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1.1. Introduction

In macroscale mechanics, it is natural to define constitutive laws for the mechanical
response of a particular material class and/or geometry. A characteristically simple
example is the deformation of a crystalline sample, described by Hooke’s law for the
elastic regime and a yield surface with a plastic flow rule for the inelastic one. In the
extreme limit of small finite volumes, while Hooke’s law persists, the concepts of a
yield surface and smooth plastic flow are controversial, manifesting into mechanical
properties’ strong dependence on size, rate, and prior deformation. .

Characterizing the extent of failure of traditional inelastic constitutive laws, in
relation to phenomena at sub-micron length scales, has been a consistent focus of
material science over the last two decades. The key aspect has been the
understanding of the effects of strain gradients, intrinsic or not (Hutchinson 2000), on
plastic deformation of crystals in various geometries, the most prominent of which
has been nanoindentation (Oliver and Pharr 2010). In small finite volumes (Uchic
et al. 2002), the focus mainly has been the investigation of uniaxial compression in
micro and nano-pillars (Uchic et al. 2009a, Greer and De Hosson 2011): Size
dependence has been evident in the material strength due to intrinsic defect-induced
strain gradients (Uchic et al. 2003), while rate dependence has been strongly
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2 Effects of Rate, Size and Prior Deformation in Microcrystal Plasticity

suspected due to the fact that plastic response displays strong intermittent
features (Papanikolaou et al. 2012), typically labeled as avalanches (Zaiser 2006).
Moreover, the well accepted phenomenon of “mechanical annealing" (Shan et al.
2008), namely the drastic increase of a pillar’s strength through prior compression,
has unraveled a well suspected but elusive, strong connection between small finite
volume’s initial conditions and prior deformation history of micro-sized
specimens (Novák et al. 1984).

For the theoretical investigation and explanation of crystal plasticity in the
uniaxial compression of nano-sized specimens, modeling efforts have spanned the
whole multiscale modeling spectrum. The investigation of the combined effects of all
possible material and geometry details led to atomistic and molecular
simulations (Yamakov et al. 2004, Rabkin et al. 2007) that are limited at ultra-high
strain-rates and tiny loading volumes. These studies have unveiled various delicate
features of relevant dislocation mechanisms, such as surface dislocation
multiplication. For collective dislocation behaviors, three-dimensional dislocation
dynamics simulations have been utilized for the relevant mechanisms behind
observed size effects (Greer and De Hosson 2011, Kraft et al. 2010, Uchic et al.
2009a), rate effects (Maass and Derlet 2017, Papanikolaou et al. 2012) and also
various statistical aspects such as avalanche size distributions (Cui et al. 2016).
However, the demanding nature of the simulation of realistic micropillar dislocation
densities (1014/m2 (Shan et al. 2008)) in sub-micron volumes (< 5µm) at
experimentally relevant strains (∼ 5%) has led to limited statistical sampling of initial
conditions with limited dislocation line topologies. An assisting role to all these
methods and results, has been promoted for two-dimensional discrete dislocation
simulations, which have been providing reliable statistical features and insightful
connections, with available, benchmarked, theoretical constructions (Zaiser 2015,
Groma et al. 2016) and significant experimental validation (Nicola et al. 2006). In
this context, the use of periodic boundary conditions has allowed a remarkable level
of statistical fidelity (Alava et al. 2014) and agreement with other models of
statistical mechanics (Zaiser 2006, Yefimov et al. 2004, Ovaska et al. 2015).
However, such 2D-DDD models either function at low dislocation densities or
compromise the physical constraint of finite-volume boundary conditions.

In the pursuit of a self-consistent explanation of experimental phenomenology
that maintains the constraint of finite volume boundary conditions, as well as reliable
statistical sampling, a minimal 2D-DDD model has been proposed, benchmarked to
experimental findings (Papanikolaou, Song and Van der Giessen 2017), and studied
for aspects of rate (Song, Dimiduk and Papanikolaou 2019), size (Papanikolaou,
Song and Van der Giessen 2017) and initial-condition/prior-deformation
dependence (Papanikolaou et al. 2019). The discussion of the findings in this
2D-DDD model is the focus of this chapter. While 2D in character, this model
achieves to capture the statistical behavior of micron-sized specimens, using
appropriate finite-volume boundary conditions. The initial conditions are thoroughly
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investigated by consistently generating statistically averaged pre-existing dislocation
microstructures due to prior compressive/tensile deformation. It is worth noting that
such statistically averaged finite-volume dislocation microstructures are unique in
dislocation simulations across scales and simulation methods. Besides explaining
existing experimental findings in the context of rate, size and statistical averaging
aspects, this model has led to significant predictions for the dislocation density
dependence of size effects, the character of rate effects, the fractal features of the
specimen boundaries, as well as the development of experimentally relevant machine
learning methods that may apply to more general problems in mechanics of materials.

1.2. Model

We consider a minimal model of crystal plasticity (Papanikolaou, Song and
Van der Giessen 2017) for uniaxial compression of Al thin samples (Young’s
Modulus E = 70 GPa, Poisson ratio ν = 0.33 with the equivalent Young’s Modulus
for plane strain problems being E∗ = E/(1 − ν2) = 78.55 GPa and the Burger’s
vector length being b = 0.25nm), which captures the energetics of crystal deformation
mediated through gliding of edge dislocations along one or multiple slip systems.
The dislocation mobility parameter B is set to B = 10−4Pa ⋅ s. In the model, gliding
of dislocations occurs in slip planes separated by 10b, oriented at ±30○ from the
loading direction (Fig. 1.1 (a).

Slip planes may become active only when they contain at least one source for
dislocation generation. Bulk sources are randomly but uniformly distributed over slip
planes, and their strength is selected randomly from a Gaussian distribution with mean
value τnuc = 50 MPa and 10 % standard deviation. Sources are randomly distributed
with density ρbulknuc = 60µm−2. Dislocations are generated from sources when the
resolved shear stress τ at the source location is sufficiently high (τ > τnuc) for a
sufficiently long time tnuc. The model considers only gliding of dislocations, so the
dislocation motion is solely controlled by the component of the Peach-Koehler force
in the slip direction.

Point obstacles are randomly distributed on active slip planes with a constant
density that corresponds on average, 8 randomly-distributed obstacles per each bulk
dislocation source (ie. ρbulkobs = 480µm−2). In this way, the source and obstacle
densities remain statistically similar as finite volume dimensions change. Obstacles
account for precipitates and forest dislocations on out-of-plane slip systems. Our
simple obstacle model is that a dislocation stays effectively pinned until its
Peach-Koehler force exceeds the obstacle-dependent value τobsb. The strength of the
obstacles τobs is taken to be 300 MPa with 20% standard deviation, to account for
large variability in realistic scenarios of dislocation pinning.

A model volume may be seen in Fig. 1.1, where slip planes (lines) span the sample,
equally spaced at d = 10b. Planes close to corners are deactivated to maintain a
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smooth loading boundary. Initially, samples are stress free and mobile-dislocation
free, and the aspect ratio of height h over width w is maintained constant for all
samples, a = h/w = 4. Dislocations can either exit the sample through the traction-
free sides, annihilate with a dislocation of opposite sign when their mutual distance is
less than 6b, or become effectively pinned at an obstacle. The simulation is carried
out incrementally, using a time step that is a factor 20 smaller than the nucleation
time tnuc = 10 ns. At the beginning of every time increment, nucleation, annihilation,
pinning at and release from obstacle sites are evaluated. After updating the dislocation
structure, the new stress field in the sample is determined, using the finite element
method to solve for image fields (Van der Giessen and Needleman 1995).
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Figure 1.1: Simulation of uniaxial compression of thin films: (a) The 2D discrete
dislocation plasticity model of uniaxial compression of thin films. Slip planes (lines),
surface and bulk dislocation sources (red dots) and forest obstacles (blue dots) are
seen. (b) Strain profile of sample of w = 2 µm, upon reloading at 0.1% strain. Initial
loading at 10% strain.

Overall, the model is based on the singular theory of dislocations, but dislocations
may never overlap into dislocation junctions, instead they follow the rules presented
for dislocation annihilation. Similarly, dislocation nucleation is performed at a
lengthscale where the dislocation dipole is stable, and the complexity induced by
dislocation singulatirites disappear. In this way, no singularities are never
encountered during simulation. A phenomenological comparison to expreriments
using single crystals was performed in (Papanikolaou, Song and Van der Giessen
2017), and displays qualitative agreement that involves not only strengthening effects
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but also noise observations. No comparisons to 2.5 DDD simulations have been
performed. However, it is worth noting that the model agrees in various ways with
previous 2D simulations which were compared to experiments such as (Nicola et al.
2006).

1.3. Effects of loading rates and protocols in crystal plasticity

The differences between strain-controlled loading (SC) and
displacement-controlled loading (DC) rates have been known to be absent at small
loading rates in crystal plasticity (Asaro and Lubarda 2006). However, in small finite
volumes, due to the very existence of abrupt avalanche phenomena, there has been
evidence and suspicion (Papanikolaou et al. 2012) for significant but statistical rate
dependent effects. The detailed rate effects that originate in the distinct loading
protocols have been studied recently for uniaxial compression of micropillars (Maaß
et al. 2015, Sparks and Maass 2018) where several rate-dependent scaling behaviors
were identified for rates higher than 102/s.

At the macro-scale, crystals are known to display strong rate effects due to
viscoplastic dislocation drag effects as the strain rate surpasses ∼ 5000/s (Armstrong
and Walley 2008, Murphy et al. 2010, Tong et al. 1992, Clifton 2000). This increase
in flow stress has also been seen in DDD simulations (Agnihotri and der Giessen
2015, Hu et al. 2017) and stems from a natural competition between two timescales
in dislocation dynamics. The first timescale refers to the dissipative motion of a
dislocation inside the crystal (dislocation drag). The second timescale refers to the
dislocation nucleation process from a randomly placed source (Hirth and Lothe
1982). Nucleation of dislocations is particularly important for small-scale plasticity.

These two timescales minimally represent two natural and distinct possibilities in
the complex landscape of possible dislocation processes. The competition of these two
timescales should extend in small finite volumes, providing a transition regime around
103/s loading rates, thus a statistically reliable study in loading strain-rates ε̇ from 10/s
to 105/s would suffice (Song, Dimiduk and Papanikolaou 2019). In the case of pure
elasticity, SC and DC loading modes can be compared by using σ̇ = E∗ε̇, where σ̇
is the stress rate and ε̇ is the strain rate. Typical simulation parameters are listed in
Table 1.1.

Timescale competitions are generic in most non-equilibrium systems (S. Sahni
et al. 1983) and one may devise simple non-linear dynamical models to explain the
basic effects. For example, one may consider a minimal model for the strain
evolution due to a dislocation segment that may or may not be trapped into a
dislocation source, dε/dt = σ + µε − ε3, where ε, σ are scalars resembling strain and
stress variables, and µ is a mobility parameter. The mobility parameter should have a
different sign dependent on the dislocation trapping status. In the absence of
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Table 1.1: Model parameters for the study of rate effects in uniaxial compression:
Slip plane spacing d, slip plane orientation θ, source density ρnuc, average source
strength τ̄nuc, nucleation time tnuc, obstacle density ρobs, average obstacle strength
τ̄obs. (Song, Dimiduk and Papanikolaou 2019).

slip planes sources obstacles
d=10b ρnuc=60µm−2 ρobs=480MPa
θ = 30○ τ̄nuc =50MPa τ̄obs =150MPa

δτnuc =5MPa δτobs =20MPa

dislocation interactions, on a slip plane with a single mobile dislocation, the mobility
parameter is µ = µdrift < 0, and the time for stress σ relaxation inside the volume in
every incremental timestep is δtdrift = ∣µdrift∣

−1. In contrast, if there exists a
dislocation source but not any mobile dislocations on the slip plane, then the mobility
parameter becomes µ = µnuc > 0 and the corresponding timescale is δtnuc = µ−1nuc. In
most cases, the association between these timescales is δtnuc ≫ δtdrift, so stress
increments are accommodated by nucleation events. However, if a system contains
multiple dislocation sources, dislocation interactions may frustrate the system due to
the disparity of relaxation time and cause a complexity in the evolution dynamics. In
the aforementioned model (Song, Dimiduk and Papanikolaou 2019), dislocations
have mobility µd driven by local stress-induced forces (Hirth and Lothe 1982).
Gliding of dislocation occurs in a single slip system (slip planes oriented at 30○, see
Fig. 1.2 (a)). In Figure 1.2 (b) stress-strain curves of SC can be seen for low, 102

(blue line) and high 105 (green line) stress rates. Correspondingly, the strain patterns
at the same final strain (5%) are seen in Fig. 1.2 (c), (d) where the plasticity is
localized at low stress rates and is uniform at higher loading rates. In Figure 1.3 (a),
ε̇ = 104/s in DC and correspondingly σ̇ = E∗ ∗ 104/s. One may notice the onset of
expected work hardening in SC conditions, while in DC conditions one observes
softening, with the difference becoming more pronounced as the system width
decreases. The model also displays consistent size effects (Papanikolaou, Cui and
Ghoniem 2017, Papanikolaou, Song and Van der Giessen 2017) (σY ∼ w−0.4−0.6) for
both loading protocols (cf. Fig. 1.3 (b)) for average flow stresses (at 0.2%
engineering strain) of 50 realizations.

Fig. 1.3 (c) shows that a flow stress rate dependence is observed in both DC and
SC loading modes, even though DC shows a weaker dependence. Upon closer
examination of Fig. 1.3 (c) (Song, Dimiduk and Papanikolaou 2019) one finds that
low SC rates statistically resemble larger DC rates. The origin of this strain-rate
crossover is hidden in the amount of strain that nucleation events can accommodate,
with ε̇ > 103/s forcing dislocation drag to take over in the dynamics of dislocations
instead of dislocation nucleation. This is consistent with metallurgy
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Figure 1.2: Rate effects on thin films. (a) The pillar under compression (single
slip system). (b) Sample stress strain curves of compression at high (105/s) and low
(102/s) stress rates σ̇. (c) Stain pattern for low σ̇, (d) Strain pattern for high σ̇. (Song,
Dimiduk and Papanikolaou 2019)

phenomenology (Follansbee and Kocks 1988, Tong et al. 1992, Clifton 1990). While
both DC and SC display a flow stress rate effect, their statistical noise behavior is
very different; evidence arises from the study of the (SC) strain jump statistics in
Fig. 1.3 (d): In SC, event size is defined as S = ∑i ∈ {δεi>εthreshold} δε

i; In contrast, in
DC, an event is characterized by stress drops δσ which lead to temporary
displacement overshoots – thus, in order to compare the two loading conditions, a
DC strain burst event size is defined as S = ∑i ∈ {−δσi>σthreshold} δε

i (Cui et al. 2016).

The model has two intrinsic time scales (Agnihotri and der Giessen 2015): the
dislocation nucleation timescale δtnuc = 10 ns, which can be associated to the
dislocation multiplication timescale in other models of plasticity, and the “drag"
timescale which may be defined ia the ratio between dislocation mobility and
material Young’s modulus B/E. In this model, the drag timescale is 10−6 ns,
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<latexit sha1_base64="cgJKwA7tGDH17ZDfMUphS1o2OXA=">AAAB+3icdVBdSwJBFL1rX2ZfZo+9DEoQBba7idqbFEGPBvkBajI7jjo4+8HMbCTL/pUIeiii1/5Ib/2bZrWgog5cOJxz78y9xwk4k8o0343UwuLS8kp6NbO2vrG5ld3ONaUfCkIbxOe+aDtYUs482lBMcdoOBMWuw2nLmZwlfuuGCsl870pNA9pz8chjQ0aw0lI/m+sOfBV1JRu5OD46v44O4n62YBZPqmW7VEZm0TQrlm0lxK6UjkvI0kqCQi3fPbwHgHo/+6YfIaFLPUU4lrJjmYHqRVgoRjiNM91Q0gCTCR7RjqYedqnsRbPdY7SnlQEa+kKXp9BM/T4RYVfKqevoThersfztJeJfXidUw2ovYl4QKuqR+UfDkCPloyQINGCCEsWnmmAimN4VkTEWmCgdV0aH8HUp+p807aKl+aVO4xTmSMMu5GEfLKhADS6gDg0gcAt38AhPRmw8GM/Gy7w1ZXzO7MAPGK8fYlWWIg==</latexit><latexit sha1_base64="ts5I723+vHws/4ockRB1IDeENdI=">AAAB+3icdVDLSsNAFJ3UV62vWJduhhZBFGoSS1t3RRFcVrC10MQymU7boZMHMxMxhPyFazcuFHHrj7jr3zhpFVT0wIXDOffO3HvckFEhDWOq5RYWl5ZX8quFtfWNzS19u9gRQcQxaeOABbzrIkEY9UlbUslIN+QEeS4j1+7kLPOvbwkXNPCvZBwSx0Mjnw4pRlJJfb1oDwKZ2IKOPJQend8kB2lfLxuVk0bNqtagUTGMummZGbHq1eMqNJWSodws2Yf302bc6uvv6hEcecSXmCEheqYRSidBXFLMSFqwI0FChCdoRHqK+sgjwklmu6dwTykDOAy4Kl/Cmfp9IkGeELHnqk4PybH47WXiX14vksOGk1A/jCTx8fyjYcSgDGAWBBxQTrBksSIIc6p2hXiMOMJSxVVQIXxdCv8nHatiKn6p0jgFc+TBLiiBfWCCOmiCC9ACbYDBHXgAT+BZS7VH7UV7nbfmtM+ZHfAD2tsHa7+XqA==</latexit><latexit sha1_base64="ts5I723+vHws/4ockRB1IDeENdI=">AAAB+3icdVDLSsNAFJ3UV62vWJduhhZBFGoSS1t3RRFcVrC10MQymU7boZMHMxMxhPyFazcuFHHrj7jr3zhpFVT0wIXDOffO3HvckFEhDWOq5RYWl5ZX8quFtfWNzS19u9gRQcQxaeOABbzrIkEY9UlbUslIN+QEeS4j1+7kLPOvbwkXNPCvZBwSx0Mjnw4pRlJJfb1oDwKZ2IKOPJQend8kB2lfLxuVk0bNqtagUTGMummZGbHq1eMqNJWSodws2Yf302bc6uvv6hEcecSXmCEheqYRSidBXFLMSFqwI0FChCdoRHqK+sgjwklmu6dwTykDOAy4Kl/Cmfp9IkGeELHnqk4PybH47WXiX14vksOGk1A/jCTx8fyjYcSgDGAWBBxQTrBksSIIc6p2hXiMOMJSxVVQIXxdCv8nHatiKn6p0jgFc+TBLiiBfWCCOmiCC9ACbYDBHXgAT+BZS7VH7UV7nbfmtM+ZHfAD2tsHa7+XqA==</latexit><latexit sha1_base64="ufLpWZBNyhPrVhshnFzVmFigU6c=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIsgLmpmLG3dFUVwWcE+oB1LJs20oZkHSUYsw/yKGxeKuPVH3Pk3ZtoKKnrgwuGce5N7jxtxJhVCH0ZuaXlldS2/XtjY3NreMXeLbRnGgtAWCXkoui6WlLOAthRTnHYjQbHvctpxJxeZ37mjQrIwuFHTiDo+HgXMYwQrLQ3MYn8YqqQv2cjH6cnlbXKcDswSKp/Vq3alClEZoZplWxmxa5XTCrS0kqEEFmgOzHf9CIl9GijCsZQ9C0XKSbBQjHCaFvqxpBEmEzyiPU0D7FPpJLPdU3iolSH0QqErUHCmfp9IsC/l1Hd1p4/VWP72MvEvrxcrr+4kLIhiRQMy/8iLOVQhzIKAQyYoUXyqCSaC6V0hGWOBidJxFXQIX5fC/0nbLluaX6NS43wRRx7sgwNwBCxQAw1wBZqgBQi4Bw/gCTwbqfFovBiv89acsZjZAz9gvH0CT9aUmQ==</latexit>

Figure 1.3: Effect of loading protocol: Stress-Controlled (SC) vs. Displacement-
Controlled (DC). Blue curves are DC and red curves SC. (a) Stress-strain curves of
different w using two different loading protocols.Strain bursts are shown; (b) Size
effect of flow stress at 2% strain. (c) Dependence of flow stress (for w = 1µm) on rate.
(d): Events (strain jumps) statistics for different loading protocols (Song, Dimiduk
and Papanikolaou 2019)

consistent with single-crystal thin film experiments for the moduli and dislocation
mobility (Xiang and Vlassak 2006, Nicola et al. 2006). As shown in Fig. 1.3 (d),
plastic events’ statistics can be estimated through the analysis of the stress strain
curves shown in Fig. 1.3 (a); histograms of sizes have different τ exponents with
consistent power law behavior: τ is close to 3.5 for DC and 1.5 for SC. Another
interesting fact is that this exponent difference decreases as the stress loading rate
increases: In Figure 1.4 (a) we see statistics for different stress rates varying from
σ̇ = E∗ ∗ 10/s to σ̇ = E∗ ∗ 104/s. Power law events distribution appear for all stress
rates, yet with different exponent which changes from 3.5 for σ̇ = E∗ ∗ 10/s to 1.5 for
σ̇ = E∗ ∗ 104/s. This dependence of exponents on the stress rate indicates a
non-trivial connection between the event statistics and the transition from
nucleation-dominated to drag-dominated dislocation dynamics. To verify such a
connection, one may increase the dislocation mobility B for the same stress rate
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Figure 1.4: SC Rate Effect Crossover. (a): Event statistics for different σ̇ using SC.
(b): Effect of dislocation source density ρnuc and mobility B on power law exponent.

(σ̇ = E∗ ∗ 102/s). Figure 1.4 (b) shows an enhanced drag effect (red curve), due to the
increase of B and a subsequent exponent change from 2.5 to 2.2. The drag effect may
also be magnified when other dislocation mechanisms come into play, such as
cross-slip. This can be seen in Fig. 1.4 (b) blue curve, where a lower dislocation
source density leads to a change of the τ exponent from 2.5 to 2.1.

The aforementioned exponent crossover is associated to an onset of inhomogeneity
along the boundaries of the finite volume, signifying spatio-temporally correlated
plastic activity. At first sight, this is not unexpected since crystal plasticity is known
to be unstable to strain localization, thus adding an inhomogeneity component to
avalanche dynamics (Asaro and Lubarda 2006). However, the combination of the
exponent crossover with the onset of inhomogeneity in randomly evolving systems
is uncommon. In Fig. 1.5 (a) and (b), we show the spatial distribution of events along
all slip planes n for the loading process. Fig. 1.5 (a) shows the event spatial distribution
for loading rate of σ̇ = E∗ ∗ 102. Events are localized around certain slip planes, and
furthermore, do not always happen at the same slip planes. For higher loading rate
of σ̇ = E∗ ∗ 104, the event distribution is more uniform among slip planes, shown in
Fig. 1.5 (b). The event size with increasing strain in Fig. 1.5 (c) unveils an oscillatory-
like behavior at small stress rate which disappears at higher stress rates.

The observed behavior is akin to a mean-field integrated behavior (Papanikolaou,
Cui and Ghoniem 2017), labeled as the onset of an avalanche
oscillator (Papanikolaou et al. 2012) as the strain-rate decreases. The novel
terminology is required to distinguish typical integrated depinning behaviors taking
place at large loading rates in various systems (Fisher 1998). In this model, at low
strain-rates, critical exponents τ and α are higher than mean-field, but the spectral
density x (Papanikolaou et al. 2011) remains at the mean-field limit at low rates
while x’ implies integrated mean-field behavior (Papanikolaou et al. 2011). This
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Figure 1.5: Spatial and temporal event distribution in SC. Event distribution on
all slip planes during the loading up to 10% strain for σ̇ = E∗ ∗ 102 ((a)) and for
σ̇ = E∗ ∗ 104 ((b)). The color changes from dark purple to yellow with increasing
loading strain. (c): Average avalanche size for σ̇ = E∗∗102 in a sample. (d): Average
avalanche size for σ̇ = E∗ ∗ 104 in a sample.

novel behavior might explain large exponents in crystal plasticity of small grains in
polycrystals (Lebedkina et al. 2018) or crystalline pillar experiments (Sparks and
Maass 2018).

It is interesting to compare the statistical behavior of this model to mean-field
plasticity avalanche behavior (Uhl et al. 2015, Papanikolaou 2016), shown in
Table 1.2. In comparison, the presented model has free nanoscale boundaries and a
timescale competition between dislocation nucleation and drag: these are model
characteristics that are not typically included in mean-field avalanche models.
Overall, it is found that these differences lead to an integrated behavior that is driven
by quasi-periodic avalanche bursts (Papanikolaou et al. 2012).

Finally, it is worth noting that the model is limited to small deformations, does
not include other possible three dimensional dislocation motions and does not include
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boundary roughness stress effects or thermal effects on obstacles/sources (Song,
Yavas, Van der Giessen and Papanikolaou 2019, Papanikolaou et al. 2019).

Table 1.2: Universality and Exponents. Basic mean-field avalanche exponents
characterize power-law behaviors in avalanche sizes P (S) ∼ S−τ , durations P (T ) ∼

T −α, spectral response S(ω) ∼ ω−x and average size-duration relationship ⟨S⟩ ∼ T x
′

.

Exponent Mean-Field Theory Avalanche Oscillator
τ 3/2 Rate-Dependent> 3/2
α 2 Rate-Dependent> 2

x 2 2
x′ 2 1

1.4. Size effects in micro-crystal plasticity

Experiments of uniaxial tension and compression in nanopillars have shown
apparent material strengthening with decreasing pillar width w, with the yield
strength varying as σY ∼ w−n with n ∈ (0.4,0.8) (Uchic et al. 2009b, Greer and
De Hosson 2011). The basic overall explanation behind size effects has been the
gradual exhaustion of dislocation multiplication mechanisms, as the finite volume
becomes smaller. A variety of possible mechanisms can explain most of the existing
experimental phenomenology on strength size effects. However, the non-smooth
post-yielding plasticity behaviors have been known to display size effects as well.
Analysis of the statistics of abrupt plastic events has revealed that nanopillar events,
appear to follow power-law distributions for strain steps with a large event cutoff that
depends on specimen width (Weiss et al. 2000, Miguel et al. 2001a,b, Weiss and
Marsan 2003). These findings have evaded a unified model explanation until
recently (Papanikolaou, Song and Van der Giessen 2017).

In this study (Papanikolaou, Song and Van der Giessen 2017), 2D-DDD
simulations of uniaxial compession for varying pillar widths w ranged from
0.0625µm to 1µm. In Figure 1.6(a) typical stress-strain curves are shown, with
strengthening and large flow stress fluctuations as w decreases. Due to
strain-controlled loading in simulations, avalanches are captured as stress drops. The
total number of observed avalanches is not controlled, however the total simulated
strain is. Typically, these model simulations are performed up to 10 % strain for any
dislocation density. As an example, for large dislocation densities (ρ = 1014/m2), a
single sample volume may respond to uniaxial compression through 103 avalanches
during strain-controlled loading.
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Figure 1.6: Axial stress–strain curves, σzz vs εzz . Strengthening and large stress drops
emerge as w decreases, with the width shown in the legend, in µm.

As shown in Fig. 1.7, the simulations identify clear size effects in the yield
strength. Fig. 1.7(a) shows that the yield strength σY decreases with increasing w.
For pillar aspect ratio α = 4 (black line) we see a clear power-law dependence
σY ∼ w−0.45 which is similar to experimental observations. Morever, the sample
strength depends on the aspect ratio α, as also identified in experiments (Senger et al.
2011). According to Fig. 1.7(b), the yield strength decreases strongly with a power
law σY ∼ α−0.36 for small widths, while in larger samples, this dependence is
virtually absent.

Avalanche behavior in the model of (Papanikolaou, Song and Van der Giessen
2017) is shown through power law tails of the event probability distributions P (S) ∼
S−τP(S/S0). The onset of power-law behavior at decreasing w is seen in Fig. 1.8 (a)
with an exponent τ = 1.2 ± 0.2 while S0 ∼ w

−1. The existence of power-law behavior
in the asymptotically small width limit becomes apparent in samples with low aspect
ratio, as shown in the inset of Fig. 1.8 (a), where the average event size Sav ∼ 1/w line
is shown as a guide to the eye.

In Fig. 1.8(b), avalanche behavior statistics P (S) are shown for three widths
(0.0625, 0.25 and 1µm) and two aspect ratios (4 and 32). Power-law behavior for
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Figure 1.7: (a) The width dependence of the yield stress. Different aspect ratios α are
indicated by colored numbers. The fit to α = 4 is shown in bold black line, (b) the
dependence of the yield stress on the aspect ratio α.

varying aspect ratio is seen for the smallest system size w = 0.0625µm; For larger
systems, the distribution displays larger event sizes as the aspect ratio increases. This
tendency is also seen in the behavior of Sav (inset of Fig. 1.8 (b)), where aspect ratio
independence is observed for small widths (0.0625 and 0.125µm), while for large
widths there is a trend Sav ∼ α1 (shown as a guide to the eye).

1.5. Unveiling the crystalline prior deformation history using
unsupervised machine learning approaches

Elements of prior deformation history in crystals are needed for any prediction
of mechanical properties in plasticity. The most common example is the accumulated
dislocation density, which is typically used for the prediction of flow stress. It is natural
to expect that a wealth of additional mechanical property predictions can be made
through the use of multi-dimensional deformation information, possibly originating
in in-situ strain maps. However, the efficient and systematic development of such
mechanical property predictions requires data-intensive dimensional reduction and
classification that has been common in machine learning (ML) methods.

ML methods have been recently used in science and engineering (DeCost et al.
2017, Ramprasad et al. 2017, Mueller et al. 2016, Pilania et al. 2013) and may predict
microstructural properties (Pilania et al. 2013), optimize material design (Liu et al.
2015) and infer deformation history (Papanikolaou et al. 2019). The usage of ML
in mechanical deformation studies started from analyzing nanoindentation responses
towards the prediction of material properties (Khosravani et al. 2017, Iskakov et al.
2018, Meng et al. 2015, 2017, Huhn et al. 2017). In a new direction on this topic, a
recent work (Papanikolaou et al. 2019) showed that the analysis of small-deformation
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Figure 1.8: Histograms of abrupt events and cutoff dependence. (a) Width
dependence of P (S), demonstrating a power-law distribution asw decreases for α = 4
(symbol size reflectsw). In the inset, the average event size is shown as a function ofw
for different aspect ratios α. (b) Dependence of abrupt event statistics on pillar aspect
ratio α. Three different widths ( ● ∶ w = 0.0625µm, ∎ ∶ w = 0.25µm, ▶ ∶ w = 1µm)
are shown for two different aspect ratios α = 4 and 32 (the symbol sizes follow the
aspect ratio’s magnitude for clarity).

strain correlation images may unveil the prior deformation history of materials. This
process, which can be built on any version of DIC (Schreier et al. 2009), shows that the
use of unsupervised ML methods on strain correlations, may establish an equation free
approach for the recognition of prior deformation history for large sample width w.
The reason for the method’s effectiveness is the fact that the primary features of crystal
plasticity, such as spatial strain gradients in the microstructure, may also be reflected
in spatially resolved strain correlations (Chaikin et al. 1995, Papanikolaou et al. 2013,
2007, Raman et al. 2008). In three dimensions, it is expected that multiple cross-
sections’ strain information would be required for analogous method effectiveness.

The method was implemented (Papanikolaou et al. 2019) in an explicit model of
2D-DDD, where two slip systems are used, for 50 random initializations of sources
and obstacles and 0.1 %, 1 % and 10 % prior loading of the samples. In this way,
statistically reliable initial conditions are produced at various initial dislocation
densities. The prior-deformed samples are subjected to a small compressive but
non-invasive load of 0.1 % testing strain, and the final strain images consist of the
tests. The applied strain is small so that it does not introduce significant further
plastic deformation on the samples . After removing the strain information present at
the unload stage, corresponding to well-annealed samples, strain correlation
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Figure 1.9: w = 1µm – Prior deformation history of samples (see (Papanikolaou
et al. 2019)): (a) Red ● are samples with 0.1 % prior strain, blue ▲ samples with
1 % prior strain and green ∎ are samples with 10 % prior strain. (b) First principal
component of PCA, shown in sample coordinates (Fig. 1.1 (b)). Colormap is unitless.

signatures are examined on strain profiles (see Fig. 1.1 (b)) created by the small load
mechanical testing and are collected in a matrix D:

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C[1][r1∣hihj]⋯C[1][rm∣hihj]
⋮

C[n][r1∣hihj]⋯C[n][rm∣hihj]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[1.1]

where each row of D contain the vector dij :

dij = (C[k]
[r1∣hihj],C

[k]
[r2∣hihj],⋯,C

[k]
[rm∣hihj]) [1.2]

where the correlation function C[k][rv ∣hihj], k = 1, n (n = No. of samples) is
modeled after the Materials Knowledge System in Python (PyMKS (Wheeler et al.
2014)) scheme. ’

Due to the inherent 2D nature of the problem presented in (Papanikolaou et al.
2019), shear band formation upon small reloading may be picked up in large samples
using spatial correlations, for all prior deformation levels. Similar ML schemes may
be used in a 2D cross-section of 3D problems, for example on surface deformation
fields of nanoindented samples. However, in 3D settings, a similar ML scheme would
require the study of multiple volume cross-sections, in order to characterize prior
deformation, or other mechanical properties.

The validity of the ML workflow is quantified through the investigation of
accuracy and Fβ scores (Baeza-Yates and Ribeiro-Neto 2011). Accuracy is defined as
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Figure 1.10: Measures of success for classification of samples (see (Papanikolaou
et al. 2019)): (a) Accuracy score for the samples. (b) F1-score of the 3 clusters that
are formed. (c) F2-score of the 3 clusters that have formed. (d) F0.5-score of the 3
clusters. Red ● ∶ εprior = 0.1%, blue ▲ ∶ εprior = 1% and green ∎ ∶ εprior = 10%

the fraction of correct predictions of the classifier. The Fβ scores are used to quantify
the performance in each cluster:

Fβ = (1 + β2
) ⋅

p ⋅ r

(β2 ⋅ p) + r
[1.3]

where precision p is the number of correctly classified samples in a cluster divided
by the number of all classified samples in the cluster, and recall, r, is the number of
correctly classified samples in a cluster divided by the number of samples that should
have been in that cluster.

Results for larger systems are shown in Fig.1.9, where we observe the results of
unsupervised ML for systems sizes of w = 1 µm (Fig. 1.9 (a)) and the corresponding
smooth correlations (Fig. 1.9 (b)). The unsupervised ML results for all system sizes
can be summarized in Fig. 1.10, where the accuracy and Fβ scores are shown.
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Maximum value 1 means that all samples have been correctly classified. For the
F2-score, weight of r is increased, and the 0.7 maximum value is expected for the
“square” cluster of smaller system sizes. For the F0.5-score the weight of r is
decreased. A correspondence between strain correlations and prior deformation
history is found with 100 % success for large systems, .

1.6. Predicting the mechanical response of crystalline materials using
supervised machine learning

While unsupervised ML is necessary when the number of distinct data classes is
unknown, supervised ML can perform much improved classification tasks. In this
section, we discuss the application of supervised ML approaches on the dataset
of (Papanikolaou et al. 2019), assuming known prior deformation histories of 80% of
the samples. The aim is to identify relationships that fully describe the connections
between strain correlations and prior processing history.

In addition, the understanding and classification of prior deformation is
equivalent to knowing the deformation State. In that case, one should be able to
perform predictions of future mechanical response, albeit at average levels. We show
that we can statistically predict mechanical responses for test data (20% of the
samples), which can be thought of as average future mechanical responses of
classified specimens.

In supervised ML approaches, the dataset consists of samples with known
outputs/features (in our case, prior deformation history is known for each sample),
and the goal is to create robust algorithms that recognize sample/feature
correspondences with high accuracy. In a typical supervised ML workflow, collected
datasets are split to training and testing data sets. The algorithm is trained on the
training data sets, and then it is tested as to the validity and accuracy of the testing
data sets. In the absence of big data collections, it is common to perform an
80 % -20 %-split for the training and testing data sets.

We train two types of supervised ML algorithms on the training set: Neural
networks (Bishop et al. 1995) and Decision Trees (Quinlan 1986). Neural Networks
are a set of algorithms, modeled loosely after the human brain, that are designed to
recognize patterns in datasets and consist of “neurons" from which the dataset passes
through and activates various input functions. Decision trees are a set of decisions for
the features of the input matrix, modeled after trees. The algorithm finds patterns in
the features and creates leaves of a tree. When all possible patterns have been found,
we have multiple leaves in a tree, hence the name decision tree.

The most accurate Neural Networks and Decision Trees may be found through a
parameter search using an algorithm for parameter optimization



18 Effects of Rate, Size and Prior Deformation in Microcrystal Plasticity

! (
MP

a)

( (%) 1%

? 
Prediction

0.1%

Machine 
Learning Classification

Prediction of 
average response 

at 1%

0.1% Strain
Correlations

Various I.C.

Non-Invasive
Mechanical Testing

Figure 1.11: Schematic for obtaining the 1% strain mechanical response of
unknown samples

Table 1.3: Neural Networks. Accuracy scores on supervised machine learning for
identification of prior deformation histories via spatial strain correlations.

w Training Set Accuracy Test Set Accuracy
0.125 µm 90.38 % 83.3 %
0.25 µm 91.35 % 100 %
0.5 µm 100 % 100 %
1 µm 100 % 100 %
2 µm 100 % 100 %

(GridSearchCV (Bergstra et al. 2011)). The GridSearchCV algorithm allows the
input of multiple parameters of a given classifier, and output of the set of parameters
that will provide the highest accuracy for the problem.

We employed the use of the GridSearchCV (Bergstra et al. 2011) algorithm for
Neural Networks (Bishop et al. 1995) and Decision Trees (Quinlan 1986), in order



Effects of Rate, Size and Prior Deformation in Microcrystal Plasticity 19

to identify the parameters that will produce the highest accuracy in the supervised
problem. In the case of Neural Networks, the parameter search included adaptive
or constant learning rate ranging from 10−5 to 103. For Decision Trees, the input
parameters on the GridSearchCV algorithm were gini or entropy criteria with the
maximum depth of the tree ranging from 12 to 16. With these parameters the highest
accuracy was provided for adaptive learning rate of 10−5 for Neural Networks, while
for Decision Trees, the best criterion was gini (Quinlan 1986) with maximum depth
(for w = 0.125 µm) set at 14 leaves.

Table 1.4: Decision Trees.Accuracy scores on supervised machine learning for
identification of prior deformation histories via spatial strain correlations.

w Training Set Accuracy Test Set Accuracy
0.125 µm 100 % 83.3 %
0.25 µm 100 % 100 %
0.5 µm 100 % 100 %
1 µm 100 % 100 %
2 µm 100 % 100 %

The scores for the supervised problem (See Tables 1.3, 1.4), exceed the scores of
the unsupervised problem reported on (Papanikolaou et al. 2019) (also see Fig. 1.10).
This result was expected since the deformation histories are now known for the
training set, and it is easier to establish connections between known input-outputs.

With the application of supervised algorithms on the dataset, we are able to find
a relationship between the known prior deformation histories (3 classes of uniaxial
compressive strain) and spatial strain correlations in training samples and use it for
the classification of testing samples with high accuracy. We assume that samples that
belong in each class are “similar" in terms of their mechanical properties. We use
classified samples as averages for the prediction of the mechanical response upon
further compression. In Fig. 1.11, a schematic for the prediction of the mechanical
response is shown, and we discuss the detailed process of calculating the average
response based on prior deformation.

We create 3 separate datasets, one for each deformation class (irrespective of the
accuracy of the algorithm). For samples in each class, we assume future deformation
features (1% testing deformation) as known, since there is a one-to-one
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Figure 1.12: w = 0.5µm - Prior deformation history of samples, large reload
strain (1 %) (see (Papanikolaou et al. 2019)): (a) Colors follow Fig. 1.9. The failure
of the classifier is evident. (b) First principal component of PCA, shown in sample
coordinates (Fig. 1.1). The anisotropy of the component is largely due to the high
localization effects upon reloading to higher strain.
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Figure 1.13: Prediction of the mechanical response of samples with a known prior
deformation history: (a) w = 2 µm. (b) w = 0.25 µm.

correspondence between testing deformation levels 1. While the classification of
datasets with 1% reloading strain has not taken place (also see Fig. 1.12), this is
irrelevant to promoting predictions, since samples share the same initial dislocation
ensemble, which may be found for small reload strain.

1. the same sample that is loaded to 0.1% testing deformation to capture the strain correlation
patterns is also loaded to 1% testing deformation see (Papanikolaou et al. 2019)
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Figure 1.14: Size effects in thin films: The maximum predicted stress (see Fig. 1.13)
is plotted against sample widths. The relationships derived correspond to a power law
with an exponent that changes depending on the degree of prior deformation history
of specimens.

For each dataset, we collect the average reload response (1 % strain) per width.
The results can be seen in Figs. 1.13, 1.14. In Figure 1.13, we observe, for decreasing
width, whether the prior deformation history controls the mechanical response and
the hardening behavior of the material. Red lines are for εprior = 0.1%, blue lines
for εprior = 1% and green lines for εprior = 10%. We see a transition at w ≃ 1 µm,
where the maximum stress response in further deformation, changes from being high
deformation history dominated (prior deformation history = 10%, Fig. 1.13 (a)) to low
deformation history dominated (prior deformation history = 0.1%, Fig. 1.13 (b)).

Prior deformation history of samples directly connects to the relaxed dislocation
configuration in the volume upon unloading, with prior-strain levels indicating
corresponding dislocation density levels in the crystal. In Fig. 1.14, the sample yield
stress is plotted against the thin film width for different dislocation density levels
(acquired through prior deformation), which demonstrate an evolving size effect
σ ≈ w−a, where a is shown in the legend, with a → 0 as the dislocation density
increases. This is consistent with the basic phenomenological expectation in
crystalline size effects’ literature (El-Awady 2015, Papanikolaou, Cui and Ghoniem
2017, Song, Dimiduk and Papanikolaou 2019). It is worth noting that the discussed
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model in this work is the first discrete dislocation model demonstration of this well
suggested transition (since Taylor) as a function of pre-existing dislocation density.
The origin and further consequences of these findings will be discussed elsewhere.

Overall, the suggested approach for the prediction of mechanical responses
implies there is an accurate method to describe and predict far-from-equilibrium
mechanical-response phenomena: Given a sample of unknown origin, and a known
database of prior deformation histories, one only needs to apply a small load
mechanical test, capture spatial strain correlation features, use them as part of the test
set in the supervised ML problem and obtain a prediction of future mechanical
response, and the prior deformation history/dislocation density of the crystal.

1.7. Summary

In this chapter, we presented recent advances in the multiscale modeling of
material science to understand how and when crystal plasticity of small finite
volumes, displays dependence on loading rate, specimen size and pre-existing,
load-induced, dislocation microstructures. We introduced and discussed an explicit
model of discrete dislocations which is both minimal (in model details) and rich (in
results and conclusions). While we investigated only the simple example of uniaxial
compression, the model is directly generalizable to any other geometry in mechanics.
Intrinsic, plasticity-induced crackling noise allows for thorough, statistically reliable
examination of event statistics in a finite-volume system. Through an extensive
investigation of this model, there has been a thorough and deep understanding of the
collective effects in nanocrystal plasticity. The ultimate results of these studies have
been the development of predictions for further signatures of rate and size effects,
especially the finding of a dislocation-density dependent size-effect that promotes a
transition to Taylor work hardening for the very first time in discrete dislocation
modeling efforts. In addition, a major result of these studies has been a precise
machine-learning method for mechanical predictions of deformation characteristics.
Nevertheless, beyond particular predictions in one or another aspect of nanocrystal
plasticity, the most important accomplishment of these research efforts has been the
unified investigation of small finite-volume nanocrystal plasticity as a whole, through
rates, sizes and prior deformation histories.
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