Chapter 26

Ex. 1
Four capacitors are connected as shown in Figure P26.21. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor if $\Delta V_{a b}=15.0 \mathrm{~V}$.
(a) $\frac{1}{C_{s}}=\frac{1}{15.0}+\frac{1}{3.00}$

$$
\begin{aligned}
& C_{s}=2.50 \mu \mathrm{~F} \\
& C_{p}=2.50+6.00=8.50 \mu \mathrm{~F} \\
& C_{e q}=\left(\frac{1}{8.50 \mu \mathrm{~F}}+\frac{1}{20.0 \mu \mathrm{~F}}\right)^{-1}=5.96 \mu \mathrm{~F}
\end{aligned}
$$

(b) $\quad Q=C \Delta V=(5.96 \mu \mathrm{~F})(15.0 \mathrm{~V})=89.5 \mu \mathrm{C}$ on $20.0 \mu \mathrm{~F}$

$$
\Delta V=\frac{Q}{C}=\frac{89.5 \mu \mathrm{C}}{20.0 \mu \mathrm{~F}}=4.47 \mathrm{~V}
$$

$$
15.0-4.47=10.53 \mathrm{~V}
$$

$$
Q=C \Delta V=(6.00 \mu \mathrm{~F})(10.53 \mathrm{~V})=63.2 \mu \mathrm{C} \text { on } 6.00 \mu \mathrm{~F}
$$

$$
89.5-63.2=26.3 \mu \mathrm{C} \text { on } 15.0 \mu \mathrm{~F} \text { and } 3.00 \mu \mathrm{~F}
$$

Ex. 2

Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in the figure. Take: $\mathrm{C} 1=5.00 \mu \mathrm{~F}, \mathrm{C} 2=10.0 \mu \mathrm{~F}$, and $\mathrm{C} 3=2.00 \mu \mathrm{~F}$.
$C_{s}=\left(\frac{1}{5.00}+\frac{1}{10.0}\right)^{-1}=3.33 \mu \mathrm{~F}$
$C_{p 1}=2(3.33)+2.00=8.66 \mu \mathrm{~F}$
$C_{p 2}=2(10.0)=20.0 \mu \mathrm{~F}$
$C_{e q}=\left(\frac{1}{8.66}+\frac{1}{20.0}\right)^{-1}=6.04 \mu \mathrm{~F}$

