
HAL Id: hal-01289759
https://hal.inria.fr/hal-01289759v2

Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Processing in Multistore Systems: an overview
Carlyna Bondiombouy, Patrick Valduriez

To cite this version:
Carlyna Bondiombouy, Patrick Valduriez. Query Processing in Multistore Systems: an overview.
[Research Report] RR-8890, INRIA Sophia Antipolis - Méditerranée. 2016, pp.38. �hal-01289759v2�

https://hal.inria.fr/hal-01289759v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

90
--

FR
+E

N
G

RESEARCH
REPORT
N° 8890
March 2016

Project-Teams ZENITH

Query Processing in
Multistore Systems: an
overview
Carlyna Bondiombouy, Patrick Valduriez

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Query Processing in Multistore Systems: an
overview∗

Carlyna Bondiombouy, Patrick Valduriez †‡§

Project-Teams ZENITH

Research Report n° 8890 — March 2016 — 38 pages

Abstract: Building cloud data-intensive applications often requires using multiple data stores
(NoSQL, HDFS, RDBMS, etc.), each optimized for one kind of data and tasks. However, the wide
diversification of data store interfaces makes it difficult to access and integrate data from multiple
data stores. This important problem has motivated the design of a new generation of systems,
called multistore systems, which provide integrated or transparent access to a number of cloud data
stores through one or more query languages. In this paper, we give an overview of query processing
in multistore systems. We start by introducing the recent cloud data management solutions and
query processing in multidatabase systems. Then, we describe and analyze some representative
multistore systems, based on their architecture, data model, query languages and query processing
techniques. To ease comparison, we divide multistore systems based on the level of coupling with
the underlying data stores, i.e. loosely-coupled, tightly-coupled and hybrid. Our analysis reveals
some important trends, which we discuss. We also identify some major research issues.

Key-words: Cloud data stores, Multistore systems, Multidatabase systems, Query processing.

∗ Work partially funded by the European Commission under the Integrated Project CoherentPaaS
† Inria
‡ LIRMM
§ University of Montpellier

Traitement de requêtes dans les systèmes multistores: un
survol

Résumé : Le développement d’applications orientées-données dans le cloud exige souvent de
pouvoir manipuler des data stores multiples et différents (NoSQL, HDFS, RDBMS, etc.), chacun
optimisé pour un type de données et de traitements. Cependant la grande diversification des
interfaces de ces data stores rend difficile l’accès et l’intégration de données depuis plusieurs data
stores. Ce problème important a conduit à la conception d’une nouvelle génération de systèmes,
les systèmes multistores, qui fournissent l’accès intégré et transparent à des data stores dans le
cloud avec un ou plusieurs langages de requêtes. Dans ce rapport, nous proposons un survol
du traitement de requêtes dans les systèmes multistores. Nous commençons par introduire les
récentes solutions de gestion de données dans le cloud et le traitement de requêtes dans les
systèmes multi-bases de données. Puis, nous décrivons et analysons un ensemble représentatif
de systèmes multistores, selon leur architecture, modèle de données, langage de requêtes et
techniques de traitement de requêtes. Pour faciliter la comparaison, nous classons les systèmes
multistores en fonction du niveau de couplage avec les data stores: faiblement couplé, fortement
couplé, et hybride. Nos comparaisons révèlent des tendances importantes, que nous discutons.
Nous terminons en identifiant des directions de recherche majeure.

Mots-clés : Systèmes de gestion des données dans le cloud, Systèmes multistores, Systèmes
multi-bases de données, Traitement de requêtes.

Query Processing in Multistore Systems: an overview 3

Summary

1 Introduction 4

2 Cloud Data Management 5
2.1 Distributed Storage . 7

2.1.1 Block-based Distributed File Systems . 7
2.1.2 Object-based Distributed File Systems . 8
2.1.3 Combining Block Storage and Object Storage 9

2.2 NoSQL Systems . 10
2.2.1 Key-Value Stores . 10
2.2.2 Wide Column Stores . 11
2.2.3 Document Stores . 12
2.2.4 Graph Databases . 13

2.3 Data Processing Frameworks . 13
2.4 Concluding Remarks . 15

3 Multidatabase Query Processing 16
3.1 Mediator-Wrapper Architecture . 16
3.2 Multidatabase Query Processing Architecture . 16
3.3 Multidatabase Query Processing Techniques . 18

3.3.1 Heterogeneous Cost Modeling . 18
3.3.2 Heterogeneous Query Optimization . 19
3.3.3 Adaptive Query Processing . 20

4 Multistore Systems 21
4.1 Loosely-Coupled Multistore Systems . 21
4.2 Tightly-Coupled Multistore Systems . 25
4.3 Hybrid systems . 28
4.4 Comparative Analysis . 32

5 Conclusion 34

RR n° 8890

4 Bondiombouy & Valduriez

1 Introduction

A major trend in data management for the cloud is the understanding that there is “no one size
fits all” solution. Thus, there has been a blooming of different cloud data management solutions,
specialized for different kinds of data and tasks and able to perform orders of magnitude better
than traditional relational DBMS (RDBMS). Examples of new data management technologies
include distributed file systems (e.g. GFS and HDFS), NoSQL data stores (e.g. Dynamo,
Bigtable, Hbase, Mongodb, Neo4j), and data processing frameworks (e.g. MapReduce, Spark).

This has resulted in a rich offering of services that can be used to build cloud data-intensive
applications that can scale and exhibit high performance. However, this has also led to a wide di-
versification of data store interfaces and the loss of a common programming paradigm. Thus, this
makes it very hard for a user to build applications that use multiple data stores, e.g. relational,
document and graph databases.

The problem of accessing heterogeneous data sources, i.e. managed by different data man-
agement systems such as RDBMS or XML DBMS, has long been studied in the context of
multidatabase systems [26] (also called federated database systems, or more recently data inte-
gration systems [12]). Most of the work on multidatabase query processing has been done in
the context of the mediator-wrapper architecture, using a declarative, SQL-like language. The
mediator-wrapper architecture allows dealing with three major properties of the data sources:
distribution (i.e. located at different sites), heterogeneity (i.e. with different data models and
languages) and autonomy (i.e. under local control) [26].

The state-of-the-art solutions for multidatabase query processing can be useful to transpar-
ently access multiple data stores in the cloud. However, operating in the cloud makes it quite
different from accessing data sources on a wide-area network or the Internet. First, the kinds of
queries are different. For instance, a web data integration query, e.g. from a price comparator,
could access lots of similar web data sources, whereas a cloud query should be on a few but
quite different cloud data stores and the user needs to have access rights to each data store. Sec-
ond, both mediator and data source wrappers can only be installed at one or more servers that
communicate with the data sources through the network. However, operating in a cloud, where
data stores are typically distributed over the nodes of a computer cluster, provides more control
over where the system components can be installed and thus, more opportunities to design an
efficient architecture.

These differences have motivated the design of more specialized multistore systems [21] (also
called polystores [13]) that provide integrated access to a number of cloud data stores through one
or more query languages. Several multistore systems are being built, with different objectives,
architectures and query processing approaches, which makes it hard to compare them. To ease
comparison, we divide multistore systems based on the level of coupling with the underlying data
stores, i.e. loosely-coupled, tightly-coupled and hybrid.

Loosely-coupled systems are reminiscent of multidatabase systems in that they can deal with
autonomous data stores, which can then be accessed through the multistore system common
language as well as separately through their local language.

Tightly-coupled systems trade autonomy for performance, typically in a shared-nothing clus-
ter, so that data stores can only be accessed through the multistore system, directly through
their local language.

Hybrid systems tightly-couple some data stores, typically an RDBMS, and loosely-couple
some others, typically HDFS through a data processing framework like MapReduce or Spark.

In this paper, we give an overview of query processing in multistore systems. The objective is
not to give an exhaustive survey of all systems and techniques, but to focus on the main solutions
and trends, based on the study of nine representative systems (3 for each class). The rest of

Inria

Query Processing in Multistore Systems: an overview 5

the paper is organized as follows. In Section 2, we introduce cloud data management, including
distributed file systems, NoSQL systems and data processing frameworks. In Section 3, we review
the main query processing techniques for multidatabase systems, based on the mediator-wrapper
architecture. Finally, in Section 4, we analyze the three kinds of multistore systems, based
on their architecture, data model, query languages and query processing techniques. Section 5
concludes and discusses open issues.

2 Cloud Data Management

A cloud architecture typically consists of multiple sites, i.e. data centers at different geographic
locations, each one providing computing and storage resources as well as various services such
as application (AaaS), infrastructure (IaaS), platform (PaaS), etc. To provide reliability and
availability, there is always some form of data replication between sites.

For managing data at a cloud site, we could rely on RDBMS technology, all of which have a
distributed and parallel version. However, RDBMSs have been lately criticized for their “one size
fits all” approach [33]. Although they have been able to integrate support for all kinds of data
(e.g. multimedia objects, XML documents) and new functions, this has resulted in a loss of per-
formance, simplicity and flexibility for applications with specific, tight performance requirements.
Therefore, it has been argued that more specialized DBMS engines are needed. For instance,
column-oriented DBMSs [1], which store column data together rather than rows in traditional
row-oriented RDBMSs, have been shown to perform more than an order of magnitude better on
Online Analytical Processing (OLAP) workloads. Similarly, Data Stream Management Systems
(DSMSs) are specifically architected to deal efficiently with data streams, which RDBMSs cannot
even support [24].

The “one size does not fit all” argument generally applies to cloud data management as
well. However, internal clouds used by enterprise information systems, in particular for Online
Transaction Processing (OLTP), may use traditional RDBMS technology. On the other hand, for
OLAP workloads and web-based applications on the cloud, RDBMSs provide both too much (e.g.
transactions, complex query language, lots of tuning parameters), and too little (e.g. specific
optimizations for OLAP, flexible programming model, flexible schema, scalability) [29].

Some important characteristics of cloud data have been considered for designing data man-
agement solutions. Cloud data can be very large, unstructured or semi structured, and typically
append-only (with rare updates). And cloud users and application developers may be in high
numbers, but not DBMS experts. Therefore, current cloud data management solutions have
traded ACID (Atomicity, Consistency, Isolation, Durability) transactional properties for scala-
bility, performance, simplicity and flexibility.

The preferred approach of cloud providers is to exploit a shared-nothing cluster [26], i.e. a set
of loosely connected computer servers with a very fast, extensible interconnect (e.g. Infiniband).
When using commodity servers with internal direct-attached storage, this approach provides
scalability with excellent performance-cost ratio. Compared to traditional DBMSs, cloud data
management uses a different software stack with the following layers: distributed storage, data-
base management and distributed processing. In the rest of this section, we introduce this
software stack and present the different layers in more details.

Cloud data management (see Figure 1) relies on a distributed storage layer, whereby data is
typically stored in files or objects distributed over the nodes of a shared-nothing cluster. This
is one major difference with the software stack of current DBMSs that relies on block storage.
Interestingly, the software stack of the first DBMSs was not very different from that used now in
the cloud. The history of DBMSs is interesting to understand the evolution of this software stack.

RR n° 8890

6 Bondiombouy & Valduriez

The very first DBMSs, based on the hierarchical or network models, were built as extensions of a
file system, such as COBOL, with inter-file links. And the first RDBMSs too were built on top of
a file system. For instance, the famous Ingres RDBMS [34] was implemented atop the Unix file
system. But using a general-purpose file system was making data access quite inefficient, as the
DBMS could have no control over data clustering on disk or cache management in main memory.
The main criticism for this file-based approach was the lack of operating system support for
database management (at that time) [32]. As a result, the architecture of RDBMSs evolved
from file-based to block-based, using a raw disk interface provided by the operating system. A
block-based interface provides direct, efficient access to disk blocks (the unit of storage allocation
on disks). Today all RDBMSs are block-based, and thus have full control over disk management.

The evolution towards parallel DBMSs kept the same approach, in particular, to ease the
transition from centralized systems. Parallel DBMSs use either a shared-nothing or shared-
disk architecture. With shared-nothing, each node (e.g. a server in a cluster) has exclusive
access to its local disk through internal direct-attached storage. Thus, big relational tables need
be partitioned across multiple disks to favor parallel processing. With shared-disk, the disks
are shared among all nodes through a storage area network, which eases parallel processing.
However, since the same disk block can be accessed in concurrent mode by multiple cluster
nodes, a distributed lock manager [26] is necessary to avoid write conflicts and provide cache
coherency. In either architecture, a node can access blocks either directly through direct-attached
storage (shared-nothing) or via the storage area network (shared-disk).

In the context of cloud data management, we can identify two main reasons why the old
DBMS software stack strikes back. First, distributed storage can be made fault-tolerant and
scalable (e.g. HDFS), which makes it easier to build the upper data management layers atop
(see Figure 1). Second, in addition to the NoSQL layer (e.g. Hbase over HDFS), data stored
in distributed files can be accessed directly by a data processing framework (e.g. MapReduce
or Spark), which makes it easier for programmers to express parallel processing code. The
distributed processing layer can then be used for declarative (SQL-like) querying, e.g. with a
framework like Hive over MapReduce. Finally, at the top layer, tools such as Pegasus (graph
mining), R (statistics) and Mahout (machine learning) can be used to build more complex big
data analytics.

Figure 1: Cloud data management software stack

Inria

Query Processing in Multistore Systems: an overview 7

2.1 Distributed Storage

The distributed storage layer of a cloud typically provides two solutions to store data, files or
objects, distributed over cluster nodes. These two solutions are complementary, as they have
different purposes and they can be combined.

File storage manages data within unstructured files (i.e. sequences of bytes) on top of which
data can be organized as fixed-length or variable-length records. A file system organizes files in
a directory hierarchy, and maintains for each file its metadata (file name, folder position, owner,
length of the content, creation time, last update time, access permissions, etc.), separate from
the content of the file. Thus, the file metadata must first be read for locating the file’s content.
Because of such metadata management, file storage is appropriate for sharing files locally within
a cloud data center and when the number of files are limited (e.g. in the hundreds of thousands).
To deal with big files that may contain high numbers of records, files need be partitioned and
distributed, which requires a distributed file system.

Object storage manages data as objects. An object includes its data along with a variable
amount of metadata, and a unique identifier in in a flat object space. Thus, an object can be
represented as a triple (oid, data, metadata), and once created, it can be directly accessed by its
oid. The fact that data and metadata are bundled within objects makes it easy to move objects
between distributed locations. Unlike in file systems where the type of metadata is the same
for all files, objects can have variable amounts of metadata. This allows much user flexibility
to express how objects are protected, how they can be replicated, when they can be deleted,
etc. Using a flat object space allows managing massive amounts e.g. billions or trillions) of
unstructured data. Finally, objects can be easily accessed with a simple REST-based API with
put and get commands easy to use on Internet protocols. Object stores are particularly useful
to store a very high number of relatively small data objects, such as photos, mail attachments,
etc. Therefore, most cloud providers leverage an object storage architecture, e.g. Amazon Web
Services S3, Rackspace Files, Microsoft Azure Vault Storage and Google Cloud Storage.

Distributed file systems in the cloud can then be divided between block-based, extending a
traditional file system, and object-based, leveraging an object store. Since these are complemen-
tary, there are also systems that combine both. In the rest of this section, we illustrate these
three categories with representative systems.

2.1.1 Block-based Distributed File Systems

One of the most influential systems in this category is Google File System (GFS). GFS [16] has
been developed by Google (in C++ on top of Linux) for its internal use. It is used by many
Google applications and systems, such as Bigtable and MapReduce, which we discuss next.

Similar to other distributed file systems, GFS aims at providing performance, scalability,
fault-tolerance and availability. However, the targeted systems, shared-nothing clusters, are
challenging as they are made of many (e.g. thousands of) servers built from inexpensive hardware.
Thus, the probability that any server fails at a given time is high, which makes fault-tolerance
difficult. GFS addresses this problem. It is also optimized for Google data-intensive applications,
such as search engine or data analysis. These applications have the following characteristics.
First, their files are very large, typically several gigabytes, containing many objects such as web
documents. Second, workloads consist mainly of read and append operations, while random
updates are rare. Read operations consist of large reads of bulk data (e.g. 1 MB) and small
random reads (e.g. a few KBs). The append operations are also large and there may be many
concurrent clients that append the same file. Third, because workloads consist mainly of large
read and append operations, high throughput is more important than low latency.

RR n° 8890

8 Bondiombouy & Valduriez

GFS organizes files as a tree of directories and identifies them by pathnames. It provides a
file system interface with traditional file operations (create, open, read, write, close, and delete
file) and two additional operations: snapshot and record append. Snapshot allows creating a
copy of a file or of a directory tree. Record append allows appending data (the “record”) to a file
by concurrent clients in an efficient way. A record is appended atomically, i.e. as a continuous
byte string, at a byte location determined by GFS. This avoids the need for distributed lock
management that would be necessary with the traditional write operation (which could be used
to append data).

The architecture of GFS is illustrated in Figure 2. Files are divided into fixed-size partitions,
called chunks, of large size, i.e. 64 MB. The cluster nodes consist of GFS clients that provide
the GFS interface to applications, chunk servers that store chunks and a single GFS master that
maintains file metadata such as namespace, access control information, and chunk placement
information. Each chunk has a unique id assigned by the master at creation time and, for
reliability reasons, is replicated on at least three chunk servers (in Linux files). To access chunk
data, a client must first ask the master for the chunk locations, needed to answer the application
file access. Then, using the information returned by the master, the client can request the chunk
data to one of the replicas.

Figure 2: GFS architecture

This architecture using single master is simple. And since the master is mostly used for
locating chunks and does not hold chunk data, it is not a bottleneck. Furthermore, there is no
data caching at either clients or chunk servers, since it would not benefit large reads. Another
simplification is a relaxed consistency model for concurrent writes and record appends. Thus,
the applications must deal with relaxed consistency using techniques such as checkpointing and
writing self-validating records. Finally, to keep the system highly available in the face of frequent
node failures, GFS relies on fast recovery and replication strategies.

There are open source implementations of GFS, such as Hadoop Distributed File System
(HDFS), a popular Java product. HDFS has been initially developed by Yahoo and is now the
basis for the successful Apache Hadoop project, which together with other products (MapReduce,
Hbase) has become a standard for big data processing. There are other important open source
block-based distributed file systems for cluster systems, such as GlusterFS for shared-nothing
and Global File System 2 (GFS2) for shared-disk, both being now developed by Red Hat for
Linux.

2.1.2 Object-based Distributed File Systems

One of the first systems in this category is Lustre, an open source file system [38]. Lustre was
initially developed (in C) at Carnegie Mellon University in the late 1990s, and has become very

Inria

Query Processing in Multistore Systems: an overview 9

popular in High Performance Computing (HPC) and scientific applications in the cloud, e.g. Intel
Cloud Edition for Lustre. The architecture of the Lustre file system has three main components:

� One or more metadata servers that store namespace metadata, such as filenames, direc-
tories, access permissions, etc. Unlike block-based distributed file systems, such as GFS
and HDFS, where the metadata server controls all block allocations, the Lustre metadata
server is only involved when opening a file and is not involved in any file I/O operations,
thus avoiding scalability bottlenecks.

� One or more object storage servers that store file data on one or more object storage targets
(OSTs). An object storage server typically serves between two and eight OSTs, with each
OST managing a single local disk file system.

� Clients that access and use the data. Lustre presents all clients with a unified namespace
for all of the files and data, using the standard file system interface, and allows concurrent
and coherent read and write access to the files in the file system.

These three components can be located at different server nodes in a shared-disk cluster,
with disk storage connected to the servers using storage area network. Clients and servers
are connected with the Lustre file system using a specific communication infrastructure called
Lustre Networking (LNET). Lustre provides cache consistency of files’ data and metadata by a
distributed lock manager. Files can be partitioned using data striping, a technique that segments
logically sequential data so that consecutive segments are stored on different disks. This is done
by distributing objects across a number of object storage servers and OSTs. To provide data
reliability, objects in OSTs are replicated using primary-copy replication and RAID6 disk storage
technology.

When a client accesses a file, it completes a filename lookup on the metadata server and gets
back the layout of the file. Then, to perform read or write operations on the file, the client
interprets the layout to map the operation to one or more objects, each residing on a separate
OST. The client then locks the file range being operated on and executes one or more parallel read
or write operations directly to the OSTs. Thus, after the initial lookup of the file layout, unlike
with block-based distributed file systems, the metadata server is not involved in file accesses, so
the total bandwidth available for the clients to read and write data scales almost linearly with
the number of OSTs in the file system.

Another popular open-source object-based distributed file system is XtreemFS [19]. XtreemFS
is highly fault-tolerant, handling all failure modes including network splits, and highly-scalable,
allowing objects to be partitioned or replicated across shared-nothing clusters and data centers.

2.1.3 Combining Block Storage and Object Storage

An important trend for data management in the cloud is to combine block storage and object
storage in a single system, in order to support both large files and high numbers of objects. The
first system that combined block and object storage is Ceph [37]. Ceph is an open source software
storage platform, now developed by Red Hat, that combines object, block, and file storage in
a shared-nothing cluster at exabyte scale. Ceph decouples data and metadata operations by
eliminating file allocation tables and replacing them with data distribution functions designed
for heterogeneous and dynamic clusters of unreliable object storage devices (OSDs). This allows
Ceph to leverage the intelligence present in OSDs to distribute the complexity surrounding data
access, update serialization, replication and reliability, failure detection, and recovery. Ceph
and GlusterFS are now the two major storage platforms offered by Red Hat for shared-nothing
clusters.

RR n° 8890

10 Bondiombouy & Valduriez

HDFS, on the other hand, has become the De facto standard for scalable and reliable file sys-
tem management for big data. Thus, there is much incentive to add object storage capabilities to
HDFS, in order to make data storage easier for cloud providers and users. In Azure HDInsight,
Microsoft’s Hadoop-based solution for big data management in the cloud, HDFS is integrated
with Azure Blob storage, the object storage manager, to operate directly on structured or un-
structured data. Blob storage containers store data as key-value pairs, and there is no directory
hierarchy.

Hortonworks, a distributor of Hadoop software for big data, has recently started a new
initiative called Ozone, an object store that extends HDFS beyond a file system, toward a more
complete storage layer. Similar to GFS, HDFS separates metadata management from a block
storage layer. Ozone uses the HDFS block storage layer to store objects identified by keys and
adds a specific metadata management layer on top of block storage.

2.2 NoSQL Systems

NoSQL systems are specialized DBMSs that address the requirements of web and cloud data
management. As an alternative to relational databases, they support different data models and
different languages than standard SQL. They emphasize scalability, fault-tolerance and availabil-
ity, sometimes at the expense of consistency. NoSQL (Not Only SQL) is an overloaded term,
which leaves much room for interpretation and definition. In this paper, we consider the four
main categories of NoSQL systems that are used in the cloud: key-value, wide column, doc-
ument and graph. In the rest of this section, we introduce each category and illustrate with
representative systems.

2.2.1 Key-Value Stores

In the key-value data model, all data is represented as key-value pairs, where the key unlikely
identifies the value. Object stores, which we discussed above, can be viewed as a simple form
of key-value store. However, the keys in key-value stores can be sequences of bytes of arbitrary
length, not just positive integers, and the values can be text data, not just Blobs. Key-values
stores are schemaless, which yields great flexibility and scalability. They typically provide a
simple interface such as put (key, value), value=get (key), delete (key).

A popular key-value store is Dynamo [10], which is used by some of Amazon’s core services
that need high availability. To achieve scalability and availability, Dynamo sacrifices consistency
under some failure scenarios and uses a synthesis of well known peer-to-peer techniques [27]. Data
is partitioned and replicated across multiple cluster nodes in several data centers, which allows to
handle entire data center failures without a data outage. The consistency among replicas during
updates is maintained by a quorum-like technique and an asynchronous update propagation
protocol. Dynamo employs a gossip based distributed failure detection and membership protocol.
To facilitate replica consistency, it makes extensive use of object versioning and application-
assisted conflict resolution in a manner that provides a novel interface for developers to use.
Other popular key-value stores are Memcached, Riak and Redis.

An extended form of key-value store is able to store records, as sets of key-value pairs. One
key, called major key or primary key, e.g. a social security number, uniquely identifies the record
among a collection of records, e.g. people. The keys are usually sorted, which enables range
queries as well as ordered processing of keys. Amazon SimpleDB and Oracle NoSQL Database
are examples of advanced key-value stores. Many systems provide further extensions so that we
can see a smooth transition to wide column store and document stores, which we discuss next.

Inria

Query Processing in Multistore Systems: an overview 11

2.2.2 Wide Column Stores

Wide column stores are advanced key-value stores, where key-value pairs can be grouped together
in columns within tables. They combine some of the nice properties of relational databases, i.e.
representing data as tables, with the flexibility of key-value stores, i.e. schemaless data.

Each row in a table is uniquely identified by a row key, which is like a mono-attribute key
in a relational table. But unlike in a relational table, where columns can only contain atomic
values, tables contain wide columns, called column families. A column family is a set of columns,
each of which has a name, a value, and a timestamp (used for versioning) and within a column
family, we can have different columns in each row. Thus, a column family is like a nested table
within a column. Figure 3 shows a simple example of wide column table with two rows. The
first column is the row key. The two other columns are column families.

Figure 3: A wide column table with two rows

Wide column stores extend the key-value store interface with more declarative constructs
that allow scans, exact-match and range queries over column families. They typically provide an
API for these constructs to be used in a programming language. Some systems also provide an
SQL-like query language, e.g. Cassandra Query Language (CQL).

At the origin of wide column stores is Google Bigtable [8], a database storage system for
shared-nothing clusters. Bigtable uses GFS for storing structured data in distributed files, which
provides fault-tolerance and availability. It also uses a form of dynamic data partitioning for
scalability. And like GFS, it is used by popular Google applications, such as Google Earth,
Google Analytics and Google+.

In a Bigtable row, a row key is an arbitrary string (of up to 64KB in the original system).
A column family is a unit of access control and compression. A column family is defined as
a set of columns, each identified by a column key. The syntax for naming column keys is
family:qualifier, e.g. “email:gmail.com” in Figure 3. The qualifier, e.g. “gmail.com”, is like a
relational attribute value, but used as a name as part of the column key to represent a single
data item. This allows the equivalent of multi-valued attributes within a relational table, but
with the capability of naming attribute values. In addition, the data identified by a column key
within a row can have multiple versions, each identified by a timestamp (a 64 bit integer).

Bigtable provides a basic API for defining and manipulating tables, within a programming
language such as C++. The API offers various operators to write and update values, and to
iterate over subsets of data, produced by a scan operator. There are various ways to restrict the
rows, columns and timestamps produced by a scan, as in a relational select operator. However,
there are no complex operators such as join or union, which need to be programmed using the
scan operator. Transactional atomicity is supported for single row updates only.

To store a table in GFS, Bigtable uses range partitioning on the row key. Each table is
divided into partitions, each corresponding to a row range. Partitioning is dynamic, starting
with one partition (the entire table range) that is subsequently split into multiple partitions as

RR n° 8890

12 Bondiombouy & Valduriez

the table grows. To locate the (user) partitions in GFS, Bigtable uses a metadata table, which
is itself partitioned in metadata tablets, with a single root tablet stored at a master server,
similar to GFS’s master. In addition to exploiting GFS for scalability and availability, Bigtable
uses various techniques to optimize data access and minimize the number of disk accesses, such
as compression of column families as in column stores, grouping of column families with high
locality of access and aggressive caching of metadata information by clients.

Bigtable builds on other Google technologies such as GFS and Chubby Lock Service. In May
2015, a public version of Bigtable was launched as Google Cloud Bigtable. There are popular
open source implementations of Bigtable, such as: Hadoop Hbase that runs on top of HDFS;
Cassandra that combines ideas from Bigtable and DynamoDB; and Accumulo.

2.2.3 Document Stores

Document stores are advanced key-value stores, where keys are mapped into values of document
type, such as JSON, YAML or XML. Documents are typically grouped into collections, which
play a role similar to relational tables. However, documents are different than relational tuples.
Documents are self-describing, storing data and metadata (e.g. markups in XML) altogether and
can be different from one another within a collection. Furthermore, the document structures are
hierarchical, using nested constructs, e.g. nested objects and arrays in JSON. In addition to the
simple key-value interface to retrieve documents, document stores offer an API or query language
that retrieve documents based on their contents. Document stores make it easier to deal with
change and optional values, and to map into program objects. This makes them attractive for
modern web applications, which are subject to continual change, and where speed of deployment
is important.

The most popular NoSQL document store is MongoDB [28], an open source software written
in C++. MongoDB provides schema flexibility, high availability, fault-tolerance and scalability
in shared-nothing cluster. It stores data as documents in BSON (Binary JSON), an extension of
JSON to include additional types such as int, long, and floating point. BSON documents contain
one or more fields, and each field contains a value of a specific data type, including arrays, binary
data and sub-documents.

MongoDB provides a rich query language to update and retrieve BSON data as functions ex-
pressed in JSON. The query language can be used with APIs in various programming languages.
It allows key-value queries, range queries, geospatial queries, text search queries, and aggregation
queries. Queries can also include user-defined JavaScript functions.

To provide efficient access to data, MongoDB includes support for many types of secondary
indexes that can be declared on any field in the document, including fields within arrays. These
indexes are used by the query optimizer. To scale out in shared-nothing clusters of commodity
servers, MongoDB supports different kinds of data partitioning: range-based (as in Bigtable),
hash-based and location-aware (whereby the user specifies key-ranges and associated nodes).
High-availability is provided through primary-copy replication, with asynchronous update prop-
agation. Applications can optionally read from secondary replicas, where data is eventually con-
sistent 1. MongoDB supports ACID transactions at the document level. One or more fields in a
document may be written in a single transaction, including updates to multiple sub-documents
and elements of an array. MongoDB makes extensive use of main memory to speed up database
operations and native compression, using its storage engine (WiredTiger). It also supports plug-
gable storage engines, e.g. HDFS, or in-memory, for dealing with unique application demands.

1Eventual consistency is a form of consistency, weaker than strong consistency, which says that if we stop
having replica updates, then all replicas reach the same state.

Inria

Query Processing in Multistore Systems: an overview 13

Other popular document stores are CouchDB, Couchbase, RavenDB and Elasticsearch. High-
level query languages can also be used on top of document stores. For instance, the Zorba query
processor supports two different query languages, the standard XQuery for XML and JSONiq
for JSON, which can be used to seamlessly process data stored in different data stores such as:
Couchbase, Oracle NoSQL Database and SQLlite.

2.2.4 Graph Databases

Graph databases represent and store data directly as graphs which allows easy expression and
fast processing of graph-like queries, e.g. computing the shortest path between two nodes in
the graph. This is much more efficient than with a relational database where graph data need
be stored as separated tables and graph-like queries require repeated, expensive join operations.
Graph databases have become popular with data-intensive web-based applications such as social
networks and recommender systems.

Graph databases represent data as nodes, edges and properties. Nodes represent entities such
as people or cities. Edges are lines that connect any two nodes and represent the relationship
between the two. Edges can be undirected, in which case the relationship is symmetric, or
directed, in which case the relationship is asymmetric. Properties provide information to nodes,
e.g. a person’s name and address, or edges, e.g. the name of the relationship such as “friend”.
The data graph is typically stored using a specific storage manager that places data on disk so that
the time needed for graph-specific access patterns is minimized. This is typically accomplished
by storing nodes as close as possible to their edges and their neighbor nodes, in the same or
adjacent disk pages.

Graph databases can provide a flexible schema, as in object databases where objects are
defined by classes, by specifying node and edge types with their properties. This facilitates
the definition of indexes to provide fast access to nodes, based on some property value, e.g. a
city’s name. Graph queries can be expressed using graph operators through a specific API or a
declarative query language, e.g. the Pixy language that works on any graph database compatible
with its API.

A popular graph database is Neo4j [6], a commercially supported open-source software. It
is a robust, scalable and high-performance graph database, with full ACID transactions. It
supports directed graphs, where everything is stored in the form of either a directed edge, a
node or an attribute. Each node and edge can have any number of attributes. Neo4j enforces
that all operations that modify data occur within a transaction, guaranteeing data consistency.
This robustness extends from single server embedded graphs to shared-nothing clusters. A single
server instance can handle a graph of billions of nodes and relationships. When data throughput
is insufficient, the graph database can be distributed and replicated among multiple servers in
a high availability configuration. However, graph partitioning among multiple servers is not
supported (although there are some projects working on it). Neo4j supports a declarative query
language called Cypher, which aims at avoiding the need to write traversals in code. It also
provides REST protocols and a Java API. As of version 2.0, indexing was added to Cypher with
the introduction of schemas.

Other popular graph databases are Infinite graph, Titan, GraphBase, Trinity and Sparksee.

2.3 Data Processing Frameworks

Most unstructured data in the cloud gets stored in distributed files such as HDFS and needs to
be analyzed using user programs. However, to make application programs scalable and efficient
requires exploiting parallel processing. But parallel programming of complex applications is hard.

RR n° 8890

14 Bondiombouy & Valduriez

In the context of HPC, parallel programming libraries such as OpenMP for shared-memory or
Message Passing Interface (MPI) for shared-nothing are used extensively to develop scientific
applications. However, these libraries are relatively low-level and require careful programming.
In the context of the cloud, data processing frameworks have become quite popular to make it
easier for programmers to express parallel processing code. They typically support the simple key-
value data model and support operators that are automatically parallelized. All the programmer
has to do is to provide code for these operators. The most popular data processing frameworks,
MapReduce, Spark and now Flink, differ in the functionality they offer in terms of operators, as
well as in terms of implementation, for instance, disk-based versus in-memory. However, they all
target scalability and fault-tolerance in shared-nothing clusters.

MapReduce [9] is a popular framework for processing and generating large datasets. It was
initially developed by Google in C++ as a proprietary product to process large amounts of
unstructured or semi-structured data, such as web documents and logs of web page requests,
on large shared-nothing clusters of commodity nodes and produce various kinds of data such as
inverted indices or URL access frequencies. Different implementations of MapReduce are now
available such as Amazon MapReduce (as a cloud service) or Hadoop MapReduce (as a Java
open source software).

MapReduce enables programmers to express in a simple, functional style their computations
on large data sets and hides the details of parallel data processing, load balancing and fault-
tolerance. The programming model includes only two operations, map and reduce, which we
can find in many functional programming languages such as Lisp and ML. The map operation
is applied to each record in the input data set to compute one or more intermediate (key, value)
pairs. The reduce operation is applied to all the values that share the same unique key in order
to compute a combined result. Since they work on independent inputs, map and reduce can be
automatically processed in parallel, on different data partitions using many cluster nodes.

Figure 4 gives an overview of MapReduce execution in a cluster. There is one master node
(not shown in the figure) in the cluster that assigns map and reduce tasks to cluster nodes, i.e.
map and reduce nodes. The input data set is first automatically split into a number of partitions,
each being processed by a different map node that applies the map operation to each input record
to compute intermediate (key,value) pairs. The intermediate result is divided into n partitions,
using a partitioning function applied to the key (e.g. hash(key) mod n).

Map nodes periodically write to disk their intermediate data into n regions by applying the
partitioning function and indicate the region locations to the master. Reduce nodes are assigned
by the master to work on one or more partitions. Each reduce node first reads the partitions from
the corresponding regions on the map nodes, disks, and groups the values by intermediate key,
using sorting. Then, for each unique key and group of values, it calls the user reduce operation
to compute a final result that is written in the output data set.

Fault-tolerance is important as there may be many nodes executing map and reduce oper-
ations. Input and output data are stored in GFS that already provides high fault-tolerance.
Furthermore, all intermediate data are written to disk, which helps checkpointing map opera-
tions and thus provides tolerance to soft failures. However, if one map node or reduce node fails
during execution (hard failure), the task can be scheduled by the master onto other nodes. It
may also be necessary to re-execute completed map tasks, since the input data on the failed node
disk is inaccessible. Overall, fault-tolerance is fine-grained and well suited for large jobs.

The often cited advantages of MapReduce are its ability to express various (even complicated)
map and reduce functions, and its extreme scalability and fault-tolerance. However, it has
been criticized for its relatively low-performance due to the extensive use of disk accesses, in
particular compared with parallel DBMSs [33]. Furthermore, the two functions map and reduce
are well-suited for OLAP-like queries with data selection and aggregation but not appropriate

Inria

Query Processing in Multistore Systems: an overview 15

Figure 4: Overview of MapReduce execution

for interactive analysis or graph processing.

Spark is an Apache open-source data processing framework in Java originally developed at
UC Berkeley [40]. It extends the MapReduce model for two important classes of analytics appli-
cations: iterative processing (machine learning, graph processing) and interactive data mining
(with R, Excel or Python). Compared with MapReduce, it improves the ease of use with the
Scala language (a functional extension of Java) and a rich set of operators (map, reduce, filter,
join, sortByKey, aggregateByKey, etc.). Spark provides an important abstraction, called Re-
silient Distributed Dataset (RDD), which is a collection of elements partitioned across cluster
nodes. RDDs can be created from disk-based resident data in files or intermediate data produced
by transformations with Scala programs. They can also be made memory-resident for efficient
reuse across parallel operations.

Flink is the latest Apache open-source data processing framework. Based on the Stratosphere
prototype [14], it differs from Spark by its in-memory runtime engine which can be used for real
time data streams as well as batch data processing. It runs on HDFS and supports APIs for
Java and Scala.

2.4 Concluding Remarks

The software stack for data management in the cloud, with three main layers (distributed storage,
database management and distributed processing) has led to a rich ecosystem with many different
solutions and technologies, which are still evolving. Although HDFS has established itself as the
standard solution for storing unstructured data, we should expect evolutions of distributed file
systems that combine block storage and object storage in a single system. For data management,
most NoSQL data stores, except graph databases, rely on (or extend) the key-value data model,
which remains the best option for data whose structure needs to be flexible. There is also a
rapid evolution of data processing frameworks on top of distributed file systems. For example,
the popular MapReduce framework is now challenged by more recent systems such as Spark and
Flink. Multistore systems should be able to cope with this evolution.

RR n° 8890

16 Bondiombouy & Valduriez

3 Multidatabase Query Processing

A multidatabase system provides transparent access to a collection of multiple, heterogeneous
data sources distributed over a computer network [26]. In addition to be heterogeneous and
distributed, the data sources can be autonomous, i.e. controlled and managed independently
(e.g. by a different database administrator) of the multidatabase system.

Since the data sources already exist, one is faced with the problem of providing integrated
access to heterogeneous data. This requires data integration, which consists in defining a global
schema for the multidatabase over the existing data and mappings between the global schema
and the local data source schemas. Once data integration is done, the global schema can be used
to express queries over multiple data sources as if it were a single (global) database.

Most of the work on multidatabase query processing has been done in the context of the
mediator-wrapper architecture. This architecture and related techniques can be used for loosely-
coupled multistore systems, which is why we introduce them. In the rest of this section, we
describe the mediator-wrapper and multidatabase query processing architectures, and the query
processing techniques.

3.1 Mediator-Wrapper Architecture

In this architecture (see Figure 5), there is a clear separation of concerns: the mediator deals with
data source distribution while the wrappers deal with data source heterogeneity and autonomy.
This is achieved by using a common language between mediator and wrappers, and the translation
to the data source language is done by the wrappers.

Each data source has an associated wrapper that exports information about the source
schema, data and query processing capabilities. To deal with the heterogeneous nature of data
sources, wrappers transform queries received from the mediator, expressed in a common query
language, to the particular query language of the source. A wrapper supports the functional-
ity of translating queries appropriate to the particular server, and reformatting answers (data)
appropriate to the mediator. One of the major practical uses of wrappers has been to allow an
SQL-based DBMS to access non SQL databases.

The mediator centralizes the information provided by the the wrappers in a unified view of
all available data (stored in a global catalog). This unified view can be of two fundamental types
[23]: local-as-view (LAV) and global-as-view (GAV). In LAV, the global schema definition exists,
and each data source schema is treated as a view definition over it. In GAV on the other hand,
the global schema is defined as a set of views over the data source schemas. These views indicate
how the elements of the global schema can be derived, when needed, from the elements of the
data source schemas. The main functionality of the mediator is to provide uniform access to
multiple data sources and perform query decomposition and processing using the wrappers to
access the data sources.

3.2 Multidatabase Query Processing Architecture

We assume the input is a query on relations expressed on a global schema in a declarative
language, e.g. SQL. This query is posed on global relations, meaning that data distribution and
heterogeneity are hidden. Three main layers are involved in multidatabase query processing.

The first two layers map the input query into an optimized query execution plan (QEP).
They perform the functions of query rewriting, query optimization and some query execution.
The first two layers are performed by the mediator and use meta-information stored in the global
catalog (global schema, data source location, cost information, etc.). Query rewriting rewrites

Inria

Query Processing in Multistore Systems: an overview 17

Figure 5: Mediator-Wrapper architecture

Figure 6: Generic layering scheme for multidatabase query processing (modified after
[26]).

the input query into a query on local relations, using the global schema. Thus, the global schema
provides the view definitions (i.e. GAV or LAV mappings between the global relations and the

RR n° 8890

18 Bondiombouy & Valduriez

local relations stored in the data sources) and the query is rewritten using the views.
The second layer performs distributed query optimization and (some) execution by consid-

ering the location of the relations and the different query processing capabilities of the data
sources exported by the wrappers. The distributed QEP produced by this layer groups within
subqueries the operations that can be performed by the data sources and wrappers. As in cen-
tralized DBMSs, query optimization can be static or dynamic. However, the lack of homogeneity
in multidatabase systems (e.g. some data sources may have unexpected long delays in answering)
make dynamic query optimization important. In the case of dynamic optimization, there may be
subsequent calls to this layer after execution by the next layer. This is illustrated by the arrow
showing results coming from the next layer. Finally, this layer integrates the results coming
from the different wrappers to provide a unified answer to the users query. This requires the
capability of executing some operations on data coming from the wrappers. Since the wrappers
may provide very limited execution capabilities, e.g. in the case of very simple data sources, the
mediator must provide the full execution capabilities to support the mediator interface.

The third layer performs query translation and execution using the wrappers. Then it returns
the results to the mediator which can perform result integration from different wrappers and
subsequent execution. Each wrapper maintains a wrapper schema that includes the local schema
and mapping information to facilitate the translation of the input subquery (a subset of the
QEP) expressed in a common language into the language of the data source. After the subquery
is translated, it is executed by the data source and the local result is translated back in the
common format.

3.3 Multidatabase Query Processing Techniques

The three main problems of query processing in multidatabase systems are: heterogeneous cost
modeling, heterogeneous query optimization, to deal with different capabilities of data sources’
DBMSs and adaptive query processing, to deal with strong variations in the environment (fail-
ures, unpredictable delays, etc.).

3.3.1 Heterogeneous Cost Modeling

Heterogeneous cost modeling refers to cost function definition, and the associated problem of
obtaining cost-related information from the data sources. Such information is important to
estimate the costs of executing subqueries at the data sources, which in turn are used to estimate
the costs of alternative QEPs generated by the multidatabase query optimizer. There are three
alternative approaches for determining the cost of executing queries in a multidatabase system:
black-box, customized and dynamic.

The black-box approach treats the data sources as a black box, running some test queries
on them, and from these determines the necessary cost information. It is based on running
probing queries on data sources to determine cost information. Probing queries can, in fact,
be used to gather a number of cost information factors. For example, probing queries can be
issued to retrieve data from data sources to construct and update the multidatabase catalog.
Statistical probing queries can be issued that, for example, count the number of tuples of a
relation. Finally, performance measuring probing queries can be issued to measure the elapsed
time for determining cost function coefficients.

The customized approach uses previous knowledge about the data sources, as well as their
external characteristics, to subjectively determine the cost information. The basis for this ap-
proach is that the query processors of the data sources are too different to be represented by a
unique cost model. It also assumes that the ability to accurately estimate the cost of local sub-
queries will improve global query optimization. The approach provides a framework to integrate

Inria

Query Processing in Multistore Systems: an overview 19

the data sources cost model into the mediator query optimizer. The solution is to extend the
wrapper interface such that the mediator gets some specific cost information from each wrapper.
The wrapper developer is free to provide a cost model, partially or entirely.

The above approaches assume that the execution environment is stable over time. However,
on the Internet for instance, the execution environment factors are frequently changing. The
dynamic approach consists in monitoring the run-time behavior of data sources and dynamically
collecting the cost information Three classes of environmental factors can be identified based on
their dynamicity. The first class for frequently changing factors (every second to every minute)
includes CPU load, I/O throughput, and available memory. The second class for slowly chang-
ing factors (every hour to every day) includes DBMS configuration parameters, physical data
organization on disks, and database schema. The third class for almost stable factors (every
month to every year) includes DBMS type, database location, and CPU speed. To face dynamic
environments where network contention, data storage or available memory change over time, a
solution is to extend the sampling method and consider user queries as new samples.

3.3.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must deal with the
issue of the heterogeneous computing capabilities of data sources. For instance, one data source
may support only simple select operations while another may support complex queries involving
join and aggregate. Thus, depending on how the wrappers export such capabilities, query pro-
cessing at the mediator level can be more or less complex. There are two main approaches to deal
with this issue depending on the kind of interface between mediator and wrapper: query-based
and operator-based.

Query-based Approach

In the query-based approach, the wrappers support the same query capability, e.g. a subset of
SQL, which is translated to the capability of the data source. This approach typically relies on
a standard DBMS interface such as Open Database Connectivity (ODBC) or its many varia-
tions (e.g. JDBC). Thus, since the data sources appear homogeneous to the mediator, query
processing techniques designed for homogeneous distributed DBMS can be reused. However, if
the data sources have limited capabilities, the additional capabilities must be implemented in
the wrappers, e.g. join queries may need to be handled at the mediator, if the data source does
not support join.

Since the data sources appear homogeneous to the mediator, a solution is to use a traditional
distributed query optimization algorithm with a heterogeneous cost model. However, extensions
are needed to convert the distributed execution plan into subqueries to be executed by the
data sources and subqueries to be executed by the mediator. The hybrid two-step optimization
technique is useful in this case: in a first step, a static plan is produced by a centralized cost-based
query optimizer; in a second step, at startup time, an execution plan is produced by carrying
out site selection and allocating the subqueries to the sites.

Operator-based Approach

In the operator-based approach, the wrappers export the capabilities of the data sources through
compositions of relational operators. Thus, there is more flexibility in defining the level of
functionality between the mediator and the wrapper. In particular, the different capabilities of
the data sources can be made available to the mediator.

RR n° 8890

20 Bondiombouy & Valduriez

Expressing the capabilities of the data sources through relational operators allows tighter
integration of query processing between mediator and wrappers. In particular, the mediator-
wrapper communication can be in terms of sub plans. We illustrate the operator-based approach
with planning functions proposed in the Garlic project [17]. In this approach, the capabilities
of the data sources are expressed by the wrappers as planning functions that can be directly
called by a centralized query optimizer. It extends a traditional query optimizer with operators
to create temporary relations and retrieve locally stored data. It also creates the PushDown
operator that pushes a portion of the work to the data sources where it will be executed.

The execution plans are represented, as usual, with operator trees, but the operator nodes are
annotated with additional information that specifies the source(s) of the operand(s), whether the
results are materialized, and so on. The Garlic operator trees are then translated into operators
that can be directly executed by the execution engine. Planning functions are considered by the
optimizer as enumeration rules. They are called by the optimizer to construct sub plans using two
main functions: accessPlan to access a relation, and joinPlan to join two relations using access
plans. There is also a join rule for bind join. A bind join is a nested loop join in which intermediate
results (e.g. values for the join predicate) are passed from the outer relation to the wrapper for
the inner relation, which uses these results to filter the data it returns. If the intermediate results
are small and indexes are available at data sources, bindings can significantly reduce the amount
of work done by a data source. Furthermore, bindings can reduce communication cost.

Using planning functions for heterogeneous query optimization has several advantages. First,
planning functions provide a flexible way to express precisely the capabilities of data sources.
In particular, they can be used to model non relational data sources such as web sites. Second,
since these rules are declarative, they make wrapper development easier. Finally, this approach
can be easily incorporated in an existing, centralized query optimizer.

The operator-based approach has also been used in DISCO, a multidatabase system designed
to access data sources over the web [35]. DISCO uses the GAV approach and an object data
model to represent both mediator and data source schemas and data types. This allows easy
introduction of new data sources with no type mismatch or simple type mismatch. The data
source capabilities are defined as a subset of an algebraic machine (with the usual operators
such as scan, join and union) that can be partially or entirely supported by the wrappers or the
mediator. This gives much flexibility for the wrapper implementers to decide where to support
data source capabilities (in the wrapper or in the mediator).

3.3.3 Adaptive Query Processing

Multidatabase query processing, as discussed so far, follows essentially the principles of tradi-
tional query processing whereby an optimal QEP is produced for a query based on a cost model,
and then this QEP is executed. The underlying assumption is that the multidatabase query op-
timizer has sufficient knowledge about query runtime conditions in order to produce an efficient
QEP and the runtime conditions remain stable during execution. This is a fair assumption for
multidatabase queries with few data sources running in a controlled environment. However, this
assumption is inappropriate for changing environments with large numbers of data sources and
unpredictable runtime conditions as on the Web.

Adaptive query processing is a form of dynamic query processing, with a feedback loop
between the execution environment and the query optimizer in order to react to unforeseen vari-
ations of runtime conditions. A query processing system is defined as adaptive if it receives
information from the execution environment and determines its behavior according to that in-
formation in an iterative manner [4]. In the context of multidatabase systems, the execution
environment includes the mediator, wrappers and data sources. In particular, wrappers should

Inria

Query Processing in Multistore Systems: an overview 21

be able to collect information regarding execution within the data sources.

Adaptive query processing adds to the traditional query processing process the following ac-
tivities: monitoring, assessing and reacting. These activities are logically implemented in the
query processing system by sensors, assessment components, and reaction components, respec-
tively. These components may be embedded into control operators of the QEP, e.g. an Exchange
operator. Monitoring involves measuring some environment parameters within a time window,
and reporting them to the assessment component. The latter analyzes the reports and considers
thresholds to arrive at an adaptive reaction plan. Finally, the reaction plan is communicated to
the reaction component that applies the reactions to query execution.

4 Multistore Systems

Multistore systems provide integrated access to a number of cloud data stores such as NoSQL,
RDBMS or HDFS, sometimes through a data processing framework such as Spark. They typically
support only read-only queries, as supporting distributed transactions across data stores is a hard
problem. We can divide multistore systems based on the level of coupling with the underlying
data stores: loosely-coupled, tightly-coupled and hybrid. In this section, we introduce for each
class a set of representative systems, with their architecture and query processing. We end the
section with a comparative analysis.

In presenting these systems, we strive to use the same terminology we used so far in this
paper. However, it is not easy as we often need to map the specific terminology used in the
original papers and ours. When necessary, to help the reader familiar with some systems, we
make precise this terminology mapping.

4.1 Loosely-Coupled Multistore Systems

Loosely-coupled multistore systems are reminiscent of multidatabase systems in that they can
deal with autonomous data stores, which can be accessed through the multistore system com-
mon interface as well as separately through their local API. They follow the mediator-wrapper
architecture with several data stores (e.g. NoSQL and RDBMS) as depicted in Figure 7. Each
data store is autonomous, i.e. locally controlled, and can be accessed by other applications. Like
web data integration systems that use the mediator-wrapper architecture, the number of data
stores can be very high.

There are two main modules: one query processor and one wrapper per data store. The query
processor has a catalog of data stores, and each wrapper has a local catalog of its data store.
After the catalogs and wrappers have been built, the query processor can start processing input
queries from the users, by interacting with wrappers. The typical query processing is as follows:

1. Analyze the input query and translate it into subqueries (one per data store), each expressed
in a common language, and an integration subquery.

2. Send the subqueries to the relevant wrappers, which trigger execution at the corresponding
data stores and translate the results into the common language format.

3. Integrate the results from the wrappers (which may involve executing operators such union
and join), and return the results to the user. We describe below three loosely-coupled
multistore systems: BigIntegrator, Forward and Qox.

RR n° 8890

22 Bondiombouy & Valduriez

Figure 7: Loosely-coupled multistore systems

BigIntegrator

BigIntegrator [41] supports SQL-like queries that combines data in Bigtable data stores in the
cloud and data in relational data stores. Bigtable is accessed through the Google Query Language
(GQL), which has very limited query expressions, e.g. no join and only basic select predicates. To
capture GQL’s limited capabilities, BigIntegrator provides a novel query processing mechanism
based on plugins, called absorber and finalizer, which enable to pre and post-process those
operations that cannot be processed by Bigtable. For instance, a “LIKE” select predicate on a
Bigtable or a join of two Bigtables will be processed through operations in BigIntegrator’s query
processor.

BigIntegrator uses the LAV approach for defining the global schema of the Bigtable and
relational data sources as flat relational tables. Each Bigtable or relational data source can
contain several collections, each represented as a source table of the form “table-name source-
name”, where table-name is the name of the table in the global schema and source-name is the
name of the data source. For instance, “Employees A” represents an Employees table at source
A, i.e. a local view of Employees. The source tables are referenced as tables in the SQL queries.

Figure 8 illustrates the architecture of BigIntegrator with two data sources, one relational
database and one Bigtable data store. Each wrapper has an importer module and absorber and
finalizer plug-ins. The importer creates the source tables and stores them in the local catalog.
The absorber extracts a subquery, called access filter, from a user query that selects data from
a particular source table, based on the capabilities of the source. The finalizer translates each
access filter (produced by the absorber) into an operator called interface function, specific for
each kind of source. The interface function is used to send a query to the data source (i.e. a
GQL or SQL query).

Query processing is performed in three steps, using an absorber manager, a query optimizer
and a finalizer manager. The absorber manager takes the (parsed) user query and, for each
source table referenced in the query, calls the corresponding absorber of its wrapper. In order
to replace the source table with an access filter, the absorber collects from the query the source
tables and the possible other predicates, based on the capabilities of the data source. The query

Inria

Query Processing in Multistore Systems: an overview 23

Figure 8: BigIntegrator

optimizer reorders the access filters and other predicates to produce an algebra expression that
contains calls to both access filters and other relational operators. It also performs traditional
transformations such as select push down and bind join The finalizer manager takes the algebra
expression and, for each access filter operator in the algebra expression, calls the corresponding
finalizer of its wrapper. The finalizer transforms the access filters into interface function calls.

Finally, query execution is performed by the query processor that interprets the algebra
expression, by calling the interface functions to access the different data sources and executing
the subsequent relational operations, using in-memory techniques.

Forward

The Forward multistore system, or so-called Forward middleware in [25], supports SQL++, an
SQL-like language designed to unify the data model and query language capabilities of NoSQL
and relational databases. SQL++ has a powerful, semi-structured data model that extends
both the JSON and relational data models. FORWARD also provides a rich web development
framework [15], which exploits its JSON compatibility to integrate visualization components (e.g.
Google Maps).

The design of SQL++ is based on the observation that the concepts are similar across both
data models, e.g. a JSON array is similar to an SQL table with order, and an SQL tuple to a
JSON object literal. Thus, an SQL++ collection is an array or a bag, which may contain dupli-
cate elements. An array is ordered (similar to a JSON array) and each element is accessible by its
ordinal position while a bag is unordered (similar to a SQL table). Furthermore, SQL++ extends
the relational model with arbitrary composition of complex values and element heterogeneity. As

RR n° 8890

24 Bondiombouy & Valduriez

in nested data models, a complex value can be either a tuple or collection. Nested collections can
be accessed by nesting SELECT expressions in the SQL FROM clause or composed using the
GROUP BY operator. They can also be unnested using the FLATTEN operator. And unlike an
SQL table that requires all tuples to have the same attributes, an SQL++ collection may also
contain heterogeneous elements comprising a mix of tuples, scalars, and nested collections.

Forward uses the GAV approach, where each data source (SQL or NoSQL) appears to the
user as an SQL++ virtual view, defined over SQL++ collections. Thus, the user can issue
SQL++ queries involving multiple virtual views. The Forward architecture is that of Figure 7,
with a query processor and one wrapper per data source. The query processor performs SQL++
query decomposition, by exploiting the underlying data store capabilities as much as possible.
However, given an SQL++ query that is not directly supported by the underlying data source,
Forward will decompose it into one or more native queries that are supported and combine the
native query results in order to compensate for the semantics or capabilities gap between SQL++
and the underlying data source. Although not described in the original paper [25] cost-based
optimization of SQL++ queries is possible, by reusing techniques from multidatabase systems
when dealing with flat collections. However, it would be much harder considering the nesting
and element heterogeneity capabilities of SQL++.

QoX

QoX [31] is a special kind of loosely-coupled multistore system, where queries are analytical
data-driven workflows (or data flows) that integrate data from relational databases, and various
execution engines such as MapReduce or Extract-Transform-Load (ETL) tools. A typical data
flow may combine unstructured data (e.g. tweets) with structured data and use both generic data
flow operations like filtering, join, aggregation and user-defined functions like sentiment analysis
and product identification. In a previous work [30], the authors proposed a novel approach to
ETL design that incorporates a suite of quality metrics, termed QoX, at all stages of the design
process. The QoX Optimizer deals with the QoX performance metrics, with the objective of
optimizing the execution of dataflows that integrate both the back-end ETL integration pipeline
and the front-end query operations into a single analytics pipeline.

The QoX Optimizer uses xLM, a proprietary XML-based language to represent data flows,
typically created with some ETL tool. xLM allows capturing the flow structure, with nodes
showing operations and data stores and edges interconnecting these nodes, and important oper-
ation properties such as operation type, schema, statistics, and parameters. Using appropriate
wrappers to translate xLM to a tool-specific XML format and vice versa, the QoX Optimizer
may connect to external ETL engines and import or export dataflows to and from these engines.

Given a data flow for multiple data stores and execution engines, the QoX Optimizer evaluates
alternative execution plans, estimates their costs, and generates a physical plan (executable code).
The search space of equivalent execution plans is defined by flow transformations that model data
shipping (moving the data to where the operation will be executed), function shipping (moving
the operation to where the data is), and operation decomposition (into smaller operations). The
cost of each operation is estimated based on statistics (e.g. cardinalities, selectivities). Finally,
the QoX Optimizer produces SQL code for relational database engines, Pig and Hive code for
MapReduce engines, and creates Unix shell scripts as the necessary glue code for orchestrating
different subflows running on different engines. This approach could be extended to access
NoSQL engines as well, provided SQL-like interfaces and wrappers.

Inria

Query Processing in Multistore Systems: an overview 25

4.2 Tightly-Coupled Multistore Systems

Tightly-coupled multistore systems aim at efficient querying of structured and unstructured data
for (big) data analytics. They may also have a specific objective, such as self-tuning or integration
of HDFS and RDBMS data. However, they all trade autonomy for performance, typically in a
shared-nothing cluster, so that data stores can only be accessed through the multistore system,
directly through their local API.

Like loosely-coupled systems, they provide a single language for querying of structured and
unstructured data. However, the query processor directly uses the data store local interfaces (see
Figure 9), or in the case of HDFS, it interfaces a data processing framework such as MapReduce
or Spark. Thus, during query execution, the query processor directly accesses the data stores.
This allows efficient data movement across data stores. However, the number of data stores that
can be interfaced is typically very limited.

Figure 9: Tightly-coupled multistore systems

In the rest of this section, we describe three representative tightly-coupled multistore sys-
tems: Polybase, HadoopDB and Estocada. Two other interesting systems are Odyssey and JEN.
Odyssey [18] is a multistore system that can work with different analytic engines, such as parallel
OLAP system or Hadoop. It enables storing and querying data within HDFS and RDBMS, using
opportunistic materialized views, based on MISO [22]. MISO is a method for tuning the phys-
ical design of a multistore system (Hive/HDFS and RDBMS), i.e. deciding in which data store
the data should reside, in order to improve the performance of big data query processing. The
intermediate results of query execution are treated as opportunistic materialized views, which
can then be placed in the underlying stores to optimize the evaluation of subsequent queries.
JEN [39] is a component on top of HDFS to provide tight-coupling with a parallel RDBMS. It
allows joining data from two data stores, HDFS and RDBMS, with parallel join algorithms, in
particular, an efficient zigzag join algorithm, and techniques to minimize data movement. As the
data size grows, executing the join on the HDFS side appears to be more efficient.

Polybase

Polybase [11] is a feature of the SQL Server Parallel Data Warehouse (PDW) product, which
allows users to query unstructured (HDFS) data stored in a Hadoop cluster using SQL and

RR n° 8890

26 Bondiombouy & Valduriez

integrate them with relational data in PDW. The HDFS data can be referenced in Polybase as
external tables, which make the correspondence with the HDFS file on the Hadoop cluster, and
thus be manipulated together with PDW native tables using SQL queries Polybase leverages
the capabilities of PDW, a shared-nothing parallel DBMS. Using the PDW query optimizer,
SQL operators on HDFS data are translated into MapReduce jobs to be executed directly on
the Hadoop cluster. Furthermore, the HDFS data can be imported/exported to/from PDW in
parallel, using the same PDW service that allows shuffling PDW data among compute nodes.

Figure 10: Polybase architecture

The architecture of Polybase, which is integrated within PDW, is shown in Figure 10. Poly-
base takes advantage of PDW’s Data Movement Service (DMS), which is responsible for shuffling
intermediate data across PDW nodes, e.g. to repartition tuples, so that any matching tuples of
an equi-join be collocated at the same computing node that performs the join. DMS is extended
with an HDFS Bridge component, which is responsible for all communications with HDFS. The
HDFS Bridge enables DMS instances to also exchange data with HDFS in parallel (by directly
accessing HDFS splits).

Polybase relies on the PDW cost-based query optimizer to determine when it is advantageous
to push SQL operations on HDFS data to the Hadoop cluster for execution. Thus, it requires
detailed statistics on external tables, which are obtained by exploring statistically significant
samples of HDFS tables. The query optimizer enumerates the equivalent QEPs and select the
one with least cost. The search space is obtained by considering the different decompositions of
the query into two parts: one to be executed as MapReduce jobs at the Hadoop cluster and the
other as regular relational operators at the PDW side. MapReduce jobs can be used to perform
select and project operations on external tables, as well as joins of two external tables. However,
no bind join optimization is supported. The data produced by the MapReduce jobs can then be
exported to PDW to be joined with relational data, using parallel hash-based join algorithms.

One strong limitation of pushing operations on HDFS data as MapReduce jobs is that even
simple lookup queries have long latencies. A solution proposed for Polybase [36] is to exploit an
index built on the external HDFS data using a B+-tree that is stored inside PDW. This method
leverages the robust and efficient indexing code in PDW without forcing a dramatic increase in

Inria

Query Processing in Multistore Systems: an overview 27

the space that is required to store or cache the entire (large) HDFS data inside PDW. Thus, the
index can be used as a pre-filter by the query optimizer to reduce the amount of work that is
carried out as MapReduce jobs. To keep the index synchronized with the data that is stored in
HDFS, an incremental approach is used which records that the index is out-of-date, and lazily
rebuilds it. Queries posed against the index before the rebuild process is completed can be
answered using a method that carefully executes parts of the query using the index in PDW,
and the remaining part of the query is executed as a MapReduce job on just the changed data
in HDFS.

HadoopDB

The objective of HadoopDB [2] is to provide the best of both parallel DBMS (high-performance
data analysis over structured data) and MapReduce-based systems (scalability, fault-tolerance,
and flexibility to handle unstructured data) with an SQL-like language (HiveQL). To do so,
HadoopDB tightly couples the Hadoop framework, including MapReduce and HDFS, with mul-
tiple single-node RDBMS (e.g. PostgreSQL or MySQL) deployed across a cluster, as in a shared-
nothing parallel DBMS.

HadoopDB extends the Hadoop architecture with four components: database connector, cat-
alog, data loader, and SQL-MapReduce-SQL (SMS) planner. The database connector provides
the wrappers to the underlying RDBMS, using JDBC drivers. The catalog maintains information
about the databases as an XML file in HDFS, and is used for query processing. The data loader
is responsible for (re)partitioning (key, value) data collections using hashing on a key and loading
the single-node databases with the partitions (or chunks). The SMS planner extends Hive, an
Hadoop component that transforms HiveQL into MapReduce jobs that connect to tables stored
as files in HDFS. This architecture yields a cost-effective parallel RDBMS, where data is parti-
tioned both in RDBMS tables and in HDFS files, and the partitions can collocated at cluster
nodes for efficient parallel processing.

Query processing is simple, relying on the SMS planner for translation and optimization,
and MapReduce for execution. The optimization consists in pushing as much work as possible
into the single node databases, and repartitioning data collections whenever needed. The SMS
planner decomposes a HiveQL query to a QEP of relational operators. Then the operators are
translated to MapReduce jobs, while the leaf nodes are again transformed into SQL to query
the underlying RDBMS instances. In MapReduce, repartitioning should take place before the
reduce phase. However, if the optimizer detects that an input table is partitioned on a column
used as aggregation key for Reduce, it will simplify the QEP by turning it to a single Map-only
job, leaving all the aggregation to be done by the RDBMS nodes. Similarly, repartitioning is
avoided for equi-joins as well, if both sides of the join are partitioned on the join key.

Estocada

Estocada [7] is a self-tuning multistore system with the goal of optimizing the performance of
applications that must deal with data in multiple data models, including relational, key-value,
document and graph. To obtain the best possible performance from the available data stores,
Estocada automatically distributes and partitions the data across the different data stores, which
are entirely under its control and hence not autonomous. Hence, it is a tighly-coupled multistore
system.

Data distribution is dynamic and decided based on a combination of heuristics and cost-
based decisions, taking into account data access patterns as they become available. Each data
collection is stored as a set of partitions, whose content may overlap, and each partition may be
stored in any of the underlying data stores. Thus, it may happen that a partition is stored in a

RR n° 8890

28 Bondiombouy & Valduriez

data store that has a different data model than its native one. To make Estocada applications
independent of the data stores, each data partition is internally described as a materialized view
over one or several data collections. Thus, query processing involves view-based query rewriting.

Estocada support two kinds of requests, for storing data and querying, with three main
modules: storage advisor, catalog, query processor and execution engine. These components
can directly access the data stores through their local interface. The query processor deals with
single model queries only, each expressed in the query language of the corresponding data source.
However, to integrate various data sources, one would need a common data model and language
on top of Estocada. The storage advisor is responsible for partitioning data collections and
delegating the storage of partitions to the data stores. For self-tuning the applications, it may
also recommend repartitioning or moving data from one data store to the other, based on access
patterns. Each partition is defined as a materialized view expressed as a query over the collection
in its native language. The catalog keeps track of information about partitions, including some
cost information about data access operations by means of binding patterns which are specific
to the data stores.

Using the catalog, the query processor transforms a query on a data collection into a logical
QEP on possibly multiple data stores (if there are partitions of the collection in different stores).
This is done by rewriting the initial query using the materialized views associated with the
data collection, and selecting the best rewriting, based on the estimated execution costs. The
execution engine translates the logical QEP into a physical QEP which can be directly executed
by dividing the work between the data stores and Estocada’s runtime engine, which provides its
own operators (select, join, aggregate, etc.).

4.3 Hybrid systems

Hybrid systems try to combine the advantages of loosely-coupled systems, e.g. accessing many dif-
ferent data stores, and tightly-coupled systems, e.g. accessing some data stores directly through
their local interface for efficient access. Therefore, the architecture (see Figure 11) follows the
mediator-wrapper architecture, while the query processor can also directly access some data
stores, e.g. HDFS through MapReduce or Spark.

Figure 11: Hybrid architecture

We describe below the three hybrid multistore systems: Spark SQL, CloudMdsQL and Big-
DAWG.

Inria

Query Processing in Multistore Systems: an overview 29

Spark SQL

Spark SQL [3] is a recent module in Apache Spark that integrates relational data processing with
Spark’s functional programming API. It supports SQL-like queries that can integrate HDFS data
accessed through Spark and external data sources (e.g. relational databases) accessed through
a wrapper. Thus, it is a hybrid multistore system with tight-coupling of Spark/HDFS and
loose-coupling of external data sources.

Spark SQL uses a nested data model that includes tables and DataFrames. It supports all
major SQL data types, as well as user-defined types and complex data types (structs, arrays,
maps and unions), which can be nested together. A DataFrame is a distributed collection of
rows with the same schema, like a relational table. It can be constructed from a table in an
external data source or from an existing Spark RDD of native Java or Python objects. Once
constructed, DataFrames can be manipulated with various relational operators, such as WHERE
and GROUPBY, which take expressions in procedural Spark code.

Figure 12: Spark SQL architecture

Figure 12 shows the architecture of Spark SQL, which runs as a library on top of Spark,
The query processor directly accesses the Spark engine through the Spark Java interface, while
it accesses external data sources (e.g. an RDBMS or a key-value store) through the Spark
SQL common interface supported by wrappers (JDBC drivers). The query processor includes
two main components: the DataFrame API and the Catalyst query optimizer. The DataFrame
API offers tight integration between relational and procedural processing, allowing relational
operations to be performed on both external data sources and Spark’s RDDs. It is integrated
into Spark’s supported programming languages (Java, Scala, Python) and supports easy inline
definition of user-defined functions, without the complicated registration process typically found
in other database systems. Thus, the DataFrame API lets developers seamlessly mix relational
and procedural programming, e.g. to perform advanced analytics (which is cumbersome to
express in SQL) on large data collections (accessed though relational operations).

Catalyst is an extensible query optimizer that supports both rule-based and cost-based op-
timization. The motivation for an extensible design is to make it easy to add new optimization
techniques, e.g. to support new features of Spark SQL, as well as to enable developers to extend
the optimizer to deal with external data sources, e.g. by adding data source specific rules to
push down select predicates. Although extensible query optimizers have been proposed in the
past, they have typically required a complex language to specify rules, and a specific compiler to

RR n° 8890

30 Bondiombouy & Valduriez

translate the rules into executable code. In contrast, Catalyst uses standard features of the Scala
functional programming language, such as pattern-matching, to make it easy for developers to
specify rules, which can be complied to Java code.

Catalyst provides a general transformation framework for representing query trees and ap-
plying rules to manipulate them. This framework is used in four phases: (1) query analysis, (2)
logical optimization, (3) physical optimization, and (4) code generation. Query analysis resolves
name references using a catalog (with schema information) and produces a logical plan. Logi-
cal optimization applies standard rule-based optimizations to the logical plan, such as predicate
pushdown, null propagation, and Boolean expression simplification. Physical optimization takes
a logical plan and enumerates a search space of equivalent physical plans, using physical opera-
tors implemented in the Spark execution engine or in the external data sources. It then selects a
plan using a simple cost model, in particular, to select the join algorithms. Code generation relies
on the Scala language, in particular, to ease the construction of abstract syntax trees (ASTs)
in the Scala language. ASTs can then be fed to the Scala compiler at runtime to generate Java
bytecode to be directly executed by compute nodes.

To speed up query execution, Spark SQL exploits in-memory caching of hot data using a
columnar storage (i.e. storing data collections as sections of columns of data rather than as
rows of data). Compared with Spark’s native cache, which simply stores data as Java native
objects, this columnar cache can reduce memory footprint by an order of magnitude by applying
columnar compression schemes (e.g. dictionary encoding and run-length encoding). Caching is
particularly useful for interactive queries and for the iterative algorithms common in machine
learning.

CloudMdsQL

The CloudMdsQL multistore system [21, 20] supports a powerful functional SQL-like language,
designed for querying multiple heterogeneous data sources (e.g. relational and NoSQL) A Cloud-
MdsQL query may contain nested subqueries, and each subquery addresses directly a particular
data store and may contain embedded invocations to the data store native query interface. Thus,
the major innovation is that a CloudMdsQL query can exploit the full power of local data stores,
by simply allowing some local data store native queries (e.g. a breadth-first search query against
a graph database) to be called as functions, and at the same time be optimized based on a simple
cost model, CloudMdsQL has been extended [5] to address distributed processing frameworks
such as Apache Spark by enabling the ad-hoc usage of user defined map/filter/reduce operators
as subqueries.

The CloudMdsQL language is SQL-based with the extended capabilities for embedding sub-
queries expressed in terms of each data store’s native query interface. The common data model
is table-based, with support of rich datatypes that can capture a wide range of the underlying
data stores datatypes, such as arrays and JSON objects, in order to handle non-flat and nested
data, with basic operators over such composite datatypes. CloudMdsQL allows named table
expressions to be defined as Python functions, which is useful for querying data stores that have
only API-based query interface. A CloudMdsQL query is executed in the context of an ad-hoc
schema, formed by all named table expressions within the query. This approach fills the gap
produced by the lack of a global schema and allows the query compiler to perform semantic
analysis of the query.

The design of the CloudMdsQL query engine [20] takes advantage of the fact that it operates
in a cloud platform, with full control over where the system components can be installed. The
architecture of the query engine is fully distributed, so that query engine nodes can directly
communicate with each other, by exchanging code (query plans) and data. This distributed ar-

Inria

Query Processing in Multistore Systems: an overview 31

chitecture yields important optimization opportunities, e.g. minimizing data transfers by moving
the smallest intermediate data for subsequent processing by one particular node. Each query
engine node consists of two parts – master and worker – and is collocated at each data store node
in a computer cluster. Each master or worker has a communication processor that supports send
and receive operators to exchange data and commands between nodes. A master takes as input
a query and produces, using a query planner and calatog (with metadata and cost information
on data sources) a query plan, which it sends to one chosen query engine node for execution.
Each worker acts as a lightweight runtime database processor atop a data store and is composed
of three generic modules (i.e. same code library) - query execution controller, operator engine,
and table storage - and one wrapper module that is specific to a data store.

The query planner performs cost-based optimization. To compare alternative rewritings of
a query, the optimizer uses a simple catalog, which provides basic information about data store
collections such as cardinalities, attribute selectivities and indexes, and a simple cost model.
Such information can be exposed by the wrappers in the form of cost functions or database
statistics. The query language also provides a possibility for the user to define cost and selectivity
functions whenever they cannot be derived from the catalog, mostly in the case of using native
subqueries. The search space of alternative plans is obtained using traditional transformations,
e.g. by pushing down select predicates, using bind join, performing join ordering, or planning
intermediate data shipping.

BigDAWG

Like multidatabase systems, all the multistore systems we have seen so far provide transparent
access across multiple data stores with the same data model and language. The BigDAWG (Big
Data Analytics Working Group) multistore system (called polystore) [13] takes a different path,
with the goal of unifying querying over a variety of data models and languages, Thus, there
is no common data model and language. A key user abstraction in BigDAWG is an island of
information, which is a collection of data stores accessed with a single query language. And
there can be a variety of islands, including relational (RDBMS), Array DBMS, NoSQL and
Data Stream Management System (DSMS). Within an island, there is loose-coupling of the data
stores, which need to provide a wrapper (called shim) to map the island language to their native
one. When a query accesses more than one data store, objects may have to be copied between
local databases, using a CAST operation, which provides a form of tight-coupling. This is why
BigDAWG can be viewed as a hybrid multistore system.

The architecture of BigDAWG is highly distributed, with a thin layer that interfaces the tools
(e.g. visualization) and applications, with the islands of information. Since there is no common
data model and language, there is no common query processor either. Instead, each island has its
specific query processor. Query processing within an island is similar to that in multidatabase
systems: most of the processing is pushed to the data stores and the query processor only
integrates the results. The query optimizer does not use a cost model, but heuristics and some
knowledge of the high performance of some data stores. For simple queries, e.g. select-project-
join, the optimizer will use function shipping, in order to minimize data movement and network
traffic among data stores. For complex queries, e.g. analytics, the optimizer may consider data
shipping, to to move the data to a data store that provides a high-performance implementation.

A query submitted to an island may involve multiple islands. In this case, the query must
be expressed as multiple subqueries, each in a specific island language. To specify the island
for which a subquery is intended, the user encloses the subquery in a SCOPE specification.
Thus, a multi-island query will have multiple scopes to indicate the expected behavior of its
subqueries. Furthermore, the user may insert CAST operations to move intermediate datasets

RR n° 8890

32 Bondiombouy & Valduriez

between islands in an efficient way. Thus, the multi-island query processing is dictated by the
way the subqueries, SCOPE and CAST operations are specified by the user.

4.4 Comparative Analysis

The multistore systems we presented above share some similarities, but do have important differ-
ences. The objective of this section is to compare these systems along important dimensions and
identify the major trends. We divide the dimensions between functionality and implementation
techniques.

Table 1 compares the functionality of multistore systems along four dimensions: objective,
data model, query language, and data stores that are supported. Although all multistore systems
share the same overall goal of querying multiple data stores, there are many different paths
toward this goal, depending on the functional objective to be achieved. And this objective
has important impact on the design choices. The major trend that dominates is the ability to
integrate relational data (stored in RDBMS) with other kinds of data in different data stores, such
as HDFS (Polybase, HadoopDB, SparkSQL, JEN) or NoSQL (BigTable only for BigIntegrator,
document stores for Forward). Thus, an important difference lies in the kind of data stores that
are supported. For instance, Estocada, BigDAWG and CLoudMdsQL can support a wide variety
of data stores while Polybase and JEN target the integration of RDBMS with HDFS only. We
can also note the growing importance of accessing HDFS within Hadoop, in particular, with
MapReduce or Spark, which corresponds to major use cases in structured/unstructured data
integration.

Another trend is the emergence of self-tuning multistore systems, such as Estocada and
Odyssey, with the objective of leveraging the available data stores for performance. In terms
of data model and query language, most systems provide a relational/ SQL-like abstraction.
However, QoX has a more general graph abstraction to capture analytic data flows. And both
Estocada and BigDAWG allow the data stores to be directly accessed with their native (or
island) languages. CloudMdsQL also allows native queries, but as subqueries within an SQL-like
language.

Inria

Query Processing in Multistore Systems: an overview 33

Mutistore system Objective Data model Query language Data stores
Loosely-coupled
BigIntegrator Querying relational Relational SQL-like BigTable,RDBMS

and cloud data
Forward Unifying relational JSON-based SQL++ RDBMS, NoSQL

and NoSQL
QoX Analytic data Graph XML-based RDBMS,

flows MapReduce, ETL
Tightly-coupled
Polybase Querying Hadoop Relational SQL HDFS, RDBMS

from RDBMS
HadoopDB Querying RDBMS Relational SQL-like (HiveQL) HDFS, RDBMS

from Hadoop
Estocada Self-tuning No common Native query RDBMS, NoSQL

model languages
Hybrid
SparkSQL SQL on top of Nested SQL-like HDFS, RDBMS

Spark
BigDAWG Unifying relational No common Island query RDBMS,

and NoSQL model languages, with NoSQL, Array DBMS,
CAST and SCOPE DSMSs
operators

CloudMdsQL Querying relational JSON-based SQL-like with RDBMS, NoSQL
and NoSQL native subqueries HDFS

Table 1: Functionality of multistore systems.

Table 2 compares the implementation techniques of multistore systems along four dimen-
sions: special modules, schema management, query processing, and query optimization. The
first dimension captures the system modules that either refine those of the generic architecture
(e.g. importer, absorber and finalizer, which refine the wrapper module, Catalyst extensible op-
timizer or QoX’s data flow engine, which replace the query processor) or bring new functionality
(e.g. Estocada’s storage advisor). Most multistore systems provide some support for managing
a global schema, using the GAV or LAV approaches, with some variations (e.g. BigDAWG uses
GAV within (single model) islands of information). However, QoX, Estocada, SparkSQL and
CloudMdsQL do not support global schemas, although they provide some way to deal with the
data stores local schemas.

The query processing techniques are extensions of known techniques from distributed data-
base systems, e.g. data/function shipping, query decomposition (based on the data stores’s
capabilities, bind join, select pushdown). Query optimization is also supported, with either a
(simple) cost model or heuristics.

RR n° 8890

34 Bondiombouy & Valduriez

Mutistore system Special modules Schemas Query processing Query optimization
Loosely-coupled
BigIntegrator Importer, LAV Access filters Heuristics

absorber, finalizer
Forward Query processor GAV Data store Cost-based

capabilities
QoX Dataflow engine No Data/function Cost-based

shipping,
operation
decomposition

Tightly-coupled
Polybase HDFS bridge GAV Query splitting Cost-based
HadoopDB SMS planer, db GAV Query splitting Heuristics

connector
Estocada Storage advisor Materialized View-based query Cost-based

views rewriting
Hybrid
SparkSQL Catalyst Data frames In-memory Cost-based

extensible caching
optimizer using columnar

storage
BigDAWG Island query GAV within Function/data Heuristics

processors islands shipping
CloudMdsQL Query planner No Bind join Cost-based

Table 2: Implementation techniques of multistore systems.

5 Conclusion

Building cloud data-intensive applications often requires using multiple data stores (NoSQL,
HDFS, RDBMS, etc.), each optimized for one kind of data and tasks. In particular, many use
cases exhibit the need to combine loosely structured data (e.g. log files, tweets, web pages) which
are best supported by HDFS or NoSQL with more structured data in RDBMS. However, the
wide diversification of data store interfaces makes it difficult to access and integrate data from
multiple data stores.

Although useful, the solutions devised for multidatabase systems (also called federated data-
base systems) or Web data integration systems need be extended in major ways to deal with
the specific context of the cloud. This has motivated the design of multistore systems (also
called polystores) that provide integrated or transparent access to a number of cloud data stores
through one or more query languages. As NoSQL and related technologies such as Hadoop and
Spark, multistore systems is a recent, important topic in data management, and we can expect
much evolution in the coming years.

In this paper, we gave an overview of query processing in multistore systems, focusing on
the main solutions and trends. We started by introducing cloud data management, including
distributed file systems such as HDFS, NoSQL systems and data processing frameworks (such
as MapReduce and Spark) and query processing in multidatabase systems. Then, we described
and analyzed representative multistore systems, based on their architecture, data model, query
languages and query processing techniques. To ease comparison, we divided multistore systems
based on the level of coupling with the underlying data stores, i.e. loosely-coupled, tightly-
coupled and hybrid.

We analyzed three multistore systems for each class: BigIntegrator, Forward and QoX

Inria

Query Processing in Multistore Systems: an overview 35

(loosely-coupled); Polybase, HadoopDB and Estocada (tightly-coupled); SparkSQL, BigDAWG
and CloudMdsQL (hybrid). Our comparisons reveal several important trends. The major trend
that dominates is the ability to integrate relational data (stored in RDBMS) with other kinds of
data in different data stores, such as HDFS or NoSQL. However, an important difference between
multistore systems lies in the kind of data stores that are supported. We also note the growing
importance of accessing HDFS within Hadoop, in particular, with MapReduce or Spark. An-
other trend is the emergence of self-tuning multistore systems, with the objective of leveraging
the available data stores for performance. In terms of data model and query language, most
systems provide a relational/ SQL-like abstraction. However, QoX has a more general graph
abstraction to capture analytic data flows. And both Estocada and BigDAWG allow the data
stores to be directly accessed with their native (or island) languages.

The query processing techniques are extensions of known techniques from distributed data-
base systems, e.g. data/function shipping, query decomposition (based on the data stores capa-
bilities, bind join, select pushdown). And query optimization is supported, with either a (simple)
cost model or heuristics.

Since multistore systems is a relatively recent topic, there are important research issues ahead
of us, which we briefly discuss.

� Query languages. Designing a query language for a multistore system is a major issue
as there is a subtle trade-off between ease of use for the upper layers (e.g. analytics) and
efficient access to the data stores. An SQL-like query language as provided by most current
multistore systems will make it easier the integration with standard analytics tools, but at
the expense of efficiency. An alternative towards more efficiency (at the expense of ease of
use) is to allow the data stores to be directly accessed with their native (or island) languages
as with Estocada and BigDAWG. A compromise is to use a functional query language that
allows native subqueries as functions within SQL-like queries as in CloudMdsQL.

� Query optimization. This issue is directly related to the query language issue. With
an SQL-like query language , it is possible to rely on a simple cost model and simple
heuristics such as using bind join or select push down. However, updating the cost model
or adding heuristics as new data stores are added may be difficult. An interesting solution
is extensible query optimization as in the SparkSQL Catalyst. Finally, using the native
data store languages directly makes the issue difficult, as native queries should be treated
as a black box.

� Distributed transactions. Multistore systems have focused on read-only queries as it
satisfies the requirements of analytics. However, as more ad more complex cloud data-
intensive are built, the need for updating data across data stores will become important.
Thus, the need for distributed transactions will arise. The issue is much harder as the
transaction models of the data stores may be very different. In particular, most NoSQL
data stores do not provide ACID transaction support.

� Efficient data movement. Exchanging data between data stores and the multistore
system must be made efficient in order to deal with big data. Data could also be moved
and copied across data stores as in Estocada and BigDAWG. To make data movement
efficient will require clever data transformation techniques and the use of new memory
access techniques, such as Remote Direct Memory Access.

� Automatic load balancing. If efficient data movement is provided across data stores,
then a related issue is automatic load balancing, in order to maximize the performance of
cloud data-intensive applications. This requires the development of a real-time monitoring

RR n° 8890

36 Bondiombouy & Valduriez

system of resource usage integrated with all the components of the platform (the query
processor and the underlying data stores).

References

[1] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores: how different are
they really? In ACM SIGMOD Int. Conf. on Data Management, pages 967–980, 2008.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin, and A. Silberschatz. Hadoopdb:
An architectural hybrid of mapreduce and DBMS technologies for analytical workloads.
Proceedings of the Very Large Data Bases (PVLDB), 2(1):922–933, 2009.

[3] M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng, T. Kaftan, M. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: relational data processing in spark. In ACM
SIGMOD Int. Conf. on Data Management, pages 1383–1394, 2015.

[4] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query processing. In ACM
SIGMOD Int. Conf. on Data Management, pages 261–272, 2000.

[5] C. Bondiombouy, B. Kolev, O. Levchenko, and P. Valduriez. Integrating big data and
relational data with a functional sql-like query language. In Int. Conf. on Database and
Expert Systems Applications (DEXA), pages 170–185, 2015.

[6] R. V. Bruggen. Learning Neo4j. Packt Publishing Limited, 2014.

[7] F. Bugiotti, D. Bursztyn, A. D., I. Ileana, and I. Manolescu. Invisible glue: Scalable self-
tuning multi-stores. In Int. Conf. on Innovative Data Systems Research (CIDR), page 7,
2015.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2), 2008.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Symposium on Operating Systems Design and Implementation (OSDI), pages 137–150, 2004.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-value
store. In ACM Symposium on Operating Systems Principles (SOSP), pages 205–220, 2007.

[11] D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza,
and J. Gramling. Split query processing in polybase. In ACM SIGMOD Int. Conf. on Data
Management, pages 1255–1266, 2013.

[12] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

[13] J. Duggan, A. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. The bigdawg polystore system. ACM SIGMOD Int.
Conf. on Data Management, 44(2):11–16, 2015.

[14] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. Iterative parallel data process-
ing with stratosphere: an inside look. In ACM SIGMOD Int. Conf. on Data Management,
pages 1053–1056, 2013.

Inria

Query Processing in Multistore Systems: an overview 37

[15] Y. Fu, K. W. Ong, Y. Papakonstantinou, and E. Zamora. FORWARD: data-centric uis using
declarative templates that efficiently wrap third-party javascript components. Proceedings
of the Very Large Data Bases (PVLDB), 7(13):1649–1652, 2014.

[16] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In ACM Symposium on
Operating Systems Principles (SOSP), pages 29–43, 2003.

[17] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries across diverse data
sources. In Proceedings of the Very Large Data Bases (PVLDB), pages 276–285, 1997.

[18] H. Hacigümüs, J. Sankaranarayanan, J. Tatemura, J. LeFevre, and N. Polyzotis. Odyssey:
A multi-store system for evolutionary analytics. Proceedings of the Very Large Data Bases
(PVLDB), 6(11):1180–1181, 2013.

[19] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Mart́ı, and
E. Cesario. The xtreemfs architecture - a case for object-based file systems in grids. Con-
currency and Computation: Practice and Experience, 20(17):2049–2060, 2008.

[20] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jimenez-Peris, R. Pau, and J. Pereira. The
cloudmdsql multistore system. ACM SIGMOD/PODS (Principles of Database Systems)
Conf., page 4, 2016.

[21] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jimenez-Peris, R. Pau, and J. Pereira. Cloud-
mdsql: Querying heterogeneous cloud data stores with a common language. Distributed and
Parallel Databases, page 41, 2015.

[22] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and J. Carey.
MISO: souping up big data query processing with a multistore system. In ACM SIGMOD
Int. Conf. on Data Management, pages 1591–1602, 2014.

[23] M. Lenzerini. Data integration: A theoretical perspective. In ACM SIGMOD/PODS (Prin-
ciples of Database Systems) Conf., pages 233–246, 2002.

[24] A. Nayak, A. Poriya, and D. Poojary. Type of nosql databases and its comparison with
relational databases. Int. Journal of Applied Information Systems, 5(4):16–19, 2013.

[25] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-structured data model
and query language: A capabilities survey of sql-on-hadoop, nosql and newsql databases.
ACM Computing Research Repository (CoRR), abs/1405.3631, 2014.

[26] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third Edition.
Springer, 2011.

[27] E. Pacitti, R. Akbarinia, and M. E. Dick. P2P Techniques for Decentralized Applications.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2012.

[28] E. Plugge, T. Hawkins, and P. Membrey. The Definitive Guide to MongoDB:The NoSQL
Database for Cloud and Desktop Computing. Apress, 2010.

[29] R. Ramakrishnan. Data management in the cloud. In IEEE Int. Conf. on Data Engineering,
page 5, 2009.

[30] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Qox-driven ETL design: reducing
the cost of ETL consulting engagements. In ACM SIGMOD Int. Conf. on Data Management,
pages 953–960, 2009.

RR n° 8890

38 Bondiombouy & Valduriez

[31] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing analytic data flows
for multiple execution engines. In ACM SIGMOD Int. Conf. on Data Management, pages
829–840, 2012.

[32] M. Stonebraker. Operating system support for database management. Communications of
the ACM, 24(7):412–418, 1981.

[33] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin.
Mapreduce and parallel dbmss: friends or foes? Communications of the ACM, 53(1):64–71,
2010.

[34] M. Stonebraker, P. Kreps, W. Wong, and G. Held. The design and implementation of ingres.
ACM Trans. on Database Systems, 1(3):198–222, 1976.

[35] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources with
DISCO. IEEE Trans. Knowl. Data Eng., 10(5):808–823, 1998.

[36] V.Gankidi, N. Teletia, J. Patel, A. Halverson, and D. DeWitt. Indexing HDFS data in PDW:
splitting the data from the index. Proceedings of the Very Large Data Bases (PVLDB),
7(13):1520–1528, 2014.

[37] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Symposium on Operating Systems Design and Implementation
(OSDI), pages 307–320, 2006.

[38] T. White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale. O’Reilly,
2012.

[39] T. Yuanyuan, T. Zou, F. Özcan, R. Gonscalves, and H. Pirahesh. Joins for hybrid ware-
houses: Exploiting massive parallelism and enterprise data warehouses. In Int. Conf. on
Extending Database Technology (EDBT), pages 373–384, 2015.

[40] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster com-
puting with working sets. In USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), pages 10–10, 2010.

[41] M. Zhu and T. Risch. Querying combined cloud-based and relational databases. In Int.
Conf. on Cloud and Service Computing (CSC), pages 330–335, 2011.

Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Cloud Data Management
	Distributed Storage
	Block-based Distributed File Systems
	Object-based Distributed File Systems
	Combining Block Storage and Object Storage

	NoSQL Systems
	Key-Value Stores
	Wide Column Stores
	Document Stores
	Graph Databases

	Data Processing Frameworks
	Concluding Remarks

	Multidatabase Query Processing
	Mediator-Wrapper Architecture
	Multidatabase Query Processing Architecture
	Multidatabase Query Processing Techniques
	Heterogeneous Cost Modeling
	Heterogeneous Query Optimization
	Adaptive Query Processing

	Multistore Systems
	Loosely-Coupled Multistore Systems
	Tightly-Coupled Multistore Systems
	Hybrid systems
	Comparative Analysis

	Conclusion

