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Robust Stabilization of a Centrifugal Compressor With Spool Dynamics
Der-Cherng Liaw, Chau-Chung Song, and Jeng-Tze Huang

Abstract—Issues of global stabilization of a centrifugal com-
pressor with spool dynamics are presented. Control schemes are
designed for systems with and without system uncertainty. While
activating only the close-coupled valve or the throttle as the single
control input, backstepping tools are first used to achieve global
stability of the working equilibrium for systems without uncer-
tainty. The uncertainties in the spool dynamics and the compressor
characteristic are known to be likely to happen in practical ap-
plications. Under such circumstances, the compressor torque and
the close-coupled valve are then employed to achieve robust global
stability of the working equilibrium via the Lyapunov redesign
method. Numerical simulations are given to demonstrate the main
results.

Index Terms—Backstepping, centrifugal compressor, global sta-
bilization, Lyapunov method, spool dynamics.

I. INTRODUCTION

I T IS KNOWN that a centrifugal compressor achieves its op-
timal performance while working at the peak of the com-

pressor map. However, the system might encounter surge if it
is throttled beyond that critical point. Surge is known to be a
one-dimensional oscillation involving the pressure rise and the
mass flow which sharply reduces the compressor efficiency and
can damage the compressor [1]. Therefore, the avoidance of the
surge oscillation becomes an important issue for high-efficiency
operation of centrifugal compression systems.

Recently, the control of surge behavior has attracted consid-
erable attention (see the review in [2]) and particular interest
has focused on global control and robustness issues [3]–[9]
and [16]. For instance, Simon and Valavani [6] first proposed
a sliding mode control design by using the close-coupled
valve to robustly stabilize a compression system subject to
the uncertainty in the compressor map. Gravdahl and Egeland
[7] proposed a Lyapunov-based backstepping design to tackle
the uncertainties in both compressor and throttle maps. How-
ever, these two papers did not consider the effect of spool
dynamics whose transients might cause instabilities. Gravdahl
and Egeland also proposed a control design to achieve ro-
bust exponential stability of the equilibrium by activating the
close-coupled valve and/or the compressor torque [8], [18].
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That result is based on a model with a specified nominal com-
pressor map. Fink, Cumpsty, and Greitzer derived a three-state
lumped parameter model for a centrifugal compression system
that includes spool dynamics [17]. It was further detailed in
[5] and [8]. Based on this model, control designs were also
proposed to achieve global stability of the equilibrium without
considering robustness issues [3], [4]. Though the spool dy-
namics might be very slow with respect to surge dynamics, the
compressor characteristic is known (e.g., [3]–[5], [8], [17]) to
be a function of spool speed. The robust control designs for
centrifugal compression systems with the influence of spool
dynamics remains an important issue.

In this brief, we propose control designs for centrifugal
compression systems with and without system uncertainties.
There are two main goals of this study. One is to study the
global stabilization of general centrifugal compression systems
without considering system uncertainties. Instead of using the
full control efforts for guaranteeing system stabilization as
those in [3]–[5], the Lyapunov function approach via single
control input is proposed in this brief to tackle global system
stabilization problem. The other is to achieve robust global sta-
bility for compressors with bounded matched-type uncertainty.
This will be achieved by tuning both driving torque in spool
dynamics and closed-couple valve only.

The brief is organized as follows. In Section II, the three-state
lumped-parameter model for centrifugal compression systems
is recalled. A brief description of compressor dynamics is also
given to highlight the motivation of the study. It is followed by
the application of backstepping approach to the global stabiliza-
tion design for compression systems. The example compressor
model presented in [3] is then adopted in Section VI for nu-
merical study to demonstrate the applications of the proposed
designs. Finally, the conclusion is given in Section V to sum-
marize the main results.

II. DYNAMIC EQUATIONS FOR A CENTRIFUGAL COMPRESSOR

A basic centrifugal compression system is consisted of inlet
duct, compressor, outlet duct, plenum, exit duct, and a control
throttle (see, e.g., [5, Fig. 2]). Here, the plenum is a simplified
model of the combustion chamber and the throttle can be re-
garded as a simplified model of a turbine. In general, the fluid
dynamics of a compression system can only be fully described
by a set of partial differential equations. To facilitate the anal-
ysis, lumped-parameter model of compressors have been re-
cently derived (e.g., [10]). Assume that the flow in the com-
pression system is one-dimensional and incompressible, and the
plenum dimension is large enough so that the pressure in the
plenum is spatially uniform. In addition, the thermodynamic
process of the system is assumed to be isentropic. Based on
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these assumptions, a lumped-parameter three-state model (e.g.,
[3]–[5], [17]) is recalled below

(1)

(2)

(3)

where , , and denote the pressure in the plenum, com-
pressor mass flow rate, and spool speed, respectively. The defi-
nitions of remaining parameters and variables can be referred to
(e.g., [3], [4], [8], [17]). Note that (1) and (2) are equivalent to
the model introduced by Greitzer [10]. In (3), the angular speed
of the compressor is included as one of the system states.
Equation (1) describes the mass balance in the plenum, while
(2) describes the momentum balance in the duct.

By suitably nondimensionalizing system (1)–(3) and as-
suming the throttle opening is a smooth function, the system
equations can be rewritten as follows [3]:

(4)

(5)

(6)

Here, denotes the compressor characteristic map which is a
function of both mass flow and spool speed. Note that, instead of
adopting and for the approximate compressor torque
and throttle function as in [3], here, we use and
to denote the general compressor torque function and throttle
pressure map, respectively. In addition, is proportional to the
throttle opening, while , and . The physical in-
terpretation of the remaining parameters in (4)–(6) can be found
in, e.g., [3], [4], [8], and [17].

III. CONTROL DESIGNS

In this section, Lyapunov-function-based global control
schemes for the centrifugal compressor model (4)–(6), without
considering system uncertainty, are first proposed to guarantee
system stability by using either the close-coupled valve or
the throttle opening as the unique actuator. This derivation
is followed by a robust design that compensates for system
uncertainties.

It is clear that the equilibrium of (4)–(6) with a constant
driving torque can be easily determined by equating the
right-hand side of (4)–(6) to zero. Denote
such an equilibrium. We then have

(7)

(8)

(9)

Note that the system equilibrium points can hence be obtained
from the intersection of throttle and compressor map for given

and .
Next, we study the local stability around the equilibrium point
. Let with , and

. For a general centrifugal compressor, we might

have control input signals from the compressor driving torque,
the close-coupled valve and the throttle opening. Let

, and be the extra applied compressor torque,
the close-coupled valve control, and the throttle opening control,
respectively. The system of (4)–(6) can then be rewritten as

(10)

(11)

(12)

where

(13)

and

(14)

For a given , the linearization at the equilibrium point
for the uncontrolled model of system (10)–(12) gives

(15)

where

(16)

By solving the characteristic polynomial of system (15), we
have

(17)

where

(18)

(19)

(20)

Applying the Routh–Hurwitz criterion to system (15), we
then have the next stability result.

Lemma 1: The equilibrium point for the uncontrolled ver-
sion of system (10)–(12) is asymptotically stable if ,

and , where are defined in (18)–(20).
From [5] and [17], the compressor torque is known to be

strictly increasing with respect to only for . For sim-
plicity and without loss of generality, we make the following
hypothesis to facilitate the stabilization design.

Hypothesis 1: The compressor pressure map is a mono-
tonically increasing function with respect to the angular velocity
of compressor. Moreover, the throttle function is also strictly
increasing function with respect to the corresponding variables
and the compressor torque is strictly increasing with respect
to for .

From Hypothesis 1, we have , and
. Moreover, we have for . The

next corollary follows readily from Lemma 1.
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Corollary 1: Suppose Hypothesis 1 holds. Then an equilib-
rium point with for the uncontrolled version of
system (10)–(12) is asymptotically stable if .

Note that, the result of Corollary 1 agrees with that of [11] and
highlights the local stability of system equilibrium with nega-
tive slope of versus the mass flow . However, the domain
of attraction for the uncontrolled equilibrium points decreases
as the throttle closes [12]. In the following, we propose control
laws to globally stabilize a given system equilibrium. For gen-
eral applications, the pressure variable is known to be non-
negative. This will be in effect in the remaining of this brief.
In Sections III-A and III-B, we will study the global stabiliza-
tion problem for system (10)–(12) with explicit knowledge of
system model. The robust design issue will be discussed in Sec-
tion III-C.

A. Close-Coupled Valve Control

It is clear that system (10)–(12) is completely controllable
when all three control inputs are available. In this brief, we
study system stabilization with one or two control inputs. First,
we consider the global stabilization design for system (10)–(12)
with the close-coupled valve being the unique available con-
trol.

Motivated by the polynomial function of compressor torque
as that in [3] and [4], we assume the function is
smooth and can be decomposed as

(21)

Clearly, is the so-called “zero dynamics” of the sub-
system (10) with . Since is a strictly increasing func-
tion with respect to , it is clear from (14) that
for .

Let

(22)

be an energy-like Lyapunov function candidate for system
(10)–(12). Taking the time derivative of along trajectories
of system (10)–(12) for , we have

(23)

Suppose is a strictly increasing function with respect to . It
is clear that for all
and the equality holds only at . Thus, in (23) will
be a negative definite function if the applied control input is
chosen so that defined in (24) is a negative definite function
of only

(24)

Obviously, one of such choices is

(25)

where is a positive definite function for all . We
then have for all and only occurs
at . Note that, similar designs have been given in [7], [8]
to dominate the effect of for making .
However, the proposed design in (25) provides more freedom in
the selection of controller.

Employing Lyapunov stability criteria, we have the next
global stabilization result following directly from the discus-
sions above.

Theorem 1: Suppose Hypothesis 1 holds. The system equi-
librium of system (10)–(12) can then be globally
stabilized by the close-coupled valve control. One of control
laws is given in (25).

Remark 1: The proposed control design given in Theorem 1
calls for the exact knowledge of the functions and

(as in (13)–(14)). However, it requires no activation
of the compressor torque to stabilize the spool dynamics. This
is the main advantage of the above design.

B. Throttle Control

Next, we study the case of which the throttle setting is
the unique applied control force. Though the throttle control
is known to be easier for most practical implementations,
however, the uncertainty of a compression system can not be
directly cancelled by throttle control alone. Motivated by Krstić
et al. [13] and Liaw et al. [16], we use the backstepping control
approach to construct a practically global stabilization scheme
for system (10)–(12).

It is observed from (10)–(12) that the throttle-controlled ver-
sion of system (10)–(12) becomes

(26)

(27)

(28)

Following the backstepping design procedure [14], we first try
to globally stabilize the subsystem (26)–(27) by treating as
a virtual control input. According to the discussions in Sec-
tion III-A, can be chosen such that for any , as
defined in (29) below is a negative definite function of

(29)

Let be such a designed virtual control which makes
be a negative definite function of . It is obvious that one of
such choices is

(30)

Next, denote the error term . The throttle control
system (26)–(28) can then be rewritten as

(31)

(32)

(33)
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Choose a Lyapunov function candidate for
(31)–(33) as

(34)

The time derivative of along the trajectories of system
(31)–(33) can then be calculated as

(35)

It is observed from (35) that will be a negative
definite function for if the applied throttle
control is chosen to make

(36)
a negative definite function with respect to .

According to Lyapunov stability criteria, we then have the
next theorem.

Theorem 2: Suppose Hypothesis 1 holds. The equilibrium
point of system (31)–(33) is globally stabilized by
the backstepping throttle control laws where
makes in (36) a negative definite function with respect to .

Note that, it is clear from Theorem 2 and (36) that the pro-
posed control law depends on the existence of . To demon-
strate such an application, consider the throttle function adopted
from [3] and [11] as given by . In most prac-
tical applications, the total pressure rise is a
positive value. From (36), one of choices for is that

(37)

provided with . It is clear from (37) that the
throttle control input as in (36) for the design of Theorem 2
is solvable.

C. Robust Control Designs

Now, we consider the robust design for centrifugal compres-
sors with uncertainties appearing in the compressor character-
istic and the compressor torque . The pro-
posed scheme is consisted of two loops. The inner loop is in-
tended to provide global stabilization of the nominal model,
while the outer control loop will cancel the effect of system un-
certainties. Details are given as follows.

Let the compressor torque and compressor characteristic be

(38)

where and denote nominal models, while
and are uncertainties for

and , respectively.
Assume that

(39)

(40)

where and are two known bounded and
positive definite functions.

In this study, we assume the spool driving torque and
closed-couple valve are two available control inputs, which
makes the control system of (10)–(12) with satisfy the
so-called “matching conditions.”

Let and , where is for the inner
control loop design. The two extra inputs and are for
the outer control loop, which will be designed to compensate
the dynamic effect by system uncertainty. System (10)–(12) can
then be rewritten as

(41)

(42)

(43)

As motivated by the results of Section III-A, we choose
given in (22) as a Lyapunov function candidate for the system
(10)–(12). Taking the time derivative of along the trajec-
tories of system (41)–(43), we have

Following the design in Section III-A, we choose

(44)

for the inner loop control. Note that, as mentioned in Sec-
tion III-A, the term in (44) can be replaced by a function

with being a positive definite function. Such
a design provides more freedom in the selection of controller
than that in [7], [8]. We then have

(45)

It is clear that in (45) will be a negative definite function
if the applied control inputs and are chosen to make

.
Obviously, one of such choices are

(46)

and (47)

This leads to the next result.
Theorem 3: Suppose Hypothesis 1 holds. The equilibrium

points of system (41)–(43) can be globally stabi-
lized by the control as given in (44) and (46)–(47) with respect
to the uncertainties satisfying the conditions of (39)–(40).
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Fig. 1. Surge trajectories in open-loop dynamics.

Remark 2: Due to the sign effect, the above control
law might introduce “chattering” behavior into the system
dynamics. To avoid chattering behavior, a boundary layer
around the equilibrium can be introduced within which a
linear feedback control can operate. However, in general, only
practical stability can be assured by such a continuous control
design. Another concern for the practical implementation is the
limitations of the actuators. As depicted in Fig. 2, the actuator
limitations might contribute to the longer settling time while
also providing system stabilization.

IV. NUMERICAL RESULTS

In the following, numerical simulations for a example com-
pression system will be given to demonstrate the effectiveness
of the proposed control laws. Here, we adopt the model with
same system parameters and numerical values as those in [3]
for system performance comparison. As depicted in Fig. 1, the
time responses of the uncontrolled model fall into a violent surge
oscillation. These time responses are very similar to the ones
given in [3]. In the following, the control algorithms developed
in Section III are applied to system (10)–(12) to achieve global
stability.

Case 1. Close-Coupled Valve Control: The control algorithm
in (25) is first applied to system (10)–(12) with given in [3],
which gives

(48)
As depicted in Fig. 2, the time responses of the control system

are quickly brought back to the system equilibrium by control
input . Compared with the results presented in [3], it is clear

that two different designs can be applied to achieving global
stabilization. However, both throttle and compressor torque are
used in [3] to guarantee system stabilization, while we use only
one closed-couple valve control for making system stable.

In order to check the effect of the actuator limitation on
system performance, two different limit values of 0.1 and 0.2
have been set up for the in the numerical simulation. As
depicted in Fig. 2, these actuator limitations will cause longer
settling time while also providing system stabilization.

Case 2. Throttle Control: Following the design presented in
Section III-B with as given in (37), we then have the modified
model as given by

(49)

(50)

(51)

where with

(52)

The simulation results for the closed-loop system with the
applied control effort are given in Fig. 3, which shows the ef-
fectiveness of system stabilization by the throttle control alone.

Case 3. Robust Control: Next, we present the results for ro-
bust design. The extra control inputs in (46)–(47) are applied to
system (41)–(43) in order to compensate the uncertainties em-
bedded in system dynamics. Motivated by [15], in this study the
uncertainties are chosen to be

(53)
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Fig. 2. Time trajectories for system with close-coupled valve control.

Fig. 3. Time trajectories for system with throttle modulating control.

It is clear to have the bounds for and
as . With the addition of these uncertainties, the
transient behavior of the closed-loop system in Case 1 is de-
picted by the dashed line of Fig. 4, and surge oscillation still
exists. When an inner loop control as given in (44) is added on
to achieve the global stability of the whole system, as shown

by the dotted line of Fig. 4, the oscillation is found to become
smooth with smaller amplitude. However, it does not converge
to the equilibrium point. In order to compensate the system un-
certainty, as well as inner-loop control, the outer-loop control
law in (46)–(47) is employed to drive the oscillating trajectories
into the stable equilibrium point. The timing response depicted
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Fig. 4. Time trajectories for system with robust control.

by the solid line of Fig. 4 shows the success of the robust stabi-
lization design.

V. CONCLUSION

In this brief, three different control designs are proposed to
stabilize the three-state model of a centrifugal compressor with
and without uncertainty. When the uncertainty is absent, the
global stability of the system can be achieved by a single con-
trol input. This design has the same effect as that presented in
[3] and [4]. In addition, a two-loop robust control design is at-
tained to achieve system stability with uncertainties appearing
in compressor characteristic and spool dynamics. Though the
analytical works can guarantee the global stabilization of com-
pression system, the proposed designs depend on the explicit
knowledge of system characteristics. To relax the knowledge of
system dynamics, instead of global stabilization, a practical sta-
bilization can be achieved by a similar approach.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and re-
viewers for their valuable comments and suggestions.

REFERENCES

[1] B. de Jager, “Rotating stall and surge control: A survey,” in Proc. IEEE
Conf. Decision Control, New Orleans, LA, 1995, pp. 1857–1862.

[2] G. Gu, S. Banda, and A. Sparks, “An overview of rotating stall and surge
control for axial flow compressors,” IEEE Trans. Contr. Syst. Technol.,
vol. 7, pp. 639–647, Nov. 1999.

[3] H. Li, A. Leonessa, and M. Haddad, “Globally stabilizing controllers for
a centrifugal compressor model with spool dynamics,” in Proc. Amer.
Control Conf., 1998, pp. 2160–2164.

[4] A. Leonessa, M. Haddad, and H. Li, “Globally stabilizing switching con-
trollers for a centrifugal compressor model with spool dynamics,” IEEE
Trans. Contr. Syst. Technol., vol. 8, pp. 474–482, May 2000.

[5] J. T. Gravdahl and O. Egeland, “Centrifugal compressor surge and speed
control,” IEEE Trans. Contr. Syst. Technol., vol. 7, pp. 567–579, Sept.
1999.

[6] J. S. Simon and L. Valavani, “A Lyapunov based nonlinear control
scheme for stabilizing a basic compression system using a close-cou-
pled control valve,” in Proc. Amer. Control Conf., 1991, pp. 2398–2406.

[7] J. T. Gravdahl and O. Egeland, “Compressor surge control using a close-
coupled valve and backstepping,” in Proc. Amer. Control Conf., 1997,
pp. 982–986.

[8] , “Speed and surge control for a low order centrifugal compressor
model,” Model Identif. Control, vol. 19, no. 1, pp. 13–29, 1998.

[9] K. E. Hansen, P. Jorgensen, and P. S. Larsen, “Experimental and theo-
retical study of surge in a small centrifugal compressor,” J. Fluid Eng.,
vol. 103, pp. 391–394, 1981.

[10] E. M. Greitzer, “Surge and rotating stall in axial flow compressors: Part
1 and 2,” J. Eng. Power, vol. 98, pp. 190–217, 1976.

[11] D.-C. Liaw and E. H. Abed, “Active control of compressor stall
inception: A bifurcation-theoretic approach,” Automatica, vol. 32, pp.
109–115, 1996.

[12] C. A. Mansoux, D. L. Gysling, and J. D. Paduano, “Distributed nonlinear
modeling and stability analysis of axial compressor stall and surge,” in
Proc. Amer. Control Conf., 1994, pp. 2305–2316.
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