

 1

Integer programming solution methods J E Beasley

Introduction

Suppose that we have some problem instance of a combinatorial optimisation problem and
further suppose that it is a minimisation problem. If, as in Figure 1, we draw a vertical line
representing value (the higher up this line the higher the value) then somewhere on this line
is the optimal solution to the problem we are considering.

Exactly where on this line this optimal solution lies we do not know, but it must be
somewhere!

Conceptually therefore this optimal solution value divides our value line into two:

• above the optimal solution value are upper bounds, values which are above the
(unknown) optimal solution value

• below the optimal solution value are lower bounds, values which are below the
(unknown) optimal solution value.

Figure 1

In order to discover the optimal solution value then any algorithm that we develop must
address both these issues i.e. it must concern itself both with upper bounds and with lower
bounds.

In particular the quality of these bounds is important to the computational success of any
algorithm:

• we like upper bounds that are as close as possible to the optimal solution, i.e. as small
as possible

• we like lower bounds that are as close as possible to the optimal solution, i.e. as large
as possible.

 2

Upper bounds

Techniques for generating upper bounds are essentially beyond the scope of this course.
Suffice to say here that typically upper bounds are found by searching for feasible solutions
to the problem, that is solutions which satisfy the constraints of the problem.

A number of well-known general techniques are available to find feasible solutions to
combinatorial optimisation problems, for example:

• interchange
• metaheuristics:

o tabu search
o simulated annealing
o variable neighbourhood search
o genetic algorithms (population heuristics).

In addition, for any particular problem, we may well have techniques which are specific to
the problem being solved.

Lower bounds

One well-known general technique which is available to find lower bounds is linear
programming relaxation. In linear programming (LP) relaxation we take an integer (or
mixed-integer) programming formulation of the problem and relax the integrality
requirement on the variables.

This gives a linear program which can be:

• solved optimally using a standard algorithm (simplex or interior point); or
• solved heuristically (dual ascent).

The solution value obtained for this linear program gives a lower bound on the optimal
solution to the original problem. We shall illustrate both of these approaches in this course.

Another well-known (and well-used) technique which is available to find lower bounds is
lagrangean relaxation. This technique will be expounded upon at much greater length in this
course. Suffice to say for the moment that lagrangean relaxation involves:
(a) taking an integer (or mixed-integer) programming formulation of the problem
(b) attaching lagrange multipliers to some of the constraints in this formulation and

relaxing these constraints into the objective function
(c) solving (optimally) the resulting integer (or mixed-integer) program.
The solution value obtained from step (c) above gives a lower bound on the optimal solution
to the original problem.

At first sight this might not appear to be a useful approach since at step (a) above we have an
integer (or mixed-integer) programming formulation of the problem and we propose to
generate a lower bound for it by solving another integer (or mixed-integer) program (step (c)
above).

There are two basic reasons why this approach is well-known (and well-used):

 3

• many combinatorial optimisation problems consist of an easy problem (in the NP-

complete sense, i.e. solvable by a polynomially bounded algorithm) complicated by
the addition of extra constraints. By absorbing these complicating constraints into the
objective function (step (b) above) we are left with an easy problem to solve and
attention can then be turned to choosing numeric values for the lagrange multipliers.

• practical experience with lagrangean relaxation has indicated that it gives very good
lower bounds at reasonable computational cost.

Choosing values for the lagrange multipliers is of key importance in terms of the quality of
the lower bound generated (we much prefer lower bounds which are close to the optimal
solution). Two general techniques are available here:

• subgradient optimisation; and
• multiplier adjustment.

Preliminaries

Consider the following general zero-one problem (written in matrix notation):

Problem (P)

minimise cx
subject to Ax ≥ b
 Bx ≥ d
 x∈(0,1)

Note here that although we deal in this course purely with zero-one integer programs the
material presented is equally applicable both to pure (general) integer programs and to
mixed-integer programs.

As mentioned above one way to generate a lower bound on the optimal solution to problem
(P) is via the linear programming relaxation. This entails replacing the integrality constraint
[x∈(0,1)] by its linear relaxation [0≤x≤1] to give the following linear program:

minimise cx
subject to Ax ≥ b
 Bx ≥ d
 0 ≤ x ≤1

This linear program can be solved optimally using a standard algorithm (e.g. simplex or
interior point) and the solution value obtained gives a lower bound on the optimal solution to
the original problem (problem P).

In many cases however solving the linear programming relaxation of P is impracticable,
typically because P involves a large (often extremely large) number of variables and/or
constraints. We therefore need alternative techniques for generating lower bounds.

 4

Lagrangean relaxation

Lagrangean relaxation was developed in the early 1970's with the pioneering work of Held
and Karp on the travelling salesman problem and is today an indispensable technique for
generating lower bounds for use in algorithms to solve combinatorial optimisation problems.

We define the lagrangean relaxation of problem P with respect to the constraint set Ax ≥ b by
introducing a lagrange multiplier vector λ ≥ 0 which is attached to this constraint set and
brought into the objective function to give:

minimise cx + λ(b - Ax)
subject to Bx ≥ d
 x∈(0,1)

i.e. what we have done here is:

• to have chosen some set of constraints in the problem for relaxation; and
• attached lagrange multipliers to these constraints in order to bring them into the

objective function.
The key point is that the program we are left with after lagrangean relaxation, for any λ ≥ 0,
gives a lower bound on the optimal solution to the original problem P. This can be seen as
follows:

The value of minimise cx
 subject to Ax ≥ b
 Bx ≥ d
 x∈(0,1)

is greater than the value of
 minimise cx + λ(b - Ax)
 subject to Ax ≥ b
 Bx ≥ d
 x∈(0,1)

(since as λ≥0 and (b-Ax)≤0 we are merely adding a term which is ≤0 to the objective
function)

is greater than the value of
 minimise cx + λ(b - Ax)
 subject to Bx ≥ d
 x∈(0,1)

since removing a set of constraints from a minimisation problem can only reduce the
objective function value.

The program after lagrangean relaxation, namely:

minimise cx + λ(b - Ax) = (c - λA)x + λb
subject to Bx ≥ d
 x∈(0,1)

can be called the lagrangean lower bound program (LLBP) since, as shown above, it

 5

provides a lower bound on the optimal solution to the original problem P for any λ ≥ 0.

Note here that the above proof that lagrangean relaxation generates lower bounds is quite
general, i.e. the constraints/objective function need not be linear functions.

There are two key issues highlighted by the above lagrangean relaxation:

• a strategic issue, namely why did we choose to relax the set of constraints Ax ≥ b
when we could equally well have chosen to relax Bx ≥ d.

• a tactical issue, namely how can we find numerical values for the multipliers.

In particular note here that we are interested in finding the values for the multipliers that give
the maximum lower bound, i.e. the lower bound that is as close as possible to the value of the
optimal integer solution. This involves finding multipliers which correspond to:

max ⎧ minimise cx + λ(b - Ax) ⎫
λ≥0 ⎨ subject to Bx ≥ d ⎬
 ⎩ x∈(0,1) ⎭

This program is called the lagrangean dual program.

Ideally the optimal value of the lagrangean dual program (a maximisation program) is equal
to the optimal value of the original zero-one integer program (a minimisation problem). If the
two programs do not have optimal values which are equal then a duality gap is said to exist,
the size of which is measured by the (relative) difference between the two optimal values.

In order to illustrate lagrangean relaxation we shall consider one of the simplest NP-complete
combinatorial optimisation problems, namely the set covering problem.

Set covering problem

The set covering problem (SCP) is the problem of covering the rows of a m row, n column,
zero-one matrix (aij) by a subset of the columns at minimum cost.

Defining:

xj = 1 if column j (cost cj > 0) is in the solution
 = 0 otherwise

the SCP is:

minimise cjxj
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m
n

j=1
∑

 xj∈(0,1) j=1,...,n

The first constraint in this program ensures that each row is covered by at least one column

 6

and the second constraint is the integrality constraint.

An example SCP (with 3 rows and 4 columns) is:
(cj) = (2,3,4,5)
(aij) = ⏐ 1 0 1 0 ⏐
 ⏐ 1 0 0 1 ⏐
 ⏐ 0 1 1 1 ⏐

Here column 1, of cost 2, covers rows 1 and 2; column 2 of cost 3 covers row 3; column 3 of
cost 4 covers rows 1 and 3; column 4 of cost 5 covers rows 2 and 3.

In order to generate a lagrangean relaxation of this SCP we need:
(a) to choose some set of constraints in the problem for relaxation; and
(b) to attach lagrange multipliers to these constraints in order to bring them into the

objective function.

Step (a) above is not usually an easy step. As commented above the choice of which set of
constraints to relax is a strategic issue. However, for the SCP we simply have one distinct set

of constraints (aijxj ≥ 1 i=1,...,m) and so:
n

j=1
∑

(a) we choose this set of constraints for relaxation; and
(b) attach lagrange multipliers λi ≥ 0 i=1,...,m to these constraints.

If we do this we find that LLBP is:

minimise cjxj + λi(1 - aijxj)
n

j=1
∑

m

i=1
∑

n

j=1
∑

subject to xj∈(0,1) j=1,...,n

i.e.

minimise [cj - λiaij]xj +
n

j=1
∑

m

i=1
∑

m

i=1
∑ λi

subject to xj∈(0,1) j=1,...,n

Defining Cj = [cj - λiaij] j=1,...,n
m

i=1
∑

i.e. Cj is the coefficient of xj in the objective function of LLBP we have that LLBP becomes:

minimise Cjxj + λi
n

j=1
∑

m

i=1
∑

subject to xj∈(0,1) j=1,...,n

Now the solution (Xj) to LLBP can be found by inspection, namely:

 7

Xj = 1 if Cj ≤ 0
 = 0 otherwise

with the solution value (ZLB) of LLBP being given by:

ZLB = CjXj + λi
n

j=1
∑

m

i=1
∑

where ZLB is a lower bound on the optimal solution to the original SCP.

Figure 2 summarises the situation. In that figure we have a point on the value line (a lower
bound) associated with the solution (ZLB, (Xj)) to LLBP.

Figure 2

To illustrate the lagrangean relaxation of the SCP given above consider our example SCP:

(cj) = (2,3,4,5)
(aij) = ⏐ 1 0 1 0 ⏐
 ⏐ 1 0 0 1 ⏐
 ⏐ 0 1 1 1 ⏐

Mathematically this example SCP is:

minimise 2x1 + 3x2 + 4x3 + 5x4
subject to x1 + x3 ≥ 1
 x1 + x4 ≥ 1
 x2 + x3 + x4 ≥ 1
 xj∈(0,1) j=1,...,4

Note here that the optimal solution to this SCP is of value 5 with x1=x2=1 and x3=x4=0.

 8

To generate the lagrangean lower bound program we attach lagrange multipliers λi ≥ 0
i=1,2,3 to the three constraints in this SCP to get:

minimise 2x1 + 3x2 + 4x3 + 5x4 + λ1(1 - x1 - x3) + λ2(1 - x1 - x4)
 + λ3(1 - x2 - x3 - x4)

subject to xj∈(0,1) j=1,...,4

i.e. LLBP is

minimise (2 - λ1 - λ2)x1 + (3 - λ3)x2 + (4 - λ1 - λ3)x3 + (5 - λ2 - λ3)x4
 + λ1 + λ2 + λ3

subject to xj∈(0,1) j=1,...,4

Hence
C1 = (2 - λ1 - λ2)
C2 = (3 - λ3)
C3 = (4 - λ1 - λ3)
C4 = (5 - λ2 - λ3)

and LLBP is:

minimise C1x1 + C2x2 + C3x3 + C4x4 + λ1 + λ2 + λ3

subject to xj∈(0,1) j=1,...,4

As before, (Xj), the solution values of the (xj), are given by

Xj = 1 if Cj≤0
 = 0 otherwise

with the solution value for LLBP (ZLB) [a valid lower bound on the optimal solution to the
original SCP] being given by

ZLB = C1X1 + C2X2 + C3X3 + C4X4 + λ1 + λ2 + λ3

Example lagrange multiplier values

As commented above the choice of numerical values for the lagrange multipliers is a tactical
issue. For the moment consider the (arbitrarily decided) set of values for the lagrange
multipliers of:

λ1 = 1.5
λ2 = 1.6
λ3 = 2.2

 9

then

C1 = (2 - λ1 - λ2) = -1.1
C2 = (3 - λ3) = 0.8
C3 = (4 - λ1 - λ3) = 0.3
C4 = (5 - λ2 - λ3) = 1.2

The solution to LLBP is

X1=1, X2=X3=X4=0

and

ZLB = C1X1 + C2X2 + C3X3 + C4X4 + λ1 + λ2 + λ3

 = -1.1 + 0 + 0 + 0 + 1.5 + 1.6 + 2.2

 = 4.2

Note here that this value of 4.2 is indeed a lower bound on the optimal solution (which we
know is of value 5) to the original SCP.

Advanced lagrangean relaxation

(1) If we relax equality constraints then λ is unrestricted in sign (i.e. λ can be positive or

negative).

(2) A common fallacy in lagrangean relaxation is to believe that, if the solution to LLBP

is feasible for the original problem, then it is also optimal for the original problem.
This is incorrect.

For example consider the SCP with 3 rows and 4 columns that we dealt with above. Set
λ1=λ2=λ3=10 and solve LLBP. The solution is X1=X2=X3=X4=1. This is certainly a feasible
solution for the original problem (the SCP) but by no means the optimal solution!

Under what circumstances therefore does the solution to LLBP being feasible for the
original problem also imply that it is optimal for the original problem?

The answer to this question is simple. Consider LLBP:

minimise cx + λ(b - Ax)
subject to Bx ≥ d
 x∈(0,1)

Suppose that the lagrange multipliers λ ≥ 0 are such that the solution X to LLBP is feasible
for the original problem (i.e. X satisfies AX ≥ b, BX ≥ d and X∈(0,1)). This feasible solution
is of value cX whereas the lower bound obtained from LLBP is of value [cX + λ(b - AX)].

 10

Then if these two values coincide, i.e. the upper bound cX is equal to the lower bound [cX +
λ(b - AX)], X is optimal.

In other words a solution X to a lagrangean lower bound program is only optimal for the
original problem if:
(a) X is feasible for the original problem; and
(b) cX = [cX + λ(b - AX)] i.e. λ(b - AX) = 0

The reason why the fallacy referred to above has appeared is clear. If we are relaxing equality
constraints (Ax=b) then any solution to the lagrangean lower bound program which is
feasible for the original problem automatically satisfies both (a) and (b) above and so is
optimal.

(3) If the solution to LLBP (for all possible multiplier (λ) values) is unchanged by

replacing the integrality constraint [x∈(0,1)] in LLBP by its linear relaxation [0≤x≤1]
then the lagrangean relaxation/lagrangean lower bound program is said to have the
integrality property.

To illustrate this consider the lagrangean relaxation of the SCP given above, which was:

minimise Cjxj + λi
n

j=1
∑

m

i=1
∑

subject to xj∈(0,1) j=1,...,n

with solution

Xj = 1 if Cj ≤ 0
 = 0 otherwise

It is clear that replacing xj∈(0,1) j=1,...,n by 0≤xj≤1 j=1,...,n leaves the solution unchanged.

Hence the lagrangean relaxation of the SCP given above does have the integrality property.

(4) If the lagrangean relaxation has the integrality property then the maximum lower

bound attainable from LLBP is equal to the value of the linear programming
relaxation of the original problem.

Hence for the lagrangean relaxation of the SCP considered above the maximum lower bound
attainable from LLBP, i.e. the value of the lagrangean dual program, is equal to the value of
the linear programming relaxation of the original problem.

(5) If the lagrangean relaxation does not have the integrality property then the maximum

lower bound attainable from LLBP is greater than (or equal to) the value of the linear
programming relaxation of the original problem.

 11

Lagrangean heuristic

In a lagrangean heuristic we take the solution to LLBP and attempt to convert (transform) it
into a feasible solution for the original problem by suitable adjustment (if necessary). This
feasible solution constitutes an upper bound on the optimal solution to the problem (c.f.
Figure 2).

Note that the key feature of a lagrangean heuristic is that we are building upon the current
solution to LLBP. The essential idea here is that just as the solution value for LLBP gives us
useful information (a lower bound on the optimal integer solution value) so the structure of
the solution to LLBP (i.e. the value of the variables) may well be giving us useful
information about the structure of the optimal integer solution.

To illustrate the concept of a lagrangean heuristic we will develop a lagrangean heuristic for
the SCP.

In the set covering problem all feasible solutions consider of a set of columns (xj) which
cover each row at least once.

In the solution to LLBP for the SCP we have some Xj one and some Xj zero. This may result
in some rows not being covered, plainly these rows need to be covered to constitute a feasible
solution for the SCP.

Hence one possible (very simple) lagrangean heuristic is to construct a feasible solution S to
the original SCP in the following way:

• set S=[j | Xj=1 j=1,...,n]
• for each row i which is uncovered (i.e.

j S∈
∑ aijXj=0) add the column corresponding to

min[cj | aij=1 j=1,...,n] to S
• S will now be a feasible solution to the original SCP of cost

j S∈
∑ cj

To illustrate the lagrangean heuristic given above consider the example LLBP solution of
X1=1, X2=X3=X4=0 that we had before.

Applying this lagrangean heuristic to our example LLBP solution of X1=1, X2=X3=X4=0 we
get:

• S=[1]
• row 3 is the only uncovered row and the minimum cost column covering this row is

column 2 so add column 2 to S
• S=[1,2] is now a feasible solution to the original SCP of cost c1 + c2 = 2 + 3 = 5

Fortuitously here we have, via our lagrangean heuristic, actually found the optimal solution
to the original problem. Obviously this may not happen in all cases. However each time we
solve LLBP the lagrangean heuristic has an opportunity to transform the solution to LLBP

 12

into a feasible solution for the original problem. If, as is common in practice (see below), we
solve LLBP many times then the lagrangean heuristic has many opportunities to transform
the solution to LLBP into a feasible solution for the original problem.

Designing a lagrangean heuristic for a particular LLBP is an art, the success of which is
judged solely by computational performance i.e. whether a particular lagrangean heuristic
gives good quality (near-optimal or optimal) solutions in a reasonable computation time.

Our experience, based upon applying lagrangean heuristics to a number of different
problems, has been that relatively simple lagrangean heuristics can give good quality results.

Deciding lagrange multipliers

In the previous section we have seen how to apply lagrangean relaxation to:

• generate a lower bound;
• generate a upper bound (corresponding to a feasible solution)

In this section we deal with the tactical issue, namely given a particular relaxation (i.e. the
strategic choice has been made), how can we find numerical values for the multipliers.

There are two basic approaches to deciding values for the lagrange multipliers (λi):

• subgradient optimisation; and
• multiplier adjustment.

We deal with each in turn.

Subgradient optimisation

Recall the original problem that we are attempting to solve:

minimise cx
subject to Ax ≥ b
 Bx ≥ d
 x∈(0,1)

The lagrangean lower bound program (LLBP) for this problem was:

minimise cx + λ(b - Ax)
subject to Bx ≥ d
 x∈(0,1)

the solution to which, for any λ≥0, gives a lower bound on the optimal solution to the original
(integer) problem.

Subgradient optimisation is an iterative procedure which, from a initial set of multipliers,
involves generating further lagrange multipliers in a systematic fashion. It can be viewed as
a procedure which attempts to maximise the lower bound value obtained from LLBP (i.e. to
solve the lagrangean dual program - see above) by suitable choice of multipliers.

 13

Switching from matrix notation to summation notation, so that the relaxed constraints are

aijxj ≥ bi (i=1,...,m), the basic subgradient optimisation iterative procedure is as follows:
n

j=1
∑

(1) Let π be a user decided parameter satisfying 0 < π ≤ 2. Initialise ZUB (e.g. from some

heuristic for the problem). Decide upon an initial set (λi) of multipliers.

(2) Solve LLBP with the current set (λi) of multipliers, to get a solution (Xj) of value ZLB.

(3) Define subgradients Gi for the relaxed constraints, evaluated at the current solution,

by:

 Gi = bi - aijXj i=1,...,m
n

j=1
∑

(4) Define a (scalar) step size T by

 T = π(ZUB - ZLB)/ (Gi)2
m

i=1
∑

 This step size depends upon the gap between the current lower bound (ZLB) and the

upper bound (ZUB) and the user defined parameter π (more of which below) with the

(Gi)2 factor being a scaling factor.
m

i=1
∑

(5) Update λi using
 λi = max(0, λi + TGi) i=1,...,m
 and go to (2) to resolve LLBP with this new set of multipliers.

As currently set out the above iterative procedure would never terminate. In fact we introduce
a termination rule based upon either:

• limiting the number of iterations that can be done; or
• the value of π (reducing π during the course of the procedure and terminating when π

is small, see below).

We illustrate below one iteration of the subgradient optimisation procedure for our example
SCP.

(1) Let π=2.
 Let ZUB = 6 (e.g. suppose we have applied some heuristic for the SCP and have found

a feasible solution x1=x3=1, x2=x4=0 of value 6).
 Let λ1=1.5, λ2=1.6, λ3=2.2 (as before).

(2) The solution to LLBP is X1=1, X2=X3=X4=0 with ZLB=4.2 (as before).

(3) The equations for the subgradients are:

 14

 G1 = (1 - X1 - X3) = 1 - 1 - 0 = 0
 G2 = (1 - X1 - X4) = 1 - 1 - 0 = 0
 G3 = (1 - X2 - X3 - X4) = 1 - 0 - 0 - 0 = 1

(4) The step size T is given by:

 T = 2(6 - 4.2)/(02 + 02 + 12) = 3.6

(5) Updating λi using λi = max(0, λi + TGi) gives:

λ1 = max(0, 1.5 + 3.6(0)) = 1.5
λ2 = max(0, 1.6 + 3.6(0)) = 1.6
λ3 = max(0, 2.2 + 3.6(1)) = 5.8

Resolving LLBP with this new set of multipliers gives X1=X2=X3=X4=1 with a new lower
bound of ZLB = -0.7.

Note here that, in this case, changing the multipliers has made the lower bound worse than
before (previously it was 4.2, much closer to the optimal solution of 5 than the new value of -
0.7). This behaviour is common in subgradient optimisation i.e. we cannot expect, and do not
observe, a continual improvement in the lower bound at each iteration. Indeed, as seen above,
the lower bound can even go negative.

However, suppose that we let Zmax be the maximum lower bound found over all subgradient
iterations (where initially Zmax=-∞ and we update Zmax at each subgradient iteration using
Zmax=max(Zmax, ZLB)). What been observed computationally, by many workers in the field, is
that Zmax increases quite rapidly during the initial subgradient iterations with the rate of
increase slowing as many iterations are performed.

However it is common for Zmax to approach very close to (or even attain) the maximum lower
bound possible from the lagrangean lower bound program, i.e. for Zmax to approach very
close to (or even attain) the value of the lagrangean dual program.

Figure 3 illustrates the situation as we perform subgradient iterations. As shown in that figure
we plot the lower bound found at each subgradient iteration on the value line. The best
(maximum) of these lower bounds is Zmax. This is the lower bound closest to the optimal
solution.

 15

Figure 3

Multiplier adjustment

Multiplier adjustment is simply a heuristic that:
(a) given a starting set of lagrange multipliers;
(b) attempts to improve them in some systematic way so as to generate an improved lower

bound; and
(c) if an improvement is made repeats (b) above.
Often we simply change a single multiplier at each iteration, c.f. subgradient optimisation
where we (potentially) change all multipliers at each iteration.

The advantages of multiplier adjustment are:

• usually computationally cheap; and
• usually get an increase (or at least no decrease) in the lower bound at each iteration.

The price we pay for this advantage is:

• the final lower bound obtained can be poor (i.e. worse than that obtained from
subgradient optimisation); and

• different problems require different multiplier adjustment algorithms (unlike
subgradient optimisation which is capable of being applied directly to many different
problems).

Multiplier adjustment is sometimes called lagrangean dual ascent as it can be viewed as an
ascent procedure (i.e. a procedure with a monotonic improvement in the lower bound at each
iteration) for the lagrangean dual program.

To illustrate multiplier adjustment we shall develop a multiplier adjustment algorithm for the
SCP.

As in developing lagrangean heuristics developing multiplier adjustment algorithms is an art.
However, exactly as for subgradient optimisation above, where the equation for updating

 16

multipliers was:
 λi = max(0, λi + TGi) i=1,...,m
the direction in which we would like to change multipliers is clear:
(i) if Gi<0 we would like to reduce λi
(ii) if Gi=0 we leave λi unchanged
(iii) if Gi>0 we would like to increase λi
c.f. the above subgradient optimisation equation for multiplier update.

Hence one possible (very simple) multiplier adjustment algorithm for the SCP is:
(a) solve LLBP with the current set of multipliers (λi)
(b) choose any row i for which Gi>0 (i.e. row i is uncovered in the current LLBP

solution)
(c) if row i is uncovered then it is easy to see from the relevant mathematics of LLBP

that:
• increasing λi will increase the lower bound obtained from LLBP; and
• the maximum amount (δ) by which we can increase λi before the solution to

LLBP changes is given by:
 δ=min(Cj | aij=1 j=1,...,n)
 i.e. δ=min(Cj | column j covers row i)
(d) increase λi by δ and go to (a).

The above multiplier adjustment algorithm terminates when all rows are covered (i.e. Gi ≤ 0
∀i).

To illustrate this multiplier adjustment algorithm we shall apply it to our example SCP,
starting from the multiplier values of λ1=1.5, λ2=1.6 and λ3=2.2 that we had before, which
were associated with a lower bound of 4.2.

(a) the solution to LLBP is X1=1, X2=X3=X4=0, ZLB=4.2 with C1=-1.1, C2=0.8, C3=0.3,

C4=1.2 and G1=0, G2=0, G3=1
(b) row 3 is uncovered as G3>0
(c) columns 2, 3 and 4 cover row 3 so
 δ=min(C2, C3, C4) = min(0.8, 0.3, 1.2) = 0.3
(d) so we increase λ3 by 0.3 to give a new set of multipliers of
 λ1=1.5, λ2=1.6, λ3=2.5

Resolving LLBP with this new set of multipliers gives X1=X3=1, X2=X4=0 with a new lower
bound of ZLB = 4.5, an improvement over the original lower bound of 4.2, as we expect (from
the manner in which we designed our multiplier adjustment algorithm to improve the lower
bound).

As all rows are now covered (Gi ≤ 0 ∀i in the LLBP solution associated with ZLB=4.5) the
algorithm terminates.

Plainly we could have designed a better multiplier adjustment algorithm, for example
investigating not just increasing λi as above, but also investigating reducing λi. Discovering
whether a particular multiplier adjustment algorithm gives good quality lower bounds at
reasonable computational cost is a matter for computational experimentation.

 17

Note here that, as remarked above, unlike subgradient optimisation where we simply apply a
sequence of general formulae for subgradients, step size and lagrange multiplier update, we
have that multiplier adjustment algorithm design is a much more creative (difficult!) process.

Dual ascent

Dual ascent came to prominence with work on the uncapacitated warehouse (facility)
location problem which, computationally, was very successful.

Consider the linear programming (LP) relaxation of any combinatorial optimisation problem
P (which is a minimisation problem). As P is a minimisation problem the LP relaxation is
also a minimisation problem. The dual linear program associated with the LP relaxation is
therefore a maximisation problem. Hence:

 optimal P (integer) solution
 ≥
 LP relaxation solution
 =
 dual LP solution
 ≥
 any feasible solution for the dual LP

Therefore any heuristic for the dual LP provides a way of generating a lower bound on the
optimal integer solution of the original problem, since any dual feasible solution gives a
lower bound on the optimal integer solution to the original problem.

Figure 4 illustrates the situation. In that figure we essentially have three regions:

• upper bounds, the region above the optimal (integer) solution;
• dual LP feasible solutions, the region below the LP relaxation solution; and
• the gap, the region between the LP relaxation solution and the optimal (integer)

solution.

 18

Figure 4

Dual ascent consists therefore of simply thinking up some heuristic for generating feasible
solutions to the dual of the LP relaxation of a problem.

We shall illustrate dual ascent with reference to the set covering problem. For the SCP the LP
relaxation is:

minimise cjxj
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m
n

j=1
∑

 0 ≤ xj ≤ 1 j=1,...,n

As we have assumed (see above) that all costs cj are strictly greater than zero this LP
relaxation can be written as:

minimise cjxj
n

j=1
∑

subject to aijxj ≥ 1 i=1,...,m
n

j=1
∑

 0 ≤ xj j=1,...,n

and the dual LP is:

maximise ui
m

i=1
∑

subject to uiaij ≤ cj j=1,...,n
m

i=1
∑

 ui ≥ 0 i=1,...,m

In order to illustrate dual ascent we will develop a dual ascent algorithm for our example
SCP.

Example dual ascent algorithm

Considering the dual LP given above one possible (very simple) dual ascent algorithm is:
(a) set ui=0 ∀i (this is a feasible solution for the dual LP)
(b) take each ui (i=1,...,m) in turn and increase it by as much as possible consistent with

retaining feasibility.

A key point to note here is that often in a dual ascent algorithm we start from some dual
feasible point and always retain dual feasibility throughout the algorithm.

To illustrate the dual ascent algorithm given above we shall apply it to our example SCP. For

 19

our example SCP the dual LP is:

maximise u1 + u2 + u3
subject to u1 + u2 ≤ 2
 u3 ≤ 3
 u1 + u3 ≤ 4
 u2 + u3 ≤ 5
 u1, u2, u3 ≥ 0

Our simple dual ascent algorithm given above, as applied to this example, is therefore:
(a) set u1=u2=u3=0
(b) (1) the constraints involving u1 are:
 u1 ≤ 2
 u1 ≤ 4
 (after setting u2=u3=0) so that u1 can be increased to 2
 (2) the constraints involving u2 are:
 u2 ≤ 0
 u2 ≤ 5
 (after setting u1=2 and u3=0) so u2 cannot be increased
 (3) the constraints involving u3 are:
 u3 ≤ 3
 u3 ≤ 2
 u3 ≤ 5
 (after setting u1=2 and u2=0) so u3 can be increased to 2.

Hence we have a final solution of u1=2, u2=0 and u3=2 which is a dual feasible solution and
gives a lower bound of u1+u2+u3=4.

Plainly we could have designed a better dual ascent algorithm, for example investigating not
just increasing ui as above, but also investigating reducing ui (thereby enabling us to increase
other uj's). Discovering whether a particular dual ascent algorithm gives good quality lower
bounds at reasonable computational cost is a matter for computational experimentation.

Connections

Consider the two techniques for generating lower bounds that we have given above, namely:

• lagrangean relaxation (with the multipliers being decided by subgradient optimisation
or multiplier adjustment); and

• dual ascent, i.e. heuristically solve the dual of the LP relaxation of the problem.
Can we establish any connection between these two techniques? In fact we can by
considering the question:

Is there any relationship between dual variables and lagrange multipliers?

Recall here that we mentioned before that if a lagrangean lower bound program (LLBP) had
the integrality property then:

• the maximum lower bound attainable from LLBP is equal to the value of the LP

 20

relaxation of the original problem.

However it can also be shown that:

• the values of the lagrange multipliers that maximise the lower bound obtained from
LLBP are given by the optimal values for the dual variables in the solution of the LP
relaxation of the original problem.

In other words if the lagrangean relaxation has the integrality property then the optimal
lagrange multipliers and the optimal dual variables are the same. This immediately implies
that the maximum lower bound attainable from any lagrangean relaxation with the integrality
property is equal to the maximum lower bound attainable from any dual ascent algorithm for
the problem.

Subgradient optimisation or multiplier adjustment or dual ascent?

Which of these three techniques should we use for obtaining lower bounds?

I have to confess that my personal experience has been that subgradient optimisation has
always appeared to give me very good lower bounds, in particular lower bounds often close
to the optimal integer solution (so presumably also close to the maximum theoretically
obtainable from the lagrangean relaxation).

Hence I have never been very keen on multiplier adjustment methods although they appear
useful for some problems, e.g. the generalised assignment problem.

The only time I have tried dual ascent (for the p-median problem) it was a miserable failure!

There is a deeper point here. Some techniques (such as subgradient optimisation, multiplier
adjustment and dual ascent) are potentially of wide applicability, i.e. they can be applied to a
wide range of problems.

However these techniques may fail computationally when applied across a wide range of
problems, instead only being successful (possibly outstandingly successful) on one or two
problems.

Based on this point then, if you have to choose between these three lower bound techniques,
my advice would be:

 Subgradient optimisation will nearly always work

 Multiplier adjustment may work

 Dual ascent will probably not work

