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a b s t r a c t 

In multi-division organizations, goal congruence between different divisions and top management is criti- 

cal to the success of management. In this paper, drawing upon a nonparametric framework to model pro- 

duction technology, we derive a necessary and sufficient condition for a firm with multiple divisions to 

be goal-congruent, and then extend it to a goal congruence testing measure, which coincides with a data 

envelopment analysis (DEA) model. The goal congruence measure not only shows empirically whether 

the firm is goal-congruent or not, but also provides a measurement for the degree of goal incongruence. 

To be goal-congruent, resources shared among divisions are suggested to be allocated so that the condi- 

tions for an optimizable operation are satisfied. In addition, goal-congruent firms are verified to be cost 

efficient. All findings in this research are examined and illustrated with a dataset of 20 bank branches 

with shared resources for service and sales divisions. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In management accounting, goal congruence is defined as the

onsistency or agreement of individual goals with company goals

 Atkinson, Kaplan, Matsumura, & Young, 2012 ; Itami, 1975 ). Goal

ongruence is deemed as the intent of organizational control

 Flamholtz, Das, & Tsui, 1985 ; Malmi & Brown, 2008 ). The orga-

ization will realize its goal more effectively and perform better

hen goals of multiple production divisions can be well aligned

ith organizational plans. However, scholars have argued that in-

ividual and organizational goals are inevitably at odds with one

nother ( Witt, 1998; Yamoah, 2014 ). In this paper, we investigate

 testing technique to answer empirically whether the goals of top

anagement (i.e., the organization as a whole) and individual di-

isions are congruent in an organization environment with shared

esources, and to what extent they are divergent. This paper is

uilt upon the notion of profit function and offers the popular Data

nvelopment Analysis (DEA) technique new insight that can bene-

t the studies in both the management accounting and organiza-

ion theory. 
∗ Corresponding author. 
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As a key issue in determining the fit between individuals and

rganizations, goal congruence has long been one of the central

roblems in the organization theory ( Kristof, 1996; Vancouver, Mil-

sap, & Peters, 1994 ). Under the setting of a large firm that consists

f one central office and many functional divisions, management

ccounting literature has recognized the important role that the di-

ergence of interests between top management and division man-

gers and the private information of division managers concerning

heir work play in the budgeting process ( Baiman & Rajan, 2002 ;

rown, Fisher, Sooy, & Sprinkle, 2014 ; Douthit and Stevens, 2015 ;

isher, Maines, Peffer, & Sprinkle, 2002; Harris, Kriebel, & Raviv,

982; Heinle, Ross, & Saouma, 2014 ; Rajan & Reichelstein, 2004 ;

an der Stede, 2011 ). In particular, when resources are shared

mong functional divisions in large firms, budgeting becomes more

omplicated, because it is hard to evaluate a division’s operation

ue to the fact that consumed shared resources cannot be ob-

erved. Studying the issues related to allocate the cost of shared

esources will help budgeting systems function better in practice

 Cook, Hababou, & Tuenter, 20 0 0; Ding, Feng, Bi, Liang, & Khan,

014 ). 

Schaffer (2007) identifies four types of goal congruence in

rganizations, namely, constructive goal congruence, construc- 

ive goal incongruence, destructive goal congruence, and destruc-

ive goal incongruence. “Constructive” and “destructive” indicate 

hether goals are clearly communicated (i.e., constructive) or not

http://dx.doi.org/10.1016/j.ejor.2017.06.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.06.040&domain=pdf
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(i.e., destructive). “Congruence” and “incongruence” mean whether

front-line employees buy the top management’ goals (i.e., congru-

ence) or not (i.e., incongruence). Two examples are shown here

to offer a better understanding of “destructive” and “construc-

tive” goal incongruence respectively. In one example, taken from

Schaffer (2007) , the top management of a company sets up a new

goal for improving product quality, but the division management

are still enjoying the initial success in reducing operating costs.

Additionally, they may think achieving the new goal would incur

additional costs. Without a clear emphasis on the goal changing

when communicating to front-end employees, employees may still

work for the initial goal. Messages can be misunderstood as a re-

sult. The other example is taken from Fruitticher, Stroud, Laster,

and Yakhou (2005) about American United Life company. The ul-

timate goal of the company is that the internal rate of return

achieves 12%. The company, however, notices that division man-

agers are not willing to spend $250,0 0 0 for mass advertising that

would bring in $650,0 0 0 of annual premiums because it would

lead to the overrun of the division’s operating budget. If division

managers would have bought the goal and spent the money, the

organization’s goal could be accomplished easily. 

The role of goal congruence is nontrivial. For the top manage-

ment, the designs or strategies developed, without the agreement

and compliance of low-level members, are often deferred and re-

jected ( McKelvey & Kilmann, 1975 ). Yamoah (2014) suggests that

goal congruence is very important to attain organization’s strategic

objectives and ensure the coordination and motivation of all em-

ployees concerned. If goal incongruence is not stopped in time, it

will encourage organizational actors to pursue individual goals at

the expense of the official organizational objectives. Johnson, Pfeif-

fer, and Schneider (2013) mention that agency conflicts between

divisions affect the design of capital charge rates and asset-sharing

rules in the two-stage capital budgeting decisions for shared in-

vestments. Empirical studies show that ( 1 ) employees’ job satis-

faction, commitment, and intentions to quit are related with goal

congruence ( Vancouver & Schmitt, 1991 ), ( 2 ) well-communication

( Meyers, Riccucci, & Lurie, 2001 ), trust and shared values ( Scott

& Gable, 1997 ), among others, can help to improve the congru-

ent level, ( 3 ) goal congruence is important to attain organization’s

strategic objectives ( Yamoah, 2014 ), and is able to augment em-

ployees’ productivity ( Zhang, Wang, & Shi, 2012 ) and enhance or-

ganizational performances ( Ayers, 2015 ), (4) goal congruence in

top management team mediates the relationship between CEO

transformational leadership and vice president’s attitude ( Colbert,

Kristof-Brown, Bradley, & Barrick, 2008 ), and (5) goal congruence

moderates the relationship between organizational politics and job

performances ( Witt, 1998 ). 

If the congruence issue is to be treated formally, a measure

for the congruence between top management and divisional man-

agers is warranted. According to Edwards (1994) , most commonly

used operational measures of goal congruence are bivariate con-

gruence indices such as algebraic difference and absolute differ-

ence, and the index of profile similarity. Then, the directly mea-

sured goal congruence indices are treated as explanatory variables

for other dependent variables relevant to the employee or organi-

zation. Edwards (1994) examines problems with these congruence

indices and presents an alternative approach that overcomes these

problems. The proposed approach (i.e., response surface analysis)

is widely applied to organizational and psychological studies (e.g.,

Tafvelin, Schwarz, & Hasson (2017) and Human, Dirks, Delongis, &

Chen, 2016 ). In all the indices, goal congruence is always measured

in a qualitative way. For example, supervisors and subordinates are

invited to rate a range of goals using a 7-point Likert rating scale,

and similarity is calculated to represent the degree of congruence

( Ayers, 2015; Colbert et al., 2008 ). As subjective rating has limits,

in this study we develop a new quantitative method to measure
he level of goal congruence between top management and divi-

ion managers based on observational objective input and output

ata and let data speak for themselves. Furthermore, the proposed

easure is able to suggest the sources of the goal incongruence. 

In this study, we shall start with the characterization of the op-

imizable operation of the overall firm and the individual divisions

n it that consume shared inputs. It should be noted that the dif-

erence between ‘optimizable operation’ and ‘optimum operation’

n this study is not trivial and worthy of discussion. To claim the

peration is optimal, one should at least specify the goal or goals

f the operation and the potential best level or levels of the oper-

tion. Then, the data of operation can be compared with the best

otential to determine whether the operation is optimal. However,

n some situations one might not have enough information to an-

wer whether the operation is optimal. Instead, the data might be

ufficient to determine a week version of optimality, i.e., the exist-

ng evidence is not against the claim that the operation is optimal.

he current study dubs the weak version of optimality as ‘opti-

izable operation’. We propose that the operation of a firm or a

ivision will be optimizable if it can achieve the maximum profit,

hich indicates that this study specifies profit maximization as an

perational goal to introduce the idea of testing goal congruence.

otice that profit maximization is not the end but the means of

he study . One may argue that an organization might not purse the

ingle goal of profit. This is true. In general cases, it is suitable to

eformulate the idea of the profit function as a value function and

he value of the function equals the level of utility (e.g., revenue)

inuses the level of disutility (e.g., cost). It shall be clear that the

nly requirement for the proposed method to be applicable in the

eneral cases is that the utility and disutility functions character-

ng the goals of divisional and organizational managers all have a

inear and additive structure. 

Then it follows with the formal definition of goal congruence

hat the goal congruence exists when a specific firm under evalua-

ion and its divisions can meet some specific conditions to achieve

he maximum profit at the same time. It will be proven in this

tudy that an optimizable firm with goal-congruent multiple di-

isions is equivalent to being efficient by means of a DEA model.

ence, we leverage the DEA evaluation model as a testing tech-

ique for goal congruence. The efficiency will be viewed as a mea-

ure for assessing the degree of goal congruence. In addition, an

ptimal allocation scheme of shared inputs is obtained from this

EA-based evaluation model, together with a possible improve-

ent plan for goal congruence. At last, the goal congruence testing

easure is investigated to be a powerful one in terms of discrim-

nating capability compared with the cost efficiency definition in

he literature ( Cherchye, Rock, Dierynck, Roodhooft, & Sabbe, 2013 ),

nd based on more relaxed assumptions than the existing litera-

ure ( Cherchye, De Rock, & Walheer, 2016 ; Varian, 1984 ). 

The current research contributes the literature by introducing

 quantitative assessment method for the organizational goal con-

ruence and extending the functionality of the DEA technique.

irstly, the insight that the suggestions for a goal congruence im-

rovement in terms of resource allocation and cost sharing are en-

ogenous to DEA models is missing in the conventional application

elds of DEA models. In addition, the insight is gained through the

ethods that are based on more relaxed assumptions than similar

esearches in the DEA literature. Secondly, the proposed method is

ased on objective input and output data in evaluating goal con-

ruence, rather than subjective ratings together with difference or

imilarity measures that are the prevalent practices in the orga-

ization behavior and management accounting literature. Last but

ot the least, though based on the profit maximization as an oper-

tional behavioral objective, the proposed method is applicable if

he optimizing behaviors of decision makers are defined as other

bjectives such as utility maximization. The only requirement of
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ur analyses is that the measures that decision makers attempt to

ptimize can be formalized in a linear and additive structure. 

The rest of the paper is organized as follows. Section 2 reviews

ssues related to shared inputs allocation for goal congruence faced

y organizations. After analyzing the optimizing behavior and goal-

ongruent behavior of firms, a DEA-based model for measuring

oal congruence is developed in Sections 3 and 4 . The difference

etween the proposed goal congruence measure and the cost effi-

iency measure in literature is compared in Section 5 . An empir-

cal testing for a set of bank branches with shared inputs is pro-

ided in Section 6 . Conclusions and discussions are presented in

ection 7 . 

. Literature review 

In this paper, the goal congruence issue is investigated in an

rganization environment with shared resources. Since the litera-

ure about goal congruence has been introduced in the preceding

ection to motivate the current work, this section is dedicated to

ntroduce the literature about shared resources allocation and the

esearch technique in an effort to clarify our contribution to this

ine of research. 

Shared resources are those that are simultaneously used for

he multiple production units (divisions) with multiple outputs

 Nehring & Puppe, 2004 ). Blanket advertisements issued by a cor-

oration for all dealerships ( Cook & Kress, 1999 ), and supporting

taff for all bank branch divisions ( Cook et al., 20 0 0 ) are cases in

oint. Shared inputs allocation is a complex task, which can also be

iewed as a goal congruence problem due to incompatible goals of

he top managers and division managers. Top management opti-

izes the shared resource allocation among multiple divisions to

ttain the overall maximum profit. By contrast, the division man-

gers are not willing to bear the cost of shared inputs for maximiz-

ng its own division’s profit. Let us consider a manufacturer who

ndertakes remanufacturing operation ( Toktay & Wei, 2011 ), the

ivision responsible for the new product manufacturing and sell-

ng is quite different from the one in charge of the subsequently

roduct remanufacturing. Therefore, the question is how to allo-

ate the cost of inputs, such as materials and parts, between two

ivisions when new products are produced. The goal of one divi-

ion should be congruent with the other to achieve the firm-wide

ptimal solution. 

In the literature, shared inputs are present in production sys-

ems with either multiple parallel components or multiple serial

tages (e.g., Beasley, 1995 ; Chen, Du, David Sherman, & Zhu, 2010 ;

ook et al. 20 0 0 ). Both in parallel and serial production divisions,

hared inputs are split into multiple pieces and then used in all

ivisions respectively. Compared with parallel production systems,

he only difference is that the output from one division becomes

n input to a subsequent one in serial production systems. For in-

tance, Chen et al. (2010) study banks with deposit and investment

ctivities in serial. Deposit dollars generated from the deposit ac-

ivity becomes the input of investment activity. At the same time,

xed assets, IT investment and employees are consumed by both

tages. By contrast, Cook et al. (20 0 0) investigate banks with two

arallel production activities, sales and service, where the support

nd other staff are viewed as shared inputs. Another typical case is

niversities with two parallel components, i.e., research and teach-

ng, modeled by Beasley (1995) . In this scenario, the equipment ex-

enditure is associated with both components. 

DEA has been used extensively for resource allocation and cost

haring. DEA is a non-parametric frontier model which uses the

athematical programming approach to evaluate the relative effi-

iency of peer decision making units (DMU) with multiple inputs

nd outputs ( Charnes, Cooper, & Rhodes, 1978 ). In terms of the

ost allocation of shared inputs, Cook and Kress (1999) provide an
quitable allocation of shared costs based on the theoretical

harnes et al. (1978) (also known as CCR) DEA framework. Cook

nd Zhu (2005 ) develop a fixed-cost allocation approach based on

 DEA formulation, in which the fixed cost is modeled as an ad-

itional input variable. Both Cook and Kress (1999 ) and Cook and

hu (2005 ) assume that the original efficiency of DMUs should re-

ain unchanged after the allocation. In addition, Chen and Zhu

2011 ) propose a DEA approach for minimizing the risk during re-

ource allocation process. However, most DEA models for resource

llocation unvaryingly take a DMU as a whole, and aim primar-

ly to maximizing overall efficiency without considering the behav-

oral issue within the DMU. 

More recently, many studies focus on the behavioral issue in

he resource allocation and cost sharing decisions. Du, Cook, Liang,

nd Zhu (2014) study allocating fixed cost in a competitive and co-

perative situation based on cross-efficiency concept. In the study

 cross-efficiency DEA-based iterative method is proposed and fur-

her extended into a resource allocation and generates an alloca-

ion scheme more acceptable to the players involved. Feng, Chu,

ing, Bi, and Liang (2015) point out that a centralized allocation

lan suffers from an implementation difficulty in persuading DMUs

nto an agreement, and propose a new two-step method to miti-

ate this side effect. Bogetoft, Hougaard, and Smilgins (2016) deal

ith the empirical computation of Aumann-Shapley cost shares,

hich is a cost allocation method designed for regulation of multi-

roduction natural monopolies as well as for internal cost account-

ng and decentralized decision making in organizations. Afsharian,

hn, and Thanassoulis (2017) propose a new DEA-based system for

ncentivizing operating units to operate efficiently for the benefit

f the aggregate system of units to incentivize the units to operate

fficiently. 

Recognizing the limitations about only obtaining overall effi-

iency measures in DEA models, Cherchye et al. (2013) opened the

black box” of efficiency measurement with shared inputs. In their

ork, the overall efficiency value is decomposed into division-

pecific efficiency values, so that managers can clearly focus on

emedying the observed inefficiency. Furthermore, Cherchye, De-

uynck, De Rock, and De Witte (2014) adopted a DEA method

o model the behavior of divisions about how to choose division-

pecific inputs and shared inputs to minimize the total costs of

he firm. By leveraging the cost efficiency analysis framework in

oth Cherchye et al. (2013) and Cherchye et al. (2014) , we derive

 DEA model based goal congruence measure for firms with mul-

iple divisions. We find that cost efficiency defined in the previous

tudies is a much weaker concept in terms of discriminating capa-

ility compared with the DEA model based goal congruence mea-

ure proposed in this study. Cherchye et al. (2016) extends their

revious studies to the analyses of profit efficiency. First, the pa-

er proposes a Banker et al., 1984 (also known as BCC) like model,

hich is not consistent with the basic assumptions of the current

tudy. Importantly, the results of the current study are based on

ore relaxed conditions. Second, the paper focuses on the analy-

es of profit efficiency, while profit efficiency is the means but not

he ends to analyze goal congruence of multidivisional organiza-

ions in the current paper. Finally, as Cherchye et al. (2016) has not

een compared with Cherchye et al. (2013, 2016) , the comparison

n the current paper sheds some light on this. 

Finally, the link of the current paper to Varian (1984) should

e acknowledged here, which reviews the relevant results from

oth Afraiat (1972) and Hanoch and Rotschild (1972) . The condition

amed WAPM in Varian (1984) specifies the condition of profit

aximization that is similar to the result obtained in the current

tudy. However, the result in the current paper relaxes the required

remise of WAPM. Relying on the profit maximizing condition that

perationalizes the behavioral goal of an organization, the current

tudy gives conditions of goal congruency. 
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Fig. 2. Single-division production process. 
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3. Methodology 

This part attempts to develop a goal congruence measure for

firms with multiple divisions. Before defining this measure, we in-

vestigate the conditions that optimizable operations of firms and

their subordinate divisions should satisfy. Then, these necessary

conditions will be utilized to devise techniques for achieving our

goal of empirically investigating goal congruence within an organi-

zation. 

3.1. Background and notations 

We consider firms (denoted as DMUs) that consume both

division-specific inputs and shared inputs to produce multiple out-

puts in D distinct divisions (sub decision making units, SDMUs).

The production process of a DMU with D divisions is shown

in Fig. 1 . For n DMUs, each DMU j ( j = 1 , 2 , . . . , n ) has D divi-

sions, SDM U dj (d = 1 , 2 , . . . , D ) . Let us take two divisions as an ex-

ample. Cook et al. (20 0 0) study the sales and service functions

within the branches of a bank. The variable x dj = (x d 
1 j 

, x d 
2 j 

, . . . , x d 
mdj 

)

indicates m d inputs dedicated to SDM U dj , X s 
j 
= (X s 

1 j 
, X s 

2 j 
, . . . , X s 

l j 
)

indicates l inputs shared by all SDM U dj (d = 1 , 2 , . . . , D ) . y dj =
(y d 

1 j 
, y d 

2 j 
, . . . , y d 

tdj 
) indicates t d outputs produced exclusively by

SDM U dj (d = 1 , 2 , . . . D ) . 

We also define the price vector for division-specific

resources x dj as v dj = (v d 
1 j 

, v d 
2 j 

, . . . , v d 
mdj 

)(d = 1 , 2 , . . . , D ) .

 

s 
j 

= (V s 
1 j 

, V s 
2 j 

, . . . , V s 
l j 
) is the price vector for shared inputs.

The price vector for output products y dj are defined as

u dj = (u d 
1 j 

, u d 
2 j 

, . . . , v d 
tdj 

) . However, all prices for input and out-

puts are assumed to be unknown, and the shadow prices shall be

determined in the sequel. Just as Chen and Zhu (2011 ) notice that

price information can often be incomplete in practice. Thus, the

models are particularly suitable for applications where price in-

formation is totally absent or partially available. In the latter case,

the prices defined here can be viewed as the relative importance

of the corresponding inputs (or outputs) with respective to the

rest of the inputs (or outputs). For example, prices for inputs, e.g.,

transport, overheads costs of the studied company, are unknown

in Cherchye et al. (2013) , and prices for outputs of bank branches,

e.g., retirement savings plan openings, mortgage accounts opened,

are also not disclosed in Cook et al. (20 0 0) . 

Production possibility set contains all input and output com-

binations such that the input ( x dj , X 
s 
j 
) that can produce y dj (d =

1 , 2 , . . . , D ) for DMU j . In this paper, we assume all observed data

belong to the production possibility set. Furthermore, we as-

sume that the production possibility set exhibits locally strong
Fig. 1. An Example of multi-division production process. 
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isposability, locally constant returns-to-scale (CRS), and convexity.

ere, locally CRS implies (d x, d y ) = δ( x, y )( ∀ δ ∈ (−ε , ε ) ) is a pos-

ible direction, where ε is a small positive quantity. Locally strong

isposability means (d x, 0) and (0 , d y ) are feasible adjusting direc-

ion where d x ≥ 0 and d y ≤ 0 . Below we refer to these assumptions

s regular conditions. 

The input requirement set of a DM U j ( j = 1 , 2 , . . . , n ) , given out-

ut vectors y j = ( y 1 j , y 2 j , . . . , y D j ) , is defined as: 

( y j ) 

= 

{
( x 1 j , x 2 j , . . . , x D j , X 

s 
j ) | ( x dj , X 

s 
j ) canproduce y dj , d = 1 , 2 , . . . , D 

}

In addition to the above regular conditions, for each output vec-

or y , the input requirement set is assumed to be closed. Before

mbarking on the modeling of optimizable operation for a multi-

ivision firm, we firstly analyze a single division firm. 

.2. Single division firm 

In firms with a single division, no shared inputs are involved,

nd top management is also the division manager. Thus, no incon-

ruence issue within firm needs to be considered between the two

arties. 

The structure of a single-division production process is shown

n Fig. 2 . Here, x j = (x 
1 j 

, x 
2 j 

, . . . , x 
m j 

) and y j = (y 
1 j 

, y 
2 j 

, . . . , y 
t j 

)

re inputs and outputs for DM U j . v j = (v 
1 j 

, v 
2 j 

, . . . , v 
m j 

) and u j =
(u 

1 j 
, u 

2 j 
, . . . , u 

t j 
) are prices for inputs and outputs respectively. 

In empirical applications, the production technology of DM U j is

ypically unobserved. In non-parametric production analysis, pro-

uction technology is characterized through the observed set of

nput-output combinations. The input requirement set with re-

pect to y j of DM U j in the one single division case is I( y j ) =
 ( x j | x j can produce y j } . 

To simplify our analysis, we assume that profit maximization is

he only goal of organizations. Even though an organization may

mphasize multiple goals, such as profitability, market position,

roductivity, product leadership, personnel development, public re-

ponsibility ( Feltham and Xie, 1994 ; Yamoah, 2014 ), the main ob-

ective of a firm is profit maximization in the neoclassical theory of

he firm ( Beattie, Taylor, & Watts, 1985 ). We shall discuss the ex-

ension to other situations in the conclusion part of this paper. This

ssumption also holds in the analyses of the organizations with

ultiple divisions. 

McFadden (1978) defined a revenue function as R ( u j , x j ) and a

ost function as C( v j , y j ) , so the profit function is π = R ( u j , x j ) −
( v j , y j ) . Let us assume that revenue and cost functions are dif-

erentiable. Now let ( x 0 , y 0 ) be the input and output levels of

MU 0 . If a DMU 0 gains the locally maximum profit, it follows that

 π | ( x 0 , y 0 ) = R x 0 d x − C y 0 d y ≤ 0 under the constraints of a produc-

ion possibility set, where d x , d y are small technically feasible ad-

ustment to x 0 and y 0 , R x 0 = 

∂π
∂x 

| x 0 , C y 0 = 

∂π
∂y 

| y 0 . This means that the

rofit can no longer be improved locally. We have the following

heorem. 

heorem 1. With the regular conditions hold true, DMU 0 gains the

aximum profit, if and only if there exist R x 0 ≥ 0 , C y 0 ≥ 0 , such

hat R x 0 x 0 − C y 0 y 0 = 0 and R x 0 x j − C y 0 y j ≥ 0 hold for all ( x j , y j ) be-

onging to the production possibility set. 
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Fig. 3. Division’s production process in a multi-division DMU. 
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roof. See the Appendix. 

Note that The condition named WAPM from Varian (1984) says

iterally there exist a conical production set Y that p -rationalizes

he data is equivalent to 0 = p i y i ≥ p i y j (for all i, j = 1,…, n ). This is

ery similar to Theorem 1 . However, the result in Varian (1984) is

ased on the definition of p i y i ≥ p i y j (for all i, j = 1,…, n ) and the

onical production set assumption, while Theorem 1 is based on

he premise that dπ ≤ 0 and DMU 0 under examination possesses

ocally CRS and a convex production set. In other words, Theorem

 requires the production bundle of DMU 0 can be adjusted pro-

ortionately locally and the shape of the production possibility

et including DMU 0 and other DMUs is some convex set no mat-

er it is a cone or not. Therefore, Theorem 1 relaxes the required

remise in using WAPM. Now we proceed to define an optimiz-

ble operation of DMU 0 . Since attaining maximum profit is the pri-

ary organization-level goal, DMU 0 is optimizable if its operation

n terms of inputs and outputs is consistent with profit maximiza-

ion, which is stated in detail in Definition 1 . 

efinition 1. For all the production units DM U j ( j = 1 , 2 , . . . , n )

ith inputs-outputs combinations ( x j , y j ) , we say that DMU 0 is

ptimizable if it can achieve maximum profit, in other words

here exists a price vector ( R x 0 , C y 0 ) , that satisfies R x 0 x 0 − C y 0 y 0 =
 , R x 0 x j − C y 0 y j ≥ 0( j � = 0) , R x 0 ≥ 0 , C y 0 ≥ 0 . 

In the literature, the CCR DEA model for DMU 0 is represented

s max z = 

μy 0 
ω x 0 

, s.t. 
μy j 
ω x j 

≤ 1 , j = 1 , 2 , . . . , n , where (μ, ω) ≥ 0 . Then,

t is easy to see that the condition for the operation of a DMU to be

ptimizable is equal to the condition for the DMU to be CCR effi-

ient. It is worthy of noting that hereafter the “CCR efficient” qual-

fication means the Farrell efficiency. It is also known as “weakly

fficient”. 

roposition 1. An optimizable DM U 0 is CCR efficient, vice versa. 

roof. See the Appendix. 

In summary, we conclude that DMU 0 is optimizable if it can

chieve profit maximization, and if DMU 0 achieves the maximal

rofit, DMU 0 is CCR efficient or efficient in short. If a DMU cannot

e optimized, it is inefficient in production. Proposition 1 provides

 new perspective to the understanding of the CCR efficiency in

he literature. 

.3. Multi-division firm 

In multi-division firms, D distinct divisions consume both

ivision-specific inputs and shared inputs to produce multiple out-

uts for the company. In turn, the cost of shared inputs, of course,

hould be shared among all divisions. 

An example of multi-output production process is shown in Fig.

 . For the purpose of illustration, we use Fig. 3 where only the

roduction process of one SDMU is shown. SDM U dj (d = 1 , 2 , . . . , D )

f DM U j consumes both division-specific inputs x dj and shared in-

uts X s 
j 

to produce outputs y dj . However, the cost of shared inputs
 

D 
d=1 

V s 
dj 

X s 
j 

has to be allocated among all divisions, which is dif-

erent from the single division case. Here V s 
dj 

= (V d 
1 j 

, V d 
2 j 

, . . . , V d 
l j 
)(d =

 , 2 , . . . , D ) with 

∑ 

D 
d=1 

V s 
dj 

= V s 
j 

are the division-specific prices that
DM U dj of DM U j would like to pay for the shared inputs. The total

ost all SDMUs willing to pay equals to the market price of shared

nputs from our modeling perspective. It should be noted that this

mplicit condition will be tested empirically in Section 4 . 

V s 
dj 

(d = 1 , 2 , . . . , D ) is also called implicit prices ( Cherchye et al.,

013 ), which represents the fraction of the aggregated prices of

he shared inputs that are borne by different production divisions.

hen consuming shared inputs, however, DMUs generally do not

ave the complete knowledge about the usage among divisions.

onsequently, a mechanism is needed to split shared inputs across

ivisions. In this research, we use a ratio β
dj 

= (βd 
1 j 

, βd 
2 j 

, . . . , βd 
l j 
) in-

tead of V s 
dj 

, where V s 
dj 

= βdj V 
s 
j 
, to represent the partial price that

DM U dj of DM U j would like to pay for the shared input. The ra-

io is more flexible in a sense that when the quantity of a shared

nput, say X s 
j 
, is of interest, we can apply allocation ratios to X s 

j 
to

btain the quantity that a SDMU consumes. 

Assuming the profit function of a multi-division DMU takes the

orm π = 

∑ 

D 
d=1 

R d ( u dj , x dj , X 
s 
j 
) − ∑ 

D 
d=1 

C d ( v dj , V 
s 

dj 
, y dj ) , and is differ-

ntiable with respect to x dj , X 
s 
j 
, y dj given u dj , v dj , and V s 

dj 
, we have

heorem 2 below by following the same logic of Theorem 1 . 

heorem 2. With the regular conditions hold true, DM U 0 

ains the maximum profit, if and only if there exist R X s 
0 

≥ 0 ,

 x d0 
≥ 0 , C y d0 

≥ 0(d = 1 , 2 , . . . , D ) such that 
∑ 

D 
d=1 

R x d0 
x d0 + R X s 

0 
X s 

0 
−

 

D 
d=1 

C y d0 
y d0 = 0 , and 

∑ 

D 
d=1 

R x d0 
x dj + R X s 

0 
X s 

j 
− ∑ 

D 
d=1 

C y d0 
y dj ≥ 0 hold

or all ( x dj , X 
s 
j 
, y dj ) belonging to the production possibility set. 

Here, R X s 
0 
, R x d0 

, and C y d0 
are first partial derivatives of the profit

unction with respect to X s 
0 
, x d0 , and y d0 respectively. On the ba-

is of Theorem 2 , we extend Definition 1 to a new definition of

ptimizable operation for a multi-division firm as follows. 

efinition 2. For all the production units DM U j ( j = 1 , 2 , . . . , n )

ith inputs-outputs combinations ( x dj , X 
s 
j 
, y dj )(d = 1 , 2 , . . . , D ) ,

MU 0 is optimizable if it can achieve maximum profit. In

ther words, there exists a price vector ( R x d0 
, R X s 

0 
, C y d0 

)(d =
 , 2 , . . . , D ) that satisfies 

∑ 

D 
d=1 

R x d0 
x d0 + R X s 

0 
X s 

0 
− ∑ 

D 
d=1 

C y d0 
y d0 = 0 ,

 

D 
d=1 

R x d0 
x dj + R X s 

0 
X s 

j 
− ∑ 

D 
d=1 

C y d0 
y dj ≥ 0( j � = 0) . 

. Measure of goal congruence 

Suppose that the top management of a firm only cares about

he maximum profit gained from the investment of shared re-

ources, shared resources are allocated committing to this goal.

owever, due to divergence of interests between the top manage-

ent and division managers and the fact that the benefits that a

ivision derived from shared inputs is the private information of

ivision managers, the allocation plan preferred by the top man-

gement might be in conflict with division managers’ optimizable

peration. In other words, goal incongruence may be present be-

ween the top management and division managers. 

To complete the task of testing quantitatively whether

oal congruence between top management and divi-

ion managers exists, our logic is to hypothesize that

he division managers and top management are goal

ongruent in the first place. An implication of this hypothesis

s that division managers are willing to accept any allocation plan

n the best interest of the overall firm. Then, based on empirical

vidence, we shall decide whether the congruence hypothesis is

ejected or not. The definition of goal congruence between a DMU

nd its SDMUs is provided in Definition 3 . 
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Definition 3. If a focal DMU and its SDMUs can achieve max-

imum profit at the same time, then they are goal congru-

ent. SDMU d 0 with inputs-outputs combinations ( x d0 , X 
s 
0 
, y d0 )(d =

1 , 2 , . . . , D ) of DMU 0 is optimizable if it can achieve maxi-

mum profit in the following sense: there exists a price vector

( R x d0 
, R X s 

0 
, C y d0 

) and β
d0 

= (βd 
10 

, βd 
20 

, . . . , βd 
l0 

)(d = 1 , 2 , . . . , D ) , such

that R x d0 
x d0 + βd0 R X s 

0 
X s 

0 
− C y d0 

y d0 = 0 , R x d0 
x dj + βd0 R X s 

0 
X s 

j 
− C y d0 

y dj ≥
0( j � = 0) , 

∑ 

D 
d=1 

βd0 = 1 , βd0 ≥ 0 , for d = 1 , 2 , . . . , D . Here, βd0 R X s 
0 
X s

j 

indicates the partial cost that SDMU d 0 of DM U j pay for the shared

input. 

Note that in the conditions of Definition 3 , SDM U d0 of DMU 0 

only compares with the corresponding SDM U dj ( j � = 0) of other

DM U j ( j � = 0) . If the DMU and SDMUs are not goal congruent, there

are two causes that prevent the DMU and SDMUs becoming opti-

mizable simultaneously. The first is that the operations of SDMUs

are not optimizable themselves (denoted Cause 1 for latter refer-

ence). This is because they are inefficient in production. This ex-

planation is the same as that in the single division setting. The

other is that if the SDMUs can be optimizable except for the over-

all DMU, and then there exist differences in input and output pri-

orities and shared resources usage among the SDMUs and DMU

(denoted Cause 2 for latter reference). We now proceed to propose

models to capture quantitatively the magnitude of goal incongru-

ence embodying those two causes. 

Beasley (1995) proposes a DEA model assuming CRS for max-

imizing the overall efficiency, which can determine the joint effi-

ciency of all production processes (see model ( 1 )). Note that the

term ‘overall efficiency’ here emphasizes it is the efficiency of the

entire DMU consisting of many DMUs, while the term ‘joint effi-

ciency’ highlights that the overall efficiency can be interpreted as

the aggregation of SDMU efficiencies (i.e., the weighted average

of SDMU efficiencies) . Below, we explore the implication of this

model for measuring the degree of goal congruence, which has not

yet been discussed in the literature. 

max z = 

∑ 

D 
d=1 

μd0 y d0 

ω 0 X 

s 
0 

+ 

∑ 

D 
d=1 

ω d0 x d0 

s.t. 
μ10 y 1 j 

β10 ω 0 X 

s 
j 
+ ω 10 x 1 j 

≤ 1 , j = 1 , 2 , . . . , n 

μ20 y 2 j 

β20 ω 0 X 

s 
j 
+ ω 20 x 2 j 

≤ 1 , j = 1 , 2 , . . . , n 

. . . 

μD 0 y D j 

βD 0 ω 0 X 

s 
j 
+ ω D 0 x D j 

≤ 1 , j = 1 , 2 , . . . , n 

∑ 

D 
d=1 βd0 = 1 

ω 0 ≥ 0 , βd0 ≥ 0 , μd0 ≥ 0 , ω d0 ≥ 0 , d = 1 , 2 , . . . , D, j = 1 , 2 , . . . , n 

(1)

In model ( 1 ), each DMU is evaluated in its most favor-

able light. Hence, each DMU is allowed to choose a set of

( βd0 , ω 0 , ω d0 , μd0 ) to maximize its efficiency score. The objec-

tive function of model ( 1 ) is an overall efficiency measure of

DMU 0 , The efficiency for each SDMU of DMU 0 is measured by
μd0 y d0 

βd0 ω 0 X 
s 
0 
+ ω d0 x d0 

(d = 1 , 2 , . . . , D ) . In other words, SDMU’s efficiency is

defined based on a specific allocation of shared inputs among SD-

MUs. One should be cautious in understanding the phrase “SDMU’s

efficiency”. As the realistic consumption data of shared inputs can-

not be observed, it is difficult to evaluate the performance of a

SDMU. Here, the efficiency of a SDMU is defined as a ratio of

weighted outputs to weighted inputs. However, these weights are

given aiming at putting the DMU as a whole, rather than the
DMU, in the best possible light. This is not quite consistent with

he conventional definition of efficiency of a DMU in the DEA

iterature. Consequently, we refer to the objective value of model

 1 ) as the overall efficiency of a DMU and the efficiency of a SDMU

s the divisional efficiency of a SDMU. The use of overall efficiency

nstead of ‘CCR efficiency’ or efficiency in the multi-division case is

o highlight the difference between model ( 1 ) and the classic CCR

odel. A DMU or SDMU will be overall or divisional efficient if the

espective efficiency achieves 1. 

By adopting “Charnes-Cooper” transformation ( Charnes &

ooper, 1962 ), the objective function of model ( 1 ) can be expressed

n a non-ratio form. In addition, we make the change of variables

 

d 
0 = βd0 ω 0 (d = 1 , 2 , . . . , D ) , in which ω 

d 
0 has the same dimension

ith ω 0 , and then model ( 1 ) is transformed into a linear model

 2 ). 

max z = 

∑ 

D 
d=1 μd0 y d0 

s.t. μ10 y 1 j − ω 

1 
0 X 

s 
j 
− ω 10 x 1 j ≤ 0 , j = 1 , 2 , . . . , n 

μ20 y 2 j − ω 

2 
0 X 

s 
j 
− ω 20 x 2 j ≤ 0 , j = 1 , 2 , . . . , n 

. . . 

μD 0 y D j − ω 

D 
0 X 

s 
j 
− ω D 0 x D j ≤ 0 , j = 1 , 2 , . . . , n 

∑ 

D 
d=1 ω 

d 
0 = ω 0 

ω 0 X 

s 
0 + 

∑ 

D 
d=1 ω d0 x d0 = 1 

 0 ≥ 0 , ω 

d 
0 ≥ 0 , μd0 ≥ 0 , ω d0 ≥ 0 , d = 1 , 2 , . . . , D, j = 1 , 2 , . . . , n 

(2)

In model ( 2 ), it is clear that there are differences in input and

utput priorities and shared resources usage for the SDMUs (rep-

esented in inputs and outputs weights) if the DMU and SDMUs

annot be optimizable at the same time. The relationship between

 DMU’s overall efficiency and SDMUs’ divisional efficiencies is re-

ealed in Lemma 1 . 

emma 1. A necessary condition for DMU 0 to be overall efficient

s that all SDMU d 0 of DMU 0 are divisional efficient. 

roof. See Appendix. 

Lemma 1 supports the Cause 1 why the DMU and SDMUs can-

ot be optimizable at the same time. The necessity of Lemma

 shows that SDMUs are not efficient in production when the over-

ll DMU is not optimizable. A single division DMU is optimizable

f it is CCR efficient according to Proposition 1 . However, an addi-

ional condition is required for multi-division firms. We summarize

he condition in Proposition 2 . 

roposition 2. The sufficient and necessary condition for DMU 0 to

e overall efficient is that it is optimizable and multiple divisions

re goal-congruent with it. 

The non-sufficiency of Lemma 1 and Proposition 2 verify that

here are conflicts in determination of input and output priorities

nd the shared resources usage (represented by the inputs and

utputs weights in model ( 2 )) even though the two SDMUs are

fficient, which supports the Cause 2 why the DMU and SDMUs

annot be optimizable at the same time. Therefore, if a DMU is op-

imizable and its SDMUs are goal-congruent with it, both the DMU

nd all its SDMUs are able to attain their maximum profit. Then

oth the DMU and all its SDMUs are overall efficient. In turn, if a

MU is overall efficient, and then all its SDMUs are divisional ef-

cient. Furthermore, the DMU and its SDMUs are congruent with

ach other. Hence, DMU’s overall efficiency is a good indicator to

how whether its SDMUs are goal-congruent with it. 
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In addition to serving as an indicator of whether goal congru-

nce is achieved, a DMU’s overall efficiency measure by model ( 1 )

s a measure of the degree of goal congruence. As a DMU’s overall

fficiency is a weighted average of each SDMU’s efficiency (under

 specific shared input allocation scheme) ( Beasley, 1995 ), SDMUs’

ow efficiency level will lead to a smaller overall efficiency score.

n this case, it is obviously that SDMUs and the DMU are goal in-

ongruent. Furthermore, the lower the efficiencies of SDMUs, the

ower the degree of congruence is. 

The overall efficiency proposed here sheds light on the source

f goal incongruence. For example, in model ( 1 ), the variables

d0 (d = 1 , 2 , . . . , D ) are treated as DMU-specific variables. It will

e at the discretion of the DMU under evaluation to allocate shared

nputs among its divisions. However, as long as one SDMU is not

fficient under DMU’s allocation scheme for achieving the profit

aximization goal, the overall DMU cannot be efficient. If there

s no allocation scheme available to reconcile the profit optimizing

ehaviors of both SDMUs and DMU as a whole, goal in-congruence

ollows. 

If SDMUs are to adjust their inputs in goal incongruent sit-

ation to achieve a goal congruent state, the extent to which a

DMU needs to make adjustment in order to be overall efficient

s reflected in model ( 1 ). Treating the overall DMU efficiency as a

uantitative measure for goal congruence constitutes a contribu-

ion of this research. The goal congruence measure, other than ef-

ciency measure, offers a new insight to the optimal value of the

eighted ratio efficiency in model ( 1 ). In the course of maximizing

verall efficiency of a DMU, a set of optimal βdj (d = 1 , 2 , . . . , D ; j =
 , 2 , . . . , n ) is obtained. As a result, a measure of goal congruence

etween the DMUs and their SDMUs is provided, together with an

ptimal allocation scheme of the shared resources. 

. Relationship between goal congruence measure and cost 

fficiency 

The allocation of shared inputs among divisions of a DMU has

lready been studied by Cherchye et al. (2013) and Cherchye et al.

2014) . They propose a structural DEA approach to model cost min-

mizing behavior at the overall firm level when allocating shared

nputs among divisions. A notion of cost efficiency is developed in

hese two studies. Adopting the notations in the current paper, we

e-write the cost efficiency definition as Definitions 4 and 5 for

oth the single division firms and multi-division firms. Cost min-

mization and cost efficiency is an important topic of budgeting

nd management control as well. Hence, the difference between

he overall efficiency indicated in model ( 1 ) and cost efficiency is

urther discussed in this section. 

.1. Single-division firm 

Based on the cost efficiency defined by Cherchye et al. (2013) ,

e have the following cost efficiency definition. 

efinition 4. Let v 0 be the prices for y 0 and x 0 respectively.

MU 0 with a single division is cost efficient among all DM U j ( j =
 , 2 , . . . , n ) if and only if there exists prices v 0 that satisfy: 

1) x j ∈ I( y j ) , j = 1 , 2 , . . . , n ; 

2) v 0 x 0 = min 

j∈ �0 

v 0 x j , where j ∈ �0 = { i | y i ≥ y 0 } . 

In this definition, the first constraint guarantees that the inputs

 j can effectively produce the outputs y j under price v 0 , which in-

icates technology feasibility. v 0 x 0 = min v 0 x j ensures that DMU 0 

roduce y 0 at a minimal cost under price v 0 . For these DM U j with

 j < y 0 , by definition, the cost v 0 x j incurred to produce y j is less

han or equal to v 0 x 0 for producing y 0 , otherwise more inputs

or DM U j indicates inefficiency. Both of these two cases infer that
MUs with y j < y 0 are meaningless for comparison purpose. Such

s also in line with the free output disposability of production func-

ions that less output never requires more input. Therefore, the set

0 = { i | y i ≥ y 0 } is built to capture those DM U j that produce at least

he output y 0 . We know that an optimizable DMU is CCR efficient

ccording to Proposition 1 . Furthermore, if a DMU is CCR efficient,

t follows the Proposition 3 below. 

roposition 3. If DM U 0 is CCR efficient, and then DMU 0 is cost

fficient. 

roof. See the Appendix. 

However, if DMU 0 is cost efficient, CCR efficiency cannot al-

ays be inferred. For those DM U j having y j ≥ y 0 , by setting a small

 0 ( u 0 ≥ 0) , which satisfies u 0 y j − u 0 y 0 ≤ ( min v 0 x j ) − v 0 x 0 ( j ∈ �) ,

e have v 0 x 0 − u 0 y 0 ≤ v 0 x j − u 0 y j . There is no evidence that

 0 x 0 − u 0 y 0 = 0 . Therefore, DMU 0 is CCR efficient cannot hold. 

.2. Multiple-division firm 

efinition 5. For a multiple-division DMU 0 with inputs-outputs

ombinations ( x d0 , X 
s 
0 
, y d0 )(d = 1 , 2 , . . . , D ) , it is multi-output cost

fficient among all DM U j ( j = 1 , 2 , . . . , n ) if and only if there exist

 set of prices ( v dj , V 
s 
j 
) and βd0 = (βd 

10 
, βd 

20 
, . . . , βd 

l0 
)(d = 1 , 2 , . . . , D )

hat satisfy: 

1) ( x d0 , X 
s 
0 
) ∈ I( y d0 ) 

2) v d0 x d0 + βd0 V 
s 
0 

X s 
0 

= min 

j∈ �d 
0 
( v d0 x dj + βd0 V 

s 
0 

X s 
j 
) , 

∑ 

D 
d=1 

βd0 = 1 , 

where j ∈ �d 
0 

= { i | y di ≥ y d0 } , d = 1 , 2 , . . . , D . 

In this definition, the first constraint guarantees that the in-

uts ( x d0 , X 
s 
0 
) can effectively produce the outputs y d0 under the

rice ( v d0 , βd0 V 
s 
0 
) , which indicates technology feasibility. The sec-

nd constraint ensures that every SDM U d0 of DMU 0 produce y d0 

t a minimal cost under the price ( v d0 , βd0 V 
s 
0 
) . The constraint

 

D 
d=1 

βd0 = 1 confines the money paid for shared inputs to meet

he total price requirement. Same as that in Definition 4 , the

et �d 
0 

= { i | y di ≥ y d0 } indicates that only these SDM U dj that pro-

uce at least y d0 are compared with SDMU d 0 . Note that each di-

ision SDMU d 0 of DMU 0 should satisfies the second constraint of

efinition 5 . Thus there are actually D sub-constraints within the

econd constraint. If all SDMUs of DMU 0 are measured as cost ef-

cient, it is obviously that DMU 0 is cost efficient. 

The cost efficiency measure proposed in Cherchye et al.

2013) is shown as follows. 

C E 0 = max 

∑ 

D 
d=1 

c d 0 

V 

s 
0 

X 

s 
0 

+ 

∑ 

D 
d=1 

v d0 x d0 

 

d 
0 ≤ v d0 x dj + βd0 V 

s 
0 X 

s 
j 
, j ∈ �d 

0 = { i | y di ≥ y d0 } , d = 1 , 2 , · · ·, D 

∑ 

D 
d=1 βd0 = 1 

(3) 

Note that parameters c d 
0 
(d = 1 , 2 , . . . , D ) in model ( 3 ) represent

in 

j∈ �d 
0 
( v d0 x dj + βd0 V 

s 
0 

X s 
j 
) . It is easy to verify that cost efficiency

easurement for a DMU in model ( 3 ) is equivalent to the cost ef-

cient definition in Definition 5 when the DMU is cost efficient.

irst, if a DMU 0 is cost efficient as defined in Definition 5 , then

ll its SDMUs are cost efficient, and we get c d 
0 
= v d0 x d0 + βd0 V 

s 
0 

X s 
0 
.

hus the objective function of model ( 3 ) equals to one, and all

onstraints of model ( 3 ) are satisfied. Second, if CE 0 of model ( 3 )

quals to one, and then 

∑ 

D 
d=1 

c d 
0 
= 

∑ 

D 
d=1 

v d0 x d0 + βd0 V 
s 
0 

X s 
0 
. Suppose

here exists one c 
p 
0 

for SDM U p0 equal to v p0 x pk + βp0 V 
s 
0 

X s 
k 
(k ∈ S 

p 
0 
)

ther than v p0 x p0 + βp0 V 
s 
0 

X s 
0 
. It follows that c 

p 
0 

< v p0 x p0 + βp0 V 
s 
0 

X s 
0 
,

nd 

∑ 

D 
d=1 

c d 
0 
< 

∑ 

D 
d=1 

v d0 x d0 + βd0 V 
s 
0 

X s 
0 
, which contradicts that CE 0 of

odel ( 3 ) equals to one Through the contradiction, we know that
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Table 1 

Inputs and outputs of 20 bank branches. 

Branch Dedicated inputs Shared inputs Service outputs Sales outputs 

x 1 j x 2 j X s 
1 j 

X s 
2 j 

y 1 
1 j 

y 1 
2 j 

y 2 
1 j 

y 2 
2 j 

1 0.455 0.492 0.17 0.73 2.873 1.498 3.6 4.2 

2 0.942 0.661 1.88 1 3.093 1.226 5.9 9.7 

3 0.51 0.293 0.47 1.01 1.857 0.865 3.7 4.9 

4 1.239 0.916 1.13 0.1 8.532 3.29 4.8 12.2 

5 1.015 0.724 4.48 0.12 4.304 1.777 7.9 16.8 

6 0.883 1.474 3.61 0.33 4.34 0.11 0.5 0.9 

7 0.594 0.32 2.86 0.21 4.64 1.493 8.7 5.2 

8 0.815 0.669 2.99 0.16 6.821 3.243 7.4 11 

9 0.862 0.67 0.92 1.21 4.709 2.599 6.5 6.3 

10 0 0.06 5.45 1.55 0.015 0.037 0.6 2.9 

11 0.972 1.216 0.12 0.14 8.532 4.332 9.7 7.2 

12 0.035 1.007 0.42 0.31 5.312 2.718 3.5 3.5 

13 1.317 0.55 2.59 0.17 3.643 2.115 8.4 6.4 

14 0.61 0.939 0.54 0.12 4.878 3.01 5.9 6 

15 0.511 0.659 1.96 0.01 4.109 1.993 6 6.2 

16 0.719 0.602 1.17 0.49 4.95 2.95 5.3 4.7 

17 1.485 0.689 5.03 0.26 6.389 2.415 12.3 7.8 

18 0.528 0.436 0.39 0.13 2.939 1.377 9 4.3 

19 0.743 0.546 0.83 0.56 6.184 1.975 2.7 4.3 

20 0.508 0.395 1.44 1.25 3.053 0.951 1 3.2 
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t  
if the objective function value of model ( 3 ) equals to one, for ev-

ery c d 
0 

, we get c d 
0 
= v d0 x d0 + βd0 V 

s 
0 

X s 
0 
, which infers that DMU 0 is cost

efficient according to Definition 5 . 

Since an optimizable DMU with goal-congruent multiple divi-

sions has already proven to be overall efficient in Proposition 2 ,

the relationship between the overall efficiency and cost efficiency

for multi-division DMU is further revealed in Proposition 4 . 

Proposition 4. If DMU 0 with multiple divisions is overall efficient,

and then DMU 0 is cost efficient. 

Proof. See the Appendix. 

For the same reason with Proposition 3 , cost efficiency cannot

derive overall efficiency. In summary, overall efficiency is equiva-

lent to the optimization both for DMUs with a single division and

multiple divisions. And the cost efficiency defined in Definitions

4 and 5 can be inferred from the overall efficiency, but the con-

verse is not true. Therefore, the cost efficiency defined in Cherchye

et al. (2013) is a much weaker concept compared with the overall

efficiency. 

6. Empirical application 

In this section, we take a dataset of 20 branches from a ma-

jor Canadian bank as in Cook et al. (20 0 0) . All branches are cho-

sen from one district. The transactions of banks are assumed to

be separated into two distinct classes: service and sales functions

(or called divisions in this study). Among them, examples for the

service function are counter transactions, and the sales function in-

volves the opening of the mutual funds for instance. What should

be emphasized is that the exact split of input resources between

these transactions, however, is not always possible. For example,

the technology investment of a bank branch serves both service

and sales functions. Each branch produces multiple outputs and

consumes multiple inputs including the shared resources. In Cook

et al. (20 0 0) , a best resource split is found by optimizing each

branch’s overall efficiency, while measuring the efficiencies of both

service and sales functions. In the current research, we not only

calculate the efficiencies of branches and their sub-functions, but

also arrive at a goal congruence measure for each branch. Whether

a branch shows optimizable operation and its cost efficiency are all

discussed in this section. 

The structure of the banking process is the same as that in Fig.

1 . Each DMU j represents a bank branch with two SDMUs. SDMU 1 j 

represents the service function, and SDMU 2 j represents the sales

function. The inputs for DMU j are the number of service staff

( x 1 j = (x 1 
1 j 

)) , the number of sales staff ( x 2 j = (x 2 
1 j 

)) , the number of

support staff (X s 
1 j 

) , and the number of other staff (X s 
2 j 

) . The num-

ber of service and sales staff are dedicated inputs for service and

sales function, respectively, and the number of support staff and

other staff are shared inputs for both functions (X s 
j 
= (X s 

1 j 
, X s 

2 j 
)) .

The outputs include the number of counter level deposits (y 1 
1 j 

) ,

the number of transfers between accounts (y 1 
2 j 

) , the number of

retirement savings plan openings (y 2 
1 j 

) , and the number of mort-

gage accounts opened (y 2 
1 j 

) . The first two outputs are the prod-

ucts of the service function ( y 1 j = (y 1 
1 j 

, y 1 
2 j 

)) , and the other two

are the outcomes of the sales function ( y 2 j = (y 2 
1 j 

, y 2 
2 j 

)) . All inputs

and outputs of 20 branches are collected in one year period and

are displayed in Table 1 . 

6.1. Measure the degree of goal congruence 

Based on Proposition 2 , a DMU’s overall efficiency by model

( 1 ) is not only an indicator of goal congruence, but also is a
easure of the degree of goal congruence. Both overall efficiency

f a DMU and divisional efficiencies of its SDMUs, computed by

odel ( 2 ), are shown in Table 2 , together with an optimal set of

dj = (βd 
10 

, βd 
20 

)(d = 1 , 2 ; j = 1 , 2 , . . . , 20) . βd 
10 

(respectively βd 
20 ) 

is

he ratio of shared inputs X 

s 
1 j 

(number of support staff) (respec-

ively X 

s 
2 j 

(number of other staff)) that is allocated to division 1

respectively 2). 

As shown in the second column of Table 2 , the branches 4, 10,

1, and 15 attain an overall efficiency of one. The results indicate

hat there is an allocation plan, shown in last four columns of Table

 , which makes both divisions and overall branch efficient for the

ranches 4, 10, 11 and 15. Hence the hypothesis that top man-

gement and division managers are goal congruent is accepted for

hese branches. They pass the goal congruence testing. 

Service and sales functions of these four branches are

ll efficient as depicted in the third and fourth column of

able 2 , which is consistent with Lemma 1 . It indicates that

wo functions of these four branches show optimizable be-

avior. For efficient branches 4, 10, 11, and 15, there is a

et of optimal parameters (ω 

∗
d0 

, ω 

∗
0 , μ

∗
d0 

)(d = 1 , 2) and ω 

1 ∗
0 such

hat 
∑ 

2 
d=1 

μ∗
d0 

y d0 = 1 , ω 

∗
0 X 

s 
0 

+ 

∑ 

2 
d=1 

ω 

∗
d0 

x d0 = 1 ; For all divisions

f these four branches, we have μ∗
10 

y 1 j − ω 

1 ∗
0 X s 

j 
− ω 

∗
10 

x 1 j ≤ 0

nd μ∗
20 y 2 j − (ω 

∗
0 − ω 

1 ∗
0 ) X 

s 
j 
− ω 

∗
20 x 2 j ≤ 0 . Therefore, conditions in

efinition 2 such as 
∑ 

2 
d=1 

ω 

∗
d0 

x d0 + ω 

∗
0 X 

s 
0 

− ∑ 

2 
d=1 

μ∗
d0 

y d0 = 0 and
 

2 
d=1 

ω 

∗
d0 

x dj + ω 

∗
0 
X s 

j 
− ∑ 

2 
d=1 

μ∗
d0 

y dj ≥ 0 are satisfied for the four ef-

cient branches. It indicates that efficient branches are optimiz-

ble, i.e., achieve maximum profit. Both the branches and their

unctions achieve maximum profit. Therefore, they are goal con-

ruent. It is easy to verify that the converse is true as well. In

ummary, Proposition 2 is supported. 

For the other branches with an overall efficiency less than one,

wo divisions cannot be efficient at the same time. Hence the con-

ruence hypothesis is rejected, and the goal congruence testing

ails for these branches. The results demonstrate that there are

roduction inefficiencies for these inefficient divisions. For these

ranches, the overall efficiency is an indicator for the degree of

oal congruence. The smaller the overall efficiency value is, the

arger the degree of goal incongruence. For instance, the sales func-

ion of branch 1 is efficient while the service function is not.

hus the top management’s profit maximum goal cannot be at-

ained, which results in the goal-congruence value 0.96. Let us

ake branch 20 as another example. The efficiencies of both service
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Table 2 

Degree of goal congruence of branches and their sub functions. 

Branch Overall efficiency Efficiency of service function Efficiency of sales function β1 
10 β2 

10 β1 
20 β2 

20 

1 0.96 0.50 1.00 0.09 0.91 0.33 0.67 

2 0.59 0.13 0.84 0.08 0.92 0.80 0.20 

3 0.88 0.18 1.00 0.19 0.81 0.21 0.79 

4 1.00 1.00 1.00 0.53 0.47 0.61 0.39 

5 0.89 0.36 1.00 0.28 0.72 0.11 0.89 

6 0.20 0.32 0.03 0.42 0.58 0.56 0.44 

7 0.93 0.45 1.00 0.23 0.77 0.20 0.80 

8 0.83 0.76 0.86 0.08 0.92 0.87 0.13 

9 0.57 0.27 0.68 0.55 0.45 0.11 0.89 

10 1.00 1.00 1.00 0.56 0.44 0.38 0.62 

11 1.00 1.00 1.00 0.53 0.47 0.18 0.82 

12 0.86 1.00 0.34 0.31 0.69 0.95 0.05 

13 0.71 0.30 0.80 0.50 0.50 0.23 0.77 

14 0.94 0.98 0.75 0.44 0.56 0.76 0.24 

15 1.00 1.00 1.00 0.74 0.26 0.48 0.52 

16 0.53 0.40 0.57 0.05 0.95 0.71 0.29 

17 0.70 0.34 0.82 0.50 0.50 0.22 0.78 

18 0.96 0.50 1.00 0.01 0.99 0.09 0.91 

19 0.51 0.38 0.55 0.05 0.95 0.69 0.31 

20 0.31 0.13 0.40 0.60 0.40 0.50 0.50 
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nd sales functions are quite low, so they are far away from top

anagement’s expectation. As a consequence, the goal-congruence

alue is 0.31, which is quite low. Moreover, an allocation plan of

wo shared inputs among two functions is shown in the last four

olumns of Table 2 . Take branch 1 as an example, 9% of the sup-

ort staff cost and 33% of the other staff cost are allocated to ser-

ice function. Correspondingly, 91% of the support staff cost and

7% of the other staff cost are allocated to the sales function. Ob-

iously, β1 
10 

+ β2 
10 

= 1 and β1 
20 

+ β2 
20 

= 1 . This indicates that the to-

al money the two functions would like to pay equals the market

rices of shared inputs. The allocation scheme of branch 1 leads

o the efficiency values 0.5 and 1.0 for the service and sales func-

ion respectively, followed by a value of goal congruence measure

t 0.96. 

.2. Improvement of the degree of goal congruence 

In Table 2 , the last four columns are the ratios of shared inputs

hat could be allocated to service function and sales function re-

pectively. These numbers are generated by Model ( 2 ). Under the

llocation plan in Table 2 , some branches are evaluated as effi-

ient, but most of them are not. In other words, there is a goal

ncongruence issue between the division management and the top

anagement in most branches. Goal-incongruent branches can get

mproved in the degree of goal congruence under a preferred al-

ocation of shared inputs using the benchmarking point approach.

t is an ideal allocation of the shared inputs so that the congruent

tate is able to achieve for each branch. 

In this study, benchmarking points of each branch’s divisions

re selected based on the dual of Model ( 2 ). Especially for the

onsumption of shared inputs in the benchmarking points, it is

omputed by multiplying the ideal consumption of shared inputs

y the allocation ratios in Table 2 . The specific amount of shared

nputs allocated for each function division based on the ratios

n the last four columns of Table 2 are shown in the second to

fth columns of Table 3 . Correspondingly, the ideal benchmarking

oints for the functions of each branch are identified in the last six

olumns of Table 3 . 

Since each service (sales) function is only compared with other

ervice (sales) functions, the benchmarking points are identified

mong homogeneous functions. For those branches that are not

verall efficient or not goal congruent, they are suggested to make

he adjustment of consumption of the dedicated inputs and/or

hared inputs. Let us take the branch 1 as an example. The bench-
arking points of service and sales function consume an equal

umber of dedicated inputs x 1 j and x 2 j as with their original

mounts. Each function of the branch 1 does not need to adjust

he dedicated inputs, but the shared inputs. For the branch 6, the

ervice function is suggested to reduce the consumption of ded-

cated input from 0.883 to 0.315, and a reduction from 1.474 to

.526 for the sales function. The allocation of shared inputs also

eeds to be adjusted according to the benchmark points. By con-

rast, for the original CCR efficient branches, i.e., 4, 10, 11, 15, they

re not required to modify the consumption of dedicated inputs

s shown in Table 3 . In addition, they do not have to adjust the

onsumption of allocated shared inputs by the top management

s well. In summary, if each branch function adjusts its consump-

ion of dedicated inputs and/or shared inputs as that of the bench-

arking point, both the service and sales functions, together with

he overall branch will be efficient. Consequently, two functions are

oal-congruent with the branch. 

.3. Measure of cost efficiency 

We further analyze the relationship between the goal congru-

nce measure and the cost efficiency. The cost efficiencies com-

uted by Model ( 3 ) for these branches and their sub functions are

hown in Table 4 . 

In Table 4 , if both service and sales functions are cost efficient,

hen the branch is cost efficient. Comparing the second column of

ables 2 and 4 , we find that if a branch is overall efficient, it will

e cost efficient, but not vice versa. This finding is consistent with

roposition 4 . Comparing the last four columns of Tables 2 and 4 ,

e find that the allocation plans derived from models ( 1 ) and ( 3 )

re quite different. Since the goal congruence measure is a stronger

oncept compared with the cost efficiency measure, the shared in-

uts allocation scheme provided by model ( 1 ) is more applicable

specially for a profit maximization goal rather than a cost mini-

ization one. 

. Conclusions 

In this research, we have attempted to shed light on the is-

ues of goal congruence measure within multi-division organiza-

ions. The development of goal congruence measure becomes more

omplicated when production resources are shared among divi-

ions. This research simplifies the organization goal as only pur-

uing profit maximization. Therefore, the optimizable behavior of
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Table 3 

Adjustment of consumption of shared inputs and dedicated inputs for each branch function. 

Allocation of shared inputs 

Benchmark point of each 

service function 

Benchmark point of each 

sales function 

Branch 

X s 
1 j 

to service 

function 

X s 
1 j 

to sales 

function 

X s 
2 j 

to service 

function 

X s 
2 j 

to sales 

function X s 
1 j 

X s 
2 j 

x 1 j X s 
1 j 

X s 
2 j 

x 2 j 

1 0.015 0.155 0.238 0.492 0.015 0.049 0.455 0.155 0.492 0.492 

2 0.156 1.724 0.797 0.203 0.094 0.696 0.823 1.506 0.177 0.577 

3 0.089 0.381 0.215 0.795 0.089 0.079 0.510 0.381 0.795 0.293 

4 0.594 0.536 0.061 0.039 0.594 0.061 1.239 0.536 0.039 0.916 

5 1.264 3.216 0.014 0.106 0.256 0.014 1.015 3.216 0.106 0.724 

6 1.502 2.108 0.185 0.145 0.536 0.066 0.315 0.752 0.052 0.526 

7 0.665 2.195 0.042 0.168 0.057 0.042 0.594 2.195 0.168 0.320 

8 0.238 2.752 0.140 0.020 0.011 0.121 0.708 2.390 0.018 0.581 

9 0.504 0.416 0.136 1.074 0.340 0.055 0.582 0.281 0.725 0.453 

10 3.027 2.423 0.596 0.954 3.027 0.596 0.0 0 0 2.423 0.954 0.060 

11 0.064 0.056 0.025 0.115 0.064 0.025 0.972 0.056 0.115 1.216 

12 0.132 0.288 0.294 0.016 0.132 0.294 0.035 0.288 0.010 1.007 

13 1.295 1.295 0.040 0.130 0.304 0.032 1.068 0.758 0.105 0.446 

14 0.239 0.301 0.091 0.029 0.237 0.090 0.604 0.297 0.028 0.929 

15 1.441 0.519 0.005 0.005 1.441 0.005 0.511 0.519 0.005 0.659 

16 0.063 1.107 0.348 0.142 0.019 0.197 0.408 0.628 0.080 0.341 

17 2.515 2.515 0.058 0.202 0.104 0.049 1.256 1.103 0.171 0.583 

18 0.004 0.386 0.012 0.118 0.002 0.012 0.528 0.386 0.118 0.436 

19 0.040 0.790 0.384 0.176 0.019 0.211 0.408 0.434 0.097 0.300 

20 0.859 0.581 0.625 0.625 0.355 0.224 0.210 0.240 0.162 0.163 

Table 4 

Cost efficiencies of branches and their sub functions. 

Branch Overall Cost efficiency Cost efficiency of service function Cost efficiency of sales function β1 
10 β2 

10 β1 
20 β2 

20 

1 1.00 1.00 1.00 0.38 0.62 0.70 0.30 

2 0.96 0.22 1.00 0.03 0.97 0.14 0.86 

3 0.99 0.44 1.00 0.01 0.99 0.13 0.87 

4 1.00 1.00 1.00 0.15 0.85 0.71 0.29 

5 0.96 0.66 1.00 0.20 0.80 0.11 0.89 

6 0.49 0.50 0.18 0.50 0.50 0.99 0.01 

7 0.97 0.38 1.00 0.10 0.90 0.04 0.96 

8 1.00 1.00 1.00 0.10 0.90 0.33 0.67 

9 0.97 0.29 1.00 0.04 0.96 0.13 0.87 

10 1.00 1.00 1.00 0.55 0.45 0.47 0.53 

11 1.00 1.00 1.00 0.17 0.83 0.87 0.13 

12 0.99 1.00 0.56 0.97 0.03 0.98 0.02 

13 0.97 0.35 1.00 0.10 0.90 0.03 0.97 

14 1.00 1.00 1.00 0.39 0.61 0.15 0.85 

15 1.00 1.00 1.00 0.30 0.70 0.50 0.50 

16 1.00 1.00 1.00 0.15 0.85 0.33 0.67 

17 0.94 0.18 1.00 0.12 0.88 0.01 0.99 

18 1.00 1.00 1.00 0.88 0.12 0.87 0.13 

19 0.99 1.00 0.50 0.94 0.06 0.92 0.08 

20 0.72 0.25 0.74 0.61 0.39 0.09 0.91 
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a firm is defined as being able to attain the maximum profit. Fur-

thermore, goal congruence depicts a state when the overall firm

and all divisions achieve the maximum profit at the same time.

Finally, this goal-congruent state, under a nonparametric analysis

framework, is tested to be equivalent to a DEA model with CRS

assumption. Our goal congruence measure is represented by the

overall DEA efficiency in this study. It is a quantitative measure

that shows not only whether goals between top management and

division managers are congruent, but also to what extent they are

divergent. 

Except for the quantitative goal congruence measure developed

in this study, this research extends the functionality of DEA mod-

els. Goal congruence measure, in addition to efficiency measure,

becomes a new explanation for the optimal value of weighted ra-

tio efficiency in the original DEA model. The shared resource allo-

cation issue is also successfully handled in the process of pursu-

ing goal congruence. Goal congruence within organizations makes

budgeting easier, and then top-down management control be-

comes possible. Employees, top management, and the firm itself

will benefit a lot by measuring the degree of goal congruence in
 p  
rganization. Goal-congruent employees are motivated to work to-

ards the top management’s strategic objectives, which make the

uccess of the firm at last. 

The goal congruence measure developed in this paper can be

dapted to measure value congruence ( Hoffman, Bynum, Piccolo,

 Sutton, 2011 ), and person-organization fit ( Kristof, 1996 ), which

hall be pursed in the future. The current paper uses a profit func-

ion to characterize DMUs’ behavioral goal. In many non-profit sit-

ations, however, this assumption seems too strong. This short-

oming can be addressed by using a utility function instead of a

rofit function. The only requirement for this extension is that the

tility function can be described in a linear and additive structure.

he incorporation of utility function will make the goal congruence

easure method proposed in this study more widely applicable. 
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ppendix 

.1. Proof of Theorem 1 

roof. [Sufficiency] 

1) If DMU 0 shows locally DRS, i.e., (d x, d y ) = δ( x, y )(δ ∈ (−ε, 0) , ɛ
is a small positive quantity), is a possible direction, then R x 0 x −
C y 0 y ≥ 0 . (In this case, if R x 0 x − C y 0 y � = 0 , then R x 0 d x − C y 0 d y >

0 ); If DMU shows locally IRS, i.e., (d x, d y ) = δ( x, y )(δ ∈ (0 , ε))

is a possible direction, then R x 0 x − C y 0 y ≤ 0 . (In this case, if

R x 0 x − C y 0 y � = 0 , then R x 0 d x − C y 0 d y < 0 ). To sum up, if DMU 0 

gains locally maximum profit, and the production technology

of DMU 0 exhibit CRS locally according to the regular condition,

then there exist a feasible adjusting direction (d x, d y ) that is

proportional to (x, y ) . Therefore, it follows R x 0 x 0 − C y 0 y 0 = 0 for

DMU 0 . 

2) By the convexity of the production possibility set, any ( x j , y j )

of DM U j ( j � = 0) and ( x 0 , y 0 ) of DMU 0 can be connected by

a line consisting of feasible points. This property implies that

any observational datum ( x j , y j ) is equal to k( d x , d y ) + ( x 0 , y 0 ) ,

where k > 0 and ( d x , d y ) is a feasible changing direction at point

( x 0 , y 0 ) . Hence, R x 0 x j − C y 0 y j = R x 0 (k d x + x 0 ) − C y 0 (k d y + y 0 ) =
k( R x 0 d x − C y 0 d y ) + ( R x 0 x 0 − C y 0 y 0 ) = k( R x 0 d x − C y 0 d y ) ≤ 0 . Note

that for any feasible input and output bundle (x, y ) , (d x, 0) and

(0 , d y ) are feasible adjusting direction due to locally strong dis-

posability where d x ≥ 0 and d y ≤ 0 according to the regular

condition. Hence, if DMU 0 gains the locally maximum profit,

i.e., R x 0 d x − C y 0 d y ≤ 0 , then for all (d x, d y ) we have R x 0 = −
R x 0 ≤ 0 , C y 0 = − C y 0 ≤ 0 satisfying R x 0 d x − C y 0 d y ≤ 0 . Therefore,

it follows that there exist R x 0 , C y 0 ≤ 0 such that R x 0 x j − C y 0 y j ≤
0 . This is equivalent to claim that there exist R x 0 = −R x 0 ≥
0 , C y 0 = − C y 0 ≥ 0 such that R x 0 x j − C y 0 y j ≥ 0 . 

[Necessity] 

1) If the production technology of DM U 0 exhibit locally CRS ac-

cording to the regular condition, then (d x, d y ) is proportional

to ( x 0 , y 0 ) , which means (d x, d y ) = δ( x 0 , y 0 )(δ ∈ (−ε , ε ) , ɛ is a

small positive quantity), is a possible direction. Since R x 0 x 0 −
C y 0 y 0 = 0 for DMU 0 , it follows that R x 0 d x − C y 0 d y = 0 . 

2) Suppose ( d x , d y ) is any feasible changing direction at point

( x 0 , y 0 ) of DMU 0 , we obtain that any ( x j , y j ) of DM U j ( j � =
0) equal to k( d x , d y ) + ( x 0 , y 0 ) , where k > 0, on the basis of

convexity assumption of the production possibility set. Hence

R x 0 x j − C y 0 y j = k( R x 0 d x − C y 0 d y ) . Since R x 0 x j − C y 0 y j ≥ 0 when

R x 0 , C y 0 ≥ 0 , it is equivalent that there exist R x 0 = − R x 0 ≤
0 , C y 0 = − C y 0 ≤ 0 such that R x 0 x j − C y 0 y j ≤ 0 . Thus there exist

R x 0 , C y 0 ≤ 0 , such that R x 0 dx − C y 0 dy ≤ 0 . On summary, we de-

rive that DMU 0 gains the locally maximum profit. �

.2. Proof of Proposition 1 

roof. ( 1 ) [Optimizable ⇒ CCR efficient] If DMU 0 is optimizable,

ccording to Definition 1 , we have R x 0 x 0 − C y 0 y 0 = 0 , R x 0 x j − C y 0 y j ≥
( j � = 0) , R x 0 ≥ 0 , C y 0 ≥ 0 . Then it is obviously that ( C y 0 , R x 0 ) is the

ptimal solution for ( μ∗, ω 

∗) in CCR DEA model, and z ∗ = 1 . Hence,

MU 0 is CCR efficient. 

( 2 ) [CCR efficient ⇒ optimizable] If DMU 0 is CCR effi-

ient among all DMUs, then there exists ( μ∗, ω 

∗) ≥ 0 such
hat we have max z = 

μ∗y 0 
ω ∗x 0 

= 1 , s.t. 
μ∗y j 
ω ∗x j 

≤ 1 , j = 1 , 2 , · · ·, n . Hence,

∗y 0 − ω 

∗x 0 = 0 , and μ∗y j − ω 

∗x j ≤ 0 . Therefore, there exists

 x 0 = ω 

∗ and C y 0 = μ∗, so that R x 0 x 0 − C y 0 y 0 = 0 , R x 0 x j − C y 0 y j ≥
( j � = 0) , R x 0 ≥ 0 , C y 0 ≥ 0 . According to Theorem 1 , we know that

MU 0 gets the maximum profit. In other words, DMU 0 is

ptimizable. �

.3. Proof of Lemma 1 

roof. The objective function of model ( 1 ) is

ax z = 

∑ D 
d=1 

μd0 y d0 

ω 0 X 
s 
0 
+ ∑ D 

d=1 
ω d0 x d0 

for maximizing the overall efficiency 

f DMU 0 . When maximizing the overall efficiency of DMU 0 , effi-

iencies of individual SDMU d 0 is measured by z d = 

μd0 y d0 
βd0 ω 0 X 

s 
0 
+ ω d0 x d0 

,

here βd0 ω 0 X 
s 
0 

+ ω d0 x d0 > 0 , d = 1 , 2 , . . . , D . According to find-

ngs of Beasley (1995) , we have z = 

∑ 

D 
d=1 

γd z 
d , where γd =

βd0 ω 0 X 
s 
0 
+ ω d0 x d0 

ω 0 X 
s 
0 
+ ∑ D 

d=1 
ω d0 x d0 

and 

∑ 

D 
d=1 

γd = 1 . Since βd0 ω 0 X 
s 
0 

+ ω d0 x d0 > 0 , all

d > 0 for d = 1 , 2 , . . . , D . Obviously, min 

d=1 , 2 , ···,D 
z d ≤ z ∗ ≤ max 

d=1 , 2 , ···,D 
z d .

e have a simple conclusion that the overall efficiency can al-

ays realize maximization, being equal to the higher one of the

DMUs’ efficiencies, through controlling the values of γd . Suppose

 

j = max 
d=1 , 2 , ···,D 

z d , if we want z ∗ = z j , then there are two sets of

olutions of γd . One is that γ j = 1 , and γd = 0(d � = j) . The other

ne is that all γd = 1 /D when all z d are equal to z j . In the former

ase is impossible due to γd > 0 for d = 1 , 2 , . . . , D . In other words,

nly the later solutions of γd are acceptable. In this case, if z ∗ = 1 ,

ll SDMU d 0 obtain z d = 1(d = 1 , 2 , . . . , D ) . �

.4. Proof of Proposition 2 

roof. ( 1 ) [Optimizable DMU + goal congruent ⇒ Overall effi-

ient] If DMU 0 is optimizable, according to Definition 2 , we

ave 
∑ 

D 
d=1 

R x d0 
x d0 + R X s 

0 
X s 

0 
− ∑ 

D 
d=1 

C y d0 
y d0 = 0 , 

∑ 

D 
d=1 

R x d0 
x dj +

 X s 
0 
X s 

j 
− ∑ 

D 
d=1 

C y d0 
y dj ≥ 0( j � = 0) , R x d0 

≥ 0 , R X s 
0 

≥ 0 , C y d0 
≥ 0 . Since

MU 0 and its SDMUs are goal congruent, i.e., SDMUs are

lso optimizable, we also get R x d0 
x d0 + βd0 R X s 

0 
X s 

0 
− C y d0 

y d0 = 0 ,

 x d0 
x dj + βd0 R X s 

0 
X s 

j 
− C y d0 

y dj ≥ 0( j � = 0) , 
∑ 

D 
d=1 

βd0 = 1 , βd0 ≥ 0 , for

 = 1 , 2 , . . . , D under a same price vector ( R x d0 
, R X s 

0 
, C y d0 

) based on

efinition 3 . Hence, 

∑ D 
d=1 

C y d0 
y d0 

R X s 
0 

X s 
0 
+ ∑ D 

d=1 
R x d0 

x d0 
= 1 , and 

C y d0 
y dj 

βd0 R X s 
0 

X s 
j 
+ R x d0 

x dj 
≤ 1 ,

 

D 
d=1 

βd0 = 1 for d = 1 , 2 , . . . , D, j = 1 , 2 , . . . , n . It is obviously that

( βd0 , C y d0 
, R X s 

0 
, R x d0 

) is the optimal solution for (β∗
d0 

, u ∗
d0 

, ω 

∗
0 
, ω 

∗
d0 

)

n model ( 1 ), and we have z ∗ = 1 . Hence, DMU 0 is overall efficient.

( 2 ) [Overall efficient ⇒ optimizable DMU + goal congruent]

f DMU 0 is overall efficient among all DMUs, then there exists

( βd0 , μd0 , ω 0 , ω d0 ) ≥ 0(d = 1 , 2 , . . . , D ) and 

∑ 

D 
d=1 

βd0 = 1 such

hat we have max z = 

∑ D 
d=1 

μd0 y d0 

ω 0 X 
s 
0 
+ ∑ D 

d=1 
ω d0 x d0 

= 1 , s.t. 
μd0 y dj 

βd0 ω 0 X 
s 
j 
+ ω d0 x dj 

≤
 , d = 1 , 2 , . . . , D, j = 1 , 2 , . . . , n . Hence, 

∑ 

D 
d=1 

μd0 y d0 − ω 0 X 
s 
0 

−
 

D 
d=1 

ω d0 x d0 = 0 , and μd0 y dj − βd0 ω 0 X 
s 
j 
− ω d0 x dj ≤ 0 . If the

econd constraints are summarized over all SDMU d , we

et 
∑ 

D 
d=1 

μd + 

∑ 

D 
d=1 

μd0 y dj − ω 0 X 
s 
j 
− ∑ 

D 
d=1 

ω d0 x dj ≤ 0 . There- 

ore, there exists C y d0 
= μd0 , R x s 

0 
= ω 0 , and R x d0 

= ω d0 , so that
 

D 
d=1 

R x d0 
x d0 + R x s 

0 
X s 

0 
− ∑ 

D 
d=1 

C y d0 
y d0 = 0 , 

∑ 

D 
d=1 

R x d0 
x dj + R x s 

0 
X s 

j 
−

 

D 
d=1 

C y d0 
y dj ≥ 0( j � = 0) , together with R x d0 

x dj + βd0 R x s 
0 
X s 

j 
− C y d0 

y dj ≥
(d = 1 , 2 , . . . , D ) . In other words, the overall DMU 0 is optimiz-

ble. In addition, SDM U d0 (d = 1 , 2 , . . . , D ) of DMU 0 are all CRS

fficient according to Lemma 1 . It follows that 
C y d0 

y d0 

βd0 R X s 
0 

X s 
0 
+ R x d0 

x d0 
= 1

r R x d0 
x d0 + βd0 R X s X 

s 
0 

− C y d0 
y d0 = 0(d = 1 , 2 , . . . , D ) . Combined
0 
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with R x d0 
x dj + βd0 R X s 

0 
X s 

j 
− C y d0 

y dj ≥ 0(d = 1 , 2 , . . . , D ) , all SDMUs of

DMU 0 are optimizable. It is obviously that DMU 0 and its SDMUs

are goal congruent. �

A.5. Proof of Proposition 3 

Proof. If DMU 0 is CCR efficient, then there exists ( μ∗, ω 

∗) ≥ 0

such that we have max z = 

μ∗y 0 
ω ∗x 0 

= 1 , s.t. 
μ∗y j 
ω ∗x j 

≤ 1 , j = 1 , 2 , . . . , n . Put

it differently, μ∗y j − ω 

∗x j ≤ μ∗y 0 − ω 

∗x 0 ( j � = 0) or ω 

∗x 0 − ω 

∗x j ≤
μ∗y 0 − μ∗y j . Besides, for j ∈ � = { i | y i ≥ y 0 } we have μ∗y 0 ≤ μ∗y j 
or μ∗y 0 − μ∗y j ≤ 0 . Hence ω 

∗x 0 − ω 

∗x j ≤ 0 for these j ∈ �. Thus

these exits v 0 = ω 

∗ and u 0 = μ∗ such that ( x 0 , y 0 ) = arg min 

j∈ �
v 0 x j ,

where j ∈ �, which means DMU 0 is cost efficient. �

A.6. Proof of Proposition 4 

Proof. Based on Lemma 1 , we know that if DMU 0 is CCR effi-

cient, and then all SDMU d 0 of DMU 0 are CCR efficient. Accord-

ing to model ( 1 ), we have ω 0 X 
s 
0 

+ 

∑ 

D 
d=1 

ω d0 x d0 −
∑ 

D 
d=1 

μd0 y d0 =
0 , and βd0 ω 0 X 

s 
0 

+ ω d0 x d0 − μd0 y d0 = 0 for all SDMU d 0 of DMU 0 .

The constraints of model ( 1 ) are βd0 ω 0 X 
s 
j 
+ ω d0 x dj − μd0 y dj ≥ 0 for

all d = 1 , 2 , . . . , D , and j = 1 , 2 , . . . , n , where 
∑ 

D 
d=1 

βd0 = 1 . For any

d ∈ { 1 , 2 , . . . , D } , we have βd0 ω 0 X 
s 
j 
+ ω d0 x dj − μd0 y dj ≥ βd0 ω 0 X 

s 
0 

+
ω d0 x d0 − μd0 y d0 . For those j ∈ �d 

0 
= { i | y di ≥ y d0 } , μd0 y dj ≥ μd0 y d0 

for any μd0 . There must exist a set of prices ( v d0 , V 
S 
0 
, u d0 ) replacing

( ω d0 , ω 0 , μd0 ) such that ( βd0 V 
S 
0 

X s 
j 
+ v d0 x dj ) − ( βd0 V 

S 
0 

X s 
0 
+ v d0 x d0 ) ≥

u d0 ( y dj − y d0 ) ≥ 0 , d = 1 , 2 , . . . , D . In summary, if DMU 0 is CCR ef-

ficient, we have βd0 V 
S 
0 

X s 
0 

+ v d0 x d0 = min( βd0 V 
S 
0 

X s 
j 
+ v d0 x dj ) for those

j ∈ �d 
0 

= { i | y di ≥ y d0 } under a specification of ( v d0 , V 
S 
0 
, u d0 ) , d =

1 , 2 , . . . , D . Thus all SDMUs of DMU 0 are cost efficient and then fol-

lowed with a cost efficient DMU 0 . �
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