB instructions
 when “010” 5. m2 ,5 ir(4); m3 ,5 ‘1’; m4, 5 ir(3);
 load_r0 ,5 not ir(4); load_r1 ,5 ir(4);
 when others 5. null;
 end case;
end process;

LISTING 21.2 Partial
VHDL design for an
instruction decoder
for the ADD and
SUB instructions
for VBC1-E using a
behavioral design
style

21.4 DESIGNING THE SHIFT AND ROTATE INSTRUCTIONS PART
OF THE ALU FOR VBC1-E

Figure 21.2 shows the data path unit for the shift and rotate instructions SR0, SR1, SL0, SL1,
RR, and RL for VBC1-E. Observe that each instruction shown inside the ALU logic symbol is
followed by an 8-bit sequence that indicates the OPCODE bits for that instruction, with the letter
V for Void placed in each bit position that has no OPCODE bit.
 Each of the shift and rotate instructions must be written from their transfer function forms
in terms of the ALU signals ALU_OUT, R0_R1, and R_IR. For consistency, R0_R1 is used as
the destination register and R_IR is used as the source register on the right-hand side of the
transfer function form for each of the following shift and rotate instructions.

The transfer function form for the SR0 DR,SR instruction is DR d 0 SR(3:1), so the ALU
SR0 instruction must be written as ALU_OUT d 0 R_IR(3:1).

The transfer function form for the SR1 DR,SR instruction is DR d 1 SR(3:1), so the ALU
SR1 instruction must be written as ALU_OUT d 1 R_IR(3:1).

The transfer function form for the SL0 DR,SR instruction is DR d SR(2:0) 0, so the ALU
SL0 instruction must be written as ALU_OUT d R_IR(2:0) 0.

The transfer function form for the SL1 DR,SR instruction is DR d SR(2:0) 1, so the ALU
SL1 instruction must be written as ALU_OUT d R_IR(2:0) 1.

486 Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E

The transfer function form for the RR DR,SR instruction is DR d SR(0) SR(3:1), so the
ALU RR instruction must be written as ALU_OUT d R_IR(0) R_IR(3:1).

The transfer function form for the RL DR,SR instruction is DR d SR(2:0) SR(3), so the
ALU RL instruction must be written as ALU_OUT d R_IR(2:0) R_IR(3).

 Listing 21.3 shows a partial VHDL design for an arithmetic logic unit for the SL0 and RR
instructions for VBC1-E using a behavioral design style—that is, a process with a case statement.

21.5 DESIGNING THE INSTRUCTION DECODER FOR THE SHIFT
AND ROTATE INSTRUCTIONS FOR VBC1-E

In Figure 21.2, when writing the input signals for the ALU, we consistently made the operand
signal R0_R1 the destination register (DR), and the operand signal R_IR the source register
(SR) for each of the shift and rotate instructions SR0, SR1, SL0, SL1, RR, and RL for VBC1-E.
Because the operand signal for R0_R1 is DR and the operand signal for R_IR is SR for each of

CLR

LOAD_R1

CE

D

C

CLR

Reg R1

4

4

4
4

4

4

4

4

4

4

4

4

0

MUX 3

1

0

MUX 1
Select data

1

0
MUX 5

ALU

SR0
SR1

(100VV000)
(100VV001)
(100VV010)
(100VV011)
(100VV100)
(100VV101)

SL0
SL1
RR
RL

1

0

1

0

1

MUX 2

4

FET_DM

SPEED

RST (asyn)

CE

D

Q

Q

C

Reg R0

LOAD_R0

R_ALU

R_ALU_DI

DM_VALUE

R0

R1

R0_1

R0_R1
Choose this

operand
signal as

the
destination

register
(DR)

Choose this
operand
signal as

the source
register

(SR)

DI

M1

M5

0

MUX 4

1

M4

M2

M3

ALU_OUT

R_IR

RST

IR(3:0)

SEL_DATA

IR(7:0)

8

FIGURE 21.2 Data path unit for the shift and rotate instructions SR0, SR1, SL0, SL1, RR, and RL for VBC1-E

www.itpub.net

 21.5 Designing the Instruction Decoder for the Shift and Rotate Instructions for VBC1-E 487

the shift and rotate instructions, the instruction decoder truth table for each of the shift and rotate
instructions can be represented by the generalized truth table shown in Table 21.2. The Ext bits
are the extension bits. Observe that the Boolean equations for the control bits can be calculated
without using the extension bits.

alu_process:
process (ir, r_ir)
begin
 alu_out ,5 “0000”; --default value to prevent creating inferred latches
 case ir(7 downto 5) is
 --for the SL0 and RR instructions
 when “100” 5. if ir(2 downto 0) 5 “010” then alu_out ,5 r_ir(2 downto 0) & ‘0’;
 elsif ir(2 downto 0) 5 “100” then alu_out ,5 r_ir(0) &

r_ir(3 downto 1);
 end if;
 when others 5. null;
 end case;
end process alu_process;

LISTING 21.3 Partial VHDL design for an arithmetic logic unit for the SL0 and RR instructions for
VBC1-E using a behavioral design style

 To obtain the Boolean equations for the control bits for each of the shift and rotate instruc-
tions, substitute SR0, SR1, SL0, SL1, RR, and RL for Y in turn in Table 21.2. Observe that the
Boolean equations for the control bits for each instruction can be written identically (in the exact
same way), because each instruction has the same truth table.
 The Boolean equations for the control bits for each of the shift and rotate instructions SR0,
SR1, SL0, SL1, RR, and RL can be written as:

M1 5 0, M2 5 IR(4), M3 5 1, M4 5 IR(3), M5 5 0

LOAD_R0 5 IR 14 2 , LOAD_R1 5 IR(4), FET_DM 5 0.

Procedure ID will now be used for the design of the instruction decoder for the SL0 and RR
instructions.

TABLE 21.2 Generalized instruction decoder truth table for the shift

and rotate instructions

Shift or rotate
instruction (Y) IR Control bits

7 6 5 4 3 2 1 0 M1 M2 M3 M4 M5 LOAD_R0 LOAD_R1 FET_DM

Y R0,R0 1 0 0 0 0 Ext bits 0 0 1 0 0 1 0 0

Y R0,R1 1 0 0 0 1 Ext bits 0 0 1 1 0 1 0 0

Y R1,R0 1 0 0 1 0 Ext bits 0 1 1 0 0 0 1 0

Y R1,R1 1 0 0 1 1 Ext bits 0 1 1 1 0 0 1 0

488 Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E

21.6 DESIGNING THE JMP AND JMPR CIRCUITS FOR VBC1-E

Figure 21.3 shows the circuits for the JMP and JMPR instructions for VBC1-E. These circuits
interface directly to the running program counter. The JMP instruction allows a programmer to
use an unconditional jump instruction, while the JMPR instruction allows a programmer to use
an unconditional jump relative instruction. The HALT instruction, which is an unconditional
jump to itself, also works with the circuit in Figure 21.3.

process (ir)
begin
 --default Instruction Decoder output values
 m1 ,5 ‘0’; m2 ,5 ‘0’; m3 ,5 ‘0’; m4 ,5 ‘0’; m5 ,5 ‘0’;
 load_r0 ,5 ‘0’; load_r1 ,5 ‘0’; fet_dm ,5 ‘0’;
 case ir (7 downto 5) is
 --for the SL0 and RR instructions
 when “100” 5. m2 ,5 ir(4); m3 ,5 ‘1’; m4 ,5 ir(3);
 load_r0 ,5 not ir(4); load_r1 ,5 ir(4);
 when others 5. null;
 end case;
end process;

LISTING 21.4 Partial
VHDL design for an
instruction decoder
for the SL0 and
RR instructions for
VBC1-E using a
behavioral design
style

 Things you should notice about the circuits for the JMP and JMPR instructions in Figure 21.3:

• When M6 5 0, this will allow all the instructions except the jump instructions (JNZ, JMP,
JMPR, and HALT) to be executed.

• Both M6 and a new control signal M7 are used to select the JMP instruction or the JMPR
instruction.

• When M6 5 1 and M7 5 0, the JMP can be executed. Using the same control signals also
allows the instruction JNZ to be executed.

• When M6 5 1 and M7 5 1, either the JMPR instruction or the HALT instruction can be
executed.

JMP and JMPR circuits Running program counter (RPC)

JMPR circuit

MUX 6

Adder
(4 bits)

Note: OPCODE bits for JMP (1100VVVV)

OPCODE bits for JMPR (1101VVVV)
OPCODE bits for HALT (11010000)

OPCODE bits for JNZ (111VVVVV)

0

1
0

4

4

4

4

44 Adder

A D Q

C
CLR

SUM

INC

4

4

4

1A

B

SUM

Select address circuit
for JMP or JMPR

IR(3:0)

RES_A(3:0)

NEW_A(3:0) PROG_A
SEL_A

M7

INC

RST

SPEED

M6

FIGURE 21.3 Circuits for the JMP and JMPR instructions for VBC1-E

 Listing 21.4 shows a partial VHDL design for an instruction decoder for the SL0 and
RR instructions for VBC1-E using a behavioral design style—that is, a process with a case
statement.

www.itpub.net

 21.7 Designing the Instruction Decoder for the JMP and JMPR Instructions for VBC1-E 489

21.7 DESIGNING THE INSTRUCTION DECODER FOR THE JMP
AND JMPR INSTRUCTIONS FOR VBC1-E

We can write the truth table for the JMP and JMPR instructions using the schematic shown in
Figure 21.3. Table 21.3 shows a compressed truth table for the JMP instruction.

--JMPR Circuit
process (prog_a, ir)
begin
 res_a ,5 prog_a 1 ir(3 downto 0);
end process;

--Select Address Circuit
process (m7, res_a, ir)
begin
 if m7 5 ‘1’ then new_a ,5 res_a;
 else new_a ,5 ir(3 downto 0);
 end if;
end process;

LISTING 21.5 Partial
VHDL design for
the JMP and JMPR
circuits for VBC1-E
using a behavioral
design style for each
circuit

• The JMPR circuit is an Adder with 4 bits that adds the current value of the running program
counter that is contained in the bits PROG_A to the offset address contained in the bits
IR(3:0) in the JMPR instruction. When the JMPR instruction has an offset address of 0000,
this is the same as the instruction HALT—that is, the instruction JMPR 0 is the same as
the instruction HALT.

 Listing 21.5 shows a partial VHDL design for the JMP and JMPR circuits for VBC1-E
using a behavioral design styles for each circuit—that is, a process with an arithmetic expression
and a process with an if statement.

TABLE 21.3 Compressed truth table

for the JMP instruction

IR Control bits

7 6 5 4 3 2 1 0 M6 M7

JMP Addr 1 1 0 0 A A A A 1 0

TABLE 21.4 Compressed truth table for the JMPR

instruction

IR Control bits

7 6 5 4 3 2 1 0 M6 M7

JMP offset 1 1 0 1 OS OS OS OS 1 1

 The Boolean equations for the control bits for the JMP instruction are:

M6 5 1, M7 5 0

 Table 21.4 shows a compressed truth table for the JMPR instruction.

490 Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E

 The Boolean equations for the control bits for the JMPR instruction are:

M6 5 1, M7 5 1

Procedure ID will now be used for the design of the instruction decoder for the JMP, JMPR,
and HALT instructions.
 Listing 21.6 shows a partial VHDL design for an instruction decoder for the JMP, JMPR,
and HALT instructions for VBC1-E using a behavioral design style—that is, a process with a
case statement.

 21.10 For the data path unit for the arithmetic and logic
instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the OR instruction for the ALU?

 21.11 Write the transfer function form for the ALU XNOR
instruction for VBC1-E shown in Figure 21.1.

 21.12 For the data path unit for the arithmetic and logic
instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the XNOR instruction for the ALU?

 21.13 Write a partial VHDL design for an arithmetic logic
unit for the NOT and AND instructions for VBC1-E
using a behavioral design style—that is, a process with
a case statement.

 21.14 Write a partial VHDL design for an arithmetic logic
unit for the OR and XNOR instructions for VBC1-E
using a behavioral design style—that is, a process with
a case statement.

Section 21.3 Designing the Instruction Decoder for
the Arithmetic and Logic Instructions for VBC1-E
 21.15 What procedure was followed in the text to write the

ALU signals to satisfy the transfer function forms for
the arithmetic and logic instructions in the design of
VBC1-E?

Section 21.2 Designing the Arithmetic and Logic
Instructions Part of the ALU for VBC1-E
 21.1 Write the transfer function form for the ALU ADD

instruction for VBC1-E shown in Figure 21.1.
 21.2 For the data path unit for the arithmetic and logic

instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the ADD instruction for the ALU?

 21.3 Write the transfer function form for the ALU SUB
instruction for VBC1-E shown in Figure 21.1.

 21.4 For the data path unit for the arithmetic and logic
instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the SUB instruction for the ALU?

 21.5 Write the transfer function form for the ALU NOT
instruction for VBC1-E shown in Figure 21.1.

 21.6 For the data path unit for the arithmetic and logic
instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the NOT instruction for the ALU?

 21.7 Write the transfer function form for the ALU AND
instruction for VBC1-E shown in Figure 21.1.

 21.8 For the data path unit for the arithmetic and logic
instructions for VBC1-E shown in Figure 21.1, what
OPCODE selects the AND instruction for the ALU?

 21.9 Write the transfer function form for the ALU OR
instruction for VBC1-E shown in Figure 21.1.

PROBLEMS

process (ir)
begin
 --default Instruction Decoder output values
 m6 ,5 ‘0’; m7 ,5 ‘0’;
 case ir (7 downto 4) is
 when “1100” 5. m6 ,5 ‘1’; --for the JMP instruction
 when “ 1101” 5. m6 ,5 ‘1’; m7, 5 ‘1’; --for the JMPR and HALT instructions
 when others 5. null;
 end case;
end process;

LISTING 21.6 Partial VHDL design for an instruction decoder for the JMP, JMPR, and HALT instructions for VBC1-E using
a behavioral design style

www.itpub.net

 Problems 491

 21.34 Write a partial VHDL design for an arithmetic logic
unit for the SL1 and RL instructions for VBC1-E using
a behavioral design style—that is, a process with a case
statement.

Section 21.5 Designing the Instruction Decoder
for the Shift and Rotate Instructions for VBC1-E
 21.35 What procedure was followed in the text to write the

ALU signals to satisfy the transfer function forms
for the shift and rotate instructions in the design of
VBC1-E?

 21.36 Write the control bits for the instructions SR0, SR1,
SL0, SL1, RR, and RL in Figure 21.2 when the operand
signal R0_R1 is the destination register for the ALU
and the operand signal R_IR is the source register for
the ALU. Hint: Use Table 21.2.

 21.37 Show a partial VHDL design for an instruction
decoder for the SR0 and SR1 instructions for VBC1-E
using Procedure ID.

 21.38 Show a partial VHDL design for an instruction decoder
for the SL1 and RL instructions for VBC1-E using
Procedure ID.

Section 21.6 Designing the JMP and JMPR Circuits
for VBC1-E
 21.39 For the circuits for the JMP and JMPR instructions

for VBC1-E shown in Figure 21.3, what control bits
are used to select the JMP instruction or the JMPR
instruction?

 21.40 For the circuits for the JMP and JMPR instructions for
VBC1-E shown in Figure 21.3, what are the values of
the control bits M6 and M7 that will allow the instruc-
tion JMP to be executed?

 21.41 For the circuits for the JMP and JMPR instructions for
VBC1-E shown in Figure 21.3, what are the values of
the control bits M6 and M7 that will allow the instruc-
tion JNZ to be executed?

 21.42 For the circuits for the JMP and JMPR instructions for
VBC1-E shown in Figure 21.3, what are the values of
the control bits M6 and M7 that will allow the instruc-
tion JMPR to be executed?

 21.43 For the circuits for the JMP and JMPR instructions for
VBC1-E shown in Figure 21.3, what are the values of
the control bits M6 and M7 that will allow the instruc-
tion HALT to be executed?

 21.44 Write a partial VHDL design for the JMP and JMPR
circuits for VBC1-E using an arithmetic expression and
a conditional signal assignment.

Section 21.7 Designing the Instruction Decoder
for the JMP and JMPR Instructions for VBC1-E
 21.45 For the circuits for the JMP and JMPR instructions

for VBC1-E shown in Figure 21.3, write a compressed
truth table for the JMP instruction.

 21.16 Write the control bits for the instructions ADD, SUB,
NOT, AND, OR, and XNOR in Figure 21.1 when the
operand signal R0_R1 is the destination register for the
ALU and the operand signal R_IR is the source register
for the ALU. Hint: Use Table 21.1.

 21.17 In the machine code form of an instruction, what bit
in the arithmetic and logic instructions specifi es the
destination register?

 21.18 In the machine code form of an instruction, what bit
in the arithmetic and logic instructions specifi es the
source register?

 21.19 Show a partial VHDL design for an instruction decoder
for the NOT and AND instructions for VBC1-E using
Procedure ID.

 21.20 Show a partial VHDL design for an instruction decoder
for the OR and XNOR instructions for VBC1-E using
Procedure ID.

Section 21.4 Designing the Shift and Rotate
Instructions Part of the ALU for VBC1-E
 21.21 Write the transfer function form for the ALU SR0

instruction for VBC1-E shown in Figure 21.2.
 21.22 For the data path unit for the shift and rotate instruc-

tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the SR0 instruction for the ALU?

 21.23 Write the transfer function form for the ALU SR1
instruction for VBC1-E shown in Figure 21.2.

 21.24 For the data path unit for the shift and rotate instruc-
tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the SR1 instruction for the ALU?

 21.25 Write the transfer function form for the ALU SL0
instruction for VBC1-E shown in Figure 21.2.

 21.26 For the data path unit for the shift and rotate instruc-
tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the SL0 instruction for the ALU?

 21.27 Write the transfer function form for the ALU SL1
instruction for VBC1-E shown in Figure 21.2.

 21.28 For the data path unit for the shift and rotate instruc-
tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the SL1 instruction for the ALU?

 21.29 Write the transfer function form for the ALU RR
instruction for VBC1-E shown in Figure 21.2.

 21.30 For the data path unit for the shift and rotate instruc-
tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the RR instruction for the ALU?

 21.31 Write the transfer function form for the ALU RL
instruction for VBC1-E shown in Figure 21.2.

 21.32 For the data path unit for the shift and rotate instruc-
tions for VBC1-E shown in Figure 21.2, what OPCODE
selects the RL instruction for the ALU?

 21.33 Write a partial VHDL design for an arithmetic logic
unit for the SR0 and SR1 instructions for VBC1-E
using a behavioral design style—that is, a process with
a case statement.

492 Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E

 21.49 Write a partial VHDL design for an instruction decoder
for just the JMP instruction for VBC1-E using Proce-
dure ID.

 21.50 Write a partial VHDL design for an instruction decoder
for just the JMPR, and HALT instructions for VBC1-E
using Procedure ID.

 21.46 For the circuits for the JMP and JMPR instructions
for VBC1-E shown in Figure 21.3, write a compressed
truth table for the JNZ instruction.

 21.47 For the circuits for the JMP and JMPR instructions
for VBC1-E shown in Figure 21.3, write a compressed
truth table for the JMPR instruction.

 21.48 For the circuits for the JMP and JMPR instructions for
VBC1-E shown in Figure 21.3, write a truth table for
the HALT instruction.

www.itpub.net

C h aa p t e rr

Designing a Circuit to Prevent
Program Execution During
Manual Loading for VBC1-E

Chapter Outline

 22.1 Introduction 493

 22.2 Designing a Circuit to Modify Manual Loading for VBC1-E 493

 22.3 Modifying the Instruction Decoder for Manual Loading for VBC1-E 495

 Problems 495

22.1 INTRODUCTION

This is the fourth in the series of chapters that teaches you how to expand the design of VBC1
to make VBC1-E. In this chapter, you will learn how to design a circuit that modifies manual
loading to provide fewer distractions from flashing outputs as a program is manually loaded
into instruction memory or manually stepped through instruction memory to view its contents.
This chapter and its corresponding experiment (Experiment 22 in Appendix A) may be skipped
without affecting the design of VBC1-E.

22.2 DESIGNING A CIRCUIT TO MODIFY MANUAL LOADING
FOR VBC1-E

Figure 22.1 shows a circuit that prevents program execution during manual loading for VBC1-E.

rr 22

493

8

00000000
8

1

0
8

Signal from
instruction
memory

MUX Instruction
decoder

Fixed
constant

value

E_IR

LOAD_MEM
(BTN2)

IR

FIGURE 22.1 Circuit that pre-
vents program execution during
manual loading for VBC1-E.

494 Chapter 22 Designing a Circuit to Prevent Program Execution During Manual Loading for VBC1-E

 When the signal LOAD_MEM 5 0 (BTN2 is not pressed), instructions are supplied to the
instruction decoder via the signal IR. This allows instructions to be single stepped or run by
VBC1-E. When the signal LOAD_MEM 5 1 (BTN2 is pressed), instruction can be loaded into
instruction memory; however, the instruction decoder is supplied with a fixed constant value of
00000000, which prevents instructions from executing during the manual loading process.
 Listing 22.1 shows a complete VHDL design for the MUX that prevents program execution
during manual loading for VBC1-E.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity MUX is port (
 load_mem : in STD_LOGIC;
 ir : in STD_LOGIC_VECTOR (7 downto 0);
 e_ir : out STD_LOGIC_VECTOR (7 downto 0)
);
end MUX;

architecture Behavioral of MUX is
begin
process (ir)
begin
 if load_mem 5 ‘0’ then e_ir ,5 ir;
 else e_ir ,5 “00000000”;
 end if;
end process;
end Behavioral;

LISTING 22.1
Complete VHDL
design for the MUX
that prevents pro-
gram execution dur-
ing manual loading
for VBC1-E (project:
MUX)

 Waveform 22.1 shows a simulation waveform diagram with the correct functionality of
design entity MUX.

+

+

+

21 a0 85 a0 c0

21 a0 85 a0 c0

21 a0 85

00

a0 c0

0

ir[7:0]

load_mem

e_ir[7:0] 21

21

Name Value 0 ns 100 ns 200 ns 300 nsWAVEFORM 22.1
Simulation waveform
diagram with the cor-
rect functionality for the
design entity MUX

 Things you should notice about the waveforms in Waveform 22.1:

• First, LOAD_MEM is set to 0.
• Notice that a 2-bit flashing lights program LOADI R0,1(21), OUT R0,0(A0), RL R0,R0(85),

OUT R0,0(A0), and JMP 0(C0) is shown by the signal IR(7:0) via the machine code bits (21,
A0, 85, A0, C0) shown in hexadecimal following each assembly language instruction.

• The signal E_IR at the output of MUX follows the signal IR(7:0) when LOAD_MEM is 0,
which allows the simple program to be single stepped or run.

• When LOAD_MEM is set to 1, the 2-bit flashing lights program is repeated via the signal
IR(7:0). Notice that the signal E_IR at the output of the MUX follows the value 00000000
(00) that is supplied to input 1 of the MUX and not the 2-bit flashing lights program. This
prevents the 2-bit flashing lights program from executing when manual loading occurs.

• Waveform 22.1 shows that the VHDL design in Listing 22.1 does in fact provide the correct
design for the design entity MUX.

www.itpub.net

 Problems 495

22.3 MODIFYING THE INSTRUCTION DECODER FOR MANUAL
LOADING FOR VBC1-E

In addition to the MUX in Figure 22.1, every signal IR in the VHDL code for the instruction
decoder for VBC1-E must be changed to the signal E_IR. A simple find-and-replace operation
can be used to make these changes to the code for the instruction decoder.
 These changes will provide fewer distractions due to the output ports that may be lighted,
while you manually load instruction memory or you manually view the contents of instruction
memory of VBC1-E.
 Note: These changes can also be made to the final hardware design of VBC1—that is,
Experiment 17 and Experiment 17L in Appendix A.

ment. Show a simulation for your design to show that
your VHDL code is functionally correct. Name the
design entity MUX. Show the simulation waveform
using unsigned decimal numbers.

 22.6 Write a conditional signal assignment for the MUX in
Figure 22.1 with the fi xed constant value changed from
00000000 to 11111111.

 22.7 Write a process with an if statement for the MUX in
Figure 22.1 with the fi xed constant value changed from
00000000 to 10101010.

Section 22.3 Modifying the Instruction
Decoder for Manual Loading for VBC1-E
 23.8 With the MUX added to the circuit in Figure 22.1,

explain how the instruction decoder for VBC1-E must
be modifi ed to provide proper circuit operation.

 22.9 From a distraction point of view, discuss the purpose of
the MUX in the circuit in Figure 22.1 when you desire
to manually load or view the contents of instruction
memory.

Section 22.2 Designing a Circuit
to Modify Manual Loading for VBC1-E
 22.1 In Figure 22.1, do you think the fi xed value must be

eight zeros, or will any constant consisting of 8 bits pre-
vent program execution during manual loading or dur-
ing manually stepping through instruction memory to
observe its contents? Provide a reason for your answer.

 22.2 In Figure 22.1, can the machine code for the AND
instruction 01000101 be used for the fi xed value? What
occurs when E_IR 5 01000101 due to LOAD_MEM
5 1? What occurs when E_IR 5 IR due to LOAD_
MEM 5 0?

 22.3 In Figure 22.1, can the machine code for the STORE
instruction 00000101 be used for the fi xed constant
value? What occurs when E_IR 5 00000101 due to
LOAD_MEM 5 1? What occurs when E_IR 5 IR due
to LOAD_MEM 5 0?

 22.4 How can you confi rm or disprove that any fi xed con-
stant value can be used at input 1 of the MUX in
Figure 22.1 in a hardware design of VBC1-E?

 22.5 Show complete VHDL code for the MUX in Fig-
ure 22.1. Use a conditional signal assignment state-

PROBLEMS

CC h a p t e r

Designing Extended
Instruction Memory
for VBC1-E

Chapter Outline

 23.1 Introduction 496

 23.2 Modifying the Instruction Memory to Add Extended Instruction Memory
for VBC1-E 496

 23.3 Modifying the Running Program Counter Circuit for VBC1-E 500

 23.4 Modifying the Proper Address Circuit for VBC1-E 501

 23.5 Modifying the Loading Program Counter Circuit for VBC1-E 501

 23.6 Modifying the JMPR Circuit for VBC1-E 502

 Problems 502

23.1 INTRODUCTION

This is the fifth in the series of chapters that teaches you how to expand the design of VBC1
to make VBC1-E. In this chapter, you will learn how to design circuits that double the number
of program memory storage locations to add an extended instruction memory. Modifications
will be made to the circuits for the running program counter, the proper address, the loading
program counter, and the JMPR circuit.

23.2 MODIFYING THE INSTRUCTION MEMORY TO ADD EXTENDED
INSTRUCTION MEMORY FOR VBC1-E

Currently, there are 16 storage locations in the instruction memory. Our task is to add 16 more
storage locations. The added block of memory is called extended instruction memory. Up to this
point, all instructions were placed in the normal instruction memory (section 0). We will refer to
the normal instruction memory as just instruction memory. With added memory, 16 more stor-
age locations are placed in extended instruction memory (section 1). This means that we need
to add one more memory address bit—that is, MEM_ADDR(4) to the design of the instruction
memory to obtain 32 (25 5 32) total memory storage locations. MEM_ADDR(4) is actually the
5th bit of the memory address.

CC23

496

www.itpub.net

 23.2 Modifying the Instruction Memory to Add Extended Instruction Memory for VBC1-E 497

 With the added bit or 5th bit of memory address, the instruction memory covers the address
range of 0 0000 through 0 1111 (section 0), and extended instruction memory covers the address
range 1 0000 through 1 1111 (section 1). The instruction memory and the extended instruction
memory represent the two parts of total instruction memory (RAM 32 3 8).
 Remember that extended instruction memory is only used to execute instructions initiated
by a software interrupt caused by the execution of the instruction INT (interrupt), or to execute
instructions initiated by a hardware interrupt caused by pressing a push-button switch. A soft-
ware interrupt and a hardware interrupt will be added to VBC1-E later.
 Figure 23.1 shows the modified circuits for the total instruction memory and the 4-to-1
MUX array for the multiplexed display system for VBC1-E.

 The changes to the circuit for instruction memory are made to double the number of
program memory storage locations, which consists of instruction memory (section 0) with
addresses 0 through 15 and extended instruction memory (section 1) with addresses 16 through
31. The change to the circuit for the multiplexed display system is made to ensure only 4 bits are
used for the MEM_ADDR and not 5 bits. Later, a single LED will be added to indicate the status
of MEM_ADDR(4).
 Figure 23.2 (on page 499) shows the total instruction memory map for VBC1-E.
 Listing 23.2 shows a complete VHDL design for the total instruction memory for VBC1-E
in Figure 23.1.

0

1

2

3

4

4

4
85

8

4

4

4

4

2
SEL

Note: Change
number of bus
bits from 4 to 5

Circuit for
total instruction

memory

4-to-1
MUX
array

Total
instruction memory

(RAM 32 × 8)

Note: Change
MEM_ADDR to

MEM_ADDR(3:0), i.e.,
MEM_ADDR(4) is not used

Note: Change
number of storage
locations from 16

bits to 32 bits

Part of circuit
for multiplexed
display system

MEM_ADDR(3:0)

WE

IR(7:4)

IR(3:0)

WE

D

C

QADDR

INST

MEM_ADDR(4:0)

CLK

IR

FIGURE 23.1 Modified circuits for
the total instruction memory and the
4-to-1 MUX array for the multiplexed
display system for VBC1-E

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity Total_Instruction_Memory is port (
 mem_addr : in STD_LOGIC_VECTOR (4 downto 0);
 inst : in STD_LOGIC_VECTOR (7 downto 0);

LISTING
23.2 Complete
VHDL design for
the total instruction
memory for VBC1-E
(project: Total_
Instruction_Memory)

(Continued)

498 Chapter 23 Designing Extended Instruction Memory for VBC1-E

 Things you should notice about the VHDL design in Listing 23.2:

• The range of mem_addr is (4 downto 0).
• The clock is signal clk.
• Mem_type is an enumerated data type with the ordered array (0 to 31) of the data type

std_logic_vector (7 downto 0).

 Waveform 23.1 shows the correct functionality of design entity Total_Instruction_Memory.

 we, clk : in STD_LOGIC;
 ir : out STD_LOGIC_VECTOR (7 downto 0)
);
end Total_Instruction_Memory;
architecture Mixed of Total_Instruction_Memory is
 type mem_type is array (0 to 31) of std_logic_vector (7 downto 0);
 signal mem : mem_type;
begin
process (clk)
begin
 if rising_edge (clk) then
 if we 5 ‘1’ then mem (conv_integer (mem_addr)) ,5 inst;
 end if;
 end if;
end process;
 ir ,5 mem (conv_integer (mem_addr));
end Mixed;

+

+

+

+

+

+

inst[7:0]

we

clk

clk_period

ir[7:0]

mem_addr[4:0]

13

1

0

U

40000 ps 40000 ps

10

Name Value 200 ns0 ns 100 ns

10 11 12 13 14 15 16 17 18 19 20

13 12 11 10 9 8 7 6 5 4 3

13 12 11 10 9U U U U U U U U U U U8 7 6 5 4 3

300 ns 400 ns

(a)

+

+

+

+

+

+

inst[7:0]

we

clk

clk_period

ir[7:0]

mem_addr[4:0]

13

1

0

U

40000 ps 40000 ps

10

Name Value 600 ns500 ns

10

0

11 12 13 14 15 16 17 18 19 20

13 12 11 10 9 8 7 6 5 4 3

700 ns 800 ns

(b)

WAVEFORM 23.1
Simulation for the correct
functionality of design
entity Total_Instruction_
Memory: (a) writing
instructions into memory;
(b) reading previously
written instructions from
memory

www.itpub.net

 23.2 Modifying the Instruction Memory to Add Extended Instruction Memory for VBC1-E 499

0 Bits

Total
instruction memory

(RAM 32 × 8)
Instruction memory

(section 0)

1234567

0 00000

0 00011

0 00102

0 00113

0 01004

0 01015

0 01106

0 01117

0 10008

0 10019

0 101010

0 101111

0 110012

0 110113

0 111014

0 111115

Binary
address

Memory content or instruction for address 0

Memory content or instruction for address 1

Memory content or instruction for address 14

Memory content or instruction for address 15

Decimal
address

0 Bits

Extended
instruction memory

(section 1)

1234567

1 000016

1 000117

1 001018

1 001119

1 010020

1 010121

1 011022

1 011123

1 100024

1 100125

1 101026

1 101127

1 110028

1 110129

1 111030

1 111131

Binary
address

Memory content or instruction for address 16

Memory content or instruction for address 17

Memory content or instruction for address 30

Memory content or instruction for address 31

Decimal
address

FIGURE 23.2 Total instruction memory map for VBC1-E

 Things you should notice about the waveforms in Waveform 23.1:

• In the waveform diagrams in (a), the memory address is changed from 10 through 20 via the
input signal MEM_ADDR.

500 Chapter 23 Designing Extended Instruction Memory for VBC1-E

• Random values of data that represent instructions (machine code instructions) are written
into the total instruction memory each time the clock CLK ticks because WE is set to 1, as
shown by the output signal IR.

• In the waveform diagrams in (b), WE is set to 0, which allows the total instruction memory
to be read. By closely observing the waveform diagrams, it can be seen that the data written
into each memory address in (a) is read correctly in (b), confirming that the design entity
Total_Instruction_Memory works properly.

23.3 MODIFYING THE RUNNING PROGRAM COUNTER CIRCUIT
FOR VBC1-E

Figure 23.3 shows the modified circuits for the running program counter, the proper address, the
loading program counter, and the JMP and JMPR circuits for VBC1-E.

Running program counter (RPC)

Loading program counter (LPC)

JMP and JMPR circuits

Proper address

Bus taps

MUX 6
0

1

5

5 5 5

5

4

A

B

SUM

JMPR circuit

Adder
(4 bits)

4

4

4

4

0

1

50

1

5

4

5

M6

M6 M6

PROG_A(4)

ONE_PULSE

SLOW_CLK1

IR(3:0)

PROG_A(3:0)

RES_A(3:0)

NEW_A(3:0)

M7

RST (asyn)
(BTN3)

PROG_A(4)

PROG_A

PC_ADDR

PROG_A(3:0)

PROG_A(4:0)

SEL_A

S_CLR S_PRE

SPEED

MEM_ADDR(4:0)

IPROC
(LD7)

To single LED on
BASYS 2 board or
NEXYS 2 board

Note: Change
the number of

bus bits from 4 to
5 where shown

Note: This signal
must be specified
as PROG_A(3:0)

Select address
for JMP or JMPR

LOAD_MEM
(BTN2)

MEM_ADDR(4)

RST (asyn)

SUM

INC

INC

SUMA D Q

C
CLR

C

CE

Loading
program
counter

CLR

Adder
SCLR SPRE

FIGURE 23.3 Modified circuits for the RPC, the proper address, the LPC, and the JMP and JMPR circuits for VBC1-E

www.itpub.net

 23.5 Modifying the Loading Program Counter Circuit for VBC1-E 501

 Some of the modifications to the running program counter are subtle. First, notice that
all the main buses are now 5 bits rather than 4 bits. One additional D flip-flop is added to the
array of D flip-flops in the running program counter. The not-so-subtle modifications are the
addition of the D flip-flop input SCLR (synchronous clear) and the addition of the D flip-flop
input SPRE (synchronous preset). Remember that input SCLR and input SPRE are synchronous
inputs, which means that they do not cause a change unless they are asserted or equal to 1 at the
next rising edge of SPEED.
 The running program counter in Figure 23.3 operates according to two key principles:
(1) the running program counter rolls over to the lowest address in each section of memory; (2)
the running program counter is designed so that all the instructions except INT and RETA only
operate within the memory section in which they are placed.
 The AND gate circuit feeding the D flip-flop input SCLR via signal S_CLR ensures that
the running program counter rolls over from address 0 1111 to 0 0000 when signal PROG_A
(3:0) 5 1111, signal PROG_A(4) 5 0, and signal M6 5 0 at the next rising edge of SPEED. If a
jump instruction is located in section 0 and M6 5 1, which indicates that a jump instruction is in
the process of being executed, then the jump instruction can only jump to an address in section
0 because the address of the jump instruction contains only 4 bits.
 The AND gate circuit feeding the D flip-flop input SPRE via signal S_PRE ensures that
the running program counter rolls over from address 1 1111 to 1 0000 when signal PROG_A
(4:0) 5 1 1111 and signal M6 5 0 at the next rising edge of SPEED. If a jump instruction is
located in section 1 and M6 5 1, which indicates that a jump instruction is in the process of
being executed, then the jump instruction can only jump to an address in section 1 because the
address of the jump instruction contains only 4 bits.

23.4 MODIFYING THE PROPER ADDRESS CIRCUIT FOR VBC1-E

In Figure 23.3, observe that the proper address circuit has been modified. Notice that the inputs
and the output for the proper address circuit are now 5 bits rather than 4 bits. Also observe that
a bus tap is shown for the signal MEM_ADDR(4). This signal feed into a buffer that provides
the output signal IPROC (interrupt process). The signal for the 5th bit of the memory address is
named IPROC, so IPROC 5 MEM_ADDR(4). When the signal IPROC is 0, VBC1-E executes
instructions in instruction memory (section 0), but when the signal IPROC is 1, VBC1-E
executes instructions in extended instruction memory (section 1). Extended instruction memory
is used to execute instructions initiated by a software or hardware interrupt. Later, a software
interrupt (instruction INT) will be added in (Chapter 24), and a hardware interrupt (a manual
push-button switch) will be added in Chapter 25.
 Signal IPROC is connected to a single LED so that we can observe when VBC1-E is in
instruction memory (section 0) or in extended instruction memory (section 1). When signal
IPROC is 0, the single LED will turn off to indicate that an instruction in instruction memory
(section 0) is being executed, and when signal IPROC is 1, the single LED will turn on to indi-
cate that an instruction in extended instruction memory (section 1) is being executed.

23.5 MODIFYING THE LOADING PROGRAM COUNTER
CIRCUIT FOR VBC1-E

In Figure 23.3, observe that the loading program counter has been modified. Notice that the
number of output bits for signal PC_ADDR is now 5 bits rather than 4 bits. This means that the
loading program counter becomes a binary-up counter with 5 bits that counts from 0 0000 to
1 1111 (0 to 31).

502 Chapter 23 Designing Extended Instruction Memory for VBC1-E

23.6 MODIFYING THE JMPR CIRCUIT FOR VBC1-E

In Figure 23.3, observe that the JMPR circuit has been modified. This change is very subtle. We
changed the signal that feeds into the A input of the Adder of the JMPR circuit from PROG_A to
PROG_A(3:0). If this change is not made, there is a mismatch in the number of bits supplied to
the A input of the Adder, because PROG_A was changed from PROG_A(3:0) to PROG_A(4:0)
when the running program counter was changed.
 After all the changes are made that are discussed in this chapter, instructions can be added
to instruction memory and extended instruction memory, but when push button BTN3 is pressed
to clear the program counter to 0 0000, only instructions in instruction memory (section 0) will
execute. In the next chapter, circuitry will be added for the instructions INT and IRET so that
instructions in instruction memory (section 0) and also extended instruction memory (section 1)
can be executed.

 23.11 Provide the Boolean equation for signal S_PRE that
forces the program counter to roll over to the lowest
address in extended instruction memory (section 1)
at the next rising edge of SPEED. What is the lowest
address in extended instruction memory (section 1)?

 23.12 Explain why a jump instruction can only jump to an
address in the section of memory in which it is placed.
How many bits would a jump instruction have to con-
tain to jump outside of the section of memory in which
it is placed?

Section 23.4 Modifying the Proper Address Circuit
for VBC1-E
 23.13 In Figure 23.3, list the modifi cations to the proper

address circuit for VBC1-E.
 23.14 In Figure 23.3, when IPROC 5 0, in which section of

the total instruction memory are instructions being
executed by VBC1-E?

 23.15 In Figure 23.3, when IPROC 5 1, in which section of
the total instruction memory are instructions being
executed by VBC1-E?

 23.16 What will initiate the execution of instructions in
extended instruction memory?

 23.17 How can we observe which section of the total instruc-
tion memory for VBC1-E is being used to execute an
instruction?

 23.18 When the LED for the signal IPROC is turned off,
which section of the total instruction memory is exe-
cuting an instruction?

 23.19 When the LED for the signal IPROC is turned on,
which section of the total instruction memory is exe-
cuting an instruction?

Section 23.5 Modifying the Loading Program Counter
Circuit for VBC1-E
 23.20 In Figure 23.3, how many bits does the modifi ed load-

ing program counter contain?

Section 23.2 Modifying the Instruction Memory to
Add Extended Instruction Memory for VBC1-E
 23.1 In Figure 23.1, how many address bits are used in the

total instruction memory? What signal supplies the
address bits for the total instruction memory (be sure
to include the range for the bus)?

 23.2 In Figure 23.1, how many memory storage locations
does the total instruction memory contain for VBC1-E?

 23.3 In Figure 23.1, what is the range of the instruction
memory (section 0) and what is the range of the
extended instruction memory (section 1)?

 23.4 Will the VHDL code in Listing P23.4 on the facing
page work correctly for storing data into the total
instruction memory in Figure 23.1? Explain your
answer. Note that this code has been modifi ed from the
code provide earlier in the chapter. (Hint: Compile the
code and run a simulation on the code to observe the
simulation result.)

 23.5 In Figure 23.1, explain why is it necessary to change
the signal MEM_ADDR to MEM_ADDR(3:0).

 23.6 In Figure 23.1, how many bits are required for the
machine code for each instruction for VBC1-E?

Section 23.3 Modifying the Running Program Counter
Circuit for VBC1-E
 23.7 In Figure 23.3, how many bits are required for each of

the main buses—that is, SEL_A, SUM, and PROG_A—
in the running program counter for VBC1-E?

 23.8 In Figure 23.3, how many D fl ip-fl ops are contained in
the array of D fl ip-fl ops in the running program counter
for VBC1-E?

 23.9 List the two key principles concerning the operation of
the running program counter in Figure 23.3.

 23.10 Provide the Boolean equation for signal S_CLR that
forces the program counter to roll over to the lowest
address in instruction memory (section 0) at the next
rising edge of SPEED. What is the lowest address in
instruction memory (section 0)?

PROBLEMS

www.itpub.net

 Problems 503

 23.21 In Figure 23.3, what is the range of addresses for the
modifi ed loading program counter?

 23.22 A modulo n counter is a counter with n states, where
n . 1. How many states does the modifi ed loading
program counter for VBC1-E contain?

 23.23 In Figure 23.3, what is the signal at the output of the
modifi ed loading program counter (be sure to include
the range for the bus)?

Section 23.6 Modifying the JMPR Circuit for VBC1-E
 23.24 In Figure 23.3, what is the very subtle change that is

made to the JMPR circuit?
 23.25 In Figure 23.3, why is it necessary to change the signal

PROG_A to PROG_A(3:0) in the JMPR circuit?

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity total_instruction_memory2 is port (
 mem_addr : in STD_LOGIC_VECTOR (4 downto 0);
 inst : in STD_LOGIC_VECTOR (7 downto 0);
 we, clk : in STD_LOGIC;
 ir : out STD_LOGIC_VECTOR (7 downto 0)
);
end total_instruction_memory2;

architecture Behavioral of total_instruction_memory2 is
 type mem_type is array (0 to 31) of std_logic_vector (7 downto 0);
 signal mem : mem_type;
begin
process (clk)
begin
 if rising_edge (clk) then
 if we 5 ‘1’ then mem (conv_integer (mem_addr)) ,5 inst;
 end if;
 end if;
 ir ,5 mem (conv_integer (mem_addr));
end process;
end Behavioral ;

LISTING P23.4

CC h a p t e r

Designing the Software
Interrupt Circuits for VBC1-E

Chapter Outline

 24.1 Introduction 504

 24.2 Designing the Modified Circuit for the Running Program Counter and the Select
Circuit for VBC1-E 504

 24.3 Designing the Circuit to Store PCPLUS1 for VBC1-E 509

 24.4 Instruction Decoder Truth Tables for the INT and IRET Instructions
for VBC1-E 510

 24.5 Designing the Instruction Decoder for the INT and IRET Instructions
for VBC1-E 511

 Problems 513

24.1 INTRODUCTION

This is the sixth in the series of chapters that teaches you how to expand the design of VBC1 to
make VBC1-E. In this chapter, you will learn how to design the circuits that provide the INT
(software interrupt) and IRET (interrupt return) instructions. With this additional circuitry, you
can load an interrupt service routine in extended instruction memory (section 1), access the
extended instruction memory via the INT instruction, execute the interrupt service routine, and
return to instruction memory (section 0) via the IRET instruction.

24.2 DESIGNING THE MODIFIED CIRCUIT FOR THE RUNNING
PROGRAM COUNTER AND THE SELECT CIRCUIT FOR VBC1-E

Figure 24.1 shows the modified circuit for the running program counter and the select circuit
for VBC1-E.
 Things you should notice about the circuits for the modified running program counter and
the select circuit in Figure 24.1:

• The two control signals B1 and B0 determine which signal is routed to the output of the
4-to-1 MUX array. B1 and B0 are generated by the instruction decoder, which is in the
control unit of VBC1-E.

• When B1B0 is 00, SUM1 is routed through the 4-to-1 MUX array and is stored in the load-
able register circuit at the next rising edge of the signal SPEED.

• SUM1 provides the address of the next instruction for the running program counter.

CC24

504

www.itpub.net

 24.2 Designing the Modifi ed Circuit for the Running Program Counter and the Select Circuit for VBC1-E 505

• When B1B0 is 01, the value 10000 provides the address for the running program counter,
and this only occurs when the INT instruction is executed.

• When B1B0 is 10, 0 RETA(3:0) provides the address for the running program counter,
which is the address of the instruction following the INT instruction, and this only occurs
when the IRET instruction is executed.

• The signal B0 is inverted and added to the AND gate that supplies the signal S_CLR to the
loadable register circuit.

Modified running program counter (RPC) circuit

Loadable
register
circuit

Select circuit

MUX 6

0

1

55 5

5

5

5

5

5

5

5
4

0

0 (bit 4)

1

2

3

5

4

5

M6

M6 M6

PROG_A(4)

NEW_A(3:0)

10000
SUM2

RETA(3:0)

B1 B0

B0 B1

PROG_A(4)

PROG_A

PROG_A(3:0)

PROG_A(4:0)

SEL_A

S_CLR S_PRE

SPEED

Note: Internal signal
SEL = B1 & B0

4-to-1
MUX
array

SEL

S1
S0

RST (asyn)
(BTN3)

SUM1

INC

INC

SUMA D Q

C
CLR

Adder

SCLR SPRE

FIGURE 24.1 Modified circuit for the running program counter and select circuit for VBC1-E

506 Chapter 24 Designing the Software Interrupt Circuits for VBC1-E

• The signal B1 is inverted and added to the AND gate that supplies the signal S_PRE to the
loadable register circuit.

• When the signal S_CLR is asserted—that is, is equal to 1, this causes the loadable register
circuit of the RPC to synchronously clear to 00000 at the next rising edge of the signal
SPEED. The signal S_CLR causes the running program counter to follow the sequence
00000(0) though 01111(15) and roll over (or return) to 00000(0) when the last instruction at
address 01111(15) is executed in instruction memory (section 0). Only the INT instruction
and the jump instructions do not cause a rollover from 01111(15) back to 00000(0) via the
signal S_CLR.

• When the signal S_PRE is asserted—that is, is equal to 1—this causes the loadable register
circuit of the RPC to synchronously preset to 10000 at the next rising edge of the signal
SPEED. The signal S_PRE causes the running program counter to follows the sequence
10000(16) though 11111(31) and roll over (or return) to 10000(16) when the last instruc-
tion at address 11111(31) is executed in extended instruction memory (section 1). Only the
IRET instruction and the jump instructions do not cause a rollover from 11111(31) back to
100000(16) via the signal S_PRE.

 Listing 24.1 shows a complete VHDL design for the select circuit—that is, the 4-to-1 MUX
array—for VBC1-E.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Select_Circuit is port (
 b1,b0 : in STD_LOGIC;
 sel : inout STD_LOGIC_VECTOR (1 downto 0);
 sum1 : in STD_LOGIC_VECTOR (4 downto 0);
 reta : in STD_LOGIC_VECTOR (3 downto 0);
 sum2 : out STD_LOGIC_VECTOR (4 downto 0)
);
end Select_Circuit;

architecture dataflow of Select_Circuit is
begin
 sel ,5 b1 & b0; --concatenation operator used to form a vector or a bus
with sel select --selected signal assignment
 sum2 ,5 sum1 when “00”,
 “10000” when “01”, --occurs only when INT is executed
 ‘0’ & reta(3 downto 0) when “10”, --occurs only when IRET is executed
 sum1 when “11”,
 sum1 when others;
end dataflow;

LISTING 24.1 Complete VHDL design for the select circuit for VBC1-E (project: Select_Circuit)

 Things that you should notice about the complete VHDL design in Listing 24.1:

• The concatenation operator is used to form a bus named SEL, which has the range (1:0).
• The output of the select circuit is SUM1 when INT or IRET is not executed.
• The output of the select circuit is 10000 only when INT is executed.
• The output of the select circuit is 0 RETA(3:0) only when IRET is executed.

 Waveform 24.1 shows a simulation waveform diagram with the correct functionality of
design entity Select_Circuit.

www.itpub.net

 24.2 Designing the Modifi ed Circuit for the Running Program Counter and the Select Circuit for VBC1-E 507

 Things you should notice about the waveforms in Waveform 24.1:

• All the vector signals are displayed in binary values.
• Observe that SUM2 follows SUM1 when B1B0 5 00 and B1B0 5 11.
• Observe that SUM2 is the constant value 10000 when B1B0 5 01.
• Observe that SUM2 follows 0 RETA(3:0) when B1B0 5 10.
• Waveform 24.1 shows that design entity Select_Circuit is functionally correct.

 The transfer function form for the INT instruction is RETA(3:0) d PC(3:0) 11, PC(3:0) d
0000, and IPROC d 1. When the INT instruction is executed, (1) the address of the next instruc-
tion PC(3:0) 11 must be stored in RETA(3:0); (2) the address 0000 must be stored in PC(3:0);
and (3) a 1 must be stored in IPROC. Steps 2 and 3 may be expressed as PC(4:0) d 10000, where
IPROC represents PC(4) and is the 5th bit in the program counter. When when B1B0 5 01, the
value 10000 is routed through the 4-to-1 MUX array and is stored in the loadable register circuit
of the running program counter at the next rising edge of the signal SPEED. This causes the
next instruction to be executed at the beginning of the extended instruction memory—that is, at
address 10000 (16).
 The purpose of the INT instruction is to cause VBC1-E to execute an interrupt service rou-
tine beginning at address 10000 in extended instruction memory (section 1) and to provide part
of the return address to instruction memory (section 0) via the signal RETA(3:0). The generation
of RETA(3:0) is covered in the next section.
 The transfer function form for the IRET instruction is PC(3:0) d RETA(3:0) and IPROC
d 0. When the IRET instruction is executed, (1) the part of the return address of the next
instruction RETA(3:0) must be stored in PC(3:0), and (2) a 0 must be stored in IPROC. Steps 1
and 2 may be expressed as PC(3:0) d RETA(3:0) and PC(4) d 0, because IPROC represents
PC(4) and is the 5th bit in the program counter. Steps 1 and 2, therefore, represent PC(4:0) d 0
RETA(3:0). When when B1B0 5 10, 0 RETA(3:0) is routed through the 4-to-1 MUX array and
is stored in the loadable register circuit of the running program counter at the next rising edge
of the signal SPEED. This causes the next instruction to be executed at the address specified by
0 RETA(3:0) in instruction memory (section 0) for VBC1-E.
 The purpose of the IRET instruction is to cause VBC1-E to execute the instruction follow-
ing the INT instruction in instruction memory (section 0) via the signal 0 RETA(3:0).
 Listing 24.2 shows a complete VHDL design for the loadable register circuit (LRC) in the
RPC for VBC1-E.

+

+

+

+

+

reta[3:0]

sum2[4:0]

b1

b0

sum1[4:0]

0

11111

0101

11111

0

Name Value 0 ns 200 ns

11111

11111 1111110000 00101

0101

WAVEFORM 24.1 Simulation waveform dia-
gram with the correct functionality of design
entity Select_Circuit

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity LRC is port (
 rst, speed, b1, b0, m6 : in std_logic;
 sum2 : in std_logic_vector(4 downto 0);

LISTING 24.2
Complete VHDL
design for the load-
able register circuit in
the RPC for VBC1-E
(project: LRC)

(Continued)

508 Chapter 24 Designing the Software Interrupt Circuits for VBC1-E

 Things that you should notice about the complete VHDL design in Listing 24.2:

• The AND gate code for S_CLR and S_PRE is generated via Boolean equations.
• The signals S_CLR and S_PRE are used as synchronous inputs to the loadable register

circuit. This means that they can only cause the output to change after the rising edge of
SPEED, so they must be placed after rising_edge (speed) in the VHDL code.

• The loadable register circuit output is changed to 00000 if the signal S_CLR is asserted—
that is, is equal to 1.

• The loadable register circuit output is changed to 10000 if the signal S_PRE is asserted—
that is, is equal to 1.

• The loadable register circuit stores the value of SUM2 if S_CLR and S_PRE are not
asserted—that is, not equal to 1—after the rising edge of SPEED.

 Waveform 24.2 shows a simulation waveform diagram with the correct functionality of
design entity LRC.

 prog_a : inout std_logic_vector (4 downto 0)
);
end LRC;

architecture behavioral of LRC is
 signal s_clr,s_pre: std_logic;
begin
 s_clr ,5 (not prog_a(4) and prog_a(3) and prog_a(2) and

prog_a(1) and prog_a(0)) and (not m6) and (not b0);
 s_pre ,5 prog_a(4) and prog_a(3) and prog_a(2) and

prog_a(1) and prog_a(0) and (not m6) and (not b1);

process (rst, speed)
begin
 if rst 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif rising_edge (speed) then
 if s_clr 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif s_pre 5 ‘1’ then prog_a(4 downto 0) ,5 “10000”;
 else prog_a(4 downto 0) ,5 sum2(4 downto 0);
 end if;
 end if;
end process;
end behavioral;

++

+

+

+

+

+

+

+

+

00 03 0f 05 13 02 1f 07 13 1e 01

0100 03 0f 00 13 02 1f 10 13 1e

ValueName

0

1

1

1

1

00

00

40000 ps

rst

speed

b1

b0

m6

speed_period

sum2[4:0]

prog_a[4:0]

0 ns 100 ns 200 ns 300 ns 400 ns

40000 ps

WAVEFORM 24.2
Simulation waveform
diagram with the cor-
rect functionality of
design entity LRC

 Things you should notice about the waveforms in Waveform 24.2:

www.itpub.net

 24.3 Designing the Circuit to Store PCPLUS1 for VBC1-E 509

• All the vector signals are displayed in hexadecimal values.
• RST is set to 1 and then set back to 0 to clear the LRC.
• Notice that PROG_A follows SUM2 at the next rising edge of SPEED, except when

PROG_A(3:0) 5 0F, b0 5 0, and m6 5 0, which causes the LRC to go to 00000 on the next
rising edge of the signal SPEED, or when PROG_A(4:0) 5 1F, b1 5 0, and m6 5 0, which
causes the LRC to go to 10000 on the next rising edge of the signal SPEED.

• Waveform 24.2 shows that design entity LRC is functionally correct.

24.3 DESIGNING THE CIRCUIT TO STORE PCPLUS1 FOR VBC1-E

Figure 24.2 shows the store PCPLUS1 circuit for VBC1-E.

 Things that you should notice about the store PCPLUS1 circuit for VBC1-E in Figure 24.2:

• SUM1(3:0) is loaded into the loadable register at the next rising edge of SPEED when B0 is
asserted—that is, is equal to 1. SUM1(3:0) contains the return address after the INT instruc-
tion is executed, which is the address of the instruction that follows the INT instruction. B0
is asserted only when the INT instruction is decoded.

• The final output of the circuit is the signal RETA(3:0), which is fed to four LEDs so that the
value of the return address can be monitored.

 Listing 24.3 shows a complete VHDL design for the store PCPLUS1 circuit for VBC1-E.

Store PCPLUS1 circuit

4 4

D Q

CE

C

CLR

4

SPEED

LOAD_PCPLUS1

PCPLUS1

Loadable
register

RETA(3:0)
To 4 LEDs

SUM1(3:0)

B0

RST (asyn)
(BTN3)

FIGURE 24.2 Store
PCPLUS1 circuit for
VBC1-E

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Store_PCPLUS1_Circuit is port (
 rst, speed, b0 : in STD_LOGIC;
 sum1 : in STD_LOGIC_VECTOR (3 downto 0);
 reta : out STD_LOGIC_VECTOR (3 downto 0)
);
end Store_PCPLUS1_Circuit;

architecture behavioral of Store_PCPLUS1_Circuit is
 signal load_pcplus1 : std_logic;
 signal pcplus1 : std_logic_vector (3 downto 0);
begin
 load_pcplus1 ,5 b0;

LISTING 24.3
Complete VHDL
design for the store
PCPLUS1 circuit for
VBC1-E (project:
Store_PCPLUS1_
Circuit)

(Continued)

510 Chapter 24 Designing the Software Interrupt Circuits for VBC1-E

 Waveform 24.3 shows a simulation waveform diagram with the correct functionality of
design entity Store_PCPLUS1_Circuit for VBC1-E.

process (rst, speed)
begin
 if rst 5 ‘1’ then pcplus1 ,5 “0000”;
 elsif rising_edge (speed) and load_pcplus1 5 ‘1’ then
 pcplus1 ,5 sum1;
 end if;
end process;
 RETA ,5 pcplus1;
end behavioral;

+

+

+

+

+

+

sum1[3:0]

reta[3:0]

rst

speed

speed_period

b0

0

0

0 0

0 04

1 2 3 4 0 1 2 3 4

0

40000 ps

1

Name Value 0 ns 200 ns 400 ns

40000 ps

WAVEFORM 24.3 Simulation
waveform diagram with the correct
functionality of design entity Store_
PCPLUS1_Circuit

 Things you should notice about the waveforms in Waveform 24.3:

• At the beginning of the simulation, when RST 5 1, RETA(3:0) goes to 0000.
• When RST goes to 0, RETA(3:0) remains at 0000 at each rising edge of SPEED until

B0 5 1, then RETA(3:0) 5 SUM1(3:0).
• When when RST 5 1 close to the end of the simulation, observe that RETA(3:0) goes to

0000.
• Waveform 24.3 shows that design entity Store_PCPLUS1_Circuit is functionally correct.

 Each time the INT instruction is executed, the single LED for IPROC turns on (see Figure
23.3 in Chapter 23). Each time the IRET instruction is executed, the single LED for IPROC
turns off. Each time the INT instruction is executed, the four LEDs for RETA(3:0) change to
indicate the return address in instruction memory (section 0). To manually turn off the single
LED for IPROC and also turn off the four LEDs for RETA(3:0), simply press and release the
reset push-button BTN3. Push-button BTN3 is used to reset VBC1-E to address 00000 in
instruction memory (section 0), which forces the LEDs for IPROC and RETA to turn off.

24.4 INSTRUCTION DECODER TRUTH TABLES FOR THE INT
AND IRET INSTRUCTIONS FOR VBC1-E

For the INT and IRET instructions to work properly, we must specify the instruction decoder
truth tables to provide the control signals for the instructions INT and IRET so that the running
program counter in the control unit will operate correctly. Figure 24.1 in Section 24.2 shows the
control signals B1 and B0 that are required for the design of VBC1-E.
 Table 24.1 shows the instruction decoder truth table for the INT instruction for VBC1-E

www.itpub.net

 24.5 Designing the Instruction Decoder for the INT and IRET Instructions for VBC1-E 511

 Using the instruction decoder truth table, we can write the Boolean equation for the control
bit for the INT instruction as

B0 5 1. The default value for B0 is 0.

 Table 24.2 shows the instruction decoder truth table for the IRET instruction for VBC1-E

TABLE 24.1 Instruction decoder

truth table for the INT instruction for

VBC1-E

IR Control bit

7 6 5 4 3 2 1 0 B0

INT 1 0 1 0 0 1 0 0 1

TABLE 24.2 Instruction decoder

truth table for the IRET instruction for

VBC1-E

IR Control bit

7 6 5 4 3 2 1 0 B1

IRET 1 0 1 0 1 1 0 0 1

 Using the instruction decoder truth table, we can write the Boolean equation for the control
bit for the IRET instruction as

B1 5 1. The default value for B1 is 0.

24.5 DESIGNING THE INSTRUCTION DECODER FOR THE INT
AND IRET INSTRUCTIONS FOR VBC1-E

In the VHDL design for the instruction decoder for the INT and IRET instructions, we will use
Procedure ID, which is listed as follows: (1) use a process with a case statement to select each
of the instructions by their OPCODE, (2) specify the default instruction decoder output values
before the case statement, and (3) use Boolean equations for the control bits for each of the
instructions within the case statement.

The OPCODE for the INT instruction is IR(7:5) 5 101 and IR(3:2) 5 01. The 8-bit sequence
for the OPCODE bits for the INT instruction is 101V01VV, where V is placed in each bit
position that has no OPCODE bit.

The OPCODE for the IRET instruction is IR(7:5) 5 101 and IR(3:2) 5 11. The 8-bit
sequence for the OPCODE bits for the IRET instruction is 101V11VV, where V is placed
in each bit position that has no OPCODE bit.

 As obtained earlier, the Boolean equation for the INT instruction is

B0 5 1. The default value B0 is 0.

 As obtained earlier, the Boolean equation for the IRET instruction is

B1 5 1. The default value of B1 is 0.

512 Chapter 24 Designing the Software Interrupt Circuits for VBC1-E

 Listing 24.4 shows a complete VHDL design for the instruction decoder for the INT and
IRET instructions using a process with a case statement.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity ID_Circuit is port (
 ir : in STD_LOGIC_VECTOR (7 downto 0);
 b0, b1 : out STD_LOGIC
);
end ID_Circuit;

architecture Behavioral of ID_Circuit is
begin
process (ir)
begin
 --default Instruction Decoder output values
 b0 ,5 ‘0’ ; b1 ,5 ‘0’;
 case ir (7 downto 5) is
 --provides the control signal b0 for the INT instruction
 when “101” 5. if ir(3 downto 2) 5 “01” then b0 ,5 ‘1’;
 --provides the control signal b1 for the IRET instruction
 elsif ir(3 downto 2) 5 “11” then b1 ,5 ‘1’;
 end if;
 when others 5. null;
 end case;
end process;
end Behavioral;

LISTING 24.4
Complete VHDL
design for the
instruction decoder
for the INT and IRET
instructions (project:
ID_Circuit)

 Waveform 24.4 shows a simulation waveform diagram with the correct functionality of
design entity ID_Circuit for VBC1-E.

+

+

+

ir[7:0]

b0

b1

24

0

0

24 6f a0 a4 e1 e5 c0 61 ac e5 a1 20

Name Value 0 ns 200 ns 400 nsWAVEFORM 24.4 Simulation
waveform diagram with the cor-
rect functionality of design entity
ID_Circuit

 Things you should notice about the waveforms in Waveform 24.4:

• The vector signal is displayed in hexadecimal values.
• The only time B0 goes to 1 is when when ir(7:0) 5 10100100 (A4). For all others values,

B0 5 0.
• The only time B1 goes to 1 is when when ir(7:0) 5 10101100 (AC). For all other values,

B1 5 0.
• Waveform 24.4 shows that design entity ID_Circuit provides the correct functionality for

the INT and IRET instructions.

www.itpub.net

 Problems 513

architecture. Show a simulation for your design to
verify that your VHDL code is functionally correct.
Name the design entity Select_Circuit3.

 24.9 What is the purpose of the INT instruction?
 24.10 What is the purpose of the IRET instruction?
 24.11 For Figure 24.1, write the Boolean equation for the sig-

nal S_CLR and also the corresponding representation
for the signal S_CLR in VHDL.

 24.12 For Figure 24.1, write the Boolean equation for the sig-
nal S_PRE and also the corresponding representation
for the signal S_PRE in VHDL.

 24.13 What address in instruction memory is affected by the
signal S_CLR in Figure 24.1?

 24.14 Which instructions do not cause rollover from the last
address in instruction memory (section 0)?

 24.15 What address in instruction memory is affected by the
signal S_PRE in Figure 24.1?

 24.16 Which instructions do not cause rollover from the last
address in extended instruction memory (section 1)?

 24.17 Listing P24.17 shows the VHDL code for the archi-
tecture for the loadable register circuit in Figure 24.1.
Explain how the signal S_CLR is used as a synchro-
nous input to the loadable register circuit.

 24.18 In Listing P24.17, explain how the signal S_PRE is used
as a synchronous input to the loadable register circuit.

 24.19 In Listing P24.17, explain how the signal RST is used as
an asynchronous input to the loadable register circuit.

Section 24.2 Designing the Modifi ed Circuit for the
Running Program Counter and the Select Circuit for
VBC1-E
 24.1 In Figure 24.1, what type of signals are B1 and B0? What

unit in the VBC1-E computer generates these signals?
 24.2 In Figure 24.1, what is SUM2 when B1B0 is 10? Show

the range of each signal.
 24.3 In Figure 24.1, what is SUM2 when B1B0 is 00? Show

the range of each signal.
 24.4 In Figure 24.1, what is SUM2 when B1B0 is 01? Show

the range of each signal.
 24.5 In Figure 24.1, what is the & operator called? What is

the expression B1 & B0 called in VHDL?
 24.6 Show complete VHDL code for the select circuit in

Figure 24.1. Use the VHDL representation for SEL
5 B1&B0 and a conditional signal assignment in the
architecture. Show a simulation for your design to
verify that your VHDL code is functionally correct.
Name the design entity Select_Circuit1.

 24.7 Show complete VHDL code for the select circuit in
Figure 24.1. Use the VHDL representation for SEL
5 B1&B0 and a process with a case statement in the
architecture. Show a simulation for your design to
verify that your VHDL code is functionally correct.
Name the design entity Select_Circuit2.

 24.8 Show complete VHDL code for the select circuit
in Figure 24.1. Use the VHDL representation for SEL
5 B1&B0 and a process with an if statement in the

PROBLEMS

architecture behavioral of LRC is
 signal s_clr,s_pre: std_logic;
begin
 s_clr ,5 (not prog_a(4) and prog_a(3) and prog_a(2)
 and prog_a(1) and prog_a(0)) and (not m6) and (not b0);

 s_pre ,5 prog_a(4) and prog_a(3) and prog_a(2)
 and prog_a(1) and prog_a(0) and (not m6) and (not b1);

process (rst, speed) --process for loadable register circuit
begin
 if rst 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif rising_edge (speed) then
 if s_clr 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif s_pre 5 ‘1’ then prog_a(4 downto 0) ,5 “10000”;
 else prog_a(4 downto 0) ,5 sum2(4 downto 0);
 end if;
 end if;
end process;
end behavioral;

LISTING P24.17

514 Chapter 24 Designing the Software Interrupt Circuits for VBC1-E

Section 24.4 Instruction Decoder Truth Tables for the
INT and IRET Instructions for VBC1-E
 24.30 Table P24.30a shows the original instruction decoder

truth table for the INT instruction for VBC1-E. Table
P24.30b shows a design modifi cation to the instruction
decoder truth table for the INT instruction for VBC1-
E. Show or list the required circuit changes to Figure
24.1 and Figure 24.2 for the design modifi cation.

 24.31 For the modifi ed instruction decoder truth table for
the INT instruction in Table P24.30b, is it correct to
specify the Boolean equation for the control bit as
B0 5 IR 12 2? Provide a different way to write the Bool-
ean equation for the control bit.

 24.32 Table P24.32a shows the original instruction decoder
truth table for the IRET instruction for VBC1-E. Table
P24.32b shows a design modifi cation to the instruction
decoder truth table for the IRET instruction for VBC1-
E. Show or list the required circuit changes to Figure
24.1 for the design modifi cation.

 24.33 For the modifi ed instruction decoder truth table for
the IRET instruction in Table P24.32b, is it correct
to specify the Boolean equation for the control bit
as B1 5 IR 17 2? Provide a different way to write the
Boolean equation for the control bit.

 24.34 In Table P24.30b, what is the default value for the con-
trol signal B0 in the modifi ed instruction decoder truth
table for the INT instruction for the case statement in
VHDL?

 24.35 In Table P24.32b, what is the default value for the con-
trol signal B1 in the modifi ed instruction decoder truth
table for the IRET instruction for the case statement in
VHDL?

Section 24.5 Designing the Instruction Decoder for
the INT and IRET Instructions for VBC1-E
 24.36 List the procedure used for designing the instruction

decoder for the INT and IRET instructions.

 24.20 Listing P24.20 shows the VHDL code for the output of
the AND gate in Figure 24.1. Show a complete VHDL
design for this output to investigate if it will or will not
compile correctly. Explain your fi nding.

S_CLR ,5 (NOT PROG_A(4)) AND
PROG_A(3 DOWNTO 0) AND (NOT M6)
AND (NOT B0);

LISTING P24.20

Section 24.3 Designing the Circuit to Store PCPLUS1
for VBC1-E
 24.21 In Figure 24.2, what instruction must be executed to

store SUM1(3:0)?
 24.22 In Figure 24.2, after the instruction INT is executed,

where is the return address stored?
 24.23 Explain how the return address for the INT instruction

can be monitored by the circuit in Figure 24.2. What is
the name of the return address signal called?

 24.24 Show complete VHDL code for the store PCPLUS1
circuit in Figure 24.2. Use Boolean equations and a
conditional signal assignment in the architecture. Show
a simulation for your design to verify that your VHDL
code is functionally correct. Name the design entity
Store_PCPLUS1.

 24.25 List the instruction that turns on the single LED for
IPROC.

 24.26 List the instruction that turns off the single LED for
IPROC.

 24.27 List the instruction that turns on the four LEDs for
RETA.

 24.28 Is there an instruction that can be executed to turn off
the four LEDs for RETA?

 24.29 When the reset push-button BTN3 is pressed and
released, does this turn the LEDs for IPROC and
RETA on or off?

(a)

7 6 5 4 3 2 1 0

1 0 1 0 0 1 10 0INT

Control bit

Original

B0
IR

7 6 5 4 3 2 1 0

1 0 1 0 0 1 00 1INT Modified

B0
Control bitIR

(b)

TABLE P24.30 (a) Original instruction
decoder truth table for the INT instruction;
(b) design modification to the instruction
decoder truth table for the INT instruction

7 6 5 4 3 2 1 0

1 0 1 0 1 1 10 0IRET

Control bit

Original

B1
IR

(a)

7 6 5 4 3 2 1 0

1 0 1 0 1 1 00 0IRET

Control bit

Modified

B1
IR

(b)

TABLE P24.32 (a) Original instruction
decoder truth table for the IRET instruction;
(b) design modification to the instruction
decoder truth table for the IRET instruction

www.itpub.net

 Problems 515

 24.41 Show a complete VHDL design for the instruction
decoder required for Figure 24.1 for just the IRET
instruction using a conditional signal assignment. Name
the design entity ID_circuit_IRET. Show a simulation
for the VHDL code to verify that it works. Show the
simulation waveform using hexadecimal numbers.

 24.42 Show a complete VHDL design for the instruction
decoder required for Figure 24.1 for the INT and IRET
instructions using conditional signal assignments.
Name the design entity ID_ckt. Show a simulation for
the VHDL code to verify that it works. Show the simu-
lation waveform using hexadecimal numbers.

 24.37 What is the purpose of including the default instruction
decoder output values when designing the instruction
decoder?

 24.38 Write the OPCODE for the INT instruction.
 24.39 Write the OPCODE for the IRET instruction.
 24.40 Show a complete VHDL design for the instruction

decoder required for Figure 24.1 for just the INT
instruction using a conditional signal assignment.
Name the design entity ID_circuit_INT. Show a simu-
lation for the VHDL code to verify that it works. Show
the simulation waveform using hexadecimal numbers.

CC h a p t e r

Completing the Design
for VBC1-E

Chapter Outline

 25.1 Introduction 516

 25.2 Designing a Debounced One-Pulse Trigger Interrupt Circuit and Modifying the RPC
Circuit for VBC1-E 516

 25.3 Designing Circuits for Displaying the Signal RETA for VBC1-E 521

 25.4 Designing Circuits to Provide a Loader for Instruction Memory for VBC1-E 525

 Problems 525

25.1 INTRODUCTION

This is the seventh and final chapter in the series of chapters that teaches you how to expand the
design of VBC1 to make VBC1-E. In this chapter, you will learn how to design circuits that pro-
vide a hardware interrupt for VBC1-E. You will also learn how to modify existing circuits and
add some new circuits for displaying the signal RETA. With this additional circuitry, you can
load an interrupt service routine in extended instruction memory (section 1), access the extended
instruction memory via a manual push-button switch, execute the interrupt service routine, and
return to instruction memory (section 0) via the IRET instruction.

25.2 DESIGNING A DEBOUNCED ONE-PULSE TRIGGER INTERRUPT
CIRCUIT AND MODIFYING THE RPC CIRCUIT FOR VBC1-E

Figure 25.1 shows a debounced one-pulse trigger interrupt circuit and the modified RPC circuit
for VBC1-E.
 Things you should notice about the debounced one-pulse trigger interrupt circuit and modi-
fied RPC circuit for VBC1-E in Figure 25.1:

• Push-button switch BTN3, on the button module, is used as the input to the debounced one-
pulse trigger interrupt circuit via the D input of the QA flip-flop.

• This debounced circuit was previously used to generate a single pulse for the loading
program counter. In this case, it is used to generate a single pulse to trigger a hardware
interrupt.

• Each time push-button BTN3 is pressed on the button module, a hardware interrupt will
occur when a program is running in instruction memory (section 0). The signal TID (trig-

CC25

516

www.itpub.net

 25.2 Designing a Debounced One-Pulse Trigger Interrupt Circuit and Modifying the RPC Circuit for VBC1-E 517

ger interrupt delayed) and the inverted signal PROG_A(4) are connected to an AND gate.
When the signal TID is 1 and the signal PROG_A(4) is 0, the signal PRE is 1. The signal
PRE is connected to the PRE input of the loadable register circuit of the RPC. The signal
PRE is used as an asynchronous preset for the loadable register circuit to preset the RPC to
the address 10000 (16), which is the first address of expanded instruction memory—that is,
the starting address of the interrupt service routine.

• The flip-flop for storing the signal TID is used later so that a gated clock circuit is not cre-
ated by connecting the signal TI directly to the control input (or clock input) of a flip-flop
to store the value of RETA in Figure 25.2 (see store PC circuit) in the next section. Recall:
If the signal TI is used to drive the clock input of a flip-flop, this is considered a bad design
practice, and a gated clock warning will be issued by the ISE software. The output of a flip-
flop driving the clock input of another flip-flop is not a gated clock, because the output of
the flip-flop is synchronized with the clock and does not create glitches.

 Listing 25.1 shows a complete VHDL design for the debounced one-pulse trigger interrupt
circuit for VBC1-E in Figure 25.1 with the signal COUNT4(18) changed to COUNT4(1).

Modified running program counter (RPC) circuit

Debounced one-pulse trigger interrupt circuit

5

5

4

5

M6 M6

B0 B1

PROG_A(4)

SLOW_CLK4

PROG_A(4)

PROG_ASUM2

PROG_A(3:0)

PROG_A(4:0)

S_CLR S_PRE

SPEED

RST (asyn)
(BTN3 on main

board)

TRIG_INT
(BTN3 on button

module)

D

D

Q

C

C

D

C

DQ Q Q

C

D Q

C

CLR

CLK

QA QB QC

TI TID

PRE

PRE

SCLR SPRE

Frequency
divider

COUNT4 (18)

FIGURE 25.1 Debounced one-pulse trigger interrupt circuit and modified RPC circuit for VBC1-E

518 Chapter 25 Completing the Design for VBC1-E

 Things that you should notice about the complete VHDL design in Listing 25.1:

• The use IEEE.STD_LOGIC_UNSIGNED.ALL; entry is required in the library part
because the arithmetic operator “1” is used for the frequency divider.

• The arithmetic method is use to obtain the VHDL code for the frequency divider.
• The signals SLOW_CLK4 and TI are used in the entity and not as internal signals so that

these signals will be displayed in the simulation waveform diagram for design entity
Debounced_Circuit.

• All flip-flops are initialized to 0 via :5 '0' for flip-flop outputs TID, QA, QB, and QC
including :5"00" for flip-flop outputs COUNT4(1:0). Initialization is only required when
running a simulation.

• The frequency of the signal COUNT4(18) is too slow compared to the frequency of the sig-
nal CLK to provide an observable simulation output for SLOW_CLK4. To show a simulation
output that provides a proof of concept of the circuit, the signal COUNT4(18) was changed
to COUNT4(1). COUNT4(1) divides the frequency CLK by 22 (or 4) while COUNT4(18)
divides the frequency of CLK by 219 (or 524,288), which would be stretched out too far to
observe via a simulation waveform diagram.

• Four separate conditional signal assignments are used for each of the four flip-flops QA,
QB, QC, and TID.

• A Boolean equation is used for the AND gate.

 Waveform 25.1 shows the correct functionality of design entity Debounced_Circuit.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Debounced_Circuit is port (
 clk : in STD_LOGIC;
 trig_int : in STD_LOGIC;
 slow_clk4 : inout STD_LOGIC;
 ti : inout STD_LOGIC;
 tid : inout STD_LOGIC :5 ‘0’
);
end Debounced_Circuit;

architecture dataflow of Debounced_Circuit is
 signal qa, qb, qc : std_logic :5 ‘0’;
 signal count4 : std_logic_vector (1 downto 0) :5“00”;
begin
--frequency divider
 count4 ,5 count4 1 1 when rising_edge(clk) else
 count4;
 slow_clk4 ,5 count4(1);

--4 flip-flops
 qa ,5 trig_int when rising_edge (slow_clk4);
 qb ,5 qa when rising_edge (slow_clk4);
 qc ,5 qb when rising_edge (slow_clk4);
 tid ,5 ti when rising_edge (slow_clk4);
--AND gate
 ti ,5 qa and qb and not qc;
end dataflow ;

LISTING 25.1
Complete VHDL
design for the
debounced one-
pulse trigger interrupt
circuit for VBC1-E
(project: Debounce_
Circuit)

www.itpub.net

 25.2 Designing a Debounced One-Pulse Trigger Interrupt Circuit and Modifying the RPC Circuit for VBC1-E 519

 Things you should notice about the waveforms in Waveform 25.1:

• SLOW_CLK4 is 1/4 the frequency of CLK.
• When TRIG_INT is applied to cause a hardware interrupt, via push-button switch BTN3

on the button module, a single pulse TI followed by a delayed pulse TID is generated by the
debounced one-pulse trigger interrupt circuit shown in Figure 25.1.

• Observe that TRIG_INT is applied twice in Waveform 25.1. The first time BTN3 is pressed
briefly, and the second time it is held longer before it is released. In both cases, a single
pulse TI is generated followed by a delayed pulse TID.

• The pulse TID is delayed by one clock cycle of the signal SLOW_CLK4, which is the clock
signal that drives the TID flip-flop.

• Waveform 25.1 shows that design entity Debounced_Circuit is functionally correct.

 The transfer function for the hardware interrupt is RETA(3:0) d PC(3:0), PC(3:0) d 0000,
IPROC d 1. The modified RPC circuit for VBC1-E only performs the parts PC(3:0) d 0000
and IPROC d 1, which is the same as PC(4:0) d 10000. The signal PRE is used as an asynchro-
nous preset input to the loadable register circuit of the RPC.
 Listing 25.2 shows a complete VHDL design for the modified RPC circuit for VBC1-E.

+

+

+

+

+

+ ti

tid

clk

trig_int

clk_period

slow_clk4

0

0

0

0

20000 ps 20000 ps

0

Name Value 0 ns 500 ns WAVEFORM 25.1 Simulation
for the correct functionality of
design entity Debounced_Circuit

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity RPC_Circuit_MOD is port (
 rst, speed, b1, b0, m6, tid : in std_logic;
 sum2 : in std_logic_vector(4 downto 0);
 prog_a : inout std_logic_vector (4 downto 0)
);
end RPC_Circuit_MOD;

architecture Mixed of RPC_Circuit_MOD is
 signal s_clr,s_pre,pre: std_logic;
begin
 s_clr ,5 (not prog_a(4) and prog_a(3) and prog_a(2)
 and prog_a(1) and prog_a(0)) and (not m6) and (not b0);

 s_pre ,5 prog_a(4) and prog_a(3) and prog_a(2)
 and prog_a(1) and prog_a(0) and (not m6) and (not b1);

 pre ,5 not prog_a(4) and tid;
process (rst, speed, pre)
begin
 if rst 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif pre 5 ‘1’ then prog_a(4 downto 0) ,5 “10000”;

LISTING 25.2
Complete VHDL
design for the modi-
fied RPC circuit for
VBC1-E (project:
RPC_Circuit_MOD)

(Continued)

520 Chapter 25 Completing the Design for VBC1-E

 Things that you should notice about the complete VHDL design for the modified RPC Cir-
cuit in Listing 25.2:

• The signal TID is included in the entity.
• The VHDL code is written using a mixed design style—that is, Boolean equations are used

and a process with an if statement is used, which represents two different design styles. The
architecture is named Mixed to reflect the two different design styles.

• The signal PRE is an internal signal, which requires it to be included in the architecture
before the first begin.

• The Boolean equation for the signal PRE is a concurrent assignment that is included after
the first begin but before the process.

• The signal PRE must be included in the process before the rising_edge (speed) to make it an
asynchronous signal. If the signal PRE is true or 1, then prog_a(4 downto 0) is set to 10000.

 Waveform 25.2 shows a simulation waveform diagram with the correct functionality of
design entity RPC_Circuit_MOD.

 elsif rising_edge (speed) then
 if s_clr 5 ‘1’ then prog_a(4 downto 0) ,5 “00000”;
 elsif s_pre 5 ‘1’ then prog_a(4 downto 0) ,5 “10000”;
 else prog_a(4 downto 0) ,5 sum2(4 downto 0);
 end if;
 end if;
end process;
end Mixed;

+

+

+

+

+

+

+

+

+

tid

sum2[4:0]

rst

speed

b1

b0

speed_period

m6

prog_a[4:0]

0

1

0

0

0

00

00

40000 ps 40000 ps

0

Name Value 200 ns0 ns 100 ns

00

00 01 10 12 13 00 15 12 13

01 02 12 13 14 15 12 13

300 nsWAVEFORM 25.2
Simulation waveform dia-
gram with the correct func-
tionality of design entity
RPC_Circuit_MOD

 Things you should notice about the waveforms in Waveform 25.2:

• Notice that PROG_A always follows SUM2 at the next rising edge of SPEED, except when
the signal TID is 1 while executing instructions in instruction memory (section 0). When
the signal TID is 1, this represents a hardware interrupt—that is, the push-button BTN3, on
the button module, has been pressed to generate the hardware interrupt. When a hardware
interrupt occurs, the loadable register circuit in the RPC asynchronously presets the RPC to
the valued 10000 as shown in Waveform 25.2 after the first TID pulse so that the interrupt
service routine can be executed in extended instruction memory (section 1).

• Observe that the RPC is cleared to 00000—that is, PROG_A(4:0) goes to 00000—after the
second reset pulse is provided by the signal RST.

• When VBC1-E is executing instructions in extended instruction memory (section 1), press-
ing push-button BTN3 will not cause a hardware interrupt because PROG_A(4) is 1 as
shown Waveform 25.2 after the second TID pulse.

• Waveform 25.2 shows that design entity RPC_Circuit_MOD is functionally correct.

www.itpub.net

 25.3 Designing Circuits for Displaying the Signal RETA for VBC1-E 521

25.3 DESIGNING CIRCUITS FOR DISPLAYING THE SIGNAL RETA
FOR VBC1-E

Figure 25.2 shows the circuits for displaying the signal RETA (return address) for VBC1-E.

 Things you should notice about the circuit for displaying the signal RETA for VBC1-E in
Figure 25.2:

• The select RETA circuit steers the signal PCPLUS1 to the output signal RETA when the
INT instruction is executed so that the signal PCPLUS1 is used as the return address when
the IRET instruction is executed.

• The store PC circuit in Figure 25.2 stores the current value of the signal PC—that is, signal
PROG_A(3:0) when a hardware interrupt is caused by pressing push-button BTN3 on the
button module. The select RETA circuit steers the signal PC to the output signal RETA,
which satisfies the RETA(3:0) d PC(3:0) part of the transfer function for a hardware
interrupt.

• The select input to the 2-to-1 MUX for the select RETA circuit is provided by the state
machine for RETA. When the output signal S0 of the state machine is 0, the signal RETA
follows the signal PCPLUS1, which provides the correct return address for the INT

State machine for RETA

Store PC circuit

Select RETA circuit

Modified store PCPLUS1 circuit

SPEED

TID

SPEED

PC

PROG_A(4)

B0

B0

S0
0

RST (asyn)

RST (asyn)

RST (asyn)
(BTN3)

PROG_A(4)
LOAD_PC

PROG_A(3:0)

SUM1(3:0)
PCPLUS1

LOAD_PCPLUS1

D Q

C

CE

CLR

D

0

1

4

44

44

Q

C

CE

CLR

D Q

C

CE

CLR

PRE

SETTID

RETA(3:0)
To 4 LEDs

FIGURE 25.2 Circuits for
displaying the signal RETA
(return address) for VBC1-E

522 Chapter 25 Completing the Design for VBC1-E

instruction. When the output signal S0 of the state machine is 1, the signal RETA follows
the signal PC, which provides the correct return address for a hardware interrupt.

• When the state machine for RETA provides a 0 output, RETA displays the return address
for a software interrupt via four LEDs as shown in Figure 25.2.

• Notice that the store PC circuit can only store PROG_A(3:0) when LOAD_PC is 1 or
PROG_A(4) is 0, and the state machine for RETA can only provide a 1 at its output when
TID is 1 and PROG_A(4) is 0. When the state machine for RETA provides a 1 output, RETA
displays the return address for a hardware interrupt via four LEDs.

Listing 25.3 shows a complete VHDL design for the store PC circuit for VBC1-E.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Store_PC_Circuit is port (
 rst, tid : in STD_LOGIC;
 prog_a : in STD_LOGIC_VECTOR (4 downto 0);
 load_pc : inout STD_LOGIC;
 pc : out STD_LOGIC_VECTOR (3 downto 0)
);
end Store_PC_Circuit;

architecture Mixed of Store_PC_Circuit is
begin
 load_pc ,5 not prog_a(4);
process(rst, tid)
begin
 if rst 5 ‘1’ then PC ,5 “0000”;
 elsif rising_edge (tid) and load_pc 5 ‘1’ then
 pc ,5 prog_a(3 downto 0);
 end if;
end process;
end Mixed;

LISTING 25.3
Complete VHDL
design for the store
PC circuit for VBC1-E
(project: Store_PC_
Circuit)

 Things that you should notice about the complete VHDL design for the store PC circuit for
VBC1-E in Listing 25.3:

• The VHDL code is written using a mixed design style—that is, a Boolean equation is used
and a process with an if statement is used, which represents two different design styles.

• Signal LOAD_PC is used in the entity and not as an internal signal so that the signal
LOAD_PC will be displayed in the simulation waveform diagram for design entity
Store_PC_circuit.

 Waveform 25.3 shows a simulation waveform diagram with the correct functionality of
design entity Store_PC_Circuit.

+

+

+

+

+

+

tid

pc[3:0]

rst

tid_period

load_pc

prog_a[4:0]

1

0 0 4e f

0

15

0

0

40000 ps 40000 ps

Name Value 200 ns0 ns 100 ns

00 04 1010 1e 0e 0f15 1214 15 17

300 ns 400 nsWAVEFORM 25.3
Simulation wave-
form diagram with
the correct func-
tionality of design
entity Store_PC_
Circuit

www.itpub.net

 25.3 Designing Circuits for Displaying the Signal RETA for VBC1-E 523

 Things you should notice about the waveforms in Waveform 25.3:

• Observe that the only times that the signal PC stores the signal PROG_A(3:0) is when
the CE (clock enable) input to the loadable register is asserted or equal to 1. This only
occurs when PROG_A(4) is 0, which results in the signal LOAD_PC 5 1, because LOAD_
PC 5 PROG_A 10 2 . This occurs four times in Waveform 25.3. The first time occurs
when PROG_A(4:0) is 0E (0 1110) and PC(3:0) stores E (1110). The second time occurs
when PROG_A(4:0) is 0F (0 1111) and PC(3:0) stores F (1111). The third time occurs when
PROG_A(4:0) is 00 (0 0000) and PC(3:0) stores 0 (0000). The fourth time occurs when
PROG_A(4:0) is 04 (0 0100) and PC(3:0) stores 4 (0100).

• Notice when the signal PROG_A(4) is 1 and the signal LOAD_PC is 0, the signal PC does
not store the signal PROG_A(3:0).

• Waveform 25.3 shows that design entity Store_PC_Circuit is functionally correct.

 The state machine for RETA selects the value of RETA—that is, the return address for the
INT instruction (a software interrupt) or the return address for a hardware interrupt when push-
button BTN3 on the button module is manually pressed. To select the return address for the INT
instruction in the select RETA circuit, the select input to the 2-to-1 MUX must be 0. To select
the return address for a hardware interrupt for the select RETA circuit, the select input to the
2-to-1 MUX must be 1. The output signal S0 of the state machine for RETA supplies the signal
for the select input to the 2-to-1 MUX.
 Figure 25.3 shows the state diagram for the state machine for RETA.

 In Figure 25.3, when the input signal RST is 1 the state machine is cleared, so the output
signal S0 is 0. When the code for VBC1-E is initially downloaded, the state machine is also
cleared, so the output signal S0 is 0. The output signal S0 remains 0 until a hardware interrupt
occurs, which sets the state machine, so the output signal S0 is 1. The output signal S0 remains
1 until a software interrupt occurs or until the state machine is cleared by the signal RST.
 The Set OR Hold 1 equation can be used to write the D execution equation for the state
diagram in Figure 25.3. The D execution equation is D 5 S0 #B0.
 The state machine for RETA can also be preset by the signal SET, when a hardware inter-
rupt occurs that is caused by TID #PROG_A 14 2 , so SET 5 TID #PROG_A 14 2 . These relation-
ships can be used to draw a circuit for the state machine for RETA as shown in Figure 25.4.

B0

RST(asyn)

SET(asyn) B0

S0

a Name
State

S0
b

Legend

EI
FIGURE 25.3 State
diagram for the state
machine for RETA

State machine for RETA

B0
S0

PROG_A(4)

RST (asyn)

SPEED

SETTID

D
D

Q

C

CLR PRE

FIGURE 25.4 Circuit for the state machine
for RETA

524 Chapter 25 Completing the Design for VBC1-E

 The state machine for RETA shown in Figure 25.2 is equivalent to the circuit shown in Fig-
ure 25.4. Notice that the state machine for RETA in Figure 25.2 has a clock enable (CE) input,
while the circuit in Figure 25.4 does not have a CE input.
 Listing 25.4 shows a complete VHDL design for the state machine for RETA in Figure 25.2
for VBC1-E.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity SMFR_with_CE is port (
 rst, speed, b0, tid : in STD_LOGIC;
 prog_a : in STD_LOGIC_VECTOR (4 downto 0);
 s0 : out STD_LOGIC
);
end SMFR_with_CE;

architecture Mixed of SMFR_with_CE is
 signal set :std_logic;
begin
 set ,5 tid and not prog_a(4);
process (rst, set, speed)
begin
 if rst 5 ‘1’ then s0 ,5 ‘0’;
 elsif set 5 ‘1’ then s0 ,5 ‘1’;
 elsif rising_edge (speed) and b0 5 ‘1’ then s0 ,5 ‘0’;
 end if;
end process;
end Mixed;

LISTING 25.4
Complete VHDL
design for the state
machine for RETA
in Figure 25.2 for
VBC1-E (project:
SMFR_with_CE)

 Waveform 25.4 shows a simulation waveform diagram with the correct functionality of
design entity SMFR_with_CE for VBC1-E.

 Things you should notice about the waveforms in Waveform 25.4:

• The RST pulse sets S0 to 0.
• A hardware interrupt is initiated when a TID pulse is generated.
• Observe that the state machine for RETA only responds to a TID pulse when PROG_A(4)

is 0, which sets S0 to 1. S0 remains 1 until the software interrupt occurs as shown in Wave-
form 25.4, which loads 0 into the state machine for RETA, so S0 goes to 0.

+

+

+

+

+

+

+

tid

rst

speed

b0

s0

speed_period

prog_a[4:0]

0

1

0

0

00

0

40000 ps 40000 ps

Name Value 400 ns0 ns 200 ns

00 01 02 10 11 12 02 03 10 11 12 13 04 05 06 10 12

600 ns

Hardware
interrupt

Hardware
interrupt

Hardware
interrupt
not allowed

Software
interrupt

WAVEFORM 25.4
Simulation waveform
diagram with the correct
functionality of design
entity SMFR_with_CE
for VBC1-E

www.itpub.net

 Problems 525

• A hardware interrupt is initiated by another TID pulse, but this does not cause a hardware
interrupt because PROG_A(4) is 1.

• When a hardware interrupt is initiated by another TID pulse and PROG_A(4) is 0, state
machine for RETA sets S0 to 1.

• Waveform 25.4 shows that design entity SMFR_with_CE is functionally correct.

25.4 DESIGNING CIRCUITS TO PROVIDE A LOADER FOR INSTRUCTION
MEMORY FOR VBC1-E

Experiment 25L is an experiment designed to provide the capability to load a program into the
total instruction memory of VBC1-E via a file created by the Save button in EASY1-E. Addi-
tional circuitry must be added to VBC1-E to create VBC1-EL. After VBC1-EL is downloaded
into the FPGA on a BASYS 2 board or on a NEXYS 2 board, the machine code for a program
can be loaded into the total instruction memory via the USB connector on the board. Experi-
ment 25L is self-contained and shows the additional circuitry necessary to design VBC1-EL.
 In order to load the total instruction memory contents via the USB connector, a computer
software program is required. From this textbook’s website download the installer for the
VBC1-L (VBC1-EL) Memory Loader to your computer, and install the software.
 The machine code file that is generated by EASY1-E can be entered into the VBC1-L
(VBC1-EL) Memory Loader. Then, the machine code can be automatically loaded into the
instruction memory and the extended instruction memory of VBC1-EL by clicking on the Load
Memory button. For more information, see Appendix E, Section E.3, Loading Memory via the
Memory Loader Program.

 25.7 Write the transfer function form for a hardware inter-
rupt for VBC1-E.

 25.8 Write an equivalent expression for PC(3:0) d 0000,
IPROC d 1.

Section 25.2 Designing a Debounced One-Pulse
Trigger Interrupt Circuit and Modifying the RPC
Circuit for VBC1-E
 25.1 In Figure 25.1, what manually operated push-button

switch is used to generate the signal TRIG_INT?
 25.2 List the values of the two signals that cause the signal

PRE to preset the RPC to the address 10000.
 25.3 Is the signal PRE used as a synchronous signal or an

asynchronous signal in the RPC?
 25.4 What is the fi rst address of the extended instruction

memory (section 1) in binary, hexadecimal, and decimal?
 25.5 Figure P25.5 shows a PS/NS table for a complex state

machine. RST is an asynchronous reset input and S
is an external input. Show the D excitation equations
and the output equation OP for the state machine, and
draw a circuit diagram for the circuit using D fl ip-fl ops.
What is the name of the circuit? (Hint: The equations
can be written by inspection.)

 25.6 Complete the state diagram shown in Figure P25.6 on
the next page that is equivalent to the PS/NS table in
Figure P25.5. Label the transition input signal S for S 5
0 and S for S 5 1. Show the D excitation equations and
the output equation. (Hint: To check your state diagram,
write the D excitation equations and the output equation
for your state diagram. The equations should be identical
to those obtained via the PS/NS table in Figure P25.5).

PROBLEMS

Q1

1

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

0 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 1 0 0

0 1 1 1

0 1 1 0

1 0 0 0

1 0 0 0

1 0 1 0

1 0 1 0

1 1 0 0

1 1 0 0

1 1 1 1

1 1 1 0

0 0 0 0

Q2 Q3 Q1+ Q2+ Q3+RST OPS

FIGURE P25.5

526 Chapter 25 Completing the Design for VBC1-E

Section 25.3 Designing Circuits for Displaying the
Signal RETA for VBC1-E
 25.12 Show complete VHDL code for the store PC circuit

in Figure 25.2. Use a Boolean equation for the signal
LOAD_PC and a conditional signal assignment for the
D fl ip-fl op array in the architecture. Show a simulation
for your design to verify that your VHDL code is func-
tionally correct. Use signal LOAD_PC as an internal
signal so it does not show up in the simulation. Name
the design entity Store_PC_Circuit_CSA.

 25.13 Show complete VHDL code for the state machine for
RETA in Figure P25.13. Use Boolean equations for
the signals D and SET, and use a conditional signal
assignment for the D fl ip-fl op in the architecture. Show
a simulation for your design to verify that your VHDL
code is functionally correct. Name the design entity
SM_for_RETA.

 25.9 Listing P25.9 shows a process for the running program
counter in Figure P25.1. Why is the VHDL statement
elsif pre 5 '1' then prog_a(4 downto 0) ,5 "10000";
placed before the rising_edge (speed)?

Q1 Q2 Q3

OP

000

001

010

110

101

011

111

100

EI

Legend

FIGURE P25.6

 25.10 In Waveform 25.2 for the design entity RPC_Circuit_
MOD, does the fi rst trigger interrupt signal TID in the
waveform diagram cause a hardware interrupt? Give an
explanation for your answer.

 25.11 In Waveform 25.2 for the design entity RPC_Circuit_
MOD, does the second trigger interrupt signal TID in
the waveform diagram cause a hardware interrupt?
Give an explanation for your answer.

process (rst, speed, pre)
begin
 if rst 5 ‘1’ then prog_a(4 downto
 0) ,5 “00000”;
 elsif pre 5 ‘1’ then prog_a(4
 downto 0) ,5 “10000”;
 elsif rising_edge (speed) then
 if s _clr 5 ‘1’ then prog_a(4

downto 0) ,5 “00000”;
 elsi f s_pre 5 ‘1’ then

prog_a(4 downto 0) ,5
“10000”;

 else prog_a(4 downto 0) ,5
sum2(4 downto 0);

 end if;
 end if;
end process;

LISTING P25.9

State machine for RETA

B0
S0

PROG_A(4)

RST (asyn)

SPEED

SETTID

D
D

Q

C

CLR PRE

FIGURE P25.13

www.itpub.net

 Problems 527

 25.17 Show an equivalent state sequence diagram for the
State Machine for RETA in Figure 25.3. Write the D
excitation equation for your state sequence diagram by
inspection using the Set OR Hold 1 equation.

 25.18 Show an equivalent PS/NS table for the state machine
for RETA in Figure 25.3. Write the D excitation equa-
tion for your PS/NS table by inspection using the Set
OR Hold 1 equation. (Hint: Remember that D 5 S01
for a D fl ip-fl op.)

 25.14 What is the return address when a hardware interrupt
occurs, and where is it stored?

 25.15 What is the return address when a software interrupt is
executed, and where is it stored?

 25.16 For Figure 25.3, write the D excitation equation for the
state diagram by inspection using the Set OR Hold 1
equation. Is the signal SET a synchronous input or an
asynchronous input to the D fl ip-fl op?

EXPERIMENT 1A: DESIGNING AND SIMULATING GATES

1. Learning Objectives
In this experiment, you will practice working with VHDL. First, you will be guided through the
design of a 3-input AND gate using VHDL. Second, you will be guided through the simulation
of a 3-input AND gate to verify that the design works as predicted or expected. Then, you will
be introduced to some useful tools associated with the Xilinx- software. This is summarized
as follows:

 1. Design a 3-input AND gate for the Boolean function F 5 A?B?C.
 2. Simulate the design of a 3-input AND gate to verify that it works.
 3. Learn some useful tools.

After your learn how to design and simulate a 3-input AND gate, you will design and simulate
a few additional gates on your own.

2. Designing a 3-input AND Gate
Before we get started, you should be aware that the experiments in this book were written to
support either the BASYS 2 board shown in Figure E1A.1 or the NEXYS 2 board shown in Fig-
ure E1A.2 that are manufactured by Digilent (the Digilent website is digilentinc.com). The cost
of the BASYS 2 board is about $49, and the cost of the NEXYS 2 board is about $99. You will
need to purchase one of these boards to perform the experiments.
 Instructors and students are encouraged to use the free version of the Xilinx Integrated
Software Environment (ISE) called ISE WebPACK/ found on the following Xilinx website:
http://www.xilinx.com/support/download/.
 You can download the latest ISE WebPACK version or an earlier version. Be sure to place
different versions in different directories on your computer if you elect to have more than one
version on your computer at the same time. We used ISE version 9 when we first started devel-
oping the experiments for this book. At this time, ISE version 12 is currently available. All
versions can be migrated to work with the latest version. For each new version, Xilinx generally
speeds up the compilation time and adds new features. Updating a project to a new ISE version
is handled automatically, but projects are not backward compatible—that is, once a project is
updated, it will not be recognized with the older version of the ISE software. The source code
for a new ISE version can be recompiled using the older ISE version, and this is sometimes help-
ful to know if you are trying to use both an older version and a new version. We have migrated
our VHDL code from the older ISE version 9 to the newer ISE versions 10, 11, and 12 without
any problems. We recommend using the current latest version and sticking with it for all the
experiments.

528

Laboratory Experiments

AA p p e nn d i xAA
Experiments 1A through 25L (34 experiments)

www.itpub.net

 Experiment 1A: Designing and Simulating Gates 529

 First you must learn how to use the Xilinx ISE Project Navigator to enter a VHDL design.
 Note: Click means to click the left mouse button, while right click means to click the right
mouse button.
 To begin, double-click the Xilinx ISE icon on the desktop. This opens up the Xilinx ISE
Project Navigator. A window opens up called Tip of the Day. You can turn this off or leave it on
via the check box at the bottom of the window. Click OK. Click File on the menu bar, then under
the drop-down window, click New Project. This opens up the New Project Wizard window
called Create New Project as shown in Window E1A.1. The Project Name, Project Location, and
Top-Level Source Type are filled in as discussed later.
 Be sure to choose a project name that starts with a letter and has no spaces in it. If you
want to include two words, bump them together like AndGate, or you may use an underscore
to separate the two words such as And_Gate. Names are case insensitive (not case sensitive)
just like signals in VHDL. Names like OR2 and AND3 for gates can cause problems because
these names are also used by some Xilinx library of parts and may be reserved. If you want to
use similar names then use an underscore—that is, OR_2 and AND_3 work just fine. To help
us identify the project in the future, we used the name AND_3. AND_3 is used, because this
is our first VHDL design for a 3-input AND gate. Choose your Project Location such as the
C drive on your computer in a folder such as Lab_Experiments, and a subfolder Exp_1a, e.g.,
C:\Lab_Experiments\Exp_1a\AND_3. Note: Do not leave any spaces in the Project Location
path. We chose our Project Location in Window E1A.1 as our external hard drive called M:.
You could also use an external USB memory stick (flash drive) if you prefer. If you elect to use
a hard drive for your projects, we recommend that you also always provide a backup for your
projects, which may be done using a USB memory stick. Select HDL for the Top-Level Source
Type, then click Next.
 This brings up the New Project Wizard window called Project Settings as shown in Win-
dow E1A.2.
 Be sure to choose the Project Settings for the project as shown in the Window E1A.2. If
you elect to use the BASYS 2 board, use Window E1A.2a (BASYS 2 board). If you elect to use
the NEXYS 2 board, use Window E1A.2b (NEXYS 2 board). Click Next, and then click Finish.

FIGURE E1A.1 BASYS 2 board
Photo courtesy of Diligent, Inc.

FIGURE E1A.2 NEXYS 2 board
Photo courtesy of Diligent, Inc.

530 Appendix A Laboratory Experiments

The Family, Device, and Package information can be obtain by reading the information directly
off of the FPGA chip on a BASY 2 board or a NEXYS 2 board or by using the information in
Appendix C.
 To add a project to your design, click Project on the menu bar, then under the drop-down list,
click New Source. When the New Source Wizard window called Select Source Type appears,
select (click) VHDL Module in the list, and type in a File name, which will be the name of the
entity in your VHDL design as shown in Window E1A.3.
 We use the name AND_3 for the entity in our design. Be sure to choose a file name that
starts with a letter and has no spaces in it. Click Next to close the current window and reopen a
new New Source Wizard window called Define Module as shown in Window ElA.4.

Project Settings

Specify device and project properties.
Select the device and design flow for the project.

More Info Next Cancel

Property Name

Product Category

Value

All

Spartan3E

XC3S100E

Family

Device

Package
Speed

Top-Level Source Type HDL

Synthesis Tool

Simulator

Preferred Language

Property Specification in Project File

Manual Compile Order

VHDL Source Analysis Standard

Enable Message Filtering

VHDL-93

Store all values

VHDL

XST (VHDL/Verilog)

ISim (VHDL/Verilog)

-5
CP132

Project Settings

Specify device and project properties.
Select the device and design flow for the project.

More Info Next Cancel

Property Name

Product Category

Value

All

Spartan3E

XC3S500E

Family

Device

Package
Speed

Top-Level Source Type HDL

Synthesis Tool

Simulator

Preferred Language

Property Specification in Project File

Manual Compile Order

VHDL Source Analysis Standard

Enable Message Filtering

VHDL-93

Store all values

VHDL

XST (VHDL/Verilog)

ISim (VHDL/Verilog)

-5
FG320

WINDOW E1A.2 (a) New Project Wizard window called Project Settings for the BASYS 2 board; (b) device properties win-
dow for the NEXYS 2 board

(a) BASYS 2 board (b) NEXYS 2 board

More Info Next Cancel

Create New Project

Specify project location and type.

Enter a name, locations, and comment for the project

Name:

Location:

Working Directory:

Description:

Select the type of top-level source for the project

Top-level source type:

AND_3

HDL

M:\Lab_Experiments\Exp_1a\AND_3

M:\Lab_Experiments\Exp_1a\AND_3

WINDOW E1A.1 New Project Wizard
window called Create New Project
filled in as discussed in the text

www.itpub.net

 Experiment 1A: Designing and Simulating Gates 531

 The File name you typed, in the previous New Source Wizard window, is listed under
the Entity Name. Change the Architecture Name, which is listed as Behavioral to Boolean_
function. Remember, do not leave spaces in a name. The Architecture Name change is not nec-
essary, but we want to make the name meaningful for the design style we are using—that is, a
simple Boolean function.
 Under Port Name in the New Source Wizard window, type A, B, C on the first line. Under
Direction, the mode for these signals is in, which is what we want it to be. Under Port Name,
type F on the second line. Under Direction, use the down arrow to select (click) the mode for this
signal as out. Click Next then Finish; this opens up a template of your design in the edit window
on the ISE Project Navigator.

V

V

P
V

O
H

Add to project

File name:

Location:

More Info CancelNext

New Source Wizard

Select Source Type

Select source type, file name and its location.

IP (CORE Generator & Architecture W
Schematic
User Document
Verilog Module
Verilog Test Figure

VHDL Library
VHDL Package
VHDL Test Bench
Embedded Processor

AND_3

M:\LAB_Experiments\Exp_1a\AND_3

V

O
H VHDL Module

WINDOW E1A.3 New Source
Wizard window called Select
Source Type filled in as discussed
in the text

New Source Wizard

More Info Next Cancel

AND_3

Boolean_Function

Define Module

Specify ports for module.

Entity name

Architecture name

Port Name Direction Bus MSB LSB

A,B,C

F out

in

in

in

in

in

in

in

in

WINDOW E1A.4 New Source
Wizard window called Define
Module filled in as discussed in
the text

532 Appendix A Laboratory Experiments

 To simplify the VHDL template, we recommend that you only retain the lines of code
needed in the design and arrange the entity as shown in Listing E1A.1. Arranging the entity
in the form shown in Listing E1A.1 is not necessary, but this format often helps students make
fewer mistakes when writing their own VHDL code.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity AND_3 is Port (
 A,B,C : in STD_LOGIC;
 F : out STD_LOGIC
);
end AND_3;

architecture Boolean_function of AND_3 is

begin

end Boolean_function;

LISTING E1A.1
Template for the
VHDL design for the
3-input AND gate
(project: AND_3)

 The only thing that is missing in the design is the Boolean assignment statement for the
3-input AND gate, F ,5 A and B and C, which must be added in the architecture between
begin and end Boolean_function.
 Add the Boolean assignment statement to your design, then click the Save icon to save your
design. Next double-click Synthesize—XST (Xilinx-Synthesis Technology) in the Processes
window or right click Synthesize—XST, which opens up a drop-down list, then click run.
You should get a syntax error because a semicolon was not provided at the end of the Boolean
assignment statement. To see the error we are referring to, you must have the Console window
open at the bottom of the ISE Project Navigator. If you got the error, then add the semicolon
after C—that is, F ,5 A and B and C;. Click the Save icon to save your correction, and rerun
Synthesize—XST and the error should go away.
 Errors show up in the Console window or Error window at the bottom of the ISE Projector
Navigator if they occur. If there are no errors you get the following text: Process “Synthesize—
XST” completed successfully. In some cases you may have warnings, but the syntax is correct.
The warnings are only reported by double-clicking Synthesize—XST. These warnings may
result in a circuit that performs incorrectly, so after you remove all syntax errors you should
double-click Synthesize—XST to see if there are warnings that may need to be corrected. We
will discuss warnings that need to be corrected later. Your VHDL design must be error free
before you can obtain a simulation for your design. Do not try to obtain a simulation if you have
errors in your VHDL design until you fix the errors.

3. Simulating a 3-Input AND Gate
Simulation is used to verify that the VHDL design for the 3-input AND gate is functionally
correct. By functionally correct, we mean that the simulation result satisfies the truth table for
a 3-input AND gate.
 Don’t attempt to simulate a VHDL design until Synthesize—XST is run successfully.
 Note: To obtain a simulation for your design, see Appendix B for help.

4. Useful Tools
For a small design, it is useful to observe the black box and the circuit created for the design. In
the upper part of the Design window, select Implementation if it is not selected.

www.itpub.net

 Experiment 1A: Designing and Simulating Gates 533

 Under Synthesize—XST in the Processes window, double-click View Technology Sche-
matic, then click OK when the Set RTL/Tech Viewer Startup Mode window appears. Follow the
instructions provided in that window. The black box for the design is shown in the Edit window.
Double-click inside the black box, and a box labeled LUT is shown in the Edit window. You
will learn more about IBUFs (input BUFFERs), OBUFs (output BUFFERs), and LUTs (look-up
tables) later, so don’t worry about them now. Double-click inside the box labeled LUT, and the
LUT Dialog window appears with the Schematic tab selected so that you can view the schematic
that was created for the design.
 The input signals I2, I1, and I0 and the output signal O are internal signals generated by the
Xilinx software. The gates are what interest us because two AND2 gates are connected together
to form an AND3 gate, which is what we wanted to create with our design. Select (click) the
Truth Table tab, and you will see a truth table for the AND3 gate. Observe that when all three
inputs are 1 the output is 1, which is correct for an AND3 gate, and the output is 0 for all other
combinations of the inputs.
 Notice that there is a tab labeled Karnaugh Map in the LUT Dialog window. You will learn
about Karnaugh maps later.

Tasks:

 1. Open a new project and name it Compare. Use VHDL to design a circuit that compares two
values applied to its inputs to see if they are equal or the same. Make the input signals A and
B for the circuit. Make the output F_OUT for the circuit. The architecture for your design
will contain an assignment statement for the function F_OUT. [Hint: Read Chapter 1, Sec-
tion 1.4.7 (VHDL Design for an XNOR function).]

 2. Write the truth table for an XNOR function with inputs A and B and output F_OUT.
 3. Add a New Source to your project to simulate your project Compare. Make the stimulus

inputs count up from 00, 01, to 11 with the signal A the MSB and signal B the LSB. Run
Simulate Behavioral Model. Write a truth table for the circuit. Verify that your truth table
output and your simulation output are the same. If the output values are not the same, you
have a mistake that you must find and correct.

 4. Open a new project and name it Two_gates. Use VHDL to design a circuit for a 3-input
NOR gate and also a 3-input XOR gate in the same project. Make the input signals X, Y, and
Z for both the NOR gate and the XOR gate. Make the output F_NOR for the NOR gate and
make the output F_XOR for the XOR gate. The architecture for your design will contain an
assignment statement for the function F_NOR and an assignment statement for the func-
tion F_XOR. [Hint: Read Chapter 1, Section 1.4.6 (VHDL Design for a NOR Function), and
Chapter 1, Section 1.4.4 (VHDL Design for an XOR Function).]

 5. Write the truth table for the functions NOR and XOR with inputs X, Y, and Z and outputs
F_NOR and F_XOR.

 6. Add a New Source to your project to simulate your project Two_gates. Make the stimulus
inputs count up from 000, 001, 010, 011, up to 111 with the signal X the MSB and signal Z
the LSB. Run Simulate Behavioral Model. Write the truth table for the circuit. Verify that
your truth table outputs and your simulation outputs are the same. If the output values are
not the same, you have a mistake that you must find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is Task 6 (project Two_gates).

534 Appendix A Laboratory Experiments

 2. Include the complete VHDL code for Task 1 (project Compare).
 3. Include the single block diagram (the black box for the entity) for project Compare.
 4. Include the truth table for project Compare.
 5. Include a printout of the simulation waveform diagram for project Compare.
 6. Include the complete VHDL code for Task 4 (project Two_gates).
 7. Include the single block diagram (the black box for the entity) for project Two_gates.
 8. Include the truth table for project Two_gates.
 9. Include a printout of the simulation waveform diagram for project Two_gates.
 10. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 11. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 1B: COMPLETING THE DESIGN CYCLE

1. Learning Objectives
In this experiment, you will practice completing the VHDL design cycle. First, you will be
guided through the steps necessary to assign the package pins for all the port signals of the
design for the 3-input AND gate that you designed in Experiment 1A. Second, you will be
guided through the steps necessary to generate a programming file for the 3-input AND gate.
Third, you will be guided through the steps to download the programming file for the 3-input
AND gate into the FPGA on a BASYS 2 board or a NEXYS 2 board. Then, you will verify that
your design works in hardware. This is summarized as follows:

 1. Assign package pins for all the port signals in the entity for your 3-input AND gate design.
 2. Generate a programming file for your 3-input AND gate, then check to see if your VHDL

code needs to be corrected based on reported errors and warnings,
 3. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS 2

board.
 4. Verify that your design works in hardware.

After you learn how to assign package pins, generate a programming file, download the pro-
gramming file, and verifying that your design works in hardware, you will repeat the process
for a few additional gates on your own.

2. Assigning Package Pins for the 3-Input AND Gate
You must learn more about the Xilinx ISE Project Navigator to assign the package pins for a
design.
 Note: Click means to click the left mouse button, while right click means to click the right
mouse button.
 To begin, double-click the Xilinx ISE icon on the desktop. This opens up the Xilinx ISE
Project Navigator. The project that you worked on last will appear in the Project Navigator. If
you want a different project, click File on the menu bar, then under the drop-down window,
double-click Open Project. The Open Project window appears. Browse through the directory
and locate the AND_3 project folder or whatever name you gave the 3-input AND gate folder
when you set up the project in Experiment 1A. In the folder for the 3-input AND gate, click
AND_3.xise or ,the name you used..xise. This opens up the 3-input AND gate project.
 To assign the package pins for the port signals for your design, click Project on the menu
bar, then under the drop-down window, click New Source. When the New Source Wizard win-
dow appears, select (click) Implementation Constraints File in the list, and type in a File name.
We use the name apps to assign the package pins. Be sure to choose a file name that starts with

www.itpub.net

 Experiment 1B: Completing the Design Cycle 535

a letter and has no spaces in it. Click Next and then click Finish. The file you just created called
apps.ucf is saved under AND_3.vhd or ,the name you used..vhd in the Sources widow.
 Click on the apps.ucf file to highlight it. In the Processes window, open up User Constraints
by clicking the plus sign. Double-click Edit Constraints (Text). This opens up the ISE Project
Navigator Editor window. Each signal name or NET in the entity of your VHDL design must
be assigned a location (LOC), which represents an FPGA pin connection. The Edit Constraints
(Text) file is where that information is placed.
 Input signals in the entity will be assigned to slide switches or push-button switches, while
output signals will be assigned to single LED or to an LED segment or input control signal of
DISP1 (the 7-segment display).
 Both the BASYS 2 board and the NEXYS 2 board have eight slide switches, four push-
button switches, eight single LEDs, a four 7-segment display, and four peripheral connectors. The
eight slide switches are labeled SW7 down to SW0, the four push-button switches are labeled
BTN3 down to BTN0, the eight single LEDs are labeled LD7 down to LD0, the four 7-segment
display is just labeled DISP1, and the four peripheral connectors are labeled JA, JB, JC, and JD.
You should be able to easily identify each of these I/O devices on a BASYS 2 or on a NEXYS 2
board. Each of these I/O devices is connected to an FPGA pin except for the four 7-segment dis-
play, which is connected to multiple pins. Appendix C provides a handy reference for the FPGA
pin connections on the BASYS 2 board and the FPGA pin connections NEXYS 2 board.
 If you elect to use the BASYS 2 board, see Appendix C (FPGA Pin Connections), Section
C.1. Assign input signal A to SW2 (K3), input signal B to SW1 (L3), and input signal C to SW0
(P11) so that you can use the switches to provide inputs for the 3-input AND gate. Assign output
F to LD0 (M5) so you can observe when the output is 1 or true when the single LED is lighted
or the output is 0 or false when the signal LED is not lighted.
 The Edit Constraints (Text) file must be typed in as shown in Figure E1B.1 for the BASYS
2 board for project AND_3.

 If you elect to use the NEXYS 2 board, see Appendix C(FPGA Pin Connections), Section
C.2. Assign input signal A to SW2 (K18), input signal B to SW1 (H18), and input signal C to
SW0 (G18) so that you can use the switches to provide inputs for the 3-input AND gate. Assign
output F to LD0 (J14) so you can observe when the output is 1 or true when the single LED is
lighted or the output is 0 or false when the signal LED is not lighted.
 The Edit Constraints (Text) file must be typed in as shown in Figure E1B.2 for the NEXYS
2 board for project AND_3.

a comment can appear after the symbol "#"
NET "A" LOC = K3

;
;

;
;

NET "B" LOC = L3
NET "C" LOC = P11
NET "F" LOC = M5

FIGURE E1B.1 Edit
Constraints (Text) file for the
BASYS 2 board for project
AND_3

 After you fill in all the I/O locations for the 3-input AND gate design, click the Save icon.
 An alternate way to assign package pins is to open up User Constraints in the Processes
window and click on I/O Pin Planning (PlanAhead)—Post-Synthesis. Select a signal in the
I/O Port window and that signal will appear in the I/O Port Properties window. Simply fill in
the Site location with the FPGA pin for the selected signal and click Apply. This process must
be repeated for all the I/O port signals. After you complete entering all the FPGA pins for all
the I/O port signals, click Save Design and close the current window. The PlanAhead program

a comment can appear after the symbol "#"

NET "A" LOC = K18

;
;

;
;

NET "B" LOC = H18
NET "C" LOC = G18
NET "F" LOC = J14

FIGURE E1B.2 Edit
Constraints (Text) file for
the NEXYS 2 board for
project AND_3

536 Appendix A Laboratory Experiments

automatically generates the .ucf file for the design and lists the NETs and locations (LOCs) with
the proper signals and FPGA pins as shown in Figures E1B.1 and E1B.2.

3. Generate a Programming File for the 3-Input AND Gate
To generate a programming file, click the file name for your design project to highlight it
(AND_3 in this case), then double-click Generate Programming File in the Processes window.
The ISE software reruns the Synthesize—XST process to include the user constraints file. It
starts the Implement Design process, which translates the VHDL design into an internal netlist
format. It maps the design by optimizing the number of gates, and finally it assigns gates on the
FPGA chip and their interconnections are routed through the programmable switch matrices on
the FPGA chip. From a user standpoint, this is unimportant. If the Implement Design process
completes successfully, then the ISE software begins the Generate Programming File process,
which creates a stream of bits called the .bit file. If errors or warnings are reported after the
Generate Programming File process is completed, you must correct all errors in your VHDL
code. Only certain warnings need to be corrected in your VHDL code. These will be discussed
later—for example, clock skew, latches, and gated clocks. If certain warnings are not corrected,
your VHDL code may not always run correctly.
 The .bit file can be downloaded into the FPGA chip to carry out the logic function(s)
described in the VHDL code. The name that is used for the entity of your VHDL file is the
prefix for the .bit file that is created for the design. For the 3-input AND gate, the .bit file that is
created is named AND_3.bit.

4. Download the Programming File into the FPGA
To download the programming file into the FPGA either on the BASYS 2 board or the NEXYS
2 board, you must connect the USB cable to the computer and also to the USB connector on
the BASYS 2 board or the NEXYS 2 board. For the BASYS 2 board, set the switch SW8 (the
Power Switch) to on and observe that the red POWER LED turns on brightly. On the NEXYS
2 board for the POWER SELECT header move the jumper to USB, then set the switch labeled
POWER SWITCH to on and observe that the red POWER LED turns on brightly. On the three-
pin header identified with the labels MODE, move the jumper to PC on the BASYS 2 board or
move the jumper to JTAG on the NEXYS 2 board.
 Open the program Digilent Adept* wherever it is installed on your computer. The Adept
program identifies the board connected to the USB connector as shown in Window E1B.1 for
the BASYS 2 board and Window E1B.2 for the NEXYS 2 board.
 When the Digilent Adept window appears, browse to find your folder with the AND_3 gate
design, then double-click AND_3.bit or <the name you used>.bit. A Warning window appears,
which is normal, so click Yes. Then click Program to download the bit file from your computer
into the FPGA. The message Programming Successful appears when the FPGA has been pro-
grammed. Later you may want to download the bit file from your computer into the PROM on
the FPGA board so your design will begin running as soon as power is supplied to the board.
The PROM is a simple flash memory that stores the .bit file.
 You can now check to see if the 3-input AND gate is correctly working in hardware using
the slide switches SW2 down to SW0. The single LED LD0 should only light when all three
slide switches are pushed forward to their 1 position. Be sure to check this out on your BASYS
2 board or your NEXYS 2 board to verify that your 3-input AND gate works in hardware as
expected.

Tasks:

 1. Open project Compare for the 2-input comparator circuit, that you designed in Experi-
ment 1A, and complete the design cycle by doing the following:

www.itpub.net

 Experiment 1B: Completing the Design Cycle 537

 a. Assign package pins for all the port signals in the entity (assign A to SW1, B to SW0,
and F_OUT to LD0).

 b. Generate a programming file, then check to see if your VHDL code needs to be cor-
rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 2. Check to see if your 2-input comparator works in hardware—that is, when SW1 and SW0
are both pushed forward or both pulled back, LD0 should light; otherwise, LD0 should not
light. If your design does not perform in this manner, you have made a mistake that you
must find and correct.

 3. Open project Two_gates for the 3-input NOR gate and the 3-input XOR gate circuits that
you designed in Experiment 1A, and complete the design cycle by doing the following:

 a. Assign package pins for all the port signals in the entity (assign X to SW7, Y to SW6, Z
to SW5, F_NOR to LD7, and F_XOR to LD0).

 b. Generate a programming file, then check to see if your VHDL code needs to be cor-
rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 4. Check to see if your 3-input NOR gate and your 3-input XOR gate work in hardware. When
SW7, SW6, and SW5 are all pulled back, LD7 should light; otherwise LD7 should not light.
LD0 should light when an odd number of the slide switches SW7, SW6, and SW5 are all
pushed forward, and should not light otherwise. If your design does not perform in this
manner, you have made a mistake that you must find and correct.

 5. Write an alternate assignment statement that can be substituted for the assignment state-
ment for F_NOR in your VHDL design for the 3-input NOR gate. Also write an alternate
assignment statement the can be substituted for the assignment statement for F_XOR in
your VHDL design for the 3-input XOR gate. (Hint: Consider using DeMorgan’s theorem

Test File I/O I/O Ex SettingsRegister I/O

Initialize Chain

Connect:

Config

Board information loaded.
Found device ID: f5045093
Found device ID: 11c10093
Initialization Complete.
 Device 1: XC3S100E
 Device 2: XCF02S

Diligent Adept

Product:

WINDOW E1B.1 Digilent Adept window for the
BASYS 2 board

Test File I/O I/O Ex SettingsRegister I/O

Initialize Chain

Connect:

Config

Board information loaded.
Found device ID: f5046093
Found device ID: 41c22093
Initialization Complete.
 Device 1: XC3S500E
 Device 2: XCF04S

Diligent Adept

Product:

WINDOW E1B.2 Digilent Adept window for the
NEXYS 2 board

538 Appendix A Laboratory Experiments

to obtain the alternate assignment statement for the 3-input NOR gate, and consider using
an SOP form for the alternate assignment statement for the 3-input XOR gate.)

 6. Open project Two_gates and substitute the alternate assignment statement you obtained in
Task 5 in you VHDL code (don’t get rid of the previous assignments, simply comment them
out), then complete the design cycle by doing the following:

 a. Generate a programming file, then check to see if your VHDL code needs to be cor-
rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 b. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your 3-input NOR gate and your 3-input XOR gate work in hardware the
same way they did in task 4. When SW7, SW6, and SW5 are all pulled back, LD7 should
light; otherwise LD7 should not light. LD0 should light when an odd number of the slide
switches SW7, SW6, and SW5 are all pushed forward, and should not light otherwise. If
your design does not perform in this manner, you have made a mistake that you must find
and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is Task 7 (project Two_gates).

 2. Include the complete VHDL code for project Compare.
 3. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for project Compare. The Edit Constraints (Text) is an entry under User Constraints in the
Processes window. Double-click Edit Constraints (Text) to show the text in the right-hand
side of the Project Navigator window. To make a copy of it, click File, then click Print.

 4. Include the alternate assignment statement for F_NOR for the 3-input NOR gate and the
alternate assignment statement for F_XOR for the 3-input XOR gate you obtained in task 5.

 5. Include the complete VHDL code for project Two-gates that includes the alternate assign-
ment statements for F_NOR and F_XOR.

 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments
for project Two_gates.

 7. Write a short paragraph summarizing the work you did for this experiment, and describe
any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 8. Your lab instructor may add additional requirements for this experiment.

* The Adept software enables you to use the USB cable. Here is how to install the Adept software on your personal
computer. The procedure may be slightly different for different operating systems and even newer version of Adept.
 1. Launch Internet Explorer Browser. In the Address space for the Browser, type http://digilentinc.com/Products/

Detail.cfm?NavPath=2,66,69&Prod=ADEPT then click Download! to Download Digilent ADEPT.
 2. When the Adept window appears, click Save to save the fi le DAS(x86)2-0-10.exe on your desktop, in case you

want to execute it later; otherwise, click Run. When the download is complete, click Run, then click Run again,
then click Next.

 3. Click the radio button “I accept the terms of the license agreement,” then click Next.
 4. When the Adept Runtime—InstallShield Wizard, window appears, click Next, click Next, then click Install,

then click Finish.
 5. When you get the window Adept—Install Shield Wizard, click Install, then click Finish.
 6. You can click on Adept and pin it to the start menu if you prefer.

www.itpub.net

 Experiment 2: Designing and Testing a Keypad Encoder System 539

EXPERIMENT 2: DESIGNING AND TESTING A KEYPAD
ENCODER SYSTEM

1. Learning Objectives
In this experiment, you will practice working with an encoder system for a keypad. First, you
will learn how to design a keypad encoder and simulate it to verify that it works. Second, you
will learn how to design a decimal display decoder and simulate it to verify that it works. Third,
you will learn how to combine designs with some additional modules to obtain a flat design for
a complete system. Then, you will download and test your design in hardware to verify that the
system works. This is summarized as follows:

 1. Design a keypad encoder and simulate it to verify that it works.
 2. Design a decimal display decoder and simulate it to verify that it works.
 3. Obtain a flat design for the complete keypad encoder system.
 4. Download and test your design in hardware.

2. Keypad Encoder System with Its Inputs and Outputs
Figure E2.1 shows an annotated schematic for the keypad encoder system.
 Notice that the four push buttons on the BASYS 2 board or the NEXYS 2 board are used
as a simple 4-input keypad. The push-button switches are connected to module 1, the keypad
encoder. The truth table for the keypad encoder is shown in Table E2.1.

 Notice that a keypad encoder has a restriction placed on its inputs just like the restriction
placed on the inputs of telephone keypads and computer keyboards. The restriction is simply
that you are only allowed to press one key at a time.
 Notice in Figure E2.1 that the outputs of the keypad encoder are connected to the inputs
of the decimal display decoder. The truth table for a decimal display decoder with active high
outputs is shown in Table E2.2.

TABLE E2.1 Truth table for the keypad encoder

B3 B2 B1 B0 E2 E1 E0

0 0 0 1 0 0 0 Only press B0 so output E2 E1 E0 is 000 or 0

0 0 1 0 0 0 1 Only press B1 so output E2 E1 E0 is 001 or 1

0 1 0 0 0 1 0 Only press B2 so output E2 E1 E0 is 010 or 2

1 0 0 0 0 1 1 Only press B3 so output E2 E1 E0 is 011 or 3

0 0 0 0 1 1 1 E2 is 1 to indicate no button is pressed (We elected to make
E1 and E0 also 1s because it doesn’t matter what their values
are when E2 is 1)

a

g

d d

f
e

b
c8

0
1

2
3

p

7-segment display

Blank the display
(turn off all segments)

E2 E1 E0 S7 S6 S5 S4 S3 S2 S1 S0

0 0 0 0 0 1 1 1 1 1 1

0 0 1 0 0 0 0 0 1 1 0

0 1 0 0 1 0 1 1 0 1 1

0 1 1 0 1 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0

o

TABLE E2.2 Truth table for the decimal display

decoder with active high outputs

540 Appendix A Laboratory Experiments

Module 2
Module 3

Module 4

Decimal display
decoder

(for a 4-input
encoder)

0111

Array of
NOT gates

Array of
BUFFERs

(b)

SEG

Legend

Bus tap

To other 3 multiplexed
7-segment displays
AX(2), AX(1), AX(0)

AX(3:0)
(AN3,AN2,AN1,AN0)

AX(3)

All inputs to the 7-
segment display
are active low,
i.e., they turn on
when input is low.

CA

S0 (CA)O0
(CB)O1
(CC)O2
(CD)O3
(CE)O4
(CF)O5
(CG)O6
(DP)O7

a

dp
o

g

a

f

e

b

c

d

Display 3

AN3

b
c
d
e
f
g
dp

0
1
2

0
1
2

3
4

4 4

5
6
7

S1
S2
S3
S4
S5
S6
S7

Bit
0

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

7-segment display
(common anode)

E0
E1
E2

B2
(BTN2)

B3
(BTN3)

B1
(BTN1)

B0
(BTN0)

V
CC

Push-button switch
with resistors

GND

Push-button switch
with resistors

GND

Push-button switch
with resistors

GND
(a)

Push-button switch
with resistors

GND

Module 1

0

Keypad
encoder

1

2

0 E0

E1

E2

1

2
3

V
CC

V
CC

V
CC

FIGURE E2.1 Annotated schematic for the keypad encoder system: (a) push-button
inputs and keypad encoder; (b) decimal display decoder, array of NOT gate, array of buf-
fers, and 7-segment display

www.itpub.net

 Experiment 2: Designing and Testing a Keypad Encoder System 541

Recommended Pre-Lab:

 1. Tasks 1 through 4.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms, etc.

Tasks:

 1. Write each Boolean function output for the keypad encoder, in the simplest compact (min-
term or maxterm) form—that is, use the fewest number of 0s or 1s. Write a canonical form
for each compact form. Use each canonical form to write an assignment statement for the
output of the Keypad Encoder in VHDL.

 2. Create a new project and write complete VHDL code for Figure E2.1a for the keypad encoder
(module 1). Simulate the design to verify that it follows the keypad encoder truth table. [Note:
see Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for help.] If the
outputs of the keypad encoder do not follow the truth table, then you know that the VHDL
code for module 1 has an error. You must find the error or errors and fix them.

 3. Write each Boolean function output of the decimal display decoder in the simplest compact
minterm or maxterm) form—that is, use the fewest number of 0s or 1s. Write a canonical
form for each compact form. Use each canonical form to write an assignment statement for
the output of the decimal display decoder in VHDL.

 4. Create a new project and write complete VHDL code for Figure E2.1b for the decimal dis-
play decoder (module 2). Simulate the design to verify that it follows the decimal display
decoder truth table. If the outputs of the decimal display decoder do not follow the truth
table, then you know that the VHDL code for module 2 has an error. You must find the error
or errors and fix them.

 5. Create a new project and write complete VHDL code for the keypad encoder system using
a flat design approach. (Hint: See Chapter 2, Section 2.4.5, for discussion of a flat design
approach.) Use the designs for modules 1 and 2 and include them in a single architecture,
then add the VHDL code for modules 3 and 4. Be sure that all external input and output
signals are declared in the entity and that all internal signals are declared between architec-
ture and the first begin. Document your VHDL code as shown in the design in Chapter 2,
Section 2.4.5, Listing 2.1.

 6. Complete the design cycle for your keypad encoder system by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your keypad encoder system works in hardware—that is, when BTN0 is
pressed the 7-segment display should display a 0, when BTN1 is pressed, the 7-segment
display should display a 1; when BTN2 is pressed, the 7-segment display should display a
2; and when BTN3 is pressed, the 7-segment display should display a 3; and when no push
button is pressed, the 7-segment display should be blank. The push buttons may be pressed
in any order, but only press one push button at a time. If your keypad encoder system design
does not perform in this manner, you have made a mistake that you must fi nd and correct.

Lab Report Requirements:

 1. To receive full credit you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:

542 Appendix A Laboratory Experiments

course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 7 (Keypad Encoder System).

 2. Include the simplest compact (minterm or maxterm) forms for the Boolean equations for
task 1 (Keypad Encoder design).

 3. Include the complete VHDL code for your keypad encoder design.
 4. Include a printout of the simulation waveform diagram for your keypad encoder design.

Identify the inputs on the waveform diagram using minterm designators.
 5. Include the simplest compact (minterm or maxterm) forms for the Boolean equations for

your decimal display decoder design.
 6. Include the complete VHDL code for your decimal display decoder design.
 7. Include a printout of the simulation waveform diagram for your decimal display decoder

design. Identify the inputs on the waveform diagram using minterm designators.
 8. Include the complete VHDL code for your keypad encoder system.
 9. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your keypad encoder system.
 10. If the truth table outputs were made active low for the decimal display decoder, explain

what changes would have to be made to the keypad encoder system so that the design would
work the same way in hardware as before. (Hint: Verify your suggestions; make the changes
to see if your hardware design still works the same as before.)

 11. Write a short paragraph summarizing the work you did for this experiment, and describe
any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 12. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 3: DESIGNING AND TESTING A CHECK
GATES SYSTEM

1. Learning Objectives
In this experiment, you will practice working with an 8-to-1 MUX (multiplexer) and all the
basic gates. First, you will learn how to design an 8-to-1 MUX and simulate it to verify that it
works. Second, you will learn how to design a letter display decoder with active low outputs
and simulate it to verify that it works. Third, you will learn how to combine designs with some
additional modules to obtain a flat design for a complete system. Then, you will download and
test your design in hardware to verify that the system works. This is summarized as follows:

 1. Design an 8-to-1 MUX and simulate it to verify that it works.
 2. Design a letter display decoder and simulate it to verify that it works.
 3. Obtain a flat design for the complete check gates system.
 4. Download and test your design in hardware.

2. Check Gates System with its Inputs and Outputs
Figure E3.1 shows an annotated schematic for the check gates system.
 Notice that slide switches SW7 and SW6 are used to provide the inputs to the gates. The
single LEDs LD7 and LD6 show the status of these switches—that is, when a slide switch is
pushed forward for a 1, the corresponding LED lights. Slide switches SW2, SW1, and SW0 are
used to provide the select inputs to the 8-to-1 MUX. The single LEDs LD2, LD1, and LD0 show
the status of these switches. The value of the output of each gate is shown on the 7-segment
display as an L when the value is 0 and as an H when the value is 1.

www.itpub.net

 Experiment 3: Designing and Testing a Check Gates System 543

 Table E3.1 shows a partially filled in compressed truth table for the 8-to-1 MUX.
 A compressed truth table is often used for a large MUX because the full-blown truth table
is quite large as a result of the number of inputs (11 to be exact), which would result in a truth
table with 211 5 2,048 lines. To keep things simple, you will just be required to verify that your
simulation waveform for MUX_OUT agrees with the 16 input combinations that are shown in
the partial truth table in Table E3.2 for the 8-to-1 MUX.

Module 3
Module 2

Module 1

Module 5

Letter display
decoder

0111

GATES

Array of BUFFERs

Module 4
Additional BUFFERs

(a)

SEG

Legend

Bus tap

To other 3 multiplexed
7-segment displays
AX(2), AX(1), AX(0)

AX(3:0)
(AN3,AN2,AN1,AN0)

AX (3)

All inputs to the 7-
segment display
are active low,
i.e., they turn on
when input is low.

CA
(CA)B0
(CB)B1
(CC)B2
(CD)B3
(CE)B4
(CF)B5
(CG)B6
(DP)B7

D0

S7

S7

S7
S6

S7
S6

S7
S6

S7
S6

S7
S6

S7(SW7)
S6(SW6)

LD7(LD7)

LD0(LD0)

LD1(LD1)

LD2(LD2)LD6(LD6)

MUX_OUT

8-to-1
MUX

D1

D2

D3

D4

D5

D6

D7

a

dp
o

g

a

f

e

b

c

d

Display 3

AN3

b
c
d
e
f
g
dp

0
1
2

1

S

(SW2)(SW1)(SW0)
S2 S1 S0

2

0

0

3
4

4 4

5
6
7

0

1

2

3

4

5

6

7

Bit
0

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

7-segment display

LD2
(LD2)

LD1
(LD1)

LD7
(LD7)

LD6
(LD6)

Slide switches and single LEDs

LD0
(LD0)

S(7)
(SW7)

GNDGND

S(6)
(SW6)

GND

(b)

S(2)
(SW2)

GND

S(1)
(SW1)

GND

S(0)
(SW0)V

CC
V

CC
V

CC
V

CC
V

CC

FIGURE E3.1 Annotated schematic for the check gates system; (a) complete system minus the slide switches and single
LEDs; (b) slide switches and single LEDs

544 Appendix A Laboratory Experiments

 Table E3.3 shows a partially filled in truth table for the letter display decoder with active
low outputs.

TABLE E3.1 Partially filled in

compressed truth table for the

8-to-1 MUX

S2 S1 S0 MUX_OUT

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

TABLE E3.2 Partial truth table for the 8-to-1

MUX with 8 input combinations for testing

S2 S1 S0 D7 D6 D5 D4 D3 D2 D1 D0 MUX_OUT

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 1

a

g

d

f
e

b
c
o

Letter display decoder
(active low outputs)

7-segment display

MUX_OUT B7 B6 B5 B4 B3 B2 B1 B0

0 1 1 0 0 0 1 1 1

1

8
l
h

dp

TABLE E3.3 Partially filled in truth table

for the letter display decoder with active

low outputs

Recommended Pre-Lab:

 1. Tasks 1 through 6.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Fill in the compressed truth table in Table E3.1 for the 8-to-1 MUX.
 2. Write the Boolean function for the 8-to-1 MUX in SOP form. (Hint: See Chapter 3, Sec-

tion 3.8, Figure 3.21b, for a 4-to-1 MUX and use extrapolation.) Do not write the Boolean

www.itpub.net

 Experiment 3: Designing and Testing a Check Gates System 545

function for the 8-to-1 MUX using Table E3.2, because the function will contain many
more literals than necessary.

 3. Create a new project and write complete VHDL code for the 8-to-1 MUX. Simulate the
design for the 8 input combinations shown in Table E3.2 to verify that your design follows
the partial truth tables. [Note: See Appendix B (Obtaining Simulations via the VHDL Test
Bench Program) for help.] If the output of the 8-to-1 MUX does not follow these truth
tables, then you know that the VHDL code for module 2 has an error. You must find the
error or errors and fix them.

 4. Fill in the truth table in Table E3.3 for the letter display decoder with active low outputs.
 5. Write the Boolean function outputs for the letter display decoder.
 6. Create a new project and write complete VHDL code for the letter display decoder. Simu-

late the design to verify that it follows the truth table for the letter display decoder. If the
outputs of the letter display decoder do not follow the truth table for the letter display
decoder, then you know that the VHDL code for module 3 has an error. You must find the
error or errors and fix them.

 7. Create a new project and write complete VHDL code for the check gates system using a
flat design approach. (Hint: See Section 2.4.5 in Chapter 2 for a discussion of a flat design
approach.) Use the designs for modules 2 and 3 and include them in a single architecture;
then add the VHDL code for modules 1, 4, and 5. Be sure that all external input and output
signals are declared in the entity and that all internal signals are declared between architec-
ture and the first begin. Document your VHDL code as shown in the design in Chapter 2,
Section 2.4.5, Listing 2.1.

 8. Complete the design cycle for your check gates system by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 9. Check to see if your check gates system works in hardware—that is, when slide switches
SW2, SW1, and SW0 select a respective gate, the gate can be checked to see it works
according to its truth table using slide switches SW7 and SW6. When a gate output is 0,
the 7-segment display will show an L (for low). When the gate output is 1, the 7-segment
display will show an H (for high). The single LEDs are used to show the status of the inputs
to the gates and also the status of the inputs to the 8-to-1 MUX. If your check gates system
design does not verify the correct functionality of each gate, you have made a mistake that
you must fi nd and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 9 (check gates system).

 2. Include the filled in compressed truth table for the 8-to-1 MUX.
 3. Included the Boolean function for the 8-to-1 MUX in SOP form.
 4. Include the complete VHDL code for your 8-to-1 MUX design.
 5. Include a printout of the simulation waveform diagram for your 8-to-1 MUX.
 6. Include the filled-in truth table for the letter display decoder.
 7. Include the Boolean function outputs for the letter Display Decoder.
 8. Include the complete VHDL code for your letter display decoder design.

546 Appendix A Laboratory Experiments

 9. Include a printout of the simulation waveform diagram for your letter display decoder
design.

 10. Include the complete VHDL code for your check gates system design.
 11. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your check gates system design.
 12. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 13. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 4: DESIGNING AND TESTING A CUSTOM
DECIMAL DISPLAY DECODER SYSTEM

1. Learning Objectives
In this experiment, you will practice working with a custom decimal display decoder system.
First, you will learn how to design a display decimal decoder using vectors in VHDL and simu-
late it to verify that it works. Second, you will learn how to design a MUX array and simulate
it to verify that it works. Third, you will learn how to combine designs with some additional
modules to obtain a flat design for the complete system. Then, you will download and test your
design in hardware to verify that the system works. This is summarized as follows:

 1. Design a decimal display decoder and simulate it to verify that it works.
 2. Design a MUX array and simulate it to verify that it works.
 3. Obtain a flat design for the complete custom decimal display decoder system.
 4. Download and test your design in hardware.

2. Custom Decimal Display Decoder System with Inputs
and Outputs
Figure E4.1 shows an annotated schematic for the custom decimal display decoder system.
 Notice that the four slide switches SW3, SW2, SW1, and SW0 are used for the BCD inputs
and one push-button switch BTN3 is used for the lamp test (LT) input. Notice that SW7 is used
to switch between Disp 3 (display 3) and Disp 0 (display 0) of the 7-segment display.
 Table E4.1 shows a partially filled in truth table for the decimal display decoder with active
low outputs. When the BCD value is 0 through 9 and the lamp test input is inactive, the BCD
value should be displayed on the 7-segment display. When the lamp test input is active, signal
S4 is 1, all of the segments for the 7-segment display are turned on to test if the segments are
good—that is, not burned out. When a BCD value is not entered (binary values 10 through 15
are entered) and the lamp test is inactive, the display should be blank—that is, all segments
turned off.
 Table E4.2 shows a template for a compressed truth table for the array of MUXs. When
the input signal SEL is 0 and 1, you must fill in the outputs provided by the array of MUXs
(module 2). Keep in mind that the output of the array of MUXs is a bus that has the data type
std_logic_vector in VHDL.

Recommended Pre-Lab:

 1. Tasks 1 through 4.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

www.itpub.net

 Experiment 4: Designing and Testing a Custom Decimal Display Decoder System 547

Tasks:

 1. Fill in the rest of the truth table in Table E4.1 for the decimal display decoder.
 2. Create a new project and write complete VHDL code for the decimal display decoder

(module 1). Using a dataflow design style with a conditional signal assignment (when-else
statement). Simulate the design to verify that it follows the truth table that you created
just for the inputs S(4) S(3) S(2) S(1) S(0) 5 00000 to 1XXXX. [Note: See Appendix B
(Obtaining Simulations via the VHDL Test Bench Program) for help.] If the outputs of the
decimal display decoder do not follow the truth table, then you know that the VHDL code
for module 1 has an error. You must find the error or errors and fix them.

 3. Fill in the truth table in Table E4.2 for the array of MUXs.
 4. Create a new project and write complete VHDL code for the array of MUXs (module 2).

Use a dataflow design style with a conditional signal assignment (when-else statement).

S(4) S(3) S(2) S(1) S(0) D(6) D(5) D(4) D(3) D(2) D(1) D(0)

Decimal display decoder

7-segment display

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 X X X X

1 0 0 0 0 0 0

1 1 1 1 0 0 1

* All segments turned off

8
0
1

2
3
4
5
6
7
8
9

8
Blank

Blank

Blank

Blank

Blank

Blank*

f
a

g
d

e
b
c

TABLE E4.1 Partially filled-in truth table for the decimal

display decoder with active low outputs

TABLE E4.2 Template

for a compressed truth table

for the array of MUXs

SEL AX(3:0)

0

1

548 Appendix A Laboratory Experiments

Simulate the design to verify that it follows the truth table that you created. If the outputs
of the array of MUXs do not follow the truth table, then you know that the VHDL code for
module 2 has an error. You must find the error or errors and fix them.

 5. Create a new project and write complete VHDL code for the custom decimal display
decoder system using a flat design approach. Use the designs for modules 1 and 2 and
include them in a single architecture; then add the VHDL code for modules 3 and 4. Be
sure that all external input and output signals are declared in the entity and that all internal
signals are declared between architecture and the first begin (Hint: See Section 2.4.5 in
Chapter 2 or the end of Section 4.8 in Chapter 4 for a discussion of a flat design approach.)

88

Push-button switch
with resistors

Only display Disp 3 and Disp 0 are used,
i.e., the other displays are blanked.

Legend

SEG Bit
CA 0

1110

0111

SEL

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

All inputs to the 7-
segment display
are active low, i.e.,
they turn on when
input is low.

SEG

AN3

Disp 3
0

3

64

5 1

2

7
o

8
SEG

AN2

Disp 2

o
8
SEG

AN1

Disp 1

o

SEG

AN0

Disp 0

o

4
4

4
0

1

8

AX(3:0)
(AN3...AN0)

D(7:0)

D(0)
D0

Module 1

Module 2
Array of MUXs

Module 3
NOT gate and BUFFER

Module 4
BUFFER

Decimal display
decoder

(BCD to 7-segment
decoder with active

low outputs)

D1

D2

D3

D4

D5

D6

D(1)

D(2)

D(3)

D(4)

D(5)

D(6)

DP

SINGLE_LED
(LD0)

D(7)

S0

S1

S2

S3

LT

S(0)

S(1)

S(2)

S(3)

S(4)

S(4)
(BTN3)

LED with
protection

resistor

Slide switch
with resistor

Active high
input, i.e., LED
turns on when
input is high

S(0)
(SW0)

GND

Slide switch
with resistor

S(3)
(SW3)

Slide switch
with resistor

S(1)
(SW1)

Slide switch
with resistor

S(2)
(SW2)

Slide switch
with resistor

SEL
(SW7)

V
CC V

CC
V

CC

V
CC

V
CC

V
CC

FIGURE E4.1 Annotated schematic for the custom decimal display decoder system

www.itpub.net

 Experiment 5A: Designing and Testing a D Latch and a D Flip-Flop with a CLR Input 549

Use Boolean equations to write the assignments for DP, D(7), and SINGLE_LED. (Hint: To
form the bus for D, use either an aggregate or the concatenation operator.)

 6. Complete the design cycle for your custom decimal display decoder system by doing the
following:

 a. Assign package pins for all the port signals in the entity for your design. Note: Bus
signals such as S(0), S(1), etc, must be listed in the Edit Constraints (Text) file as S<0>,
S<1>, etc.

 b. Generate a programming file, then check to see if your VHDL code needs to be cor-
rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your custom decimal display decoder system works in hardware. Verify that
each binary coded decimal (BCD) number entered by the four slide switches is displayed
in decimal on the 7-segment display and non-BCD numbers will result in a blank display.
When the lamp test push button is pressed (lamp test input is 1), all of the segments of the
7-segment display, the decimal point of the 7-segment display, and the single LED LD0
turns on. When slide switch SW7 is pulled back, DSP0 is enabled and when slide switch
SW7 is pushed forward, DSP3 is enabled. If your design does not perform in this manner,
you have made a mistake that you must find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 7 (Custom Decimal Display Decoder System).

 2. Include the filled-in truth table for the decimal display decoder.
 3. Include the complete VHDL code for your decimal display decoder design.
 4. Include a printout of the simulation waveform diagram for your decimal display decoder

design.
 5. Include the filled-in truth table for the array of MUXs.
 6. Include the complete VHDL code for your array of MUXs design.
 7. Include a printout of the simulation waveform diagram for the array of MUXs design.
 8. Include the complete VHDL code for your custom decimal display decoder system.
 9. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your custom decimal display decoder system.
 10. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 11. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 5A: DESIGNING AND TESTING A D LATCH
AND A D FLIP-FLOP WITH A CLR INPUT

1. Learning Objectives
In this experiment, you will practice working with a D latch and D flip-flops with a CLR
(CLEAR) input. First, you will learn how to design a D latch in VHDL and run a post-route

550 Appendix A Laboratory Experiments

simulation for the design to verify that it works. Second, you will download and test your design
in hardware to verify that the D latch works. Third, you will learn how to design a positive edge-
triggered D flip-flop with a CLR input and run a post-route simulation for the design to verify
that it works. Fourth, you will download and test your design in hardware to verify that the D
flip-flop works. This is summarized as follows:

 1. Design a D latch in VHDL and run a post-route simulation for the design to verify that it
works.

 2. Download and test your design in hardware to verify that the D latch works.
 3. Design a positive edge-triggered D flip-flop with a CLR (CLEAR) input and run a post-

route simulation for the design to verify that it works.
 4. Download and test your design in hardware to verify that that the D flip-flop works.

2. D Latch with Inputs and Output
Figure E5A.1 shows an annotated schematic for a D latch circuit.

Slide switch
with resistor

Push-button switch
with resistors

LED with
protection

resistor

D_LATCH

Q
(LD0)

C
(BTN0)

D
(SW0)

D

C
E

G

F

V
CC

V
CC

FIGURE E5A.1 Annotated
schematic for a D latch circuit

 Notice that one slide switch SW0 provides the D input value, one push-button switch BTN0
provides the C input value, and a single LED output LD0 provides the Q output value.

3. D Flip-Flop with a CLR Input with Inputs and Output
Figure E5A.2 shows an annotated schematic for a D flip-flop circuit with a CLR input.
 Notice that one slide switch SW0 provides the D input value, one push-button switch BTN0
provides the C input value, one push-button switch BTN3 provides the CLR input value, and a
single LED output LD0 provides the Q output value.

Recommended Pre-Lab:

 1. Tasks 1 and 5.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Create a new project named D_LATCH, and write complete VHDL code for the D latch
circuit shown in Figure E5A.1. Use a datafl ow design style with Boolean equations. Obtain

www.itpub.net

 Experiment 5A: Designing and Testing a D Latch and a D Flip-Flop with a CLR Input 551

a post-route simulation for the design to verify that it follows the characteristic table for the
D latch as provided in the text in Chapter 5, Section 5.5.2. [Note: See Appendix B (Obtain-
ing Simulations via the VHDL Test Bench Program) for help.] If the output of your D latch
does not follow the characteristic table, then you know that the VHDL code for your D latch
has an error. You must fi nd the error or errors and fi x them.

 2. Complete the design cycle for your D latch by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 3. Check to see if your D latch works in hardware. Push and hold down the push-button
switch BTN0. While the push-button switch is being held down, push the slide switch SW0
forward then back and observe the single LED output LD0. Observe that the output LD0,
which represents Q, follows the value of SW0, which represents D. When you release the

Push-button switch
with resistors

CLR
(BTN3)

Gate-level
circuit

Circuit using
D Latch
symbols

SlaveMaster

SlaveMaster

DFF_W_CLR

DFF_W_CLR

LED with
protection

resistor

Q
(LD0)

Push-button switch
with resistors

C
(BTN0)

Slide switch
with resistor

D
(SW0)

D

CLR

C

CLR
C

QD

CLR
C

QDD

CLR

C

K

M

L
N

O

Q

Q

J

J

E

E
I

H

G

F

V
CC V

CC

V
CC

FIGURE E5A.2 Annotated schematic for a D flip-flop circuit with a CLR input

552 Appendix A Laboratory Experiments

push-button switch observe the last value that you provided for the D input is captured by
Q. When C is 0 (push-button switch not pressed), observe that D input has no effect on the
output Q.

 4. Fill in the following PS/NS table for your D latch design. First use the C and D inputs to
establish the present-state value of Q in the first row of the table. Next change the value of
C and D to the values required for the first row of the table and record the next-state value
of Q—that is, Q1. (Note: In the table when C is 0, the push-button switch is not pressed, and
when C is 1, the push-button switch is pressed. Use this procedure to fill in each row of the
table. Draw the logic symbol for the D latch represented by the PS/NS table that you filled
in. Use the PS/NS table to obtain the characteristic table for the D latch.

C D Q Q1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 5. Create a new project named DFF_W_CLR, and write complete VHDL code for the D flip-
flop with a CLR input, shown in Figure E5A.2. Use a dataflow design style with Boolean
equations. Obtain a post-route simulation for the design to verify that it follows the char-
acteristic table for the D flip-flop as provided in the text in Chapter 5, Section 5.6. If the
output of your D flip-flop does not follow the characteristic table, then you know that the
VHDL code for your D flip-flop has an error. You must find the error or errors and fix
them.

 6. Complete the design cycle for your D flip-flop with a CLR input, by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file.
 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS

2 board.
 7. Check to see if your D flip-flop with a CLR input works in hardware. Observe the single

LED output LD0 for the following conditions: Move slide switch SW0 forward and press
and release BTN0; then move slide switch SW0 back and press and release BTN0. Observe
that the output LD0, which represents Q, follows the value of SW0, which represents D,
each time BTN0 is pressed, which represents C. You may release BTN0 any time after you
press it. The value of D is stored by the D flip-flop when BTN0 is pressed. Observe what
happens when the value of the slide switch SW0 is changed and BTN0 is not pressed. You
will observe that this action has no effect on the output LD0. Also observe that any time the
output LD0 is 1 and BNT3 is pressed that the output LD0 turns off or Q is cleared to 0. If
your D flip-flop circuit does not act in this manner, you have a problem that you must find
and fix.

 8. Fill in the following PS/NS table for your D flip-flop with a CLR input. First use the CLR,
C, and D inputs to establish the present-state value of Q in the first row of the table. Next
change the value of CLR, C, and D to the values required for the first row of the table and
record the next-state value of Q—that is, Q1. The symbol c means to press BTN0, which
represents C, to generate a rising edge, or 0 S 1 transition. You may release BTN0 any time

www.itpub.net

 Experiment 5B: Designing and Testing an 8-bit Register and a D Flip-Flop with a PRE Input 553

after you press it. Use this procedure to fill in each row of the table. Draw the logic symbol
for your D flip-flop with a CLR input represented by the PS/NS table that you filled in. Use
the PS/NS table to obtain the characteristic table for the D flip-flop with a CLR input.

CLR C D Q Q1

1 3 3 3

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 c 0 0

0 c 0 1

0 c 1 0

0 c 1 1

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working designs and get them signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your lab
instructor to come to your bench to observe your fi nal working designs. Your fi nal working
designs for this experiment are task 3 (D Latch) and task 7 (D fl ip-fl op with a CLR input).

 2. Include the complete VHDL code for your D latch design.
 3. Include a printout of the post-route simulation waveform diagram for your D latch design.
 4. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your D latch design.
 5. Include the filled in PS/NS table for the D latch.
 6. Include the logic symbol for the D Latch.
 7. Include the characteristic table for the D latch.
 8. Include the complete VHDL code for your D flip-flop with a CLR input design.
 9. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your D flip-flop with a CLR input design.
 10. Include the filled in PS/NS table for D flip-flop with a CLR input.
 11. Include the logic symbol for D flip-flop with a CLR input.
 12. Include the characteristic table for D flip-flop with a CLR input.
 13. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 14. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 5B: DESIGNING AND TESTING AN 8-BIT
REGISTER AND A D FLIP-FLOP WITH A PRE INPUT

1. Learning Objectives
In this experiment, you will practice working with an 8-bit register and a D flip-flop with a
PRE (PRESET) input. First, you will learn how to design an 8-bit register and run a post-route
simulation for the design to verify that it works. Second, you will download and test your design

554 Appendix A Laboratory Experiments

in hardware to verify that the 8-bit register works. Third, you will learn how to design a positive
edge-triggered D flip-flop with a PRE input and run a post-route simulation for the design to
verify that it works. Fourth, you will download and test your design in hardware to verify that
the D flip-flop works. This is summarized as follows:

 1. Design an 8-bit register and run a post-route simulation for the design to verify that it works.
 2. Download and test your design in hardware to verify that the 8-bit register works.
 3. Design a positive edge-triggered D flip-flop with a PRE (PRESET) input and run a post-

route simulation for the design to verify that it works.
 4. Download and test your design in hardware to verify that that the D flip-flop works.

2. 8-bit Register with Inputs and Output
Figure E5B.1 shows an annotated schematic for an 8-bit register circuit with inputs and outputs
and a D latch circuit.

Slide switch
with resistor

Push-button switch
with resistors

LED with
protection

resistor

D latch circuit

Array of
slide switches

Array of
BUFFERs

8-bit register
Array of

single LEDs

Array of D latches

REG_8b

Module 2

Module 1

8

Q(7:0)
(LD7,LD6...,LD0)

BTN0
(BTN0)

BTN0

D(7:0)

C(7:0)
C(7) C

D Q

8 8 8

8

C(6)

C(0)

BTN0

BTN0

D(7:0)
(SW7,SW6...,SW0)

D

C
E

G

F

Q

⋮

V
CC

V
CC

FIGURE E5B.1 Annotated schematic for an 8-bit register circuit and D latch circuit

 Notice that an array of slide switch SW7, SW6. . . , SW0 provide the D input values, one
push-button switch BTN0 provides the C input value, and an array of single LED outputs LD7,
LD6, . . ., LD0 provide the Q output values.

www.itpub.net

 Experiment 5B: Designing and Testing an 8-bit Register and a D Flip-Flop with a PRE Input 555

3. D Flip-Flop with a PRE Input with Inputs and Output
Figure E5B.2 shows an annotated schematic for a D flip-flop circuit with a PRE input.

 Notice that one slide switch SW0 provides the D input value, one push-button switch BTN0
provides the C input value, one push-button switch BTN3 provides the PRE input value, and a
single LED output LD0 provides the Q output value.

Recommended Pre-Lab:

 1. Tasks 1 and 5.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Create a new project named REG_8b, and write complete VHDL code for the 8-bit register
circuit shown in Figure E5B.1. To generate the 8-bit register, use an array of eight D latch
circuits. To create the array, simply declare the port names and the internal signals as vectors
for the D latch circuit in Figure E5B.1. Use a datafl ow design style with Boolean equations.
Obtain a post-route simulation for the design to verify that it follows the characteristic table
for each of the D latch circuits in the array as provided in the text in Chapter 5, Section 5.5.2.

Push-button switch
with resistors

PRE
(BTN3)

LED with
protection

resistor

Q
(LD0)

Push-button switch
with resistors

C
(BTN0)

Slide switch
with resistor

D
(SW0)

D

C

I

H J

Q
G

F
EPRE

DFF_W_PRE

V
CC

V
CC

V
CC

FIGURE E5B.2
Annotated schematic
for a D flip flop with a
PRE input

556 Appendix A Laboratory Experiments

[Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for
help.] If the output of your 8-bit register does not follow the characteristic table for each of
the D latch circuits in the array, then you know that the VHDL code for your 8-bit register
has an error. You must fi nd the error or errors and fi x them.

 2. Complete the design cycle for your 8-bit register by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 3. Check to see if your 8-bit register works in hardware. Select an 8-bit value by pushing for-
ward or pulling back the slide switches SW7, SW6. . ., SW0. Press and release BTN0, which
represents C. This captures or stores that value of the slide switches. After you release the
push-button switch BTN0, you should observe that you can change the slide switches and
this does not change the previous value that was captured. If your design for the 8-bit regis-
ter doesn’t work in this manner, then you know that the VHDL code has an error. You must
find the error or errors and fix them.

 4. Fill in the following truth table to confirm that you can capture the following binary values
at the slide switch inputs when you push and then release push-button switch BTN0:

Switch settings Value captured

SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

 5. Create a new project named DFF_W_PRE, and write complete VHDL code for the D flip-
flop with a PRE input, shown in Figure E5B.2. Use a dataflow design style with Boolean
equations. Obtain a post-route simulation for the design to verify that it follows the char-
acteristic table for the D flip-flop as provided in the text in Chapter 5, Section 5.6.1. If the
output of your D Flip-Flop does not follow the characteristic table, then you know that the
VHDL code for your D flip-flop has an error. You must find the error or errors and fix
them.

 6. Complete the design cycle for your D flip-flop with a PRE input, by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your D flip-flop with a PRE input works in hardware. Observe the single
LED output LD0 for the following conditions: Move slide switch SW0 forward and
press and release BTN0; then move slide switch SW0 back and press and release BTN0.

www.itpub.net

 Experiment 5B: Designing and Testing an 8-bit Register and a D Flip-Flop with a PRE Input 557

Observe that the output LD0, which represents Q, follows the value of SW0, which rep-
resents D, each time BTN0 is pressed, which represents C. You may release BTN0 any
time after you press it. The value of D is stored by the D flip-flop when BTN0 is pressed.
Observe what happens when the value of the slide switch SW0 is changed and BTN0
is not pressed. You will observe that this action has no effect on the output LD0. Also
observe that any time the output LD0 is 0 and BNT3 is pressed, the output LD0 turns on
or Q is set to 1. If your D flip-flop circuit does not act in this manner, you have a problem
that you must find and fix.

 8. Fill in the following PS/NS table for your D flip-flop with a PRE input. First use the PRE,
C, and D inputs to establish the present-state value of Q in the first row of the table. Next
change the value of PRE, C, and D to the values required for the first row of the table and
record the next-state value of Q, i.e., Q1. The symbol c means to press BTN0, which rep-
resents C, to generate a rising edge, or 0 S 1 transition. You may release BTN0 any time
after you press it. Use this procedure to fill in each row of the table. Draw the logic symbol
for your D flip-flop with a PRE input represented by the PS/NS table that you filled in. Use
the PS/NS table to obtain the characteristic table for the D flip-flop with a PRE input.

PRE C D Q Q1

1 3 3 3

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 c 0 0

0 c 0 1

0 c 1 0

0 c 1 1

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working designs and get them signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working designs. Your fi nal work-
ing designs for this experiment are task 3 (8-bit register) and task 7 (D fl ip-fl op with a PRE
input).

 2. Include the complete VHDL code for your 8-bit register design.
 3. Include a printout of the post-route simulation waveform diagram for your 8-bit register

design.
 4. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your 8-bit register design.
 5. Include the filled-in truth table for the 8-bit register.
 6. Include the logic symbol for the 8-bit register.
 7. Include the characteristic table for the 8-bit register.
 8. Include the complete VHDL code for your D flip-flop with a PRE input design.
 9. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your D Flip-Flop with a PRE input.

558 Appendix A Laboratory Experiments

 10. Include the filled-in truth table for the D flip-flop with a PRE input.
 11. Include the logic symbol for the D flip-flop with a PRE input.
 12. Include the characteristic table for the D flip-flop with a PRE input.
 13. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 14. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 6A: DESIGNING AND TESTING A SIMPLE
COUNTER SYSTEM—A ONE-HOT UP COUNTER WITH 8 BITS

1. Learning Objectives
In this experiment, you will practice designing and testing a simple counter system—that is, a
one-hot up counter with 8 bits. First you will learn how to design a one-hot up counter with 8 bits
and simulate it to verify that it works. Second, you will learn how to design a frequency divider
to divide the frequency of 50 MHz down to approximately 3 Hz and verify that the design works
by observing the output supplied to a single LED. Third, you will learn how to combine the fre-
quency divider and the one-hot up counter via a flat design approach. Fourth, you will download
and test your design in hardware to verify that the system works. This is summarized as follows:

 1. Design a one-hot up counter with 8 bits and simulate it to verify that the design works.
 2. Design a frequency divider to divide the frequency of 50 MHz down to approximately 3 Hz

and verify that the design works via a single LED.
 3. Combine the frequency divider and the one-hot up counter to form a system via a flat design

approach.
 4. Download and test your design in hardware to verify that the system works.

0

0
0

0
0

0

1

0

0

0
0

0
0

0

0

1

0

0
0

0
0

1

0

0

0

0
0

0
1

0

0

0

Q7 Q6 Q5 Q4
0

0
0

1
0

0

0

0

Q3
0

0
1

0
0

0

0

0

Q2
0

1
0

0
0

0

0

0

Q1
1

0
0

0
0

0

0

0

≡

Q0

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0 State

Legend

(a)
(b)

INIT
(asyn)

INIT
(asyn)

FIGURE E6A.1 Design
specification for a one-hot
up counter: (a) counting
sequence diagram;
(b) equivalent state
diagram

www.itpub.net

 Experiment 6A: Designing and Testing a Simple Counter System—a One-Hot Up Counter with 8 Bits 559

2. One-Hot Up Counter with 8 Bits
The design specification for a one-hot up counter with 8 bits is shown in Figure E6A.1. Fig-
ure E6A.1a shows the counting sequence diagram, and Figure E6A.1b shows an equivalent state
diagram for the one-hot up counter. Each flip-flop output that is turned on represents a state for
a one-hot counter.
 Figure E6A.2 shows a template for a one-hot up counter with 8 bits.

 Notice in Figure E6A.2 that the push-button switch BTN3 provides the input value and
eight separate single LED outputs LD0 through LD7 provide the Q output values. You must
determine the eight clouds of combinational logic, the correct FF (flip-flop) inputs for clearing
and/or presetting the FFs, and the correct signal name for the push-button switch based on the
design specification.

3. Frequency Divider with Input and Output
Figure E6A.3 shows a logic symbol for a frequency divider (FD) that will divide a 50-MHz
frequency down to approximately 3 Hz connected to a single LED.

⋮

Template for one-hot
up counter (OHUC)

Add correct FF input:
CLR, PRE, or none

Add correct FF input:
CLR, PRE, or none

Cloud of
combinational

logic

D0
Q0

Q0D Q

CCLK
(50 MHz)

Q7

⋮

⋮

⋮

Add correct FF input:
CLR, PRE, or none

Add correct FF input:
CLR, PRE, or none

Cloud of
combinational

logic

D1
Q0

Q1D Q

CCLK

Q7

⋮
Add correct FF input:
CLR, PRE, or none

Add correct FF input:
CLR, PRE, or none

Choose correct
signal name:

RST, SET or INIT

Cloud of
combinational

logic

D7
Q0

Q7D Q

CCLK

Q7

LED with
protection

resistor

Q0
(LD0)

LED with
protection

resistor

Q1
(LD1)

LED with
protection

resistor

Q7
(LD7)

Push-button switch
with resistors

(BTN3)

V
CC

FIGURE E6A.2
Template for a one-hot
up counter with 8 bits

560 Appendix A Laboratory Experiments

 For this design, a binary counter with 24 bits that range from 23 down to 0 is used to divide
the frequency of the clock from 50 MHz down to 50/224 MHz or 2.98 Hz. The signal name for
the output of the frequency divider is COUNT, and it is an internal signal.

Recommended Pre-Lab:

 1. Tasks 1 and 2.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Obtain the design for the one-hot up counter specifi cation in Figure E6A.1 using the algo-
rithmic equation method. First, use the Set OR Hold 1 equation to obtain the D excitation
equations for the one-hot up counter in Figure E6A.1. Draw the circuit for the one-hot up
counter using the template in Figure E6A.2. Create a new project named OHUC, and write
complete VHDL code for the one-hot up counter. Make the Q output a std_logic_vector
data type. Write the VHDL code using a datafl ow design style with an aggregate. (Hint: See
Chapter 6, Section 6.6, Listing 6.4, which shows how to use an aggregate.)

 2. Simulate the design for the one-hot up counter to verify that it follows the counting
sequence diagram or the equivalent state diagram in Figure E6A.1. [Note: see Appendix B
(Obtaining Simulations via the VHDL Test Bench Program) for help.] If your design does
not follow the counting sequence diagram or the equivalent state diagram, then you know
that the VHDL code has an error. You must find the error or errors and fix them.

 3. Create a new project named FD, and write complete VHDL code for the logic symbol FD
connected to a single LED as shown in Figure E6A.3. [Note: Do not use FD as the name of
the design entity because this name is reserved as a keyword in the Xilinx library. FD1 will
work if you want to use this name.) Write the VHDL code using a behavioral design style
via the Arithmetic Method. (Hint: See Chapter 6, Section 6.8, Listing 6.6.)

 4. Complete the design cycle for your FD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 5. Check to see if your FD circuit works in hardware. Verify that LD7 blinks at a frequency
of ~3 Hz. If your design does not perform in this manner, you have made a mistake that you
must find and correct.

 6. Use a flat design approach to combine the frequency divider and one-hot up counter so that
the one-hot up counter uses the SLOW_CLK signal provided by the frequency divider as its

CCLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Frequency divider
(binary up counter, 24 bits)

FD

COUNT(23)
(~3 Hz)
(LD7)

FIGURE E6A.3 Frequency divider
connected to a single LED

www.itpub.net

 Experiment 6A: Designing and Testing a Simple Counter System—a One-Hot Up Counter with 8 Bits 561

clock input. Use the input (push-button switch) and outputs (single LEDs) for your system
design as shown below the template for the one-hot up counter in Figure E6A.2. (Hint: See
Section 2.4.5 in Chapter 2 or the end of Section 4.8 in Chapter 4 for a discussion of a flat
design approach.) First, create a new project named FD_OHUC and write the complete
VHDL code for the system. You can use the architecture parts of the VHDL code for the
frequency divider and the one-hot up counter as modules 1 and 2 in your flat design.

 7. After you create the new project, click Project, then click Add Copy of Source to add the
VHDL code—that is, the .vhd files, for FD and OHUC to your new project FD_OHUC.
Open up the .vhd files FD and OHUC in turn and copy and paste the architecture parts you
need in your flat design. After you copy and paste the architecture parts you need, delete
the .vhd files for FD and OHUC. You must remember to include SLOW_CLK as an internal
signal in the architecture of your flat design and also to use SLOW_CLK as the clock signal
that drives your one-hot up counter.

 8. Complete the design cycle for your FD_OHUC design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 9. Check to see if your FD_OHUC design works in hardware. Verify that LD7 down to LD0
count in the one-hot sequence 00000001, 00000010, 00000100, 00001000, 00010000,
00100000, 01000000, 10000000 and repeats, where 0 represents an LED that is off and 1
represents an LED that is on. When push button BTN3 is pressed and held down LD0 goes
to 1 and all the other LED go to 0 until the push button is released. If your design does not
perform in this manner, you have made a mistake that you must find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 9 (FD_OHUC design).

 2. Include the D excitation equations for your one-hot up counter.
 3. Include your circuit drawing for the one-hot up counter.
 4. Include your complete VHDL code for your OHUC design.
 5. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your OHUC design.
 6. Include a printout of the simulation waveform diagram for the OHUC design.
 7. Include the complete VHDL code for your FD design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD design.
 9. Include the complete VHDL code for your FD_OHUC design.
 10. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD_OHUC design.
 11. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 12. Your lab instructor may add additional requirements for this experiment.

562 Appendix A Laboratory Experiments

EXPERIMENT 6B: DESIGNING AND TESTING A SIMPLE
COUNTER SYSTEM—A GRAY CODE COUNTER WITH 2 BITS

1. Learning Objectives
In this experiment, you will practice designing and testing simple counters—that is, a Gray code
counter. First, you will learn how to design a Gray code counter with 2 bits and simulate it to
verify that it works. Second, you will learn how to design a frequency divider to divide the fre-
quency of 50 MHz down to approximately 1 Hz and verify that the design works by observing
the output supplied to a single LED. Third, you will learn how to combine the frequency divider
and the Gray code counter to form a system via a hierarchal design approach. Fourth, you will
download and test your design in hardware to verify that the system works. This is summarized
as follows:

 1. Design a Gray-code counter with 2 bits and simulate it to verify that the design works.
 2. Design a frequency divider to divide the frequency of 50 MHz down to approximately 1 Hz

and verify that the design works via a single LED.
 3. Combine the frequency divider and the Gray code counter to form a system via a hierarchal

design approach.
 4. Download and test your design in hardware to verify that the system works.

2. Gray Code Counter with 2 Bits
The design specification for a Gray code counter with 2 bits is shown in Figure E6B.1. Fig-
ure E6B.1a shows the counting sequence diagram, and Figure E6B.1b shows an equivalent state
diagram for the Gray code counter.

0

1
1

0

0

0
1

1

Q1 Q0

≡

10

11

01

00
Q1Q0

Legend

(a) (b)

RST
(asyn)

RST
(asyn)

FIGURE E6B.1 Design specification for a
Gray code counter: (a) counting sequence
diagram; (b) equivalent state diagram

 Figure E6B.2 shows the template for a synchronous Gray code counter with 2 bits.
 Notice in Figure E6B.2 that the push-button switch BTN0 provides the input value, and
two separate single LED outputs LD0 and LD1 provide the Q output values. You must deter-
mine the two clouds of combinational logic, the correct FF (flip-flop) inputs for clearing and/or
presetting the FFs, and the correct signal name for the push-button switch based on the design
specification.

3. Frequency Divider with Input and Output
Figure E6B.3 shows a logic symbol for a frequency divider (FD) that will divide a 50-MHz
frequency down to approximately 1 Hz connected to a single LED.
 For this design, a binary counter with 26 bits that range from 25 down to 0 is used to divide
the frequency of the clock from 50 MHz down to 50/226 MHz or 0.7451 Hz. The signal name for
the output of the frequency divider is COUNT, and it is an internal signal.

www.itpub.net

 Experiment 6B: Designing and Testing a Simple Counter System—a Gray Code Counter with 2 Bits 563

Recommended Pre-Lab:

 1. Task 1.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Obtain the design for the Gray code counter specifi cation in Figure E6B.1 using the algo-
rithmic equation method. First, use the Set OR Hold 1 equation to obtain the D excitation
equations for the Gray code counter in Figure E6B.1. Draw the circuit for the Gray code
counter using the template in Figure E6B.2. Create a new project named GCC, and write

CLK
(50 MHz)

Template for Gray-code
counter (GCC)

Add correct FF input:
CLR, PRE, or none

Add correct FF input:
CLR, PRE, or none

Cloud of
combinational

logic

D0Q0
Q0D Q

CCLK
(50 MHz)

Q1

Add correct FF input:
CLR, PRE, or none

Add correct FF input:
CLR, PRE, or none

Cloud of
combinational

logic

D1Q0
Q1D Q

C

Q1

Choose correct
signal name:

RST, SET or INIT

LED with
protection

resistor

Q0
(LD0)

LED with
protection

resistor

Q1
(LD1)

Push-button switch
with resistors

(BTN3)

V
CC

FIGURE E6B.2 Template for a Gray code counter with 2 bits

CCLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Frequency divider
(binary up counter, 26 bits)

FD

COUNT(25)
(~1 Hz)
(LD7)

FIGURE E6B.3 Frequency divider connected to a single LED

564 Appendix A Laboratory Experiments

complete VHDL code for the Gray code counter. Write the VHDL code using a behavioral
design style with either one or two processes. Simulate the design to verify that it follows
the counting sequence diagram or the equivalent state diagram in Figure E6B.1. [Note: See
Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for help.] If your
design does not follow the counting sequence diagram or the equivalent state diagram,
then you know that the VHDL code has an error. You must fi nd the error or errors and fi x
them.

 2. Create a new project named FD, and write complete VHDL code for the logic symbol FD
connected to a single LED as shown in Figure E6B.3. (Note: Do not use FD as the name of
the design entity because this name is reserved as a keyword in the Xilinx library. FD1 will
work if you want to use this name.) Write the VHDL code using a behavioral design style
via the arithmetic method. (Hint: See Chapter 6, Section 6.8, Listing 6.6.)

 3. Complete the design cycle for your FD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 4. Check to see if your FD circuit works in hardware. Verify that LD7 blinks at a frequency
of ~1 Hz. If your design does not perform in this manner, you have made a mistake that you
must find and correct.

 5. Use a hierarchal design approach to combine the frequency divider and Gray code coun-
ter so that the Gray code counter uses the SLOW_CLK signal provided by the frequency
divider as its clock input. Use the input (push-button switch) and outputs (single LEDs)
for your system design as shown below the template for the Gray code counter in Fig-
ure E6B.2. (Hint: See Chapter 4, Section 4.8 Structural Design Style.) First, create a new
project named FD_GCC and write the complete VHDL code for the system. You can use
the complete VHDL code for the frequency divider and the Gray code counter as the defi-
nitions for components 1 and 2 in your hierarchal design. After you create the new project,
click Project, then click Add Copy of Source to add the VHDL code—that is, the .vhd files,
for FD and GCC to your new project FD_GCC.

 6. Complete the design cycle for your FD_GCC design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your FD_GCC design works in hardware. Verify that LD1 and LD0 count
in the Gray code sequence 00, 01, 11, 10 and repeats, where 0 represents an LED that is off
and 1 represents an LED that is on. When push button BTN3 is pressed and held down LD1
and LD0 go to 00 until the push button is released. If your design does not perform in this
manner, you have made a mistake that you must fi nd and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 7 (FD_GCC design).

www.itpub.net

 Experiment 6C: Designing and Testing a Simple Nonconventional Counter System—A Robot Eye Circuit 565

 2. Include the D excitation equations for your Gray code counter.
 3. Include your circuit drawing for the Gray code counter.
 4. Include your complete VHDL code for your GCC design.
 5. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your GCC design.
 6. Include a printout of the simulation waveform diagram for the GCC design.
 7. Include the complete VHDL code for your FD design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD design.
 9. Include the complete VHDL code for your FD_GCC design.
 10. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD_GCC design.
 11. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 12. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 6C: DESIGNING AND TESTING A SIMPLE
NONCONVENTIONAL COUNTER SYSTEM—A ROBOT EYE
CIRCUIT

1. Learning Objectives
In this experiment, you will practice designing and testing a simple nonconventional counter
system—that is, the design for a robot eye circuit. First, you will learn how to design a robot eye
circuit (REC) and simulate it. Second, you will learn how to design an exact frequency divider
to divide the frequency of 50 MHz down to exactly 8 Hz and verify that the design works by
observing the output supplied to a single LED. Third, you will learn how to design a robot
eye system that contains the exact frequency divider and the robot eye circuit via a flat design
approach. Fourth, you will download and test your design to verify that the system works. This
is summarized as follows:

 1. Design a robot eye circuit and simulate it.
 2. Design an exact frequency divider to divide the frequency of 50 MHz down to exactly 8 Hz

and verify that the design works via a single LED.
 3. Design a robot eye system that contains the exact frequency divider and the robot eye circuit

via a flat design approach.
 4. Download and test your design in hardware to verify that the system works.

2. Robot Eye Circuit
The design specification for a robot eye circuit is shown in Figure E6C.1. Figure E6C.1a shows
the state sequence diagram, and Figure E6C.1b shows an equivalent state diagram for the robot
eye circuit.
 Notice that this is a nonconventional counter because it has repeating states.
 To differentiate between the repeating state values of 0010 and 0100, you must add an addi-
tional state variable Q4 (an additional flip-flop Q4) to the state sequence diagram to remove the
repeating state values.
 Figure E6C.2 shows an annotated logic symbol for the robot eye circuit.
 Notice in Figure E6C.2 that Q is an internal signal and QN is a port signal.

566 Appendix A Laboratory Experiments

3. Exact Frequency Divider with Input and Output
Figure E6C.3 shows an annotated logic symbol for an exact frequency divider (EFD) that will
divide a 50-MHz frequency down to exactly 8 Hz connected to a single LED.

0

0
1

0
1

0

0

0
0

1
0

0

0

1
0

0
0

1

1

0
0

0
0

0

Q3 Q2 Q1 Q0

Q3Q2Q1Q0

≡

0010

0100

1000

0100

0010

0001

Legend

(a) (b)

INIT
(asyn)

INIT
(asyn)

FIGURE E6C.1 Design specification for a robot eye circuit: (a) state
sequence diagram; (b) equivalent state diagram

CLK
(50 MHz)

INIT (asyn)

INIT

REC

Robot
eye circuit

Q(4:0) QN(3:0)

FIGURE E6C.2 Annotated logic
symbol for the robot eye circuit

 The ratio of 50 MHz and 8 Hz is 6,250,000. To provide an exact frequency divider with an
output of 8 Hz, use the arithmetic method to count the number of clock cycles that must occur
for half the period—that is, T/2 5 (1/f)/2 5 (1/(8 Hz))/2 5 0.0625s (3,125,000 clock cycles) via
an internal signal named COUNT. Toggling the signal SLOW_CLK between 1 and 0 at 0.0625s
internals will produce the frequency 8 Hz.

4. Robot Eye System
Figure E6C.4 shows an annotated schematic for a robot eye system. The system consists of the
three components or modules EFD, REC, and NOT_ARRAY.

Recommended Pre-Lab:

 1. Task 1.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

CLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Exact
frequency

divider

EFD

COUNT
(8 Hz)
(LD7)

FIGURE E6C.3 Exact frequency
divider connected to a single LED

www.itpub.net

 Experiment 6C: Designing and Testing a Simple Nonconventional Counter System—A Robot Eye Circuit 567

Tasks:

 1. Obtain the design for the robot eye circuit design specifi cation in Figure E6C.1 using the
PS/NS Tabular Method. First, add the required minimum number of FFs (fl ip-fl ops) to the
design specifi cation in Figure E6C.1 to modify the state sequence diagram and also the
equivalent state diagram to remove the repeating state values. (Hint: See Chapter 6, Sec-
tion 6.10.) Create a new project named REC, and write complete VHDL code for the robot
eye circuit. Write the VHDL code using a behavioral design style with an if statement and
a case statement. Simulate the design to verify that it follows your modifi ed state sequence
diagram and modifi ed equivalent state diagram. [Note: See Appendix B (Obtaining Simu-
lations via the VHDL Test Bench Program) for help.] If your design does not follow your
modifi ed state sequence diagram and your modifi ed equivalent state diagram, then you
know that the VHDL code has an error. You must fi nd the error or errors and fi x them.

 2. Create a new project named EFD, and write complete VHDL code for the logic symbol EFD
connected to a single LED as shown in Figure E6C.3. Write the VHDL code using a behav-
ioral design style via the arithmetic method. (Hint: See Chapter 6, Section 6.8, Listing 6.7.)

 3. Complete the design cycle for your EFD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 4. Check to see if your EFD circuit works in hardware. Verify that LD7 blinks at a frequency
of about 8 Hz. If your design does not perform in this manner, you have made a mistake that
you must find and correct.

8

Push-button switch
with resistors

Robot
eye circuit

Exact
frequency

divider

COUNT

EFD

CLK
(50 MHz)

INIT (asyn)

Module 1

REC

Legend

SEG Bit
CA 0

8

44

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments CA through CG,
the DP (decimal point),
and AN3 through AN0
are active low inputs)

Only segment G
can be turned on

SEG(7:0)
= 10111111

(DP...CA)

RES

Module 2

NOT_ARRAY

SEG

AN3

Disp 3
0

3

64

5 1

2

7
o

8
SEG

AN2

Disp 2

o
8
SEG

AN1

Disp 1

o
8
SEG

AN0

Disp 0

o

Module 3

INIT

Q(4:0)

GND

INIT (asyn)
(BTN3)

LED with
protection

resistor

SLOW_CLK
(8 Hz)
(LD7)

SLOW_CLK

QN(3:0)
A(3:0)

(AN3...AN0)

V
CC

FIGURE E6C.4 Annotated schematic for a robot eye system

568 Appendix A Laboratory Experiments

 5. Use a flat design approach to obtain the robot eye system in Figure E6C.4. (Hint: See Sec-
tion 2.4.5 in Chapter 2 or the end of Section 4.8 in Chapter 4 for discussion of a flat design
approach.) First, create a new project named RES, and write the complete VHDL code for
the system. You can use the architecture parts of the VHDL code for the exact frequency
divider and the robot eye circuit as modules 1 and 2 in your flat design. After you create
the new project, click Project, then click Add Copy of Source to add the VHDL code—that
is, the .vhd files, for EFD and REC to your new project RES. Open up the .vhd files EFD
and REC and copy and paste the architecture parts you need in your flat design. After you
copy and paste the architecture parts you need, delete the .vhd files for EFD and REC from
your RES project. You must remember to include SLOW_CLK as an internal signal in the
architecture of your flat design and also to use SLOW_CLK as the clock signal that drives
your robot eye circuit. For module 3 simply add the architecture part you need for the
NOT_ARRAY. (Note: Include SEG as an output in the NOT_ARRAY module.)

 6. Complete the design cycle for your RES design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if the RES system works in hardware. Verify that the center segment of each
of the four 7-segment displays generate the roving eye effect at the rate of 8 Hz, as observed
by the single blinking LED at LD7. When push button BTN3 is pressed and held down,
only the center segment of the 7-segment display on the extreme right is turned on, which
initializes the robot eye system to 0001 until the push button is released. If your design does
not perform in this manner, you have made a mistake that you must fi nd and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design(s). Your fi nal
working design for this experiment is task 8 (RES design).

 2. Include your modified state sequence diagram and modified equivalent state diagram for
your REC design.

 3. Include the complete VHDL code for your REC design.
 4. Include a printout of the simulation waveform diagram for your REC design.
 5. Include the complete VHDL code for your EFD design.
 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your EFD design.
 7. Include the complete VHDL code for your RES design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your RES design.
 9. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 10. Your lab instructor may add additional requirements for this experiment.

www.itpub.net

 Experiment 6D: Designing and Testing a Simple Nonconventional Counter—A Smiley Face Circuit 569

EXPERIMENT 6D: DESIGNING AND TESTING A SIMPLE
NONCONVENTIONAL COUNTER—A SMILEY FACE CIRCUIT

1. Learning Objectives
In this experiment, you will practice designing and testing a simple nonconventional counter—
that is, the design for a smiley face circuit. First, you will learn how to design a smiley face cir-
cuit (SFC) and simulate it to verify that it works. Second, you will learn how to design an exact
frequency divider to divide the frequency of 50 MHz down to exactly 5 Hz and verify that the
design works by observing the output supplied to a single LED. Third, you will learn how to
design a smiley face system that contains the exact frequency divider and the smiley face circuit
via a hierarchal design approach. Fourth, you will download and test your design in hardware to
verify that the system works. This is summarized as follows:

 1. Design a smiley face circuit (SFC) and simulate it to verify that it works.
 2. Design an exact frequency divider to divide the frequency of 50 MHz down to exactly 5 Hz

and verify that the design works via a single LED.
 3. Design a smiley face system that contains the exact frequency divider and the smiley face

circuit via a hierarchal design approach.
 4. Download and test your design in hardware to verify that the system works.

2. Smiley Face Circuit
The design specification for a smiley face circuit is shown in Figure E6D.1. Figure E6D.1a
shows the state sequence diagram, and Figure E6D.1b shows an equivalent state diagram for the
smiley face circuit.

 Notice that this is a nonconventional counter because it has repeating states. To differenti-
ate between the repeating state values of 0000, 0110, and 1111, you must add two additional state

0

0
1

1
1

1

1

0

0
0

0
1

1

1

0

0
1

1
1

1

1

0

0
0

0
1

1

1

11 1 1

Q3 Q2 Q1 Q0

Q3Q2Q1Q0

≡

1111

1111

1111

1111

0110

0110

0000

0000

Legend

(a) (b)

RST
(asyn)

RST
(asyn)

FIGURE E6D.1 Design specifi-
cation for a smiley face circuit:
(a) state sequence diagram;
(b) equivalent state diagram

570 Appendix A Laboratory Experiments

variables, Q4 and Q5, (two additional flip-flops Q4 and Q5) to the state sequence diagram (or
the equivalent state diagram) to remove the repeating state values.
 Figure E6D.2 shows an annotated logic symbol for the smiley face circuit.

CLK
(50 MHz)

RST (asyn)

CLR

SFC

Smiley
face circuit

Q(5:0) QN(3:0)

FIGURE E6D.2 Annotated
logic symbol for the smiley
face circuit

 Notice in Figure E6D.2 that Q is an internal signal and QN is a port signal.

3. Exact Frequency Divider with Input and Output
Figure E6D.3 shows an annotated logic symbol for an exact frequency divider (EFD) that will
divide a 50-MHz frequency down to exactly 5 Hz connected to a single LED.

 The ratio of 50 MHz and 5 Hz is 10,000,000. To provide an exact frequency divider with an
output of 5 Hz, use the arithmetic method to count the number of clock cycles that must occur
for half the period—that is, T/2 5 (1/f)/2 5 (1/(5 Hz))/2 5 0.1s (5,000,000 clock cycles) via an
internal signal named COUNT. Toggling the signal SLOW_CLK between 1 and 0 at 0.1s inter-
vals will produce the frequency 5 Hz.

4. Smiley Face System
Figure E6D.4 shows an annotated schematic for a smiley face system. The system consists of the
three components or modules EFD, SFC, and NOT_ARRAY.

Recommended Pre-Lab:

 1. Task 1.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Obtain the design for the smiley face circuit design specifi cation in Figure E6D.1 using the
PS/NS Tabular Method. First, add the required minimum number of FFs (Flip-Flops) to
the design specifi cation in Figure E6D.1 to modify the state sequence diagram and also the
equivalent state diagram to remove the repeating state values. (Hint: See Chapter 6, Sec-

CLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Exact
frequency

divider

EFD

COUNT
(5 Hz)
(LD7)

FIGURE E6D.3 Exact frequency
divider connected to a single LED

www.itpub.net

 Experiment 6D: Designing and Testing a Simple Nonconventional Counter—A Smiley Face Circuit 571

tion 6.10.) Create a new project named SFC, and write complete VHDL code for the smiley
face circuit. Write the VHDL code using a behavioral design style with an if statement and
a case statement. Simulate the design to verify that it follows your modifi ed state sequence
diagram and modifi ed equivalent state diagram. [Note: See Appendix B (Obtaining Simu-
lations via the VHDL Test Bench Program) for help.] If your design does not follow your
modifi ed state sequence diagram and your modifi ed equivalent state diagram, then you
know that the VHDL code has an error. You must fi nd the error or errors and fi x them.

 2. Create a new project named EFD, and write complete VHDL code for the logic symbol
EFD connected to a single LED as shown in Figure E6D.3. Write the VHDL code using a
behavioral design style via the arithmetic method. (Hint: See Chapter 6, Section 6.8, List-
ing 6.7.)

 3. Complete the design cycle for your EFD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 4. Check to see if your EFD circuit works in hardware. Verify that LD7 blinks at a frequency
of about 5 Hz. If your design does not perform in this manner, you have made a mistake that
you must find and correct.

 5. Use a hierarchal design approach to obtain the smiley face system in Figure E6D.4. (Hint:
See Chapter 4, Section 4.8, Structural Design Style.) First, create a new project named SFS
and write the complete VHDL code for the system. You can use the complete VHDL code
for the exact frequency divider and the smiley face circuit as the definitions for components
1 and 2 in your hierarchal design. After you create the new project, click Project, then click
Add Copy of Source to add the VHDL code—that is, the .vhd files, for EFD and SFC to

8

Push-button switch
with resistors

Smiley
face circuit

Exact
frequency

divider

COUNT

EFD

CLK
(50 MHz)

RST (asyn)

Component 1

SFC

Legend

SEG Bit
CA 0

8

44

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments CA through CG,
the DP (decimal point),

and AN3 through AN0 are
active low inputs)

Only segment G
can be turned on

SEG(7:0)
= 10111111

(DP...CA)

SFS

Component 2

NOT_ARRAY

SEG

AN3

Disp 3
0

3

64

5 1

2

7
o

8
SEG

AN2

Disp 2

o
8
SEG

AN1

Disp 1

o
8
SEG

AN0

Disp 0

o

Component 3

CLR

Q(5:0)

GND

INIT (asyn)
(BTN3)

LED with
protection

resistor

SLOW_CLK
(5 Hz)
(LD7)

SLOW_ CLK

QN(3:0)
A(3:0)

(AN3...AN0)

V
CC

FIGURE E6D.4 Annotated schematic for a smiley face system

572 Appendix A Laboratory Experiments

your new project SFS. Create a project named NOT_ARRAY to define the NOT_ARRAY
as component 3 in your hierarchal design for project SFS. (Note: Include SEG as an output
in the NOT_ARRAY component.)

 6. Complete the design cycle for your SFS design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. Check to see if your SFS design works in hardware. Verify that the center segment of each
of the four 7-segment displays generate the smiley face at the rate of 5 Hz, as observed by
the single blinking LED at LD7. When push button BTN3 is pressed and held down, the
7-segment display is turned off, which resets or clears the smiley face system to 0000 until
the push button is released. If your design does not perform in this manner, you have made
a mistake that you must fi nd and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design(s). Your fi nal
working design for this experiment is task 7 (SFS design).

 2. Include your modified state sequence diagram and modified equivalent state diagram for
the smiley face circuit.

 3. Include the complete VHDL code for your SFC design.
 4. Include a printout of the simulation waveform diagram for your SFC design.
 5. Include the complete VHDL code for your EFD design.
 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your EFD design.
 7. Include the complete VHDL code for your SFS design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your SFS design.
 9. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 10. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 7A: DESIGNING AND TESTING A SIMPLE
ERROR DETECTION SYSTEM USING A FLAT DESIGN
APPROACH

1. Learning Objectives
In this experiment, you will practice designing and testing a special combinational logic sys-
tem. First, you will learn how to design a 4-bit parity generator (PG) for an even function and
simulate it to verify that it works. Second, you will learn how to design a simple error detection
system to transmit and receive odd parity with 4 data bits that will detect a single-bit error in the
transmitted bits received at the destination, via a flat design approach. Third you will download
and test your design in hardware to verify that the system works. This is summarized as follows:

www.itpub.net

 Experiment 7A: Designing and Testing a Simple Error Detection System Using a Flat Design Approach 573

 1. Design a 4-bit parity generator (PG) for an even function and simulate it to verify that it
works.

 2. Design a simple error detection system to transmit and receive odd parity with 4 data bits
that will detect a single-bit error in the transmitted bits received at the destination via a flat
design approach.

 3. Download and test your design in hardware to verify that the system works.

2. Design a 4-bit Parity Generator for an Even Function
Figure E7A.1 shows a logic symbol for a 4-bit parity generator for an even function.

Note: The output TPB (transmitted parity bit) for this design requires that you to obtain the
Boolean equation for an even function for the inputs S(0), S(1), S(2), and S(3).

3. Design a Simple Error Detection System
Figure E7A.2 shows a simple error detection system (SEDS) to transmit and receive odd par-
ity with 4 data bits with the capability to insert a single-bit error, a two (or double)-bit error,
a three-bit error, and a four-bit error, via inputs IE(0) through IE(3). Normally, over a short
distance from the source to the destination on the FPGA chip, there will be no errors gener-
ated on any of the data bit lines or the parity bit line. Module 3 is an array of XOR gates with
each XOR gate performing the function of a controlled inverter. When IE(0) (insert error) is 1,
IE 10 2!S 10 2 5 1!S 10 2 5 S 10 2 , S(0) is inverted, which causes an error in the transmitted bit
for S(0). When IE(0) (insert error) is 0, IE 10 2!S 10 2 5 0!S 10 2 5 S 10 2 , S(0) is not inverted,
which causes no error in the transmitted bit for S(0). To cause a single-bit error, set only one
of the four IE bits to 1. To cause a two-bit error, set any two of the four IE bits to 1. To cause a
three-bit error, set any three of the four IE bits to 1. To cause a four-bit error, set all four of the
four IE bits to 1. In practice, only single-bit and double-bit errors generally occur.
 Table E7A.1 shows a template and a partially filled-in truth table for the letter display
decoder with active low outputs. The input for the letter display decoder is received parity bit
(RPB).

PG

TPB

S(0)

S(1)

S(2)

S(3)

4-bit parity generator
(even function)

FIGURE E7A.1 4-bit parity
generator (even function)

Letter display decoder
(active high outputs)

B7 B6 B5 B4 B3 B2 B1 B0

a

g

d d

f
e

b
c8

E

p

7-segment display

RPB

00

1

1 0 1 0 1 0 0

o

TABLE E7A.1 Template and partially

filled-in truth table for the letter display

decoder with active high outputs

574 Appendix A Laboratory Experiments

 The 7-segment display will indicate no error occurs with the symbol for an “n”, and it will
indicate that an error occurs with the symbol “E”.

Recommended Pre-Lab:
 1. Task 1.

(a)

Date
bits

SEDS

Module 3

Module 2

Module 4

Module 1

Module 5

Module 6

Controlled inverters

Destination

Parity
checker
(even
function)

Parity
generator
(even
function)

Received
parity bit

Transmitted
parity bit

Internal
signals

Letter display
decoder

External
signals

External
signalsConstant

(4 bits)

0111

Array of
NOT gates

Array of
BUFFERs

SEG

Legend

Bus tap

To other 3 multiplexed
7-segment displays
AX(2), AX(1), AX(0)

AX(3:0)
(AN3,AN2,AN1,AN0)

AX (3)
All inputs for
7-segment display
are active low

CA
B0 (CA)

(CB)
(CC)
(CD)
(CE)
(CF)
(CG)
(DP)

a
b
c
d
e
f
g
dp

a a

f

e

b

c

dp

o

g

d

Disp 3

AN3

b
c
d
e
f
g
dp

0
1
2
3
4

4 4

5
6
7

0

B1
B2
B3
B4
B5
B6
B7

Bit
0

CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

7-segment display
(common anode)

Source

Transmitted bits

RPB

RPB

TPB

S(0)

S(1)

S(2)

S(3)

IE(0)

IE(1)

IE(2)

IE(3)

DES(0)

DES(1)

DES(2)

DES(3)

FIGURE E7A.2 Annotated schematic for a simple error detection system: (a) complete system
minus the slide switches and single LEDs

www.itpub.net

 Experiment 7A: Designing and Testing a Simple Error Detection System Using a Flat Design Approach 575

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Obtain the Boolean equation for the even function parity generator. Create a new project
named PG, and write complete VHDL code for the logic symbol PG in Figure E7A.1. Write
the VHDL code using a datafl ow design style via a Boolean equation. (Hint: See Chapter 7,
Section 7.4.1, for the defi nition of an even function.) Simulate the design to verify that TPB
has a value of 1 when the input string has an even number of 1s (0, 2, and 4), else TPB has
a value of 0. [Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench
Program) for help.] Create a truth table for the inputs S(3) through S(0) and output TPB, and
fi ll in the truth table to verify that your PG design has a value of 1 when the input string has
an even number of 1s and has a value of 0 otherwise. If your design does not generate TPB
as an even function, you know that the VHDL code has an error. You must fi nd the error or
errors and fi x them.

 2. Fill in the truth table in Table E7A.1 for the letter display decoder with active high outputs.
 3. Write the Boolean output equations for the letter display decoder.
 4. Use a flat design approach to obtain the simple error detection system in Figure E7A.2.

(Hint: See Section 2.4.5 in Chapter 2 or the end of Section 4.8 in Chapter 4 for discussion of
a flat design approach.) Create a new project named SEDS and write complete VHDL code
for the system. You can use the architecture part of the VHDL code for parity generator as
module 1 in your flat design. Write the VHDL code for modules 2 through 5 using Boolean
equations via a dataflow design style.

 5. Complete the design cycle for your SEDS circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

GND GND GND GND GND GND GND GND

IE(3)
(SW7)

IE(2)
(SW6)

IE(1)
(SW5)

IE(0)
(SW4)

S(3)
(SW3)

S(2)
(SW2)

S(1)
(SW1)

S(0)
(SW0)

(b)

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

DES(3)
(LD3)

DES(2)
(LD2)

DES(1)
(LD1)

DES(0)
(LD0)

FIGURE E7A.2 Annotated schematic for a simple error detection system: (b) slide switches and
single LEDs

576 Appendix A Laboratory Experiments

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 6. Check to see if your SEDS circuit works in hardware. Set all four of the four IE bits to 0.
Verify that outputs LD3 through LD0 match the inputs SW3 through SW0 for all 16 dif-
ferent combinations of the switches and that the 7-segment display shows the symbol “n”,
for no error. If this is not true when you test your circuit in hardware, you know that the
VHDL code has an error. You must find the error or errors and fix them. Next check to see
if your SEDS circuit works in hardware for a single-bit error. Set each of the four IE bits to
1, one at a time. Verify that outputs LD3 through LD0 match the inputs SW3 through SW0,
except for the IE bit you set to 1 for all 16 different combinations of the switches and that
the 7-segment display shows the symbol “E”, for error. If this is not true when you test your
circuit in hardware, you know that the VHDL code has an error. You must find the error or
errors and fix them.

 7. Does your SEDS circuit detect double-bit errors? Show examples by filling in the following
partial truth table. Use 1 for an LED turned on and 0 for an LED turned off.

SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 LD3 LD2 LD1 LD0 DSP3

0 0 1 1 0 0 0 0

0 1 1 0 0 1 0 1

1 0 0 1 1 1 1 1

 8. Does your SEDS circuit detect three-bit errors? Show examples by filling in the following
partial truth table. Use 1 for an LED turned on and 0 for an LED turned off.

SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 LD3 LD2 LD1 LD0 DSP3

0 1 1 1 0 0 0 0

1 1 1 0 0 1 0 1

1 0 1 1 1 1 1 1

 9. Does your SEDS circuit detect a four-bit error? Show an example by filling in the following
partial truth table. Use 1 for an LED turned on and 0 for an LED turned off.

SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0 LD3 LD2 LD1 LD0 DSP3

1 1 1 1 0 0 0 0

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working designs. Your fi nal work-
ing design for this experiment is task 6 (SEDS design).

 2. Include the Boolean equation for the even function parity generator.
 3. Include the complete VHDL code for your design PG design.
 4. Include a printout of the simulation waveform diagram for your PG design.
 5. Include your filled-in truth table for your PG design.
 6. Include your filled-in truth table for the letter display decoder.
 7. Include the Boolean output equations for the letter display decoder.
 8. Include the complete VHDL code for your SEDS design.

www.itpub.net

 Experiment 7B: Designing and Testing a 4-bit Simple Adder-Subtractor System 577

 9. Include a printout of the Edit Constraints (Text), which shows the package pin assignments
for your SEDS design.

 10. Include your answer to the question and your filled-in partial truth table obtained by testing
your SEDS design in task 7.

 11. Include your answer to the question and your filled-in partial truth table obtained by testing
your SEDS design in task 8.

 12. Include your answer to the question and your filled-in partial truth table obtained by testing
your SEDS design in task 9.

 13. Write a short paragraph summarizing the work you did for this experiment, and describe
any problems you may have encountered in your solutions. You may include any helpful
hints and improvements you may think of for this experiment.

 14. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 7B: DESIGNING AND TESTING A 4-BIT
SIMPLE ADDER-SUBTRACTOR SYSTEM USING A
HIERARCHAL DESIGN APPROACH

1. Learning Objectives
In this experiment, you will practice designing and testing a special combinational logic system.
First, you will learn how to design a full adder and simulate it to verify that it works. Second,
you will learn how to design an XOR gate and simulate it to verify that it works. Third, you will
design a 4-bit simple adder-subtractor system using indirect subtraction by addition via a hierar-
chal design approach. Fourth, you will download and test your design in hardware to verify that
the system works. This is summarized as follows:

 1. Design a full adder and simulate it to verify that it works.
 2. Design an XOR gate and simulate it to verify that it works.
 3. Design a 4-bit simple adder-subtractor system using indirect subtraction by addition via a

hierarchal design approach.
 4. Download and test your design in hardware to verify that the system works.

2. Design a Full Adder
Table E7B.1 shows a partially filled-in truth table for a full adder.

TABLE E7B.1 Partially

filled-in truth table for a

full adder

A B CI CO S

0 0 0

0 0 1 0 1

0 1 0

0 1 1 1 0

1 0 0

1 0 1

1 1 0

1 1 1

578 Appendix A Laboratory Experiments

 For this design you will be required to fill in the truth table and obtain the Boolean equa-
tions for S and CO.

3. Design a 4-bit Simple Adder-Subtractor System
Figure E7B.1 shows the design specification for a 4-bit simple adder-subtractor system (SASS)
to perform unsigned addition of A 1 B and A 2 B. US_OVERFLOW is the unsigned overflow
bit. When adding two 4-bit operands, US_OVERFLOW 5 0 if the 4-bit result S3 S2 S1 S0 is
correct, and US_OVERFLOW 5 1 if the 4-bit result S3 S2 S1 S0 is incorrect, because the result
will not fit in just 4 bits.
 When subtracting two 4-bit operands, A 2 B for this design, US_OVERFLOW 5 0 if the
4-bit result S3 S2 S1 S0 is correct, and US_OVERFLOW 5 1 if the 4-bit result S3 S2 S1 S0 is
incorrect, because the result will not fit in just 4 bits.

FA3

A

COMP 4

COMP 9

COMP 8

B CI

CO S

A3

X3

S3
CO4

B3

FA2

A

COMP 3

COMP 7

SASS

B CI

CO S

A2

X2

S2
CO3

B2

FA1

A

COMP 2

COMP 6

B CI

CO S

A1

X1

S1
CO2

B1

FA0

A

COMP 1

COMP 5

B CI

CO S

A0

X0

S0
CO1

B0 SUB

US_OVERFLOW
(a)

S3
(LD3)

S2
(LD2)

S1
(LD1)

S0
(LD0)

GND GND GND GND GND GND GND GND

A3
(SW7)

A2
(SW6)

A1
(SW5)

A0
(SW4)

B3
(SW3)

B2
(SW2)

B1
(SW1)

B0
(SW0)

US_OVERFLOW
(LD7)

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

Push-button switch
with resistors

SUB
(BTN0)

V
CC

(b)

FIGURE E7B.1
Annotated schematic
for a 4-bit simple adder
subtractor system: (a)
complete system minus
the switches and LEDs;
(b) switches and LEDs

 To make the design process easier, we use a modular design technique to carry out the addi-
tion in the circuit. The resulting circuit is called a ripple-carry adder (RCA), because the carry
output of component 1 (COMP 1) ripples through all the other adder components (COMP 2 then
COMP 3 then COMP 4) via the circuit connections shown in Figure E7B.1.

www.itpub.net

 Experiment 7B: Designing and Testing a 4-bit Simple Adder-Subtractor System 579

 Subtractor circuits are not generally used in computers because subtraction can be per-
formed with an adder circuit using indirect subtraction by addition as shown with the XOR gates
in Figure E7B.1a—that is, components 5 through 8.

Recommended Pre-Lab:

 1. Tasks 1 and 2.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Fill in the partially fi lled-in truth table in Table E7B.1 for a full adder. Write the Boolean
equations for outputs S and CO in sum of products form for the full adder. Create a new
project named FA, and write the VHDL code using a datafl ow design style with Boolean
equations for the full adder. Simulate the design to verify that it follows the full adder truth
table. [Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench Program)
for help.] If your design does not follow the full adder truth table, then you know that the
VHDL code has an error. You must fi nd the error or errors and fi x them.

 2. Create a new project named X_OR. Write the VHDL code using a behavioral design style
with a process for a single 2-input XOR gate with the inputs i1 and i2 and the output o1.
Simulate the design to verify that it follows the truth table for a 2-input XOR gate. If your
design does not follow the truth table for a 2-input XOR gate, then you know that the VHDL
code has an error. You must find the error or errors and fix them.

 3. Use a hierarchal design approach to design the 4-bit simple adder-subtractor system shown
in Figure E7B.1. (Hint: See Chapter 4, Section 4.8 Structural Design Style.) First, create
a new project named SASS and write the complete VHDL code for the system. You can
use the complete VHDL code for the full adder for the definition for COMP1 through
COMP4—that is, components 1 through 4—and the XOR gate for the definition for
COMP5 through COMP9—that is, components 5 through 9. After you create the new proj-
ect click Project, then click Add Copy of Source to add the VHDL code—that is, the .vhd
files, for FA and X_OR to your new project SASS.

 4. Complete the design cycle for your SASS design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 5. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board. Check to see if your SASS design works in hardware. Add 1 to the numbers 1
through 15, in binary, to verify that the result is correct at the output LEDs LD3 LD2 LD1
LD0 (or S3 S2 S1 S0). LD7 (or US_OVERFLOW) should be 0 for all the additions except
for 1 added to 15, which should indicate an error. If your design does not add these num-
bers correctly, then you know that the VHDL code has an error. You must find the error
or errors and fix them. Subtract 0 through 7 from the number 7 to verify that the result is
correct at the output LEDs LD3 LD2 LD1 LD0 (or S3 S2 S1 S0). LD7 (or US_OVERFLOW)
should be 0 for all the subtractions. Subtract 8 through 15 from the number 7 to verify that
the result is incorrect at the output LEDs LD3 LD2 LD1 LD0 (or S3 S2 S1 S0). LD7 (or
US_OVERFLOW) should be 1 for all the subtractions. If your design does not perform in
this manner, you have made a mistake or mistakes that you must find and correct.

580 Appendix A Laboratory Experiments

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 5 (SASS design).

 2. Include your filled-in truth table for a full adder.
 3. Include the Boolean equations for a full adder.
 4. Include the complete VHDL code for your X_OR design.
 5. Include a printout of the simulation waveform diagram for your X_OR design.
 6. Include the complete VHDL code for your SASS design.
 7. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your SASS design.
 8. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered in your solutions. You may include any helpful
hints and improvements you may think of for this experiment.

 9. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 8: DESIGNING AND TESTING A LUT DESIGN
SYSTEM USING A FLAT DESIGN APPROACH

1. Learning Objectives
In this experiment, you will practice designing and testing a LUT design system via a flat design
approach. First, you will learn how to design a LUT (look-up table) and simulate it to verify that
it works. Second, you will learn how to design a hexadecimal display decoder to display the
output of the LUT in hexadecimal. Third, you will design a LUT design system via a flat design
approach. Fourth, you will download and test your system design in hardware to verify that the
system works. This is summarized as follows:

 1. Design a LUT (or PROM) and simulate it to verify that it works.
 2. Design a hexadecimal display decoder to display the output of the LUT in hexadecimal.
 3. Design a LUT design system via a flat design approach.
 4. Download and test your system design in hardware to verify that the system works.

2. LUT Truth Table
Figure E8.1 shows the truth table for a simple LUT and the corresponding fuse map.

≡

A
ADDRESS

(Hexadecimal)
DATA

(Hexadecimal)B F1
1 000 1 0
1 110 1 1
0 101 1 1
0 111 0 0

0
1
2
3

A
F
7
4

F2 F3 F4
FIGURE E8.1 Truth table for a simple LUT
and the corresponding fuse map

3. LUT Logic Circuit and Logic Symbol
A logic circuit for the LUT is shown in Figure E8.2 using a 2-to-4 decoder and a set of OR gates.
 Figure E8.3 shows a logic symbol for the LUT in Figure E8.2.
 Note: In VHDL, the signal ADDRESS can be expressed as either ADDRESS ,5 A&B
or ADDRESS ,5 (A,B), and the signal DATA can be expressed as either DATA ,5

www.itpub.net

 Experiment 8: Designing and Testing a LUT Design System Using a Flat Design Approach 581

F1&F2&F3&F4 or DATA ,5 (F1,F2,F3,F4). The ampersand character is the concatenation
operator in VHDL, and the list of signals in parentheses forms an aggregate.

4. Hexadecimal Display Decoder Truth Table and Logic Symbol
Figure E8.4 shows a partially filled-in truth table for the hexadecimal display decoder with
active low outputs. In this truth table for the digits 0 and 1, observe that the output values for D
represent active low outputs—that is, 0 represents a segment that is turned on and 1 represents
a segment that is turned off.

S0B

m0

m1

m2

m3

0

2-to-4
decoder

LUT_Design

1

2

3

S1

F1 F2 F3 F4

A

FIGURE E8.2 Logic circuit for the LUT using a 2-to-4 decoder and a
set of OR gates

LUT_Design

LUT

ADDRESS ADDR DATADATA
42

FIGURE E8.3 Logic symbol for the
PROM or LUT in Figure E8.2

Hexadecimal display decoder
7-segment display

S(3)

0 0 0 0 1 0 0 0 0 0 0

a
b
c

f
e g

d

1 1 1 1 0 0 1

0
1

2
3
4
5
6
7
8
9
A

C

E
F

8

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

S(2) S(1) S(0) D(6) D(5) D(4) D(3) D(2) D(1) D(0)

FIGURE E8.4 Partially filled-in truth
table for the hexadecimal display
decoder with active low outputs

582 Appendix A Laboratory Experiments

 Figure E8.5 shows a logic symbol for the hexadecimal display decoder in Figure E8.4 with
an AX output added to drive the enable inputs of the 7-segment display.

HDD

Hexadecimal
display decoder

DATA(3:0)
(SW3...SW0)

S(3:0)
D(6:0) D(6:0)

(CG...CA)
AX(3:0)

(AN3...AN0)
0111

4

7
4

FIGURE E8.5 Logic symbol for the hexadeci-
mal display decoder in Figure E8.4 with an AX
output added to drive the enable inputs of the
7-segment display

 Things you should notice about the input signals and the output signals for the hexadecimal
display decoder in Figure E8.5:

 • The input signals DATA(3:0) are connected to the switch inputs SW3 downto SW0,
respectively.

 • The output signals D(6:0) are connected to the 7-segment display inputs CG downto CA,
respectively.

 • The output signal AX(3:0) are connected to the 7-segment display inputs AN3 downto AN0,
respectively.

5. LUT Design System
Figure E8.6 shows an annotated schematic for a LUT design system (LUT_Design_System).

A

B

ADDRESS
ADDR

Hexadecimal
display decoder

HDD

Module 2

LUT_Design

Module 1

LUT_Design_System

PROM
or LUT

Bus tap

Only display
 3 will be used,

i.e., all
other displays
are blanked

Four multiplexed
7-segment display

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6

(Segments CA through CG
and AN3 through AN0 are

active low inputs)

0

3

64

5 1

2

7
8
SEG

AN0

Disp 0

o8
SEG

AN1

Disp 1

o8
SEG

AN2

Disp 2

o8
SEG

AN3

Disp 3

o

7

2 4

4

4

DATA(3:0)

DATA(3:0)DATA

S(3:0)
D(6:0)

0111

D(6:0)
(CG...CA)

AX(3:0)
(AN3...AN0)

Slide switch
with resistor

A
(SW1)

Slide switch
with resistor

B
(SW0)

V
CC

V
CC

FIGURE E8.6 Annotated
schematic for a LUT
design system (LUT_
Design_System)

www.itpub.net

 Experiment 8: Designing and Testing a LUT Design System Using a Flat Design Approach 583

 Things you should notice about the annotated schematic in Figure E8.6:

 • The small triangles (called bus taps) represent connections to individual signals on the buses.
 • The internal signals—that is, the signals that are placed between the architecture in VHDL

and the first begin, are m0, m1, m2, m3, F1, F2, F3, F4, ADDRESS (1:0) and DATA (3:0).
 • The 7-segment display displays the hexadecimal values of the LUT design system only on

display 3.

Recommended Pre-Lab:

 1. Tasks 1 and 2.
 2. Your instructor will provide you with additional information about what should be submitted

for your pre-lab report requirements—for example, VHDL code, test bench code, and simula-
tion waveforms.

Tasks:

 1. Create a new project named LUT_Design, and write complete VHDL code for the logic
circuit in Figure E8.2. Write the VHDL code using Boolean equations for the minterms
m0 through m3 and also for the functions F1 through F4. Simulate the design to verify
that it follows the LUT truth table and the corresponding fuse map. [Note: See Appendix
B (Obtaining Simulations via the VHDL Test Bench Program) for help.] If your simulation
does not follow the LUT truth table and the corresponding fuse map, then you know that
the VHDL code has an error. You must fi nd the error or errors and fi x them.

 2. Fill in the remaining outputs for the partially filled-in hexadecimal display decoder truth
table in Figure E8.4. Remember that the outputs are active low.

 3. Create a new project named HDD and write complete VHDL code for the hexadecimal dis-
play decoder for Figure E8.5 using your complete filled-in truth table for the hexadecimal
display decoder. Write the VHDL code using a selected signal assignment.

 4. Complete the design cycle for your HDD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 5. Check to see if your HDD circuit works in hardware. Verify for input values 0000 through
1111 that your circuit provided the hexadecimal output values 0 through F. If your design
does not perform in this manner, you have made a mistake that you must find and correct.

 6. Use a flat design approach to combine the LUT_Design and the hexadecimal display
decoder (HDD). (Hint: See Section 2.4.5 in Chapter 2 or the end of Section 4.8 in Chapter 4
for a discussion of a flat design approach.) First, create a new project named LUT_Design_
System and write the complete VHDL code for the system. You can use the architecture
parts of the VHDL code for LUT_Design and HDD as modules 1 and 2 in your flat design.
After you create the new project, click Project, then click Add Copy of Source to add the
VHDL code—that is, the .vhd files, for LUT_Design and HDD to your new project LUT_
Design_System. Open up the .vhd files for LUT_Design and HDD and copy and paste the
architecture parts you need in your flat design. After you copy and paste the architecture
parts you need, delete the .vhd files for LUT_Design and HDD.

 7. Complete the design cycle for your LUT_Design_System by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

584 Appendix A Laboratory Experiments

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 8. Check to see if your LUT_Design_System works in hardware. Remember that SW1 pro-
vides input signal A and SW0 provides input signal B. When A B 5 00, your hexadecimal
output should be A, When A B 5 01, your hexadecimal output should be F. When A B 5 10,
your hexadecimal output should be 7. When A B 5 11, your hexadecimal output should be
4. If your design does not perform in this manner, you have made a mistake that you must
find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 8 (LUT_Design_System).

 2. Include the complete VHDL code for your LUT_Design.
 3. Include a printout of the simulation waveform diagram for your LUT_Design.
 4. Include your filled-in truth table for the hexadecimal display decoder.
 5. Include the complete VHDL code for your HDD design.
 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your HDD design.
 7. Include the complete VHDL code for your LUT_Design_System.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your LUT_Design_System.
 9. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 10. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 9A: DESIGNING AND TESTING
A ONE-HOT UP/DOWN COUNTER SYSTEM USING
A FLAT DESIGN APPROACH

1. Learning Objectives
In this experiment, you will practice designing and testing a one-hot up/down counter system
via a flat design approach. First, you will learn how to design a one-hot up/down counter
with six states and simulate it to verify that it works. Second, you will learn how to design a
frequency divider to divide the frequency of 50 MHz down to approximately 6 Hz and verify
that the design works by observing the output supplied to a single LED. Third, you will design
a one-hot up/down counter system via a flat design approach. Fourth, you will download and
test your system design in hardware to verify that the system works. This is summarized as
follows:

 1. Design a one-hot up/down counter with six States and simulate it to verify that it works.
 2. Design a frequency divider to divide the frequency of 50 MHz down to approximately 6 Hz

and verify that the design works via a single LED.
 3. Design a one-hot up/down counter system via a flat design approach.
 4. Download and test your system design in hardware to verify that the system works.

www.itpub.net

 Experiment 9A: Designing and Testing a One-Hot UP/Down Counter System Using a Flat Design Approach 585

2. One-Hot Up/Down Counter with Six States
Figure E9A.1 shows the state sequence diagram for a one-hot up/down counter(OHUDC).

 This is a complex state machine design because the state sequence is controlled by the
external input signal UP. When INIT is asserted or INIT 5 1, it overrides the clock and forces
the counter to go to state 1 (S1). INIT is not asserted for the following discussion. When UP is
asserted or UP 5 1, the counter counts up. A Moore output signal called ONE is used to indicate
when the counter is in state 1 (S1)—that is, ONE 5 1. If the counter is not in state 1, then ONE
5 0. When UP is asserted or UP 5 0, the counter counts down. A Mealy output signal called
BACK is used to indicate when the counter counts down (or backward) from state 2 to state 1, so
the signal BACK is a function of the state of the machine and also a function of the inputs signal
UP. BACK 5 1 only when UP is asserted in state 2; otherwise BACK 5 0.
 A logic symbol for the one-hot up/down counter with six states is shown in Figure E9A.2.

0

0

0

0

0

1

0

0

0

0

1

0

Q5INIT
(asyn)

Name,
Moore
output

Mealy
output

S1, ONE
UP

UP

UPUP

UP

UP UP

UP

UPUP

UP

UP, BACK

S2,

S4,

S8,

S16,

S32,

Q4

0

0

0

1

0

0

Q3

0

0

1

0

0

0

Q2

0

1

0

0

0

0

Q1

1,

0

0

0

0

0

Q0
FIGURE E9A.1 State sequence dia-
gram for the one-hot up/down counter
(OHUDC)

3. Frequency Divider with Input and Output
Figure E9A.3 shows a logic symbol for a frequency divider (FD) connected to a single LED that
divides a 50-MHz frequency down to approximately 6 Hz.

INIT (asyn)

INIT

CLK

UP UP

6

BACKBACK

ONEONE

OHUDC

One-hot up/down
counter

Q(5:0)Q(5:0)

FIGURE E9A.2 Logic
symbol for a one-hot up/
down counter with six
states

CLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Frequency divider
(binary up counter, 23 bits)

FD

COUNT(22)
(~ 6 Hz)
(LD7)

C

FIGURE E9A.3 Frequency
divider connected to a single
LED

586 Appendix A Laboratory Experiments

 For this design, a binary counter with 23 bits that range from 22 down to 0 is used to divide
the frequency of the clock from 50 MHz down to 50/223 MHz or 5.9605 Hz. The signal name for
the output of the frequency divider is COUNT, and it is an internal signal.

4. One-Hot Up/Down Counter System
Figure E9A.4 shows an annotated schematic for a one-hot up/down counter system that includes
a frequency divider, a one-hot up/down counter, a decimal display decoder, and a buffer array.
 Things you should notice about the schematic in Figure E9A.4:

 • The small triangles (called bus taps) represent connections to individual signals on the buses.
 • The internal input signals—that is, the signals that are placed between the architecture in

VHDL and the first begin, are COUNT(22:0), SLOW_CLK, and Q(5:0).
 • The signal INIT (asyn) is used to initialize the counter system to state 1 (S1) at any time.
 • The frequency divider is designed to output SLOW_CLK at approximately 6 Hz.
 • ONE is a Moore output that is true only when the state machine is in state 1.
 • BACK is a Mealy output that is true only when the state machine is in state 2 and the exter-

nal input signal UP is true at the same time.
 • The 7-segment display should display the state of the counter for states 1, 2, 4, and 8, and

it should be turned off for states 16 and 32. The six LEDs with protection resistors LD5
through LD0 display the state of the counter in binary for all states.

Recommended Pre-Lab:

 1. Tasks 1 and 2.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Use the state sequence diagram in Figure E9A.1 to draw an equivalent state diagram for the
one-hot up/down counter. Use the true where shown signal convention for the Moore output
ONE, and also for the Mealy output BACK. To simplify the state diagram drawing, use the
state variable Q0 in state 1, Q1 in state 2, . . ., and Q5 in state 32.

 2. Create a new project named OHUDC, and write complete VHDL code for the one-hot up/
down counter in Figure E9A.1. Write the VHDL code using the two-process PS/NS method.
(Hint: See Chapter 9, Section 9.8, Listing 9.6.) Simulate the design to verify that it follows
the state sequence diagram in Figure E9A.1 and your equivalent state diagram. [Note: See
Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for help.] If your
simulation does not follow the state sequence diagram or the equivalent state diagram, then
you know that the VHDL code has an error. You must find the error or errors and fix them.

 3. Create a new project named FD, and write complete VHDL code for the logic symbol FD
connected to a single LED shown in Figure E9A.3. (Note: Do not use FD as the name of
the design entity because this name is reserved as a keyword in the Xilinx library. FD1 will
work if you want to use this name.) Write the VHDL code using a conditional signal assign-
ment via the arithmetic method. (Hint: See Chapter 6, Section 6.8, Listing 6.6.)

 4. Complete the design cycle for your FD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

www.itpub.net

 Experiment 9A: Designing and Testing a One-Hot UP/Down Counter System Using a Flat Design Approach 587

 5. Check to see if your FD circuit works in hardware. Verify that LD7 blinks at a frequency
of approximately 6 Hz. If your design does not perform in this manner, you have made a
mistake that you must find and correct.

 6. Use a flat design approach to combine the frequency divider, one-hot up/down counter,
decimal display decoder, and BUFFER_ARRAY so that the one-hot up/down counter uses

8

Push-button switch
with resistors

One-hot up/down
counterFrequency divider

(binary up counter,
23 bits)

COUNT(22)

FD

CLK
(50 MHz)

INIT
(asyn)

ONE

UP UP

(~ 6 Hz)

ONE
BACK BACK

Module 1

Decimal display
decoder

DDD

Module 3

BUFFER_ARRAY

Module 4

OHUDC

Only display
 3 will be

used, i.e., all
other displays
are blanked

Four multiplexed
7-segment display

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments CA through CG,
the DP (decimal point), and

AN3 through AN0 are
active low inputs)

Module 2

OHUDCS

SEG

AN3

Disp 3
0

3

64

5 1

2

7
o

8
SEG

AN2

Disp 2

o
8
SEG

AN1

Disp 1

o
8
SEG

AN0

Disp 0

o

INIT

Q(5:0)

6

4

46

6

6

8

GND

INIT (asyn)
(BTN3)

LED with
protection

resistor

ONE
(LD7)

LED with
protection

resistor

BACK
(LD6)

6 LEDs
with

protection
resistors

DSP_Q(5:0)
(LD5...LD0)

SLOW_CLK

Q(5:0)

Q(3:0)

Q(5:0) DSP_Q(5:0)

S(3:0)
D(7:0)

D(7:0)
(DP...CA)

A(3:0)
(AN3...AN0)

0111

Slide switch
with resistor

UP
(SW0)

V
CC V

CC

FIGURE E9A.4 Annotated schematic for a
one-hot up/down counter system (OHUDCS)

588 Appendix A Laboratory Experiments

the signal SLOW_CLK provided by the frequency divider as its clock input. (Hint: See Sec-
tion 2.4.5 in Chapter 2 or the end of Section 4.8 in Chapter 4 for a discussion of a flat design
approach.) First, create a new project named OHUDCS and write the complete VHDL code
for the system. You can use the architecture parts of the VHDL code for FD and the one-hot
up/down counter as modules 1 and 2 in your flat design. After you create the new project,
click Project, then click Add Copy of Source to add the VHDL code—that is, the .vhd files,
for FD and OHUDC to your new project OHUDCS. Open up the .vhd files for FD and
OHUDC and copy and paste the architecture parts you need in your flat design. After you
copy and paste the architecture parts you need, delete the .vhd files for FD and OHUDC.
You must remember to include SLOW_CLK as an internal signal in the architecture of your
flat design and also to use SLOW_CLK as the clock signal that drives your one-hot up/down
counter.

 7. Complete the design cycle for your OHUDCS design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 8. Check to see if your OHUDCS design works in hardware. When SW0 is pushed forward—
that is, SW0 5 1—verify that LD5 downto LD0 counts in the one-hot sequence 000001,
000010, 000100, 001000, 010000, 100000, and repeats, where 0 represents an LED that is
off and 1 represents an LED that is on. When push button BTN3 is pressed and held down,
LD0 and LD7 go to 1 and all the other LEDs go to 0 until the push button is released. When
SW0 is pulled back—that is, SW0 5 0—verify that LD5 downto LD0 counts in the one-hot
sequence 100000, 010000, 001000, 000100, 000010, 000001, and repeats. During the time
that the counter is in state 2 and UP 5 0, the Mealy output BACK 5 1. BACK 5 0 at all
other times. If your design does not perform in this manner, you have made a mistake that
you must find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 8 (OHUDCS design).

 2. Include your equivalent state diagram for the one-hot up/down counter.
 3. Include the complete VHDL code for your OHUDC design.
 4. Include a printout of the simulation waveform diagram for OHUDC design.
 5. Include the complete VHDL code for your FD design.
 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD design.
 7. Include the complete VHDL code for your OHUDCS design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your OHUDCS design.
 9. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 10. Your lab instructor may add additional requirements for this experiment.

www.itpub.net

 Experiment 9B: Designing and Testing a 10-State Counter System Using a Hierarchal Design Approach 589

EXPERIMENT 9B: DESIGNING AND TESTING A 10-STATE
COUNTER SYSTEM USING A HIERARCHAL DESIGN
APPROACH

1. Learning Objectives
In this experiment, you will practice designing and testing a 10-state counter system via a
hierarchal design approach. First, you will learn how to design an up(0-4)/down(9-5) 10-state
counter and simulate it to verify that it works. Second, you will learn how to design a frequency
divider to divide the frequency of 50 MHz down to approximately 1.5 Hz and verify that the
design works by observing the output supplied to a single LED. Third, you will design a 10-
State Counter System via a hierarchal design approach. Fourth, you will download and test your
system design in hardware to verify that the system works. This is a summarized as follows:

 1. Design an up(0-4)/down(9-5) 10-state counter and simulate it to verify that it works.
 2. Design a frequency divider to divide the frequency of 50 MHz down to approximately 1.5

Hz and verify that the design works via a single LED.
 3. Design a 10-state counter system via a hierarchal design approach.
 4. Download and test your system design in hardware to verify that the system works.

2. Up(0-4)/Down(9-5) 10-State Counter
Figure E9B.1 shows a state sequence diagram for an up(0-4)/down(9-5) 10-state counter.

 This is a complex state machine design because the state sequence is controlled by the
external input signal UP. When RST is asserted or RST 5 1, it overrides the clock and forces the
counter to go to state 0 (S0). RST is not asserted for the following discussion. When the counter
is in state 0 (S0) and UP is asserted or UP 5 1, the counter counts up to state 1 (S1). When the
counter is in State 9 (S9) and UP is asserted or UP 5 0, the counter counts down to state 8 (S8).
The state sequence in the state sequence diagram can only be changed at states 0 and 9. The
Moore output DIR_UP is a function of the state of the machine and not a function of the input
signal UP.
 A logic symbol for the up(0-4)/down(9-5) 10-state counter (TSC) is shown in Figure E9B.2.

0

0

0

0

0

0

0

0

0

1

Q3RST
(asyn)

Name,

S0,
UP

UP

UP UP

S1,

S2,

S3,

S4,

Q2

0

0

1

1

0

Q1

0,

1,

0,

1,

0,

Q0,

0

0

0

0

0

DIR_UP

1

1

0

0

0

0

0

1

1

1

Q3Name,

S9,

S8,

S7,

S6,

S5,

Q2

0

0

1

1

0

Q1

1,

0,

1,

0,

1,

Q0,

1

1

1

1

1

DIR_UP FIGURE E9B.1 State
sequence for the up(0-
4)/down(9-5) 10-state
counter

RST (asyn)

CLR

CLK

UP UP

4

DIR_UPDIR_UP

TSC

Up (0-4)/
down (9-5) 10-
state counter

Q(3:0)Q(3:0)

FIGURE E9B.2 Logic sym-
bol for an up(0-4)/down(9-5)
10-state counter

590 Appendix A Laboratory Experiments

3. Frequency Divider with Input and Output
Figure E9B.3 shows a logic symbol for a frequency divider (FD) connected to a single LED that
divide a 50-MHz frequency down to approximately 1.5 Hz.

 For this design, a binary counter with 25 bits that range from 24 down to 0 is used to divide
the frequency of the clock from 50 MHz down to 50/225 MHz or 1.4901 Hz. The signal name for
the output of the frequency divider is COUNT, and it is an internal signal.

4. 10-State Counter System
Figure E9B.4 shows an annotated schematic for a 10-state counter system that includes a fre-
quency divider, an up(0-4)/down(9-5) 10-state counter, a decimal display decoder, and a buffer
array.
 Things you should notice about the schematic in Figure E9B.4:

 • The small triangles (called bus taps) represent connections to individual signals on the
buses.

 • The internal input signals—that is, the signals that are placed between the architecture in
VHDL and the first begin, are COUNT(24:0), SLOW_CLK, and Q(3:0).

 • The signal RST (asyn) is used to reset the counter system to state 0 (S0) at any time.
 • The frequency divider is designed to output SLOW_CLK at approximately 1.5 Hz.
 • The signal UP is used to select the sequence—that is, either up or down UP. When the

counter counts up, the Moore output signal DIR_UP turns on the decimal point DP, and
when the counter counts down the decimal point DP turns off.

 • DSP_Q(3:0) turns on four single LEDs to display the sequence of the counter in binary.
 • The 7-segment LED display, Disp 3, displays the sequence of the counter in decimal.

Recommended Pre-Lab:

 1. Tasks 1 and 2.
 2. Your instructor will provide you with additional information about what should be submit-

ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Use the state sequence diagram in Figure E9B.1 to draw an equivalent state diagram for
the up(0-4)/down(9-5) 10-state counter. Use the true where shown signal convention for the
Moore output DIR_UP.

 2. Create a new project named TSC, and write complete VHDL code for the up(0-4)/down(9-
5) 10-state counter in Figure E9B.1. Write the VHDL code using the two-process PS/NS
method. (Hint: See Chapter 9, Section 9.5, Listing 9.2.) Simulate the design to verify that
it follows the state sequence diagram in Figure E9B.1 and your equivalent state diagram.
[Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for
help.] If your simulation does not follow the state sequence diagram or the equivalent state

CLK
(50 MHz)

SLOW_CLK
LED with
protection

resistor

Frequency divider
(binary up counter, 25 bits)

FD

COUNT(24)C
(~1.5 Hz)

(LD7)

FIGURE E9B.3 Frequency
divider connected to a single LED

www.itpub.net

 Experiment 9B: Designing and Testing a 10-State Counter System Using a Hierarchal Design Approach 591

diagram, then you know that the VHDL code has an error. You must find the error or errors
and fix them.

 3. Create a new project named FD, and write complete VHDL code for the logic symbol FD
connected to a single LED shown in Figure E9B.3. (Note: Do not use FD as the name of
the design entity because this name is reserved as a keyword in the Xilinx library. FD1 will
work if you want to use this name.) Write the VHDL code using a conditional signal assign-
ment via the arithmetic method. (Hint: See Chapter 6, Section 6.8, Listing 6.6.)

 4. Complete the design cycle for your FD circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

8

Push-button switch
with resistors

Up (0-4)/
down (9-5) 10-
state counter

Frequency divider
(binary up counter,

25 bits)

COUNT(24)

FD

CLK
(50 MHz)

RST (asyn)

DIR_UP

UP UP

(~1.5 Hz)
DIR_UP

COMP 1

Decimal display
decoder

DDD

COMP 3

BUFFER_ARRAY
COMP 4

TSC

Only display
3 will be

used, i.e., all
other displays
are blanked

Four multiplexed
7-segment display

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments CA through CG,
the DP (decimal point),

and AN3 through AN0 are
active low inputs)

COMP 2

TSCS

SEG

AN3

Disp 3
0

3

64

5 1

2

7
o

8
SEG

AN2

Disp 2

o
8
SEG

AN1

Disp 1

o
8
SEG

AN0

Disp 0

o

CLR

Q(3:0)

4

4

4

4

4

7 8

GND

RST (asyn)
(BTN3)

4 LEDs
with

protection
resistors

DSP_Q(3:0)
(LD3...LD0)

SLOW CLK

Q(3:0)

Q(3:0)

DSP_Q(3:0)

S(3:0)
D(6:0)

EN_DSP(3:0)

DIR_UP
(DP)

D(6:0)
(CG...CA)

A(3:0)
(AN3...AN0)

Slide switch
with resistor

UP
(SW0)

V
CC

V
CC

FIGURE E9B.4 Annotated schematic for a 10-state counter system (TSCS)

592 Appendix A Laboratory Experiments

 5. Check to see if your FD circuit works in hardware. Verify that LD7 blinks at a frequency
of approximately 1.5 Hz. If your design does not perform in this manner, you have made a
mistake that you must find and correct.

 6. Use a hierarchal design approach to combine the frequency divider, up(0-4)/down(9-5)
10-state counter, decimal display decoder, and BUFFER_ARRAY so that the up(0-4)/
down(9-5) 10-state counter uses the signal SLOW_CLK provided by the frequency divider
as its clock input. First, create a new project named TSCS and write the complete VHDL
code for the system. You can use the complete VHDL code for the frequency divider and
the up(0-4)/down(9-5) 10-state counter as the definitions for components 1 and 2 in your
hierarchal design. After you create the new project, click Project, then click Add Copy of
Source to add the VHDL code—that is, the .vhd files, for FD and TSC to your new project
TSCS.

 7. Complete the design cycle for your TSCS design by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 8. Check to see if your TSCS design works in hardware. Verify that RST clears Disp 3 to 0.
When SW0 is pushed forward, the counter counts up from 0 through 4 and repeats this
sequence, and when SW0 is pulled back, Disp 3 counts down from 9 through 5 and repeats
this sequence. The decimal point of Disp 3 will be on only when Disp 3 counts up and off
when Disp 3 counts down. The change over from up to down will only occur at states 0 and
9. The signal DIR_UP that lights the decimal point is not a function of the input signal UP
but a function of the state of the machine because it is a Moore output. If your design does
not perform in this manner, you have made a mistake that you must find and correct.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design for this experiment is task 8 (TSCS design).

 2. Include your equivalent state diagram for the up(0-4)/down(9-5) 10-state counter.
 3. Include the complete VHDL code for your TSC design.
 4. Include a printout of the simulation waveform diagram for your TSC design.
 5. Include the complete VHDL code for your FD design.
 6. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your FD design.
 7. Include the complete VHDL code for your TSCS design.
 8. Include a printout of the Edit Constraints (Text), which shows the package pin assignments

for your TSCS design.
 9. Write a short paragraph summarizing the work you did for this experiment, and describe

any problems you may have encountered while obtaining your solutions. You may include
any helpful hints and improvements you may think of for this experiment.

 10. Your lab instructor may add additional requirements for this experiment.

www.itpub.net

 Experiment 10: Working with EASY1 (Editor/Assembler/Simulator) for VBC1 593

EXPERIMENT 10: WORKING WITH EASY1 (EDITOR/
ASSEMBLER/SIMULATOR) FOR VBC1

In this experiment, you will practice working with EASY1 (Editor/Assembler/Simulator) for
VBC1. Figure E10.1 shows a block diagram for VBC1.

 Things you should notice about the block diagram in Figure E10.1:

 • The instruction memory unit (RAM) stores the instructions and provides the current con-
tents of the instruction memory at the output IR (instruction register).

 • The control unit provides the PC (program counter), which points to the next instruction to
be executed.

 • The input unit supplies the input via four slide switches.
 • The data path unit with registers R0 and R1 and output port provides the capability to

execute the IN, OUT, and MOV instructions.
 • The control unit provides the capability to execute the JNZ instruction.
 • The ALU provides the capability to execute the LOADI, ADDI, ADD, and SR0 instructions.
 • The output unit provides the output via 4 LED.

 In Figure E10.1 observe that a checkmark at an input represents a logic 1 and no checkmark
represents a logic 0. Also observe a dot inside a circle at an output represents a logic 1 and no
dot represents a logic 0.
 Open the program EASY1 and observe the Screen (or GUI).
 Notice the following on the GUI for EASY1:

 • The instruction memory is shown on the right of the GUI and is labeled Instruction Memory.
 • The current contents of the instruction memory is IR, which is shown via 8 bits on the GUI.
 • The PC is shown via 4 bits on the GUI, which is the address indicated by the instruction pointer.
 • The input is shown via four squares. When you click on one of the squares it shows a check-

mark, and when you click on it again the checkmark is removed. For VBC1, a checkmark
represents a slide switch that is pushed forward (this represents a logic 1 or high), while no
checkmark represents a slide switch that is pulled back (this represents a logic 0 or low).

 • Registers R0 and R1 are shown via 4 bits on the GUI.
 • The output is shown via four circles on the GUI. For VBC1, a dot inside a circle presents a

lighted LED (this represents a logic 1 or high), while no circle represents an LED that is not
lighted (this represents a logic 0 or low).

Instruction memory unit (RAM) Control unit

Input unit
Output unit

Program counter (PC)
(4 bits),

instruction decoder

PC
(4 bits)

Control
signals
(9 bits)

IR
(8 bits)

R0 (4 bits)

R1 (4 bits)

Data path unit

ALU provides logic for the instructions
LOADI, ADDI, ADD, and SR0 (4 bits)

Immediate
data/address

(4 bits)

DI
(4 bits)

Operand 1
(4 bits)

Operand 2
(4 bits)

Result
(4 bits)

Output port
(4 bits)

OP
(4 bits)R0/R1(4 bits)

Set of 2
registers

and
steering
circuits
(4 bits)

Input is 4 slide
switches Output is 4 LEDs

1 1 0 0
1 1 0 0

16 instructions (8 bits)
0

0

0123

0123R0

OP
R1

1
2
3

E
F

1234567

⋮

FIGURE E10.1 Block
diagram for VBC1

594 Appendix A Laboratory Experiments

Recommended Pre-Lab:

 1. Read Appendix D, Sections D.1 through D.6, for additional information about EASY1 for
this experiment.

 2. Write an assembly language program that runs in an infinite loop and bounces the instruc-
tion pointer for EASY1 forward, from the first instruction at 0000 to the last instruction at
0100; then bounces the instruction pointer backward, from the last instruction at 0100 to
the first instruction at 0000; and then repeats in this manner. Provide a comment for each
instruction that explains how the program works and not just what each instruction does.
(Hint: This program can be written using only the instructions LOADI and JNZ.) Remem-
ber that the instruction JNZ only jumps when the value in the destination register (DR) is
not equal to 0. If DR is equal to 0, then the JNZ instruction falls through to the instruction at
the next address. You can make the JNZ instructions jump through memory going forward
or backward based on the value of DR. For each JNZ instruction you write, use a label for
the address in the instruction.

 3. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—that is, assembled printout of the assembly
language program with comments, a copy of your assembly language program with com-
ments in a text fi le, and the like.

Tasks:

 1. Using EASY1, click on the fi rst box in the instruction memory, which has the address 0000,
and change the contents of the box to the value 10000000. Be sure that the contents is only
8 bits. Fill in the rest of the instruction memory as shown here:

0000

0001

0010

0011

0100

0101

0110

0111

1000

Instruction Memory

10000000

11000000

11100000

11110000

11111000

11111100

11111110

11111111

00000000

 2. Click the Reset button, which moves the instruction pointer (the lighted dot) back to the first
address of the first location in the instruction memory, which is 0000. Reset will not reset
the instruction memory. Observe that the PC now has the value 0000 and the IR, which
represents the current instruction in memory, has the value 10000000. Now click the Step
button once and notice that the lighted dot in the instruction memory moves to the address
0001 and the PC has the address 0001. Also notice that the IR has the value of 11000000.
Click the Step button repeatedly and observe that the PC changes to the value of the address
in memory that is represented by the instruction pointer (the lighted dot) and the IR changes
to the values of the current instruction in memory at the lighted dot.

 3. Click the Reset button and then click the Run button. Observe that the instruction pointer
moves down through the memory, indicating that the instructions in memory are attempt-
ing to be executed; however, there are no instructions to execute because we have not placed
any instructions into the Assembly area to assemble and load into memory. This exercise

www.itpub.net

 Experiment 10: Working with EASY1 (Editor/Assembler/Simulator) for VBC1 595

should provide you with the idea that when instructions are actually placed into the Assem-
bly area and assembled and loaded into memory, EASY 1 will execute those instructions.

 4. Click the Assemble and Load button, and this will clear the instruction memory, because
there is no assembly language program loaded into the Assembly area of instruction memory.

 5. Enter Program E10.1 in the Assembly area of the GUI of EASY1, then click Assemble and
Load. This will assemble the program (convert the assembly language program to 1s and
0s) and will also load the 1s and 0s for each instruction into instruction memory.

;VBC1 Exp 10 Program 1
start: IN R0 ; input 15 via the Input squares
 OUT R0 ; output contents of R0
 MOV R1,R0 ; move contents of R0 to R1
 JNZ R0,start ; jump to start

PROGRAM
E10.1 Simple assem-
bly language program
for VBC1 using four
instructions

 6. After the program is loaded into instruction memory, the PC is at 0000, which is the first
instruction to be executed, which is in r0, as shown just to the right of the instruction mem-
ory in Figure E10.2.

 7. As shown in Program E10.1, a semicolon is used to list comments in an assembly language
program. The semicolon followed by the comment “input 15 via the Input squares” tells you
to click each of the four squares to provide the input of 15—that is, place a checkmark in
each of the squares, which represents 1111 5 15, as shown in Figure E10.2.

Step Run Reset

0000

0000

0000

0001

0010

0011

0100

0101

0110

0111

1000

0000

10100000

R0

Instruction Memory

R1

PC

IR

Output

Input

10100000

11000000

00010000

11100000

00000000

00000000

00000000

00000000

00000000

1001 00000000

in

out

mov

jnz

r0

r0

r1

r0

r0

0000

FIGURE E10.2
Program 1 assem-
bled and loaded;
input is set to 1111.

Instruction Memory

R0

R1

PC

IR

Output

Input

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

10100000 in r0

out r0

mov r1

jnz r0

r0

0000

11000000

00010000

11100000

00000000

00000000

00000000

00000000

00000000

00000000

Step

1111

0000

0001

11000000

Run Reset

 8. Click Step to single step through the program to observe how the program works.
 9. Here is what you should observe in the sequence that occurs:

 Click Step button first time.

596 Appendix A Laboratory Experiments

 Click Step button second time.

Instruction Memory

R0

R1

PC

IR

Output

Input

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

10100000 in r0

out r0

mov r1

jnz r0

r0

0000

11000000

00010000

11100000

00000000

00000000

00000000

00000000

00000000

00000000

1111

0000

0010

00010000

Run ResetStep

 Click Step button third time.

 Click Step button fourth time.

 10. You should now begin to understand what the instructions IN, OUT, MOV, and JNZ in
Program E10.1 actually do as they are executed.

 11. To see the program run at a reasonable speed, click Reset and then click Run. This causes
the instructions to run at a predetermined speed.

 12. Click Reset and change the value of the input from 15 to 3, and single step through the pro-
gram; also run the program to observe how the values for registers R0 and R1 change and
the output changes as the program is executed via single stepping through the program or
running the program.

 13. Click Reset and change the value of the input from 3 to 0, and observe how the values of
registers R0 and R1 change and how the output changes as the program is executed via
single stepping through the program or running the program. Explain why the program
does not jump to start when the JNZ instruction is executed. Explain what happens when
the program reaches the last address in instruction memory. What is the last address in
instruction memory?

Instruction Memory

R0

R1

PC

IR

Output

Input

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

10100000 in r0

out r0

mov r1

jnz r0

r0

0000

11000000

00010000

11100000

00000000

00000000

00000000

00000000

00000000

00000000

Step

1111

1111

0011

11100000

Run Reset

Instruction Memory

R1

PC

Run Reset

1111

0000

10100000

R0

IR

Output

Input

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

10100000 in r0

out r0

mov r1

jnz r0

r0

0000

11000000

00010000

11100000

00000000

00000000

00000000

00000000

00000000

00000000

Step

www.itpub.net

 Experiment 10: Working with EASY1 (Editor/Assembler/Simulator) for VBC1 597

 14. Write an assembly language program—that is, Program 2, which will display an output
value that is twice the value that is applied at the input. This will only be true for input val-
ues in the range of 1 through 7. Your program should run continuously through its instruc-
tions. Enter the program into EASY1, and run the program to verify that it works. Provide
a comment for each instruction that explains how the program works and not just what each
instruction does.

 15. Explain why the restriction must be placed on the range of the values at the input in task 14.
 16. Write an assembly language program—that is, Program 3, which will display the output

4-bit LED sequence for a bouncing lights program for VBC1, as shown in Figure E10.3.
Your program should run continuously through its instructions. Enter the program into
EASY1, and run the program to verify that it works. Provide a comment for each instruction
that explains how the program works and not just what each instruction does.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of the assembly language program, Program 2, in task 14 via
EASY1.

 2. Explain how instruction memory can be cleared via the EASY1 GUI with the click of a but-
ton, when there is no assembly language program loaded into the Assembly area of EASY1.

 3. For task 12, list the value of the output in binary after single stepping or running the
program.

 4. For task 13, list the value of the output in binary after single stepping or running the pro-
gram. Also include the answers to the three questions in task 13.

 5. For task 14, include an assembled printout of the assembly language program with com-
ments in Program 2 on the screen or GUI (graphical user interface) for EASY1. Make sure
that the total GUI for EASY1 is available on your printout.

 6. Include the answer to the question in task 15.
 7. For task 16, include an assembled printout of the assembly language program with com-

ments in Program 3 on the screen or GUI (graphical user interface) for EASY1. Make sure
that the total GUI for EASY1 is available on your printout.

 8. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 9. Your lab instructor may add additional requirements for this experiment.

These outputs are obtained via
the LOADI instruction

This output is obtained via the
IN instruction reading the input

This sequence
is repeated

over and over.
Key

LED off

LED on

FIGURE E10.3 Output
4-bit LED sequence for
a bouncing lights pro-
gram for VBC1

598 Appendix A Laboratory Experiments

EXPERIMENT 11: WRITING AND SIMULATING PROGRAMS
FOR VBC1 WITH EASY1

In this experiment, you will practice writing and simulating programs for VBC1 with EASY1.
Figure E11.1 shows a summary of all the assembly language instruction for VBC1 in alphabeti-
cal order.

 Figure E11.2 shows the output 4-bit LED sequence for a smiley face program for VBC1.

Comment

Assembly
language
instruction

ADD DR,SR

ADDI DR,Data

IN DR

JNZ DR,Address

LOAD DR,Data

DR (destination register) either R0 or R1
SR (source register) either R0 or R1

DR (destination register) either R0 or R1
SR (source register) either R0 or R1

DR (destination register) either R0 or R1
SR (source register) either R0 or R1

DR (destination register) either R0 or R1
Data (data included in the instruction) 0 through 15

DR (destination register) either R0 or R1
Data (data included in the instruction) 0 through 15

MOV DR,SR

OUT DR

SR0 DR,SR

DR (destination register) either R0 or R1

DR (destination register) either R0 or R1

DR (destination register) either R0 or R1
Address 0 through 15

FIGURE E11.1 Summary of all the
assembly language instruction for
VBC1 in alphabetical order

 Figure E11.3 shows the output 4-bit LED sequence for a robot eye program for VBC1.

This sequence
is repeated

over and over.

Key

LED off

LED on

FIGURE E11.2 Output 4-bit
LED sequence for a smiley face
program

This sequence
is repeated

over and over.

Key

LED off

LED on

FIGURE E11.3 Output 4-bit
LED sequence for a robot eye
program

www.itpub.net

 Experiment 11: Writing and Simulating Programs for VBC1 with EASY1 599

 Figure E11.4 shows a state sequence diagram for a 4-bit stoppable one-hot up counter. Q3
Q2 Q1 Q0 are displayed on the output LEDs 3 downto 0, respectively, and S is provided by the
status of the input slide switches. S 5 0 is switch inputs 0000, and S 5 1 is switch inputs that are
any value except 0000—that is, 0001, 0010, 0011, etc.

Recommended Pre-Lab:

 1. Read Appendix D, Sections D.7 and D.8, for additional information about EASY1 for this
experiment. Also read Chapter 11, Section 11.11, Programming Examples and Techniques
for VBC1.

 2. Write an assembly language program that simultaneously blinks the two least significant
output bits five times then simultaneously blinks the two most significant output bits five
times and repeats this sequence over and over. Be sure that your program does not run
amuck. (Hint: Use two internal loops.) Provide a comment for each instruction that explains
how the program works and not just what each instruction does.

 3. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—that is, assembled printout of the assembly lan-
guage program with comments, a copy of your assembly language program with comments
in a text file, and the like.

Tasks:

For each program that you write, provide a comment for each instruction that explains how the
program works and not just what each instruction does.

 1. Write an assembly language program for VBC1 that will produce the smiley face sequence
shown in Figure E11.2 as an inline program. Be sure that your program does not run amuck.
Enter the program into EASY1, and run the program to verify that it works. Record the
number of instructions that are required for your inline program.

 2. Write an assembly language program for VBC1 that will produce the smiley face sequence
shown in Figure E11.2 as a program that contains at least one internal loop to reduce
repeated instructions. Be sure that your program does not run amuck. Enter the program
into EASY1, and run the program to verify that it works. Record the number of instructions
that are required for your program with an internal loop(s).

 3. Write an assembly language program for VBC1 that will produce the robot eye sequence
shown in Figure E11.3 as an inline program. Be sure that your program does not run amuck.
Enter the program into EASY1, and run the program to verify that it works. Record the
number of instructions that are required for your inline program.

 4. Write an assembly language program for VBC1 that will produce the robot eye sequence
shown in Figure E11.3 as a program that contains at least one internal loop to reduce
repeated instructions. Be sure that your program does not run amuck. Enter the program
into EASY1, and run the program to verify that it works. Record the number of instructions
that are required for your program with an internal loop(s).

 5. Write an assembly language program for VBC1 that will produce the 4-bit stoppable one-
hot up counter shown in Figure E11.4 as an inline program. Be sure that your program does

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Q3
S

S

S

S

Q2 Q1 Q0

S

S

S

S

FIGURE E11.4 State sequence
diagram for a 4-bit stoppable one-
hot up counter

600 Appendix A Laboratory Experiments

not run amuck. Enter the program into EASY1, and run the program to verify that it works.
Record the number of instructions that are required for your inline program.

 6. Write an assembly language program for VBC1 that will produce the 4-bit stoppable one-
hot up counter shown in Figure E11.4 as a program that contains at least one internal loop
to reduce repeated instructions. Be sure that your program does not run amuck. Enter the
program into EASY1, and run the program to verify that it works. Record the number of
instructions that are required for your program with an internal loop(s).

 7. Fill in the following table:

Program
Number of
instructions, inline Number of instructions, internal loop(s)

Smiley face

Robot eye

4-bit stoppable one-hot up counter

 In general, which programming technique takes longer to execute the complete pro-
gram sequence one time, an inline program or a program with a loop counter(s) or an inter-
nal loop(s)? Why? (Explain your answer.)

 8. Place the programs for tasks 1 through 6 in a text file for easy reference.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working programs and get them
signed off by your lab instructor. First print out a cover page with only the following
information: course title, experiment number, your name, and your partner's name(s). Then
invite your lab instructor to come to your bench to observe your fi nal working programs.
Your fi nal working programs for this experiment will be chosen at random.

 2. Include the filled in table in task 7 and your answers to the questions.
 3. Ask your instructor if you should include the copy of your programs in the text file in your

report, or if you should e-mail the copy of your programs in your text file to him/her as an
attachment.

 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 12: DESIGNING AND TESTING VBC1 (DATA
PATH UNIT)

In this experiment, you will practice working with bus steering circuits and loadable register
circuits.
 This is the first in a series of projects to design and test VBC1 (Very Basic Computer 1).
Experiment 12 consists of the annotated schematic shown in Figure E12.1.
 Figure E12.1 shows the data path unit for VBC1. The schematic shows the external input
switch circuits (both slide switches and push-button switches) and the external output circuit
for four LEDs. Labels for all the switches and LEDs are included in parentheses—for example,
SW3. . .SW0, BTN3, LD0, DP. . .CA, and AN3. . .AN0. These labels are used to obtain the
pin assignments for the Digilent board you elect to use—for example, a BASYS 2 board or a
NEXYS 2 board.

www.itpub.net

 Experiment 12: Designing and Testing VBC1 (Data Path Unit) 601

 Things you should notice about the schematic in Figure E12.1:

 • The schematic represents a portion of the data path unit for VBC1, which performs the
instructions IN, OUT, and MOV by manually selecting the control signals M1, M2, LOAD_
R0, LOAD_R1, and LOAD_OP and the input signal DI.

 • The modules numbered 1 through 5 are used to simplify the design of VBC1 by dividing
the design into small circuits.

Push-button switch
with resistors

RST (asyn)
(BTN3)

Push-button switch
with resistors

LOAD R1
(BTN2)

Push-button switch
with resistors

LOAD_OP
(BTN0)

Push-button switch
with resistors

LOAD_R0
(BTN1)

4 LEDs
with

protection
resistors

DOUT(3:0)
(LD3...LD0)

Slide switch
with resistor

M2
(SW7)

Slide switch
with resistor

M1
(SW6)

4 slide switch
with resistors

DI (3:0)
(SW3...SW0)

4

4

4

4 4

4

CLR
C

CE

MUX 2

Module 4

Module 2

Module 3

0

1
Reg R1

D

RST (asyn)

LOAD_R1

R1

M2

4

4

4

MUX 1

Module 1

0

1

M1

CLR
C

CE

Reg R0
D

RST

R0_R1_DI R0_R1

LOAD_R0

R0

Module 5

CLR
C

CE

Reg
output port

D

Q

Q

Q

RST

CLK

CLK

LOAD_OP

DOUT(3:0)

DI(3:0)

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

V
CC

FIGURE E12.1 Data path unit for VBC1

602 Appendix A Laboratory Experiments

 • The external input and output signals—that is, the port signals for the entity in VHDL—are
DI(3:0), M1, CLK, RST, LOAD_R0, . . . (you should be able to list the rest of them).

 • The internal signals, for the architecture in VHDL, are R0_R1_DI, R0, R1, R0_R1.
 • Modules 1, 2, and 3 provide a data input port driven from four slide switches.
 • Modules 4 and 5 provide a data output port, which drives four LEDs.
 • The select inputs to modules 1 and 4 are driven by two slide switches.
 • The clear inputs to the loadable registers are driven by a push-button switch.
 • The clock enable inputs to the loadable registers are driven by push-button switches.
 • The control signals M1, M2, LOAD_R0, LOAD_R1, and LOAD_OP must be supplied

manually via slide switches and push-button switches.
 • The control signals M1, LOAD_R0, and LOAD_R1 allow the instruction IN to be per-

formed—that is, IN R0 and IN R1.
 • The control signals M2 and LOAD_OP allow the instruction OUT to be performed—that

is, OUT R0, and OUT R1.
 • The control signals M1, M2, LOAD_R0, and LOAD_R1 allow the instruction MOV to be

performed—that is, MOV R0,R0, MOV R0,R1, MOV R1,R0, and MOV R1,R1.

 If you design and test the data path unit for VBC1 in Figure E12.1, you can manually single
step through the assembly language program shown in Program E12.1 to verify that your circuit
executes the program correctly—that is, executing one instruction at a time. You must supply
the proper values for the control signals M1, M2, LOAD_R0, LOAD_R1, and LOAD_OP, and
also supply the proper values for the input data signal DI. Note: The result you observe as you
single step through the program by manually supplying the control signal values and input
values shown in the comments should provide the same result you observe as you single step
through the program using EASY1.

;VBC1 Exp 12, 13, and 15 Program 1
;Testing IN, OUT, and MOV instructions
IN R0 ; input 9 via 4 slide switches
OUT R0 ; output contents of R0 to LEDs
IN R0 ; input 15 via 4 slide switches
MOV R1,R0 ; move contents of R0 to R1
OUT R1 ; output contents of R1 to LEDs
IN R1 ; input 6 via 4 slide switches
OUT R1 ; output contents of R1 to LEDs
OUT R0 ; output contents of R0 to LEDs

PROGRAM E12.1
Simple assembly
language program
for VBC1 using the
instructions IN, OUT,
and MOV

 The control signals are normally supplied by an instruction decoder and therefore do not
have to be provided manually in the final design. The reason for supplying these signals manu-
ally, in this experiment, is to learn how VBC1 must supply these signals to perform the instruc-
tions IN, OUT, and MOV.
 Read Chapter 12, Section 12.3 (Designing bus steering circuits), to learn how to design a
bus steering circuit. Read Chapter 12, Section 12.4 (Designing loadable register circuits), to
learn how to design loadable register circuits.
 To gain an understanding of VBC1, read Chapter 10. To gain an understanding of the
instructions IN, OUT, and MOV, read the sections that cover these instructions in Chapter 11.
To learn how to edit, assemble, and simulate programs for VBC1, read the EASY1 Tutorial in
Appendix D, which shows you how to use EASY1.
 VBC1 has only eight instructions. The data path unit in this experiment will execute the
following three VBC1 instructions:

www.itpub.net

 Experiment 12: Designing and Testing VBC1 (Data Path Unit) 603

IN DR ; 4 SWs input data (DI) from 4 SWs (switches) to R0 or to R1
OUT DR ; 4 LEDs output data (DOUT) to 4 LEDs from R0 or from R1
MOV DR,SR move R0 to R0, or move R0 to R1, or move R1 to R0, or move R1 to R1

Note: A semicolon precedes a comment; DR stands for destination register; SR stands for source
register.
 In this experiment, you will run the assembly language program shown in Program E12.1
to see if your circuit executes the program correctly as you supply the proper values for the con-
trol signals M1, M2, LOAD_R0, LOAD_R1, and LOAD_OP, and the input values shown in the
comments.

Recommended Pre-Lab:

 1. Create a new project named MUX_1, and write complete VHDL code for a single 2-to-1
MUX using a conditional signal assignment. Make the input and output signal names the
same as those used by module 1 in Figure E12.1 using just scalar signals, not vector signals.
Run a simulation to verify your design works. If your design does not work, you must fi nd
the error or errors and fi x them. [Note: See Appendix B (Obtaining Simulations via the
VHDL Test Bench Program) for help.]

 2. Create a new project named Reg_R0, and write complete VHDL code for a single loadable
D flip-flop using a conditional signal assignment. Make the input and output signal names
the same as those used by module 2 in Figure E12.1 using just scalar signals, not vector
signals. Run a simulation to verify your design works. If your design does not work, you
must find the error or errors and fix them.

 3. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code for the data path unit for VBC1 shown in Figure E12.1 using
only conditional signal assignments via a fl at design approach. Use documentation style M
introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking each internal signal and
each section of code in your VHDL design. Be sure to place all modules in the code section
in numerical order.

 2. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 3. Analyze the data path unit to determine the values that must be supplied by the control
signals M1, M2, LOAD_R0, LOAD_R1, and LOAD_OP to execute each of the following
instructions: IN R0, IN R1, OUT R0, OUT R1, MOV R0, R0, MOV R0,R1, MOV R1,R0,
and MOV R1,R1. Examples: The IN R0 instruction is executed only when M1 5 1 and
LOAD_R0 5 1. The MOV R1,R0 instruction is executed only when M2 5 0, M1 5 0, and
LOAD_R1 5 1.

 4. You need to verify that your VHDL design for the data path unit works correctly for each
of the instructions IN, OUT, and MOV as you manually supply the proper control signal
values and input values. Fill in Table E12.1 for each of the instructions in the assembly lan-
guage program shown in Program E12.1 and repeated in Table E12.1.

604 Appendix A Laboratory Experiments

 Use the following notation for your entries in Table E12.1: (a) use a 1 to represent a slide
switch that is pushed forward; (b) use a 0 to represent a slide switch that is pulled back;
(c) use a don’t care (X) for each slide switch input that does not contribute to the execution
of the instruction; (d) use a 1 to represent a push-button switch that must be pressed and
released to perform the instruction; (e) use a 0 to represent a push-button switch that is
not pressed to perform the instruction. Your final task is to verify that your VHDL circuit
design for VBC1 provides the same results you observed when you single stepped through
the instructions in Program E12.1 using EASY1. If your hardware design fails to provide
the same results as EASY1, then you either made a mistake assigning pins or you may have
design errors in your VHDL code that you must find and fix. To start, press and release
BTN3, which resets the loadable D flip-flops. If you make a mistake entering values, sim-
ply press and release BTN3, then single step through the instructions from the beginning.

 5. Program/Table E12.2 shows a program for VBC1 for a robot eye. For practice, hand assem-
ble all the instructions in Program/Table E12.2. Write the values in equation form for just
the required inputs and control signals (I/C signals) for each instruction in Program E12.2
for your data path unit design for VBC1.

 6. Enter Program E12.2 into EASY 1 and single step through the program to see how it works.
Check your hand-assembled machine code with that produced by EASY1.

 7. Using the switches and push buttons for the required inputs and control signals, single step
through Program E12.2 via your VBC1 data path unit design to confirm that your hardware
design and EASY1 perform in the same way.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of the simple program in Table E12.1 with your VBC1 design.

 2. Include Table E12.1 filled in correctly.
 3. Include the complete VHDL code for your VBC1 design.
 4. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).

TABLE E12.1

Board input S SW7 SW6 SW3 SW2 SW1 SW0 BTN3 BTN2 BTN1 BTN0

Circuit signal S M2 M1 DI(3:0) RST LOAD_R1 LOAD_R0 LOAD_OP

Instruction T

IN R0 ; input 9

OUT R0 ; to LEDs

IN R0 ; input 15

MOV R1,R0

OUT R1 ; to LEDs

IN R1 ; input 6

OUT R1 ; to LEDs

OUT R0 ; to LEDs

www.itpub.net

 Experiment 13: Designing and Testing VBC1 (Instruction Memory Unit) 605

 5. Include an assembled printout of the assembly language program with comments in Pro-
gram E12.1 on the screen or GUI (graphical user interface) for EASY1 in task 4. Make sure
that the total GUI for EASY1 is available on your printout.

 6. Include the hand assembly and just the required input and control signals for each instruc-
tion in Program/Table E12.2 for the robot eye program for VBC1 in task 5.

 7. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 8. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 13: DESIGNING AND TESTING VBC1
(INSTRUCTION MEMORY UNIT)

In this experiment, you will practice working with instruction memory and a program counter.
 This is the second in a series of projects to design and test VBC1. This is a stand-alone
project—that is, do not add Experiment 12 to this design. Experiment 13 consists of the anno-
tated schematic shown in Figure E13.1.
 Figure E13.1 shows the instruction memory unit and part of the control unit for VBC1.
The switch input circuits are not shown in the circuit diagram to simplify the drawing. Graphic
symbols are shown for the single LEDs and the 7-segment display. Labels for all the switches
and LEDs are included in parentheses—for example, SW7. . .SW0, BTN3, BTN1, BTN0,
LD7. . .LD0, DP. . .CA, and AN3. . .AN0. These labels are used to obtain the pin assignments
for the Digilent board you elect to use—for example, a BASYS 2 board or a NEXYS 2 board.
 Things you should notice about the schematic in Figure E13.1:

 • The schematic represents the instruction memory unit and a part of the control unit for
VBC1. This much of the circuit for VBC1 allows you to load data (or instructions) into

PROGRAM/TABLE E12.2 Robot eye program, hand assembly, and just required I/C signals

; VBC1 Exp 12 Program 2 Robot Eye Hand assembly Just required inputs and control signals

in r0 ; input 0001 via 4 slide switches 10100000 DI 5 0001, M1 5 1, LOAD_R0 5 1

mov r1,r0 ; copy r0 into r1 00010000 M1 5 M2 5 0, LOAD_R1 5 1

out r1 ; output 0001 to LEDs

in r1 ; input 0010 via 4 slide switches

out r1 ; output 0010 to LEDs

in r0 ; input 0100 via 4 slide switches

mov r1,r0 ; copy r0 into r1

out r1 ; output 0100 to LEDs

in r1 ; input 1000 via 4 slide switches

out r1 ; output 1000 to LEDs

out r0 ; output 0100 to LEDs

in r1 ; input 0010 via 4 slide switches

out r1 ; output 0010 to LEDs

in r1 ; input 0001 via 4 slide switches

mov r0,r1 ; copy r1 into r0

out r0 ; output 0001 to LEDs

606 Appendix A Laboratory Experiments

instruction memory and verify that the data (or instructions) are stored at the appropriate
address locations.

 • The modules are numbered 6 through 9 in this experiment because the modules in the data
path unit for VBC1 in Experiment 12 will be added to this experiment later, and this will
prevent us from having to change the module numbers later.

 • The external input and output signals—that is, the port signals for the entity in VHDL—are
INST(7:0), WE, CLK, SEL_ADDR, . . . (you should be able to list the rest of them).

 • The internal signals for the architecture in VHDL are PC_ADDR, ONE_PULSE, COUNT1,
SLOW_CLK1, Q1, Q2, and Q3.

Module 6

Module 8

Module 7

Module 9

Debounced one pulse circuit
(Module 7)

Four multiplexed
7-segment display

Program counter values 0 through F
are displayed on Disp 3, and all other
displays are blanked

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments DP through CA
and AN3 through AN0 are

active low inputs)

8
SEG

AN0

Disp 0

o8
SEG

AN1

Disp 1

o8
SEG

AN2

Disp 2

o8
SEG

AN3

Disp 3

o

PC_ADDR(3:0)

PC_ADDR(3:0)

PC_ADDR(3:0)

SLOW_CLK1

SEL_ADDR
ONE_PULSE

SLOW_CLK1

ONE_PULSE

INST(7:0)
(SW7...SW0)

IR(7:0)
(LD7...LD0)

WE
(BTN0)

SEL_ADDR
(BTN1)

RST (asyn)
(BTN3)

CLK

CLK

CLK

C

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

8 single LEDs

WE

CE

CLR

D

4

4

8

4

4

8

8
ADDR

Instruction
memory

(RAM 16 × 8)

Debounced
one pulse

circuit

Frequency
divider

HEX display
decoder

D

BIN
D7S

D7S(7:0)
(DP...CA)

A(3:0)
(AN3...AN0)

Q1 Q2 Q3

C

D

C

DQ Q Q

CCOUNT1(18)

Loading program
counter (LPC)

(modulo 16
counter)

Q

FIGURE E13.1 Instruction memory unit and part of the control unit for VBC1

www.itpub.net

 Experiment 13: Designing and Testing VBC1 (Instruction Memory Unit) 607

 • Module 6 is the instruction memory for storing instructions for VBC1. Instructions are
loaded via eight slide switches at the address specifi ed by PC_ADDR when WE is enabled
by a push-button switch. The output of the instruction memory—that is, the instruction
register—is driving eight single LEDs.

 • Module 7 provides a single pulse at its output—that is, signal ONE_PULSE—each time a
push-button switch is pressed at its input—that is, signal SEL_ADDR.

 • Module 8 is the loading program counter (LPC) for VBC1 using the CE input to prevent a
gated clock circuit; that is, in general, if a clock net is sourced by a combinational pin, the
circuit is called a gated clock. Using a gated clock is not considered a good design practice.

 • Module 9 is a HEX display decoder for displaying the address of the loading program coun-
ter via a 7-segment display.

 • After instructions are loaded, the contents of instruction memory may be verifi ed by select-
ing the address of the LPC and observing the contents of the instruction memory via the
eight single LEDs.

 If you design the instruction memory unit and part of the control unit for VBC1 in Figure
E13.1, you can manually load instructions (write instruction into memory) at addresses 0 through
F. You can then reset the LPC and read the instruction at the respective addresses 0 through F.
 Program E13.1 can be loaded into instruction memory (even though it will not execute prop-
erly for this limited design of VBC1). You may elect to hand assemble the program to obtain the
machine code or use EASY1 to obtain the assembled program—that is, the machine code.

;VBC1 Exp 12, 13, and 15 Program 1
;Testing IN, OUT, and MOV instructions
IN R0 ; input 9 via 4 slide switches
OUT R0 ; output contents of R0 to LEDs
IN R0 ; input 15 via 4 slide switches
MOV R1,R0 ; move contents of R0 to R1
OUT R1 ; output contents of R1 to LEDs
IN R1 ; input 6 via 4 slide switches
OUT R1 ; output contents of R1 to LEDs
OUT R0 ; output contents of R0 to LEDs

PROGRAM E13.1

 After Program E13.1 is loaded into instruction memory, you can verify that the program is
loaded by resetting the LPC and incrementing the LPC via the signal SEL_ADDR.
 To test all addresses, you can load the hexadecimal values 00 (binary value 0000 0000), 11
(binary value 0001 0001), 22, 33, . . . EE, FF in the memory locations 0 through F. After loading
the values, you can verify that these values are at the specifi ed locations.
 To investigate the design of the instruction memory using a process, read Chapter 13, Sec-
tion 13.2 (Designing an Instruction Memory).
 To investigate the design of fl ip-fl op circuits using conditional signal assignments, read
Chapter 12, Section 12.4 (Designing Loadable Register Circuits).

Recommended Pre-Lab:

 1. Create a new project named LPC, and write complete VHDL code for the loading program
counter (a modulo 16 counter) using a conditional signal assignment with the arithmetic
method. Make the input and output signal names the same as those used by module 8 in
Figure E13.1 except for the signals ONE_PULSE and SLOW_CLK1. Change SLOW_CLK1
to CLK and remove the signal ONE_PULSE because this will be a stand-alone design—
that is, the frequency divider and the debounced one-pulse circuit will not be used in this
project. Run a simulation to verify your design works. If your design does not work, you

608 Appendix A Laboratory Experiments

must fi nd the error or errors and fi x them. [Note: See Appendix B (Obtaining Simulations
via the VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code for the memory unit and part of the Control Unit for VBC1
using the specifi ed design style via a fl at design approach. Use documentation style M intro-
duced in Chapter 12, Section 12.5.1, Listing 12.4 for marking each internal signal and each
section of code in your VHDL design. Be sure to place all modules in the code section in
numerical order.

 2. Use a process for the instruction memory (module 6).
 3. Use a separate conditional signal assignment to design each fl ip-fl op for the debounced

one-pulse circuit (module 7), and use a Boolean equation to provide the gate output
ONE_PULSE.

 4. Use a conditional signal assignment with the arithmetic method to design the loading pro-
gram counter (module 8).

 5. Use a selected signal assignment to design the display hexadecimal decoder (module 9).
 6. Complete the design cycle for your circuit by doing the following:

 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. To verify that your design works, reset the loading program counter (LPC), and you
should see 0 on Disp 3 of the 7-segment display. Each time you press and release BTN1
(SEL_ADDR), your design should cycle through all the LPC addresses—that is, 0 through
F. If your hardware design does not operate in this manner, then you either made a mistake
assigning pins or you may have design errors in your VHDL code that you must fi nd and fi x.

 8. For information on how to manually load a program into instruction memory, see Appen-
dix E. To load the memory with instructions, you can enter machine code (8 bits) for an
instruction (INST) at each memory address by setting the slide switches and pressing and
releasing BTN0 (WE or Write Enable). Press and release BTN1 (SEL_ADDR) to increment
the PC to the next address. You may hand assemble the machine code for Program E13.1,
or you may use EASY1 to obtain the machine code for Program E13.1. Manually load Pro-
gram E13.1 into Instruction Memory.

 9. After you manually load Program E13.1 in your VBC1 design, press the Reset button and
verify that the program is stored in the instruction memory. This requires pressing BTN3
to reset VBC1 and then pressing BTN1 in succession to observe the contents of instruction
memory via the single LEDs, LD7 . . . LD0).

 10. To test all addresses in your instruction memory, load the hexadecimal values 00 (binary
value 0000 0000), 11 (binary value 0001 0001), 22, 33, . . . EE, FF in the memory locations
0 through F. When you press and release BTN3 (RST) and then cycle through all the LPC
addresses by pressing and releasing BTN1 (SEL_ADDR), you should observe that the val-
ues 00, 11, 22, 33, . . . EE, FF are stored in the memory locations 0 through F, respectively.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:

www.itpub.net

 Experiment 14: Designing and Testing VBC1 (Monitor System) 609

course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is to demonstrate task 9 with your VBC1 design.

 2. Print out your explanation of the purpose of the enumerated data type that is necessary in
the design of the instruction memory.

 3. Include the complete VHDL code for your VBC1 design.
 4. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).
 5. For task 9, include an assembled printout of the assembly language program with comments

in Program E13.1 on the screen or GUI (graphical user interface) for EASY1. Make sure
that the total GUI for EASY1 is available on your printout.

 6. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 7. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 14: DESIGNING AND TESTING VBC1
(MONITOR SYSTEM)

In this experiment, you will practice working with a multiplexed display system.
 This is the third in a series of projects to design and test VBC1. Experiment 14 consists
of the annotated schematics shown in Figures E14.1 and E14.2. You should design and test the
circuit in Figure E14.1 first. After you get the circuit in Figure E14.1 working, add the circuit in
Figure E14.2 to your project.
 Figure E14.1 shows the monitor system for VBC1. The push-button switch input circuit is
not shown in the circuit diagram to simplify the drawing. A graphic symbol is shown for the
7-segment LED display. Labels for the push-button switch and LEDs are included in paren-
theses—for example, BTN3, DP. . .CA, and AN3. . .AN0. These labels are used to obtain the
pin assignments for the Digilent board you elect to use—for example, a BASYS 2 board or a
NEXYS 2 board.

Module 9
(Modified)

Module 10
(New module)

Module 12
(New module)

Module 11
(New module)

Four multiplexed
7-segment display

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6
DP 7

(Segments DP through CA
and AN3 through AN0 are

active low inputs)

SEG

AN0

Disp 0
SEG

AN1

Disp 1
SEG

AN2

Disp 2
SEG

AN3

Disp 3

PC_ADDR(3:0) = E

IR(7:4) = A

IR(3:0) = S

DSP_R0_R1(3:0) = Y

SLOW_CLK2

ADDR
D7S(7:0)
(DP...CA)

COUNT_2BCLK

RST (asyn)
(BTN3)

CLR

BIN D7S

CODE

A(0)
(AN0)

A(1)
(AN1)

A(2)
(AN2)

A(3)
(AN3)

Frequency
divider 2-bit

counter

2-to-4
decoder

4-to-1
MUX array

HEX display
decoder

2

4 8

4
0

1

2

3 SEL

4

4

4

0

1

2

3

COUNT2(15)

FIGURE E14.1 Monitor system for VBC1

610 Appendix A Laboratory Experiments

 Things you should notice about the schematic in Figure E14.1:

 • The schematic represents the monitor system for VBC1. This circuit for VBC1 allows you
to display and monitor the PC on Disp 3, the IR on Disp 2 and Disp 1, and either Register
0 or Register 1 on Disp 0. For testing purposes, the values for PC, IR, and the register are
supplied as 4-bit constants to generate EA54, which can be interpreted as the word EASY
by considering that each character represents a letter.

 • The logic modules are numbered consecutively 10 through 12 continuing from Figure E13.1
in Experiment 13.

 • The external input and output signals—that is, the port signals for the entity in VHDL—are
CLK, RST, D7S(7:0), and A(3:0).

 • The internal signals for the architecture in VHDL are ADDR, COUNT2, SLOW_CLK2,
and COUNT_2B.

 • Module 9 is the HEX display decoder that provides the decoded values to the LED seg-
ments of the 7-segment display. Bit 7 is used to turn off the decimal point DP.

 • Module 10 is the 4-to-1 MUX array for selecting the character that will be displayed.
 • Module 11 is a 2-bit counter driven by a slowed-down (lower frequency) version of the clock

CLK. The counter selects the character to be displayed via the MUX array and also selects
the particular 7-segment LED display—that is, Disp 3, Disp 2, Disp 1 or Disp 0—that dis-
plays the character via the decoder.

 • Module 12 is a 2-to-4 decoder, which enables the appropriate 7-segment LED display in the
sequence Disp 0, Disp 1, Disp 2, Disp 3, Disp 0 . . . via the 2-bit counter.

 If you design the multiplexed display system for VBC1 in Figure E14.1, you can display any
4-bit word that consists of the characters 0 through F. For this project, the 4-bit word EASY is
displayed. To change to different characters, simply modify your code by supplying the desired
characters as constants.
 Figure E14.2 shows an addition to the instruction memory unit and part of the control unit
for VBC1 covered in Experiment 13. The switch input circuits are not shown in the circuit
diagram to simplify the drawing. Labels for all the switches are included in parentheses—for
example, SW7. . .SW0, BTN0, BTN1, and BTN3. Remember, these labels are used to obtain the
pin assignments for the Digilent board you elect to use.
 Things you should notice about the schematic in Figure E14.2:

 • The schematic represents an addition to the instruction memory unit and part of the control
unit for VBC1.

 • The new logic module is numbered 13, where the number is continued consecutively from
Figure E14.1. The VHDL code for modules 6, 7, and 8 may be copied from Experiment 13.

 • The external input and output signals—that is, the port signals for the entity in VHDL—are
SW(7:0), LOAD_MEM, WEI, . . . (you should be able to list the rest of them).

 • The internal signals for the architecture in VHDL are PC_ADDR, INST, WE, and
ONE_PULSE.

 • Module 6 is the instruction memory for storing instructions for VBC1. Instructions are
loaded via INST by seven slide switches at the address specified by PC_ADDR when WE
is enabled via LOAD_MEM by a push-button switch and WEI by a push-button switch.

 • Module 7 provides a single pulse at its output—that is, signal ONE_PULSE—each time a
push-button switch is pressed at its input—that is, signal SEL_ADDR.

 • Module 8 is the loading program counter for VBC1 using the CE input to prevent a gated
clock; that is, in general, if a clock net is sourced by a combinational pin, the circuit is called
a gated clock. Using a gated clock is not considered a good design practice.

 • Module 13 is a load memory circuit that requires the user to press and hold push-button
switch BTN2 to provide the signal LOAD_MEM that selects an instruction from the slide
switches SW(7:0) while simultaneously pressing push-button switch BTN0 to provide the

www.itpub.net

 Experiment 14: Designing and Testing VBC1 (Monitor System) 611

signal WEI that writes the instruction into instruction memory. When the push-button
switch BTN2 is not pressed, this frees up the slide switches SW(7:0) to be used for other
input requirements for VBC1.

 If you add the circuit in Figure E14.2 to this project, the PC address will be displayed in hexa-
decimal on Disp 3, and the IR will be displayed as two hexadecimal numbers on Disp 2 (MSD)
and Disp 1 (LSD). To cause this to occur be sure to change inputs 3, 2, and 1 of the 4-to-1 MUX
array to PC_ADDR(3:0), IR(7:4), and IR(3:0), respectively. Signal DSP_R0(3:0) is to remain the
constant value of 4; modify the 2-to-4 decoder (module 12) so that Disp 0 is turned off.

Recommended Pre-Lab:

 1. Create a new project named Decoder_2_4, and write complete VHDL code for the 2-to-4
Decoder with active high outputs using a conditional signal assignment. Make the input
and output signal names the same as those used by module 12 in Figure E14.1. This will be
a stand-alone design—that is, module 11 will not be used. Run a simulation to verify your
design works. If your design does not work, you must fi nd the error or errors and fi x them.
[Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for
help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL program. Be sure to place all
modules in the code section in numerical order.

Module 6

Module 7

Module 8

Module 13
(New module,
load memory)

Note: Do not use the single
LEDs for the IR ar you did in
the last experiment.

Instruction memory
(RAM 16 × 8)

ADDR
Q

D
0

8
4

8

4

4

4

8

8

1
WE

C

CE
Debounced
one pulse

circuit

Loading program
counter (LPC)

(modulo 16
counter)

CLK

CLK

INST

WE

SW(7:0)
(SW7...SW0)

IR(7:0)
IR(7:4)

IR(3:0)00000000

WEI
(BTN0)

LOAD_MEM
(BTN2)

LOAD_MEM
(BTN2)

ONE_PULSE
PC_ADDR

SLOW_CLK1

SEL_ADDR
(BTN1)

0 0

1

PC_ADDR

RST (asyn)
(BTN3)

CLR

FIGURE E14.2 Addition to the instruction memory unit and part of the control unit for VBC1

612 Appendix A Laboratory Experiments

 2. Start a new project and add module 9 from Experiment 13 to the new project. Modify mod-
ule 9 by removing output signal A(3:0).

 3. Add module 10 (4-to-1 MUX array) using a conditional signal assignment with the fixed
input values E at MUX array input 3, A at MUX array input 2, 5 (5 is the closest character
that resembles an “S”) at MUX array input 1, and 4 (4 is the closest character that resembles
a “Y”) at MUX array input 0.

 4. Add module 11 (frequency divider/2-bit counter). For both the frequency divider and the
2-bit counter, use a conditional signal assignment with the arithmetic method. Use a Bool-
ean equation for signal SLOW_CLK2.

 5. Add module 12 (2-to-4 Decoder) using a conditional signal assignment.
 6. Complete the design cycle for your circuit by doing the following:

 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 7. You should observe that the four 7-segment multiplexed display shows the word EASY
without flickering and without bleeding. If your design does not operate in this manner,
then you either made a mistake assigning pins or you may have design errors in your VHDL
code that you must find and fix.

 8. Change SLOW_CLK2 to COUNT2(18), then repeat tasks 6(b) and 6(c). You should observe
that the four 7-segment multiplexed display flickers as the word EASY is displayed.

 9. Change SLOW_CLK2 to COUNT2(2), then repeat tasks 6(b) and 6(c). You should observe
that the four 7-segment multiplexed display bleeds as the word EASY is being displayed.

 10. Change SLOW_CLK2 back to COUNT2(15), and start adding Figure E14.2 to your project.
 11. Add module 6 (instruction memory) from Experiment 13 to your project.
 12. Add module 7 (debounced one-pulse circuit) from Experiment 13 to your project.
 13. Add module 8 (loading program counter) from Experiment 13 to your project.
 14. Add module 13 (load memory) to your project.
 15. Note that you must make INST and WE internal signals, and you must make SW, LOAD_

MEM, and WEI external signals and provide their pin numbers in the .ucf file.
 16. Change the fixed input values for module 10 (4-to-1 MUX array) to the VHDL signals

PC_ADDR at MUX input 3, IR(7:4) at MUX input 2, and IR(3:0) at MUX input 1. Modify
the 2-to-4 decoder (module 12) so that Disp 0 is turned off. With these changes, the PC
address will be displayed in hexadecimal on Disp 3, and the IR will be displayed as two
hexadecimal numbers on Disp 2 (MSD) and Disp 1 (LSD).

 17. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 18. For information on how to manually load a program into instruction memory, see Appen-
dix E. To test your VBC1 design, load the hexadecimal values 00 (binary value 0000
0000), 11 (binary value 0001 0001), 22 (binary value 0010 0010), 33, . . . EE, FF in the
memory locations 0 through F. When you press and release BTN3 (RST) and then cycle
through all the PC addresses by pressing and releasing BTN1 (SEL_ADDR), you should
observe that the values 00, 11, 22, 33, . . . EE, FF are stored in the memory locations 0
through F, respectively. If your design does not operate in this manner, then you either

www.itpub.net

 Experiment 15: Designing and Testing VBC1 (Instruction Decoder) 613

made a mistake assigning pins or you may have design errors in your VHDL code that you
must find and fix.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is to demonstrate task 18 with your VBC1 design.

 2. Briefly discuss what causes flickering and what causes bleeding of the symbols being dis-
played on the multiplexed display in this experiment.

 3. Include the complete VHDL code for your VBC1 design.
 4. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).
 5. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 6. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 15: DESIGNING AND TESTING VBC1
(INSTRUCTION DECODER)

In this experiment, you will practice working with modules to form a system controlled by an
instruction decoder .
 This is the fourth in a series of projects to design and test VBC1. Experiment 15 consists of
the annotated schematics shown in Figures E15.1 and E15.2.
 Figure E15.1 shows the modified data path unit, the modified monitor system, the modified
instruction memory unit, and part of the control unit for VBC1. Modifications are shown by
arrows in Figure E15.1. Switch input circuits are not shown in the circuit diagram to simplify the
drawing. A graphic symbol is shown for the 7-segment LED display. Labels for the switches and
LEDs are included in parentheses—for example, BTN3, LD3. . .LD0, DP. . .CA, SW7. . .SW0,
BTN2, BTN0, BTN1, and AN3. . .AN0. These labels are used to obtain the pin assignments for
the Digilent board you elect to use—for example, a BASYS 2 board or a NEXYS 2 board.
 Figure E15.2 shows the instruction decoder, speed, select R0 or R1, data input, and blank
display circuits for VBC1. Switch input circuits are not shown in the circuit diagram to simplify
the drawing. Labels for the switches are included in parentheses—for example, BTN2, BNT3,
SW4, and SW3. . .SW0. These labels are used to obtain the pin assignments for the Digilent
board you elect to use.
 In Figure E15.2, module 14 (instruction decoder) is used to decode the instructions IN,
OUT, and MOV. Module 15 (speed) allows you to load the instruction memory or single step
through the instruction memory. Module 16 (select R0 or R1) allows you to select either R0 or R1
and display the value on Disp 0 of the four 7-segment display. Module 16 gives you the ability to
observe the contents of register R0 or R1 as you single step through a sequence of instructions
to check proper instruction execution. Module 17 (data input) provides a buffer array for the
data input for the four slide switches with the signal name SW(3:0). Module 18 (blank display)
momentarily blanks (shuts off) the display when VBC1 is reset.
 When the circuits in Figures E15.1 and E15.2 are combined, you can load the instruction
memory, execute the IN, OUT, and MOV instructions, and single step through a program that
only uses these instructions.

614 Appendix A Laboratory Experiments

4

Module 9
Module 10

Module 12Module 11

Four multiplexed
7-segment display

Legend

SEG Bit
CA 0
CB 1
CC 2
CD 3
CE 4
CF 5
CG 6

8 8 8 8
DP 7

o o o o

(Segments DP through CA
are active low inputs

and AN3 through AN0 are
active low inputs)

SEG

AN0

Disp 0
SEG

AN1

Disp 1
SEG

AN2

Disp 2
SEG

AN3

Disp 3

PC_ADDR(3:0)

IR(7:4)

IR(3:0)

DSP_R0_R1(3:0)

SLOW_CLK2

ADDR
D7S(7:0)
(DP...CA)

COUNT_2BCLK

RST (asyn)
(BTN3)

CLR

BIN D7S

CODE

A_OUT(0)

(AN3) (AN2) (AN1) (AN0)

A_OUT(1)

A_OUT(2)

A_OUT(3)

Frequency
divider 2-bit

counter

2-to-4
decoder

4-to-1
MUX array

HEX display
decoder

2

4 8

4
0

1

2

3 SEL

4

4

4

0

1

2

3

COUNT2(15)

Module 6

Module 7

Module 8

Module 13

Note: Change signal name
from A to A_OUT.

Note: Change signal name
from CLK to MEM_CLK.Note: Change

constant from 4 (0100)
to DSP_R0_R1(3:0).

Note: Change signal
name from CLK to
MEM_CLK.

Instruction memory
(RAM 16 × 8)

Note: Change signal name
from CLK to MEM_CLK.

ADDR
Q

D
0

8
4

8

4

4

4

8
8

1
WE

C

CE

Debounced
one pulse

circuit

Loading program
counter (LPC)

(modulo 16
counter)

MEM_CLK

MEM_CLK

MEM_CLK

CLK

INST

WE

SW(7:0)
(SW7...SW0)

IR
IR(7:4)

IR(3:0)

00000000

WEI
(BTN0)

LOAD_MEM
(BTN2)

LOAD_MEM
(BTN2)

ONE_PULSE PC_ADDR

SLOW_CLK1

SEL_ADDR
(BTN1)

0 0

1

PC_ADDR

RST (asyn)
(BTN3)

CLR

4

4 4

4

CLR

C

CE

MUX 2

Module 4

Module 2

Module 3

0

1
Reg R1

D

RST (asyn)
(BTN3)

LOAD_R1

R1

M2

4

4

MUX 1

Module 1

0

1

M1

CLR
C

CE

Reg R0
D

RST

R0_R1_DI R0_R1

LOAD_R0

R0

Module 5

CLR

C

CE

Reg
output port

D

Q

Q

Q

RST

LOAD_OP

DOUT(3:0)
(LD3...LD0)

DI(3:0)

FIGURE E15.1 Modified data path unit, modified monitor system, modified instruction memory unit, and part of the control
unit for VBC1

www.itpub.net

 Experiment 15: Designing and Testing VBC1 (Instruction Decoder) 615

Recommended Pre-Lab:

 1. Create a new project named INST_DECODER, and write complete VHDL code for the
instruction decoder using a process with a case statement. Make the input and output signal
names the same as those used by module 14 in Figure E15.2. Run a simulation to verify
your design works. If your design does not work, you must fi nd the error or errors and fi x
them. [Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench Program)
for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project, and add modules 1 through 5 in Experiment 12 and modules 6 through
13 in Experiment 14 to the new project. Make the modifications indicated by the arrows in
the annotated schematic in Figure E15.1.

 3. Add module 14 (instruction decoder) using Procedure ID as presented in Chapter 15, Sec-
tion 15.4. For this experiment, only include the control signals in the instruction decoder
that are required for the instructions IN, OUT, and MOV.

 4. Add module 15 (speed) using conditional signal assignments. This module allows VBC1 to
load instructions or to single step through a set of instructions.

 5. Add module 16 (select R0 or R1) using a conditional signal assignment and a Boolean equa-
tion. This module allows VBC1 to display either R0 or R1.

 6. Add module 17 (data input) using a Boolean equation. This module allows VBC1 to input
four bits of data via four slide switches.

 7. Add module 18 (blank display) using a conditional signal assignment. This module allows
VBC1 to blank the display when reset is asserted.

Module 14
(New module)

Instruction
decoder

IR(7:0)

A_OUT(3:0)

DI(3:0) 1111

R0(3:0)
DSP_R0_R1(3:0)

SW(3:0)
(SW3...SW0)

A(3:0)
(AN3...AN0)

RST (asyn)
(BTN3)

SEL_R0_R1

R1(3:0)

SW(4)
(SW4)

M1

M2

LOAD_R0

LOAD_R1

LOAD_OP

ONE_PULSE

LOAD_MEM
(BTN2)

RATE

CLK

MEM_CLK

RST
(asyn)

0
D Q

C
CLR

1

8

4

4 4
4

4 4
4

4
0

1

0

1

SLOW_CLK1

Module 15
(New module,

speed)

Module 16
(New module,

select R0 or R1) Module 17
(New module,

data input)

Module 18
(New module,
blank display)

FIGURE E15.2
Instruction decoder,
speed, select R0 or
R1, data input, and
blank display circuits
for VBC1

616 Appendix A Laboratory Experiments

 8. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 9. Use the EASY1 editor to enter the instructions shown in Program E15.1. Use the EASY1
simulator to single step through the program so that you understand what it does.

;VBC1 Exp 12, 13, and 15 Program 1
;Testing IN, OUT, and MOV instructions
IN R0 ; input 9 via 4 slide switches
OUT R0 ; output contents of R0 to LEDs
IN R0 ; input 15 via 4 slide switches
MOV R1,R0 ; move contents of R0 to R1
OUT R1 ; output contents of R1 to LEDs
IN R1 ; input 6 via 4 slide switches
OUT R1 ; output contents of R1 to LEDs
OUT R0 ; output contents of R0 to LEDs

PROGRAM E15.1

 10. For information on how to manually load a program into memory, see Appendix E. Manu-
ally load the machine code for the instructions in Program E15.1 into the memory of VBC1,
and execute the instruction sequence by single stepping in the same manner that you did
with EASY1. If VBC1 does not provide the same results as EASY1 for each instruction,
then you either made a mistake in entering the machine code or you may have design errors
in your VHDL code that you must fi nd and fi x.

 11. For information on how to initialize memory at startup, see Appendix E. This process loads
the memory of VBC1 at startup, so you do not have to manually load it. Single step through
the memory of VBC1 to verify that the machine code is properly loaded for Program E15.1
in the addresses 0 through 15 just as they are in the memory of EASY1.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of Program E15.1 with your VBC1 design.

 2. Write and include a conditional signal assignment for the control signal M2 in the instruc-
tion decoder truth tables just for the instructions IN, OUT, and MOV. This is an alternate
way of generating the control signal M2.

 3. Include the complete VHDL code for your VBC1 design.
 4. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).
 5. Explain the purpose of the D flip-flop in module 15.
 6. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 7. Your lab instructor may add additional requirements for this experiment.

www.itpub.net

 Experiment 16: Designing and Testing VBC1 (Arithmetic Logic Unit) 617

EXPERIMENT 16: DESIGNING AND TESTING VBC1
(ARITHMETIC LOGIC UNIT)

In this experiment, you will practice working with modules to form the complete data path for
VBC1.
 This is the fifth in a series of projects to design and test VBC1. Experiment 16 consists of
the annotated schematics shown in Figures E16.1 and E16.2.
 Figure E16.1 shows module modifications made to improve VBC1 by controlling the moni-
tor system—that is, the multiplexed display system. Switch input circuits are not shown in the
circuit diagram to simplify the drawing. Labels for the switches are included in parentheses—
for example, SW5, BTN2, BTN3, and SW6. These labels are used to obtain the pin assignments
for the Digilent board you elect to use—for example, a BASYS 2 board or a NEXYS 2 board.
 Module 11 (redirected 2-bit counter) is modified to only display the PC and the IR when
you load the machine code, otherwise you can elect to turn Disp 0 on or off via SW5. Module 12
(2-to-4 decoder) is modified so that you can elect to turn the monitor system on or off via SW6,
when single stepping through a program or when running a program in the next experiment at
an observable clock speed.

 The circuit diagram in Figure E16.2 shows the complete data path circuit for VBC1. This
circuit contains a simple ALU (module 19) that performs the LOADI, ADDI, ADD, and SR0
instructions. Modules 20, 21, and 22 provide the necessary data bus steering for the data path
circuit.
 Listing E16.1 shows a VHDL template for the ALU instructions LOADI and ADDI.
 When the circuits in Figures E16.1 and E16.2 are completed and the VHDL code for the addi-
tional instructions are included in the instruction register, you can load the instruction memory and
execute the IN, OUT, MOV, LOADI, ADDI, ADD, and SR0 instructions and single step through a
program that only uses these instructions. You can also shut off the monitor system via SW6, while

w
00

x
01

y
10

z
11

Module 11
(Modified)

CLK C

COUNT2(15)

Frequency
divider

Redirected
2-bit counter

State diagram of redirected 2-bit counter

LOAD_MEM∙EN_R0_R1 LOAD_MEM + EN_R0_R1
RST (asyn)

(BTN3)

RST (asyn)

SW(5)
(SW5)

LOAD_MEM
(BTN2)

EN_R0_R1

CLR

Legend

Q(1) Q(0)
Name

EIs

2

SLOW_CLK2

COUNT_2B(1:0)

Module 12
(Modified)

2-to-4
decoder

CODE
COUNT_2B

EN_DEC

DSP_ON
SW(6)
(SW6)

LOAD_MEM
(BTN2)

A_OUT(0)

A_OUT(1)

A_OUT(2)

A_OUT(3)

EN

0

1

0

11

2

2

3

FIGURE E16.1 Module
modifications to improve
VBC1 by controlling the
monitor system

618 Appendix A Laboratory Experiments

MUX 1

Note: Change
signal name from
R0_R1 to R_ALU. Note: Change

signal name
from R0_R1_DI
To R_ALU_DI.

M3

M1
M2

M4

M5

CE

CLR

RST

LOAD_R0

R0

R0_R1

Reg R0

C

D
4

CE

CLR

RST (asyn)
(BTN3)

LOAD_R1

R1

Reg R1

C

D
4

CE

CLR

RST

LOAD_OP

Reg
output port

C

D

Q

Q

Q
4

4

4

4

MUX 3

Module 20
(New module)

Module 19
(New module)

Module 22
(New module)

Module 21
(New module)

Module 1

Module 2

Module 3

Module 4

Module 5

0

1

MUX 2

0

1

MUX 4
0

1

MUX 5

ALU

ALU_OUT

R_IR

IR(3:0)

DI

R_ALU

R_ALU_DI

MEM_CLK

MEM_CLK

DOUT(3:0)
(LD3...LD0)

R0_1

4

4

4

4

4

4

0

LOADI (001)

ADDI (011)

ADD (010)

SR0 (100)

1

0

1

IR(7:5)

3

FIGURE E16.2 Complete data path circuit for VBC1

--Module 19 code, process for a simple ALU
process (ir(7 downto 5), r0_r1, r_ir)
begin
 --put default ALU output value here, i.e., alu_out ,5 “0000”
 --default to prevent creating latches
 case ir(7 downto 5) is -- the OPCODE for each ALU instruction is

-- in bits (7:5) in the IR

 --the LOADI instructions have the OPCODE 001
 when “001” 5. -- determine the ALU output equation for the

-- LOADI instruction and enter it here

 --the ADDI instructions have the OPCODE 011
 when “011” 5. -- determine the ALU output equation for the

-- ADDI instruction and enter it here

 when others 5. null;
 end case;
end process;

LISTING E16.1 A
VHDL template for
the ALU instructions
LOADI and ADDI

www.itpub.net

 Experiment 16: Designing and Testing VBC1 (Arithmetic Logic Unit) 619

single stepping through a program. Only the PC and the IR are displayed by the monitor system
when you load the machine code, otherwise you can elect to turn Disp 0 on or off via SW5.

Recommended Pre-Lab:

 1. Create a new project named Redirected_Counter1, and write complete VHDL code for the
redirected 2-bit counter, using the two process PS/NS method. Make the input and output
signal names the same as those used by module 11(modifi ed) in Figure E16.1 except for
SLOW_CLK2. Change SLOW_CLK2 to CLK because this will be a stand-alone design—
that is, the frequency divider that provides the signal for SLOW_CLK2 and the buffer for
the switch input SW(5) will not be used. Run a simulation to verify your design works.
If your design does not work, you must fi nd the error or errors and fi x them. [Note: See
Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for help.]

 2. Create a new project named Redirected_Counter2, and write complete VHDL code for
the redirected 2-bit counter, using the AE method (algorithmic equation method). For the
AE Method, write the D excitation equations by inspection using the state diagram via the
Set OR Hold 1 equation, then draw the circuit and obtain the VHDL code from the circuit
(see Chapter 9, Section 9.9, for a review). Make the input and output signal names the same
as those used by module 11(modified) in Figure E16.1 except for SLOW_CLK2. Change
SLOW_CLK2 to CLK since this will be a stand-alone design—that is, the frequency divider
that provides the signal for SLOW_CLK2 and the buffer for the switch input SW(5) will not
be used. Run a simulation to verify your design works. If your design does not work, you
must find the error or errors and fix them. [Note: See Appendix B (Obtaining Simulations
via the VHDL Test Bench Program) for help.]

 3. The simulation waveform for your design for redirected counter 1 and your simulation wave-
form for redirected counter 2 should be identical when supplied by the same stimulus inputs.
You should also observe that your design using the two-process PS/NS method requires
roughly three times more lines of VHDL code than your design using the AE method.

 4. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
Documentation Style M introduced in Chapter 12, Section 12.5.1, Listing 12.4 for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add Experiment 15 to the new project. Modify module 11 (redi-
rected 2-bit counter) in your VBC1 design. Use the two-process PS/NS method or use the
AE method to obtain the counter design for module 11 (redirected 2-bit counter).

 3. Modify module 12 (2-to-4 decoder) in your VBC1 design by adding an enable input (EN)
that enables the decoder’s output when EN 5 1, but disables the decoder’s output when EN
5 0. When BTN2 is pressed to load memory, the decoder is enabled via a 2-to-1 MUX.
When you are not loading memory, the decoder’s output is controlled by slide switch SW6.

 4. Add module 19 (ALU) to your current design of VBC1. Use the template in Listing E16.1
for the ALU for LOADI and ADDI. Be sure to use the R_IR input to the ALU as the input
for the immediate data for the LOADI instruction. This is a requirement imposed by the
circuit design since IR(3:0) is supplied to the ALU via module 22.

 5. Add module 20 (MUX 3), module 21 (MUX 4), and module 22 (MUX 5) to your design.
Remember to change the signal name at the output of module 20 (MUX 3) from R0_R1 to
R_ALU. Also change the signal name at the output of module 1 (MUX 1) from R0_R1_DI
to R_ALU_DI.

620 Appendix A Laboratory Experiments

 6. Use the instruction decoder truth tables for the LOADI and ADDI instructions to obtain the
equations for the required control signals M1, M2, M3, M4, M5, LOAD_R0, LOAD_R1 and
LOAD_OP, and add these to module 14 (instruction decoder). Include default values for all
control signals.

 7. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 8. To test your design for the LOADI and ADDI instructions, use EASY1 to obtain the
machine code for the assembly language program in Program E16.1.

;VBC1 Exp 16 Program 1
;Testing LOADI and ADDI instructions
LOADI R0,3
OUT R0
ADDI R0,9
MOV R1,R0
OUT R1

PROGRAM E16.1

 Simulate the program so that you understand what it does. For information on how to
manually load a program into memory, see Appendix E. Manually load the machine code
into the memory of VBC1, and execute the instruction sequence by single stepping in the
same manner that you do with EASY1. If VBC1 does not execute the instructions and pro-
vide the same results as EASY1, then you either made a mistake in entering the machine
code or you may have design errors in your VHDL code that you must fi nd and fi x before
continuing.

 9. Modify module 19 (ALU) to support the ADD and the SR0 instructions. Modify module 14
(instruction decoder) to support the ADD and SR0 instructions.

 10. Do the following: Generate a programming fi le, then check to see if your VHDL code needs
to be corrected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File. Download the programming fi le.

 11. To verify that your design works for all of the instructions except JNZ, use EASY1 to obtain
the machine code for the bouncing lights program in Program E16.2.

;VBC1 Exp 16 Program 2
;Bouncing lights program, 2 left then 2 right
loadi r1,1
addi r1,3
mov r0,r1
out r0
add r0,r0
out r0
sr0 r0,r0
sr0 r0,r0
out r0
in r0 ; input 1 via 4 slide switches
out r0

PROGRAM E16.2

www.itpub.net

 Experiment 17: Designing and Testing VBC1 (Final Hardware Design for VBC1) 621

 Simulate the program so that you understand what it does. For information on how to ini-
tialize memory at startup, see Appendix E. Load the machine code for Program E16.2 into the
memory of VBC1 by initializing memory. Execute the instruction sequence by single stepping
in the same manner that you do with EASY1. If VBC1 does not execute the instructions and
provide the same results as EASY1, then you either made a mistake in loading the machine code
or you may have design errors in your VHDL code that you must fi nd and fi x.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of the bouncing lights program in Program E16.2 with your
VBC1 design.

 2. Include the complete VHDL code for your VBC1 design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).
 4. For task 11, include an assembled printout of the assembly language program with com-

ments in Program E16.2 on the screen or GUI (graphical user interface) for EASY1. Make
sure that the total GUI for EASY1 is available on your printout.

 5. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 6. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 17: DESIGNING AND TESTING VBC1 (FINAL
HARDWARE DESIGN FOR VBC1)

In this experiment, you will practice working with modules to form the complete circuit for VBC1.
 This is the last in a series of projects to design and test VBC1. Experiment 17 consists of the
annotated schematics shown in Figures E17.1 and E17.2.
 In Figures E17.1 and E17.2, the switch input circuits are not shown in the circuit diagrams to
simplify the drawings. Labels for the switches are included in parentheses—for example, SW7,
BTN1, BTN2, and BTN3. These labels are used to obtain the pin assignments for the Digilent
board you elect to use—for example, a BASYS 2 board or a NEXYS 2 board.
 In the circuit in Figure E17.1, module 23 [running program counter (RPC)] is necessary for
executing the JNZ instruction, as well as all the other instructions for VBC1. All the instructions
for VBC1 are fetched and executed in just one clock cycle of the frequency of SPEED. Module
24 (proper address) selects the proper address for loading instructions via PC_ADDR or execut-
ing instructions via PROG_A (short for program address).
 In the circuit in Figure E17.2, module 25 (run frequency) provides a frequency of SLOW_
CLK3 to execute instructions at a speed that can be observed on the output LEDs. Module 15
(speed) allows VBC1 to either single step through a set of instructions (set SW7 5 1) or run a
set of instructions (set SW7 5 0) at the frequency of SLOW_CLK3. The frequency of SPEED is
the same as the frequency of SLOW_CLK3.
 When VBC1 is running a set of instructions at the speed of SLOW_CLK3, it is easy to
determine the execution time of each instruction or set of instructions. Knowing the frequency
of CLK and SLOW_CLK3, you can calculate how long it takes each instruction to execute and
therefore how long it takes a series of instructions to execute.

622 Appendix A Laboratory Experiments

 Execution time for one instruction 5 Period for SLOW_CLK3 5 TSLOW_CLK3

 Execution time for a series of instructions 5 TSLOW_CLK3 3 Number of instructions in the
series

 Note: If there is a loop in the series of instructions, the instructions inside the loop are
executed multiple times.
 To execute the JNZ instruction, control bit M6 must be added to the instruction decoder.
This can be done by adding one more default option and one more condition to the case state-
ment for the instruction decoder.
 When the circuits in Figures E17.1 and E17.2 are added to your design of VBC1 and the
VHDL code for the JNZ instruction is included in the instruction decoder, you can load the
instruction memory and execute all the instructions for VBC1. You can single step through a
program or run a program at the frequency of SLOW_CLK3. To single step through a program,

Module 23
(New module,

running program counter (RPC))

Module 24
(New module,
proper address)

To input ADDR of
Module 6 (instruction
memory) and input 3
of Module 10 (4-to-1
MUX array)

MUX 6 Adder

A
0

1

0

1

4

444
4

4

4

C

D QSUM

INC

M6
from Module 14

(instruction decoder)

CLR

CLR

CE

INC
SPEED PROG_A

PC_ADDR

MEM_ADDR

LOAD_MEM
(BTN2)

SEL_ADDR
(BTN1)

RST (asyn)
(BTN3)

SEL_A

IR(3:0)

SUM

RST

CLK
SLOW_CLK1

ONE_PULSE

Module 7

Module 8

Debounced
one pulse

circuit

Loading program
counter

Note: Change signal name
PC_ADDR to MEM_ADDR
in these two places.

FIGURE E17.1 Modules added to provide the proper address for loading and executing instructions for VBC1

To input C of Module 23 (RPC)
and to input C of Modules 2, 3, and 5
Note: At input C of Modules 2, 3,
and 5, change signal name from
MEM_CLK to SPEED.

To input C of Module 6
(instruction memory)
Note: At input C of Module 6,
change signal name from
MEM_CLK to CLK.

CLR

CLK

CLK
(50 MHz)

RATE SPEED
SLOW_CLK3

ONE_PULSE
(from Module 7)

SINGLE_STEP

C

D Q
0COUNT3(21)

Frequency
divider

Module 25
(New module,
run frequency)

Module 15
(Modified, speed)

1

RST
(asyn)

SW(7)
(SW7)

FIGURE E17.2 The run frequency and state machine modules for VBC1

www.itpub.net

 Experiment 17: Designing and Testing VBC1 (Final Hardware Design for VBC1) 623

set slide switch SW7 5 1, then press and release push button BTN1 to fetch and execute each
instruction. To run a program at the frequency of SLOW_CLK3 (or frequency of SPEED), set
slide switch SW7 to 0.

Recommended Pre-Lab:

 1. Create a new project named Speed_Circuit_D2 shown in Figure E17.3, and write complete
VHDL code for the speed circuit with a divide-by-2 circuit using a Boolean equation for the
MUX, a Boolean equation for the buffer, a conditional signal assignment for the D fl ip-fl op,
and a conditional signal assignment for the divide-by-2 circuit. Make the input and output
signal names the same as shown in Figure E17.3 except for SW(7). Change SW(7) to SW7.
Figure E17.3 is the same as module 15 except for the divide-by-2 circuit that is added to it.
Run a simulation to verify your design works. If your design does not work, you must fi nd
the error or errors and fi x them. [Note: See Appendix B (Obtaining Simulations via the
VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add Experiment 16 to the new project. Add module 23 (running pro-
grammable counter) using conditional signal assignments and Boolean equations. Include
M6 as an internal output signal in module 14 (instruction decoder) and add m6 ,5 ‘0’ to
the list of default signals. This is necessary so that the PC is normally incremented to the
next address except when a JNZ instruction occurs, which will be added later.

 3. Add module 24 (proper address) using a conditional signal assignment. Be sure to route or
supply the output signal to the inputs as shown in the schematic.

 4. Add module 25 (run frequency) using a conditional signal assignment and a Boolean
equation.

 5. Modify module 15 (speed)—that is, use a Boolean equation for 2-to-1 MUX and a Boolean
equation for the buffer.

 6. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.

CLR
CLK

CLK
RATE

SPEED

SLOW_CLK3

ONE_PULSE

SINGLE_STEP

C

D
C

D
Q

Q

Divide-by-2 circuit Speed circuit

Speed circuit with a
divide-by-2 circuit

0

1

RST
(asyn)

SW(7)
(SW7)

FIGURE E17.3

624 Appendix A Laboratory Experiments

 7. To verify that your design works for all the instructions except JNZ, use EASY1 to obtain
the machine code for the bouncing lights program in Program E17.1. For information on
how to initialize memory at startup, see Appendix E. Load the machine code for Program
E17.1 by initializing memory. Set SW7 5 1 to single step through the program by pressing
BNT1 to execute each instruction, and then set SW7 5 0 to run the program at the speed of
SLOW_CLK3.

 Do not continue until you get your design working for single stepping and running at the
speed of SLOW_CLK3. If VBC1 does not execute the instructions and provide the same
results as EASY1, then you either made a mistake in loading the machine code or you may
have design errors in your VHDL code that you must find and fix.

 8. Add the JNZ instruction to Module 14 (instruction decoder).
 9. Complete the design cycle for your circuit by doing the following:

 a. Generate a programming file, then check to see if your VHDL code needs to be cor-
rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 b. Download the programming file into the FPGA on a BASYS 2 board or on a NEXYS
2 board.

 10. Add the assembly language instruction JNZ R0,0 to the end of the bouncing lights pro-
gram. To check the jump instruction, manually load the jump instruction to the end of
Program E17.1 (see Appendix E, for manually loading memory, if you need help). Set SW7
5 0 to single step the program to verify that it works correctly when it reaches and exe-
cutes the jump instruction. After you verify that Program E17.1 works correctly, set SW7
5 0 to run your VBC1 design at the speed of SLOW_CLK3, and observe the bouncing
lights pattern.

 11. To fully exercise the jump instruction for your VBC1 design, use EASY1 to obtain the
machine code for the robot eye program in Program E17.2. Load the machine code for
Program E17.2 by initializing memory (see Appendix E, for manually initializing memory,
if you need help). Remove or comment out Program E17.1 in your VHDL code before regen-
erating the VHDL programming file. Set SW7 5 1 to single step through the program by
pressing BNT1 to execute each instruction, and then set SW7 5 0 to run the program at the
speed of SLOW_CLK3.

;VBC1 Exp 17 Program 1
;bouncing lights program, 2 left then 2 right
loadi r1,1
addi r1,3
mov r0,r1
out r0
add r0,r0
out r0
sr0 r0,r0
sr0 r0,r0
out r0
in r0 ; input 1 via 4 slide switches
out r0

PROGRAM E17.1
Bouncing lights
program

www.itpub.net

 Experiment 17: Designing and Testing VBC1 (Final Hardware Design for VBC1) 625

 Your VBC1 design should now work for single stepping and running Program E17.2 at the
speed of SLOW_CLK3. If VBC1 does not execute the instructions and provide the same results
as EASY1, then you either made a mistake in loading the machine code or you may have design
errors in your VHDL code that you must find and fix.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of the robot eye program in Program E17.2 with your VBC1
design, both single stepping and running at the speed of SLOW_CLK3.

 2. Include your calculation for the time it takes to execute one VBC1 instruction at the clock
frequency of the signal SLOW_CLK3. Also include your calculation for how long it takes
to execute all the instructions in the program in Program E17.2 down to, but not including,
the instruction loadi r1,14 at the clock frequency of the signal SLOW_CLK3.

 3. Include the complete VHDL code for your VBC1 design.
 4. Include a printout of the Edit Constraints (Text) for your VBC1 design, which is generated

by running Edit Constraints (Text).
 5. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 6. Your lab instructor may add additional requirements for this experiment.

;VBC1 Exp 17 Program 2
;robot eye program with loops that execute
;the JNZ instruction several times!
x: loadi r1,13 ;load immediate 16-3 (or 13) into r1
 loadi r0,1 ;load immediate 1 into r0
 out r0 ;output r0 to leds
y: add r0,r0 ;add r0 to r0 (shift left)
 mov r0,r0 ;time delay
 mov r0,r0 ;time delay
 out r0 ;output r0 to leds
 addi r1,1 ;add immediate 1 to r1
 jnz r1,y ;jump to y if r1 is not zero
 loadi r1,14 ;load immediate 16-2 (or 14) into r1
z: sr0 r0,r0 ;shift right r0 (w0 fill) into r0
 out r0 ;output r0 to leds
 addi r1,1 ;add immediate 1 to r1
 mov r0,r0 ;time delay
 jnz r1,z ;jump to z if r1 is not zero
 jnz r0,x ;jump to x if r0 is not zero

PROGRAM E17.2
Robot eye program

626 Appendix A Laboratory Experiments

EXPERIMENT 17L: DESIGNING A LOADER
FOR INSTRUCTION MEMORY FOR VBC1

by Scott M. Marshall and Richard S. Sandige

17L.1 Background
In this experiment, you will learn how to design a loader for instruction memory for VBC1 to
create VBC1-L. When completing this experiment, focus on applying existing skills to new
situations and learning good design techniques for interfacing an FPGA with other circuit
components.
 This experiment provides an extension to VBC1 (which was completed in Experiment 17)
and is not required for VBC1 to function correctly.
 The memory loader works by communicating with a USB communication circuit placed
on a BASYS 2 board or on a NEXYS 2 board by Digilent Inc. The VBC1-L Memory Loader
software program uses a library provided by Digilent Inc. to communicate with the FPGA via
the USB circuit.

17L.2 Module Overview
The heart of the additional hardware designed for communicating with the USB circuit is a
CFSM (complex finite state machine). CFSMs were previously discussed in Chapter 9. Four
synchronizer circuits (sync circuits), each of which consists of two cascaded D flip-flops (not
a single D flip-flop), serve as USB I/O synchronizers for the CFSM and form a new module,
module L1. The CFSM, and a single loadable register, explained in Chapter 12, Section 12.4,
form a new module, module L2. In addition, an OR gate is added as module L3. Figure E17L.1
shows the block diagrams for modules L1, L2, and L3.
 Each sync circuit in module L1 is a synchronizer circuit that consists of two D flip-flops
connected as shown in the Figure E17L.1A.
 Things to note regarding Figures E17L.1 and E17L.1A:

 • Figure E17L.1 shows block diagrams of modules L1, L2, and L3, added to VBC1.
 • The external input signals for module L1 are CLK, A_USB_ASTB, A_USB_DSTB, and

A_USB_WRITE, while the external output signal is USB_WAIT_S. Note: The notation
A_ is used for asynchronous external input signals coming into the FPGA—for example,
A_USB_ASTB—and the notation _S is used for synchronous external output signals leav-
ing the FPGA—for example, USB_WAIT_S. The remaining signals are internal signals.

 • The external input signals for module L2 are CLK and RST, while signal USB_DATA(7:0) is
of type inout, because it is used for bidirectional communication with the USB circuit. The
remaining signals are internal signals.

 • Module L3 has the external input signal LOAD_MEM_IN and internal signals
MEMLOAD_WE and LOAD_MEM.

 • Signals for communication with the USB chip have USB as a part of the name, while signals
pertinent to loading the instruction memory have names that are prefixed with MEMLOAD.

 • Adjustments to the VHDL entity and internal signal declarations to account for applicable
new or modified input, output, and internal signals must be made. The external asynchro-
nous input signals (names with A_), synchronous output signals (names ending with _S),
and bidirectional USB_DATA bus are new I/O signals for the FPGA, while the change of
LOAD_MEM to LOAD_MEM_IN for BTN2 is the only change to the existing I/O signals.

 • Reset inputs to the the sync circuits are not required.

www.itpub.net

 Experiment 17L: Designing a Loader for Instruction Memory for VBC1 627

17L.3 Memory Loader and CFSM Detail
Figure E17L.2 shows a detailed block diagram of the subcomponents of module L2.
 Things to note regarding Figure E17L.2:

 • Figure E17L.2 represents a block diagram of the subcomponents of module L2, including
the loadable register.

 • The loadable register subcomponent stores the current memory address the memory loader
CFSM is acting upon, which is provided on the MEMLOAD_ADDR output signal.

Loadable memory
controller

Sync
circuit

CCLK
(50 MHz)

A_USB_ASTB USB_ASTB
Sync

circuit

CCLK
(50 MHz)

A_USB_DSTB USB_DSTB

Sync
circuit

CCLK
(50 MHz)

CLK
(50 MHz)

A_USB_WRITE

USB_ASTB

USB_DSTB

USB_WRITE

USB_ASTB USB_DATA

USB_WAIT

MEMLOAD_ADDR

MEMLOAD_INST

MEMLOAD_WE

USB_DATA

USB_WAIT

MEMLOAD_ADDR

MEMLOAD_INST

MEMLOAD_WE

MEMLOAD_WE
LOAD_MEM

To Modules 11,
12, 13, and 24

LOAD_MEM_IN
(BTN2)USB_DSTB

USB_WRITE

USB_WRITE
Sync

circuit

CCLK
(50 MHz)

USB_WAIT USB_WAIT_S

RST
(asyn)

CLR

C

Module L1
(New module, USB I/O synchronization)

Module L2
(New module)

Module L3
(New module, load
memory OR gate)

8

4

8

FIGURE E17L.1 Overview block diagrams for new modules L1, L2, and L3

Sync
circuit

C

≡
CCLK

D Q

CCLK

D Q

FIGURE E17L.1A Synchronizer circuit

628 Appendix A Laboratory Experiments

 • The signal LOAD_NEW_ADDR joins an output of the CFSM to the CE (clock-enable)
input of the loadable register.

 • The MEMLOAD_ADDR output signal is 4 bits wide and provides the address of the
instruction to load, while the MEMLOAD_INST output signal is 8 bits wide and provides
the instruction to load, and the MEMLOAD_WE output signal provides a write-enable sig-
nal for the instruction memory.

 The CFSM in module L2 should be designed using the two-process PS/NS method. A state
diagram detailing the proper function of the CFSM is provided in Figure E17L.3.
 Things to note regarding Figure E17L.3:

 • Figure E17L.3 is a state diagram for the CFSM in module L2, and uses the show all values
convention, rather than the show where true convention, both explained in Chapter 9, Sec-
tion 9.7.

 • Where the values 0, 00000000, and ZZZZZZZZ are specified as the Moore outputs in the
state diagram, use these as the default values that precede the case statement. Values or
variables other than these should be specified for states within the case statement.

 • While the USB_DATA signal is an output, it also appears as an input in the WRITE_INST
state because it is a bidirectional signal. Data can both be written to and read from the bidi-
rectional USB_DATA bus. Data can be read when USB_DATA is set to ZZZZZZZZ.

 • The signals USB_ASTB and USB_DSTB are active low signals and are labeled accordingly
in the state diagram. These two signals are strobe signals driven by clock-synchronization
D flip-flops in Module L1, which are driven by the USB circuit. These strobe signals are
pulsed to trigger the start of either address or instruction communication with the USB
circuit.

 • The signal USB_WRITE is active low, such that when the signal is low, data are written to
the FPGA.

 • The READ states are reached when the USB circuit (and thus the computer) is reading the
current address or instruction from the CFSM and instruction memory, while the WRITE
states are reached when the USB circuit (and thus the computer) is writing a new address or
instruction to the CFSM and instruction memory.

 • Situations where no state change occurs (such as when READY points to itself) should not
be described using specific conditions in if or elsif clauses, but rather, should be described
by else clauses. The else clauses act as catch-all states and will prevent the generation of any
latches.

 • The value of 00000000 for the signal USB_DATA in the READ_ INST state is used
because reading the instruction memory on the computer is not supported in VBC1-L.

CFSM

CLK
(50 MHz)

USB_ASTB

USB_DSTB

USB_WRITE

USB_ASTB USB_DATA
Loadable
register

USB_WAIT

LOAD_NEW_ADDR
LOAD_NEW_ADDR

MEMLOAD_INST

MEMLOAD_WE

USB_DATA

USB_DATA(3:0)

USB_WAIT

MEMLOAD_INST (to Module 13)

MEMLOAD_WE (to Modules 13 and L3)

USB_DSTB

USB_WRITE

C

D Q

CE

CLK
(50 MHz)

MEMLOAD_ADDR
(to Module 24)

RST
(asyn)

CLR

C

Module L2 Subcomponents

8

4 4

8

FIGURE E17L.2
Detailed block dia-
gram for the subcom-
ponents of module
L2

www.itpub.net

 Experiment 17L: Designing a Loader for Instruction Memory for VBC1 629

 • For more details on Digilent Inc.’s communication protocol, see the document “Digilent
Parallel Interface Model Reference Manual” at http://www.digilentinc.com/Data/Products/
ADEPT/DpimRef%20programmers%20manual.pdf.

 It is important to use a default output value of ZZZZZZZZ (make Zs uppercase, not lower-
case) for the USB_DATA signal to prevent bus contention or driver fi ght, as previously discussed
in Chapter 7, Section 7.3. Setting the USB_DATA signal to ZZZZZZZZ places the FPGA pins
in a high impedance state, which can be thought of as being disconnected. This allows the USB
circuit to safely send data to the FPGA without hardware damage, the FPGA to read the data,
and the USB_DATA signal to work as a bidirectional bus. For more information on data bus
sharing and the high impedance state, see Chapter 7, Sections 7.2 and 7.3.

READY

0
0

0

00000000
Z Z Z Z Z Z Z Z

0
0

1

00000000
Z Z Z Z Z Z Z Z

0
0

0

00000000
0000 & MEMLOAD_ADDR

1
0

0

00000000
Z Z Z Z Z Z Z Z

0
0

0

00000000
00000000

0
1

0

USB_DATA
Z Z Z Z Z Z Z Z

Name

LOAD_NEW_ADDR

MEMLOAD_WE

MEMLOAD_INST

USB_DATA

USB_WAIT

Legend

EIs

USB_ASTB⋅USB_DSTB +

⋅USB_ASTB

USB_ASTB⋅
USB_DSTB

RST
(asyn)

READ_ADDR

READ_INST

DONE

WRITE_INST

WRITE_ADDR

USB_ASTB⋅USB_DSTB

USB_WRITE ⋅ USB_DSTB

USB_ASTB + USB_DSTB

⋅USB_DSTB

USB_WRITE ⋅ USB_ASTB

USB_WRITE⋅

USB_ASTB⋅

USB_DSTB

USB_WRITE⋅

USB_ASTB

USB_DSTB⋅

FIGURE E17L.3 State diagram for module L2 CFSM

630 Appendix A Laboratory Experiments

17L.4 Good Design Practices: Interfacing with Other Components
It is important to realize that a goal of this experiment is not only to review previously learned
VHDL design concepts and to create an easy and fast way to load VBC1 instruction memory,
but to also learn new techniques and best practices when interfacing a FPGA with other
components.
 Push-button and switch events are asynchronous, because a user can trigger a push button
or switch independent of the clock signal CLK. The asynchronous behavior of other compo-
nents, such as the USB circuit, may not be as apparent, however; they too are asynchronous
because a CLK signal is not transferred between them and the FPGA.
 Asynchronous signals can cause problems within the FPGA if their levels change when the
CLK signal reaches the triggering (rising and/or falling) edge. When this occurs, the FPGA may
not use the intended value of the asynchronous signal and can enter a metastable state.
 To prevent problems, it is good design practice to synchronize asynchronous signals, such
as inputs from other circuit components, as well as outputs of combinational logic, which can
become asynchronous even if originally generated by synchronous logic due to propagation
delays. It is considered a good design practice to synchronize a signal by feeding it through two
cascaded D fl ip-fl op as shown in Chapter 9, Section 9.10.
 In the case of VBC1-L, the asynchronous FPGA input signals A_USB_ASTB, A_USB_
DSTB, and A_USB_WRITE should all be synchronized, resulting in the signals USB_ASTB,
USB_DSTB, and USB_WRITE. In addition, the asynchronous combinational logic output
signal USB_WAIT from module L2 should be synchronized to form the FPGA output signal
USB_WAIT_S. Module L1 serves this purpose.
 Note that best design practices would also synchronize the USB_DATA signal. However,
synchronizing USB_DATA, which is a bidirectional tri-stated bus, is an advanced technique that
will not be covered here.

17L.5 Signal Routing Modifications
To allow the instruction memory to be loaded using either the push buttons and switches or the
memory loader (module L2), the LOAD_MEM signal, which is high when memory is being
loaded, must be changed to include the MEMLOAD_WE signal from module L2. To do so, the
LOAD_MEM signal is renamed to LOAD_MEM_IN in both the entity and the .ucf (implemen-
tation constraints) file and must be connected to BTN2. Then, a new internal signal by the name
of LOAD_MEM is created and is assigned as the OR combination of LOAD_MEM_IN and
MEMLOAD_WE, forming the OR gate in module L3. All existing modules should continue to
use the LOAD_MEM signal, not LOAD_MEM_IN. Now, when either BTN2 is pressed or when
MEMLOAD_WE is high, memory will be loaded.
 In order to accommodate the additional address, instruction, and write-enable signals from
the memory loader, modules 13 (load memory) and 24 (proper address) must be modified. A
single 8-bit-wide 2-to-1 MUX array along with a single 2-to-1 MUX must be added to mod-
ule 13, along with the internal signals LOAD_INST(7:0) and LOAD_WE. A single 4-bit-wide
2-to-1 MUX array, along with the internal signal LOAD_ADDR(3:0), must be added to module
24. The modified versions of modules 13 and 24 are detailed in Figures E17L.4 and E17L.5,
respectively.
 Things to note regarding Figure E17L.4:

 • The LOAD_INST(7:0) and LOAD_WE internal signals are added, along with an 8-bit 2-to-1
MUX array and a single 2-to-1 MUX.

 • The signal LOAD_MEM_IN chooses between the memory loader and the manual push
buttons and switches for loading memory. When LOAD_MEM_IN is high, LOAD_MEM is
also high (from module L3), and memory is loaded manually.

 • The signal LOAD_MEM indicates when memory is being loaded.

www.itpub.net

 Experiment 17L: Designing a Loader for Instruction Memory for VBC1 631

 Things to note regarding Figure E17L.5:

 • The LOAD_ADDR(3:0) internal signal is added along with a 4-bit 2-to-1 MUX array.
 • The signals LOAD_MEM_IN and LOAD_MEM act similarly to the modified version of

module 13, detailed in Figure E17L.4.

 Upon completion of the additions of modules L1, L2, and L3 and the modifications of modules
13 and 24, the design of VBC1-L is complete. The memory loader (module L2) can now control the
instruction memory just as if memory is being loaded manually. Program E17.2 in Experiment 17
can be used to verify completion of VBC1-L. For information on loading programs with VBC1-L
and on how to use the VBC1-L (VBC1-EL) memory loader program, see Appendix E.

Tasks:

 1. Write the complete VHDL design for the modifi cations and additions described using the
design styles you prefer via a fl at design approach. Use documentation style M, introduced

Module 13
(Modified)

MEMLOAD_INST INST

LOAD_MEM_IN

LOAD_MEM

LOAD_INST

00000000
8

8
0

1

0

18

8

8

SW(7:0)

MEMLOAD_WE WE

LOAD_MEM_IN
(BTN2)

LOAD_MEM

LOAD_WE

0

0

1

0

1

WEI
(BTN0)

(SW7...SW0)

FIGURE E17L.4 Block diagram of modified module 13

Module 24
(Modified)

MEMLOAD_ADDR

PROG_A

MEM_ADDR

LOAD_MEM_IN
(BTN2)

LOAD_MEM

LOAD_ADDR

4

4
0

1

0

14

4

4

PC_ADDR

FIGURE E17L.5 Block diagram of modified module 24

632 Appendix A Laboratory Experiments

in Chapter 12, Section 12.5.1, Listing 12.4, and be sure that the new modules are added in
numerical order in the code section.

 2. Start a new project with an entity that resembles that of Experiment 17, but make the needed
modifications for modules L1, L2, and L3. Copy the existing VHDL design from Experi-
ment 17 to use as a starting base for the needed additions and modifications.

 3. Add the internal signals needed for modules 13, 24, L1, L2, and L3. When using documen-
tation style M, remember that the signal LOAD_MEM is connected to modules L3, 11, 12,
13, and 24.

 4. Modify modules 13 and 24 as described in Figures E17L.4 and E17L.5. Also notice in
Figures E17L.4 and E17L.5 that signal LOAD_MEM_IN must be connected to push button
BTN2, because the signal LOAD_MEM is used as an internal signal for this design.

 5. Add module L1 using the block diagrams in Figure E17L.1.
 6. Add module L2 using the CFSM state diagram in Figure E17L.3 and the block diagrams in

Figures E17L.1 and E17L.2.
 7. Add module L3 using the block diagram in Figure E17L.1.
 8. Modify the .ucf (implementation constraints) file to account for the change of LOAD_MEM

to LOAD_MEM_IN for BTN2 as well as the new I/O connections for modules L1 and L2.
See Appendix C for the pin connections for all the signals that communicate with the USB
circuit (these signals contain the letters USB).

 9. For information on loading memory via the memory loader program, see Appendix E. With
the design of VBC1-L complete, the VBC1-L (VBC1-EL) memory loader program can be
used to automatically load memory. Verify that the completed design works by using the
VBC1-L (VBC1-EL) memory loader program to load Program E17.2 in Experiment 17 and
run the program successfully on a BASYS 2 board or on a NEXYS 2 board.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First, print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is demonstrating that Program E17.2 in Experiment 17 can be loaded using the
VBC1-L memory loader software program and run successfully on a BASYS 2 board or on
a NEXYS 2 board with your VBC1-L design.

 2. Explain the purpose of the synchronizer circuits (sync circuits) in module L1.
 3. Explain why the state machine in module L2 is considered complex.
 4. Explain the purpose of the loadable register subcomponent in module L2.
 5. Explain the purpose of module L3.
 6. Include the complete VHDL code for your VBC1-L design.
 7. Include a text copy of the .ucf (implementation constraints) file.
 8. Write a short paragraph explaining the work you did for this experiment, along with a

description of any problems you may have encountered and their solutions. Include helpful
hints and suggestions of improvement for this experiment.

 9. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 18 WRITING ASSEMBLY LANGUAGE
PROGRAMS AND RUNNING THEM ON VBC1

In this experiment, you will practice writing assembly language programs and running them on
your completed hardware version of VBC1. You will also practice writing assembly language
programs for VBC1-E. This is summarized as follows:

www.itpub.net

 Experiment 18 Writing Assembly Language Programs and Running Them on VBC1 633

 1. Write the assembly language programs that are provided to gain practice in writing assem-
bly language programs for VBC1. You must write the programs and simulate them using
EASY1 to verify that they work properly. You must load the programs into VBC1 and
verify that the programs perform correctly on your completed hardware version of VBC1.

 2. Write the assembly language programs that are provided for VBC1-E and verify that they
perform correctly using EASY1-E.

 3. Be sure that your programs are well documented so that others can understand them. Copy
each of your assembly language programs for tasks 1, 2, and so on, in a text file to keep
them together. This will also allow you to easily copy and paste them into EASY1/EASY1-
E to show that they work correctly in the lab. Store your programs under the titles shown in
Text File E18.1.

;Program 1 for VBC1
;Program 2 for VBC1
;Program 3 for VBC1
;Program 4 for VBC1
;Program 5 for VBC1
;Program 6 for VBC1-E
;Program 7 for VBC1-E
;Program 8 for VBC1-E
;Program 9 for VBC1-E
;Program(s) for extra lab credit for VBC1-E

TEXT FILE E18.1 Store your programs under these titles

Recommended Pre-Lab:

 1. Read Appendix D, Sections D.9 and D.10, for additional information about EASY1-E for
this experiment. Also read Chapter 18, Section 18.8, More about Interrupts and Assembler
Directives.

 2. Write an assembly language program for VBC1-E that blinks the two least significant
instruction pointer bits waiting on a hardware interrupt. An interrupt service routine counts
the number of times the push button named Trigger Interrupt is pressed and delays the
process of displaying the number at OP1 for 33 machine cycles. Be sure that your program
does not run amuck. Provide a comment for each instruction that explains how the program
works and not just what each instruction does.

 3. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, assembled printout of the assembly
language program with comments, a copy of your assembly language program with com-
ments in a text fi le, and the like.

Tasks:

VBC1 Programs:

 1. Program 1: Write an assembly language program for VBC1 that does the following:
• The output LEDs follow the same sequence as a one-hot up counter, which is shown as

follows:

LD3 LD2 LD1 LD0
Off Off Off On
Off Off On Off
Off On Off Off
On Off Off Off
Off Off Off On starts repeating

634 Appendix A Laboratory Experiments

• When LD0 lights, the sequence rapidly moves to light LD1.
• When LD1 lights, it stays on for a long delay time (determined by a single loop counter)

for approximately 17 machine cycles (or instruction cycles). A machine cycle is the time
it takes to execute each assembly language instruction.

• After the delay for LD1, LD2 turns on, and the sequence rapidly moves to Light LD3.
• When LD3 lights, it stays on for the same delay time as LD1.
• After LD3 turns off, the sequence starts all over again.

 Use EASY1 to write, assemble, and run your VBC1 program to verify that it performs
correctly. Load your program into VBC1 and run your program. You should observe that
your program performs the same way as it does with EASY1. See Figure D.3 in Appendix
D for the instruction set and aliases for VBC1.

 2. Program 2: Modify Program 1 so that the input switches can be used to select the delay
time. After you verify proper operation of your program using EASY1, load your modifi ed
program into VBC1 and run your program. You should observe that your program performs
the same way as it does with EASY1.

 3. Program 3: Modify Program 1 to rapidly move (without any built-in delay time) through
the sequence lighting the LEDs LD0, LD1, LD2, and LD3. Make the length of time that
LD3 stays on be approximately 256 machine cycles. (Hint: 16 3 16 5 256.) After you
verify proper operation of your program using EASY1, load your modified program into
VBC1 and run your program. You should observe that your program performs the same
way as it does with EASY1. (Hint: Use a loop counter embedded within a loop counter.)

 4. Program 4: Modify Program 3 so that the input switches can be used to select the delay
time. After you verify proper operation of your program using EASY1, load your modified
program into VBC1 and run your program. You should observe that your program performs
the same way as it does with EASY1.

 5. Program 5: Write a program for a stoppable one-hot up counter for VBC1 that has a delay
time of approximately 16 machine cycles for each of the output LEDs using a loop counter.
When the input switches are all 0s, the counter will count through its sequence over and over.
When the input switches are not all 0s, the counter will stop at the maximum count of 1000.

VBC1-E Programs:

 6. Program 6: Write an assembly language program for VBC1-E that uses the INT and IRET
instructions to do the following:

• The output LEDs for Port 1 follow the same sequence as a one-hot down counter, which
is shown as follows:

LD3 LD2 LD1 LD0
On Off Off Off
Off On Off Off
Off Off On Off
Off Off Off On
On Off Off Off starts repeating

• Provide a delay time of approximately 16 machine cycles for each of the output LED,
using a loop counter.

 Use EASY1-E to write, assemble, and run your VBC1-E program to verify that it per-
forms correctly. See Table 18.10 in Chapter 18 for the instruction set for VBC1-E. Each alias
for VBC1 provided in Figure D.3 in Appendix D for VBC1 is the same for VBC1-E.

 7. Program 7: Modify Program 6 so that the input switches for ports 3 downto 0 can be used
to independently select the delay times for LD3, LD2, LD1 and LD0, respectively, during
program execution. Verify proper operation of your program using EASY1-E.

www.itpub.net

 Experiment 19: Designing and Testing VBC1-E (IN, OUT, and Unchanged Instructions) 635

 8. Program 8: Write a program for a modulo 16 binary up counter, and write a interrupt
service routine that lights the LED sequence LD0, LD2, LD1, LD3, LD2, LD0, and all off.
Make port 1 the output port for the modulo 16 counter, and make port 2 the output port for
the LED sequence. Use a hardware interrupt to interrupt the modulo 16 counter and run the
LED sequence. Verify proper operation of your programs using EASY1-E.

 9. Program 9: Write a program that compares two 4-bit numbers at input ports 1 and 2, and
if they are in ascending order, display them in ascending order at output ports 1 and 2. If
the same two 4-bit numbers at input ports 1 and 2 are out of ascending order, then sort them
and display them in ascending order at output ports 1 and 2.

 10. Program(s) for extra lab credit:

 Example: You can write a program for VBC1-E that multiplies two 4-bit numbers sup-
plied at the input ports 1 and 2 and provides the output at output ports 1 and 2. Your
program must run correctly using EASY1-E.

 Extra credit will be given for writing other interesting programs for VBC1-E. Your
programs must run correctly using EASY1-E.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working programs for VBC1 and get
them signed off by your lab instructor. First print out a cover page with only the following
information: course title, experiment number, your name, and your partner's name(s). Then
invite your lab instructor to come to your bench to observe your fi nal working programs.
Your fi nal working programs for this experiment will be chosen at random.

 2. Ask your instructor if you should include the copy of your programs in the text file in your
report, or if you should e-mail the copy of your programs in your text file to him/her as an
attachment.

 3. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 4. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 19: DESIGNING AND TESTING VBC1-E (IN,
OUT, AND UNCHANGED INSTRUCTIONS)

In this experiment, you will practice working with modules to provide the IN and OUT instruc-
tions for VBC1-E. Beginning with your final design of VBC1 (Experiment 17), you will modify
the design to include the new IN and OUT instructions and the unchanged instructions (LOADI,
ADDI, and JNZ) for VBC1-E.
 Figure E19.1 shows a BASYS 2 board with the necessary peripheral modules (three LED
modules, one button module, and one switch module) necessary to perform Experiments 19
through 25 in a stripped-down version of VBC1-E. A NEXYS 2 board can also be used to
perform Experiments 19 through 25 in a stripped down version of VBC1-E. The cost of the
peripheral modules for the BASYS 2 board or the NEXYS 2 board is about $55.
 Figure E19.2 shows a NEXYS 2 board with the necessary peripheral modules (five LED
modules, one button module, and three switch modules) and the FX2 MIB (module interface
board) necessary to perform Experiments 19 through 25 in a full-blown version of VBC1-E. The
cost of the FX2 MIB is about $20. The cost of the additional peripheral modules (two additional
switch modules and two additional LED modules) is about $40.
 This is the first in a series of projects to design and test VBC1-E. Experiment 19 consists of
the annotated schematics shown in Figures E19.3 and E19.4.

636 Appendix A Laboratory Experiments

 Figure E19.3 shows the modified data path unit for VBC1-E with its new input circuit.
Switch input circuits are not shown in the circuit diagram to simplify the drawing. The switches
labeled SW(3:0) (SW3 . . . SW0), SWP1 (3:0) (JD-1, JD-2, JD-3, JD-4) (P stands for port),
SWP2(3:0) (J3-1, J3-2, J3-3, J3-4), and SWP3(3:0) (J4-1, J4-2, J4-3 J4-4) are used for the full-
blown version. The Pmod connector labeled JD shown in parentheses is used to obtain the pin
assignments for the NEXYS 2 board. The Pmod connectors labels J3 and J4 shown in parenthe-
ses are used to obtain the pin assignments for the FX2 MIB (module interface board). The FX2
MIB is an add-on board on the right side of the NESYS 2 board that provides additional I/O
(input/output) capability for the NEXYS 2 board.
 The switches labeled SW(3:0) (SW3 . . . SW0) and SWP1 (3:0) (JD-1, JD-2, JD-3, JD-4)
(P stands for port) are used for the BASYS 2 board or the NEXYS 2 board for the stripped-
down version. The Pmod connector labeled JD shown in parentheses is used to obtain the pin
assignments for the BASYS 2 board or the NEXYS 2 board. For a complete set of FPGA pin
connections for the BASYS 2 board, the NEXYS 2 board, and the FX2 MIB see Appendix C
(FPGA Pin Connections—Handy Reference).
 Figure E19.4 shows the modified data path unit for VBC1-E with its new output circuit. LED
output circuits are not shown in the circuit diagram to simplify the drawing. The LEDs labeled
LD(3:0) (LD3 . . . LD0), LDP1(3:0) (JC-1, JC-2, JC-3 JC-4) (P stands for port), LDP2(3:0) (J1-1,
J1-2, J1-3, J1-4), and LDP3(3:0) (J2-1, J2-2, J2-3, J2-4) are used for the full-blown version. The
Pmod Connector labeled JC shown in parentheses is used to obtain the pin assignments for
the NEXYS 2 board. The Pmod Connectors labels J1 and J2 shown in parentheses are used to
obtain the pin assignments for the FX2 MIB (module interface board).
 The LEDs labeled LD(3:0) (LD3 . . . LD0) and LDP1(3:0) (JC-1, JC-2, JC-3, JC-4) (P stands
for port) are used for the BASYS 2 board or the NEXYS 2 board for the stripped-down version.
The Pmod connector labeled JC shown in parentheses is used to obtain the pin assignments for
the BASYS 2 board or the NEXYS 2 board.
 To design the instruction decoder use Procedure ID. This procedure was first presented in
Chapter 15, Section 15.4, and repeated in Chapter 19, Section 19.6. For this experiment, only
include the control signals required for the instructions IN, OUT, LOADI, ADDI, and JNZ.

FIGURE E19.1 A BASYS 2 board with the
necessary peripheral modules to design a
stripped-down version of VBC1-E
Photo courtesy of Diligent, Inc.

FIGURE E19.2 A NEXYS 2 board with the necessary peripheral modules
to design a full-blown version of VBC1-E
Photo courtesy of Diligent, Inc.

www.itpub.net

 Experiment 19: Designing and Testing VBC1-E (IN, OUT, and Unchanged Instructions) 637

 When the circuits in Figure E19.4 are incorporated in the design, you can load the instruc-
tion memory and execute the IN, OUT, LOADI, ADDI, and JNZ instructions to single step
through a program or to run a program that only uses these instructions.

MUX 3

M3

0

1
4

4

4

Module 20

MUX 1

Reg R1

CE

CLR

C

D

M1
RST (asyn)

SPEED

R_ALU

R_ALU_DI

ALU_OUT(3:0)
OP(3:0)

SPEED

LOAD_R1

R1

0

1
4

4

Module 1

Module 3

Reg R0

CE

CLR
C

D

RST

LOAD_R0

R0

R0_R1

Module 2

MUX 2

M2

0

1

MUX

Buffer
array

On
NEXYS 2
board

On
BASYS 2
board
or
NEXYS 2
board

JD
(Top)

JD
(Top)

SW(3:0)
(SW3...SW0)

SW(3:0)
(SW3...SW0)

SWP1(3:0)
(JD-1,JD-2,JD-3,JD-4)

SWP1(3:0)
(JD-1,JD-2,JD-3,JD-4)

SWP2(3:0)
(J3-1,J3-2,J3-3,J3-4)

SWP3(3:0)
(J4-1,J4-2,J4-3,J4-4)

J3
(Top)

J4
(Top)

On
FX2 MIB

Note: Top row of
Pmod connector

Note: MSB maps to the
lowest-numbered pin on

Pmod connector

Note: MSB maps to the
lowest-numbered pin on

Pmod connector

DI1

IP0

IP1

IP2

IP3

DI0

DI

DI

(SEL)

0

1

S1
S0

2

3

4

4

4

4

4

4

4

4

MUX

IP0

IP1

DI0

0

1

4

4

4

4
4

4

4

Reg
output port

CE

CLR

C

D

Q

Q

Q

RST

LOAD_OP
Module 5

44

4

Module 4

Module 17
(Modified, data input for

full-blown version)

Module 17
(Modified, data input for
stripped-down version)

Buffer
array

FIGURE E19.3 Modified data path unit for VBC1-E with its new input circuit

638 Appendix A Laboratory Experiments

Recommended Pre-Lab:

 1. Create a new project named Data_Input, and write complete VHDL code for the data input
for the full-blown version using a conditional signal assignment for the MUX and Boolean
equations for the buffers. Make the input and output signal names the same as those used
by module 17 in Figure E19.4. Run a simulation to verify your design works. If your design

MUX 3

M3

0

1
4

4

4

Module 20

MUX 1

Reg R1

CE

CLR
C

D

M1
RST (asyn)

RST (asyn)

SPEED

R_ALU

R_ALU_DI

ALU_OUT(3:0)

OP0

SPEED

LOAD_R1

R1

R0_R1

0

1
4

4

Module 1

Module 3

Reg R0

CE

CLR

C

D

Q

Q

RST

LOAD_R0

R0

Module 2

MUX 2

M2

0

1

MUX

Buffer
array

On
NEXYS 2
board

On
BASYS 2
board
or
NEXYS 2
board

JD
(Top)

JC
(Top)

JD
(Top)

SW(3:0)
(SW3...SW0)

SW(3:0)
(SW3...SW0)

SWP1(3:0)
(JD-1,JD-2,JD-3,JD-4)

SWP1(3:0)
(JD-1,JD-2,JD-3,JD-4)

SWP2(3:0)
(J3-1,J3-2,J3-3,J3-4)

SWP3(3:0)
(J4-1,J4-2,J4-3,J4-4)

J3
(Top)

J4
(Top)

On
FX2 MIB

Note: Top row of
Pmod connector DI1

IP0

IP1

IP2

IP3

DI0

DI

DI

(SEL)

0

1

S1
S0

2

3

4

4

4

4

4

4

4

4

MUX

IP0

IP1

DI0

0

1

4

4

4

4

4

4

4

CE

CLR
C

D

LD(3:0)
(LD3...LD0)

LOAD_OP(0)

Module 5
(Modified, select output for

full-blown version)

Module 5
(Modified, select output for

stripped-down version)

4

4

RST (asyn)

OP1

SPEED

CE

CLR
C

D

LDP1(3:0)
(JC-1,JC-2,
JC-3,JC-4)

LOAD_OP(1)

4

4

RST (asyn)

OP2

SPEED

CE

CLR
C

D

LOAD_OP(2)

4

4

RST (asyn)

OP3

SPEED

CE

CLR
C

D

LOAD_OP(3)

4

4

RST (asyn)

OP0

SPEED

CE

CLR
C

D

Q

Q

Q

Q

Q

Q

LD(3:0)
(LD3...LD0)

LOAD_OP(0)

4

4

RST (asyn)

OP1

SPEED

CE

CLR
C

D

LOAD_OP(1)

4

4

4

4

Module 4

Module 17
(Modified, data input for

full-blown version)

Module 17
(Modified, data input for
stripped-down version)

On NEXYS 2 board

J1
(Top)

LDP2(3:0)
(J1-1,J1-2,
J1-3,J1-4)

On FX2 MIB

J2
(Top)

LDP3(3:0)
(J2-1,J2-2,
J2-3,J2-4)

On FX2 MIB

JC
(Top)

LDP1(3:0)
(JC-1,JC-2,
JC-3,JC-4)

On BASYS 2 board or
NEXYS 2 board

On BASYS 2 board or
NEXYS 2 board

R0_R1

Buffer
array

On NEXYS 2 board

FIGURE E19.4 Modified data path unit for VBC1-E with its new output circuit

www.itpub.net

 Experiment 19: Designing and Testing VBC1-E (IN, OUT, and Unchanged Instructions) 639

does not work, you must fi nd the error or errors and fi x them. [Note: See Appendix B
(Obtaining Simulations via the VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 17 or Experiment 17L to the new
project. Modify module 17 (data input) as shown in Figure E19.3 or Figure E19.4. Use a
conditional signal assignment for the MUX and Boolean equations for the buffers.

 3. Modify module 5 (select output) as shown in Figure E19.4. Use a conditional signal assign-
ment for each D flip-flop and Boolean equations for the buffers.

 4. Use the instruction decoder truth tables for IN and OUT to obtain the Boolean equations for
the control signals. Modify the instruction decoder (module 14), to handle only the instruc-
tions IN, OUT, LOADI, ADDI, and JNZ. Use the select signal ir (7 downto 5) in the case
statement and select ir (3 downto 2) using an if statement for the IN and OUT instructions.

 5. Modify the ALU (module 19) to handle only the instructions LOADI and ADDI.
 6. If you initialized memory (module 6), remove the initialization instructions.
 7. If you designed the full-blown version of VBC1-E, first plug the FX2 MIB into the NEXYS

2 board. Plug three switch modules into the Pmod connectors JD, J3, J4, and plug in three
LED modules into the Pmod connectors JC, J1, and J2 as specified in Figure E19.4. If you
designed the stripped-down version of VBC1-E, plug one switch module into Pmod connec-
tor JD and one LED module into Pmod connector JC as specified in Figure E19.4.

 8. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 9. Use the EASY1-E editor to enter the instructions shown for FB in Program E19.1, if you

designed the full-blown version of VBC1-E. If you designed the stripped-down version of
VBC1-E use Program E19.1 with the title “VBC1-E Exp 19 Program 1 Stripped.” Use the
EASY1-E simulator to single step through the program so that you understand what it does.

;VBC1-E Exp 19 Program 1 FB
;Executing IN, OUT, and Unchanged instructions
;at all 4 input/output ports
start:
in r0,0 ;set input port 0 to 3
out r0,0
in r0,1 ;set input port 1 to 5
out r0,1
in r1,2 ;set input port 2 to 10
out r1,2
in r1,3 ;set input port 3 to 12
out r1,3

PROGRAM E19.1
Full-blown version
and stripped-down
version

(Continued)

640 Appendix A Laboratory Experiments

 10. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E19.1 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 15, just as they are in the memory of EASY1-E. Single step and also
run program E19.1. If VBC1-E does not provide the same results as EASY1-E for each
instruction, then you either made a mistake assigning pins or you may have design errors in
your VHDL code that you must find and fix.

 11. If you used the memory loader circuitry from Experiment 17L to design VBC1-E, use
the memory loader program to load Program E19.1 into memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0
through 15, just as they are in the memory of EASY1-E. Single step and also run Program
E19.1. VBC1-E should provide the same results as EASY1-E for each instruction.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of Program E19.1 with your VBC1-E design.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 20: DESIGNING AND TESTING VBC1-E (MOV
AND DATA MEMORY INSTRUCTIONS)

In this experiment, you will practice working with modules to provide the STORE and FETCH
instructions for VBC1-E. You will also provide the MOV instruction for VBC1-E.

loadi r0,14
addi r0,1
jnz r0,start

;VBC1-E Exp 19 Program 1 Stripped
;Executing IN, OUT and Unchanged instructions
;only at input/output ports 0 and 1
start:
in r0,0 ;set input port 0 to 3
out r0,0
in r0,1 ;set input port 1 to 5
out r0,1
loadi r0,14
addi r0,1
jnz r0,start

www.itpub.net

 Experiment 20: Designing and Testing VBC1-E (MOV and Data Memory Instructions) 641

 This is the second in a series of projects to design and test VBC1-E. Experiment 20 consists
of the annotated schematics shown in Figures E20.1 and E20.2.
 Figure E20.1 shows a circuit for the 4 3 4 data memory.

D Q

MUX

CE

C
CLR

D Q

CE

C
CLR

CE

D

Module 28
(New module, data memory)

Loadable D
flip-flop array

AND array

Q

CE

C
CLR

D Q

C
CLR

DM_IN(3:0)

CE(0)

4

CLK

RST (asyn)

DM_IN(3:0)

CE(1)

4

CLK

RST (asyn)

DM_IN(3:0)
DM_VALUE(3:0)

CE(2)

4

CLK

RST (asyn)

DM_IN(3:0)

CE(3)

4

CLK

RST (asyn)

4 QO0

4 QO1

4
4

0

1

2

3

0

Decoder

1

2

3

1
0

1

0

QO2

IR(3) IR(2)

IR(3)

IR(2)

4 QO3

STO_DM

DEC_OUT(0)

STO_DM

DEC_OUT(1)

STO_DM

DEC_OUT(2)

STO_DM

DEC_OUT(3)

FIGURE E20.1 Circuit for the 4 3 4 data memory

 Figure E20.2 shows the circuit that is used to perform the STORE and FETCH instructions.
LED output circuits are not shown in the circuit diagram to simplify the drawing. The signal for
the four LEDs is DM(3:0) (JB-1, JB-2, JB-3, JB-4). The labels in parentheses are used to obtain
the pin assignments for the BASYS 2 board or the NEXYS 2 board.
 Hint: For designing the Instruction Decoder: (1) use a process with a case statement to
select each of the instructions by their OPCODE, (2) specify the default instruction decoder
output values before the case statement, and (3) use Boolean equations for the control bits for
each instruction within the case statement. Add the control signals required for the instructions
STORE, FETCH, and MOV.
 When the circuits in Figure E20.1 and E20.2 are incorporated in the design, you can load
the instruction memory and execute the STORE, FETCH, and MOV instructions in addition to
the instructions IN, OUT, LOADI, ADDI, and JNZ to single step through a program or to run a
program that only uses these instructions.

642 Appendix A Laboratory Experiments

Recommended Pre-Lab:

 1. Create a new project named Data_Memory, and write complete VHDL code for the data
memory using a conditional signal assignment for each loadable D fl ip-fl op in the array.
Make the input and output signal names the same as those used by module 28 in Figure
E20.1. You may use any design style you prefer for the decoder, the AND array, and the
MUX for the data memory design. Run a simulation to verify your design works. If your

D

Data memory
(RAM 4 × 4)

DMO

WE

C

ADDR

Module 28
(New module)

Module 29
(New module, select

register)

DM_VALUE(3:0)

DM_IN(3:0)

STO_DM

STO_DR

CLK

4

4

24

1

0 IR(3:2)

RST (asyn)

R0

R1
4

D Q

CLR
C

Module 30
(New module, data memory

monitor)

DM(3:0)
(JB-1, JB-2, JB-3, JB-4)

JB
On BASYS 2 board
or top row of Pmod
connector on NEXYS
2 board Note: MSB maps to the

lowest-numbered pin on
Pmod connector

DM_VALUE

DM_NEXT

STO_DM
FET_DM

DM_IN

CLK

44

4

4
1

1

0

03

2

0000

0000

RST (asyn)

4

4

To 4 LEDs

D

CLR

Reg R0

Note: Change
signal named
R_ALU_DI to
SEL_DATA.

R0

C

CE

Module 31
(New module, select

data)

Module 2
(Modified)

Module 3
(Modified)

SEL_DATA

LOAD_R0

FET_DM

R_ALU_DI

DM_VALUE

SPEED

4

4

D

Q

Q

CLR

Reg R1

R1

C

CE

LOAD_R1

4

4

1

0

RST (asyn)

RST

4

FIGURE E20.2 Modified data path unit for VBC1-E with it new output circuit

www.itpub.net

 Experiment 20: Designing and Testing VBC1-E (MOV and Data Memory Instructions) 643

;VBC1-E Exp 20 Program 1 FB
;Executing store and fetch instructions
;at all 4 input/output ports
in r0,0 ;set input port 0 to 1
store r0,0
fetch r1,0
out r1,0
in r1,1 ;set input port 1 to 2
store r1,1
fetch r0,1
out r0,1
in r0,2 ;set input port 2 to 4

PROGRAM E20.1
Full-blown version
and stripped-down
version

design does not work, you must fi nd the error or errors and fi x them. [Note: See Appendix
B (Obtaining Simulations via the VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 19 to the new project. Add module 28
(data memory) as shown in Figure E20.1. Use a conditional signal assignment for each of the
loadable D flip-flops.

 3. Add module 29 (select register) as shown in Figure E20.2. Use a conditional signal assign-
ment for the select register MUX.

 4. Add module 30 (data memory monitor) as shown in Figure E20.2. Use conditional signal
assignments for the data memory monitor.

 5. Add module 31 (select data) as shown in Figure E20.2.
 6. Modify modules 2 and 3 by changing the signal name R_ALU_DI to SEL_DATA.
 7. Use the instruction decoder truth tables for STORE and FETCH to obtain the Boolean

equations for the control signals. Modify the instruction decoder (module 14) to handle the
instructions STORE, FETCH, and MOV.

 8. VBC1-E requires a data memory. To test your design requires an additional peripheral mod-
ule board—that is, an LED module. Plug the LED module into the Pmod connector JB on a
BASYS 2 board or on a NEXYS 2 board as indicated in Figure E20.2 to observe the value
of the data memory signal DM.

 9. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 10. Use the EASY1-E editor to enter the instructions shown for FB in Program E20.1, if you

designed the full-blown version. If you designed the stripped-down version of VBC1-E use
Program E20.1 with the title “VBC1-E Exp 20 Program 1 Stripped.” Use the EASY1-E
simulator to single step through the program so that you understand what it does.

(Continued)

644 Appendix A Laboratory Experiments

 11. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E20.1 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 15, just as they are in the memory of EASY1-E. Single step and also
run Program E20.1. If VBC1-E does not provide the same results as EASY1-E for each
instruction, then you either made a mistake assigning pins or you may have design errors in
your VHDL code that you must fi nd and fi x.

 12. If you used the memory loader circuitry from Experiment 17L to design VBC1-E, use
the memory loader program to load Program E20.1 into memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0
through 15, just as they are in the memory of EASY1-E. Single step and also run Program
E20.1. VBC1-E should provide the same results as EASY1-E for each instruction.

 13. Use the EASY1-E editor to enter the instructions shown for FB in Program E20.2, if you
designed the full-blown version. If you designed the stripped-down version of VBC1-E,
use Program E20.2 with the title “VBC1-E Exp 20 Program 2 Stripped.” Use the EASY1-E
simulator to single step through the program so that you understand what it does.

store r0,2
fetch r1,2
out r1,2
in r1,3 ;set input port 3 to 8
store r1,3
fetch r0,3
out r0,3

;VBC1-E Exp 20 Program 1 Stripped
;Executing store and fetch instructions
;only at input/output ports 0 and 1
back:
in r0,0 ;set input port 0 to 1
store r0,0
fetch r1,0
out r1,0
in r1,1 ;set input port 1 to 2
store r1,1
fetch r0,1
out r0,1
loadi r0,1
jnz r0,back

;VBC1-E Exp 20 Program 2 FB
;Executing move instruction
;at all 4 input/output ports
IN R0,0 ; input 9 via 4 slide switches at port 0
OUT R0,0 ; output contents of R0 to LEDs at port 0
IN R0,1 ; input 15 via 4 slide switches at port 1
MOV R1,R0 ; move contents of R0 to R1
OUT R1,1 ; output contents of R1 to LEDs at port 1
IN R1,2 ; input 6 via 4 slide switches at port 2
OUT R1,2 ; output contents of R1 to LEDs at port 2

PROGRAM E20.2
Full-blown version
and stripped-down
version

www.itpub.net

 Experiment 21: Designing and Testing VBC1-E (Almost All Instructions) 645

OUT R0,3 ; output contents of R0 to LEDs at port 3
IN R1,3 ; input 5 via 4 slide switches at port 3
MOV R0,R1 ; move contents of R1 to R0
OUT R1,3 ; output contents of R1 to LEDs at port 3

;VBC1-E Exp 20 Program 2 Stripped
;Executing move instruction
;only at input/output ports 0 and 1
back:
IN R0,0 ; input 9 via 4 slide switches at port 0
OUT R0,0 ; output contents of R0 to LEDs at port 0
IN R0,1 ; input 15 via 4 slide switches at port 1
MOV R1,R0 ; move contents of R0 to R1
OUT R1,1 ; output contents of R1 to LEDs at port 1
loadi r0,1
jnz r0,back

 14. Comment out Program E20.1 in your VHDL design. Load the machine code from Program
E20.2 into the memory of VBC1-E by initializing memory. Single step through the memory
of VBC1-E to verify that the machine code is properly loaded in the addresses 0 through
15 just as they are in the memory of EASY1-E. Single step and also run Program E20.2. If
VBC1-E does not provide the same results as EASY1-E for each instruction, then you may
have design errors in your VHDL code that you must find and fix.

 15. If you used the memory loader circuitry from Experiment 17L to design VBC1-E, use
the memory loader program to load Program E20.2 into memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0
through 15, just as they are in the memory of EASY1-E. Single step and also run Program
E20.2. VBC1-E should provide the same results as EASY1-E for each instruction.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working designs. Your fi nal work-
ing designs are the execution of Programs E20.1 and E20.2 with your VBC1-E design.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 21: DESIGNING AND TESTING VBC1-E
(ALMOST ALL INSTRUCTIONS)

In this experiment, you will practice working with modules to provide all the arithmetic, logic,
shift, rotate, and jump instructions—that is, almost all instructions for VBC1-E except the inter-
rupt and interrupt return instructions.

646 Appendix A Laboratory Experiments

 This is the third in a series of projects to design and test VBC1-E. Experiment 21 consists
of the annotated schematics shown in Figures E21.1 and E21.2.
 Figure E21.1 shows the data path circuit for VBC1-E.

 Figure E21.2 shows the circuits for the JMP and JMPR instructions for VBC1-E.

Module 20

MUX 3

0

1

0

1

0

1

0

1

CE

D

4

C

CLR

Reg R1

RST (asyn)

FET_DM

R1

M2

M1

M3

M5

R_IR

ALU_OUT

ALU
ADD
SUB
NOT
AND
OR
XNOR

(010VV000)
(010VV001)
(010VV100)
(010VV101)
(010VV110)
(010VV111)

(100VV000)
(100VV001)
(100VV010)
(100VV011)
(100VV100)
(100VV101)

SR0
SR1
SL0
SL1
RR
RL

R0_1

M4

IR(3:0)

DM_IN

STO_DR

R_ALU

R_ALU_DI

DM_VALUE

SEL_DATA

SPEED

DI LOAD_R1

0

1

0

1

0

1

MUX 1

MUX 2

MUX 4

MUX 5

Module 22

Module 21

Module 1

Module 2

Module 3

CE

D

Q

Q

4

4

4

4

4

4

4

4

4

4

4 4

4

C

CLR

Reg R0

RST

R0

R0_R1

LOAD_R0

Module 4
Module 31
(Select data)

Module 19
(Modified)

Module 29
(Select register)

IR(7:0)

8

FIGURE E21.1 Data path circuit for VBC1-E

NEW_A(3:0)

RES_A(3:0)

M7

M6

PROG_A(3:0)IR(3:0)
SEL_A

0

1

0

1

QD
4

4

4

4

44

4

44

C
CLR

RST

INC

INC

SUMA

Adder

SPEED

Module 32
(New module,

JMP and JMPR circuits)

Select address
for JMP or JMPR

Note: Change
the signal name

IR(3:0) to
NEW_A(3:0).

MUX 6

JMPR circuit

Adder
(4 bits)

SUM

A

B

Module 23
(Running program counter (RPC))

FIGURE E21.2 Circuits for the JMPR and JMP instructions for VBC1-E

www.itpub.net

 Experiment 21: Designing and Testing VBC1-E (Almost All Instructions) 647

 When the circuits in Figures E21.1 and E21.2 are incorporated in the design, you can load
the instruction memory and execute all the arithmetic, logic, shift, and rotate instructions and
also the JMP, JMPR, and HALT instructions for VBC1-E.

Recommended Pre-Lab:

 1. Create a new project named ALU, and write complete VHDL code for the ALU using a
process with a case statement. Add the lines of code that are required to perform the arith-
metic and logic instructions ADD, SUB, NOT, AND, OR, and XNOR. Make the input and
output signal names the same as those used by module 19 in Figure E21.1. Run a simulation
to verify your design works. If your design does not work, you must fi nd the error or errors
and fi x them. [Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench
Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for ecample, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 20 to the new project.
 3. Add the lines of VHDL code to module 19 (ALU) that are required to perform the arithme-

tic and logic instructions ADD, SUB, NOT, AND, OR, and XNOR.
 4. In Figure E21.1 for the ALU, make the operand signal R0_R1 the destination register (DR)

and operand signal R_IR the source register (SR) for all of the arithmetic and logic instruc-
tions ADD, SUB, NOT, AND, OR, and XNOR for VBC1-E. With these operand assign-
ments, obtain the Boolean equations for the control signals for the arithmetic and logic
instructions ADD, SUB, NOT, AND, OR, and XNOR. Modify the instruction decoder
(module 14) to handle the arithmetic and logic instructions.

 5. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 6. Use the EASY1-E editor to enter the instructions shown for FB in Program E21.1, if you

designed the full-blown version of VBC1-E. If you designed the stripped-down version of
VBC1-E use Program E21.1 with the title “VBC1-E Exp 21 Program 1 Stripped.” Use the
EASY1-E simulator to single step through the program so that you understand what it does.

;VBC1-E Exp 21 Program 1 FB
;Executing arithmetic and logic instructions
;at all 4 input/output ports
in r0,0 ;set input port 0 to 1
out r0,0
loadi r1,2
out r1,1
add r1,r0
out r1,2

PROGRAM E21.1
Full-blown version
and stripped-down
version

(Continued)

648 Appendix A Laboratory Experiments

sub r1,r0
out r1,3
not r1,r1
out r1,0
and r1,r0
out r1,1
loadi r1,2
xnor r0,r1
or r0,r1
out r0,3 ;roll over

;VBC1-E Exp 21 Program 1 Stripped
;Executing arithmetic and logic instructions
;only at input/output ports 0 and 1
begin:
in r0,0 ;set input port 0 to 1
out r0,0
loadi r1,2
out r1,1
add r1,r0
sub r1,r0
not r1,r1
out r1,0
and r1,r0
out r1,1
loadi r1,2
xnor r0,r1
or r0,r1
out r0, 1

 7. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E21.1 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 15, just as they are in the memory of EASY1-E. Single step and also
run Program E21.1. If VBC1-E does not provide the same results as EASY1-E for each
instruction, then you either made a mistake assigning pins or you may have design errors in
your VHDL code that you must fi nd and fi x.

 8. Add the lines of VHDL code to module 19 (ALU) that are required to perform the shift and
rotate instructions SR0, SR1, SL0, SL1, RR, and RL.

 9. In Figure E21.1 for the ALU, make the operand signal R0_R1 the destination register (DR)
and operand signal R_IR the source register (SR) for all of the shift and rotate instructions
SR0, SR1, SL0, SL1, RR, and RL for VBC1-E. With these operand assignments, obtain
the Boolean equations for the control signals for the shift and rotate instructions SR0, SR1,
SL0, SL1, RR, and RL. Modify the instruction decoder (module 14) to handle the shift and
rotate instructions.

 10. Do the following: Generate a programming fi le, then check to see if your VHDL code needs
to be corrected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File. Download the programming fi le.

 11. Use the EASY1-E editor to enter the instructions shown for FB in Program E21.2, if you
designed the full-blown version of VBC1-E. If you designed the stripped-down version of

www.itpub.net

 Experiment 21: Designing and Testing VBC1-E (Almost All Instructions) 649

VBC1-E use Program E.21.2 with the title “VBC1-E Exp 21 Program 2 Stripped.” Use the
EASY1-E simulator to single step through the program so that you understand what it does.

;VBC1-E Exp 21 Program 2 FB
;Executing shift and rotate instructions
;at all 4 input/output ports
start: in r0,0 ;set input port 0 to 1
 out r0,0
 sl0 r1,r0
 out r1,1
 sl1 r1,r0
 out r1,2
 sr1 r1,r0
 out r1,3
 sr0 r1,r1
 out r1,0
 loadi r1,14
 rl r0,r1
 out r0,2
 rr r0,r0
 out r0,3
 jnz r0,start

;VBC1-E Exp 21 Program 2 Stripped
;Executing shift and rotate instructions
;only at input/output ports 0 and 1
start: in r0,0 ;set input port 0 to 1
 out r0,0
 sl0 r1,r0
 out r1,1
 sl1 r1,r0
 sr1 r1,r0
 sr0 r1,r1
 out r1,0
 loadi r1,14
 rl r0,r1
 rr r1,r1
 rr r0,r1
 out r0,1
 jnz r0,start

 12. Comment out Program E21.1 in your VHDL design. Load the machine code for Program
E21.2 into the memory of VBC1-E by initializing memory. Single step through the memory
of VBC1-E to verify that the machine code is properly loaded in the addresses 0 through 15,
just as they are in the memory of EASY1-E. Single step and run Program E21.2. If VBC1-
E does not provide the same results as EASY1-E for each instruction, then you may have
design errors in your VHDL code that you must fi nd and fi x.

 13. If you used the memory loader circuitry from Experiment 17L to design VBC1-E, use
the memory loader program to load Program E21.2 into memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0

PROGRAM E21.2
Full-blown version
and stripped-down
version

650 Appendix A Laboratory Experiments

through 15, just as they are in the memory of EASY1-E. Single step and run Program E21.2.
VBC1-E should provide the same results as EASY1-E for each instruction.

 14. Add module 32 (JMP and JMPR circuits) as shown in Figure E21.2. Use an arithmetic
expression for the JMPR circuit and a conditional signal assignment for the select address
for JMP or JMPR.

 15. Use the instruction decoder truth tables for the JMP and JMPR instructions to obtain the
Boolean equations for the control signals. Modify the instruction decoder (module 14) to
handle the JMP and JMPR instructions.

 16. Modify module 23 (RPC) in Figure E21.2 by changing the signal name IR(3 downto 0) to
NEW_A(3 downto 0).

 17. Do the following: Generate a programming file, then check to see if your VHDL code
needs to be corrected based on reported errors and warnings; if so, correct your VHDL
code, then rerun Generate Programming File. Download the programming file.

 18. Use the EASY1-E editor to enter the instructions shown in Program E21.3. This program
works on the full-blown version and also on the stripped-down version of VBC1-E. Use
the EASY1-E simulator to single step through the program so that you understand what it
does.

 19. Comment out Program E21.2 in your VHDL design. Load the machine code for Program
E21.3 into the memory of VBC1-E by initializing memory. Single step through the memory
of VBC1-E to verify that the machine code is properly loaded in the addresses 0 through 15,
just as they are in the memory of EASY1-E. Single step and run Program E21.3. If VBC1-
E does not provide the same results as EASY1-E for each instruction, then you may have
design errors in your VHDL code that you must fi nd and fi x.

 20. If you used the memory loader circuitry from Experiment 17L to design VBC1-E, use
the memory loader program to load Program E21.3 into memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0
through 15, just as they are in the memory of EASY1-E. Single step and run Program E21.3.
VBC1-E should provide the same results as EASY1-E for each instruction.

;VBC1-E Exp 21 Program 3
;Executing jump instructions
;no inputs required, outputs at ports 0 and 1
 loadi r0,1
repeat1: out r0,0
 sl0 r0,r0
 jnz r0,repeat1
 xnor r0,r0
 out r0,1
 loadi r1,4
 jmpr 1
repeat2: out r1,0
 sr0 r1,r1
 jnz r1,repeat2
 xnor r1,r1
 not r1,r1
 out r1,1
 jmp 0

PROGRAM E21.3
Executing jump
instructions

www.itpub.net

 Experiment 22: Designing and Testing VBC1-E (Modifi ed Manual Loading) 651

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working designs. Your fi nal work-
ing design is the execution of Program E21.3 with your VBC1-E design.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 22: DESIGNING AND TESTING VBC1-E
(MODIFIED MANUAL LOADING)

In this experiment, you will practice working with a module to modify manual loading. This
provides fewer distractions from flashing outputs as a program is manually loaded into instruc-
tion memory or manually stepped through instruction memory to observe its contents.
 This is the fourth in a series of projects to design and test VBC1-E. Experiment 22 consists
of the annotated schematic shown in Figure E22.1.
 Figure E22.1 shows a circuit that prevents instruction execution during manual loading for
VBC1-E.

 When the circuit in Figure E22.1 is incorporated in the design, instruction memory can be
loaded with all the instructions except INT and IRET, which have not been implemented yet.
When BTN2 is pressed to allow manual loading or when BTN2 is pressed to observe the contents
at an address in instruction memory, you will not observe the execution of an OUT instruction
during the loading or observing process. This will provide fewer distractions when you manually
load or view the contents of instruction memory due to output ports that may be lighted.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking

Instruction
decoder

MUX

Module 14
(Modified, MUX with
instruction decoder)

8

8
0

1
8

00000000

E_IR

LOAD_MEM
(BTN2)

IR

FIGURE E22.1
Circuit that prevents
instruction execution
during manual load-
ing for VBC1-E

652 Appendix A Laboratory Experiments

each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 21 to the new project.
 3. Modify module 14 so that eight 0s are supplied to the instruction decoder when BTN2 is

pressed as shown in Figure E22.1. Use a conditional signal assignment for the MUX in Fig-
ure E22.1. Be sure to define E_IR in module 14 as an internal signal between architecture
and the first begin.

 4. In the instruction decoder process change IR to E_IR. This is most easily done by placing
the cursor just before IR in the process and click Edit then Replace on the Project Navigator
menu bar. When the Replace window appears, type IR after “Find what,” and type E_IR
after “Replace with.” Do not click on “Replace All.” Click on “Find Next” and then click
“Replace” repeatedly, until you replace every IR just in the instruction decoder process of
module 14 and then stop.

 5. Complete the design cycle for your circuit by doing the following:
 a. Generate a programming file.
 b. Check to see if your design needs to be fixed based on any errors or warnings. If so,

make the fixes, then rerun Generate Programming File.
 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.

 6. Use the EASY1-E editor to enter the instructions shown for FB in Program E22.1, if you
designed the full-blown version of VBC1-E. If you designed the stripped-down version
of VBC1-E use Program E22.1 with the title “VBC1-E Exp 22 Program 1 Stripped.” Use
the EASY1-E simulator to single step through the program or run the program so that you
understand what it does.

;VBC1-E Exp 22 Program 1 FB
;Turn all port lights on and off
loadi r0,5
out r0,0
out r0,1
out r0,2
out r0,3
loadi r0,10
out r0,0
out r0,1
out r0,2
out r0,3
loadi r0,0
out r0,0
out r0,1
out r0,2
out r0,3
jmp 0

;VBC1-E Exp 22 Program 1 Stripped
;only turns port lights 0 and 1 on and off
loadi r0,5
out r0,0
out r0,1
loadi r0,10

PROGRAM E22.1
Full-blown version
and stripped-down
version

www.itpub.net

 Experiment 22: Designing and Testing VBC1-E (Modifi ed Manual Loading) 653

 7. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E22.1 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 15, just as they are in the memory of EASY1-E. Run Program E22.1. If
VBC1-E does not provide the same results as EASY1-E for each instruction, then you either
made a mistake assigning pins or you may have design errors in your VHDL code that you
must fi nd and fi x.

 8. Perform the following test on VBC1-E. Set SW7 to 1 to single step then reset VBC1-E by
pressing and releasing BTN3. Hold down BTN2 and press BTN1 repeatedly to observe the
contents at each address in instruction memory. Observe that the output ports do not light as
they do when you single step or run the program. This is the correct operation of VBC1-E
due to the modification of module 14. If the output ports light, then you may have made a
mistake with your VHDL code that needs to be fixed so the output ports do not light. When
you get your program working correctly, change the 8 bits (eight 0s) provided at the 1 input
to the MUX in module 14 to the signal IR. This will cause VBC1-E to execute instructions
when you are manually loading a program or manually observing a program in instruction
memory.

 9. Complete the design cycle for your circuit by doing the following:
 a. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 b. Download the programming file into the FPGA on a BASYS 2 or a NEXYS 2 board.
 10. Perform the following test on VBC1-E. Set SW7 to 1 to single step then reset VBC1-E by

pressing and releasing BTN3. Hold down BTN2 and press BTN1 repeatedly to observe the
contents at each address in instruction memory. The output ports should light as they do
when you single step or run the program, which can be distracting, if you elect to manually
load a program. After you finish this test, change the signal IR at the 1 input of the MUX in
module 14 back to 8 bits (eight 0s) to agree with Figure E22.1.

 11. Complete the design cycle for your circuit by doing the following:
 a. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 b. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 12. Set SW7 to 1 to single step then reset VBC1-E by pressing and releasing BTN3. Hold down

BTN2 and press BTN1 repeatedly to observe the contents at each address in instruction
memory. Observe that the output ports do not light.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your lab
instructor to come to your bench to observe your fi nal working design. Your fi nal working

out r0,0
out r0,1
loadi r0,0
out r0,0
out r0,1
jmp 0

654 Appendix A Laboratory Experiments

design is the execution of Program E22.1 with your VBC1-E design. You also need to show
that the output ports do not light as you manually load a program or as you hold down BTN2
and press BTN1 repeatedly to observe the contents of instruction memory.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 23: DESIGNING AND TESTING VBC1-E (ADD
EXTENDED INSTRUCTION MEMORY)

In this experiment, you will practice working with modules to add extended instruction memory.
Adding extended instruction memory (module 6) is easy, but this also requires modifying the
4-to-1 MUX array circuit for the multiplexed display system (module 10), the running program
counter circuit (module 23), the proper address circuit (module 24), the loading program counter
circuit (module 8), and the JMPR circuit (module 32).
 This is the fifth in a series of projects to design and test VBC1-E. Experiment 23 consists
of the annotated schematics shown in Figures E23.1 and E23.2.
 Figure E23.1 shows the modified circuits for the total instruction memory and the 4-to-1
MUX array for the multiplexed display system for VBC1-E.

2

Note: Change
number of bus

bits from 4 to 5.

Note: Change
number of storage
locations from 16

bits to 32 bits.

Note: Change
MEM_ADDR to

MEM_ADDR(3:0), i.e.,
MEM_ADDR(4) is not used.

MEM_ADDR(3:0)

Total
instruction memory

(RAM 32 × 8)

ADDR Q

D

WE

CCLK

WE

INST

MEM_ADDR(4:0)

4-to-1
MUX
array

SEL

Module 6
(Modified)

Module 10
(Modified)

8

5 8

4

4

0

1

2

3

4

4

4

4

4

IR
IR(7:4)

IR(3:0)

FIGURE E23.1 Modified circuits
for the total instruction memory
and the 4-to-1 MUX array for the
multiplexed display system for
VBC1-E

www.itpub.net

 Experiment 23: Designing and Testing VBC1-E (Add Extended Instruction Memory) 655

 Figure E23.2 shows the modified circuits for the running program counter, the proper
address, the loading program counter, and the JMPR circuit.

 When the circuits in Figure E23.1 and E23.2 are incorporated in the design, program
memory can be loaded with 32 instructions. The first 16 memory locations represent instruc-
tion memory and the last 16 memory locations represent the extended instruction memory. The
instruction memory and the extended instruction memory can be loaded either manually or by
including the desired bits as initialization bits for the memory in the VHDL code. At this point
in the design of VBC1-E, only instructions that are placed in instruction memory (addresses 0
through 15) can be executed. In the next experiment, the instructions INT and IRET will be
added, which will allow you to execute instructions in both instruction memory (addresses 0
through 15) and extended instruction memory (addresses 16 through 31).

JMPR circuit

Note: This signal
must be specified as

SCLR SPRE

CLR

CLR

C

C

CE

PROG_A(4)

PROG_A(4)

PROG_A

IR(3:0)

PROG_A(3:0)

PROG_A(3:0)

PROG_A(3:0).

PROG_A(4:0)

Module 23
(Modified,

running program counter)

5

5

5

5 5

5

5

4

5

4

4

4

4

4

0

1

0

1

0

1

M6 M6

MUX 6

M6

M7

SEL_A SUM

S_CLR S_PRE

D Q

SPEED

IPROC
(LD7)

ONE_PULSE

SLOW_CLK1

 MEM_ADDR(4)

 MEM_ADDR(4:0)
RST

RES_A(3:0)

NEW_A(3:0)

RST (asyn)
(BTN3)

LOAD_MEM
(BTN2)

INC

INC

A SUM

Adder

Adder
(4 BITS)

Module 8
(Modified,

loading program counter)

Module 24
(Modified,

proper address)

Module 32
(Modified,

JMP and JMPR circuits)

Loading program
counter (LPC)

(modulo 32 counter)

On BASYS 2 board
or NEXYS 2 board

Note: Change the
number of bus bits

from 4 to 5 for
Modules 23, 24, and 8

where shown.

Select address for
JMP or JMPR

A

B

SUM

PC_ADDR

Bus taps

To single LED

FIGURE E23.2 Modified circuits for the running program counter, the proper address, the loading program counter,
and the JMPR circuit for VBC1-E

656 Appendix A Laboratory Experiments

Recommended Pre-Lab:

 1. Create a new project named JMP_JMPR, and write complete VHDL code for the JMP
and JMPR circuits. Make the input and output signal names the same as those used by
module 32 in Figure E23.2. RES_A(3:0) is an internal signal between the JMPR circuit
and the select address for JMP or JMPR. Run a simulation to verify your design works.
If your design does not work, you must fi nd the error or errors and fi x them. [Note: See
Appendix B (Obtaining Simulations via the VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 22 (or Experiment 21 if you skipped
Experiment 22) to the project.

 3. Modify the internal signal for modules 6, 10 and 24 so that there are 5 bus bits for the signal
MEM_ADDR as shown in Figures E23.1 and E23.2.

 4. Modify the definition of the instruction memory (module 6) so that there are 32 memory
storage locations as shown in Figure E23.1.

 5. Modify the code for module 10 to include the bus for the signal MEM_ADDR(3:0). This is
important because only bits 3 downto 0 are used in the circuit for module 10 as shown in
Figure E23.1.

 6. Modify the internal signals for module 23 so that there are 5 bus bits for the signals SEL_A
and SUM as shown in Figure E23.2.

 7. Modify the code for module 23 by changing the conditional signal assignment at input 1 of
MUX 6 from NEW_A to PROG_A(4) & NEW_A as shown in Figure E23.2.

 8. Modify the code for module 23 by changing the conditional signal assignment for the load-
able D flip-flop to a process. The process for the D flip-flop must contain the synchronous
clear signal S_CLR and the synchronous preset S_PRE as shown in Figure E23.2. These
synchronous signals must be placed in the code after the rising edge of the clock signal
SPEED.

 9. Modify the code for module 24 to include the output signal IPROC as shown in Figure E23.2.
The output signal IPROC is connected to a single LED. When the LED is not lighted, the
address range supplied to the total instruction memory (module 6) is 00000 through 01111.
When the LED is lighted, the address range supplied to the total instruction memory is
10000 through 11111.

 10. Modify the internal signal for modules 23 and 24 so that there are 5 bus bits for the signal
PROG_A as shown in Figure E23.2.

 11. Modify the internal signal for modules 8 and 24 so that there are 5 bus bits for the signal
PC_ADDR as shown in Figure E23.2.

 12. Modify the code for module 32 (the JMPR circuit) to include the bus signal PROG_A(3:0):
This is important because only bits 3 down to 0 are used in the circuit for module 32.

 13. VBC1-E requires a single LED for the output signal IPROC. Use LD7 on the BASYS 2
board or on the NEXYS 2 board for this LED as indicated in Figure E23.2.

 14. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be corrected

based on reported errors and warnings. [Note: The warning: FF/Latch <prog_a_4> (with-

www.itpub.net

 Experiment 23: Designing and Testing VBC1-E (Add Extended Instruction Memory) 657

out init value) has a constant value of 0 in block <ProjectName> can be safely ignored
because prog_a(4) is not assigned a value of 1 in this design, which is what the warning is
telling you.] If there are other errors and warnings that need to be corrected, correct your
VHDL code, then rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 15. For information on how to manually load a program into memory, see Appendix E. To

verify that you can load and read back the contents of the instruction memory and the
extended instruction memory, manually load 3 into all the locations of the instruction
memory (IM), then manually load C into all the locations of the extended instruction
memory (EIM). The LED for the signal IPROC will turn off for all the locations of the
instruction memory, and it will turn on for all the locations of the extended instruction
memory. If you can load both the IM and the EIM and read back the information that you
stored, then your circuit is probably working correctly. If your circuit is not working cor-
rectly, you either made a mistake assigning the pin for the signal IPROC, or you may have
design errors in you VHDL code that you must find and fix.

 16. Use the EASY1-E editor to enter the instructions shown in Program E23.1. This program
works on the full-blown version and also on the stripped-down version of VBC1-E. Use
the EASY1-E simulator to single step through the program or run the program so that you
understand what it does.

 17. For information on how to initialize memory at startup, see Appendix E. Load the
machine code for Program E23.1 into the memory of VBC1-E by initializing memory.
Single step through the memory of VBC1-E to verify that the machine code is properly
loaded in the addresses 0 through 31, just as they are in the memory of EASY1-E. Run

;VBC1-E Exp 23 Program 1
;Limited multiply program
;Multiply 2 4-bit numbers at input ports 0 and 1
;provides correct 4-bit result at output port 1
;result cannot be larger than 15 for this program

in r0, 0
in r1, 1
store r0, 0
store r1, 3
repeat:
fetch r0, 2
fetch r1, 0
add r0, r1
store r0, 2

fetch r1, 3
addi r1, 15
store r1, 3
jnz r1, repeat

out r0, 1
halt

PROGRAM E23.1
Limited multiply
program

658 Appendix A Laboratory Experiments

Program E23.1. If VBC1-E does not provide the same results as EASY1-E for each instruc-
tion, then you may have design errors in your VHDL code that you must fi nd and fi x.

 18. Manually load 0 into all locations of the memory, both IM and EIM of VBC1-E, then
manually load the machine code for Program E23.1 into the memory of VBC1-E. Single
step through the memory of VBC1-E to verify that the machine code is properly loaded in
the addresses 0 through 31, just as they are in the memory of EASY1-E. Single step and
also run Program E23.1. VBC1-E should provide the same results as EASY1-E for each
instruction.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of Program E23.1 with your VBC1-E design. You also need to
show that you can store 3 in every location of IM and C in every location of EIM and read
this information back.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 24: DESIGNING AND TESTING VBC1-E (INT
AND IRET INSTRUCTIONS)

In this experiment, you will practice working with modules to provide the INT (software inter-
rupt) and IRET (interrupt return) instructions. Adding the INT and IRET instructions requires
adding two new circuits called the select circuit (module 33) and the store PCPLUS1 circuit
(module 34). The running program counter (module 23) is also modified and divided into two
modules named modules 23a and 23b.
 This is the sixth in a series of projects to design and test VBC1-E. Experiment 24 consists
of the annotated schematics shown in Figures E24.1 and E24.2.
 Figure E24.1 shows the modified circuit for the running program counter and the select
circuit for VBC1-E.
 Figure E24.2 shows the store PCPLUS1 circuit for VBC1-E.
 When the circuits in Figures E24.1 and E24.2 are incorporated in the VBC1-E design, you
can write a program using any of the 25 instructions for VBC1-E, including the INT and IRET
instructions. Circuits that are required to perform a hardware interrupt will be included in the
next experiment.

Recommended Pre-Lab:

 1. Create a new project named Store_PCPLUS1, and write complete VHDL code for the store
PCPLUS1 circuit using simple Boolean equations and a conditional signal assignment.
Make the input and output signal names the same as those used by module 34 in Figure
E24.2. Run a simulation to verify your design works. If your design does not work, you

www.itpub.net

 Experiment 24: Designing and Testing VBC1-E (INT and IRET Instructions) 659

SCLR SPRE

CLR
C

D Q

INC

A SUM

AdderMUX 6

SUM1

SUM2

SEL_A
0

1

0

1

2

3 S1
S0

5
5

5

5
5

5
4

5

5 5 5

5

4

5

PROG_A(4)

PROG_A(3:0)

PROG_A(4)

PROG_A

PROG_A(4:0)

NEW_A(3:0)

M6

M6

M6

B0 B1

B1 B0

S_CLR S_PRE

INC

RST (asyn)
(BTN3)

Module 23a
(Modified,

running program counter (RPC))

Module 33
(New module, select circuit)

Module 23b
(Modified,

running program counter (RPC))

4-to-1
MUX
array

SEL

10000

0 (bit 4)

RETA(3:0)

Note: Internal signal
SEL = B1 & B0

SPEED

FIGURE E24.1 Modified circuit for the running program counter and the select circuit for VBC1-E

Module 34
(New module, store PCPLUS1 circuit)

RST (asyn)
(BTN3)

B0

PCPLUS1

LOAD_PCPLUS1

CLR
C

CE

D Q

44 4

SPEED

SUM1(3:0) RETA(3:0)
(JA-1, JA-2, JA-3, JA-4)

JA

To 4 LEDs

On BASYS 2 board or
top row of Pmod

connector on
NEXYS 2 board

FIGURE E24.2 Store
PCPLUS1 circuit for VBC1-E

must fi nd the error or errors and fi x them. [Note: See Appendix B (Obtaining Simulations
via the VHDL Test Bench Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

660 Appendix A Laboratory Experiments

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 23 to the new project.
 3. Add module 33 to your design using a conditional signal assignment. Divide module 23 as

shown in Figure E24.1 so that SUM1 is an output of module 23a and SUM2 is an input to
module 23b.

 4. Modify module 23b by including the signals B0 and B1 to the two AND gates as shown in
Figure E24.1.

 5. Add module 34 to your design using simple Boolean equations and a conditional signal
assignment.

 6. Use the instruction decoder truth tables for the INT and IRET instructions to obtain the
Boolean equations for the control signals. Modify the instruction decoder (module 14) to
handle the INT and IRET instructions.

 7. VBC1-E requires four LEDs for the output signal RETA(3:0). To test your design requires
an additional peripheral module board—that is, an LED module. Plug the LED module into
the Pmod connector JA on a BASYS 2 board or on a NEXYS 2 board to observe the value
of the output signal RETA.

 8. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 9. To verify that VBC1-E indicates the correct signal for RETA, manually load the machine

code for the instruction INT, which is “a4,” at address 00000, and manually load the
machine code for the instruction JMP 0, which is “c0,” at address 00001. Also load the
machine code for IRET, which is “ac,” at address 10000. Use the EASY1-E editor to enter
the instructions shown in Program E24.1. This program works on the full-blown version
and also on the stripped-down version of VBC1-E.

;VBC1-E Exp 24 Program 1
;Test program for 4 LEDs for RETA
;at addresses 0, 1, and 16
int
jmp 0

biproc
iret

PROGRAM E24.1
Test program for
four LEDs for RETA
at addresses 0, 1,
and 16

 Single step through Program E24.1 with EASY1-E and observe the value of the signal
RETA. Reset VBC1-E and single step through Program E24.1 to verify that VBC1-E works
the same way as EASY1-E. If the signal RETA does not provide the same value via the
four LEDs on VBC1-E as indicated with EASY-E, then you either made a mistake assign-
ing pins, entering the code into VBC1-E manually, or you may have design errors in your
VHDL code that you must find and fix.

 10. Use the EASY1-E editor to enter the instructions shown in Program E24.2. This program
works on the full-blown version and also on the stripped-down version of VBC1-E. Use the
EASY1-E simulator to single step through the program so that you understand what it does.

www.itpub.net

 Experiment 24: Designing and Testing VBC1-E (INT and IRET Instructions) 661

;VBC1-E Exp 24 Program 2

;Test program for 4 LEDs for RETA

;at addresses 0, 14, 15, 16, and 31

jmp 14

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

int

jmp 0

biproc

jmp 15

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

mov r0,r0

iret

 11. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E24.2 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 31, just as they are in the memory of EASY1-E. Single step and also
run Program E24.2. If VBC1-E does not provide the same results as EASY1-E for each
instruction, then you must fi nd and fi x your error or errors.

 12. Use the EASY1-E editor to enter the instructions shown in Program E24.3. This program
works on the full-blown version and also on the stripped-down version of VBC1-E. Use
the EASY1-E simulator to single step through the program or run the program so that you
understand what it does.

PROGRAM E24.2
Test program for four
LEDs for RETA at
addresses 0, 14, 15,
16, and 31

662 Appendix A Laboratory Experiments

;VBC1-E Exp 24 Program 3
;Binary up counter program in Instruction Memory, op 0
;Software interrupt to Extended Instruction Memory
;robot eye program in Extended Instruction Memory, op 1
loadi r0,1
out r0,0
addi r0,1
int
jmpr 13

biproc
loadi r1,1
out r1,1
loadi r1,2
out r1,1
loadi r1,4
out r1,1
loadi r1,8
out r1,1
loadi r1,4
out r1,1
loadi r1,2
out r1,1
loadi r1,1
out r1,1
iret

PROGRAM E24.3
This program works
on the full-blown ver-
sion and also on the
stripped-down ver-
sion of VBC1-E

 13. Comment out Program E24.2 in your VHDL design. Load the machine code for Program
E24.3 into the memory of VBC1-E by initializing memory. Single step through the memory
of VBC1-E to verify that the machine code is properly loaded in the addresses 0 through
31, just as they are in the memory of EASY1-E. Single step and also run Program E24.3. If
VBC1-E does not provide the same results as EASY1-E for each instruction, then you must
fi nd and fi x your error or errors.

 14. Manually load 0 into all locations of the memory, both IM and EIM of VBC1-E, then manu-
ally load the machine code for Program E24.3 into the memory of VBC1-E. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 31, just as they are in the memory of EASY1-E. Single step and also run
Program E24.3. VBC1-E should provide the same results as EASY1-E for each instruction.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is the execution of Program E24.3 with your VBC1-E design.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).

www.itpub.net

 Experiment 25: Designing and Testing VBC1-E (Final Hardware Design for VBC1-E) 663

 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and
describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 25: DESIGNING AND TESTING VBC1-E (FINAL
HARDWARE DESIGN FOR VBC1-E)

In this experiment, you will practice working with modules to provide a hardware interrupt.
Adding a hardware interrupt requires adding modules (modules 35, 36, 37, and 38) and modify-
ing two existing modules (modules 23b and 34).
 This is the seventh and final project in the series of projects to design and test VBC1-E.
Experiment 25 consists of the annotated schematics shown in Figures E25.1 and E25.2.
 Figure E25.1 shows the module for a debounced one-pulse trigger interrupt circuit (mod-
ule 35) and the modified circuit for the running program counter (module 23b) for VBC1-E.

Full-blown
version

Stripped-down
version

Make signal DM in
entity a comment
and make all of

Module 30 a
comment.

C

CCC

Q
SCLR SPRE

CLR PRE
C

D

5

5 5

4
PROG_A(3:0)

PROG_A(4)

PROG_A

PROG_A(4:0)

PROG_A(4)

M6 M6

B0 B1

S_CLR S_PRE

PRE

CLK

RST (asyn)
(BTN3)

Module 23b
(Modified, running program counter (RPC))

Module 35
(New module, debounced one pulse trigger interrupt circuit)

SUM2

SLOW_CLK4

D Q

DDD QQQ
QA QB QC

TI TID

Frequency
divider

COUNT4(18)

TRIG_INT
(J5-4, i.e., BTN3)

On FX2 MIB

TRIG_INT
(JB-4, i.e., BTN3)

On BASYS 2 board or
top row of Pmod

connector on
NEXYS 2 board

SPEED

FIGURE E25.1 Debounced one-pulse trigger interrupt circuit and modified circuit for the running program counter for VBC1-E

664 Appendix A Laboratory Experiments

 Figure E25.2 shows circuits for displaying the signal RETA (return address) for both a hard-
ware interrupt and a software interrupt. For a software interrupt, RETA must contain the address
of the instruction following the INT instruction. For a hardware interrupt, RETA must contain
the address of the instruction that was interrupted and was not completed.

 When the circuits in Figures E25.1 and E25.2 are incorporated in the design, a program that
provides a return for a hardware interrupt can be written that will execute instructions that are
placed in extended instruction memory. RETA provides the return address of the hardware inter-
rupt that occurs when the push button that generates the signal TRIG_INT is pressed. RETA also
provides the correct return address for the instruction INT (the software interrupt instruction) if
it is executed in instruction memory.

Recommended Pre-Lab:

 1. Create a new project named SM_RETA, and write complete VHDL code for the state
machine for RETA using a Boolean equation for the AND operation and a conditional
signal assignment for the loadable D fl ip-fl op. Make the input and output signal names
the same as those used by module 38 in Figure E25.2 except for PROG_A(4). Change
PROG_A(4) to PROG_A4, because this will be a stand-alone design. Run a simulation to
verify your design works. If your design does not work, you must fi nd the error or errors

CSPEED

CLR
C

CE

D Q

CLR
C

Q

CE

CLR PRE

CE

D Q

Module 38
(New module, state machine for RETA)

Module 34
(Modified, store PCPLUS1)

Module 36
(New modified, store PC)

Module 37
(New module,
select RETA)

4 4

4

4 4

0

1

SPEED

SET

SUM1(3:0)

RETA(3:0)
(JA-1, JA-2, JA-3, JA-4)

JA

RST (asyn)
(BTN3)

RST (asyn)

RST (asyn)

B0

S0

PC

B0

PROG_A(4)
LOAD_PC

PROG_A(3:0)

LOAD_PCPLUS1

P CPLUS1

PROG_A(4)
TID

TID

0

On BASYS 2
board or top row of
Pmod connector on

NEXYS 2 board

D

To 4 LEDs

FIGURE E25.2 Circuits for
displaying the signal RETA
(return address) for VBC1-E

www.itpub.net

 Experiment 25: Designing and Testing VBC1-E (Final Hardware Design for VBC1-E) 665

and fi x them. [Note: See Appendix B (Obtaining Simulations via the VHDL Test Bench
Program) for help.]

 2. Your instructor will provide you with additional information about what should be submit-
ted for your pre-lab report requirements—for example, VHDL code, test bench code, and
simulation waveforms.

Tasks:

 1. Write complete VHDL code using the specifi ed design style via a fl at design approach. Use
documentation style M introduced in Chapter 12, Section 12.5.1, Listing 12.4, for marking
each internal signal and each section of code in your VHDL design. Be sure to place all
modules in the code section in numerical order.

 2. Start a new project and add your code for Experiment 24 to the new project.
 3. Add module 35 to your design. Because module 35 has some of the same circuits as mod-

ule 7, you can copy the code for module 7, and modify it to obtain module 35.
 4. For the stripped-down version, be sure to make signal DM a comment and make module 30 a

comment. This effectively removes the data memory monitor from the design of the stripped-
down version of VBC1-E. The full-blown version retains the data memory monitor because
the FX2 MIB provides a Pmod connector for the signal TRIG_INT, so that module 30 does
not have to be removed from the design.

 5. Modify module 23b by adding the circuit for the signal PRE (preset).
 6. Modify module 34 by removing the buffer and the signal RETA that was output by the buf-

fer. The output for module 34 is the signal PCPLUS1, as shown in Figure E25.2.
 7. Add module 36 to your design. Use a Boolean equation for the NOT operation and a condi-

tional signal assignment for the loadable D flip-flop.
 8. Add module 37 to your design using a conditional signal assignment for the MUX.
 9. Add module 38 to your design.
 10. VBC1-E requires a push-button switch for the signal TRIG_INT. For the full-blown version

of VBC1-E, plug a button module into Pmod connector J5. For the stripped-down version
of VBC1-E, remove the LED module plugged into Pmod connector JB and plug a button
module into Pmod connector JB. See Figures E19.1 and E19.2.

 11. Complete the design cycle for your circuit by doing the following:
 a. Assign package pins for all the port signals in the entity for your design.
 b. Generate a programming file, then check to see if your VHDL code needs to be cor-

rected based on reported errors and warnings; if so, correct your VHDL code, then
rerun Generate Programming File.

 c. Download the programming file into the FPGA on a BASYS 2 or NEXYS 2 board.
 12. Use the EASY1-E editor to enter the instructions shown for FB in Program E25.1, if you

designed the full-blown version of VBC1-E. If you designed the stripped-down version
of VBC1-E, use Program E25.1 with the title “VBC1-E Exp 25 Program 1 Stripped.” Use
the EASY1-E simulator to single step through the program or run the program so that you
understand what it does.

;VBC1-E Exp 25 Program 1 FB
;Executes store and fetch instructions
;Uses all input and output ports
;hardware interrupt, displays 0, 15, and 5
in r0,0 ;set input port 0 to any value
store r0,0
fetch r1,0
out r1,0 ;output port 0 follows input port 0

PROGRAM E25.1
Full-blown version
and stripped-down
version

(Continued)

666 Appendix A Laboratory Experiments

in r1,1 ;set input port 1 to any value
store r1,1
fetch r0,1
out r0,1 ;output port 1 follows input port 1
in r0,2 ;set input port 2 to any value
store r0,2
fetch r1,2
out r1,2 ;output port 2 follows input port 2
in r1,3 ;set input port 3 to any value
store r1,3
fetch r0,3
out r0,3 ;output port 3 follows input port 3

biproc
loadi r1,0
out r1,0
out r1,1
out r1,2
out r1,3
loadi r1,15
out r1,0
out r1,1
out r1,2
out r1,3
loadi r1,5
out r1,0
out r1,1
out r1,2
out r1,3
iret

;VBC1-E Exp 25 Program 1 Stripped
;Executes store and fetch instructions
;only uses input and output ports 0 and 1
;hardware interrupt, displays 0, 15, and 5
in r0,0 ;set input port 0 to any value
store r0,0
fetch r1,0
out r1,0 ;output port 0 follows input port 0
in r1,1 ;set input port 1 to any value
store r1,1
fetch r0,1
out r0,1 ;output port 1 follows input port 1

biproc
loadi r1,0
out r1,0
out r1,1
loadi r1,15
out r1,0

www.itpub.net

 Experiment 25: Designing and Testing VBC1-E (Final Hardware Design for VBC1-E) 667

out r1,1
loadi r1,5
out r1,0
out r1,1
iret

 13. For information on how to initialize memory at startup, see Appendix E. Load the machine
code for Program E25.1 into the memory of VBC1-E by initializing memory. Single step
through the memory of VBC1-E to verify that the machine code is properly loaded in the
addresses 0 through 31, just as they are in the memory of EASY1-E. Single step and also
run Program E25.1. If VBC1-E does not provide the same results as EASY1-E for each
instruction, then you made a mistake assigning the pin J5-4 for BTN3 (signal TRIG_INT)
for the full-blown version, made a mistake assigning the pin JB-4 for BTN3 (signal TRIG_
INT) for the stripped-down version, or you may have design errors in your VHDL code that
you must fi nd and fi x.

 14. Use the EASY1-E editor to enter the instructions shown in Program E25.2. This program
works on the full-blown version and also on the stripped-down version of VBC1-E. Use
the EASY1-E simulator to single step through the program or run the program so that you
understand what it does.

 15. Comment out Program E25.1 in your VHDL design. Load the machine code for Pro-
gram E25.2 into the memory of VBC1-E by initializing memory. Single step through the
memory of VBC1-E to verify that the machine code is properly loaded in the addresses 0
through 31, just as they are in the memory of EASY1-E. Run Program E25.2. If VBC1-E

;VBC1-E Exp 25 Program 2
;Binary up counter program in Instruction Memory, op 0
;Hardware interrupt to Extended Instruction Memory
;Lights in progressive left sequence in Extended Instruction
;Memory, op 1
loadi r0,1
back:
out r0,0
addi r0,1
jmp back

biproc
loadi r1,1
out r1,1
loadi r1,2
out r1,1
loadi r1,4
out r1,1
loadi r1,8
out r1,1
loadi r1,0
out r1,1
iret

PROGRAM E25.2
This program works
on the full-blown ver-
sion and also on the
stripped-down ver-
sion of VBC1-E

668 Appendix A Laboratory Experiments

does not provide the same results as EASY1-E for each instruction, then you must fi nd and
fi x your error or errors.

 16. Manually load 0 into all locations of the memory, both IM and EIM of VBC1-E, then
manually load the machine code for Program E25.2 into the memory of VBC1-E. Single
step through the memory of VBC1-E to verify that the machine code is properly loaded in
the addresses 0 through 31, just as they are in the memory of EASY1-E. Single step and
also run Program E25.2. VBC1-E should provide the same results as EASY1-E for each
instruction.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working designs and get them signed
off by your lab instructor. First print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working designs. Your fi nal
working designs are the execution of Programs E25.1 and E25.2 with your VBC1-E design.

 2. Include the complete VHDL code for your VBC1-E design.
 3. Include a printout of the Edit Constraints (Text) for your VBC1-E design, which is gener-

ated by running Edit Constraints (Text).
 4. Be sure to write a short paragraph summarizing the work you did for this experiment, and

describe any problems you may have encountered while obtaining your solutions. You may
include any helpful hints and improvements you may think of for this experiment.

 5. Your lab instructor may add additional requirements for this experiment.

EXPERIMENT 25L: DESIGNING A LOADER FOR
INSTRUCTION MEMORY FOR VBC1-E

by Scott M. Marshall and Richard S. Sandige

25L.1 Background
In this experiment, you will learn how to design a loader for the total instruction memory for
VBC1-E to create VBC1-EL. When completing this experiment, focus on applying existing skills
to new situations and learning good design techniques for interfacing a FPGA with other circuit
components.
 This experiment provides an extension to VBC1-E (which was completed in Experiment 25)
and is not required for VBC1-E to function correctly.
 You do not have to have completed Experiment 17L to complete this experiment. If you
have already completed Experiment 17L, most of the following details will be review, and only
a few bus width changes will be required to convert module L2 to module EL2, while modules
L1 and L3 will remain unchanged to form modules EL1 and EL3, respectively.
 The memory loader works by communicating with a USB communication circuit placed
on a BASYS 2 board or on a NEXYS 2 board by Digilent Inc. The VBC1-L memory loader
software program uses a library provided by Digilent Inc. to communicate with the FPGA via
the USB circuit.

25L.2 Module Overview
The heart of the additional hardware designed for communicating with the USB circuit is a
CFSM (complex finite state machine). CFSMs were previously discussed in Chapter 9. Four
synchronizer circuits (sync circuits), each of which consist of two cascaded D flip-flops (not a

www.itpub.net

 Experiment 25L: Designing a Loader for Instruction Memory for VBC1-E 669

single D flip-flop), serve as USB I/O synchronizers for the CFSM and form a new module, mod-
ule EL1. The CFSM and a single loadable register, explained in Chapter 12, Section 12.4, form
a new module, module EL2. In addition, an OR gate is added as module EL3. Figure E25L.1
shows the block diagrams for modules EL1, EL2, and EL3.

 Each sync circuit in module EL1 is a synchronizer circuit that consists of two D flip-flops
connected as shown in the Figure E25L.1A.

Loadable memory
controller

Sync
circuit

CCLK
(50 MHz)

A_USB_ASTB USB_ASTB
Sync

circuit

CCLK
(50 MHz)

A_USB_DSTB USB_DSTB

Sync
circuit

CCLK
(50 MHz)

CLK
(50 MHz)

A_USB_WRITE

USB_ASTB

USB_DSTB

USB_WRITE

USB_ASTB USB_DATA

USB_WAIT

MEMLOAD_ADDR

MEMLOAD_INST

MEMLOAD_WE

USB_DATA

USB_WAIT

MEMLOAD_ADDR

MEMLOAD_INST

MEMLOAD_WE

MEMLOAD_WE
LOAD_MEM

To Modules 11,
12, 13, and 24

LOAD_MEM_IN
(BTN2)

USB_DSTB

USB_WRITE

USB_WRITE
Sync

circuit

CCLK
(50 MHz)

USB_WAIT USB_WAIT_S

RST
(asyn)

CLR

C

Module EL1
(New module, USB I/O synchronization)

Module EL2
(New module)

Module EL3
(New module, load
memory OR gate)

8

5

8

FIGURE E25L.1 Overview block diagrams for new modules EL1, EL2, and EL3

 Things to note regarding Figures E25L.1 and E25L.1A:

 • Figure E25L.1 shows block diagrams of the new modules EL1, EL2, and EL3 added to
VBC1-E.

 • The external input signals for module EL1 are CLK, A_USB_ASTB, A_USB_DSTB, and
A_USB_WRITE, while the external output signal is USB_WAIT_S. Note: The notation
A_ is used for asynchronous external input signals coming into the FPGA—for example,
A_USB_ASTB—and the notation _S is used for synchronous external output signals leav-
ing the FPGA—for example, USB_WAIT_S. The remaining signals are internal signals.

Sync
circuit

C

≡
CCLK

D Q

CCLK

D Q

FIGURE E25L.1A Synchronizer
circuit

670 Appendix A Laboratory Experiments

 • The external input signals for module EL2 are CLK and RST, while signal USB_DATA(7:0)
is of type inout, because it is used for bidirectional communication with the USB circuit.
The remaining signals are internal signals.

 • Module EL3 has the external internal signal LOAD_MEM_IN and internal signals
MEMLOAD_WE and LOAD_MEM.

 • Signals for communication with the USB chip have USB as a part of the name, while signals
pertinent to loading the instruction memory have names that are prefixed with MEMLOAD.

 • Adjustments to the VHDL entity and internal signal declarations to account for applicable
new or modified input, output, and internal signals must be made. The external asyn-
chronous input signals (names with A_), synchronous output signals (names with _S),
and bidirectional USB_DATA bus are new I/O signals for the FPGA, while the change of
LOAD_MEM to LOAD_MEM_IN for BTN2 is the only change to the existing I/O signals.

 • Reset inputs to the the sync circuits are not required.

25L.3 Memory Loader and CFSM Detail
Figure E25L.2 shows a detailed block diagram of the subcomponents of module EL2.

 Things to note regarding Figure E25L.2:

 • Figure E25L.2 represents a block diagram of the subcomponents of module EL2, including
the loadable register.

 • The loadable register subcomponent stores the current memory address the memory loader
CFSM is acting upon, which is provided on the MEMLOAD_ADDR output signal.

 • The signal LOAD_NEW_ADDR joins an output of the CFSM to the CE (clock-enable)
input of the loadable register.

 • The MEMLOAD_ADDR output signal is 5 bits wide and provides the address of the
instruction to load, while the MEMLOAD_INST output signal is 8 bits wide and provides
the instruction to load, and the MEMLOAD_WE output signal provides a write-enable sig-
nal for the instruction memory.

 The CFSM in module EL2 should be designed using the two-process PS/NS method. A
state diagram detailing the proper function of the CFSM is provided in Figure E25L.3.
 Things to note Regarding Figure E25L.3:

 • Figure E25L.3 is a state diagram for the CFSM in module EL2, and uses the show all values
convention, rather than the show where true convention, both explained in Chapter 9, Sec-
tion 9.7.

CFSM

CLK
(50 MHz)

USB_ASTB

USB_DSTB

USB_WRITE

USB_ASTB USB_DATA
Loadable
register

USB_WAIT

LOAD_NEW_ADDR
LOAD_NEW_ADDR

MEMLOAD_INST

MEMLOAD_WE

USB_DATA

USB_DATA(4:0)

USB_WAIT

MEMLOAD_INST (To Module 13)

MEMLOAD_WE (To Modules 13 and EL3)

USB_DSTB

USB_WRITE

C

D Q

CE

CLK
(50 MHz)

MEMLOAD_ADDR
(To Module 24)

RST
(asyn)

CLR

C

Module EL2 Subcomponents

8

5 5

8

FIGURE E25L.2 Detailed block diagram for the subcomponents of module EL2

www.itpub.net

 Experiment 25L: Designing a Loader for Instruction Memory for VBC1-E 671

 • Where the values 0, 00000000, and ZZZZZZZZ are specified as the Moore outputs in the
state diagram, use these as the default values that precede the case statement. Values or
variables other than these should be specified for states within the case statement.

 • While the USB_DATA signal is an output, it also appears as an input in the WRITE_INST
state because it is a bidirectional signal. Data can both be written to and read from the bidi-
rectional USB_DATA bus. Data can be read when USB_DATA is set to ZZZZZZZZ.

 • The signals USB_ASTB and USB_DSTB are active low signals and are labeled accordingly
in the state diagram. These two signals are strobe signals driven by clock-synchronization
D flip-flops in module EL1, which are driven by the USB circuit. These strobe signals are
pulsed to trigger the start of either address or instruction communication with the USB circuit.

 • The signal USB_WRITE is active low, such that when the signal is low, data are written to
the FPGA.

 • The READ states are reached when the USB circuit (and thus the computer) is reading the
current address or instruction from the CFSM and instruction memory, while the WRITE
states are reached when the USB circuit (and thus the computer) is writing a new address or
instruction to the CFSM and instruction memory.

 • Situations where no state change occurs (such as when READY points to itself) should not
be described using specific conditions in if and elsif clauses, but rather, should be described

READY

0
0

0

00000000
ZZZZZZZZ

0
0

1

00000000
ZZZZZZZZ

0
0

0

00000000
000 & MEMLOAD_ADDR

1
0

0

00000000
ZZZZZZZZ

0
0

0

00000000
00000000

0
1

0

USB_DATA
ZZZZZZZZ

Name

LOAD_NEW_ADDR

MEMLOAD_WE

MEMLOAD_INST

USB_DATA

USB_WAIT

Legend

EIs

USB_ASTB⋅USB_DSTB +

⋅USB_ASTB

USB_ASTB⋅

USB_DSTB

RST
(asyn)

READ_ADDR

READ_INST

DONE

WRITE_INST

WRITE_ADDR

USB_ASTB⋅USB_DSTB

USB_WRITE⋅USB_DSTB

USB_ASTB + USB_DSTB

⋅USB_DSTB

USB_WRITE⋅USB_ASTB

USB_WRITE⋅

USB_ASTB⋅

USB_DSTB

USB_WRITE⋅

USB_ASTB

USB_DSTB⋅

FIGURE E25L.3 State diagram for module EL2 CFSM

672 Appendix A Laboratory Experiments

by else clauses. The else clauses act as catch-all states and will prevent the generation of any
latches.

 • The value of 00000000 for the signal USB_DATA in the READ_INST state is used
because reading the instruction memory on the computer is not supported in VBC1-EL.

 • For more details on Digilent Inc.’s communication protocol, see the document “Digilent
Parallel Interface Model Reference Manual” at http://www.digilentinc.com/Data/Products/
ADEPT/DpimRef%20programmers%20manual.pdf.

 It is important to use a default output value of ZZZZZZZZ (make Zs uppercase, not lower-
case) for the USB_DATA signal to prevent bus contention or driver fight, as previously discussed
in Chapter 7, Section 7.3. Setting the USB_DATA signal to ZZZZZZZZ places the FPGA pins
in a high impedance state, which can be thought of as being disconnected. This allows the USB
circuit to safely send data to the FPGA without hardware damage, the FPGA to read the data,
and the USB_DATA signal to work as a bidirectional bus. For more information on data bus
sharing and the high impedance state, see Chapter 7, Sections 7.2 and 7.3.

25L.4 Good Design Practices: Interfacing with Other Components
It is important to realize that a goal of this experiment is not only to review previously learned
VHDL design concepts and to create an easy and fast way to load VBC1-E instruction memory, but
to also learn new techniques and best practices when interfacing an FPGA with other components.
 Push-button and switch events are asynchronous, because a user can trigger a push button
or switch independent of the clock signal CLK. The asynchronous behavior of other compo-
nents, such as the USB circuit, may not be as apparent; however, they too are asynchronous
because a CLK signal is not transferred between them and the FPGA.
 Asynchronous signals can cause problems within the FPGA if their levels change when the
CLK signal reaches the triggering (rising and/or falling) edge. When this occurs, the FPGA may
not use the intended value of the asynchronous signal and can enter a metastable state.
 To prevent problems, it is good design practice to synchronize asynchronous signals, such
as inputs from other circuit components, as well as outputs of combinational logic, which can
become asynchronous even if originally generated by synchronous logic due to propagation
delays. It considered good design practice to synchronize a signal by feeding it through two
cascaded D flip-flop as shown in Chapter 9, Section 9.10.
 In the case of VBC1-EL, the asynchronous FPGA input signals A_USB_ASTB, A_USB_
DSTB, and A_USB_WRITE should all be synchronized, resulting in the signals USB_ASTB,
USB_DSTB, and USB_WRITE. In addition, the asynchronous combinational logic output
signal USB_WAIT from module EL2 should be synchronized to form the FPGA output signal
USB_WAIT_S. Module EL1 serves this purpose.
 Note that best design practices would also synchronize the USB_DATA signal. However,
synchronizing USB_DATA, which is a bidirectional tri-stated bus, is an advanced technique that
will not be covered here.

25L.5 Signal Routing Modifications
To allow the instruction memory to be loaded using either the push buttons and switches or the
memory loader (module EL3), the LOAD_MEM signal, which is high when memory is being
loaded, must be changed to include the MEMLOAD_WE signal from module EL2. To do so, the
LOAD_MEM signal is renamed to LOAD_MEM_IN in both the entity and the .ucf (implemen-
tation constraints) file and must be connected to BTN2. Then, a new internal signal by the name
of LOAD_MEM is created and is assigned as the OR combination of LOAD_MEM_IN and
MEMLOAD_WE, forming the OR gate in module EL3. All existing modules should continue to
use the LOAD_MEM signal, not LOAD_MEM_IN. Now, when either BTN2 is pressed or when
MEMLOAD_WE is high, memory will be loaded.

www.itpub.net

 Experiment 25L: Designing a Loader for Instruction Memory for VBC1-E 673

 In order to accommodate the additional address, instruction, and write-enable signals from
the memory loader, modules 13 (load memory) and 24 (proper address) must be modified. A
single 8-bit-wide 2-to-1 MUX array along with a single 2-to-1 MUX must be added to mod-
ule 13, along with the internal signals LOAD_INST(7:0) and LOAD_WE. A single 5-bit-wide
2-to-1 MUX array, along with the internal signal LOAD_ADDR(4:0), must be added to module
24. The modified versions of modules 13 and 24 are detailed in Figures E25L.4 and E25L5,
respectively.

 Things to note regarding Figure E25L.4:

 • The LOAD_INST(7:0) and LOAD_WE internal signals are added, along with an 8-bit 2-to-1
MUX array and a single 2-to-1 MUX.

 • The signal LOAD_MEM_IN chooses between the memory loader and the manual push
buttons and switches for loading memory. When LOAD_MEM_IN is high, LOAD_MEM is
also high (from module EL3), and memory is loaded manually.

 • The signal LOAD_MEM indicates when memory is being loaded.

Module 13
(Modified)

MEMLOAD_INST INST

LOAD_MEM_IN

LOAD_MEM

LOAD_INST

00000000
8

8
0

1

0

18

8

8

SW(7:0)
(SW7...SW0)

MEMLOAD_WE WE

LOAD_MEM_IN
(BTN2)

LOAD_MEM

LOAD_WE

0

0

1

0

1

WEI
(BTN0)

FIGURE E25L.4 Block diagram of
modified module 13

 Things to note regarding Figure E25L.5:

 • The LOAD_ADDR(4:0) internal signal is added along with a 5-bit 2-to-1 MUX array.
 • The signals LOAD_MEM_IN and LOAD_MEM act similarly as they do in the modified

version of module 13, detailed in Figure E25L.4.

 Upon completion of the additions of modules EL1, EL2, and EL3 and the modifications of
modules 13 and 24, the design of VBC1-EL is complete. The memory loader (module EL2) can

Module 24

MEMLOAD_ADDR

PROG_A

MEM_ADD

(BTN2)

LOAD_MEM

LOAD_ADDR

5

5
0

1

0

15

5

5

PC_ADDR

R

LOAD_MEM_IN

FIGURE E25L.5 Block diagram
of modified module 24

674 Appendix A Laboratory Experiments

now control the instruction memory just as if memory is being loaded manually. Program E25.2
in Experiment 25 can be used to verify completion of VBC1-EL. For information on loading
programs with VBC1-EL and on how to use the VBC1-L (VBC1-EL) memory loader program,
see Appendix E.

Tasks:

 1. Write the complete VHDL design for the modifi cations and additions described using the
design styles you prefer via a fl at design approach. Use documentation style M, introduced
in Chapter 12, Section 12.5.1, Listing 12.4 and be sure that the new modules are added in
numerical order in the code section.

 2. Start a new project with an entity that resembles that of Experiment 25, but make the
needed modifications for modules EL1, EL2, and EL3. Copy the existing VHDL design
from Experiment 25 to use as a starting base for the needed additions and modifications.

 3. Add the internal signals needed for modules 13, 24, EL1, EL2, and EL3. When using docu-
mentation style M, remember that the signal LOAD_MEM is connected to modules EL3,
11, 12, 13, and 24.

 4. Modify modules 13 and 24 as described in Figures E25L.4 and E25L.5. Also notice in Fig-
ures E25L.4 and E25L.5 that signal LOAD_MEM_IN must be connected to BTN2, because
the signal LOAD_MEM is used as an internal signal for this design.

 5. Add module EL1 using the block diagrams in Figure E25L.1.
 6. Add module EL2 using the CFSM state diagram in Figure E25L.3 and the block diagrams

in Figures E25L.1 and E25L.2.
 7. Add module EL3 using the block diagram in Figure E25L.1.
 8. Modify the .ucf (implementation constraints) file to account for the change of LOAD_MEM

to LOAD_MEM_IN for BTN2 as well as the new I/O connections for modules EL1 and
EL2. See Appendix C for the pin connections for all the signals that communicate with the
USB circuit (these signals contain the letters USB).

 9. For information on loading memory via the memory loader program, see Appendix E. With
the design of VBC1-EL complete, the VBC1-L (VBC1-EL) memory loader program can be
used to automatically load memory. Verify that the completed design works by using the
VBC1-L (VBC1-EL) memory loader program to load Program E25.2 in Experiment 25 and
run the program successfully on a BASYS 2 board or on a NEXYS 2 board.

Lab Report Requirements:

 1. To receive full credit, you must demonstrate your fi nal working design and get it signed
off by your lab instructor. First, print out a cover page with only the following information:
course title, experiment number, your name, and your partner's name(s). Then invite your
lab instructor to come to your bench to observe your fi nal working design. Your fi nal work-
ing design is demonstrating that Program E25.2 in Experiment 25 can be loaded using the
VBC1-L memory loader software program and run successfully on a BASYS 2 board or on
a NEXYS 2 board with your VBC1-EL design.

 2. Explain the purpose of the synchronizer circuits (sync circuits) in module EL1.
 3. Explain why the state machine in module EL2 is considered complex.
 4. Explain the purpose of the loadable register subcomponent in module EL2.
 5. Explain the purpose of module EL3.
 6. Include the complete VHDL code for your VBC1-EL design.
 7. Include a text copy of the .ucf (implementation constraints) file.
 8. Write a short paragraph explaining the work you did for this experiment, along with a

description of any problems you may have encountered and their solutions. Include helpful
hints and suggestions of improvement for this experiment.

 9. Your lab instructor may add additional requirements for this experiment.

www.itpub.net

A p pp e n d i xxxx B
Obtaining Simulations via the
VHDL Test Bench Program

 675

B.1 INTRODUCTION

The purpose of Appendix B is to show how to use the VHDL Test Bench program to obtain
simulations. A Test Bench Waveform program was available in ISE up through Version 10,
in addition to a VHDL Test Bench program. Starting with ISE Version 11, Xilinx- elected to
remove the Test Bench Waveform program, but they continued to support the VHDL Test Bench
program. To obtain simulations with the latest version of ISE, one must learn how to use the
VHDL Test Bench program. The test bench code generated by the VHDL Test Bench program
is portable—that is, it can be used with the ISE compiler and also with other compilers. The Test
Bench Waveform program that was removed could only be used with the ISE compiler, which
was probably the reason it was removed.
 The following examples provide you with enough information to obtain simulations. The
simulation waveforms that are shown in the following examples were obtained using ISE Ver-
sion 12 or later. The output simulation waveforms for different versions of ISE may look slightly
different. In ISE Versions 11 and 12, portions of the waveforms that represent a 1 are shaded, as
you will see later when the waveforms are shown. This improvement makes it a little easier to
distinguish between 1s and 0s in the simulation waveforms.
 A design project can be updated from older ISE versions (Versions 9 or 10), which have
the extension .ise, to a newer ISE version (Version 11 or newer), which have the extension .xise.
First, open the ISE Project Navigator for the newer version of ISE. Second, click on the down
arrow at the bottom right-hand corner of the screen to change from ISE Project Files (*.xise) to
Old ISE Project fi les (*.ise). Third, click on the old ISE Project fi le, then click “Migrate Only”
to convert the older .ise fi le to the newer .xise fi le.

B.2 EXAMPLE 1—COMBINATIONAL LOGIC DESIGN
(PROJECT: AND_3)

Important Note: For other combinational logic designs, follow the same procedure presented in
this section.
 Listing B.1 shows a complete VHDL design for a three input AND gate—that is, this is the
fi rst design in Experiment 1A in Appendix A.

676 Appendix B Obtaining Simulations via the VHDL Test Bench Program

 Follow the procedure in Experiment 1A, in Section 2, to enter this VHDL design into the
Xilinx ISE Project Navigator if you have not already done so. Double-click Synthesize—XST,
to see if there are any errors. If there are any errors, you must correct them before you continue.
 To simulate this design, click Project on the menu bar, then under the drop-down window
click New Source. When the New Source Wizard window appears, select (click) VHDL Test
Bench in the list, and type in a fi le name. We used the name sim, which is short for simulation.
Be sure to choose a fi le name that starts with a letter and has no spaces in it. Click Next, Next,
Finish.
 Your screen should now show the test bench code for AND_3 that is shown in Template B.1:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity AND_3 is port (
 A,B,C : in STD_LOGIC;
 F : out STD_LOGIC
);
end AND_3;

architecture Boolean_function of AND_3 is
begin
 F ,5 A and B and C;
end Boolean_function;

LISTING B.1
Complete VHDL
design for a 3-input
AND gate (project:
AND_3)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

--Uncomment the following library declaration if using
--arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY sim IS
END sim;

ARCHITECTURE behavior OF sim IS

 --Component Declaration for the Unit Under Test (UUT)

COMPONENT AND_3
PORT(
 A : IN std_logic;
 B : IN std_logic;
 C : IN std_logic;
 F : OUT std_logic
);
END COMPONENT;

--Inputs
signal A : std_logic :5 ‘0’;
signal B : std_logic :5 ‘0’;
signal C : std_logic :5 ‘0’;

TEMPLATE B.1 Test
bench code for the
3-input AND gate
design in Listing B.1
(project: AND_3)

www.itpub.net

 B.2 Example 1—Combinational Logic Design (Project: AND_3) 677

--Outputs
signal F : std_logic;

--No clocks detected in port list. Replace ,clock. below with
--appropriate port name

constant ,clock._period : time :5 10 ns;
BEGIN

 --Instantiate the Unit Under Test (UUT)
uut: AND_3 PORT MAP (
 A 5. A,
 B 5. B,
 C 5. C,
 F 5. F
);

--Clock process definitions
,clock._process :process
begin
 ,clock. ,5 ‘0’;
 wait for ,clock._period/2;
 ,clock. ,5 ‘1’;
 wait for ,clock._period/2;
end process;

--Stimulus process
stim_proc: process
begin
 --hold reset state for 100 ns.
 wait for 100 ns;

 wait for ,clock._period*10;

 --insert stimulus here

 wait;
end process;

END;

 The test bench code in Template B.1 was generated by WebPACK ISE Version 12. Because
this is a combinational logic design, there is no clock. Observe the comment “No clocks detected
in port list.” Comment out or remove the section of the test bench code that contains the name
clock, including the clock process following the comment “Clock process defi nitions.”
 Replace the stimulus process with the code shown in Stimulus Process B.1, then click Save
to save the test bench code.
 After you add the stimulus process to the template, you have created fully functional test
bench code for the 3-input AND gate design in Listing B.1.
 Test bench code is simply a program that supplies the information necessary to run a simu-
lation. Because we are using VHDL, the test bench code is patterned after VHDL and supplies

678 Appendix B Obtaining Simulations via the VHDL Test Bench Program

the stimulus inputs necessary to run a simulation for a VHDL design. When you fi rst begin to
use test bench code, it is helpful to analyze the code to see how it is written. As you see more
test bench code, you will begin to understand how to write your own code. It is easy to use the
VHDL Test Bench template and modify it to provide your fi nal test bench code for a combina-
tional logic design, because you only need to learn how to remove the clock signals and supply
the stimulus process, which contains the stimulus inputs for your design. Notice that the stimu-
lus inputs show all the possible combinations of the input signals A, B, and C.
 Things you should notice about the template for the test bench code for Template B.1 that is
generated for your design:

 • The library part has a comment concerning arithmetic functions. Uncomment the USE
clause if you are using an arithmetic function in your design.

 • The entity declaration is empty because it requires no inputs or outputs.
 • In the architecture declaration, the design is declared as a component with the same inputs

and outputs as specifi ed in the unit under test (UUT)—that is, AND_3 for this example.
 • All the input port signals and the output port signals in the entity of the UUT are declared

as internal signals. All the internal signals are initialized to 0 via :5 '0'.
 • The UUT is instantiated after the fi rst begin in the architecture.
 • The stimulus process cannot contain a sensitivity list because a wait statement is used in the

process.
 • The stimulus inputs are placed after begin in the stimulus process. The stimulus inputs are

applied for the period of time given by the evaluation of the time expression in each wait
statement when the simulate behavioral model is run. The last wait statement stops the
simulation.

 Don’t get discouraged when you obtain a simulation for a design. Simply use the template
and add the stimulus process. If you change the stimulus inputs, you can see how this affects
the simulation result—that is, via trial and error. Simply change the stimulus inputs, save the
sim fi le, and rerun the simulation. To obtain the simulation waveform, click Simulation in the
Sources window of the ISE Project Navigator to turn on the radio button beside Simulation.
Next, click the VHDL Test Bench fi le sim.vhd to highlight it. If you elected to use a different fi le
name for the simulation fi le, then click your elected fi le name to highlight it. Do not click the
uut - AND_3 fi le to highlight it, because this fi le is not the simulation fi le.

--Stimulus Process
process
begin
 --stimulus inputs
 A ,5 ‘0’; B ,5 ‘0’; C ,5 ‘0’; wait for 100 ns;
 A ,5 ‘0’; B ,5 ‘0’; C ,5 ‘1’; wait for 100 ns;
 A ,5 ‘0’; B ,5 ‘1’; C ,5 ‘0’; wait for 100 ns;
 A ,5 ‘0’; B ,5 ‘1’; C ,5 ‘1’; wait for 100 ns;
 A ,5 ‘1’; B ,5 ‘0’; C ,5 ‘0’; wait for 100 ns;
 A ,5 ‘1’; B ,5 ‘0’; C ,5 ‘1’; wait for 100 ns;
 A ,5 ‘1’; B ,5 ‘1’; C ,5 ‘0’; wait for 100 ns;
 A ,5 ‘1’; B ,5 ‘1’; C ,5 ‘1’; wait for 100 ns;
 A ,5 ‘0’; B ,5 ‘0’; C ,5 ‘0’; wait;
end process;

STIMULUS
PROCESS B.1 Code
for the stimulus
inputs for the 3-input
AND gate design in
Listing B.1 (project:
AND_3)

www.itpub.net

 B.3 Example 2—Synchronous Sequential Logic Design (Project: DFF) 679

 Open up the ISim Simulator in the Processes window, by clicking the plus sign. In the
Processes window in the ISE Project Navigator, double-click Behavioral Check Syntax or right-
click on Behavioral Check Syntax, which opens up a drop-down window, then click run. This
checks to see if there are any errors in the syntax for the test bench code. Click on Console in the
Console window at the bottom of the ISE Project Navigator to observe if the process “Behav-
ioral Check Syntax” was successfully completed. If the process was not successfully completed,
you must fi nd and fi x your error or errors.
 If the syntax for the test bench code is correct, double-click Simulate Behavioral Model or
right-click Simulate Behavioral Model, which opens up a drop-down window, then click run.
This starts the ISE simulator. After the simulation waveforms are generated and appears on the
screen, click on the “Zoom to Full View” icon.
 The simulation result that is provided in the ISim window is shown in Waveform B.1.

 The scale for Waveform B.1 is shown above the waveforms. Observe that ns stands for nano-
seconds, which is 1029 seconds. Notice that all values of 1 in Waveform B.1 are highlighted.
 When the simulation is run, the stimulus inputs for the signals A, B, and C are applied to the
VHDL code for the design and the output signal F is generated. Because the output signal F in
Waveform B.1 follows the truth table for a 3-input AND gate, we know that the VHDL code for
the design is correct.
 If the output signal F did not follow the truth table for a 3-input AND gate, then we would
know that the VHDL code for the design has an error. Entering the wrong assignment statement
for the Boolean function will result in an error. For example, if you would enter the assignment
statement for the Boolean function of the 3-input AND gate as F ,5 A and B or C or as F ,5
A nand B and C, then you would observe that the output signal F does not follow the truth table
for a 3-input AND gate, so the VHDL design would have an error.
 If you were writing your own test bench code, your test bench code could also have an error.
If you have a problem obtaining a simulation, look closely at both your VHDL design and the
test bench code that you entered for the design to fi nd and correct any errors that may exist.

B.3 EXAMPLE 2—SYNCHRONOUS SEQUENTIAL LOGIC
DESIGN (PROJECT: DFF)

Important Note: For other synchronous sequential logic designs, follow the same procedure
presented in this section.
 Listing B.2 shows a complete VHDL design for a DFF, using a datafl ow design style with a
conditional signal assignment (CSA).

+

+

+

+ f

a

b

c

0

0

0

0

Name Value 0 ns 500 ns WAVEFORM B.1
Simulation result

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DFF is port (
 d, clk, rst: in std_logic;

LISTING B.2
Complete VHDL
design for a DFF
(project: DFF)

(Continued)

680 Appendix B Obtaining Simulations via the VHDL Test Bench Program

 q: inout std_logic
);
end DFF;
architecture dataflow of DFF is
begin
 q ,5 ‘0’ when rst 5 ‘1’ else
 d when rising_edge (clk) else
 q; --note: “else q” is inferred (so it can be removed)
end dataflow;

 Enter this VHDL design into the Xilinx ISE Project Navigator, and then double-click Syn-
thesize—XST, to see if there are any errors. If there are any errors, you must correct them before
you continue.
 To simulate this design, click Project on the menu bar, then under the drop-down window
click New Source. When the New Source Wizard window appears, select (click) VHDL Test
Bench in the list, and type in a fi le name. We use the name sim, which is short for simulation.
Be sure to choose a fi le name that starts with a letter and has no spaces in it. Click Next, Next,
Finish.
 Your screen should now show the test bench code for AND_3 that is shown in Template B.2:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

--Uncomment the following library declaration if using
--arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY sim IS
END sim;

ARCHITECTURE behavior OF sim IS
 --Component Declaration for the Unit Under Test (UUT)

 COMPONENT DFF
 PORT(
 d : IN std_logic;
 clk : IN std_logic;
 rst : IN std_logic;
 q : INOUT std_logic
);
 END COMPONENT;

 --Inputs
 signal d : std_logic :5 ‘0’;
 signal clk : std_logic :5 ‘0’;
 signal rst : std_logic :5 ‘0’;

 --BiDirs
 signal q : std_logic;

TEMPLATE B.2 Test
bench code for the
DFF design in Listing
B.2 (project: DFF)

www.itpub.net

 B.3 Example 2—Synchronous Sequential Logic Design (Project: DFF) 681

 --Clock period definitions
 constant clk_period : time :5 10 ns;

BEGIN

 --Instantiate the Unit Under Test (UUT)
 uut: DFF PORT MAP (
 d 5. d,
 clk 5. clk,
 rst 5. rst,
 q 5. q
);

 --Clock process definitions
 clk_process :process
 begin
 clk ,5 ‘0’;
 wait for clk_period/2;
 clk ,5 ‘1’;
 wait for clk_period/2;
end process;

--Stimulus process
stim_proc: process
begin
 --hold reset state for 100 ns.
 wait for 100 ns;

 wait for clk_period*10;

 --insert stimulus here

 wait;
end process;

END;

 The test bench code in Template B.2 was generated by WebPACK ISE Version 12. Because
this is a synchronous sequential logic design, there is a clock. Following the comment “Clock
period defi nitions,” change “time :5 10 ns” to “time :5 50 ns” because we want to display the
clock period as 50 ns (20 MHz), rather than the clock period as10 ns (100 MHz).
 Replace the stimulus process with the code shown in Stimulus Process B.2, then click Save
to save the test bench code.

--Stimulus Process (Make time :5 50 ns)
process
begin
 --stimulus inputs
 rst ,5 ‘1’; wait for 50 ns;

STIMULUS
PROCESS B.2 Code
for the stimulus
inputs for the DFF
design in Listing B.2
(project: DFF)(Continued)

682 Appendix B Obtaining Simulations via the VHDL Test Bench Program

 rst ,5 ‘0’; wait for 50 ns;
 d ,5 ‘1’; wait for 100 ns;
 d ,5 ‘0’; wait for 400 ns;
 d ,5 ‘1’; wait for 50 ns;
 rst ,5 ‘1’; wait;
end process;

 After you add the stimulus process to the template, you have created fully functional test
bench code for the DFF design in Listing B.2.
 To obtain the simulation waveform, click Simulation in the Sources window of the ISE
Project Navigator to turn on the radio button beside Simulation. Next, click the VHDL Test
Bench fi le sim.vhd to highlight it. If you elected to use a different fi le name for the simulation
fi le, then click your elected fi le name to highlight it. Do not click the uut - DFF fi le to highlight
it because this fi le is not the simulation fi le.
 Open up the ISim Simulator in the Processes window, by clicking the plus sign. In the
Processes window in the ISE Project Navigator, double-click Behavioral Check Syntax or right-
click on Behavioral Check Syntax, which opens up a drop-down window, then click run. This
checks to see if there are any errors in the syntax for the test bench code. Click on Console in the
Console window at the bottom of the ISE Project Navigator to observe if the process “Behav-
ioral Check Syntax” was successfully completed. If the process was not successfully completed,
you must fi nd and fi x your error or errors.
 If the syntax for the test bench code is correct, double-click Simulate Behavioral Model or
right-click Simulate Behavioral Model, which opens up a drop-down window, then click run.
This starts the simulator. After the simulation waveforms are generated and appears on the
screen, click on the “Zoom to Full View” icon.
 The simulation result for the DFF design is displayed in the ISim window as shown in
Waveform B.2.

 Observe that the simulation result in Waveform B.2 follows the characteristic table for the
positive edge triggered DFF with a CLR input, which is the complete VHDL DFF design in List-
ing B.2. If the output signal Q did not follow the characteristic table, then we would know that
the design contains an error that must be found and fi xed. If you have an error in your design,
you must fi nd the error or errors and fi x them and rerun the Simulate Behavioral Model to verify
the fi x or fi xes.

+

+

+

+

+

q

clk_period

rst

clk

d

0

0

0

50000 ps 50000 ps

1

Name Value 0 ns 200 ns 400 ns 600 ns 800 nsWAVEFORM B.2
Simulation result for
DFF

www.itpub.net

A p pp e n d i xxxx C
FPGA Pin Connections—
Handy Reference

 683

C.1 BASYS 2 BOARD

K14
8

Pmod JA
FPGA

pin

AN
(active low input)

AN refers to anode

FPGA pin connections for the BASYS 2 board: CLK is 25, 50, or 100 MHz (use FPGA Pin B8)
Family: Spartan3E Device: XC3S100E Package: CP132

Package: CP132or Device: XC3S250E

Slide
switch

LED
cathode

FPGA
pin

BJT
base

FPGA
pin

FPGA
pin

Push-
button
switch

FPGA
pin

Single
LED

FPGA
pin

SW0 P11

SW1 L3

SW2 K3

SW3 B4

BTN0 G12

BTN1 C11

BTN2 M4

BTN3 A7

SW4 G3

SW5 F3

SW6 E2

SW7 N3

CA L14

CB H12

CC N14

CD N11

AN0 F12

AN1 J12

AN2 M13

AN3

CE P12

CF L13

CG M12

DP N13

LD0 M5

LD1 M11

LD2 P7

LD3 P6

LD4 N5

LD5 N4

LD6 P4

LD7 G1

SW7 SW6 SW5SW SW4 SW3 SW2 SW1 SW0

Push-button switches (press down for active high output)

BTN3 BTN2 BTN1 BTN0

Single LEDs with active high inputs

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

AN0 is right-most 7-segment display
AN3 is left-most 7-segment display

DISP1

(Base)

Common Anode

To anodes of
LED 7-segment

display Segments CA through CG and
DP are active low inputs

CA refers to cathode for segment A,
CB refers to cathode for segment B, etc.,
DP refers to cathode for segment DP.

CA

CG

CD

CE

CF CB

CC

DP

BJT

Peripheral connectors

I/O

JA-4(LSB) B5

JA-3 J3

JA-2 A3

JA-1(MSB) B2

Pmod JB
FPGA

pinI/O

JB-4(LSB) B7

JB-3 C5

JB-2 B6

JB-1(MSB) C6

Pmod JC
FPGA

pinI/O

JC-4(LSB) C9

JC-3 A10

JC-2 B9

JC-1(MSB) A9

Pmod JD
FPGA

pinI/O

JD-4(LSB) D12

JD-3 C13

JD-2 A13

JD-1(MSB) C12

Connector circuit

1 MSB
2
3
4 LSB
5 GND
6 V

CC

Plug
Pmod
in here

V
CC

Slide switches (push forward = high output and pull back = low output)

684 Appendix C FPGA Pin Connections—Handy Reference

C.2 NEXYS 2 BOARD

C18

F15
8

3 headers

Pmod JA
FPGA

pin

AN
(active low input)

AN refers to anode

FPGA pin connections for the NEXYS 2 board: CLK is 50 MHz (use FPGA Pin B8)
Family: Spartan3E Device: XC3S500E Package: FG320

Slide

switch

LED
cathode

FPGA
pin

BJT
base

FPGA
pin

FPGA
pin

Push-
button
switch

FPGA
pin

Single
LED

FPGA
pin

SW0 G18

SW1 H18

SW2 K18

SW3 K17

BTN0 B18

BTN1 D18

BTN2 E18

BTN3 H13

SW4 L14

SW5 L13

SW6 N17

SW7 R17

CA L18

CB F18

CC D17

CD D16

AN0 F17

AN1 H17

AN2

AN3

CE G14

CF J17

CG H14

DP C17

LD0 J14

LD1 J15

LD2 K15

LD3 K14

LD4 E17

LD5 P15

LD6 F4

LD7 R4

SW7 SW6 SW5SW SW4 SW3 SW2 SW1 SW0

Push-button switches (press down for high output)

BTN3 BTN2 BTN1 BTN0

Single LEDs with active high inputs

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

AN0 is right-most 7-segment display
AN3 is left-most 7-segment display

DISP1

(Base)

Common Anode

To anodes of
LED 7-segment

display Segments CA through CG and
DP are active low inputs

CA refers to cathode for segment A,
CB refers to cathode for segment B, etc.,
DP refers to cathode for segment DP.

CA

CG

CD

CE

CF CB

CC

DP

BJT

VCC

Peripheral connectors

I/O

JA-4(LSB) M15

JA-3 L17

JA-2 K12

JA-1(MSB) L15

Pmod JB
FPGA

pinI/O

JB-4(LSB) T17

JB-3 R15

JB-2 R18

JB-1(MSB) M13

Pmod JC
FPGA

pinI/O

JC-4(LSB) H16

JC-3 G13

JC-2 J16

JC-1(MSB) G15

JA-10(LSB) M16

JA-9 M14

JA-8 L16

JA-7(MSB) K13

JB-10(LSB) U18

JB-9 T18

JB-8 R16

JB-7(MSB) P17

JC-10(LSB) J12

JC-9 G16

JC-8 F14

JC-7(MSB) H15

Pmod JD
FPGA

pinI/O

JD-4(LSB) P18

JD-3 N18

JD-2 M18

JD-1(MSB) J13

Connector circuit

1 MSB
2
3
4 LSB
5 GND
6 V

CC

7 MSB
8
9
10 LSB
11 GND
12 V

CC

Plug
Pmod
in top

row here

Plug
Pmod

in bottom
row here

Top row Top row Top row Top row

Bottom row Bottom rowBottom row Bottom row

Note: To provide voltage to pin V
CC

you must
use a power supply jumper between the two
headers closest to the middle of the Nexsys 2
board for each Pmod connector.

Power supply jumper

Top row

Slide switches (push forward = high output and pull back = low output)

www.itpub.net

 C.3 Memory Loader I/O Pin Connections for the FPGAs on the BASYS 2 and NEXYS 2 Board 685

C.3 MEMORY LOADER I/O PIN CONNECTIONS FOR
THE FPGAS ON THE BASYS 2 AND NEXYS 2 BOARD

 F2 V14

 F1 U14
 D2 N9
 C2 V16
 N2 R14

 M2 R13

 M1 P13
 L1 T12
 L2 N11

 H2 R11
 H1 P10

A_USB_ASTB

A_USB_DSTB

USB_WAIT_S
A_USB_WRITE
USB_DATA 0

USB_DATA 1

USB_DATA 2
USB_DATA 3
USB_DATA 4

USB_DATA 5
USB_DATA 6
USB_DATA 7 H3 R10

Signal

BASYS 2 Board

Spartan3E
XC3S100E-CP132

or
XC3S250E-CP132

NEXYS 2 Board

Spartan3E
XC3S500E-FG320

686 Appendix C FPGA Pin Connections—Handy Reference

C.4 FX2 MIB (MODULE INTERFACE BOARD)—ADD-ON
BOARD FOR NEXYS 2

I/O

C5

B6

C3

B4

3 headers

Connector circuits

1 MSB
2
3
4 LSB
5 GND
6 V

CC

7 MSB
8
9
10 LSB
11 GND
12 V

CC

Plug
Pmod
in top

row here

Plug
Pmod

in bottom
row here

Power supply jumper

Pmod J1
FPGA

pin

J1-4(LSB)FX2-1O7

J1-3FX2-1O5

J1-2FX2-1O3

J1-1(MSB)FX2-1O1

FX2-1O8

FX2-1O6

FX2-1O4

FX2-1O2

FX2-1O16

FX2-1O14

FX2-1O12

FX2-1O13

FX2-1O11

FX2-1O9

FX2-1O10

FX2-1O15

F7

D5

C4

A4

J1-10(LSB)

J1-9

J1-8

J1-7(MSB)

Top row

Bottom row

I/O

E9

D7

C7

E7

Pmod J2
FPGA

pin

J2-4(LSB)

J2-3

J2-2

J2-1(MSB)

C9

E8

F8

A6

J2-10(LSB)

J2-9

J2-8

J2-7(MSB)

Top row

Bottom row

FX2-1O24

FX2-1O22

FX2-1O20

FX2-1O21

FX2-1O19

FX2-1O17

FX2-1O18

FX2-1O23

I/O

A11

A10

F9

A8

Pmod J3
FPGA

pin

J3-4(LSB)

J3-3

J3-2

J3-1(MSB)

D11

B10

D10

G9

J3-10(LSB)

J3-9

J3-8

J3-7(MSB)

Top row

Bottom row

FX2-1O32

FX2-1O30

FX2-1O28

FX2-1O29

FX2-1O27

FX2-1O25

FX2-1O26

FX2-1O31

I/O

F12

F11

C11

E10

Pmod J4
FPGA

pin

J4-4(LSB)

J4-3

J4-2

J4-1(MSB)

A13

E12

E11

B11

J4-10(LSB)

J4-9

J4-8

J4-7(MSB)

Top row

Bottom row

FX2-1O40

FX2-1O39

FX2-1O38

FX2-1O35

FX2-1O34

FX2-1O33

FX2-1O37

FX2-1O36

I/O

C14

A14

E13

B13

Pmod J5
FPGA

pin

I/O

Pmod J6
FPGA

pin

J5-4(LSB)

J5-3

J5-2

J5-1(MSB)

B16

A16

B14

D14

J6-4(LSB)

J6-3

J6-2

J6-1(MSB)

Right side of
FX2 MIB

Top of
FX2 MIB

Peripheral connectors

Note: To provide voltage to pin V
CC

you must
use a power supply jumper between the two
headers closest to the edge of the FX2 MIB
for each Pmod connector.

100-pin
connector

100-pin
connector

100-pin
connector

Bottom row

Top row

www.itpub.net

A p pp e n d i xxxx D
EASY1 Tutorial

 687

D.1 INTRODUCTION

EASY1 is a simple editor, assembler, and simulator to test assembly language programs writ-
ten for VBC1. EASY1 can be used to generate the machine code for each program written for
VBC1. EASY1 can also be used to simulate a program for VBC1. The simulation of a program
for VBC1 using EASY1 and the execution of the same program via the hardware design for
VBC1 should be the same. The simulator allows the user to either single step a program or to
run a program at various speeds that are selected by the user. The programmer’s register model
can be observed as each instruction is executed by single stepping the program. This allows a
programmer to observe if a program is performing correctly.

D.2 EASY1 SCREEN OR GUI

The editor/assembler/simulator 1 (EAS1) for VBC1, which we will refer to as EASY1, is used
for writing an assembly language program, assembling the program, and simulating the pro-
gram via a programmer’s register model displayed on the screen. A form of the programmer’s
register model for VBC1 was presented in Chapter 10, Section 10.7, and provided the essential
background for this tutorial.
 From this textbook’s website, download the program EASY1 on your computer. Figure D.1
shows the screen or graphical user interface (GUI) for EASY1. EASY1 is the program that runs
when the EASY1-E check box is unchecked. EASY1-E is the program that runs when the EASY1-
E check box is checked. EASY1-E is the editor/assembler/simulator 1-E for VBC1-E, which is the
enhanced version of VBC1.

D.3 EASY1 LAYOUT

EASY1 is divided into three parts: The assembly part on the left side is where you enter or write
an assembly language program. The assembly part is designed as a simple editor. The program-
mer’s register model in the middle is used to run your program—that is, simulate your program
after you assemble your program by pressing Assemble and Load. The instruction memory
part on the right side is where the machine code for your program is placed by the assembler.
EASY1 performs the following three functions: (1) provides an editor for writing and correcting
your program, (2) assembles your program to provide the machine code necessary for program
execution, and (3) simulates your program to verify that it performs as you expect it to perform.
 If there are syntax errors in your program, you are notifi ed by a pop-up window when you
click the Assemble and Load button with the mouse. If there are no syntax errors, the program
is assembled and the machine code is loaded in the instruction memory. You have the option

688 Appendix D EASY1 Tutorial

of stepping through the program one line at a time, running the program at the 100-ms default
clock rate (you can change this rate to run the program faster or slower), or resetting the program
when you click the Step, Run, or Reset buttons, respectively. R0 displays the contents of register
zero for bits (3:0), R1 displays the contents of register one for bits (3:0), PC displays the contents
of the program counter for bits (3:0), and IR displays the contents of the instruction register for
bits (7:0). All four registers must be read from left to right, because the MSB is placed on the left
and the LSB is placed on the right.
 An output is processed in the programmer’s register model by an instruction called OUT
that is placed in the program. A clear circle represents a logic 0 output, and a circle with a dot in
it represents a logic 1 output. In your mind, picture the four circles for the output as LED (3:0)
or light emitting diodes, from 3 down to 0, read from the left to the right.
 An input is processed in the programmer’s register model by an instruction called IN that
is placed in the program. A clear square represents a logic 0 input, and a checked square (click
the mouse on a square to enter and/or remove a check mark) represents a logic 1 input. In your
mind, picture the four squares for the input as SW (3:0) or slide switches, 3 down to 0, read from
the left to the right.
 Program assembly—that is, converting the assembly language program into machine
code—is automatically performed by the assembler. If there are no errors in your assembly lan-
guage program, the machine code for the program is loaded into the instruction memory when
you click the Assemble and Load button with the mouse. To the left of the instruction memory
is a column of numbers ranging from 0000 to 1111 in binary. This column represents all the
available memory addresses for the instruction memory of VBC1. You can change this column
to express the memory addresses in decimal or in hexadecimal via the selection arrow follow-
ing Display. In the column between the memory addresses and the instruction memory is a set
of vertical circles. The circle with a dot indicates the current value of the program counter (PC)
and the current value in the IR. The instruction memory is initially loaded with all 0s. The fi rst
column to the right of the instruction memory is reserved for the mnemonic fi eld and the second
and third columns are reserved for the operands fi eld for each assembly language instruction.
These fi elds are fi lled with the instructions after you write a program and click the Assemble
and Load button. Each instruction is placed next to its machine code as a handy reference.

Step

Assemble and Load

Run Reset

0000

100

0000

0000

00000000

R0

Instruction Memory

Assembly Instruction
pointer

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.1 The
screen (or GUI) for
EASY1

www.itpub.net

 D.5 Example 1—A Simple Input/Output Program 689

 The two buttons labeled Save and Import, located just below the instruction memory, are
handy buttons to use when writing assembly language programs. The Save button allows you
to save the contents of the instruction memory in a fi le. The Import button allow you to transfer
any fi le that has been previously saved via the Save button back into the EASY1 editor. These
two buttons allow you to save a program you are working on, but that you may or may not have
fi nished, and then import the assembly language program back into the EASY1 editor. The
Save button and the Import button only work on a locally saved version of EASY1—that is, on
EASY1 that is running from your computer and not over a network.

D.4 HOW TO USE EASY1

The best way to use EASY1 is to simply write some assembly language programs and run them
using the simulator via the Step button or the Run button. You will quickly and easily gain a
complete understanding of EASY1 and how it works using this approach. Figure D.2 is a slightly
modifi ed block diagram of VBC1. This fi gure was presented earlier in Chapter 10, Section 10.5,
Figure 10.4. The fi gure has been modifi ed to include the squares for the 4 slide switches at the
input and the circles for the 4 LEDs at the output.

 VBC1 has eight different instructions with 22 variations. Figure D.3 shows an alphabetical
listing of the instruction set and the aliases supported by EASY1 for VBC1. The editor/assem-
bler/simulator (EASY1) automatically generates the machine code for each instruction, thus
relieving you of performing that task.
 Note: The operands Data and Address in the instructions and aliases can be expressed in
decimal, binary, or hexadecimal—for example, 10 or 10d in decimal, 1010b in binary, or ah in
hexadecimal.

D.5 EXAMPLE 1—A SIMPLE INPUT/OUTPUT PROGRAM

Write an assembly language program to perform the following tasks: (1) input the decimal
number 12 into register R0, via the input that is represented by the squares (remember to think
of these as slide switches); (2) move the decimal number 12 to register R1; and (3) output the

7 6 5 4 3

3

2

2

F
E

1

1

0

3 2 1 0

3 2 1 0R0

OPR1

0

16 instructions (8 bits)

Instruction memory unit (RAM)

IR
(8 bits)

PC
(4 bits)

DI
(4 bits) OP

(4 bits)R0/R1 (4 bits)

Output port
(4 bits)

ALU provides logic for the instructions
LOADI, ADDI, ADD, and SR0 (4 bits)

Operand 2
(4 bits)

Result
(4 bits)

Operand 1
(4 bits)

Set of 2
registers

and
steering
circuits
(4 bits)

1 1 0 0

R0 (4 bits)

R1 (4 bits)
Control
signals
(9 bits)

Input unit
Output unit

Immediate
data/address

(4 bits)

Input is 4 slide
switches

1 1 0 0

Output is 4 LEDs

Program counter (PC)
(4 bits),

instruction decoder

Control unit

Data path unit

⋮

FIGURE D.2 Block
diagram for VBC1

690 Appendix D EASY1 Tutorial

Instruction Comment

ADD R0,R0
ADD R0,R1
ADD R1,R0
ADD R1,R1

ADDI R0,Data ; where Data is a decimal value 0 through 15
ADDI R1,Data ; where Data is a decimal value 0 through 15

IN R0 ; from input switches
IN R1 ; from input switches

JNZ R0,Address ; where Address is a decimal value 0 through 15
JNZ R1,Address ; where Address is a decimal value 0 through 15

LOADI R0,Data ; where Data is a decimal value 0 through 15
LOADI R1,Data ; where Data is a decimal value 0 through 15

MOV R0,R0
MOV R0,R1
MOV R1,R0
MOV R1,R1

OUT R0 ; to output LEDs
OUT R1 ; to output LEDs

SR0 R0,R0
SR0 R0,R1
SR0 R1,R0
SR0 R1,R1

Aliases Comment

DEC R0 ; ADDI R0,15
DEC R1 ; ADDI R1,15

INC R0 ; ADDI R0,1
INC R1 ; ADDI R1,1

NOP ; MOV R0,R0

SUBI R0,0 ; ADDI R0,0
SUBI R1,0 ; ADDI R1,0

SUBI R0,Data ; ADDI R0, (16 2 Data), where Data is a decimal value 1 though 15
SUBI R1,Data ; ADDI R1, (16 2 Data), where Data is a decimal value 1 though 15

FIGURE D.3 Instruction set and the aliases supported by EASY1 for VBC1 listed alphabetically

www.itpub.net

 D.5 Example 1—A Simple Input/Output Program 691

content of register R1 to the output that is represented by the circles (remember to think of these
as LEDs). Set the input switches to 12 or 1100b prior to single stepping or running the program
as shown in the block diagram in Figure D.2. After single stepping or running the program,
compare your results with the output shown in the block diagram in Figure D.2.
 Program D.1 shows an assembly language program that performs the input/output tasks for
Example 1.

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0 ; input 12 to R0 from switches
MOV R1,R0 ; move R0 to R1
OUT R1 ; output switch values to LEDs

PROGRAM D.1
Assembly language
program for
Example 1

 Comments are shown in Program D.1 to document the algorithm—that is, the step-by-step
procedure. It is good programming practice to use comments for remembering how the program
works at a later date or for someone else who is trying to understand your program for the fi rst
time.
 Figure D.4 shows the program in Program D.1 entered in the editor of EASY1. The fi rst
assembly language instruction in line 4 of the program has an intentional error. The error is Ro
when it should be R0. The letter o is mistakenly typed in for the number 0. This is a common
mistake you need to avoid.

 To assemble the program and load the machine code into instruction memory, click the
Assemble and Load button. After clicking the Assemble and Load button, an error message
pops up in the EASY1 screen as shown in Figure D.5, indicating a syntax error in line 4 of the
program. The instruction memory is not loaded until all syntax errors in the program are identi-
fi ed and corrected.

MOV R1,R0

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN Ro

OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

0000

100

0000

0000

00000000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

Error

FIGURE D.4 EASY1
screen after entering
Program D.1 with an
error

692 Appendix D EASY1 Tutorial

 Notice that the fi rst three lines in the assembly language program are comments, the fourth
line is the fi rst instruction in the program, and the pop-up window says that this line has an
error. The error in the assembly language program is corrected by clicking the OK button in the
pop-up window and changing Ro (R followed by the letter o) to R0 (R followed by the number
0). Figure D.6 shows the EASY1 screen, after correcting the error and clicking the Assemble
and Load button.

MOV R1,R0

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN Ro

OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

0000

0000

0000

R0

Instruction Memory

Assembly

R1

PC

EASY1-E

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000

0001

0010

0011

0100

0101

1101

1110

1111

Save Import

Error

XX

OK

Message from webpage

Error in line 4. The first parameter to the instruction is not a valid

register.

The line is:

IN Ro ; input 12 to R0 from switches

FIGURE D.5 EASY1
screen after clicking
Assemble and Load
without removing the
error

 Notice in Figure D.6 that the assembly language program has been assembled (the assembly
language program has been converted to machine code), and the machine code has been loaded
into the instruction memory. The mnemonic fi eld and the operands fi eld in the assembly lan-
guage program are shown beside the machine code in the instruction memory, as reference.
 Notice that the fi rst instruction is at address 0 (as indicated by the instruction pointer),
while the second instruction is at address 1—that is, the n’th instruction is at address n 2 1

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0
MOV R1,R0
OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

0000

100

0000

0000

10100000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

Instruction
pointer

EASY1-E

10100000

00010000

11010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.6 EASY1
screen after cor-
recting the error and
clicking Assemble
and Load for
Program D.1

www.itpub.net

 D.5 Example 1—A Simple Input/Output Program 693

because 0 is the reference for numbering the addresses. If 1 were the reference for numbering
the addresses, then the address 0 would be wasted.
 Prior to running the program, supply an input of decimal 12 on the input slide switches as
shown in Figure D.7 by the check marks placed in the input boxes.

 To single step through the assembly language program to see the result of each instruction
after it is executed, simply click the Step button once for each instruction. Figure D.8 shows the
EASY1 screen after clicking the Step button one time to execute the fi rst instruction which is at
address 0.

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0
MOV R1,R0
OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

0000

100

0000

0000

10100000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=1100

EASY1-E

10100000

00010000

11010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.7 EASY1
screen after input-
ting decimal 12 on
the slide switches for
Program D.1

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0
MOV R1,R0
OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

1100

100

0000

0001

00010000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

10100000

00010000

11010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.8 EASY1
screen after clicking
the Step button one
time to execute the
first instruction for
Program D.1

 Observe in Figure D.8 that R0 contains 12, as it should after executing the instruction IN R0
because the input slide switches were initially set to 12 prior to executing the instruction. Notice
that the PC now points to (or shows) the address of the next instruction or the second instruction,

694 Appendix D EASY1 Tutorial

which is at address 1 as indicated by the instruction pointer. Also observe in Figure D.8 that the
IR contains the machine code for the next instruction that will be executed next, which is the
second instruction at address 1.
 Figure D.9 shows the EASY1 screen after clicking the Step button a second time to execute
the second instruction at address 1.

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0
MOV R1,R0
OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

1100

100

1100

0010

11010000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

10100000

00010000

11010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.9 EASY1
screen after click-
ing the Step button
the second time to
execute the sec-
ond instruction for
Program D.1

 Observe in Figure D.9 that R1 contains 12, as it should after executing the MOV R1,R0
instruction. The PC now points to the address of the next instruction or the third instruction,
which is at address 2. Observe that IR contains the machine code for the third instruction at
address 2, which will be executed next.
 Figure D.10 shows the EASY1 screen after clicking the Step button a third time to execute
the third instruction at address 2.

; Program D.1, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
IN R0
MOV R1,R0
OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

1100

100

1100

0011

00000000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

10100000

00010000

11010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

FIGURE D.10 EASY1
screen after clicking
the Step button the
third time to execute
the third instruction
for Program D.1

www.itpub.net

 D.6 Example 2—Input/Output Program Modifi ed to Run Continuously 695

 Observe in Figure D.10 that the output is 1100 or 12, as it should be after executing the
OUT R1 instruction. Observe that the PC now points to the address of the next instruction,
which would be the fourth instruction at address 3, but there is none. Because there is no fourth
instruction, the IR contains all 0s, which is the default value of the instruction memory when no
instruction has been loaded.

D.6 EXAMPLE 2—INPUT/OUTPUT PROGRAM MODIFIED
TO RUN CONTINUOUSLY

The simple input/output program in this example can be modifi ed to run continuously through
its instructions. The assembly language program for doing this is shown in Program D.2.

 Notice that the program is written to read the input switch values into R0, move the contents
of R0 to R1, output the contents of R1 to the output LEDs, and then unconditionally jump back
to the label repeat to start the process over again.
 Figure D.11 shows the assembly language program in Program D.2 entered in the editor of
EASY1 and assembled by clicking on Assemble and Load and setting the input to 12 (1100).

; Program D.2, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs
repeat: IN R0 ; input 12 to R0 from switches
 MOV R1,R0 ; move R0 to R1
 OUT R1 ; output switch values to LEDs
 LOADI R1,1 ; set R1 to 1 to force an
 ; unconditional jump
 JNZ R1,repeat ; jump back to repeat

PROGRAM D.2
Assembly language
program for Exam-
ple 1 modified to run
continuously through
its instructions

FIGURE D.11 EASY1
screen after enter-
ing Program D.2 and
clicking Assemble
and Load and setting
the input to 12 (1100)

; Program D.2, a simple input/output program
; first read the input switch values
; then output the switch values to the LEDs

repeat: IN R0
MOV R1,R0

LOADI R1,1

JNZ R1,repeat

; set R1 to 1 to force an
; unconditional jump

; jump back to repeat

OUT R1

; input 12 to R0 from switches
; move R0 to R1
; output switch values to LEDs

Step

Assemble and Load

Run Reset

0000

100

0000

0000

10100000

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

10100000

00010000

11010000

00110001

11110000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Binary

0000

0001

0010

in

mov

out

r0

r1 r0

r1

loadi

jnz

r1 0001

0000r1

0011

0100

0101

1000

1001

1010

1011

1100

1101

1110

1111

0110

0111

Save Import

696 Appendix D EASY1 Tutorial

 To verify that the program in Figure D.11 works as intended, click the Run button. Observe
that the program executes the instructions in sequence from addresses 0 through 4 and repeats
this sequence continuously. Enter a value from 0 to 15 via the input slide switches, and observe
that the output LEDs follow the value that is selected for the input. Because there is no uncon-
ditional jump instruction for VBC1, the two instructions LOADI R1,1 and JNZ R1,repeat are
equivalent to a nonexistent unconditional jump instruction JMP repeat.

D.7 EXAMPLE 3—A SIMPLE STATE MACHINE PROGRAM

Write an assembly language program for the 2-bit binary-up counter circuit represented in Fig-
ure D.12, where Q1 Q0 are displayed on the output LEDs 1 and 0, respectively.

0

0

1

1

0

1

0

1

Q1 Q0FIGURE D.12 2-bit binary-up counter
circuit state sequence diagram

 Quite often, there are many different ways to write an assembly language program for a
problem. An inline program would be simple to write and would require eight instructions plus
an additional jump instruction to prevent the program from running amuck, for a total of nine
instructions. One solution for the 2-bit binary-up counter (four states) using a loop counter is
shown in Program D.3. Observe that this program only requires eight instructions.

; Program D.3, 2-bit binary up counter (4 states)
start: LOADI R0,0 ; initialize output value
loop: OUT R0 ; output R0 to LEDs
 INC R0 ; increment loop counter
 MOV R1,R0 ; place test value in R1
 ADDI R1,12 ; 12 5 16 2 (# of loops) 5 16 2 4
 JNZ R1,loop ; test for loop completion
 LOADI R1,1 ; set R1 to 1 to force an
 ; unconditional jump
 JNZ R1,start ; jump to start

PROGRAM D.3
Assembly language
program for a 2-bit
binary-up counter
(four states) using a
loop counter

 Figure D.13 on the facing page shows Program D.3 entered in the editor of EASY1 and assem-
bled by clicking on Assemble and Load. For this program, no input is required via the switches.
 Click the Run button to observe that the program works as expected. Observe that the out-
put LEDs 0 and 1 count up in binary from 00 to 11 and roll over—that is, go back to 00—and
repeat this task continuously. Observe that Display in the EASY1 screen shows Hex. This con-
verts the displayed values in the R0, R1, PC, and IR to hexadecimal as well as each displayed
address and machine code in instruction memory to hexadecimal.

D.8 EXAMPLE 4—A COMPLEX STATE MACHINE PROGRAM

Write an assembly language program for the stoppable 4-bit binary-up counter circuit repre-
sented by the state sequence diagram in Figure D.14 shown on the facing page. Q3, Q2, Q1, and
Q0 are displayed on the output LEDs 3 down to 0, respectively and S is provided by the status
of the input slide switches. S 5 0 is switch inputs 0000, and S 5 1 is switch inputs that are any
value except 0000—that is, 0001, 0010, 0011, etc.

www.itpub.net

 D.8 Example 4—A Complex State Machine Program 697

; Program D.3, 2-bit binary up counter (4 states)
; initialize output value
; output R0 to LEDs

start: LOADI R0,0
loop:

INC R0
OUT R0

MOV R1,R0

JNZ R1,loop
LOADI R1,1

JNZ R1,start

; test for loop completion
; set R1 to 1 to force an
; unconditional jump
; jump to start

ADDI R1,12

; increment loop counter
; place test value in R1
; 12 = 16-(# of loops)= 16-4

Step

Assemble and Load

Run Reset

0

100

0

0

20

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

20

c0

61

10

7c

f1

31

f0

00

00

00

00

00

00

00

00

Hex

0

1

2

loadi

out

addi

r0

r0

0

1r0

mov

addi

r1 r0

cr1

jnz 1r1

loadi

jnz

r1 1

0r1

3

4

5

8

9

a

b

c

d

e

f

6

7

Save Import

FIGURE D.13 EASY1 screen after entering Program D.3 and clicking Assemble and Load

 Program D.4 shows one solution for the stoppable 4-bit binary-up counter (16 states) in
Figure D.14.

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

Q3
S

S

S

S

Q2 Q1 Q0

S

S

S

S

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

S

S

S

S

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

S

S

S

S

1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

FIGURE D.14 State sequence dia-
gram for a stoppable 4-bit binary-up
counter circuit

; Program D.4
; stoppable 4-bit binary-up counter (16 states)
start: LOADI R0,0 ; initialize output value
loop: OUT R0 ; output R0 to LEDs
hold: IN R1 ; input to R1 from switches
 JNZ R1,hold ; test for switch condition
 INC R0 ; increment R0 for counting
 JNZ R0,loop ; test for loop completion
 LOADI R0,1 ; set R0 to 1 to force an unconditional jump
 JNZ R0,start ; jump to start

PROGRAM D.4
Assembly language
program for a stop-
pable 4-bit binary-up
counter (16 states)

698 Appendix D EASY1 Tutorial

 Figure D.15 shows the assembly language program in Program D.4 entered in the editor of
EASY1 and assembled by clicking on Assemble and Load.

 To observe the simulation of the program, click the Run button to verify that the output
LEDs 3 down to 0 count up in binary from 0000 to 1111 and roll over and repeat this task con-
tinuously when S 5 0. When S 5 1, the counter marks time at the current count or present state
until S 5 0 and then continues counting.

D.9 EXAMPLE 5—GENERATING TIME DELAYS

Figure D.16 shows a simplifi ed fl ow chart for generating a time delay.

;Program D.4
:stoppable 4-bit binary up counter (16 states)

; initialize output value
; output R0 to LEDs

start: LOADI R0,0
loop:

IN R1hold:
OUT R0

JNZ R1,hold

JNZ R0,loop
LOADI R0,1

JNZ R0,start

; test for loop completion
; set R0 to 1 to force an
; unconditional jump
; jump to start

INC R0

; input to R1 from switches
; test for switch condition
; increment R0 for counting

Step

Assemble and Load

Run Reset

0

100

0

0

20

R0

Instruction Memory

Assembly

R1

PC

IR

Output

Input

ClockRate= ms

Display=

EASY1-E

20

c0

b0

f2

61

e1

21

e0

00

00

00

00

00

00

00

00

Hex

0

1

2

loadi

out

in

r0

r0

0

r1

jnz

addi

r1 2

1r0

jnz 1r0

loadi

jnz

r0 1

0r0

3

4

5

8

9

a

b

c

d

e

f

6

7

Save Import

FIGURE D.15 EASY1
screen after enter-
ing Program D.4 and
clicking Assemble and
Load

 Write an assembly language program for a time delay that turns the least signifi cant bit of
the output on for nine machine cycles (a machine cycle or instruction cycle is the time it take to
execute each assembly language instruction in VBC1) and then turns the output off and repeats
this sequence over and over. The delay for nine machine cycles can be easily generated via an
internal loop using a NOP. Either MOV R0, R0 or its alias NOP can be used to waste time.
 Program D.5A shows one solution for the time delay as an inline program.

Set output to 1
1 or more

instructions

1 or more
instructions

Multiple NOPs
or 1 or more
internal loops
to waste time

Set output to 0

Delay

FIGURE D.16 Simplified flow
chart for a time delay

www.itpub.net

 D.10 Using EASY1 to Generate Machine Code for VBC1 699

; Program D.5A, Time Delay for 9 machine cycles
; inline program
start: LOADI R0,1 ; set R0 to 1
 OUT R0 ; set LSB of Output to 1
 NOP ; waste time
 NOP ; waste time
 NOP ; waste time
 NOP ; waste time
 NOP ; waste time
 NOP ; waste time
 NOP ; waste time
 LOADI R0,0 ; set R0 to 0
 OUT R0 ; set LSB of Output to 0
 LOADI R1,1 ; force unconditional jump
 JNZ R1,start ; repeat sequence

PROGRAM D.5A
Time delay as an
inline program

 After the LSB of output 1 is turned on, the seven NOPs in Program D.5A generates seven
machine cycles. The instructions LOADI R0,0 and OUT R0, after the seven NOPs, generate two
more machine cycles, for a total of nine machine cycles, thus keeping the LSB of output 1 turned
on for nine machine cycles or nine instruction cycles.
 Program D.5B shows an equivalent solution for the time delay as a program with an internal
loop.

; Program D.5B, Time Delay for 9 machine cycles
; internal loop
start: LOADI R0,1 ; set R0 to 1
 OUT R0 ; set LSB of Output to 1
 LOADI R1,3 ; begin delay loop
back: DEC R1 ; repeat the loop 3 times
 JNZ R1,back ; test for loop completion
 LOADI R0,0 ; set R0 to 0
 OUT R0 ; set LSB of Output to 0
 LOADI R1,1 ; force unconditional jump
 JNZ R1,start ; repeat sequence

PROGRAM D.5B
Time delay as an
internal loop program

 After the LSB of output 1 is turned on, the internal loop in Program D.5B generates six
machine cycles. The instruction LOADI R1,3, before the internal loop, and the instructions
LOADI R0,0 and OUT R0, after the internal loop, generate three more machine cycles, for a
total of nine machine cycles, thus keeping the LSB of output 1 turned on for nine machine cycles
or nine instruction cycles.

D.10 USING EASY1 TO GENERATE MACHINE CODE
FOR VBC1

After you write an assembly language program for VBC1 and assemble and load the program
via EASY1, you can simulate the program to check for program functionality. If the program
performs as you expected, you can then use the machine code generated by the assembler to
load the instruction memory of VBC1. After loading the program, you can either single step the

700 Appendix D EASY1 Tutorial

program or run the program at the frequency of the signal SPEED, which allows you to observe
the output LEDs during program execution.
 You can generate the machine code for an assembly language program for VBC1 manually,
but that takes time. Using the machine code generated by EASY1 usually takes less time and
may result in fewer errors. After you enter the machine code into the instruction memory of
VBC1, you can also test your program to see if it performs as expected via the hardware imple-
mentation of VBC1.
 You may recall that the Save button allows you to save the contents of the instruction
memory in a fi le. The saved fi le can then be copied and pasted into your VHDL code to initial-
ize the memory of VBC1 or VBC1-E at startup. The saved fi le can also be read by a memory
loader program, which allows the machine code to be loaded directly into the memory of VBC1
or VBC1-E via the USB connector on your FPGA board. See Appendix E for more information
on loading instructions into memory. To use the memory loader program, you must complete
Experiments 17 and 17L in Appendix A, which provide the VHDL design for VBC1 and the
memory loader circuitry on your FPGA board. The memory loader program can also be used
after you complete Experiments 25 and 25L in Appendix A, which provide the VHDL design
for VBC1-E and the memory loader circuitry on your FPGA board.

www.itpub.net

A p pp e n d i xxxx E
Three Methods for Loading
Instructions into Memory

 701

The three methods for loading instructions into memory are:

 1. Loading memory manually.
 2. Initializing memory at startup.
 3. Loading memory via the memory loader program.

Loading memory manually allows for manually loading the instructions in machine code form
into memory by slide switches and push buttons after the VHDL design is downloaded into the
FPGA. This method is the most tedious and also the most time consuming.
 Initializing memory at startup allows for loading the instructions in machine code form into
memory by placing the instructions in the VHDL code before the VHDL code is downloaded
into the FPGA. This method requires no I/O support, which means it may be used without slide
switches and push buttons. This method is more effi cient than loading memory manually, but it
does require that the VHDL design be synthesized and a new .bit fi le be generated each time the
initialized memory contents change.
 Loading memory via the memory loader program allows for loading the instructions in
machine code form over the USB cable with a click of a button after the VHDL design is down-
loaded into the FPGA. This method requires a software program that controls the USB control-
ler on the board, in addition to interface circuitry that must be added to the VHDL code. This
method can also clear memory with a click of a button. This method is much more effi cient than
initializing memory at startup and only takes a little time.

E.1 LOADING MEMORY MANUALLY

For each of the following, use EASY1 or EASY1-E to assemble the program that you want to
manually load into memory. Set the display mode in the EASY1 or EASY1-E GUI (graphical
user interface) to binary or hex (hexadecimal), so that you can easily enter instructions via the
slide switches SW7 . . . SW0. Make a copy of the GUI to help provide less chance for errors by
reading a hard copy for the addresses and corresponding instructions, rather than reading the
computer screen.
 For Experiment 13, do the following:

 1. Press and release BTN3 to reset VBC1 to address 0, as shown on Disp 3 (display 3 of the
7-segment display).

 2. To load an instruction into memory, enter the instruction via the slide switches SW7 . . .
SW0, then simply press and release BTN0.

 3. Press and release BTN1 to increment to the next address.

702 Appendix E Three Methods for Loading Instructions into Memory

 4. Load the next instruction in the same manner. Each time an instruction is loaded, remember
to press and release BTN1 to increment to the next address.

 5. Continue in this manner until all instructions you want to load are loaded into the memory
of VBC1.

For Experiments 14, 15, and 16, do the following:

 1. Press and release BTN3 to reset VBC1 to address 0, as shown on Disp 3 (display 3 of the
7-segment display).

 2. To load an instruction into memory, enter the instruction via the slide switches SW7
. . . SW0, then simultaneously press push buttons BTN2 and BTN0, then release them.

 3. Press and release BTN1 to increment to the next address.
 4. Load the next instruction in the same manner. Each time an instruction is loaded, remember

to press and release BTN1 to increment to the next address.
 5. Continue in this manner until all 16 instructions are loaded into the memory of VBC1.

For Experiments 17, 17L, 19, 20, 21, 22, 23, 24, 25, and 25L, do the following:

 1. Press and hold BTN2, then press and release BTN3 to reset VBC1 to address 0, as shown
on Disp 3 (display 3 of the 7-segment display).

 2. Do not release push button BTN2.
 3. To load an instruction into memory, enter the instruction via the slide switches SW7

. . . SW0, then press and release BTN0, but not BTN2.
 4. As you continue to hold down BTN2, press and release BTN1 to increment to the next

address.
 5. Load the next instruction in the same manner. Each time an instruction is loaded, remember

to press and release BTN1 to increment to the next address.
 6. Continue in this manner until all 16 instructions (for VBC1) or 32 instructions (for VBC1-E)

are loaded into the memory.

E.2 INITIALIZING MEMORY AT STARTUP

For Experiments 14, 15, 16, 17, and 17L, do the following:

 1. Change "signal mem: mem_type;" to "signal mem: mem_type :5 (" under the declaration
for mem_type for module 6 (instruction memory).

 2. Assemble your VBC1 program via EASY1.
 3. Use the EASY1 Save button to copy the machine code shown in the instruction memory of

EASY1 into a fi le (choose a text fi le).
 4. Open the text fi le and paste its contents after "signal mem: mem_type :5 (".
 5. Regenerate the VHDL programming fi le and download it into the FPGA on a BASYS 2

board or on a NEXYS 2 board. This loads instruction memory at startup with an assembly
language program.

For Experiments 19, 20, 21, and 22, do the following:

 1. Change "signal mem: mem_type;" to "signal mem: mem_type :5 (" under the declaration
for mem_type for module 6 (instruction memory).

 2. Assemble your VBC1-E program via EASY1-E.
 3. Use the EASY1-E Save button to copy the machine code shown in the instruction memory

into a fi le (choose a text fi le).
 4. Open the text fi le and paste its contents after "signal mem: mem_type :5 (".

www.itpub.net

 E.3 Loading Memory via the Memory Loader Program 703

 5. After the 16th instruction, change the “,” to “);”, to end the instruction list, then comment
out the 16 remaining instructions.

 6. Regenerate the VHDL programming fi le and download it into the FPGA on a BASYS 2
board or on a NEXYS 2 board. This loads instruction memory at startup with an assembly
language program.

For Experiments 23, 24, 25, and 25L, do the following:

 1. Change "signal mem: mem_type;" to "signal mem: mem_type :5 (" under the declaration
for mem_type for module 6 (instruction memory).

 2. Assemble your VBC1-E program via EASY1-E.
 3. Use the EASY1-E Save button to copy the machine code shown in the instruction memory

and the extended instruction memory into a fi le (choose a text fi le).
 4. Open the text fi le and paste its contents after "signal mem: mem_type :5 (".
 5. Regenerate the VHDL programming fi le and download it into the FPGA on a BASYS 2

board or on a NEXYS 2 board. This loads instruction memory and extended instruction
memory at startup with an assembly language program.

E.3 LOADING MEMORY VIA THE MEMORY LOADER
PROGRAM

The VBC1-L (VBC1-EL) memory loader program does the following:

 • It will automatically load instruction memory after a VHDL design for VBC1-L has been
downloaded into the FPGA on either a BASYS 2 board or a NEXYS 2 board.

 • It will automatically load instruction memory and extended instruction memory after a
VHDL design for VBC1-EL has been downloaded into the FPGA on either a BASYS 2
board or a NEXYS 2 board.

 • It will overwrite instructions that have been manually loaded or instructions that have been
loaded via initializing memory.

To use VBC1-L or VBC1-EL and the associated loader software, do the following:

 1. From this textbook’s website, download the installer for the VBC1-L (VBC1-EL) memory
loader to your computer, and install the software.

 2. Launch the VBC1-L (VBC1-EL) memory loader program.
 3. Open the software program’s built-in help by selecting the “Help” entry from the Help

menu.
 4. Select the “Getting Started” section of the software program’s help and follow the step-by-

step directions that appear.

This page intentionally left blank

www.itpub.net

 705

Index

A
Absorption theorem, 8
Active high input, 51
Active low input, 51
Adder

carry look-ahead, 203–206
design, 197–200
full, 198–200
half, 197–198
ripple-carry, 200–202, 203

Adder-subtractor system, 4-bit, 577–580
ADDI instruction

for arithmetic logic unit, 400–401
for instruction decoders, 385–386
for very basic computer 1, 301–303
for very basic computer 1-E, 467–468, 635–640

ADD instruction
for arithmetic logic unit, 401–402
for instruction decoders, 386–387
for very basic computer 1, 303–304
for very basic computer 1-E, 435

Addition, indirect subtraction by, 201, 310
Address bus, 187
Addressing modes, 281
Add the weights method, 40
Adjacency theorem, 8, 10
Aggregate, 115
ALF. see Assembly language form (ALF)
Algebra, Boolean

basics of, 1–10
definition of, 1
postulates, 7
theorems, 8–10

Algorithm, 54
Algorithmic equation method

for complex state machine design, 245–251
for counter design, 159–166

ALU. see Arithmetic logic unit (ALU)
Amplifier, 26
Analog-to-digital converter, 50
AND function, VHDL design for, 17–18
AND operation

definition of, 6
symbol for, 4
truth table for, 5

Anode, common, 328
Architecture, 15, 16

CISC, 282–283
declaration, 16, 94, 97–98
register-memory, 282
RISC, 280–281

Arithmetic logic unit (ALU)
ADDI instruction for, 400–401
ADD instruction for, 401
additional, 403–406
definition of, 398
function table for, 404
instruction decoder for, 484–485
LOADI instruction part of, 399–400
SR0 instruction for, 401–402

for very basic computer 1-E, 485–486
utilization of, 398–399
for very basic computer 1, 402, 617–621
for very basic computer 1-E, 482–484

Arithmetic method, for counter design, 170–171
ASCII (American Standard Code for Information

Exchange), 45
Assembler, 293
Assembly language form (ALF), 287, 289–290
Assembly language program writing, 632–635
Associative theorem, 8

B
Ball grid array (BGA) package, 68
Barrel shifter circuits, 409–412
Base, 38
BASYS 2 board, 529, 636, 683, 685
Behavioral design style, 102–106
BGA. see Ball grid array (BGA) package
Binary codes, 45–54
Binary digits, 6
Binary-encoding device, 50
Binary number conversions, 38–45
Bistable memory device

overview of, 125
S-R NOR latch in, 125–131

Bits, 6
sum, 198

Black boxes, 3–4
Bleeding, 358

706 Index

Circuits (continued)
increment, 403
input

design of, 321–324
for very basic computer 1-E, design of, 458–460

integrated, 67–68
JMPR, for very basic computer 1-E, 502
ladder, 69
loadable register, design of, 319–321
loading program counter, 342–345

running program counter and, 419–421
for very basic computer 1-E, 501

LUT logic, 580–581
for manual loading modification in very basic

computer 1-E, 493–495
master-slave D flip-flop, 143–146
with multiplexers, 87–88
NAND/NAND, 76–78
NOR/NOR, 76–78
output, design of, 324–329

for four LEDs, 325–326
for 7-segment display, 326–328
for very basic computer 1-E, 462–464

PCPLUS1, for very basic computer 1-E, 509–510
propagation delay time in, 78–79
proper address, for very basic computer 1-E, 501
for register selection in very basic computer 1-E, 475
RETA signal display, for very basic computer 1-E,

521–525
robot eye, 565–568
running frequency, 421–423
running program counter

designing, 416–418
loading program counter and, 419–421
for very basic computer 1-E, 500–501

modification of, 516–520
select, for very basic computer 1-E, 504–509
sequential logic, 126–127
shifter, 406–409
shift register, 412–414
smiley face, 569–572
speed, 421–423
steering, design of, 316–317

bus, 318–319
for very basic computer 1-E, 458–459

synchronous, 156
XOR, 404

CISC architecture, 282–283
CLAA. see Carry look-ahead adder (CLAA)
Clock

design of simple, 134–137
gated, 349

Blinking, 358
Bottom-up design, 372
Bubble symbol, 218
BUFFER function, VHDL design for, 26–27
Bus, 54, 112–116

address, 187
contention, 188
data, 187
definition of, 187
sharing, for microcomputer system, 187–190

Bus steering circuits
design of, 318–319
for very basic computer 1-E, 458–459

C
Canonical product of sums (CPOS), 13
Canonical sum of products (CSOP), 12
Carry generate terms, 204
Carry look-ahead, 200
Carry look-ahead adder (CLAA), 203–206
Carry propagate terms, 204
Case statement, 105
Characteristic equation

for S-R NAND latch, 133
for S-R NOR latch, 129

Characteristic table
for gated S-R latch, 138
for S-R NAND latch, 132–133
for S-R NOR latch, 128–129

Check bits, 46
Check gates system, 542–546
Circuits

analyzing, 69–71
annotated, 98
barrel shifter, 409–412
combinational logic, 54
for data selection in very basic computer 1-E, 475
debounced one-pulse

design of, 345–348
design verification for, 348–354
for very basic computer 1-E, 516–520

designing, 69–74
D flip-flop, 143–150

with CLR input, 549–553
digital vs. analog, 37–38
D-type flip-flop, 157–158

with CLR input, 549–553
with PRE input, 553–558
Test Bench simulation for, 679–682

equivalent gate, 32
gated clock, 349
greater than, 194–197

www.itpub.net

 Index 707

Computer, very basic 1 (continued)
machine code generation for, with EASY1,

699–700
monitor system, 609–613
MOV instruction, 298–300
multiply instruction, 312
OUT instruction, 296–298
overview of, 283
programmer’s register model for, 286
program runs amuck, 310
SR0 instruction, 304–306
subtraction instruction, 310–312
unconditional jump in, 308

very basic 1-E
ADDI instruction for, 467–468, 635–640
ADD instruction for, 435
arithmetic instructions for, 434–437
arithmetic logic unit for, 482–484
bus steering circuits for, 458–459
data memory

design, 471–475
instructions for, 432–434

debounced one-pulse trigger interrupt circuit for,
516–520

extended instruction memory for, 496–500, 654–658
FETCH instruction for, 432, 640–645
final hardware design for, 663–668
HALT instruction for, 440
input circuit for, 458–460
input instructions in, 427–431
instruction decoder for

arithmetic logic unit, 484–485
in manual loading modification, 495
modified IN instruction, 460–462, 466–467
modified OUT instruction, 464–466, 466–467

instruction decoders for
arithmetic logic unit, 484–485
in manual loading modification, 495
modified IN instruction, 460–462, 466–467
modified OUT instruction, 464–466, 466–467

instruction memory loader for, 525, 668–674
instruction summary, 425–427
interrupt instructions for, 427–431
INT instruction for, 510–511, 511–512, 658–663
IRET instruction for, 510–511, 511–512, 658–663
JMP instruction for, 440, 488–489

instruction decoder for, 489–490
JMPR circuit for, 502
JMPR instruction for, 440, 441, 488–489

instruction decoder for, 489–490
JNZ instruction for, 467–468, 635–640
LOADI instruction for, 467–468, 635–640

Clock (continued)
skew, 354
slowing, 171–173

Clock tick, 148
Combinational logic design, 675–679
Combinational process, 228
Common-anode, 51
Common-cathode, 51
Commutative rule, 7
Compact encoded state machines, 241–243
Compact encoding, 232
Compact maxterm form, 13
Compact minterm form, 12
Comparator, 24, 194–197
Complement rule, 7
Complex programmable logic device (CPLD), 71

state machine encoding styles and, 231–234
Complex state machine, 696–698

algorithmic equation method in design of, 245–251
present-state/next-state tabular method for, 228–231
reliability of, 251–255

Component declaration, 108
Component instantiation, 108
Computer

definition of, 279
Harvard-type, 280–281
overview of, 279–280
Princeton-type, 282–283
very basic 1

ADDI instruction, 301–303
ADD instruction, 303–304
arithmetic logic unit for, 402, 617–621
assembly language for, 289–290, 632–635
design philosophy of, 283–286
divide instruction, 312
EASY1 for, 593–597
final hardware design, 621–625
IN instruction, 293–296
instruction decoder for, 393, 613–616
instruction memory in, 605–609

coding alterations for, 337–339
designing, 335–342
initializing, 339–342
loader for, 423, 626–632

instruction set architecture for, 287–288,
292–293

JNZ instruction, 306–308
labels in, 308–309
LOADI instruction, 300–301
loading program counter for, 342–345

running program counter and, 419–421
loop counter, 309–310

708 Index

Counter (continued)
present-state/next-state tabular method in design of,

174–176
ring, 165
robot eye, 565–568
running program

designing, 416–418
loading program counter and, 419–421

10-state, 589–592
Counting sequence diagram, 159–160, 229
CPLD. see Complex programmable logic device (CPLD)
CPOS. see Canonical product of sums (CPOS)
Crystal clock oscillator, 137
CSA. see Conditional signal assignment (CSA)
CSOP. see Canonical sum of products (CSOP)
Cycle, machine, 418

D
Data bus, in microcomputer system, sharing of, 187–190
Dataflow design style, 99–101
Data memory

for very basic computer 1-E
design, 471–475
instructions, 432–434

Data paths, 189
Data path unit, 598–600
Data selector, 85
Data transmission routing scheme, 221
Debounced one-pulse circuit (DOPC)

design of, 345–348
design verification for, 348–354
for very basic computer 1-E, 516–520

Decimal display decoder system, 546–549
Declaration

architecture, 16, 94, 97–98
component, 108
entity, 94, 96–97
internal signal, 108

Decoders, 79–84
Decoders, decimal display, 546–549
Decoders, instruction

for ADDI instruction, 385–386
for ADD instruction, 386–387
for arithmetic logic unit, 484–485
definition of, 379
for FETCH instruction, 475–478, 478–479
for IN instruction, 382–383
for INT instruction, 511–512
for IRET instruction, 511–512
for JNZ instruction, 389–392
for LOADI instruction, 384–385
for MOV instruction, 383–384, 479–480
purpose of, 379–380

Computer, very basic 1-E (continued)
loading program counter circuit for, 501
logic instructions for, 434–437
manual loading modification circuit for, 493–495,

651–654
MOV instruction for, 432, 640–645

instruction decoder for, 479–480
output circuit design for, 462–464
output instructions for, 427–431
PCPLUS circuit for, 509–510
PCPLUS1 circuit for, 509–510
programmer’s register model for, 429
proper address circuit for, 501
registers in, selection of, 475
running program counter circuit for,

500–501
modification of, 516–520

select circuit for, 504–509
SR0 instruction for, 437–439

in arithmetic logic unit, 485–486
instruction decoder for, 486–488

STORE instruction for, 432
design and testing, 640–645
instruction decoder for, 478–479
instruction decoder truth tables for,

475–478
Concatenation operators, 169
Concurrent statements, 98
Conditional signal assignment (CSA), 100
Connection, physical wiring, 162
Consensus theorem, 8
Contention

bus, 188
logic line, 188

Control bus, 187
Conventional method, 161
Counter

algorithmic equation method in design of,
159–166

arithmetic method in design of, 170–171
complex, 157–158
conventional, 167
definition of, 156
design and testing of

Gray code, with 2 bits, 562–565
one-hot up, with 8 bits, 558–561

loading program, 342–345
running program counter and, 419–421

nonconventional, 167–169
present-state/next-state tabular method in design

of, 177–178
one-hot up, 558–561
one-hot up/down, 584–588

www.itpub.net

 Index 709

Dual-in-line (DIP) package, 68
Duty cycle, 135

E
EASY1

GUI, 687
laboratory experiments, 593–597, 598–600
layout, 687–689
machine code generation with, 699–700
screen, 687
time delays in, 698–699
tutorial, 687–700
use of, 689

EASY1-E, 445, 525
EASY1 tutorial, 687
laboratory experiments, 633, 639, 643
loading instruction into memory, 701–703

8-bit register, 553–558
Encoding

compact, 232
full, 232
one-hot, 233

Entity, 15
declaration, 94, 96–97
design, 94

Enumerated data type, 337
Error detection system, 572–577
Errors, syntactical, 95
Even function, 191
Excitation input, 148
Experiments, laboratory

adder-subtractor system, 4-bit, with hierarchical
design approach, 577–580

arithmetic logic unit for very basic computer 1, 617–621
assembly language for very basic computer 1, 632–635
check gates system design and testing, 542–546
decimal display decoder system, design and testing

of, 546–549
design cycle completion, 534–538
D latch and D flip-flop with CLR input, 549–553
EASY1, 593–597, 598–600
8-bit register and D flip-flop with PRE input design

and testing, 553–558
error detection system, with flat design approach,

572–577
extended instruction memory for very basic computer

1-E, 654–658
final hardware design for very basic computer 1,

621–625
final hardware design for very basic computer 1-E,

663–668
gate design and simulation, 528–534
Gray code counter with 2 bits, 562–565

Decoders, instruction (continued)
for SR0 instruction, 387–388

in very basic computer 1-E, 486–488
for STORE instruction, 475–478, 478–479
truth tables for, 380–382

in very basic computer 1-E
INT instructions, 510–511
IRET instruction, 510–511
modified IN instruction, 460–462, 466–467
modified OUT instruction, 464–466, 466–467
SR0 instruction, 487
STORE instruction, 475–478

for very basic computer 1, 393, 613–616
for very basic computer 1-E

in manual loading modification, 495
for modified IN instruction, 460–462, 466–467
for modified OUT instruction, 464–466,

466–467
Decrement operation, 201
DeMorgan equivalent gate symbols, 30–31
DeMorgan’s theorem, 8
Demultiplexer, 81, 221–224
Demultiplexer trees, 223–224
Destination register (DR), 287
Direct polarity indication (DPI), 217–221
Disconnected state, 184–187
Display

decimal, 546–549
letter, VHDL designs for, 52–54
multiplexed

with flat design approach, 364–367
for four 7-segment LED displays, 357–359
with hierarchical design approach, 367–372
with VHDL, 360–364

RETA signal, 521–525
7-segment, output circuits design for, 326–328
word, with flat design approach, 372–377

Distributive rule, 7
Divide-and-conquer technique, 195
Documentation style M (DSM), 323–324
DOPC. see Debounced one-pulse circuit (DOPC)
Double complementation theorem, 8
Double-dabble method, 44
Double negation theorem, 8
Downto, 54
DPI. see Direct polarity indication (DPI)
DR. see Destination register (DR)
Driver fight, 188
DSM. see Documentation style M (DSM)
D-type flip-flop circuits, 157–158

with CLR input, 549–553
with PRE input, 553–558
Test Bench simulation for, 679–682

710 Index

Function(s)
Boolean, derivation of

from minterms and maxterms, 12–15
from 0s, 11–12
from 1s, 10–11
from truth tables, 10–15

even, 191, 573
hazards, 88
logic-hazard-free, 90, 143
odd, 191

Fuse map, 212
FX2 module interface board, 686

G
GAL (generic array logic), 210, 213–214, 216–217
Gated clock, 349
Gates

active low input, 32
check, 542–546
compact description names for, 32
design of, laboratory experiment for, 528–534
functionally complete, 31
international logic symbols for, 32–33
simulation of, laboratory experiment for, 528–534
symbols, 30–31
3-input AND

assigning package pins for, 534–536
design of, 528–532
programming file generation for, 536
simulation of, 532
Test Bench simulation for, 675–679

VHDL designs for, 15–30
Gray code counter, with 2 bits, 562–565
Greater than circuits, 194–197
Groups of 3 method, 41
Groups of 3 method in reverse, 41
Groups of 4 method, 42
Groups of 4 method in reverse, 42

H
HA. see Half adder (HA)
Half adder (HA), 197–198
HALT instruction, for very basic computer

1-E, 440
Hamming codes, 46
Hand assembly, 293
Harvard-type computer, 280–281
Hazards

function, 88
logic, 89–91

Hexadecimal display decoder, 581–582
Hex-dabble method, 44

Experiments, laboratory (continued)
instruction decoder for very basic computer 1, 613–616
instruction memory for very basic computer 1,

605–609
instruction memory for very basic computer 1-E,

668–674
instruction memory loader for very basic computer 1,

626–632
keypad encoder system design and testing,

539–542
LUT design system, with flat design approach,

580–584
monitor system for very basic computer 1, 609–613
one-hot up counter with 8 bits, design and testing of,

558–561
one-hot up/down counter, 584–588
robot eye circuit, 565–568
smiley face circuit, 569–572
10-state counter, 589–592
very basic computer 1-E design and testing, 635–640,

640–645, 645–651, 651–654
Eye, robot, 565–568

F
FA. see Full adder (FA)
Factored form (FF) method, 43
Fall times, 130
Fan-in, 72
Fan-in reduction, 72
Fan-out, 72
Fetch, 418
FETCH instruction

instruction decoders for, 475–479
for very basic computer 1-E, 432, 640–645

FF. see Factored form (FF) method
Field programmable gate array (FPGA), 71

pin connections, 683–686
state machine encoding styles and, 231–234

Finite state machine, 159
Flat design approach, 54, 111

for error detection system, 572–577
for LUT design system, 580–584
for multiplexed display system, 364–367
for one-hot up/down counter, 584–588
for word display system, 372–377

Flat package, 68
FPGA. see Field programmable gate array (FPGA)
Frequency

division, 171–173
of oscillation, 135

Full adder (FA), 198–200
Full encoding, 232

www.itpub.net

 Index 711

Instruction decoders (continued)
truth tables for, 380–382

in very basic computer 1-E
INT instruction, 510–511
IRET instruction, 510–511
modified IN instruction, 460–462, 466–467
modified OUT instruction, 464–466, 466–467
SR0 instruction, 487
STORE instruction, 475–478

for very basic computer 1, 393, 613–616
for very basic computer 1-E

in manual loading modification, 495
for modified IN instruction, 460–462, 466–467
for modified OUT instruction, 464–466, 466–467

Instruction memory
coding alterations for, 337–339
designing, 335–342, 605–609
extended, for very basic computer 1-E, 496–500,

654–658
initializing, 339–342
loader for, 423, 525, 626–632, 668–674
testing, 605–609

Instruction set, 279
Internal signal declaration, 108
INT instruction, 510–511, 511–512, 658–663
IRET instruction, 510–511, 511–512, 658–663

J
JMP instruction, for very basic computer 1-E, 440,

488–489
instruction decoder for, 489–490

JMPR circuit, for very basic computer 1-E, 502
JMPR instruction, for very basic computer 1-E, 440,

441, 488–489
instruction decoder for, 489–490

JNZ instruction
for instruction decoders, 389–392
for very basic computer 1, 306–308
for very basic computer 1-E, 467–468, 635–640

K
Karnaugh Map Explorer, 55–62
Karnaugh map reduction method, 54–63
Keypad encoder system, 539–542

L
Latch

D, 137–142, 549–553
definition of, 125
S-R NAND, 132–134

in D flip-flop circuits, 146–148
S-R NOR, 125–131

Hierarchical design approach, 54, 106–112
for 4-bit adder-subtractor system, 577–580
for multiplexed display system, 367–372
for 10-state counter, 589–592

High-impedance state, 184
Hold time, 140

I
Ideal timing diagram, 130
Idempotency theorem, 8
Identifiers, 17, 97
Identity element theorem, 8
If-then-else statement, 103
Implication, 98
Increment circuit, 403
Increment operation, 201
Indirect subtraction by addition, 201, 310
Induction, perfect, 9
Inference, 98
Input

active high, 51
active low, 51
excitation, 148
scalar, 117–118
shift-left serial, 412
shift-right serial, 412
synchronous, 148
vector, 118–120

Input circuits
design of, 321–324
for very basic computer 1-E, design of, 458–460

Input/output system, 329–332
Instantiation, 98

component, 108
Instruction cycle, 418
Instruction decoders

for ADDI instruction, 385–386
for ADD instruction, 386–387
for arithmetic logic unit, 484–485
definition of, 379
for FETCH function, 475–478, 475–479
for IN instruction, 382–383
for INT instruction, 511–512
for JMP instruction, 489–490
for JMPR instruction, 489–490
for JNZ instruction, 389–392
for LOADI instruction, 384–385
for MOV instruction, 383–384, 479–480
purpose of, 379–380
for SR0 instruction, 387–388

in very basic computer 1-E, 486–488
for STORE function, 475–478, 478–479

712 Index

Memory (continued)
instruction

coding alterations for, 337–339
designing, 335–342, 605–609
extended, for very basic computer 1-E, 496–500,

654–658
initializing, 339–342
loader for, 423, 525, 626–632, 668–674
testing, 605–609

loader, 423, 525, 703
manual loading of, 701–702
programmable read only, 210, 214–215
random-access, 80, 187
read only, 80, 187, 213
roaming through, 310

Metastable state, 140
Microcomputer system, data bus sharing for, 187–190
Micro-operations, 201
Minterms, 12
Mirror method, 48
Modular design technique, 195, 223
Modulo-2 addition operator, 49
Moore outputs

in compact encoded state machines, 241–243
in one-hot encoded state machines, 237–241, 243–245

MOV instruction
instruction decoders for, 383–384, 479–480
for very basic computer 1, 298–300
for very basic computer 1-E, 432, 479–480, 640–645

MSB (most significant bit), 6
Multiplexed display system

with flat design approach, 364–367
for four 7-segment LED displays, 357–359
with hierarchical design approach, 367–372
with VHDL, 360–364

Multiplexers, 85–88, 221–224
Multiplexer trees, 223

N
NAND function, VHDL design for, 21–22
Negation indicator, 218
Negation symbol, 218
Next-state output, 127
NEXYS 2 board, 529, 636, 684, 685, 686
Nibble, 41
Nonconventional counter, 167–169

present-state/next-state tabular method in design of,
177–178

Nonvolatile, 212
NOT operation

definition of, 6
symbol for, 4
truth table for, 5

Level sensitive, 139
Library clause, 95
Library part, 15–16, 94, 95–96
Line

data, 187
signal, 72

Literal, 54
Literal count, 54
Loadable register circuits, design of, 319–321
Loader, 293
LOADI instruction

for arithmetic logic unit, 399–400
for instruction decoders, 384–385
for very basic computer 1, 300–301
for very basic computer 1-E, 467–468, 635–640

Loading, manual, 293
in very basic computer 1-E, modification of,

493–495, 651–654
Loading program counter (LPC), 342–345

running program counter and, 419–421
for very basic computer 1-E, 501

Logic, basic symbols in, 4–7
Logic circuit diagram, 5
Logic 0 glitch, 140
Logic hazards, 89–91
Logic line contention, 188
Look-up tables, 212–213, 214–215
LPC. see Loading program counter (LPC)
LSB (least significant bit), 6
LUT design system, 580–584

M
Machine code, 279
Machine code form (MCF), 287
Machine cycle, 418
Manipulation, mathematical, 9
Manual loading, 293

in very basic computer 1-E, modification of,
493–495, 651–654

Matching
polarity/indicator, 219
signal/indicator (S/I), 219

Maxterms, 12
MCF. see Machine code form (MCF)
Mealy outputs

in compact encoded state machines,
241–243

in one-hot encoded state machines, 243–245
Memory

data, for very basic computer 1-E
design, 471–475
instructions, 432–434

initialization at startup, 702–703

www.itpub.net

 Index 713

Parity checker, 192
Parity generator, 192, 573
PCPLUS1 circuit, for very basic computer 1-E, 509–510
Period, 135
PGA. see Pin grid array (PGA) package
Physical wiring connections, 162
Pin grid array (PGA) package, 68
PLA (programmable logic array), 210, 213, 215–216
Plastic leaded chip carrier (PLCC) package, 68
PLC. see Positive logic convention (PLC)
PLCC. see Plastic leaded chip carrier (PLCC) package
PLD. see Programmable logic devices (PLDs)
Polarity indicator, 218
Polarity/indicator matching, 219
Polarity symbol, 218
Polarized signals, 217
Polynomial function method, 42
Port mapping, 98
Port map statements, 367
Positional association, 109
Positive logic convention (PLC), 217–221
Post-route simulation, 136
Postulates, 1, 7
Present-state/next-state table

for complex state machine design, 228–231
in counter design, 174–176
for D latch, 139
for S-R NAND latch, 133
for S-R NOR latch, 129

Present-state output, 127
Princeton-type computer, 282–283
Printed circuit board (PCB), 68
PRM. see Programmer’s register model (PRM)
Program counter

loading, 342–345
running program counter and, 419–421

running
designing, 416–418
loading program counter and, 419–421
modified circuit for, 504–509
for very basic computer 1-E, 500–501

modification of, 516–520
Programmable logic devices (PLDs), 210–217

classification of, 211
complex, 210

Programmer’s register model (PRM)
for very basic computer 1, 286
for very basic computer 1-E, 429

Program runs amuck, 310
PROM (programmable read only memory), 210, 214–215
Propagation delay time, 78–79

for carry look-ahead adders, 206
for ripple-carry adders, 203

Number conversions, binary, 38–45
Numbers

binary, 38–45
decimal, 38–45
hexadecimal, 38–45
octal, 38–45

O
Octal-dabble method, 44
Odd function, 191
One-hot encoded state machines, 237–241, 243–245
One-hot encoding, 233
One-hot up counter, 558–561
One-hot up/down counter, 584–588
1 referencing, 40
Operation code, 294
OR operation

definition of, 6
symbol for, 4
truth table for, 5
VHDL design for, 18–19

Oscillator, 134
crystal clock, 137

OUT instruction
for very basic computer 1, 296–298

Output(s)
active high, 32
active low, 32
don’t-care, 61–63
fully specified, 61
incompletely specified, 61
Mealy

in compact encoded state machines, 241–243
in one-hot encoded state machines, 243–245

Moore
in compact encoded state machines, 241–243
in one-hot encoded state machines, 237–241,

243–245
next-state, 127
present-state, 127
scalar, 117–118
three-state, 184–187
vector, 118–120

Output circuits, design of, 324–329
display 0 in, 328–329
for four LEDs, 325–326
for 7-segment display, 326–328
for very basic computer 1-E, 462–464

P
PAL (programmable array logic), 210, 213–214,

216–217
Parity, 46

714 Index

Shifter circuit, 406–409
barrel, 409–412

Shift-left serial input (SLSI), 412
Shift register circuit, 412–414
Shift-right serial input (SRSI), 412
Signal(s)

discrete vs. continuous, 38
fixed, 358
name association, 162
names, 217–218
polarized, 217
RETA, 521–525
simplest form for, 220

Signal/indicator (S/I) matching, 219
Simple finite state machine (SFSM), 159
Simple state machine (SSM), 159, 696
Simplification theorem, 8, 9
Skew, clock, 354
SLSI. see Shift-left serial input (SLSI)
Small-scale integration (SSI) packages, 71
Smiley face circuit, 569–572
Source register (SR), 287
Speed circuit, 421–423
SR. see Source register (SR)
SR0 instruction

for arithmetic logic unit, 401–402, 485–486
instruction decoder for, 387–388

in very basic computer 1-E, 486–488
for very basic computer 1, 304–306
for very basic computer 1-E, 437–439,

485–486
SRSI. see Shift-right serial input (SRSI)
SSA. see Selected signal assignment (SSA)
SSI. see Small-scale integration (SSI) packages
SSM. see Simple state machine (SSM)
State

diagram, 229
disconnected, 184–187
high-impedance, 184
metastable, 140

State machine, 159
State machine encoding styles, 231–234
Statement

case, 105
concurrent, 98
if-then-else, 103
port map, 367

State sequence diagram, 159–160, 229
State time, 130
Steering circuits, design of, 316–317

bus, 318–319
for very basic computer 1-E, 458–459

Proper address circuit, for very basic computer 1-E, 501
Pulse width, 130

R
Radix, 38
RAM (random-access memory), 80, 187
RCA. see Ripple-carry adder (RCA)
Reflective Gray code, 48
Register

8-bit, 553–558
definition of, 319
in very basic computer 1-E, selection of, 475

Register-memory architecture, 283
Repeated radix division method, 44
Resent dominant, 128
RETA signal display circuit, for very basic computer

1-E, 521–525
RGC to binary conversion method, 49
Ring counter, 165
Ripple-carry adder (RCA), 200–202, 203
RISC architecture, 280–281
Rise times, 130
Roaming, through memory, 310
Robot eye circuit, 565–568
ROM (read-only memory), 80, 187, 213
Rubber banded, 190
Run frequency circuit, 421–423
Running program counter (RPC)

designing, 416–418
loading program counter and, 419–421
modified circuit for, 504–509
for very basic computer 1-E, 500–501

modification of, 516–520
Runt pulse, 88

S
Sampling interval, 140
Scalar inputs, 117–118
Scalar outputs, 117–118
Scalars, 54
Schematics, generation of detailed, 74–75
See-through mode, 139
Select circuit, for very basic computer 1-E,

504–509
Selected signal assignment (SSA), 100
Sensitivity list, 103
Sequential logic circuits, 126–127
Sequential logic equation, 129
Settling time, 200, 203
Setup time, 140
7-segment code, 51
SFSM. see Simple finite state machine (SFSM)

www.itpub.net

 Index 715

Time (continued)
rise, 130
settling, 200, 203
setup, 140
state, 130

Timing diagram
for positive edge-triggered D flip-flop, 149
for S-R NAND latch, 133–134
for S-R NOR latch, 130–131

Timing events, 130
Top-down design, 372
Transfer function form (TFF), 287
Transparent mode, 139
Truth tables

derivation of Boolean functions from, 10–15
for instruction decoder, 380–382

in very basic computer 1-E
INT instructions, 510–511
IRET instruction, 510–511
modified IN instruction, 460–462,

466–467
modified OUT instruction, 464–466,

466–467
SR0 instruction, 487
STORE instruction, 475–478

for operator definitions, 5
2-out-of-5 coded decimal code, 46

U
Unit distance code, 48
Use clause, 96

V
Variable dominant rule, 7
VBC1. see Very basic computer 1 (VBC1)
VBC1-E. see Very basic computer 1-E (VBC1-E)
Vector, 54

output, 118–120
Vector input, 118–120
Venn diagrams, 2–3
Very basic computer 1 (VBC1)

ADDI instruction, 301–303
ADD instruction, 303–304
arithmetic logic unit for, 402, 617–621
assembly language for, 289–290, 632–635
design of, experiment for, 598–600
design philosophy of, 283–286
divide instruction, 312
EASY1 for, 593–597
final hardware design, 621–625
IN instruction, 293–296
instruction decoder for, 393

Storage mode, 139
STORE instruction

for very basic computer 1-E, 432
design and testing, 640–645
instruction decoder for, 478–479
instruction decoder truth tables for,

475–478
Structural design style, 106–112
Subtraction, indirect, by addition, 201, 310
Subtract the weights method, 40
Sum bits, 198
Sum terms, 12
Surface mount package, 68
Symbol(s)

basic logic, 4–7
bubble, 218
DeMorgan equivalent gate, 30–31
international logic, for gates, 32–33
negation, 218
polarity, 218
wedge, 218
XNOR, 190–197
XOR, 190–197

Synchronous circuits, 156
Synchronous input, 148
Synchronous process, 228
Synchronous sequential logic design, 679–682
Syntactical errors, 95

T
10-state counter, 589–592
Term(s)

carry generate, 204
carry propagate, 204
sum, 12

Test Bench, 675–682
TFF. see Transfer function form (TFF)
Theorems, 8–10
3-input AND gate

assigning package pins for, 534–536
design of, 528–532
programming file generation for, 536
simulation of, 532
Test Bench simulation for, 675–679

Three-state outputs, 184–187
Time

delays, 698–699
fall, 130
hold, 140
propagation delay, 78–79

for carry look-ahead adder, 206
for ripple-carry adder, 203

716 Index

Very basic computer 1-E (VBC1-E) (continued)
JMP instruction for, 440, 488–489

instruction decoder for, 489–490
JMPR circuit for, 502
JMPR instruction for, 440, 441, 488–489

instruction decoder for, 489–490
JNZ instruction for, 467–468, 635–640
LOADI instruction for, 467–468, 635–640
loading program counter circuit for, 501
logic instructions for, 434–437
manual loading modification circuit for,

493–495, 651–654
MOV instruction for, 432, 640–645

instruction decoder for, 479–480
output circuit design for, 462–464
output instructions for, 427–431
PCPLUS circuit for, 509–510
programmer’s register model for, 429
proper address circuit for, 501
registers in, selection of, 475
running program counter circuit for, 500–501

modification of, 516–520
shift and rotate instructions for, 437–439
SR0 instruction for, 437–439

in arithmetic logic unit, 485–486
instruction decoder for, 486–488

STORE instruction for, 432
design and testing, 640–645
instruction decoder for, 478–479
instruction decoder truth tables for, 475–478

VHDL designs
alternate, 332–333
for letter display system, 52–54
for simple gate functions, 15–30

Volatile, 212
Von Neumann-type computer, 282–283

W
Wedge symbol, 218
Wire, 112–116
Word display system, with flat design approach,

372–377

X
XNOR function, 190–197

VHDL design for, 24–26
XNOR odd number of bubbles rule, 191
XOR circuit, 404
XOR even number of bubbles rule, 190
XOR function, 190–197

VHDL design for, 19–21

Z
0 referencing, 40

Very basic computer 1 (VBC1) (continued)
instruction memory in, 605–609

coding alterations for, 337–339
designing, 335–342
initializing, 339–342
loader for, 423, 626–632

instruction set architecture for, 287–288, 292–293
JNZ instruction, 306–308
labels in, 308–309
LOADI instruction, 300–301
loading program counter for, 342–345

running program counter and, 419–421
loop counter, 309–310
machine code generation for, with EASY1, 699–700
monitor system, 609–613
MOV instruction, 298–300
multiply instruction, 312
OUT instruction for, 296–298
overview of, 283
programmer’s register model for, 286
program runs amuck, 310
SR0 instruction, 304–306
subtraction instruction, 310–312
testing of, experiment for, 598–600
unconditional jump in, 308

Very basic computer 1-E (VBC1-E)
ADDI instruction for, 467–468, 635–640
ADD instruction for, 435
arithmetic and logic instructions for, 434–437
arithmetic logic unit for, 482–484
bus steering circuits for, 458–459
data memory

design, 471–475
instructions for, 432–434

debounced one-pulse trigger interrupt circuit for,
516–520

extended instruction memory for, 496–500,
654–658

FETCH instruction for, 432, 640–645
final hardware design for, 663–668
HALT instruction for, 440
input circuit for, 458–460
input instructions in, 427–431
instruction decoders for

arithmetic logic unit, 484–485
in manual loading modification, 495
modified IN instruction, 460–462, 466–467
modified OUT instruction, 464–466, 466–467

instruction memory loader for, 525, 668–674
instruction summary, 425–427
interrupt instructions for, 427–431
INT instruction for, 510–511, 511–512, 658–663
IRET instruction for, 510–511, 511–512, 658–663

www.itpub.net

0

0

0

0

0

0

0

A B C F(ABC)

Three Variables Four Variables Allow Don’t CaresTwo Variables

0 0 0 0

0 0 0 01
C

0

Karnaugh Map

AB

00 01 11 10

F(ABC) = 0

Truth Table

0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 2.7 The screen (or GUI)
for Karnaugh Map Explorer for three
variables

Three Variables Four Variables Allow Don’t CaresTwo Variables

0

0

0

A B F(AB)

0 0

0 01
B

0

Karnaugh Map

A

0 1

F(AB) = 0

Truth Table

0 0 0

0 1

1 0

1 1

FIGURE 2.8 The screen (or GUI) for
Karnaugh Map Explorer for two variables

0

0

1

A B F(AB)

0 0

0 11
B

0

Karnaugh Map

A

0 1

0 0

0 11
B

0

Karnaugh Map

A

0 1

F(AB) = A B F(AB) = A B

Truth Table

0 0 0

0 1

1 0

1 1

0

0

1

A B F(AB)

Truth Table

0 0 0

0 1

1 0

1 1

(b)(a)

FIGURE 2.9 (a) The screen (or GUI) for
Karnaugh Map Explorer for a 2-input AND gate;
(b) highlighted areas in yellow in the truth table
and K-map relate to the value of the function

1

1

1

A B F(AB)

0 1

1 11
B

0

Karnaugh Map

A

0 1

F(AB) = A + B

Truth Table

0 0 0

0 1

1 0

1 1

FIGURE 2.10 The screen (or GUI) for Karnaugh Map Explorer for
a 2-input OR gate

0 1

1

1

1

A B F(AB)

0 1

1 11
B

0

Karnaugh Map

A

0 1

1 11
B

0

Karnaugh Map

A

0 1

F(AB) = A + B F(AB) = A + B

Truth Table

0 0 0

0 1

1 0

1 1

1

1

1

A B F(AB)

Truth Table

0 0 0

0 1

1 0

1 1

(b)(a)

FIGURE 2.11 (a) Minterms that generate vari-
able A; (b) minterms that generate variable B

1 1

1 01
B

0

A

0 1

1

1

0

A B F(AB)

0 0 1

0 1

1 0

1 1

Karnaugh Map

F(AB) = A
-

 + B
-

Truth Table

(a)

B
A

F(A,B)

0

0 1

1

 1 1

 1 0
1 3

0 2

e1 = A
-

e2 = B

F(A,B) = e1 + e2 = A
-

+ B
-

(b)

FIGURE 2.13 (a) The screen (or GUI) for Karnaugh Map Explorer for a 2-input
NAND gate; (b) manual K-map reduction for a 2-input NAND gate

0 0 1 0

0 1 1 11
C

0

00 01 11 10

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C

0 0 0

0

0

1

0

1

1

1

0

F(ABC)

Karnaugh Map

AB

F(ABC) = A B + B C + A C

Truth Table

FIGURE 2.14 The screen (or GUI) for
Karnaugh Map Explorer for a 3-input majority
function

1 0 0 1

1 0 1 11
C

0

00011110
0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C

0 0 0

1

0

0

1

1

0

1

1

F(ABC)

Karnaugh Map

AB

F(ABC) = B + A C

Truth Table

(a)

00

0 0 01 1

0 11 11

01 11 10

0

1

2

3

6

7

4

5

F(A,B,C) = e1 + e2 = B
-

 + A∙C

F(A,B,C)
AB

e1 = B
-

e2 = A∙C

C

(b)

FIGURE 2.16 (a) The screen (or GUI) for Karnaugh Map Explorer with a group of
four adjacent cells; (b) manual K-map reduction

00011110

F(ABC)

1

1

0

1

0

0

1

A B C

0 1 0 1

1 0 1 01
C

0

Karnaugh Map

AB

F(ABC) = A
-

 B
-

 C + A
-

 B C
-

 +

Truth Table

0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C A B
-

 C
-

+

FIGURE 2.17 The screen (or GUI) for Karnaugh
Map Explorer for a 3-input XOR gate

0

1

1

1

1

0

1

10

1

0 0 0 00

0 0 0

1 1 0

0 1 1

0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 1 0 0 0

0 1 0 1 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 1 0 0

1 0 1 1 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

00

00 01 11 10

AB

A B C D F(ABCD)

CD

Truth Table

Karnaugh Map

F(ABCD) = A
-

 B C + A B C
-
 + A

-
C
-
 D + A C D

FIGURE 2.18 The screen (or GUI) for
Karnaugh Map Explorer for a redun-
dant larger group of cells

www.itpub.net

Three Variables Four Variables Allow Don’t CaresTwo Variables

1

X

0

0

0

1

0

A B C F(ABC)

1 X 1 0

1 0 0 01
C

0

Karnaugh Map

AB

00 01 11 10

F(ABC) = A
-

 B
-

 + B C
-

Truth Table

0 0 0 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 2.20 The screen
(or GUI) for Karnaugh Map
Explorer for a function with
an incompletely specified, or
don’t-care, output

0

1

X

X

1

1

1

10

1

0 0 0 00

0 1 X

1 1 0

1 0 1

0 X 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 1 0

0 1 0 1 1

0 1 1 X 0

0 1 1 0 1

1 0 0 X 0

1 0 0 0 1

1 0 1 0 0

1 0 1 1 1

1 1 0 X 0

1 1 0 X 1

1 1 1 1 0

1 1 1 1 1

00

00 01 11 10

AB

A B C D F(ABCD)

CD

Truth Table

Karnaugh Map

F(ABCD) = A B + B C
-

 + A
-

 B
-

 D + A C D

Three Variables Four Variables Allow Don’t CaresTwo Variables FIGURE 2.21 The screen
(or GUI) for Karnaugh Map
Explorer for a function with
several incompletely specified,
or don’t-care, outputs

	Cover
	Title Page
	Copyright
	Contents
	Preface
	About the Authors
	Chapter 1 Boolean Algebra, Boolean Functions, VHDL, and Gates
	1.1 Introduction
	1.2 Basics of Boolean Algebra
	1.2.1 Venn Diagrams
	1.2.2 Black Boxes for Boolean Functions
	1.2.3 Basic Logic Symbols
	1.2.4 Boolean Algebra Postulates
	1.2.5 Boolean Algebra Theorems
	1.2.6 Proving Boolean Algebra Theorems

	1.3 Deriving Boolean Functions from Truth Tables
	1.3.1 Deriving Boolean Functions Using the 1s of the Functions
	1.3.2 Deriving Boolean Functions Using the 0s of the Functions
	1.3.3 Deriving Boolean Functions Using Minterms and Maxterms

	1.4 Writing VHDL Designs for Simple Gate Functions
	1.4.1 VHDL Design for a NOT Function
	1.4.2 VHDL Design for an AND Function
	1.4.3 VHDL Design for an OR Function
	1.4.4 VHDL Design for an XOR Function
	1.4.5 VHDL Design for a NAND Function
	1.4.6 VHDL Design for a NOR Function
	1.4.7 VHDL Design for an XNOR Function
	1.4.8 VHDL Design for a BUFFER Function
	1.4.9 VHDL Design for any Boolean Function Written in Canonical Form

	1.5 More about Logic Gates
	1.5.1 Equivalent Gate Symbols
	1.5.2 Functionally Complete Gates
	1.5.3 Equivalent Gate Circuits
	1.5.4 Compact Description Names for Gates
	1.5.5 International Logic Symbols for Gates

	Problems

	Chapter 2 Number Conversions, Codes, and Function Minimization
	2.1 Introduction
	2.2 Digital Circuits versus Analog Circuits
	2.2.1 Digitized Signal for the Human Heart
	2.2.2 Discrete Signals versus Continuous Signals

	2.3 Binary Number Conversions
	2.3.1 Decimal, Binary, Octal, and Hexadecimal Numbers
	2.3.2 Conversion Techniques

	2.4 Binary Codes
	2.4.1 Minimum Number of Bits for Keypads and Keyboards
	2.4.2 Commonly Used Codes: BCD, ASCII, and Others
	2.4.3 Modulo-2 Addition and Conversions between Binary and Reflective Gray Code
	2.4.4 7-Segment Code
	2.4.5 VHDL Design for a Letter Display System

	2.5 Karnaugh Map Reduction Method
	2.5.1 The Karnaugh Map Explorer
	2.5.2 Using a 2-Variable K-Map
	2.5.3 Using a 3-Variable K-Map
	2.5.4 Using a 4-Variable K-Map
	2.5.5 Don’t-Care Outputs

	Problems

	Chapter 3 Introduction to Logic Circuit Analysis and Design
	3.1 Introduction
	3.2 Integrated Circuit Devices
	3.3 Analyzing and Designing Logic Circuits
	3.3.1 Analyzing and Designing Relay Logic Circuits
	3.3.2 Analyzing IC Logic Circuits
	3.3.3 Designing IC Logic Circuits

	3.4 Generating Detailed Schematics
	3.5 Designing Circuits in NAND/NAND and NOR/NOR Form
	3.6 Propagation Delay Time
	3.7 Decoders
	3.7.1 Designing Logic Circuits with Decoders and Single Gates

	3.8 Multiplexers
	3.8.1 Designing Logic Circuits with MUXs

	3.9 Hazards
	3.9.1 Function Hazards
	3.9.2 Logic Hazards

	Problems

	Chapter 4 Combinational Logic Circuit Design with VHDL
	4.1 Introduction
	4.2 VHDL
	4.3 The Library Part
	4.4 The Entity Declaration
	4.5 The Architecture Declaration
	4.5.1 Comments about a Dataflow Design Style
	4.5.2 Comments about a Behavioral Design Style
	4.5.3 Comments about a Structural Design Style

	4.6 Dataflow Design Style
	4.7 Behavioral Design Style
	4.8 Structural Design Style
	4.9 Implementing with Wires and Buses
	4.10 VHDL Examples
	4.10.1 Design with Scalar Inputs and Outputs
	4.10.2 Design with Vector Inputs and Outputs
	4.10.3 Common VHDL Constructs

	Problems

	Chapter 5 Bistable Memory Device Design with VHDL
	5.1 Introduction
	5.2 Analyzing an S-R NOR Latch
	5.2.1 Simple On/Off Light Switch
	5.2.2 Circuit Delay Model for an S-R NOR Latch
	5.2.3 Characteristic Table for an S-R NOR Latch
	5.2.4 Characteristic Equation for an S-R NOR Latch
	5.2.5 PS/NS Table for an S-R NOR Latch
	5.2.5 Timing Diagram for an S-R NOR Latch

	5.3 Analyzing an S-R NAND Latch
	5.3.1 Circuit Delay Model for an S-R NAND Latch
	5.3.2 Characteristic Table for an S-R NAND Latch
	5.3.3 Characteristic Equation for an S-R NAND Latch
	5.3.4 PS/NS Table for an S-R NAND Latch
	5.3.5 Timing Diagram for an S-R NAND Latch

	5.4 Designing a Simple Clock
	5.5 Designing a D Latch
	5.5.1 Gated S-R Latch Circuit Design
	5.5.2 D Latch Circuit Design with S-R Latches
	5.5.3 D Latch Circuit Design via the Characteristic Table for a D Latch
	5.5.4 Timing Diagram for a D Latch
	5.5.5 Creating a Clock via a D Latch
	5.5.6 Creating an 8-bit D Latch

	5.6 Designing D Flip-Flop Circuits
	5.6.1 Designing Master–Slave D Flip-Flop Circuits
	5.6.2 Designing D Flip-Flop Circuits with S-R NAND Latches
	5.6.3 Timing Diagram for Positive Edge-Triggered D Flip-Flop

	Problems

	Chapter 6 Simple Finite State Machine Design with VHDL
	6.1 Introduction
	6.2 Synchronous Circuits
	6.3 Creating D-type Flip-Flops in VHDL
	6.4 Designing Simple Synchronous Circuits
	6.5 Counter Design Using the Algorithmic Equation Method
	6.6 Nonconventional Counter Design Using the Algorithmic Equation Method
	6.7 Counter Design Using the Arithmetic Method
	6.8 Frequency Division (Slowing Down a Fast Clock Frequency)
	6.9 Counter Design Using the PS/NS Tabular Method
	6.10 Nonconventional Counter Design Using the PS/NS Tabular Method
	Problems

	Chapter 7 Computer Circuits
	7.1 Introduction
	7.2 Three-State Outputs and the Disconnected State
	7.3 Data Bus Sharing for a Microcomputer System
	7.4 More about XOR and XNOR Symbols and Functions
	7.4.1 Odd and Even Functions
	7.4.2 Single-Bit Error Detection System
	7.4.3 Comparators and Greater Than Circuits

	7.5 Adder Design
	7.5.1 Designing a Half Adder Module
	7.5.2 Designing a Full Adder Module

	7.6 Designing and Using Ripple-Carry Adders and Subtractors
	7.7 Propagation Delay Time for Ripple-Carry Adders
	7.8 Designing Carry Look-Ahead Adders
	7.9 Propagation Delay Time for Carry Look-Ahead Adders
	Problems

	Chapter 8 Circuit Implementation Techniques
	8.1 Introduction
	8.2 Programmable Logic Devices
	8.2.1 PROMs and LUTs
	8.2.2 PLAs
	8.2.3 PALs or GALs
	8.2.4 Designing with PROMs or LUTs
	8.2.5 Designing with PLAs
	8.2.6 Designing with PALs or GALs

	8.3 Positive Logic Convention and Direct Polarity Indication
	8.3.1 Signal Names
	8.3.2 Analyzing Equivalent Circuits for the PLC and the DPI Systems

	8.4 More about MUXs and DMUXs
	8.4.1 Designing MUX Trees
	8.4.2 Designing DMUX Trees

	Problems

	Chapter 9 Complex Finite State Machine Design with VHDL
	9.1 Introduction
	9.2 Designing with the Two-Process PS/NS Method
	9.3 Explanation of CPLDs and FPGAs and State Machine Encoding Styles
	9.4 Summary of Finite State Machine Models
	9.5 Designing Compact Encoded State Machines with Moore Outputs
	9.6 Designing One-Hot Encoded State Machines with Moore Outputs
	9.7 Designing Compact Encoded State Machines with Moore and Mealy Outputs
	9.8 Designing One-Hot Encoded State Machines with Moore and Mealy Outputs
	9.9 Using the Algorithmic Equation Method to Design Complex State Machines
	9.10 Improving the Reliability of Complex State Machine Designs
	9.11 Additional State Machine Design Methods
	9.11.1 Two-Assignment PS/NS Method
	9.11.2 Hybrid PS/NS Method

	Problems

	Chapter 10 Basic Computer Architectures
	10.1 Introduction
	10.2 Generic Data-Processing System or Computer
	10.3 Harvard-Type Computer and RISC Architecture
	10.4 Princeton (von Neumann)-Type Computer and CISC Architecture
	10.5 Overview of VBC1 (Very Basic Computer 1)
	10.6 Design Philosophy of VBC1
	10.7 Programmer’s Register Model for VBC1
	10.8 Instruction Set Architecture for VBC1
	10.9 Format for Writing Assembly Language Programs
	Problems

	Chapter 11 Assembly Language Programming for VBC1
	11.1 Introduction
	11.2 Instruction Set for VBC1
	11.3 The IN Instruction
	11.4 The OUT Instruction
	11.5 The MOV Instruction
	11.6 The LOADI Instruction
	11.7 The ADDI Instruction
	11.8 The ADD Instruction
	11.9 The SR0 Instruction
	11.10 The JNZ Instruction
	11.11 Programming Examples and Techniques for VBC1
	11.11.1 Unconditional Jump
	11.11.2 Labels
	11.11.3 Loop Counter
	11.11.4 Program Runs Amuck
	11.11.5 Subtraction Instruction
	11.11.6 Multiply Instruction
	11.11.7 Divide Instruction

	Problems

	Chapter 12 Designing Input/Output Circuits
	12.1 Introduction
	12.2 Designing Steering Circuits
	12.3 Designing Bus Steering Circuits
	12.4 Designing Loadable Register Circuits
	12.5 Designing Input Circuits
	12.5.1 Designing an Input Circuit Driven by Four Slide Switches

	12.6 Designing Output Circuits
	12.6.1 Designing an Output Circuit to Drive Four LEDs
	12.6.2 Designing an Output Circuit to Drive a 7-Segment Display
	12.6.3 A Closer Look at the Circuitry for Display 0

	12.7 Combining Input and Output Circuits to Form a Simple I/O System
	12.8 Alternate VHDL Design Styles
	Problems

	Chapter 13 Designing Instruction Memory, Loading Program Counter, and Debounced Circuit
	13.1 Introduction
	13.2 Designing an Instruction Memory
	13.2.1 Coding Alterations for Instruction Memory
	13.2.2 Initializing Instruction Memory for VBC1 at Startup

	13.3 Designing a Loading Program Counter
	13.4 Designing a Debounced One-Pulse Circuit
	13.5 Design Verification for a Debounced One-Pulse Circuit
	Problems

	Chapter 14 Designing Multiplexed Display Systems
	14.1 Introduction
	14.2 Multiplexed Display System for Four 7-Segment LED Displays
	14.3 Designing a Multiplexed Display System Using VHDL
	14.3.1 Designing Module 1: A 4-to-1 MUX Array
	14.3.2 Designing Module 2: A HEX Display Decoder
	14.3.3 Designing Module 3: A 2-bit Counter and a Frequency Divider
	14.3.4 Designing Module 4: A 2-to-4 Decoder

	14.4 Complete Design of a Multiplexed Display System Using a Flat Design Approach
	14.5 Complete Design of a Multiplexed Display System Using a Hierarchal Design Approach
	14.6 Designing a Word Display System Using a Flat Design Approach
	Problems

	Chapter 15 Designing Instruction Decoders
	15.1 Introduction
	15.2 Purpose of the Instruction Decoder
	15.3 Instruction Decoder Truth Tables for the IN, OUT, and MOV Instructions
	15.4 Designing an Instruction Decoder for the IN Instruction
	15.5 Designing an Instruction Decoder for the OUT and MOV Instructions
	15.6 Instruction Decoder Truth Table for the LOADI Instruction
	15.7 Instruction Decoder Truth Table for the ADDI Instruction
	15.8 Instruction Decoder Truth Table for the ADD Instruction
	15.9 Instruction Decoder Truth Table for the SR0 Instruction
	15.10 Designing an Instruction Decoder for the SR0 Instruction
	15.11 Instruction Decoder Truth Table for the JNZ Instruction
	15.12 Designing an Instruction Decoder for the JNZ Instruction
	15.13 Designing an Instruction Decoder for VBC1
	Problems

	Chapter 16 Designing Arithmetic Logic Units
	16.1 Introduction
	16.2 Utilization of the Arithmetic Logic Unit
	16.3 Designing the LOADI Instruction Part of the ALU
	16.4 Designing the ADDI Instruction Part of the ALU
	16.5 Designing the ADD Instruction Part of the ALU
	16.6 Designing the SR0 Instruction Part of the ALU
	16.7 Designing an ALU for VBC1
	16.8 Additional Circuit Designs with VHDL
	16.8.1 Designing Additional ALU Circuits
	16.8.2 Designing Shifter Circuits
	16.8.3 Designing Barrel Shifter Circuits
	16.8.4 Designing Shift Register Circuits

	Problems

	Chapter 17 Completing the Design for VBC1
	17.1 Introduction
	17.2 Designing a Running Program Counter
	17.3 Combining a Loading and a Running Program Counter
	17.4 Designing a Run Frequency Circuit and a Speed Circuit
	17.5 Designing Circuits to Provide a Loader for Instruction Memory for VBC1
	Problems

	Chapter 18 Assembly Language Programming for VBC1-E
	18.1 Introduction
	18.2 Instruction Summary
	18.3 Input, Output, and Interrupt Instructions
	18.4 Data Memory Instructions
	18.5 Arithmetic and Logic Instructions
	18.6 Shift and Rotate Instructions
	18.7 Jump, Jump Relative, and Halt Instructions
	18.8 More about Interrupts and Assembler Directives
	18.9 Complete Instruction Set Summary for VBC1-E
	Problems

	Chapter 19 Designing Input/Output Circuits for VBC1-E
	19.1 Introduction
	19.2 Designing the Input Circuit for VBC1-E
	19.3 Instruction Decoder Truth Table for the Modified IN Instruction for VBC1-E
	19.4 Designing the Output Circuit for VBC1-E
	19.5 Instruction Decoder Truth Table for the Modified OUT Instruction for VBC1-E
	19.6 Designing an Instruction Decoder for the Modified IN and OUT Instructions for VBC1-E
	19.7 Designing an Instruction Decoder for the LOADI, ADDI, and JNZ Instructions for VBC1-E
	Problems

	Chapter 20 Designing the Data Memory Circuit for VBC1-E
	20.1 Introduction
	20.2 Designing the Data Memory for VBC1-E
	20.3 Designing Circuits to Select the Registers and Data for VBC1-E
	20.4 Instruction Decoder Truth Tables for the STORE and FETCH Instructions for VBC1-E
	20.5 Designing an Instruction Decoder for the STORE and FETCH Instructions for VBC1-E
	20.6 Designing an Instruction Decoder for the MOV Instruction for VBC1-E
	Problems

	Chapter 21 Designing the Arithmetic, Logic, Shift, Rotate, and Unconditional Jump Circuits for VBC1-E
	21.1 Introduction
	21.2 Designing the Arithmetic and Logic Instructions Part of the ALU for VBC1-E
	21.3 Designing the Instruction Decoder for the Arithmetic and Logic Instructions for VBC1-E
	21.4 Designing the Shift and Rotate Instructions Part of the ALU for VBC1-E
	21.5 Designing the Instruction Decoder for the Shift and Rotate Instructions for VBC1-E
	21.6 Designing the JMP and JMPR Circuits for VBC1-E
	21.7 Designing the Instruction Decoder for the JMP and JMPR Instructions for VBC1-E
	Problems

	Chapter 22 Designing a Circuit to Prevent Program Execution During Manual Loading for VBC1-E
	22.1 Introduction
	22.2 Designing a Circuit to Modify Manual Loading for VBC1-E
	22.3 Modifying the Instruction Decoder for Manual Loading for VBC1-E
	Problems

	Chapter 23 Designing Extended Instruction Memory for VBC1-E
	23.1 Introduction
	23.2 Modifying the Instruction Memory to Add Extended Instruction Memory for VBC1-E
	23.3 Modifying the Running Program Counter Circuit for VBC1-E
	23.4 Modifying the Proper Address Circuit for VBC1-E
	23.5 Modifying the Loading Program Counter Circuit for VBC1-E
	23.6 Modifying the JMPR Circuit for VBC1-E
	Problems

	Chapter 24 Designing the Software Interrupt Circuits for VBC1-E
	24.1 Introduction
	24.2 Designing the Modified Circuit for the Running Program Counter and the Select Circuit for VBC1-E
	24.3 Designing the Circuit to Store PCPLUS1 for VBC1-E
	24.4 Instruction Decoder Truth Tables for the INT and IRET Instructions for VBC1-E
	24.5 Designing the Instruction Decoder for the INT and IRET Instructions for VBC1-E
	Problems

	Chapter 25 Completing the Design for VBC1-E
	25.1 Introduction
	25.2 Designing a Debounced One-Pulse Trigger Interrupt Circuit and Modifying the RPC Circuit for VBC1-E
	25.3 Designing Circuits for Displaying the Signal RETA for VBC1-E
	25.4 Designing Circuits to Provide a Loader for Instruction Memory for VBC1-E
	Problems

	Appendices
	A: Laboratory Experiments
	Experiment 1A: Designing and Simulating Gates
	Experiment 1B: Completing the Design Cycle
	Experiment 2: Designing and Testing a Keypad Encoder System
	Experiment 3: Designing and Testing a Check Gates System
	Experiment 4: Designing and Testing a Custom Decimal Display Decoder System
	Experiment 5A: Designing and Testing a D Latch and a D Flip-Flop with a CLR Input
	Experiment 5B: Designing and Testing an 8-bit Register and a D Flip-Flop with a PRE Input
	Experiment 6A: Designing and Testing a Simple Counter System—A One-Hot Up Counter with 8 Bits
	Experiment 6B: Designing and Testing a Simple Counter System—A Gray Code Counter with 2 Bits
	Experiment 6C: Designing and Testing a Simple Nonconventional Counter System—A Robot Eye Circuit
	Experiment 6D: Designing and Testing a Simple Nonconventional Counter—A Smiley Face Circuit
	Experiment 7A: Designing and Testing a Simple Error Detection System Using a Flat Design Approach
	Experiment 7B: Designing and Testing a 4-bit Simple Adder-Subtractor System Using a Hierarchal Design Approach
	Experiment 8: Designing and Testing a LUT Design System Using a Flat Design Approach
	Experiment 9A: Designing and Testing a One-Hot Up/Down Counter System Using a Flat Design Approach
	Experiment 9B: Designing and Testing a 10-State Counter System Using a Hierarchal Design Approach
	Experiment 10: Working with EASY1 (Editor/Assembler/ Simulator) for VBC1
	Experiment 11: Writing and Simulating Programs for VBC1 with EASY1
	Experiment 12: Designing and Testing VBC1 (Data Path Unit)
	Experiment 13: Designing and Testing VBC1 (Instruction Memory Unit)
	Experiment 14: Designing and Testing VBC1 (Monitor System)
	Experiment 15: Designing and Testing VBC1 (Instruction Decoder)
	Experiment 16: Designing and Testing VBC1 (Arithmetic Logic Unit)
	Experiment 17: Designing and Testing VBC1 (Final Hardware Design for VBC1)
	Experiment 17L: Designing a Loader for Instruction Memory for VBC1
	Experiment 18: Writing Assembly Language Programs and Running Them on VBC1
	Experiment 19: Designing and Testing VBC1-E (IN, OUT, and Unchanged Instructions)
	Experiment 20: Designing and Testing VBC1-E (MOV and Data Memory Instructions)
	Experiment 21: Designing and Testing VBC1-E (Almost All Instructions)
	Experiment 22: Designing and Testing VBC1-E (Modified Manual Loading)
	Experiment 23: Designing and Testing VBC1-E (Add Extended Instruction Memory)
	Experiment 24: Designing and Testing VBC1-E (INT and IRET Instructions)
	Experiment 25: Designing and Testing VBC1-E (Final Hardware Design for VBC1-E)
	Experiment 25L: Designing a Loader for Instruction Memory for VBC1-E

	B: Obtaining Simulations via the VHDL Test Bench Program
	B.1 Introduction
	B.2 Example 1—Combinational Logic Design (project: AND_3)
	B.3 Example 2—Synchronous Sequential Logic Design (project: DFF)

	C: FPGA Pin Connections—Handy Reference
	C.1 BASYS 2 Board
	C.2 NEXYS 2 Board
	C.3 Memory Loader I/O Pin Connections for the FPGAs on the BASYS 2 and NEXYS 2 Board
	C.4 FX2 MIB (Module Interface Board)—Add-on Board for NEXYS 2

	D: EASY1 Tutorial
	D.1 Introduction
	D.2 EASY1 Screen or GUI
	D.3 EASY1 Layout
	D.4 How to Use EASY1
	D.5 Example 1—A Simple Input/Output Program
	D.6 Example 2—Input/Output Program Modified to Run Continuously
	D.7 Example 3—A Simple State Machine Program
	D.8 Example 4—A Complex State Machine Program
	D.9 Example 5—Generating Time Delays
	D.10 Using EASY1 to Generate Machine Code for VBC1

	E: Three Methods for Loading Instructions into Memory
	E.1 Loading Memory Manually
	E.2 Initializing Memory at Startup
	E.3 Loading Memory via the Memory Loader Program

	Index

