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Abstract: Industrial Cyber-Physical System (ICPS) monitoring is increasingly being used to make
decisions that impact the operation of the industry. Industrial manufacturing environments such as
production lines are dynamic and evolve over time due to new requirements (new customer needs,
conformance to standards, maintenance, etc.) or due to the anomalies detected. When an evolution
happens (e.g., new devices are introduced), monitoring systems must be aware of it in order to inform
the user and to provide updated and reliable information. In this article, CALENDAR is presented,
a software module for a monitoring system that addresses ICPS evolutions. The solution is based
on a data metamodel that captures the structure of an ICPS in different timestamps. By comparing
the data model in two subsequent timestamps, CALENDAR is able to detect and effectively classify
the evolution of ICPSs at runtime to finally generate alerts about the detected evolution. In order to
evaluate CALENDAR with different ICPS topologies (e.g., different ICPS sizes), a scalability test was
performed considering the information captured from the production lines domain.

Keywords: Cyber-Physical Systems (CPS); scalability test; Internet of Things (IoT)

1. Introduction

Nowadays, Industrial Cyber-Physical Systems (ICPSs) play an important role in the current trend
of automation in manufacturing as Industry 4.0 is increasingly gaining strength [1–3]. ICPSs are
“physical, biological, and engineered systems whose operations are monitored, coordinated, controlled,
and integrated by a computing and communication core” [4]. An ICPS is composed of different
types of devices, i.e., actuators, displays, and sensors. Data from the devices is monitored in order to
transform information that is visualized by the user to monitor the industrial domain [2,5,6].

In the automotive domain, manufacturing production lines are based on press machines (press lines).
A press line is composed of different machines (e.g., press machine and furnace) and every machine
within the press line is composed of different devices. Additionally, each device is able to send different
attributes where the information about that device is reflected. Thus, the press line composition in
addition to the devices within each machine depends on a customer’s real needs, i.e., depending on the
production line, one machine or another is introduced in the press line. Note that the characteristics
of each machine are variable, e.g., different types of furnace exist or different press machine sizes
exist. Additionally, devices within each machine are variable, and they also depend on the customer
needs [5]. These makes each press line different from each other, i.e., different ICPS topologies exist.
Thus, a monitoring solution in Industry 4.0 receives large amounts of data coming from heterogeneous
and distributed devices, which implies that the monitoring system must be scalable enough to respond
to different ICPS topologies. These data are being used to identify anomalies during operation [7,8].
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Additionally, after analyzing the industrial domain, we realized that they required a continuous
renovation, known as retrofitting, i.e., new devices can be introduced, removed, or modified depending
on the customer needs (e.g., new elements of an industrial domain need to be monitored due to
customer requirements, so new devices must be inserted). Users can make decisions that impact the
business [9]. Furthermore, ICPS devices are intelligent; they are able to change the data architecture
depending on the status of the machine that is being monitored. Note that a concrete machine within a
press line can be composed by more that 500 devices [10]. Therefore, being aware of what is happening
in the industrial domain is important. When an evolution happens, many people need to be alerted
in order to detect anomalies to reduce system downtime, since a monitoring system is supported by
different user roles that are interested in different information. Therefore, ICPSs evolve throughout
their lifetimes [11], and managing the variability is crucial in Industry 4.0 [1,2,10], as the data captured
from the ICPS are converted into information for decision-making. Therefore, managing the variability
requires capabilities, posing additional challenges for monitoring ICPSs [1,11,12]. As a part of the
monitoring logic, it is necessary to communicate the occurred evolution to all users who are supervising
the ICPS that is being monitored. Thus, having updated and reliable information at any time allows
users to make decisions. Therefore, monitoring solutions in a dynamic context, such as Industry 4.0,
need to be flexible to identify and integrate ICPS evolutions rapidly to meet the requirements.

Although the identified issues are motivated by a press line domain, we notice that the ICPS
evolution is something known in the literature [13,14], and considering the domain analysis performed
in our previous work [5], we realized that ICPS evolution besides the different ICPS topologies are not
specific problems for press lines. In the literature, many authors consider software evolution [14–17],
but very few of them consider software and hardware evolution [18,19] even though those who
consider runtime variability do not consider uncertainties; hence, as far as we know, no one in the
literature has give the response to detecting ICPS evolution in order (1) to have the traceability of what
has happened in an ICPS over time; (2) to classify the occurred evolution in order to communicate
immediately to the users to avoid any bad decisions; and (3) to give a solution which considers different
ICPS topologies.

That is why, considering the importance of (1) the awareness of the status of ICPS, (2) the existence
of different user roles with each one working with different data, and (3) the need to communicate
changes immediately in order to make decision-making more effective, we propose a system that can
detect and classify the evolution of an ICPS in a fast and efficient manner. To support those challenges,
we present CALENDAR, a Cyber-physicAL systEm evolutioN Detection and Alert geneRation system,
that is capable of detecting and effectively classifying the evolution of ICPSs at runtime. CALENDAR
compares the data received in time Qt, with the data received in the previous time (Qt-1). By comparing
this information, CALENDAR detects changes in an ICPS in a structured way. CALENDAR is able
to identify and classify ICPS evolution and then generates user alerts. Moreover, considering our
solution needs to respond to different ICPS topologies (e.g., different ICPS sizes), we have performed
a scalability test: (I) to prove the validity of our solution in growing ICPSs sizes, (II) to check the
performance based on different types of evolution, and (III) with different press line sizes.

The rest of the article is structured as follows: In Section 2, the use case based on press lines is
explained. Section 3 introduces the problem statement and an overview of the monitoring ICPS in
Industry 4.0. In Section 4, the CALENDAR module for monitoring systems is explained. In Section 5,
the scalability evaluation of CALENDAR is performed followed by the related work in Section 6.
Finally, we conclude the article in Section 7.

2. Use Case: Press Line Domain

One of our partners designs and manufactures mechanical and hydraulic press machines,
complete stamping systems, transfer presses, robotic lines, etc. Considering the manufacturing
production lines designed and developed by our partner are based on press machines, we refer to
them as press lines.
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The automotive world is a sector that is in constant movement and where technological
developments require a continuous technological renovation. The Hot Stamping of Boron Steels
is a recent creation technology that is settling in the sector and which the processes are in constant
evolutions, changes, and improvements. For example, a hot forming manufacturing line for boron
steels consists of 3 fundamental machines, each one tied to the other:

• Destacker: It is the component responsible for (1) unstacking previously cut formats and
(2) introducing the format in the furnace.

• Furnace: Inside this component, the material remains for a minimal time until it reaches a
completely austenitic structure and finally achieves a diffusion of the coating in the substrate.
Currently, our partner used different furnace types: (I) Roller furnaces, (II) Multilevel furnaces,
and (III) Furnace “carousels".

• Press Machine: Once the format is heated, the press machine changes the shape of a workpiece
with pressure. The main characteristic of this machine is that, unlike the trajectory that is necessary
in the forming of cold steels, in the Hot Stamping, the press has to approach the mold as quickly
as possible.

Notice that different press lines exist. Depending on the customer’s needs, the quantity and type
of machines that constitute a press line are different, e.g., three different types of furnaces are used
by our partner; thus, depending on customers needs, one or the other would be used. In turn, each
machine within the press line is composed of different devices. These devices are also variable; they
depend on customers needs, since the customer is the one who decides what to monitor inside the
press lines, e.g., the temperature of the clutch break inside the press machine.

In order to collect quantitative information in addition to getting information about their daily
work, we conducted interviews with our industrial partner. For example, we realized that three
different sizes of press machines can be used inside a press line: large, medium, and small (see Table 1).
Though the number of devices is incremental to the size of the machine, the incidences (i.e., machine
breakdowns) occurring per week are similar in all press machine sizes and are resolved in 1 to 2 days.
Additionally, due to machine maintenance, retrofitting, etc., a press machine can evolve, i.e., new
devices can be introduced or existing ones can be removed or replaced, and these changes affect
between 40% and 59% of the machine.

Table 1. The characteristics of a Press Machine.

Press Machine Characteristics
Product Scale

Small Medium Large

Average number of devices per Press Machine 20 to 49 50 to 99 >500

Percentage of affected devices when the Press Machine
evolves (added, removed, or modified)? 40% to 59% 40% to 59% 40% to 59%

The data captured for each press machine varies, e.g., depending on installed devices. A customer
decides what s/he wants to monitor, and the customers’ requirements keep on evolving, resulting in
several types of changes. Thus, the variability within a press machine exists, since depending on its
purpose, the customer may decide what s/he wants to monitor.

Therefore, in a press line, several machines can be found, each tied to one another. Each machine
has a different objective, and therefore, the characteristics of each one are different. Additionally, note
that each machine (e.g., press machine), as such, can be different (e.g., devices can be from different
providers and the mechanism of the machine can be different). This implies that, in the same press
line, variability exists. Therefore, each machine can evolve, since each machine is independent. This
evolution is known as retrofitting. New requirements usually have an impact on the devices inside
each machine, having to insert new devices (e.g., new elements of an industrial domain need to be
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monitored due to customer requirements, so new devices must be inserted), remove existing ones (e.g.,
due to an anomaly, the device is damaged and must be removed). or modifying them (e.g., a device is
updated and is now able to send more data that was not previously considered). Additionally, note
that every device can send different attributes. These ones can also vary depending on the state of
the ICPS, i.e., some of the devices located in the ICPS are intelligent; they are able to change the data
architecture depending on the status of the machine that is being monitored. Device information is
then sent to the users, so they can make decisions, e.g., repairing a device, since it is not working
properly, or do predictive maintenance because the Remaining Useful Lifetime (RUL) is approaching
to zero (predictive maintenance [20]).

In spite of this, note that the ICPS is composed of different machines with different characteristics.
In the same manner that devices inside the machines can evolve, the press line itself can evolve due to
customers requirements, i.e., new machines can be introduced inside the press line. At the same time,
it is necessary that none of these machines stop, since that would bring negative consequences to the
production (e.g., loss of money).

In addition, in this particular use case explained above, between 30 and 50 people are needed to
support the proper functioning of the press line. Notice that the quantity of people would depend on
each press line to supervise.

Therefore, being aware of what is happening in the industrial domain is crucial. When an
evolution happens, many people need to be alerted in order to detect anomalies to reduce system
downtime. In Table 2 is shown the different roles that the users have in order to support a press line.
Thus, depending on the user role, the interest of the users in terms of data is different. In spite of that,
all of them need to be aware of what is happening in the ICPS that is being monitored. This results
in the following conclusions: (1) a solution able to automatically detect ICPS evolution is necessary.
(2) Alerting each user about the evolution is necessary to be aware of the status of ICPS, as it helps
in making decisions. (3) The presented solution needs to be scalable in order to give responses to
different ICPS sizes.

Table 2. The user roles for press line supervision.

Role Definition

Operator Controls the operation of the press line.

Analytical Manager Analyzes the historical data in order to to find machine patterns
or trends.

Domain expert
Analyzes at runtime the raw data of a specific device or group
of devices to detect any malfunction or anomaly.

Technical Assistant Provides technical assistance, i.e., people in
charge to solve any incidence that can occurred as fast as possible

Assistance management
If an incident cannot be solved by the Technical Assistants, a more exhaustive
assistance has to be planned. Thus, in that case, the issue will be transferred to the
Assistance Management in order to solve the incidence.

3. Problem Statement and Solution Overview

After analyzing the press line domain, we discovered that monitoring their ICPSs is necessary.
Motivated by our industrial partner, in this section, we explain the problem statement which is
(Section 3.1) followed by the solution overview in Section 3.2, where the given solution is provided.

3.1. Problem Statement

Different ICPS sizes exist and are being supported by different user roles. That means that not
everyone is working or is interested in the same information. Additionally, the ICPS can evolve over
time, for example, when an anomaly occurs, the devices need to be repaired; this means that there
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are often changes in the ICPS itself in order to continue operating normally. The ICPS can also evolve
due to business reasons, i.e., new machines need to be introduced in the press line in order to adapt
the product to the business demands. This means that an ICPS is not static and can evolve over time
and that, as many people are supporting the ICPS, it is necessary to inform them about the occurred
changes.

Although the motivation of the problem comes from the press line domain, notice that it is not an
isolated case; the evolution of an ICPS already appears in the literature [13,14]. Moreover, taking into
account the domain analysis performed in our previous work [5], we realized that the evolution of an
ICPS besides the different ICPS topologies, are issues that also occur in automated warehouse domain,
besides in a catenary-free tram, an intelligent elevator, or wind turbine domains [21].

Note that an ICPS is composed of different devices, and these can have logic or physical
distributions. Every device is able to send different attributes (e.g., temperature and pressure).
Additionally, as discussed in our previous work [5], a device is associated with an agent. This agent
can be intelligent, i.e., depending on what happens in the industrial environment, the information to
be sent may be different, e.g., alerts. Hence, an intelligent device which is associated with an agent is
able to start sending a new attribute that, in a previous state, was not sent. Thus, considering that an
ICPS can be composed of different machines and each one can be composed of more than 500 devices,
having control of all agents is not feasible. This causes the proper distribution of the data to change.
Thus, every ICPS has a concrete distribution, either logical or physical, in addition to the fact that
each device can send different attributes. Thus, either the attributes or the distribution of the ICPS can
evolve, i.e., in an ICPS, structural changes can occur.

In spite of this, it should be considered that self-adaptation is important when talking about
ICPS [12]. These means that different self-adaptation levels exist when an ICPS evolves: (1) sensor or
hardware level, (2) software monitoring level, and (3) data visualization level. However, as Schütz
et al. remark [13], the reconfiguration is not available at a sensor level. However, the monitoring
software [5] and the information visualization [10] do need to be adapted. This is crucial in Industry
4.0 [1,2,10], as the data captured from the ICPS are converted into information for decision-making.
Thus, once the data is received and structured, we propose to identify the evolution by comparing the
data of two-time instances. A dataset comparison is widely used to predict future trends [22,23], but
as far as we know, it has not been used to identify ICPS evolution.

Considering the importance of (1) the awareness of the status of ICPS, (2) the existence of different
user roles with each one working with different data, and (3) the need to communicate changes
immediately in order to make decision-making more effective, we propose a system that can detect and
classify the evolution of an ICPS in a fast and efficient manner. To support those challenges, we present
CALENDAR, a Cyber-physicAL systEm evolutioN Detection and Alert geneRation system.

3.2. Solution Overview

Figure 1 illustrates an overview of the monitoring of an ICPS and how an evolution can be
detected by CALENDAR. CALENDAR is capable of detecting additions, removals, and modifications
on an ICPS (e.g., integration of a new device) immediately (next time the data is received).

The monitoring system is composed of three subsystems: (1) the data management subsystem,
responsible for capturing data from an ICPS and building the corresponding Data Models;
(2) CALENDAR, responsible for analyzing the evolution occurred in the ICPS; and (3) the visualization
subsystem, which is responsible for communicating to the user the evolution in a proper manner.

The data management subsystem uses Data Models to create a snapshot of the ICPS at a specific
moment in time. Thanks to it, both the structure of the ICPS and the data are captured. Thus, from the
received data, the Data Collector extracts a specific Data Model that saves all the information received
from the ICPS at a given time as explained in our previous work [5].
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Figure 1. An overview of monitoring Industrial Cyber-Physical Systems (ICPSs): the captured data
and detected evolution to alert users.

Once the Data Model is formed by the Data Collector, CALENDAR starts working. It is important
to know that CALENDAR is suitable once the evolution has occurred. CALENDAR is a reactive
system, i.e., reacts to changes that have happened; it does not anticipate them.

Inside CALENDAR, the Data Model Comparator analyzes if any change has happened since the
last time the data was received. In the case that any evolution occurred, CALENDAR is responsible for
classifying the occurred evolution in a Diff Model.

ICPS evolves over time, so detecting changes in the structure such as the addition or removal of
devices are critical to providing the user with the right information to make decisions. CALENDAR
is responsible for detecting the evolution in an ICPS and its classification. For each Data Model,
CALENDAR compares the current instance (Data Model Qt) with the previous instance in time (Data
Model Qt-1) to identify the evolution of an ICPS. Diff Models are used to classify changes and to alert
the user on the instat that evolution occurs through the visualization subsystem. In this way, the user
is fully informed of what is happening and can, therefore, be supported in decision-making.

Thus, if the ICPS can be represented by the Data MetaModel, CALENDAR is able to analyze at
runtime if any changes have occurred. Hence, CALENDAR is able to detect any evolution which can
be represented by the Data MetaModel (presented in Section 4.1). For example, imagine that due to the
intelligence of a device, this one starts sending a new attribute which was not previously represented
in the Data Model. In this particular scenario, CALENDAR is able to detect a new attribute at runtime
in addition to classifying it.

The visualization subsystem, already developed and evaluated in Reference [10], is capable of
visualizing both the information (information visualization) and the alerts (alert visualization) to
communicate changes to the user. Moreover, the subsystem is also responsible for managing the
invalid visualizations, i.e., if the ICPS evolves (e.g., a device is removed), the visualization fails due to
the fact that the information to be displayed has disappeared. Thus, the visualization subsystem is
able to manage those situations so that the visualization is adequate in addition to informing users
about the occurred changes.

CALENDAR ensures the detection of evolution in an ICPS. An ICPS faces changes frequently, and
controlling them is necessary for users to make valid decisions. In the following sections, we detail
CALENDAR and provide an evaluation that shows its applicability in real scenarios.

4. CALENDAR

In this section, we focus on CALENDAR, i.e., a system that compares the current instance (Data
Model Qt) with the previous instance in time (Data Model Qt-1) to identify the evolution of an ICPS.

The objective of CALENDAR is to detect an ICPS evolution. Once an evolution occurrs, our
solution is able to identify at any level, the additions, removals, or modifications by comparing Data
Models in subsequent timestamps.

In Figure 2, the real scenario of monitoring an ICPS is presented, which was developed with
SpringBoot. As mentioned above, the Data Collector, which is based on Kafka, is a distributed
streaming platform that is responsible for generating the Data Models, taking into account the data
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received from the ICPS. Once the Data Model is created, it is stored by the Data Collector in a NoSQL
database (Elasticsearch), so in this manner, CALENDAR can then use any stored Data Model.

Once the Data Model is stored and a new one is detected, CALENDAR starts working.
CALENDAR is composed of two main components: (I) Data Model Comparator, the component
responsible for comparing two subsequent Data Models, and (II) Diff Models, the instance of Diff
MetaModel responsible classifying the occurred evolution.

Figure 2. A real scenario of monitoring ICPS, detecting the evolution, and alerting users.

In this section, first, we present the Data Models that CALENDAR is going to use in order to
detect ICPS evolution (Section 4.1). We present the characteristics of the Data Model in order to define
what kind of evolution will be able to detect. Then, in Section 4.2, how CALENDAR is able to compare
two Data Models using the Data Model Comparator component is presented. Finally, in Section 4.3,
the Diff Model where the result of the Data Model Comparator classification is explained.

4.1. Data MetaModel

The Data MetaModel is the artifact that allows a representation of both the data and structure at
once. It has a tree structure to facilitate the evolution detection [24] and contains seven levels [5] that
represent the logical and physical structures of different ICPSs. The Data MetaModel is a combination
of two different standards (i.e., IEC 62264 and IEC 61850). In order to be valid this Data MetaModel in
different ICPSs, the following requirements need to be considered:

• Quantity of levels: The Data Model conformed by the Data MetaModel will always be composed
of 7 levels, i.e., there cannot be a branch containing only 5 of them.

• ICPS representation: The Data MetaModel has a hierarchical structure. This implies that a
node of the Data Model cannot depend on several nodes, i.e., a single node contains a single
parent node.

• Physical/logical structure: Even if in an ICPS, a node can communicate with other nodes, in our
Data MetaModel, the relation between nodes is not reflected. Each node is independent of the
rest. If we wanted to reflect the relation between nodes, another model must be used.

• Atomic values: Although the Data MetaModel supports complex data structures, we do not focus
on the analysis of these complex data. That is why, the Data MetaModel is designed for atomic
data values, i.e., simple data (e.g., Boolean, Integer, and String).

In addition, it is important to notice that these Data MetaModels are also valid for monitoring
multiple ICPSs, i.e., multiple press lines. More information about the Data MetaModel is provided in
Reference [5]. In the next table, information about each level of the Data MetaModel is provided:
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Table 3. The level types of the Data MetaModel.

Level Type Descriptions

Enterprise ICPS identification, name
Site Geographical or physical distribution of the ICPS
Area Logical distribution inside the ICPS
Logical device Devices description
Logical node Device identification
Data Information description that the devices send
Data attribute Concrete information that the device sends inside the data.

Thus, the Data Collector generates a Data Model that conforms to this Data MetaModel in each
timestamp. Once the Data Model is captured, the Data Model Comparator analyzes if any change has
happened since the last time data was received.

4.2. Data Model Comparator

For each Data Model, the Data Model Comparator compares the current instance (Data Model Qt)
with the previous instance in time (Data Model Qt-1) to identify the evolution of an ICPS. To perform
the comparison between the two Data Models, CALENDAR uses Javers. Javers is a library able to
compare complex structures and to detect changes. Javers’ output is not enough for our purpose so we
have post-processed the results of Javers.

Notice that Javers does not take into account the hierarchical dependencies between nodes.
However, the dependencies in an industrial environment are something necessary because it is
valuable to visualize the result in a simple and meaningful way to the user in order to help him/her
make decisions. That is why we need to post-process the Javers result. For example, in the press
line domain due to business strategy, imagine it is necessary to remove Zone B. In the upper part of
Figure 3, the Data Model before an evolution occurred (Qt-1) is shown, e.g., the Press Machine product
line of Mexico is composed by two areas. However, in the lower part of the figure, the Data Model after
an evolution (Qt) is presented, e.g., Zone B is removed from the Press Machine product line. Therefore,
all nodes that depend on that zone are removed (e.g., Machine 1). When CALENDAR compares Qt
with Qt-1 using Javers, this one detects a change for each modified, added, or removed node. In this
case, Javers generates 1001 alerts when Zone B node is removed using a Json Object format or 1502
alerts using a Json Array format. This quantity of alerts do not facilitate the task to the user when
data is represented. Even if the example given is due to a business strategy, note that, as mentioned in
Section 3, many reasons can trigger the evolution of an ICPS, e.g., devices’ intelligence itself can cause
changes in the Data Model. Additionally, it is important to notice that many people are supporting the
monitoring system and that not all of them are interested in the same data or information [10]. In spite
of that, all of them need to be informed about the occurred evolution.

Thus, we concluded that the comparison provided by Javers is format-dependent, i.e., the format
of the text model impacts the result. If Json arrays [25] are used, the order is taken into account. Thus,
when removing node Zone B, the nodes on the right are marked as modified, i.e., Zone C is marked as
modified, ascending the number of alerts to 1502. Instead, if we use Json Objects [25], when the order
of a node changes (due to an addition or removal), it is not marked as a change.
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Json Type Change quantity Observations

JSON ARRAY 1502

The movement of zone C to the right is considered a
change (500 + 1 changes, zone C and all the devices)
The insertion of new elements is considered a change
(1000 + 1 new insertions, zone B and all the devices)

JSON OBJECT 1001
The insertion of every node is considered a change
(1 + 1000, Zone B and all dependent nodes)

Figure 3. Text model comparator operations depending on the input.

To overcome this limitation, besides using Json Objects, we post-process the Javers result and use
a model to manage the post-procesed output, which only generates the necessary alerts for the user
(Diff Model); in this particular case, we will only generate a unique alert, i.e., Zone B is removed.

4.3. Diff MetaModel

In Figure 4, a diagram of the process for creating the concrete Diff Model is presented. The
process starts when a new Data Model is received, on the right side of Figure 5, the Unified Modeling
Language (UML) diagram of the Data MetaModel is shown. In that moment, CALENDAR gets the
received Data Model and the previous instance, i.e., Qt and Qt-1. Then, the Data Models are compared
by the Data Model Comparator using Javers as explained in the previous section. If the result is not
empty, CALENDAR gets the result of Javers and treats each action differently (new, remove, or change).
This is because the information to be saved depends on the type of change that occurred. Once the
attributes are mapped, the information is classified based on the Data MetaModel types (see Table 3).
This manner simplifies to identify where the evolution has occurred. Then, if elements are added
or removed, it is necessary to delete the unnecessary information despite duplicated information as
mentioned above (e.g., from 1001 alerts to 1, i.e., we do not take into account nodes below Zone B).
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Finally, all the information is set to create the Diff Model. Once the process is finished, the created
Diff Model is stored in a NoSQL database in order to keep track of the traceability of the occurred
evolutions over time.

Figure 4. The Diff Model creation a diagram.

The Diff MetaModel contains information about the types of changes, the level in which the
changes have occurred and the nodes affected by the changes. The level type is related to the level
of the Data MetaModel and describes in which level of the Data Model the changes occurred (e.g.,
site). Therefore, the Diff Model can have a maximum of seven level types, one for each Data Model
level. That is, all the identified changes in a level (e.g., area) are grouped. This classification facilitates
communication among users.

Inside each level, the metamodel considers three types of changes that occur when an ICPS
evolves (see Figure 5).

• ADD: all the new nodes that do not exist in the previous instant.
• REMOVE: all the nodes that have disappeared at the previous instant.
• MODIFY: if the node exists, but a change has happened in it.

To reduce the alerts of removal or addition explained in the previous section (i.e., "delete duplicated
INSERTED/REMOVED objects and unneccesary information"; see functions of Figure 4), e.g., from
1001 alerts to 1 alert, a FatherChildNode is used to group the affected nodes, see Figure 5. The
FatherChildNode is an instance of a DataModelChild, that is, a subtree with the node changed and its
children and contains the nodes affected by an addition and removal. Note that the FatherChildNode
does not need to contain the seven levels; despite this, the Data Model will always be composed of
seven levels as mentioned in Section 4.1.
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Figure 5. The Diff MetaModel structure for alerting users about ICPS evolution.

When a node is removed or inserted, a FatherChildNode is saved that extends from GroupElement
i.e., the GroupElement describes the FatherChildNode, since it describes the DataModelChild. For
example, Figure 3 only shows the first five levels (enterprise, site, area, logical device, and logical
node); in a real scenario, it would be composed of seven levels. When Zone B is removed, the
FatherChildNode would be composed of Zone B and its children, i.e., DataModelChild only contains
five levels (area, logical device, logical node, data, and data attribute); the enterprise and site will not
be saved. In this manner, we reduce the number of alerts. A description of each variable in the Diff
MetaModel is presented in Table 4:

Table 4. A description of the information saved in each Diff Model.

Variable Description

father_ID
The identifier of the node from which an
element has been added, deleted, or changed.

newObjectID The identification of the newly inserted node

where
A path pointing to the entire chain from the
enterprise to the newly inserted object.

FatherChildNode
The tree that depends on the inserted or deleted node.
This tree does not necessary have seven levels; it will depend
on the fatherID level.

changedObjectID The identification of the changed node

oldValue The value previously held by that node

newValue The value currently held by the node

A Diff Model that conforms to a Diff MetaModel is created automatically from Javers output
every timestamp, and then, it is stored in Elasticsearch. Thus, it is possible to classify all the changes
so that they can be presented easily to the user. Thanks to this metamodel, the number of alerts are
reduced and we avoid redundant information because we just save the deepest node that is changed,
excluding all below nodes.
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5. CALENDAR Evaluation: Scalability Test

Despite ICPS evolution, different ICPS Data Model sizes exist, e.g., a press machine can be
composed of 50 or more than 1000 devices, this being one of the machines within the press line.
In addition, a customer can also be interested in monitoring multiple press lines; thus, the size of the
environment can be huge. In order to ensure the usability of CALENDAR in different ICPS sizes,
we provide a scalability test.

The data to perform the scalability test were created in a random way, since we had no access
to the real data to perform the scalability test. Thus, considering that the Data Collector generates
every Data Model that conforms to the Data MetaModel, we simulate these Data Models randomly.
In this way, we can also conclude that CALENDAR is applicable for other domains that use the Data
MetaModel as a base, as long as the scenario to be monitored complies with the Data MetaModel
characteristics presented in Section 4.1.

All the experiments have been performed on a laptop with a CPU Intel (R) Core (TM) i7-4600U
CPI @ 2.10GHz CPU. In addition, the computer in use had a 16 GiB memory with a 64-bit operating
system (Linux) and a 500-GB disk (HDD). The correctness of the Diff Models was tested manually
with a smaller Data Model. Java Microbenchmark Harness (JMH) (https://www.baeldung.com/java-
microbenchmark-harness) was used to execute an accurate microbenchmark in an automatic way, i.e.,
measure the average time that CALENDAR takes to run and the confidence interval of the average.

In order to get reliable numbers, each query was processed 200 times for each evaluation case and
Java Virtual Machine was restarted for each execution for each test.

Considering that changes can occur in any of the Data Model levels but mostly that the evaluation
occurs at the devices (i.e., Logical Node), in the evaluation, we simulate changes in this level. For the
evaluation, as mentioned above, we randomly generated Data Models with 50, 100, 500, 1000, 5000,
and 10,000 devices. Each Data Model was cloned and the changes were inserted: an addition, removal,
modification, and random changes (addition, modification, and removal). Finally, we established
different percentages of changes (from 20% to 100%). Note that 100% means an addition of 10,000
devices in the largest model or a modification of the devices. In the case of removal, we skipped the
removal of 100%, as it would result in an invalid Data Model. The scalability test results are reflected
in Appendix A and Table A1.

In this evaluation, we address “Which is the performance of CALENDAR?” To do so,
we distinguish three different configuration factors (F) that may impact

• F1→ Type of change: We measure how the type of change (addition, modification, or removal)
impacts the performance (execution time).

• F2→ Percentage of devices changed: We measure how the number of devices changed impacts
the performance (execution time).

• F3→ Size of the Data Model: We measure how the increasing size of the Data Model impacts
the performance (execution time).

5.1. Discussion

Considering all the results obtained, the following section discusses the factors F1, F2, and F3 as
well as a joint analysis of them all. The results have been evaluated against the following quantitative
metrics: AVG: Average Execution Time in milliseconds (ms) and CI: Confidence Interval (ms).

5.1.1. F1: Type of Change

In Figure 6, we show the different ICPS Data Models separated by the different changes, i.e.,
inserted, removed, or modified. The type of change seems to affect our system. That is, the detection of
adding a device is not the same as detecting that a device is removed or modified. Taking, for example,
the Data Model of 50 devices, the adding devices average is 21.0176 ms ± 0.738 ms, removing devices
is 12.30825 ms ± 0.3645 ms, and modifying devices is 16.2452 ms ± 0.5166 ms. In the case where all

https://www.baeldung.com/java-microbenchmark-harness
https://www.baeldung.com/java-microbenchmark-harness
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kind of changes are made in the same Data Model (insert, remove, and modify), the time needed
is 16.1666 ms ± 0.6328 ms. The difference between removing and inserting devices (maximum and
minimum execution time) is about 71% for this Data Model.

Size Insert (ms) Remove (ms) Modify (ms) Random (ms)

50 21.0176 ± 0.76 12.30825 ± 0.3645 16.2452 ± 0.5166 16.666 ± 0.6328

100 47.031 ± 0.5842 28.1455 ± 0.7605 36.6702 ± 0.616 36.6632 ± 0.801

500 216.7906 ± 3.9016 120.181 ± 1.609 161.8192 ± 2.5052 134.6054 ± 1.6938

1000 1187.855 ± 45.1296 353.148 ± 35.8075 80.7182 ± 31.8412 787.4724 ± 26.7418

5000 8366.062 ± 439.4848 3889.366 ± 475.1935 7957.895 ± 195.502 6312.037 ± 391.2232

10,000 14,750.11 ± 217.8432 9688.494 ± 231.494 1.714.11 ± 34.9484 12,257.34 ± 45.1536

Figure 6. The execution time averages in different ICPS Data Model sizes.

Considering the differences between the highest and lowest execution times of all Data Models
(see Table 5), we can conclude that it does not have a relation with the size of the Data Model. However,
in all the cases, the difference between the maximum and the minimum is 50% up to 220%.

Table 5. The max and min execution time difference percentages.

50 100 500 1000 5000 10000

The difference between insert and remove 71% 67% 80% 224% 115% 52%

The type of change to detect and classify the evaluation affects the result. Thus, detecting removals
is less expensive than detecting insertions in a Data Model. In the same way, the execution time for
modifying devices is between adding and deleting. In the case of random changes, the maximum
(insert) and minimum (remove) time are compensated, and therefore, the average time achieved is
more or less in the middle.
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5.1.2. F2: Percentage of Changes

This factor evaluates whether the percentage change affects the execution time, i.e., if with the
same Data Model (e.g., 1000 devices), changing 20% (e.g., 200) or 100% (e.g., 1000) of devices influences
the time required (execution time) for detecting changes. The results are shown in Figure 7.

Figure 7. The increase in the percentage of changes in different ICPS Data Model sizes.

Considering the different changes that can occur, we observe that

• Inserting: The higher the percentage of change, the higher the execution time. In the smallest
Data Model (50 devices), the execution time has an increase of 41.89%. With a bigger Data Model
(e.g., 10000), the difference is 46.49%. Considering all the results (see Table 6), more or less of the
difference between the minimum and maximum execution time when the percentage of change
changes is between 40% and 60%. Therefore, as it is reflected in Figure 7, the growth of time is
linear to the percentage of change.

• Removing: The lower the percentage of change made, the longer the execution time. In addition,
the time decreases linearly. The execution time required for removing 20% in a 50 device Data
Model is 14.462 ms, but in 80%, it is 10.06 ms. A difference of 52.86% exists, reaching 143.98% in
the case of 1000 devices.

• Modifying: Increasing the percentage of change does not have a negative impact on time. The
major percentage of change occurs with 1000 Data Model sizes, i.e., 0.013%. That is why we can
concluded that the trend is constant.

• Random: This scenario is similar to modifying devices, i.e., increasing the percentage of change
does not have a negative impact on the time, making the trend rather constant. Moroever, this is a
case that depends a lot on the changes that have taken place.

Therefore, in a common scenario where we do not control over what is going on, we can assume
that the percentage of change does not have a negative impact on the execution time needed. The
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times for adding and removing are compensated for each other, leaving a rather stable time when
making random changes.

Table 6. The difference between the minimum (remove) and maximum (insert) execution times.

50 100 500 1000 5000 10000

% of ADD 41.89 37.27 49.21 56.20 63.51 46.49

% of MODIFY 7.19 7.02 7.40 12.57 6.44 0.60

% of REMOVE 52.86 52.00 56.70 143.96 84.63 120.71

% of RANDOM 40.92 12.08 7.71 15.49 134.10 8.19

5.1.3. F3: Size of the Data Model

In order to see if the ICPS Data Model size affects the execution time needed, we extracted the
values of the random test case (see Appendix A and Table A2). As we have concluded in factor F2, in a
real scenario, we do not know about the change that is going to happen, and it has also been shown
that time is more or less constant in terms of the number of changes that have occurred. In this manner,
we contemplate all the cases without focusing on a single change. As it is shown in Figure 8, the larger
the ICPS Data Model, the longer the execution time is. For detecting 100% of changes in a 1000 device
Data Model, i.e., 1000 changes, CALENDAR needs an average of 754.174 ± 736.894 ms in contrast in
the 5000 device Data Model detecting 20% of changes, i.e., for the same quantity of changes (1000),
the time needed is bigger (7948.296 ± 7740.268 ms). For detecting the same quantity of changes, 546%
more time is needed, i.e., equivalent to 6.6% of seconds. Looking at the graph, we know that this is
not an isolated case; it is something that occurs if we compare different Data Model sizes. That means
that the Data Model size, i.e., the input, impacts the output. The larger the size of the Data Model, the
longer the time needed to calculate the differences even though the number of changes is the same.

Figure 8. The time need for detection versus ICPS Data Model sizes (the axes are in logarithmic scale).

In order to see the trend that our system has, we calculated the average needed for each ICPS
Data Model size (considering random changes results). Analyzing the results, we can observe that
they tend in a potential way, which can be represented as follows: y = cxa.
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Thanks to a linear regression, i.e., a mathematical model used to approximate the relationship of
dependence between a dependent variable (time) and the independent variables (quantity of devices),
we obtain values a = 1.28852412 and c = 0.08764925519477608.

Thus, we obtain the equation f (x) = 0.08764925519477608x1.28852412, which is represented in
Figure 9 and shows the relation between the ICPS Data Model size and the execution time.

Figure 9. The time growth trend when we increase the number of devices (the axes are in logarithmic scale).

Henceforth, using this solution with a high quantity of devices could be a problem, since if
CALENDAR needs to be used in an ICPS with many devices, it is necessary to provide a solution
to the scalability problem found in order to reduce the execution time. If a fast response is needed
when the number of devices is high, this module would not be able to give a fast enough response to
the user. For example, in a small (50 Data Model size) scenario, 0.016 ± 0.0006 s are needed, but in a
bigger one (5000 Data Model size), 6.312 ± 0.3912 s are needed. Usually, the latency of an industrial
monitoring system is about 2000 ms. That is why our system is not profitable enough in real-time big
Data Model scenarios.

5.1.4. Factor Analysis (F1, F2, and F3)

Considering all factors, we realize that, with small Data Models, the average time that
CALENDAR needs for communicating alerts is smaller. In the same manner, taking into account
Figure 9, we see that the behavior of the small Data Models is smoother than that of the larger ones as
the trends are clearer. Thus, currently, CALENDAR is able to give responses to small ICPSs as long as
it meets the customer’s requirements, i.e., the latency is adequate.

In industrial scenarios in which monitoring has a latency that does not support our solution,
we propose to split the Data Model file into different files, making a comparison in each of the files.
The following chart shows (Figure 10) the relation between the file size and the execution time, where
it is shown that the smaller the file, the smaller the execution time.

Taking into account the results of Figure 10, we propose a division of the Data Models into
sub-Data Models. Because there are no data dependencies between the tasks to be parallelized, we can
use the parallel computing theory to decrease the response time. Dividing the model, we get that
each sub-Data Model is smaller and, thus, that the individual execution time needed will be smaller.
In the same way, several sub-Data Models would be executed at the same time, so we would lower
the total execution time. However, it is necessary to consider that a Deviation Time (det) exists, since
time is needed to split the Data Model in sub-Data Models and then the result needs to be joined,
i.e., the different sub-Diff Models need to be converted into a unique Diff Model to finally transfer the
information to the user. In Figure 11 is shown an activity diagram where, using the parallel computing
theory, we can reduce the execution time in order to give a response to the problem founded.
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Figure 10. The relation between different Data Model file sizes and the elapsed execution time (the
axes are in logarithmic scale).

Note that, for dividing the Data Model into sub-Data Models, we need to calculate the optimal
division value, i.e., the value that instructs in how many sub-Data Models we should separate the
model. To do so, we need to consider: (I) the time tendency formula (Formula 2) and (II) the deviation
time that the proposal will have (Figure 11). Thus, by developing this improvement and performing
a scalability test, we will be able to calculate the deviation time. Once we have the deviation time,
we will be prepared to calculate the corresponding function to obtain the optimal division value.

Figure 11. An activity diagram for reducing the alert module result time.

We make use of the parallel computing theory; dividing our Data Model in sub-Data Models
and calculating the optimal division value, we will generate a model capable of dividing the Data
Model in an efficient manner with the aim of parallelizing the comparison and, thus, reducing time.
Furthermore, in Big Data scenarios, thanks to the Map & Reduce programming models, there would
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be no problem in parallelization. Thanks to the Map functions, the differences between the sub-Data
Models will be founded, and then, the Reduce functions will join the results. Notice that this is only a
hypothesis, which will need to be evaluated in the future.

5.2. Threats to Validity

As for internal validity, not all test cases are analyzed, i.e., we only evaluated the variability on the
device level (Logical Node), and this may be a threat at the time of conclusion. Although, considering
the personal interviews with our industrial partner, the most variable part has been evaluated (device
variability), it would be interesting to examine other industrial domains to consider that it is applicable
to them.

As for the external validity, an evaluation is not performed in a real environment, i.e., the computer
used has fewer resources than a possible industrial PC. It is, therefore, appropriate to perform this test
in a real environment in order to obtain more realistic results.

6. Related Work

There are some proposals in the literature that address monitoring solutions for ICPSs [19,21].
ICPS monitoring solutions are used in different domains such as traffic control and safety,
manufacturing, or energy conservation [21,26]. In the same manner, some authors propose monitoring
ICPSs to detect attacks that can affect the systems [27] or even for, storage data, data analysis, and the
use of machine learning techniques to automatically update ICPS functionalities [28]. Despite that,
different authors manage ICPS variability regarding the software [14,15], and a few of them consider
hardware variability [18,19]. Hernandez and Reiff-Marganiec [18] propose a framework where smart
objects start working in a autonomous way from a passive position to an active one. Unlike our system,
these smart objects only consider variability at the Cyber Layer not in the Physical Layer. Chen et al. [19]
recognizes variability at the Cyber and Physical Layers, but it is not able to manage the variability
at runtime.

Therefore, ICPSs evolve throughout their lifetimes [11], but the previous presented solutions do
not consider the traceability and the communication of the evolution at runtime. Note that managing
the variability is crucial in Industry 4.0 [1,2,10], as the data captured from the ICPS are converted into
information for decision-making. Note that the ICPS evolution includes not only software but also the
addition, removal, and replacement of already installed devices [10,19], as ICPSs and their operating
environment are highly dynamic due to, e.g., a deployment of autonomous devices. Therefore,
flexibility and adaptation are the two required capabilities posing additional challenges for monitoring
ICPSs [1,11,12].

Thus, even if the evolution of an ICPS is something known in the literature [13,14], as far as we
know, no one in the literature has given a response to detecting ICPS evolution in order (1) to have
the traceability of what has happened in an ICPS over time and (2) to communicate the evolution
immediately to the users to avoid any bad decision. Additionally, note that the data structure changes
when the ICPS evolves; that implies that new data need to be captured by the monitoring system in
addition to being visualized as new information to the user. It is, therefore, necessary to manage the
evolution, since different user roles exist and all must be informed.

Thus, in our solution, the data captured from the monitoring system is structured with tree
models, since according to Reference [24], using a tree model structure facilitates the detection of an
evolution. Tree models have been used in medicine (mutation tree) to identify the mutation of atoms,
molecules, particle, etc. which are reflected in trees [29]. Melnik et al. use the comparison of models to
then match the two trees in order to turn them into one [5]. Thus, tree-shaped models are recognized
when it is necessary to detect evolution. Additionally, with a tree-shaped model, the structure beside
the information is be transferred [30].

Thanks to tree models, the detection of an evolution is more immediate. This allows users to
report what has happened at all times. For that, different methods for the comparison exist, which are
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used for tree-shaped models [24] such as SiDiff, UMLDiff, WinDiff, WinMerge, and SMDiff. Some are
text comparators like SiDiff, and others are graphic comparators (UM-LDiff, WinDiff, WinMerge,
and SMDiff). Although the graphics buyers show you the result visually, they are not suited for runtime
use and our need is to find such changes at runtime. WinDiff (https://windiff.waxoo.com/) and
WinMerge (http://winmerge.org/?lang=es) are line-based tools, i.e., changes will not be expressed at
logic issues. Trip-wire (https://github.com/Tripwire/tripwire-open-source) is able to detect changes,
but it is not able to detect which are the changes, and Remedy (http://www.bmcsoftware.es/it-
solutions/remedy-itsm.html) is able to detect changes in the structure but not on the values. In our
case, the whole architecture needs to be analyzed, i.e., the ICPS structure and the corresponding values.
Cobana et al. and Weaver et al. have selected ad hoc solutions. The former one proposes an algorithm to
compares XML files [31], and in our case, the information has a JSON format. In addition, the solution
is for websites, and the movements inside the same father are considered changes, i.e., the format of
the XML impacts the result; hence, it is not a valid solution for us. The latter instead [30], even if they
are able to detect a change in a concrete moment in time, do not retain the traceability of changes.
In addition, the output script must be saved and processed for it to be interpretable.

Inspired on these works, our proposal (CALENDAR) uses a tree-shaped model structure as
input (i.e., the Data Model is the output of the monitoring system) for a comparison and detection
of evolution. Each detected evolution is stored in a specific model (Diff model) in order to have the
traceability of what has happened during the whole useful life of an ICPS. Among all the comparison
methods available for tree-shaped mode, in our case, we have selected Javers, as in our previous
work [10], it is shown that it is a model text comparator suitable for JSON format (tree-model structure)
received from the ICPS.

The novelty of this paper lies in the following which, as far as we know, has not been addressed
in the literature: (1) CALENDAR helps users to be informed immediately. (2) Thanks to CALENDAR,
you can keep track of all changes that have happened over time, and thus, users can avoid any bad
decisions. (3) With CALENDAR, we are able to classify the occurred evolution, reducing the quantity
of alerts. (4) With the union of CALENDAR and the contribution published previously [10], the users
will be able to receive graphical alerts.

7. Conclusions and Future Work

This paper presents CALENDAR, a Cyber-physicAL systEm evolutioN Detection and Alert
geneRation System, in order to detect structural changes and to classify them in an efficient way when
the ICPS evolves. Different changes (insertion, removal, or modification) can occur when an ICPS
evolves; hence, it is necessary to alert the user in order to make correct decisions. For that, the ICPS is
monitored and a data model is formed. The data model captures the structure and the information
of the ICPS at every timestamp, and it has a tree structure. Then, in CALENDAR, a model text
comparator is used to compare the data model received in a time (Qt), with the data model received
in the previous time (Qt-1). The problem is that these comparators (e.g., Javers) do not take into
account the dependencies between nodes. Due to this problem, the number of generated alerts grows,
so Diff Models are used to classify these alerts, reducing the number of alerts and communicating the
evolution to the user in a more direct way, avoiding redundant information.

Despite ICPSs evolution, different ICPS exist, i.e., a press line can be composed by different
machines which are composed by different devices. For example, in a press line, a common machine is
the press machine which can be composed of 50 or more than 1000 devices. Thus, considering that a
press line is composed by different machines, the quantity of devices to monitor is high. In order to
ensure the usability in different ICPSs, we provide an evaluation (scalability test) to evaluate different
factors: (1) if the time needed to detect ICPS evolution is different depending on the occurred changes
(insert, remove, or modify); (2) if the time needed to detect ICPS evolution is the same when varying
the percentage of changes in the same tree structure; and (3) if the time needed to detect ICPS evolution
is the same when the number of devices is different.

https://windiff.waxoo.com/
http://winmerge.org/?lang=es
https://github.com/Tripwire/tripwire-open-source
 http://www.bmcsoftware.es/it-solutions/remedy-itsm.html
 http://www.bmcsoftware.es/it-solutions/remedy-itsm.html
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After performing the evaluation, we discuss the obtained results, considering the factors.
We concluded that detecting a device addition is more costly than detecting eliminations, but they
compensate each other when we analyze joint tests. The cost of detecting modifications is similar.
In the same manner, when we analyze different percentage changes, we realize that, in a real scenario
where different changes can occur even if the percentage of change changes, the execution time is
mainly constant. Finally, when analyzing different data model sizes and when the number of devices
increased, the execution time of CALENDAR increases.

Thus, we raise a problem, since the execution time increases sup-linearly as we increase the ICPS
data model size. That is why, in the future, we would like to improve CALENDAR in order to reduce
the response time, since our hypothesis says that, if we decrease the size of the input files and use
parallel computing theory, we will be able to decrease the total execution time, enabling new real time
scenarios.
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Appendix A

Table A1. The obtained results from the data model comparator. The average time (AVG) and
confidence interval (CI) of the execution time needed (ms).

50 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 18.06 0.773 16.288 0.602 14.462 0.443 16.155 0.627

40 19.553 0.508 16.347 0.457 13.062 0.478 15.403 0.525

60 21.026 0.589 16.183 0.556 11.649 0.228 18.28 0.747

80 22.654 1.086 16.127 0.45 10.06 0.309 14.265 0.763

100 23.795 0.734 16.281 0.518 - - 16.73 0.502

100 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 40.398 0.645 36.449 0.561 33.38 0.611 37.586 0.618

40 43.483 0.529 36.547 0.674 29.791 0.91 35.09 1.005

60 47.029 0.555 37.289 0.629 26.35 0.823 36.723 0.639

80 50.377 0.492 37.03 0.611 23.061 0.698 37.501 1.235

100 53.868 0.7 36.036 0.605 - - 36.416 0.508
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Table A1. Cont.

500 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 179.135 2.836 159.188 2.234 144.423 1.828 161.05 2.366

40 198.863 3.486 164.873 3.699 127.603 1.774 161.808 2.217

60 214.576 3.57 161.443 2.364 114.108 1.576 159.476 2.093

80 233.163 4.82 160.746 2.112 94.59 1.258 154.081 1.793

100 258.216 4.841 162.846 2.117 - - 36.612 1.965

1000 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 966.694 42.941 812.452 31.71 479.819 60.566 816.526 34.539

40 1062.361 41.325 805.063 34.992 390.658 39.605 781.418 23.924

60 1206.35 32.811 778.48 28.555 315.706 38.158 810.628 41.136

80 1312.73 56.793 812.255 37.455 226.409 4.901 759.616 16.87

100 1391.139 51.778 795.341 26.494 - - 754.174 17.28

5000 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 7504.666 253.046 7948.106 192.028 4599.335 601.986 7948.296 208.028

40 8207.304 137.2 7983.115 199.595 3825.186 376.088 7871.655 223.714

60 7932.337 251.416 7937.625 195.618 3794.048 401.019 7123.38 570.081

80 7751.169 133.73 7906.775 186.239 3338.893 521.681 4872.885 694.389

100 10,434.83 1422.032 8013.856 204.03 - - 3743.969 259.904

10,000 Devices

INSERT MODIFY REMOVE RANDOM

AVG CI ± AVG CI ± AVG CI ± AVG CI ±

20 12,723.95 383.693 12,734.7 42.86 12,254.94 33.845 12,671.83 43.162

40 14,616.28 82.877 12,754.4 35.86 12,168.72 402.94 12,565.88 52.22

60 15,310.77 97.376 12,685.11 28.597 8709.968 363.877 12,277.84 34.849

80 16,461.61 85.731 12,666.93 28.371 5620.353 52.583 11,991.42 67.946

100 14,637.95 439.539 12,729.39 39.054 - - 11,779.71 27.591
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Table A2. The Data Model sizes in MegaBytes (MBs) for comparison.

Size Qt-1 (MB)
Qt (kb)

Change 20% 40% 60% 80% 100%

50 1.515

Remove 1.212 911 609 307 –

Insert 1.811 2.105 2.399 2.698 2.993

Modify 1.513 1.506 1.500 1.496 1.494

Random 1.453 1.328 1.862 1.082 1.558

100 3.024

Remove 2.420 1.818 1.212 609 –

Insert 3.614 4.208 4.795 5.391 5.979

Modify 3.017 3.007 3.000 2.990 3.026

Random 3.136 2.655 3.035 3.057 2.930

500 15.106

Remove 12.083 9.066 6.043 3.024 –

Insert 18.057 21.018 23.980 26.924 29.877

Modify 15.065 15.022 14.974 14.928 14.888

Random 14.891 14.592 14.692 13.246 14.385

1000 30.212

Remove 24.161 18.127 12.086 6.045 –

Insert 36.119 42.028 47.941 53.837 59.751

Modify 30.115 30.036 29.944 29.846 29.770

Random 30.266 28.287 29.701 27.107 27.071

5000 147

Remove 117 88.4 59 29.5 –

Insert 176 205 234 263 292

Modify 147 146 146 145 145

Random 143 136 126 112 99.6

10000 294

Remove 235 176 118 58.9 –

Insert 294 411 469 295 585

Modify 294 293 192 291 290

Random 282 262 235 206 178
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