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The advent of cDNA and oligonucleotide microarray
technologies has led to a paradigm shift in biological
investigation, such that the bottleneck in research is shifting
from data generation to data analysis. Hierarchical clustering,
divisive clustering, self-organizing maps and k-means clustering
have all been recently used to make sense of this mass of data.
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Abbreviation
SOM self-organizing map

Introduction
Microarrays [1–5] may generate tens of thousands of data
points for every experiment performed. A study may con-
sist of many experiments, such that in a single study the
order of a million datapoints may be generated (e.g. see
[6•]). Such volumes of data are too large to analyze by sim-
ple sorting in spreadsheets, or plotting on a single or few
graphs. For sense to be made of the data, systematic meth-
ods for their organization are required. I review some of the
recent developments in algorithms and tools for the analy-
sis and organization of large-scale expression data,
including clustering methods and methods for correlating
expression data to other biological data.

Suitable metrics
Obviously, a metric to quantify whether two expression
profiles are similar to each other is needed. In this regard,
it is useful to consider the values that make up the expres-
sion profile for a single gene as a series of coordinates that
define a vector. One distance metric that can thus be used
is the Pearson correlation, which is essentially a measure as
to how similar are the directions in which two expression
vectors point. The Pearson correlation treats the vectors as
though they were the same (unit) length, and is thus insen-
sitive to the amplitude of changes that may be seen in the
expression profiles. A second distance measure that can be
used is the Euclidean distance, which measures the
absolute distance between two points in space, which in
this case are defined by two expression vectors. The
Euclidean distance thus takes into account both the direc-
tion and the magnitude of the vectors. The Pearson
correlation metric has been widely used and, as pointed
out by Heyer et al. [7•], attributes high scores to expression
patterns that are visually similar. However, the Pearson
correlation may also give rise to false positives, that is, it
may attribute an artificially high score to patterns that are

not necessarily that similar. The investigation by Heyer
et al. [7•] of this effect suggests that it may be caused by
outliers, such that if the expression levels of two patterns
are unrelated in all but one of the time points, and in that
time point there is a significant peak or trough, then a high
correlation may still result. They therefore propose a new
correlation measure, called the jackknife correlation, that is
robust to single outliers, thus reducing the number of false
positives but continuing to give high scores to expression
patterns that are similar over all conditions.

Agglomerative clustering
A useful approach to analyzing gene expression data has
been the use of clustering [8••,9]. It is a bottom up
(agglomerative) approach, whereby single expression pro-
files are successively joined to form nodes, which in turn
are then joined further. The process continues until all
individual profiles and nodes have been joined to form a
single hierarchical tree. The advantage of this approach is
that it is simple, and the end result can be easily visualized,
from which coordinately regulated patterns can be rela-
tively easily discerned by eye (Figure 1). 

Divisive clustering
Recently, an alternative, divisive, clustering method has
been applied to gene expression data [10••]. This approach
is the opposite of that taken with the agglomerative
method by Eisen et al. [8••], in that it could be considered
top down, rather than bottom up. Two vectors are initial-
ized randomly, and each gene is assigned to one of the two
vectors using a probability function. The vectors are itera-
tively recalculated to form the centroids of two clusters.
Each cluster is successively split in the same fashion, until
each cluster consists of a single profile. The history of the
data splitting is used to construct a binary tree. Alon et al.
[10••] also include a node-switching algorithm to order the
branches in a somewhat optimal manner that is similar, in
concept, to the algorithm implemented in [11•] for agglom-
erative clustering. Alon et al. [10••] also introduce the
notion of two-dimensional clustering, in which not only
the genes but also the arrays are organized by clustering;
that is, both the rows and columns of the expression data
matrix are rearranged. If the arrays correspond to different
cell types, this two-way clustering serves as a method for
distinguishing cell types from one another. This notion is
also used by Perou et al. [12] in their comparison of gene
expression patterns in human mammary epithelial cells
and breast cancers.

Partitioning of data
Hierarchical clustering can lead to artifacts. With the
agglomerative method, as clusters become larger the
expression profile that represents that cluster, which is the
average of all profiles that belong to the cluster, may not
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reflect accurately any of the contained profiles. Hence, the
higher up in the tree one looks, the less relevant the genes
within a cluster may be to each other. In addition, if a ‘bad’
decision is made early on during tree construction, it can-
not be corrected later. The divisive method reasonably
avoids these two problems, but both methods suffer a
potential drawback when using two-way clustering. When
clustering by arrays, the similarity between each array is
typically calculated over the total number of genes within
the dataset, and is therefore only an ‘on average’ measure-
ment. If tissue A is most similar to tissue B on average, the
fact that for a subset of genes tissue A is most similar to tis-
sue C will be ignored. Hence, some very real biology may
be discarded. 

These problems may be avoided by first partitioning the
data into reasonably homogeneous groups. These groups
can then be individually clustered, in both dimensions if
desired. Partitioning expression data before clustering is
akin to organizing protein sequences on the basis of their
similarity. An evolutionary tree would not be derived

initially from a set of 6000 protein sequences; instead, the
proteins would first be partitioned into smaller families
depending on their BLAST scores [13], then clustered
using a program such as CLUSTALW [14]. To partition
expression data into groups, self-organizing maps, k-means
clustering and the quality cluster algorithm have all been
used [7•,15•,16,17].

Self-organizing maps
A self-organizing map (SOM) [18] has a series of partitions,
each with a reference vector that contains the same num-
ber of data points as there are experiments being
considered. The partitions are in a pre-defined geometrical
configuration, such as a two-dimensional grid, and initially
their reference vectors are random. To assign genes to the
partitions, a gene is picked at random, and it is determined
to which reference vector the gene’s expression vector is
most similar. That reference vector is then adjusted so that
it is more similar to the randomly picked gene’s expression
vector. Then the reference vectors of each ‘partition’ that
are close (on the two-dimensional grid) to the moved ref-
erence vector are also adjusted, so that they too are more
similar to the gene’s expression vector. These steps are
repeated several thousand times, decreasing the amount
by which reference vectors are adjusted and making the
definition of ‘close’ (above) more stringent. Thus, fewer
reference vectors are moved by smaller amounts as time
goes on. Finally, the genes are mapped to the relevant par-
titions depending on which reference vector they are most
similar to, thus partitioning the data.

K-means clustering
K-means clustering [19] is similar to the method of self-orga-
nizing maps, in that it uses partitions with reference vectors
attached, but one partition does not directly influence
another. k-means clustering may therefore be considered as
one dimensional. First, the reference vectors are initialized
randomly, and genes are partitioned to their most similar ref-
erence vector. Second, each reference vector is recalculated
as the average of the genes that mapped to it. Last, these
steps are repeated until convergence, that is, all genes map
to the same partition on consecutive iterations.

For both k-means and SOMs, it makes intuitive sense to
further organize the members of each cluster, using, for
instance, hierarchical clustering (as implemented in [11•]).
Because the contents of each partition are reasonably
homogenous, the drawbacks of hierarchical clustering are
of little concern. Figure 2 shows 1500 yeast genes under
various conditions separated into 12 partitions using a
SOM. It is easy to see, using this display method [11•], that
correlated expression profiles are put into the same parti-
tion, whereas anti-correlated ones are put into partitions in
opposing corners of the grid. This partitioning effectively
avoids many of the problems noted above that occur with
hierarchical clustering. It should also be noted that in
SOMs the partitions that are similar to each other are 
adjacent, which is in contrast to k-means clustering. This
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Figure 1

An example cluster. Each row corresponds to a single gene, and each
column corresponds to a single array or experiment. The branch
lengths indicate the correlation with which genes/nodes were joined,
with longer branches indicating a lower correlation. 
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reflects the manner in which the artificial expression vec-
tors are manipulated to model the data. Because of this
difference, SOMs tend to be able to model the complexity
within a dataset somewhat more effectively than k-means
clustering. It should be noted that while hierarchical clus-
tering produces the same result every time with a given set
of data (i.e., it is deterministic), both SOMs and k-means
are nondeterministic, owing to the random initialization
and, in the case of SOMs, owing to the random order in
which genes are used to move the reference vectors. The
partitioning is mostly the same each time, however, and
could probably be made more robust by using the first two
principle components of the data and vectors spanning the
space between them, to seed the partitions initially, as has
been suggested by Kohonen [18].

An important consideration is how many partitions to actu-
ally make. Currently, guesswork is needed from the
researcher to decide how many significant patterns there
may be in the data (but see [20] for discussion). A novel clus-
tering technique proposed by Heyer et al. [7•] — the quality
clustering algorithm — requires no such pre-definition of
the number of clusters. First, the diameter of a cluster is
defined as the lowest pairwise (jackknife) correlation
between any of the genes that lie within that cluster, sub-
tracted from 1. Second, a candidate cluster is formed by
taking the first gene and adding to it the gene that mini-
mizes the increase in cluster diameter. This process
continues until no further genes can be added to the clus-
ter without exceeding a defined diameter threshold.
Third, a second candidate cluster is formed by starting
with the second gene and repeating the process. All genes
are available to this second cluster. Fourth, this process is
repeated for each gene, such that there are as many candi-
date clusters as there are genes. At this point, the largest
candidate cluster is selected and retained, and the genes
that it contains are removed from consideration. Fifth,
steps one to four are then repeated using the remaining set
of genes. Last, this whole process repeats until some
defined termination condition, for example, the largest
cluster must contain a certain number of genes, which
could be two or more. 

This technique has some useful attributes. It avoids the
problems associated with hierarchical clustering, while still
being deterministic, and it also avoids the problem associ-
ated with k-means and SOMs of how many clusters to
define. In addition, it can have orphan expression profiles
that may not belong to any cluster, which is not a feature of
k-means or SOMs (although it would be trivial to imple-
ment k-means and SOMs such that inclusion into a cluster
required a correlation between a gene and the reference
vector above a certain threshold). Of course, it should be
noted that instead of setting the number of clusters, a
diameter threshold must be set. As with setting the num-
ber of clusters, setting the diameter could be considered
arbitrary, although setting the minimum allowed correla-
tion within a cluster certainly has a more intuitive appeal.

In addition, the distribution of all pairwise correlations
within the dataset can be used as a guide for determining
the threshold.

Correlating expression data to other
information
Obviously, the large quantities of expression data being
generated do not exist in a vacuum; that is, there are
already a great deal of non-expression data about the sam-
ples that are being investigated. These data may be of the
form of gene annotation, or may, for instance, be clinical
data about different cell lines, or may be experimental data
relating how a microarray experiment was carried out. It is
of clear interest and importance to develop tools to corre-
late such supporting data with the expression data. An
obvious example is whether the expression data contain
information that can be used as a diagnostic or prognostic
tool. Golub et al. [21••] have done exactly this, analyzing
the expression of 6817 human genes in 27 acute lym-
phoblastic leukemias and 11 acute myeloid leukemias.
They set out to use these data to build a class predictor,
which, when challenged with expression data from an
acute leukemia sample of unknown origin, would be able
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Figure 2

A self-organizing map. Each partition may contain a different number of
genes, although the image for each partition is the same size for
display purposes. The contents of each partition have been rearranged
by clustering. Red indicates induction of a gene and green indicates
repression, and the magnitude of the change is indicated by the
intensity of the color. The smaller-sized color bars associated with each
partition indicate the final contents of the reference vector associated
with that partition (see text for details).
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to accurately classify it into either of the previously seen
classes, or potentially define a new third class. To do this,
they first identified genes whose expression correlated to
the class distinction to be predicted, and then tested
whether the number of genes that appeared to have pre-
dictive value was greater than would be expected by
chance. They identified roughly 1100 genes of such a
nature, and conservatively (and somewhat arbitrarily)
chose the 50 with the highest scores to be used as part of a
predictor. With these genes in hand, they characterized an
unknown sample as follows: each gene has a ‘weighted
vote’ for whether it would assign the sample to one class or
the other. The vote is weighted, such that how well the
gene can distinguish the two classes is taken into account;
in other words, a gene that can perfectly distinguish the
two classes has a greater say than one that distinguishes
them less well. The weighted votes for all the genes are
then summed to see to which class the predictor would
assign the new sample. In addition, the margin of victory
allows a confidence to be attributed to the assignment. To
test their technique, Golub et al. [21••] took their 38 sam-
ples, built a predictor from 37 of them, and used the
predictor to assign the missing sample. They repeated this
for all 38 samples. Their technique was remarkably robust
in this cross validation test, correctly assigning 36 of the 38
samples, with the other 2 having uncertain assignment. On
an independent set of 34 leukemias, the technique made
strong and correct predictions about 29 of them.
Furthermore, Golub et al. [21••] they showed that these
predictions were robust using predictors derived from
between 10 and 200 genes.

Tavazoie et al. [17], using clusters of genes generated by
k-means clustering of the cell-cycle data of Cho et al. [22],
devised a technique where they determined whether the
functional categories into which the genes within each
cluster fell was significant. To do this, they used the 199
functional categories curated by the MIPS database [23],
and asked the question “is the overlap between the genes
in a functional class and the genes in a particular expres-
sion cluster greater than would be expected by chance?”,
using the hypergeometric distribution statistic. Although
they were able to show that some categories show signifi-
cant overlap with some of the clusters, it should be noted
that the number of clusters that they used for the k-means
clustering was essentially a subjective number, and the sig-
nificance scores would change with different numbers of
clusters. The technique is however of obvious utility.

Conclusions and future prospects
Clearly, analysis of expression data is still in its infancy, and
although many techniques of obvious utility exist, there
are still a great many areas in which research will improve
these tools and invent new ones. Development of visual-
ization tools to allow the biologist to intuit information
from the organized data are also of great importance. False
color representations such as those used by Wen et al. [9]
and Eisen et al. [8••] greatly aid interpretation of the data.

The majority of the clustering techniques currently in use
rely on similarity metrics that do not have a measure of
whether such a correlation is higher than would be expect-
ed by chance, and hence have no indication of the
significance of a cluster. ‘Porting’ of Karlin–Altschul like
statistics [24] from BLAST to be used on gene expression
data would be of obvious benefit, because what we really
want to know is whether these patterns are more similar
than we would expect by chance, as opposed to whether
they are just similar. 

In addition, algorithms that are akin to position-specific
iterated (PSI)-BLAST [25] would also be useful for gene
expression data. As the number of experiments being
clustered increases, the likelihood of finding significant
correlations decreases. Two genes may be similar across 30
arrays, but dissimilar across another 200. We don’t want to
lose the information about that former similarity, which we
would capture if we had the gene expression equivalent of
an all versus all PSI-BLAST program to find ‘expression
domains’. This would really help us get to the heart of the
combinatorial nature of transcriptional control.
Development of such tools, and their free availability — at
least in the academic community — is paramount. With
such tools in hand, great strides in the correlation of clini-
cal, functional and promoter data with expression data will
follow these initial promising steps.

Update
Since the original submission of this review, Brown et al.
[26] described the application of support vector machines
to microarray expression data. Support vector machines
constitute a supervised computer learning method and
were used by Brown et al. to predict the functions of genes
of unknown function, based on the similar expression pat-
terns to genes of known function.
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