
2_2_Designing_IO_and_Map.ppt

In this presentation you will see how intermediate objects are created and how the data

within these objects is mapped to events and actions. Additionally you will see how

JavaScript™, constants and database look-ups can be used to enrich WebSphere®

Business Events event and action content.

Page 1 of 11

2_2_Designing_IO_and_Map.ppt

During this presentation you will use the concepts you learned about intermediate objects

in the earlier presentations. This presentation will show you how to build an intermediate

object using the WebSphere Business Events: Design Data tool. You will learn how to

implement the mapping between event objects and intermediate objects; also the mapping

between intermediate objects and action objects. Also, you will see how to enrich

intermediate objects by using constants, database look-ups and JavaScript. Parts of this

presentation assume that you understand concepts introduced in earlier presentations.

Page 2 of 11

2_2_Designing_IO_and_Map.ppt

In order to create an intermediate object you will use the WebSphere Business Events:

Design Data tool.

Having started the Design Data tool and expanded the intermediate objects bar, create an

intermediate object by right-clicking in the intermediate objects pane and selecting ‘Insert

Intermediate Object’, then ‘Blank’ from the pop-up menu.

The intermediate object must then be given a name.

Page 3 of 11

2_2_Designing_IO_and_Map.ppt

An intermediate object needs fields associated with it. These fields define the potential

content that the intermediate object can contain. A field is a combination of a name and a

data type.

A field can be inserted by right clicking on the intermediate object and selecting the ‘Insert

Intermediate Object Field’ menu option.

You should then provide a name for the new field, select the appropriate data type and

then optionally provide a description of the field’s usage. Additional fields can be added by

repeating this task.

Page 4 of 11

2_2_Designing_IO_and_Map.ppt

Most of the parts of the solution are now in place. What remains is the mapping of the

business data from the event object to the intermediate object fields. In the example

shown, there is an event object called order which has three fields defined. Right-click the

order event object and from the pop-up menu select ‘Insert Field Constructor from Object’

then select ‘Order’ and finally select ‘e-mail’ from the list.

You now map the intermediate object field constructors to the event object fields. Expand

the intermediate object field constructor. Select field in the type box and then select the

corresponding event object field name as the source of the intermediate object field.

Page 5 of 11

2_2_Designing_IO_and_Map.ppt

In the event that data is required in order to process an event or action, and this

information is not available in the event object, that data can be retrieved from an external

data source. Those external data sources fall into two categories: relational databases and

remote sources. Relational databases are defined directly to WebSphere Business Events

and remote sources are other data sources that are accessed by way of a purpose-written

JavaScript API called a custom fetcher. These other remote sources can include web-

sites, flat files and non-relational databases.

This slide shows some examples of situations where this can be useful. In the first

example, a database lookup can be used to populate the tax field in the intermediate

object, dependent on the US state field in the incoming event payload. In the second

example, JavaScript can be used to multiply two fields in the incoming events payload and

populate the order value field in the intermediate object.

Page 6 of 11

2_2_Designing_IO_and_Map.ppt

When an action is externalized, data associated with the action object fields has to be

populated. This data comes from one or more intermediate objects.

In the example shown, you select the product action object and then click the twisty to

expand the e-mail action object field definition. Select ‘field’ in the type pull down list and

then click ‘insert object field’ and select the intermediate object field that you want to use to

populate this field in the action object.

Page 7 of 11

2_2_Designing_IO_and_Map.ppt

Intermediate objects can be enriched using database lookups. In order to achieve this, a

data source must first be defined. To see how to define a data source refer to the

demonstration ‘Using the RDBMS connector’.

In the example shown, the unit price field in the order intermediate object is populated

using a database lookup based on another field in the intermediate object, the item type.

There is a database called WBEPOT with a table called PRICING that contains the

required data. Expand the definition of the unit price field in the Intermediate Object and

set the type to ‘Mapped expression (SQL)’.
This defines that the value of the unit price field is to be determined based on a database

lookup. Define the source to be WBEPOT. Then in the mapping section of the definition

specify that the ‘price’ column within the PRICING table should be used for the mapping.

After completing these steps, the SQL WHERE expression will appear. The SQL WHERE

clause can be completed as shown to use a database lookup to return the price for the

item specified in the intermediate object item type field.

Page 8 of 11

2_2_Designing_IO_and_Map.ppt

You can also use JavaScript to enrich an intermediate object. In this example, the total

price field in the intermediate object is computed using JavaScript based on two other

fields within the intermediate object. To use JavaScript within an intermediate object field

definition, set the type to JavaScript and then use the expression field to define how the

value of the field should be calculated. In the example shown, the expression calculates

the total price by multiplying the quantity by the unit price and rounding the result to two

decimal places.

Page 9 of 11

2_2_Designing_IO_and_Map.ppt

In this presentation you have learnt how to create intermediate objects. You have also

learnt how to map event objects to intermediate objects, and intermediate objects to action

objects. Finally, you saw how intermediate objects can be enriched using database

lookups and JavaScript.

Page 10 of 11

2_2_Designing_IO_and_Map.ppt Page 11 of 11

