Complex Analysis: Final Review

Complex Analysis: Final Review

A function that is not analytic at $z=\alpha$, but is analytic in $D_{r}^{*}(\alpha)$ for some $r>0$ is said to have an \qquad at α.

Complex Analysis: Final Review

A function that is not analytic at $z=\alpha$, but is analytic in $D_{r}^{*}(\alpha)$ for some $r>0$ is said to have an ISOLATED SINGULARITY at α.

Complex Analysis: Final Review

The singularity classifications at $z=0$ of the functions

$$
\frac{\sin z}{z}, \sin \frac{1}{z}, \text { and } \frac{1-\cos z}{z^{3}} \text { are }
$$

\qquad , and

Complex Analysis: Final Review

The singularity classifications at $z=0$ of the functions

$$
\frac{\sin z}{z}, \sin \frac{1}{z}, \text { and } \frac{1-\cos z}{z^{3}} \text { are }
$$

REMOVABLE, \qquad , and

Complex Analysis: Final Review

The singularity classifications at $z=0$ of the functions

$$
\frac{\sin z}{z}, \sin \frac{1}{z}, \text { and } \frac{1-\cos z}{z^{3}} \text { are }
$$

REMOVABLE, ESSENTIAL, and

Complex Analysis: Final Review

The singularity classifications at $z=0$ of the functions

$$
\frac{\sin z}{z}, \sin \frac{1}{z}, \text { and } \frac{1-\cos z}{z^{3}} \text { are }
$$

REMOVABLE, ESSENTIAL, and POLE OF ORDER 1.

Complex Analysis: Final Review

An expression of the form $\sum_{n=-\infty}^{\infty} c_{n}(z-\alpha)^{n}$ is known as a

Complex Analysis: Final Review

An expression of the form $\sum_{n=-\infty}^{\infty} c_{n}(z-\alpha)^{n}$ is known as a LAURENT SERIES.

Complex Analysis: Final Review

The coefficient c_{-1} in the Laurent series
$f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-\alpha)^{n}$ is called the

Complex Analysis: Final Review

The coefficient c_{-1} in the Laurent series
$f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-\alpha)^{n}$ is called the RESIDUE $\underline{\text { OF }} \underline{f} \underline{\text { AT }} \underline{\alpha}$.

Complex Analysis: Final Review

Why did the mathematician name her dog Cauchy?

Complex Analysis: Final Review

Why did the mathematician name her dog Cauchy? BECAUSE IT LEFT A RESIDUE AT EVERY POLE.

Complex Analysis: Final Review

A complex number is an \qquad pair of \qquad .

Complex Analysis: Final Review

A complex number is an ORDERED pair of REAL NUMBERS.

Complex Analysis: Final Review

A function defined in an open subset D of the complex plane that is analytic (also called holomorphic) except at a set of isolated is said to be \qquad .

Complex Analysis: Final Review

A function defined in an open subset D of the complex plane that is analytic (also called holomorphic) except at a set of isolated SINGULARITIES is said to be

Complex Analysis: Final Review

A function defined in an open subset D of the complex plane that is analytic (also called holomorphic) except at a set of isolated SINGULARITIES is said to be MEROMORPHIC.

Complex Analysis: Final Review

A neat technique for evaluating real integrals of the form

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials with

$$
\operatorname{deg} Q(x) \geq
$$

\qquad
is to use the \qquad on the complex integral

$$
\int_{C_{R}} \frac{P(z)}{Q(z)} d z
$$

where C_{R} is the positively oriented contour from \qquad to __ on the x-axis, and the upper-half \qquad
\qquad of radius \qquad .

Complex Analysis: Final Review

A neat technique for evaluating real integrals of the form

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials with

$$
\operatorname{deg} Q(x) \geq \underline{\operatorname{deg} P(x)+2}
$$

is to use the \qquad on the complex integral

$$
\int_{C_{R}} \frac{P(z)}{Q(z)} d z
$$

where C_{R} is the positively oriented contour from \qquad to _ on the x-axis, and the upper-half \qquad
\qquad of radius \qquad .

Complex Analysis: Final Review

A neat technique for evaluating real integrals of the form

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials with

$$
\operatorname{deg} Q(x) \geq \underline{\operatorname{deg} P(x)+2}
$$

is to use the RESIDUE THEOREM on the complex integral

$$
\int_{C_{R}} \frac{P(z)}{Q(z)} d z
$$

where C_{R} is the positively oriented contour from \qquad to __ on the x-axis, and the upper-half \qquad
\qquad of radius \qquad .

Complex Analysis: Final Review

A neat technique for evaluating real integrals of the form

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials with

$$
\operatorname{deg} Q(x) \geq \underline{\operatorname{deg} P(x)+2}
$$

is to use the RESIDUE THEOREM on the complex integral

$$
\int_{C_{R}} \frac{P(z)}{Q(z)} d z
$$

where C_{R} is the positively oriented contour from $\underline{-R}$ to \underline{R} on the x-axis, and the upper-half \qquad
\qquad of radius \qquad

Complex Analysis: Final Review

A neat technique for evaluating real integrals of the form

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials with

$$
\operatorname{deg} Q(x) \geq \underline{\operatorname{deg} P(x)+2}
$$

is to use the RESIDUE THEOREM on the complex integral

$$
\int_{C_{R}} \frac{P(z)}{Q(z)} d z
$$

where C_{R} is the positively oriented contour from $\frac{-R}{}$ to \underline{R} on the x-axis, and the upper-half SEMI CIRCLE of radius \underline{R}.

Complex Analysis: Final Review

The \qquad -___ theorem states that the \qquad of the of an analytic function are contained in the of the of the original function.

Complex Analysis: Final Review

The GAUSS-LUCAS theorem states that the ZEROS of the DERIVATIVE of an analytic function are contained in the CONVEX HULL of the ZEROS of the original function.

Complex Analysis: Final Review

An easy way to evaluate $\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)^{25}$ is to use notation.

Complex Analysis: Final Review

An easy way to evaluate $\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)^{25}$ is to use EXPONENTIAL notation.

Complex Analysis: Final Review

An easy way to evaluate $\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)^{25}$ is to use
EXPONENTIAL notation.
Doing so gives as an answer.

Complex Analysis: Final Review

An easy way to evaluate $\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)^{25}$ is to use
EXPONENTIAL notation.
Doing so gives $\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$ as answer.

Complex Analysis: Final Review

If f and g are meromorphic in a simply connected domain D, and Γ is a simple closed positively oriented contour contained in D, and \qquad

for $z \in \Gamma$, then \qquad

Complex Analysis: Final Review

If f and g are meromorphic in a simply connected domain D, and Γ is a simple closed positively oriented contour contained in D, and $\underline{|f(z)+g(z)|}<\underline{|f(z)|}+\underline{|g(z)|}$ for $z \in \Gamma$, then \qquad
\qquad

Complex Analysis: Final Review

If f and g are meromorphic in a simply connected domain D, and Γ is a simple closed positively oriented contour contained in D, and $|f(z)+g(z)|<\underline{|f(z)|}+\underline{|g(z)|}$ for $z \in \Gamma$, then $\underline{Z_{f}-P_{f}}=\underline{Z_{g}-P_{g}}$.

Complex Analysis: Final Review

If f is \qquad in a simply connected domain D, and Γ is a simple closed positively oriented contour in D, then the expression
counts the number of times $f(\Gamma)$ \qquad
\qquad
\qquad .

Complex Analysis: Final Review

If f is ANALYTIC in a simply connected domain D, and Γ is a simple closed positively oriented contour in D, then the expression

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

counts the number of times $f(\Gamma)$ WINDS AROUND THE ORIGIN.

Complex Analysis: Final Review

If f is ANALYTIC in a simply connected domain D, and Γ is a simple closed positively oriented contour in D, then the expression

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

counts the number of times $f(\Gamma)$ WINDS AROUND THE ORIGIN.
The expression

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)-\alpha} d z
$$

counts the number of times $f(\Gamma)$ \qquad the point \qquad .

Complex Analysis: Final Review

If f is ANALYTIC in a simply connected domain D, and Γ is a simple closed positively oriented contour in D, then the expression

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

counts the number of times $f(\Gamma)$ WINDS AROUND THE ORIGIN.
The expression

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)-\alpha} d z
$$

counts the number of times $f(\Gamma)$ WINDS AROUND the point $\underline{\alpha}$.

Complex Analysis: Final Review

The Taylor series for $f(z)=\frac{1}{z}$ valid for the disk $D_{2}(2)$ is

Complex Analysis: Final Review

The Taylor series for $f(z)=\frac{1}{z}$ valid for the disk $D_{2}(2)$ is
$f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(z-2)^{n}$.

Complex Analysis: Final Review

The Laurent series for $f(z)=\frac{3}{2+z-z^{2}}$ valid for the annulus $A(0,1,2)$ is
$f(z)=\sum_{n=1}^{\infty}+\sum_{n=0}^{\infty}$.

Complex Analysis: Final Review

The Laurent series for $f(z)=\frac{3}{2+z-z^{2}}$ valid for the annulus $A(0,1,2)$ is
$f(z)=\sum_{n=1}^{\infty} \underline{(-1)^{n+1} z^{-n}}+\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^{n}$.

Complex Analysis: Final Review

Complex Analysis: Final Review

COMPLEX ANALYSIS MAKES REAL ANALYSIS SIMPLE.

Complex Analysis: Final Review

Complex Analysis: Final Review

COMPLEX ANALYSIS IS THE BEST SUBJECT IN MATHEMATICS.

Complex Analysis: Final Review

WHEN LIFE GETS COMPLEX,

Complex Analysis: Final Review

WHEN LIFE GETS COMPLEX, MULTIPLY BY ITS COMPLEX CONJUGATE.

