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Solutions are provided to the following exercises:

Chapter 2 Exercises 2, 4, and 5;

Chapter 3 Exercises 1, 3, 4, 7, 8, and 9;

Chapter 4 Exercises 1, 4, and 7;

Chapter 5 Exercises 2, 5, 7, 9, and 11;

Chapter 6 Exercises 1, 3, 6, 7, and 10;

Chapter 7 Exercises 2 and 5;

Chapter 8 Exercises 1, 2, and 7;

Chapter 9 Exercises 1 and 5;

Chapter 10 Exercises 1 and 3;

Chapter 11 Exercises 3, 5, and 7;

Chapter 12 Exercises 2, 3, and 5;

Chapter 13 Exercises 2, 3, and 4;

Chapter 14 Exercises 2, 4, 5, and 7;

Chapter 15 Exercises 1, 2, 3, 6, 7, and 9;

Chapter 16 Exercises 1, 4, and 7;

Chapter 17 Exercises 1, 3, and 6;

Chapter 18 Exercises 3, and 5;

Chapter 19 Exercises 1, and 4;

Chapter 20 Exercises 1, 4, and 5;

Chapter 21 Exercises 2, 4, 6, and 8;

Chapter 22 Exercises 1, 2, and 3.



Solutions to Chapter 2

Exercise 2. Compute the quoted price P of the T-bill as:

P = 100×
[
1 − n

360
× d

]
, (1)

using the discount rate given, d. The simple (bond equivalent) yield measures

your annualized return as:

BEY =
100 − P

P
× 365

n
. (2)

Let τ = n
365 be the time to maturity expressed as fraction of a year, and let T

denote the maturity date of a given T-bill. The continuously compounded yield

follows as:

r(t, T ) = −1
τ

ln
P

100
. (3)

Finally, to obtain the semi-annually compounded yield for the 1-year T-bill, use:

r2(0, 1) = 2 ×
(

1
(P/100)1/2

− 1
)

(4)

Semi-annual
n T − t Discount, d Price, P BEY yield Date

a. 28 0.083 3.48% 99.7293 3.5379% 3.53% 12/12/2005
b. 28 0.083 0.13% 99.9899 0.13% 0.13% 11/6/2008
c. 90 0.25 4.93% 98.7675 5.06% 5.03% 7/10/2006
d. 90 0.25 4.76% 98.8100 4.88% 4.86% 5/8/2007
e. 90 0.25 0.48% 99.8800 0.49% 0.49% 11/4/2008
f. 180 0.5 4.72% 97.6400 4.90% 4.84% 4/21/2006
g. 180 0.5 4.75% 97.6250 4.93% 4.87% 6/6/2007
h. 180 0.5 0.89% 99.5550 0.91% 0.90% 11/11/2008
i. 360 1 1.73% 98.2700 1.78% 1.77% 9/30/2008
j. 360 1 1.19% 98.8100 1.22% 1.21% 11/5/2008

For bond i. and j. the continuously compounded yields are 1.75% and 1.20%

respectively.
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Exercise 4. Using Table 2.4, obtain the discount factor Z(t, T ) for each ma-

turity T − t from 0.25 to 7.5 years:

Z(t, T ) =
1(

1 + r2(t,T )
2

)2(T−t)
. (5)

Use Z to price each bond:

a. Pz(0, 5) = 100× Z(0, 5) = 72.80

b. Pc=15%,n=2(0, 7) = 15
2 ×

∑14
i=1 Z(0, i/2) + 100 × Z(0, 7) = 151.23

c. Pc=7%,n=4(0, 4) = 7
4 ×

∑16
i=1 Z(0, i/4) + 100 × Z(0, 4) = 101.28

d. Pc=9%,n=2(0, 3.25) = 9
2 ×

∑7
i=1 Z(0, i/2−0.25)+100×Z(0, 3.25) = 108.55

e. 100 (see Fact 2.11)

f. PFR,n=1,s=0 = Z(0, 0.5) × 100 × (1 + 6.8%
1

) = 103.44, where we assume

that r1(0) = 6.8%

g. PFR,n=4,s=0.35%(0, 5.5) = 100 + 0.35
4

∑22
i=1 Z(0, i/4) = 101.6

h. PFR,n=2,s=0.40% = Z(0, 0.25) × 100 × (1 + 6.4%
2 ) + 0.40

2

∑15
i=1 Z(0, i/2 −

0.25) = 104, where we assume that r2(0) = 6.4%

Exercise 5.

a. When coupon c is equal to the yield to maturity y the bond trades at

par; when coupon is below (above) the yield to maturity the bond trades

above (below) par. Obtain bond prices given yield and the coupon using:

Pc(0, T ) =
20∑

i=1

c/2 × 100
(1 + y/2)i

+
100

(1 + y/2)20
(6)
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It follows:

c y P

5% 6% 107.79
6% 6% 100
7% 6% 92.89

b. Figure ?? plots bond prices implied by different yields to maturity.
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Figure 1: Bond price as function of yield to maturity
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Solutions to Chapter 3

Exercise 1.

a. 3; equal to the maturity of the zero bond

b. 2.9542; the duration of the coupon bond is the weighted average of the

coupon payment times

c. 0.9850

d. 0.5; equal to the time left to the next coupon payment

e. 0.5111; obtain the price PFR of the floating rate bond (see Chapter 2,

equation (2.39)). In analogy to a coupon bond, the duration is computed

as:

DFR =
100
PFR

× 0.5 +
0.5s×

∑3
t=0.5 Z(0, t) × t

PFR
. (7)

f. 0.2855; proceed as in point e. above but recognize that the valuation is

outside the reset date. Assume that the coupon applying to the next reset

date has been set at r2(0) = 6.4%.

Exercise 3. Obtain yield to maturity y for each security. Compute modified

and Macaulay duration accodring to equation (3.19) and (3.20) in the book.

Yield Duration Modified Macaulay
a. 6.95% 3 3 2.8993
b. 6.28% 2.9542 2.9974 2.9061
c. 6.66% 0.9850 0.9850 0.9689
d. 0.00% 0.5 0.5 0.5
e. 6.82% 0.5111 0.5111 0.4943
f. 6.76% 0.2855 0.2855 0.2761
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Exercise 4. Compute the duration of each asset and use the fact that the

dollar duration is the bond price times its duration.

Price Duration $ Duration
a. $89.56 4.55 $407.88
b. $67.63 -7.00 ($473.39)
c. $79.46 3.50 $277.74
d. $100.00 0.5 $50.00
e. $100.00 -0.25 ($25.00)
f. $102.70 -0.2763 ($28.38)

Exercise 7.

a. $10 mn

b. Compute the dollar duration of the cash flows in each bond, and then the

dollar duration of the portfolio:

Security $ (mn) Price N $D $D × N

6yr IF @ 20% - fl quart 20.00 146.48 0.137 1,140.28 155.69
4yr fl 45bps semi 20.00 101.62 0.197 53.54 10.54

5yr zero (30.00) 76.41 -0.393 382.052 -150.00

Portfolio $10.00 mn 16.23

Note: negative values denote short positions.

Exercise 8.

a. The price of the 3yr @ 5% semi bond is $97.82. You want the duration

of the hedged portfolio to be zero. You need to short 0.058 units of the

3-year bond, i.e. the short position is -$5.69.

b. The total value of the portfolio is: $4.31 mn.
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Exercise 9. Compute the new value of the portfolio assuming the term struc-

ture of interest rates as of May 15, 1994.

Original Now Δ value
Unhedged port. $10.00 $8.97 ($1.03)
Hedge ($5.69) ($5.44) $0.25
Total $4.31 $3.53 ($0.78)

a. $8.97 mn

b. $3.53 mn

c. The immunization covered part of the loss. The change in the value of

the portfolio is both due to (i) the passage of time (coupon) and (ii) the

increase in interest rates.
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Solutions to Chapter 4

Exercise 1.

a. 16

b. 4.7 (see Fact 4.3)

c. 3.85

d. 0.28 = 0.25 (due to floater with zero spread) + 0.03 (due to the spread)

e. 0.14 = 0.06 (due to floater with zero spread) + 0.08 (due to the spread).

Assume r2(0) = 6.40%.

Exercise 4. Follow the steps in Example 4.3 using a 2-year bond instead of a

10-year bond.

Duration Hedging
Spot Curve Change in
Shift Pc(0, 10) Pz(0, 2) Position Portfolio Value
Initial Values 103.58 91.39 -4.5507
dr = .1% 102.75 91.21 -4.5507 0.0030
dr = 1% 95.63 89.58 -4.5507 0.2880
dr = 2% 88.38 87.81 -4.5507 1.1087
dr = −.1% 104.41 91.58 -4.5507 0.0030
dr = −1% 112.29 93.24 -4.5507 0.3113
dr = −2% 121.84 95.12 -4.5507 1.2957

The hedge performs better in that for any scenario the change in the value of

the portfolio is positive.
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Exercise 7. You need factor sensitivities for yields with maturities from 3

months to 4.25 years with a 0.25-year spacing. To obtain the 0.25-year grid

of sensitivities, interpolate linearly the β’s between available maturities. To

compute factor durations, use Fact 4.5.

Security Price Level D Slope D Curvature D

a. 4 yr zero 81.45 4.10 0.20 0.99
b. 2.5 yr @ 3% semi 96.24 2.50 -0.61 0.77
c. 3.25 yr float 0 bps 100.71 0.25 -0.06 -0.08
d. 4.25 yr float 35 bps 102.12 0.29 -0.07 -0.07
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Solutions to Chapter 5

Exercise 2. Use the facts that:

F (0, T − Δ, T ) = e−f(0,T−Δ,T )Δ (8)

Z(0, Ti) = Z(0, Ti−1) × F (0, Ti−1, Ti). (9)

(t, T ) f(t, T − Δ, T ) F (t, T − Δ, T ) yield Z(t, T )

0.25 3.53% 0.9912 3.53% 0.9912
0.50 3.58% 0.9911 3.55% 0.9824
0.75 4.19% 0.9896 3.77% 0.9721
1.00 3.99% 0.9901 3.82% 0.9625
1.25 4.54% 0.9887 3.97% 0.9516
1.50 5.00% 0.9876 4.14% 0.9398
1.75 4.76% 0.9882 4.23% 0.9287
2.00 5.88% 0.9854 4.43% 0.9151
2.25 5.30% 0.9868 4.53% 0.9031
2.50 4.92% 0.9878 4.57% 0.8921
2.75 6.09% 0.9849 4.71% 0.8786
3.00 5.29% 0.9869 4.76% 0.8670
3.25 6.48% 0.9839 4.89% 0.8531
3.50 6.20% 0.9846 4.98% 0.8400
3.75 6.34% 0.9843 5.07% 0.8268
4.00 6.00% 0.9851 5.13% 0.8145
4.25 5.99% 0.9851 5.18% 0.8024
4.50 6.58% 0.9837 5.26% 0.7893
4.75 6.26% 0.9845 5.31% 0.7770
5.00 6.69% 0.9834 5.38% 0.7641
5.25 6.12% 0.9848 5.42% 0.7525
5.50 5.70% 0.9859 5.43% 0.7419
5.75 6.81% 0.9831 5.49% 0.7294
6.00 6.50% 0.9839 5.53% 0.7176
6.25 6.59% 0.9837 5.57% 0.7059
6.50 7.06% 0.9825 5.63% 0.6935
6.75 6.87% 0.9830 5.68% 0.6817
7.00 6.37% 0.9842 5.70% 0.6709
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Exercise 6.

a. P fwd = 100× F (0, 0.5, 2) = $90.3210

b. M = $50 mn
Pfwd = 0.554 mn

Exercise 7.

a. Payoff = M × (P (0.5, 2)− P fwd) = $0.64 mn

b. You make money on the long forward.

Exercise 9. Use fact 5.11 to obtain the swap rate c(t, T ):

(t, T ) yield ZL(t, T ) c(t, T ), n = 2
0.50 2.76% 0.9863 2.77%
1.00 2.95% 0.9710 2.96%
1.50 2.98% 0.9564 2.99%
2.00 3.20% 0.9383 3.20%

Exercise 11. On that day, the net spread was strongly negative:

SS = c − ytm = −0.33%

LRS = LIBOR − repo = 1.71%

SS − LRS = −2.04%

You could envision the following strategy to exploit the large negative spread:
1. Buy Treasury through a repo transaction: get coupon, pay repo
2. Enter the floating-for-fixed swap: pay fixed, get LIBOR
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Solutions to Chapter 6

Exercise 1. From semi-annually compounded yields obtain (i) the discount

factors, and (ii) the forward discount factors. Use Fact 5.9 in Chapter 5 to

compute the forward price of a coupon bond.

a. 98.85

b. 0

c. Compute the time-t value of the forward as:

V (t) = Z(t, T ) ×
[
P fwd

c (t, T, T ∗) − K
]
, K = P fwd

c (0, T, T ∗) (10)

d. See Table below

e. Obtain the daily overnight discount factor Z(o/n), then:

Total P/L(ti) = P/L(ti) +
Total P/L(ti−1)

Zo/n(ti−1)
(11)

2/15/94 2/16/94 2/17/94 2/18/94 2/22/94 2/23/94
t0 t1 t2 t3 t4 t5

P fwd
c 98.85 98.73 98.23 97.77 98.13 97.84

V (t) 0 -0.1156 -0.5691 -0.9913 -0.6623 -0.9206
P/L -0.1262 -0.4964 -0.4616 0.3588 -0.2846
r o/n 3.54% 3.78% 3.90% 4.44% 2.88%
Z(o/n) 0.9999 0.9999 0.9998 0.9998 0.9999

Tot. P/L -0.1262 -0.6227 -1.0844 -0.7257 -1.0105
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Exercise 3.

a. Yes, the rates did converge: Libor equals the futures rate at expiry.

b. Total profit from futures: 0.475 = 0.25× (97.2912− 95.3900)

c. Total profit from forward: 0.547 = 100 × (0.9933− 0.9878)

d.,e.,f. See Figure ??.
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Figure 2: P&L from the futures and forward contracts

Exercise 6.

a.i. The empirical probability that the firm has enough cash for the lawsuit is

79% (see Figure ??, a.i).

a.ii The firm would have enough cash in 54% of scenarios (see Figure ??, a.ii).

α 0.00404
β 0.88152

s.e. 0.00853
r(0) 5.2088%

b. Ex post the company will not have enough cash: 98.78×(1+2.7088%/4) =

99.4489.
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Figure 3: Distribution of possible cash flows for the firm

Exercise 7.

Price P&L Total 3mo Libor After 90 days Final ($ mn)
a. $98.86 0.475 99.336 2.7088% 100.009 0.009
b. $98.86 -0.475 98.385 6.5112% 99.987 -0.013

Under scenario in b. (from Table 6.12), the firm is short on the cash they

need, receiving 99.987 out of 100 required.

Exercise 10.

a. The securities are not correctly priced, as the put-call parity is violated:

Put $0.1044
Call $0.2934
P fwd(0, 0.5, 0.75) 98.96
K 99.12
Z(0, 0.5)× (P fwd − K) -0.1590
Call from P/C parity ($0.0546)
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b. Strategy long call, short put, short forward gives a positive cash-flow of

$0.3480 at no risk.
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Solutions to Chapter 7

Exercise 2.

a. Using Equation 7.28, minimize squared distance between the observed

and the model-based prices (computed from equation 7.27) to obtain the

parameters in the table below. Using the parameters compute real yields

and the discount factors (see Figure ??).

Parameter Value
θ0 6278.301
θ1 -6278.23
θ2 -6289.19
θ3 -0.18757
κ1 27056.49
κ2 32.19053

b. Obtain the analytical expression for the short interest rate by taking the

limit of r(0, T ) implied by the Nelson-Siegel model:

lim
T→0

r(0, T ) = θ0 + θ1 = 7.58% (12)

Use the following facts:

lim
T→0

1− e−T/κ1

T/κ1
= 1 (13)

lim
T→0

= e−T/κ1 = 1. (14)

c.,d. Using the NS yield curve, the TIPS with maturity 3.372 years (maturing

4/14/2012) is priced at $86.23. This is $2.755 lower relative to the traded

price.
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Figure 4: NS yields and discount factors. Vertical lines indicate the maturities
of bonds used in estimation.

Exercise 5.

b. If there is no inflation, the security will pay real coupon ×1.00031, as the

index ratio will not change. If there is a deflation, and should the index

ratio for the security go below 1, it will be automatically reset to 1. In

this case, the security will pay an amount equal to the real coupon.

c. The bond is more valuable to investors. Compared to the other securities,

the bond offers a deflation floor, and this attractive feature will be priced

in.

d. The price of the security using the NS real curve is 89.57. (You have to

compute dirty prices of bonds first.)

e. The squared pricing error for this security is

(P̂ NS − Dirty P̂ )2 = (89.57− 100.7)2 = 123.92, (15)

and is much larger than on all other securities.
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f. The model-implied clean price is: (89.57− 0.85) × 1.00031 = 88.74. The

squared error on this price is: (88.74− 99.88)2 = 123.99.

g. Yes.
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Solutions to Chapter 8

Exercise 1. The results are reported in the following Table.

T − t Y ield Z(t, T ) T − t Y ield Z(t, T ) T − t Y ield Z(t, T )
0.017 5.336 0.999 0.997 5.379 0.948 7.206 5.596 0.668
0.036 5.336 0.998 1.083 5.383 0.943 7.456 5.603 0.659
0.039 5.336 0.998 1.167 5.386 0.939 7.956 5.617 0.640
0.047 5.337 0.997 1.206 5.388 0.937 8.456 5.630 0.621
0.056 5.337 0.997 1.242 5.389 0.935 8.706 5.636 0.612
0.075 5.338 0.996 1.333 5.393 0.931 9.206 5.648 0.595
0.083 5.339 0.996 1.414 5.397 0.927 9.706 5.660 0.577
0.092 5.339 0.995 1.456 5.398 0.924 14.206 5.744 0.442
0.111 5.340 0.994 1.500 5.400 0.922 14.706 5.752 0.429
0.131 5.341 0.993 1.581 5.403 0.918 14.956 5.755 0.423
0.150 5.342 0.992 1.667 5.407 0.914 15.206 5.759 0.417
0.167 5.342 0.991 1.706 5.409 0.912 15.456 5.762 0.410
0.186 5.343 0.990 1.750 5.410 0.910 15.956 5.768 0.398
0.206 5.344 0.989 1.831 5.414 0.906 16.456 5.774 0.387
0.225 5.345 0.988 1.917 5.417 0.901 16.706 5.777 0.381
0.242 5.346 0.987 1.956 5.419 0.899 17.456 5.785 0.364
0.250 5.346 0.987 1.997 5.420 0.897 17.956 5.790 0.354
0.269 5.347 0.986 2.083 5.424 0.893 18.206 5.793 0.348
0.289 5.348 0.985 2.167 5.427 0.889 18.706 5.797 0.338
0.308 5.349 0.984 2.206 5.429 0.887 19.206 5.801 0.328
0.328 5.350 0.983 2.242 5.430 0.885 19.456 5.803 0.323
0.333 5.350 0.982 2.333 5.434 0.881 19.706 5.805 0.319
0.344 5.350 0.982 2.414 5.437 0.877 20.206 5.809 0.309
0.364 5.351 0.981 2.456 5.439 0.875 20.456 5.810 0.305
0.383 5.352 0.980 2.500 5.440 0.873 20.706 5.812 0.300
0.403 5.353 0.979 2.581 5.443 0.869 20.956 5.814 0.296
0.414 5.353 0.978 2.706 5.448 0.863 21.706 5.818 0.283
0.422 5.354 0.978 2.956 5.458 0.851 21.956 5.819 0.279
0.442 5.355 0.977 3.206 5.467 0.839 22.206 5.820 0.275
0.456 5.355 0.976 3.456 5.476 0.828 22.706 5.822 0.267
0.461 5.356 0.976 3.706 5.485 0.816 23.956 5.827 0.248
0.481 5.356 0.975 3.956 5.494 0.805 24.206 5.827 0.244
0.500 5.357 0.974 4.206 5.503 0.793 24.706 5.828 0.237
0.517 5.358 0.973 4.456 5.512 0.782 25.206 5.829 0.230
0.581 5.361 0.969 4.706 5.520 0.771 25.706 5.830 0.223
0.667 5.365 0.965 4.956 5.528 0.760 25.956 5.830 0.220
0.706 5.366 0.963 5.206 5.536 0.750 26.206 5.831 0.217
0.747 5.368 0.961 5.456 5.544 0.739 26.706 5.831 0.211
0.750 5.368 0.961 5.622 5.550 0.732 26.956 5.831 0.208
0.831 5.372 0.956 5.872 5.557 0.722 27.706 5.831 0.199
0.917 5.375 0.952 6.206 5.568 0.708 27.956 5.830 0.196
0.956 5.377 0.950 6.456 5.575 0.698 28.206 5.830 0.193
0.994 5.379 0.948 6.706 5.582 0.688 28.706 5.830 0.188
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Exercise 2. Follow the lines of Example 8.2 and Table 6.3. Plug in the NS

parameters to compute the discount curve.

a. The price is $316.39 mn, and is above the $300 mn par value of the security.

b. Under the (unrealistic) assumption of constant PSA, you can apply the

definition of duration in Chapter 3, and compute it in a standard way (see

Section 3.2.3). The duration is 6.47.

c.,d. Compute the prices of the pass through under the different scenarios taking

into account the parallel shift in the curve and the change in the PSA.

Use definitions 8.1 and 8.2 to obtain the effective duration and convexity,

respectively.

Prices under the three scenarios:
P(dr = 0bps, PSA=150%) 316.39
P(dr = +50bps, PSA=120%) 306.68
P(dr = −50bps, PSA=200%) 323.89

Effective Duration 5.44
Effective Convexity -278.44

The effective duration is lower than the one obtained under the assump-

tion that the change in rates does not affect the PSA. Standard duration

overstates the sensitivity of the MBS price to changes in interest rates.

In contrast to the Treasury bonds, the convexity of an MBS is negative

(i.e. the value profile is concave with respect to interest rate changes).

Therefore, convexity presents a source of risk to investors. This risk is

associated with the prepayment option that homeowners have. Effectively,

an MBS investor is short an American call option to the homeowners.
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Exercise 7. Results are reported in the following table

Tranche A B C E G H
Face 127.50 51.00 25.50 68.00 59.50 93.50

a. 10/1/1993, PSA = 450%
Price 119.76 36.06 11.38 57.83 51.09 72.48
Duration 1.99 4.81 7.53 2.82 2.71 2.86

b. 4/4/1994, PSA = 450%
Price 108.52 34.45 9.55 53.76 47.80 70.37
Duration 1.67 4.30 6.93 2.43 2.31 2.23

c. 4/4/1994, PSA = 200%
Price 108.52 34.45 9.55 53.76 38.55 23.55
Duration 1.67 4.30 6.93 2.43 2.70 7.71

(b) i. The interest rates have increased (in a nonparallel fashion). The

behavior of the G+H portfolio is shown in the following Table.

a. b.ii. c.iv.

PSA 450% 450% 200%

Date 10/1/93 4/4/94 4/4/94

Tranche Inv. Weight Price Price Price

G 50 0.98 51.09 47.80 38.55

H 50 0.69 72.48 70.37 23.55

Port. 100 100 95.32 53.98

ΔPort. -4.68 -46.02

(c) i. Yes, the term structure has increased, so the PSA has declined (lower

prepayment speed).

ii. No. Since all tranches are PO, the portfolio is a bet on decreasing

interest rates (it wins when interest rates decline). Between October

and April interest rates moved up, therefore the portfolio is losing

money. The computed duration confirms this intuition.
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Solutions to Chapter 9

Exercise 1.

a. The expected return is equal to 2.5%.

b. The forward rate (continously compounded) is equal to 3.0954%. This

is higher than the expected rate computed in Part (a). If we observe

high forward rates it may be because of two posibilities: either market

participants expect higher future interest rates; or they are strongly averse

to risk, and thus the price of long term bonds is low today.

c. The market price of risk equals: λ = -0.1980. The high (negative) market

price of risk, means that market participants have high risk aversion, which

may explain the price of long term bonds today.

d. The risk neutral probability equals: p∗ = 0.7000. The interpretation is

the same as in Part (c).

Exercise 5.

a. The value of r0 is: 5%

b. The following three pairs of values for (r1,u, r1,d) are consistent with the

two bond prices: (7.010, 3.005), (7.000, 3.015) and (6.000, 4.000). In fact

the relationship between both interest rate scenarios is linear and can be

summarized by the following equation:

r1,d = −0.9852× r1,u + 9.9115 (16)
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Note that this is consistent with the idea of risk neutrality. In order to

compensate a decrease (increase) in the up state, the down side must

increase (decrease); given that the risk neutral probabilities are fixed.

c. The option gives an information on actual prices, so we can infer the

market price of risk and therefore can pin down the actual values for

(r1,u, r1,d). These values should be consistent in order to value the option

at the given price. The values for (r1,u, r1,d) are: (7.000, 3.015).

d. If you didn’t know p∗ you would also need the value of the interest rate

in the up and down states or the prices of the bonds in these states.
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Solutions to Chapter 10

Exercise 1.

a. The bond evolves in the following way:

i = 0 1 2
90.0000 93.2394 100.000

97.0446 100.000
100.000

b. The market price of risk is: λ = -0.3709

c. The anwers are the following:

i. The market price of risk is: λ = -0.3709. Which is the same as the

one computed from the bond, this is because the market price of

risk is the same across securities since it measures the willingness of

agents to hold risky assets. In other words it is a measure on the

economic agents and not on the instruments themselves.

ii. The price of the option is 0.2238.

iii. The result holds the same.

d. The price of the option is 0.0245.

e. The option has the following structure over time:

i = 0 1 2
0.0245 0.0000 0.0000

0.2234 0.0000
2.0199
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The positions on the short-term bond (N1) and on the three-period bond

(N2) vary over time, in order to replicate the option structure, in the

following way:

N1 N2

i=0 1 i=0 1
-0.0244 0.0000 0.0287 0.0000

-0.6632 0.6972

Exercise 3. The following results vary greatly with the dataset used. The

results presented use values from September 1, 2009. Which are the following:

LIBOR 3-month

I 1999 5.009% I 2003 1.288% I 2007 5.348%
II 1999 5.355% II 2003 1.116% II 2007 5.359%
III 1999 6.083% III 2003 1.160% III 2007 5.621%
IV 1999 6.005% IV 2003 1.157% IV 2007 5.131%
I 2000 6.289% I 2004 1.111% I 2008 3.058%
II 2000 6.778% II 2004 1.604% II 2008 2.681%
III 2000 6.816% III 2004 2.005% III 2008 2.811%
IV 2000 6.403% IV 2004 2.558% IV 2008 2.217%
I 2001 4.877% I 2005 3.100% I 2009 1.264%
II 2001 3.791% II 2005 3.505% II 2009 0.656%
III 2001 2.597% III 2005 4.006% III 2009 0.348%
IV 2001 1.883% IV 2005 4.530%
I 2002 2.031% I 2006 4.990%
II 2002 1.860% II 2006 5.509%
III 2002 1.806% III 2006 5.373%
IV 2002 1.383% IV 2006 5.360%

Swaps and Eurodollar Futures

Maturity Swap rate Maturity Eurodollar Futures
1 year 0.61% 3 months 99.535
2 year 1.29% 6 months 99.305
3 year 1.91% 9 months 98.945
4 year 2.37% 12 months 98.555
5 year 2.72%
7 year 3.20%
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a. The current 3-month interest rate is 0.3475%, when converted to conti-

nous compounding we get: 0.3473%. The regression gives the following

parameters (t-stats in parenthesis): α = -0.0003 (-0.1497) and β = 0.97763

(19.7565). The predicted value for next quarter is mt+i = 0.3396%.

b. We estimate σ = 0.006055. The tree for the first 3 (i = 3) periods looks

like this:

i = 0 1 2 3
0.35% 0.74% 1.12% 1.50%

0.13% 0.52% 0.90%
-0.09% 0.29%

-0.31%

c. The zero coupon yield curve can be summarized with the following dis-

counts:

Z(0, T ) Value
Z(0, 0.25) 99.9132
Z(0, 0.50) 99.7533
Z(0, 0.75) 99.5200
Z(0, 1.00) 99.3922
Z(0, 1.25) 99.0297
Z(0, 1.50) 99.0640
Z(0, 1.75) 98.0851
Z(0, 2.00) 97.4451
Z(0, 2.25) 96.7885
Z(0, 2.50) 97.2324
Z(0, 2.75) 94.8043
Z(0, 3.00) 94.3874

These values were computed with the Eurodollar futures and swap data.

d. With the emprical σ you get probabilites outside of the [0,1] range. If you

increase σ enough you can go into the range. In this specific case, volatility

had to be increased by 10 percentage points, to get the first eight periods

to be within the range.

e. When the probabilities are working as they should, we get that the ex-

pected risk neutral rate is higher than the one predicted by the regression.
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This makes sense in order to make economic agents risk neutral, they must

be compensated with enough upside. Recall the discussion at the end of

chapter 9 (section 9.4.4).
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Solutions to Chapter 11

Exercise 3.

a. The price of the zero coupon bonds is:

Z(0, T ) Value
Z(0, 1) 0.9608
Z(0, 2) 0.9141
Z(0, 3) 0.8659

b. The swap rate c(3) is: 4.89%.

c. For the option described in the exercise:

i. The value of the option is: 0.1532.

ii. In order to hedge this security:

1. Choose two securities to hedge this one, for example the 1-year

zero coupon bond and the 2-year zero coupon bond.

2. Compute the values for N1 and N2 which give the amount of

each security that we need to buy. In this case the values are N1

= 8.1358 and N2 = -8.3835.

3. Verify that this strategy actually gives the value of the bond:

[N1 × Z(0, 1)] + [[N2 × Z(0, 2)] = 0.1532

You can also verify that this replicates the up and down states,

by using the inputs for i = 1:
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∗ Up State - When interest rates go from 4% to 7% we have

that:

[N1 × Zup(1, 1)] + [[N2 × Zup(1, 2)] = 0.3190

∗ Down State - When interest rates go from 4% to 3% we have

that:

[N1 × Zdn(1, 1)] + [[N2 × Zdn(1, 2)] = 0.0000

Which matches exactly the payoffs of the option.

d. For the Procter & Gamble leveraged swap we have:

i. The value of the security is: -27.5495.

ii. Intuitively the value of r̄ that makes the swap value zero should be

higher than c(3). P&G is paying more now, through the states in

which it has to pay the spread, which means that in order to be

compensated it should expect a higher rate from the fixed rate that

Bankers Trust pays.

iii. Using MS Excel Solver we find the value of this rate to be: 14.94%.

Exercise 5.

a. The zeros from the LIBOR curve are the following:

t Pz(0, t) t Pz(0, t) t Pz(0, t)
0.25 99.2904 2.75 92.0454 5.25 81.4258
0.50 98.6053 3.00 90.9898 5.50 80.3754
0.75 98.1544 3.25 89.9522 5.75 79.3266
1.00 97.6061 3.50 88.8979 6.00 78.2843
1.25 96.9954 3.75 87.8326 6.25 77.2529
1.50 96.3399 4.00 86.7628 6.50 76.2365
1.75 95.6373 4.25 85.6875 6.75 75.2401
2.00 94.8950 4.50 84.6072 7.00 74.2689
2.25 94.0613 4.75 83.5326 7.25 73.3133
2.50 93.0947 5.00 82.4744 7.50 72.3608
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b. The Ho-Lee model in the first 2 years (i = 8):

i = 0 1 2 3 4 5 6 7 8
t = 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

2.85% 2.82% 2.96% 3.42% 4.08% 4.67% 5.28% 5.87% 6.67%
2.04% 2.17% 2.63% 3.30% 3.89% 4.50% 5.08% 5.89%

1.39% 1.85% 2.51% 3.11% 3.72% 4.30% 5.11%
1.07% 1.73% 2.33% 2.93% 3.52% 4.32%

0.95% 1.54% 2.15% 2.73% 3.54%
0.76% 1.37% 1.95% 2.76%

0.59% 1.17% 1.98%
0.39% 1.19%

0.41%

c. The following table compares the risk neutral expected future interest rate

with the forward rate.

σ = 0.0078 σ = 0.05 σ = 0.001

t E∗[rt] f(t-1,t) E∗[rt] f(t-1,t) E∗[rt] f(t-1,t)

0.00 2.849% 2.849% 2.849% 2.849% 2.849% 2.849%
0.25 2.430% 2.430% 2.438% 2.430% 2.430% 2.430%
0.50 2.174% 2.173% 2.204% 2.173% 2.173% 2.173%
0.75 2.243% 2.241% 2.311% 2.241% 2.241% 2.241%
1.00 2.514% 2.511% 2.636% 2.511% 2.511% 2.511%
1.25 2.717% 2.712% 2.908% 2.712% 2.712% 2.712%
1.50 2.935% 2.928% 3.209% 2.928% 2.928% 2.928%
1.75 3.126% 3.117% 3.499% 3.117% 3.117% 3.117%
2.00 3.542% 3.530% 4.029% 3.530% 3.530% 3.530%
2.25 4.147% 4.132% 4.764% 4.132% 4.132% 4.132%
2.50 4.553% 4.534% 5.315% 4.534% 4.534% 4.534%
2.75 4.637% 4.614% 5.558% 4.614% 4.614% 4.614%

Note that as volatility increases, so does the difference between the rates.

d. The value of the 1-year cap is 0.2374, the value of the 2-year cap is 0.6003,

and the value of the 3-year cap is 1.3805. In general the model underesti-

mates the price of the securities.

e. The value of the swap is zero, as expected.

f. The value of the swaption is: 1.9956.
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Exercise 7.

a. The following table reports the first values of the LIBOR curve, in discount

factors:

t Pz(0, t)
0.50 99.6053
0.75 99.4966
1.00 99.3555
1.25 99.1319
1.50 98.8526
1.75 98.5171
2.00 98.1323
2.25 97.6366
2.50 96.9852

b. The implied volatilities are:

t σimplied
t

0.50 0.1775
0.75 0.2288
1.00 0.3460
1.25 0.4298
1.50 0.4616
1.75 0.4804
2.00 0.4801
2.25 0.4788
2.50 0.4752

c. The forward volatilities are:

t σforward
t

0.50 0.2925
0.75 0.2975
1.00 0.3054
1.25 0.2597
1.50 0.2054
1.75 0.1926
2.00 0.1813
2.25 0.1826
2.50 0.1659

d. The price of the corridor note is 80.218.
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Solutions to Chapter 12

Exercise 2.

a. The value of the American swaption is 0.2101.

b. The value of the callable bond is 99.74.

c. In order to only hedge the prepayment risk you hedge the underlying

option, intead of the callable bond itself. The hedging strategy is the

following:

i = 0 1
Short-term bond (N1) 0.0077 0.0012

American swaption (N2) -1.6144 -0.1252

Note that there is no hedging strategy for node (1,1) since the option is

retired at that point.

d. To hedge the interest rate risk (which includes prepayment risk) of the

callable bond the investor can use the following strategy:

i = 0 1
Short-term bond (N1) 1.0525 1.0525

American swaption (N2) -1.8073 -0.9418

As in the previous part, there is no hedging strategy for node (1,1).

Exercise 3.

(a) The results on the mortgage are as follows:

i. The value of the coupon is C = 11, 132.65. The stream of scheduled

interest payments, principal payments, and the remaining principal

is:
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Interest Principal Remaining
i t paid payments principal
0 0.0 0.0 0.0 100,000
1 0.5 2,000 9,133 90,867
2 1.0 1,817 9,315 81,552
3 1.5 1,631 9,502 72,050
4 2.0 1,441 9,692 62,359
5 2.5 1,247 9,885 52,473
6 3.0 1,049 10,083 42,390
7 3.5 848 10,285 32,105
8 4.0 642 10,491 21,615
9 4.5 432 10,700 10,914
10 5.0 218 10,914 0

ii. The interest rate tree at semi-annual frequency, for the first seven

periods, is:

i = 0 1 2 3 4 5 6 7

1.74% 2.87% 4.69% 6.39% 8.72% 10.67% 12.17% 13.72%
2.17% 3.53% 4.82% 6.58% 8.04% 9.17% 10.34%

2.66% 3.63% 4.96% 6.06% 6.91% 7.79%
2.73% 3.73% 4.57% 5.21% 5.87%

2.81% 3.44% 3.92% 4.43%
2.60% 2.96% 3.34%

2.23% 2.51%
1.90%

iii. The value of the mortgage without the prepayment option is:

i = 0 1 2 3 4 5 6 7

100,359 88,791 77,636 67,110 57,045 47,527 38,283 29,049
91,416 80,252 69,578 59,266 49,384 39,716 30,054

82,305 71,519 61,015 50,845 40,840 30,839
73,031 62,377 51,981 41,713 31,447

63,430 52,859 42,387 31,915
53,533 42,903 32,273

43,297 32,546
32,753
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iv. The value of the American option implicit in the mortgage is:

i = 0 1 2 3 4 5 6 7
288 33 5 0 0 0 0 0

548 61 10 0 0 0 0
753 114 21 1 0 0

981 210 42 2 0
1071 386 84 4

1060 513 168
907 441

648

v. The option-adjusted value of the mortgage is: 100,071.

A. The prepayment option is going to be exercised when the value

of the mortgage exceeds the outstanding principal. This occurs

in the following nodes:

i = 0 1 2 3 4 5 6 7
0 H H H H H H H H
1 X H H H H H H
2 R H H H H H
3 R H H H H
4 R X H H
5 R R X
6 R R
7 R

where H stands for Hold, X for Exercise, and R for Retired.

B. Yes. Any path leading to nodes (7,5) or (9,6).

C. It is fairly priced in the sense that it takes into account the

prepayment option, assuming that agents act optimally. But

this may not be the case, people may forget to exercise at the

right time or they may be other factors affecting their decision

that are not taken into account in the model.

D. If the homeowner doesn’t refinance then the value of the option

is higher than before. Refinancing is done for the homeowner’s
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benefit, if he ’forgets’ to do so, it is the holder of the security

that gets an extra amount of cash.

(b) The results for the mortgage backed securities are as follows:

i. The value of the pass-through is 99,334. The spot rate duration is:

4.4084.

ii. The value of the PO strip is 93,989 and the value of the IO strip is

5,345.

A. The sum of the IO and PO strips equals the value of the pass-

trough security.

Exercise 5.

Figure 5: Price of zeros (discounts) for different maturities

a. The following table reports all zero coupon bonds using the bootstrap

method. See Figure ??
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T Pz(0, T )
0.5 97.58
1.0 95.10
1.5 92.76
2.0 90.49
2.5 88.26
3.0 86.08
3.5 84.01
4.0 81.96
4.5 79.89
5.0 77.97
5.5 76.01
6.0 74.07
6.5 72.11
7.0 70.17
7.5 68.32
8.0 66.60
8.5 64.95
9.0 63.22
9.5 61.59
10.0 59.77

b. The following shows the values of the BDT tree for the first 6 periods,

using σ = 0.2018 .

i= 0 1 2 3 4 5 6
4.91% 5.87% 6.51% 7.40% 8.52% 9.74% 10.92%

4.41% 4.89% 5.56% 6.40% 7.32% 8.21%
3.68% 4.18% 4.81% 5.50% 6.17%

3.14% 3.62% 4.14% 4.64%
2.72% 3.11% 3.49%

2.34% 2.62%
1.97%

c. On the Option Adjusted Spread (OAS):

i. The price of the callable note is 98.818.

ii. The OAS is: 26 bps.

iii. In order to make the OAS equal to zero, σ = 0.15 .

d. The price of the callable note is 42.312. The main reason is that volatilty
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has a bigger impact in the Ho-Lee model, which in turn raises the value

of the option and reduces the value of the callable security.

e. The duration of the security is: 3.9973.

f. Convexity:

i. The dollar spot rate duration at the required nodes is: D$
i+1,j =

443.2313 and D$
i+1,j+1 = 261.7521.

ii. Spot rate convexity is then: -126.025.

j. If instead of June, 2009 the lockout period finishes June, 2008 (i.e. instead

of lasting two years it lasts one year), the convexity goes to -222.62.
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Solutions to Chapter 13

Exercise 2.

a. The first 6 steps of the monthly Ho-Lee tree look like the following:

i = 0 1 2 3 4 5 6
5.00% 5.29% 5.58% 5.87% 6.16% 6.44% 6.73%

4.71% 5.00% 5.29% 5.58% 5.87% 6.16%
4.42% 4.71% 5.00% 5.29% 5.58%

4.13% 4.42% 4.71% 5.00%
3.85% 4.13% 4.42%

3.56% 3.85%
3.27%

b. The price of the interest rate barrier option would be 0.1316. The problem

with the backward methodology is that we cannot distinguish the states

that go down and out, since this is path dependant.

c. Through the BDT model we get a price of 0.0131, which is significantly

lower than the previous value. This is because the BDT tends to be more

concentrated around the center than the Ho-Lee model. This means that

positive results are less extreme than in the Ho-Lee model. Thus the lower

value.
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Exercise 3.

a. The trigger rates are:

i r−i

0.5 2.17%
1.0 2.66%
1.5 2.73%
2.0 2.81%
2.5 3.44%
3.0 2.96%
3.5 3.34%
4.0 2.97%
4.5 3.64%

b. The value of the mortgage is: 100,477, which is still far from the value of

the security obtained in the previous section: 100,071 (still outside of the

confidence intervals). This may be because only 1,000 simulations were

used.

c. The value of the 3.5% passthrough security is: 99,154.

d. Adding some probability to the model we get:

i. Adding a 50 PSA we get that the price of the mortgage is now:

99,301.

ii. If 80% of homeowners forget to exercise at the optimal time we get

that the price of the passthrough is now: 99,294.

e. This is good news for the bank issuing the mortgage since now it gets

more money. As seen in the previous question, when homeowners don’t

exercise optimally it means that mortgages increase in value.

f. The price of the IO strips is 9,259 with spot rate duration -3.81. The price

of the PO strips is 89,895 with spot rate duration -5.95. Note that here

only optimal exercise is considered.
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Exercise 4.

a. The results are the same as in chapter 11, exercise 5.

b. See chapter 11, exercise 5.

c. After around 600 simulations the average error over 40 periods goes below

10 cents on the value of a zero coupon bond with face value 100.

d. The price from the tree model for a 1-year cap is 0.2401. Through the

simulation approach (1000 simulations) we get 0.2381, with a a standard

error of 0.0051. The price from the tree is well within the confidence

intervals. Sigma used to price a 1-year cap is 0.00795.

e. The price of the Asian cap is 0.2249 with a standard error of 0.0119. Sigma

for pricing a 2 year bond is 0.012354.

f. Spot rate duration for the option is -250.557.
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Solutions to Chapter 14

Exercise 2. Results for both cases should be the same as figures in the book.

Changes may appear from different values in the random number generator.

Exercise 4.

a. Consider the base case with the following parameters: γ = 1, r̄ = 5.40%,

σ = 1%, r(0) = 0.17% and dt = 1/252; we have:

i. For γ: As this parameter increases, the ’speed’ by which the rate con-

verges to the long-term rate, r̄, increases. Inversely as this parameter

decreases, the rate converges slower to r̄ (see Figure ??).

Figure 6: Vasicek simulations and expected value for different values of γ
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ii. For σ: As this parameter increases the volatility of the process goes

up. Inversely as it goes down so does the volatility of the process

(see Figure ??).

Figure 7: Vasicek simulations and expected value for different values of σ

b. The effects of having different values for r(0) can be seen in Figure ??.

We choose values that are higher, lower and the same as r̄

Figure 8: Vasicek simulations and expected value for different values of r0
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Exercise 5.

a. We have that: β = −γdt and α = γr̄dt. For σ we can simply estimate the

standard error of the regression and annualize it by dividing the standard

error by
√

dt. Using daily data on Treasury interest rates from 1/1/2008 to

3/5/2010 we obtain the following regression estimates: α = 0.004466; β =

−0.01439; and σSE = 0.113332. This leads to the following parameters:

γ = 3.625184; r̄ = 0.310414; and σ = 1.799097. In this particular case,

this leads to a highly volatile process, which easily gives negative rates.

The reason for this shortcoming is twofold: on the one hand we are using

a period of particular interest rate volatility to estimate the model (the

range of rates during this 2 year period was between 3.37% and 0.00%);

on the other hand, r0 is 0.11% which is already very close to zero.

b. Figure ?? plots the forecast with a simulation which shows the problems

with the estimated model mentioned above.

Figure 9: Vasicek model expected and simulated rates

c. Figure ?? shows the histograms for the forecasted values.
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Figure 10: Histogram of rates at 1 year, 3 years and 5 years

Exercise 7. Given the process:

drt = γ(r̄ − rt)dt + σdXt

We have that m(rt, t) = γ(r̄ − rt)dt; and s(rt, t) = σ. Using Ito’s lemma:

dPt =
[(

∂F

∂t

)
+

(
∂F

∂r

)
m(rt, t) +

1
2

(
∂2F

∂r2

)
s(rt, t)2

]
dt +

(
∂F

∂r

)
s(rt, t)dXt

a. For F (r) = A + Br:

∂F

∂t
= 0;

∂F

∂r
= B;

∂2F

∂r2
= 0

So:

dPt = Bγ(r̄ − rt)dt + BσdXt = Bdrt

b. For F (r) = eA−Br

∂F

∂t
= 0;

∂F

∂r
= −BeA−Br ;

∂2F

∂r2
= B2eA−Br

So:

dPt =
[
−BPγ(r̄ − rt) +

1
2
B2Pσ2

]
dt + BPσdXt

dPt = P

[
1
2
B2σ2dt− Bdrt

]

44



Solutions to Chapter 15

Exercise 1.

a. In order to value the zero coupons we use the risk neutral parameters.

τ Z(t,T) τ Z(t,T)
0.25 0.9944 5.25 0.7827
0.50 0.9877 5.50 0.7713
0.75 0.9802 5.75 0.7599
1.00 0.9718 6.00 0.7487
1.25 0.9627 6.25 0.7376
1.50 0.9531 6.50 0.7266
1.75 0.9429 6.75 0.7157
2.00 0.9324 7.00 0.7049
2.25 0.9216 7.25 0.6943
2.50 0.9105 7.50 0.6838
2.75 0.8992 7.75 0.6734
3.00 0.8877 8.00 0.6632
3.25 0.8761 8.25 0.6531
3.50 0.8644 8.50 0.6432
3.75 0.8527 8.75 0.6333
4.00 0.8409 9.00 0.6237
4.25 0.8292 9.25 0.6141
4.50 0.8175 9.50 0.6047
4.75 0.8058 9.75 0.5954
5.00 0.7942 10.00 0.5863
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b. Figure ?? presents the yield curve for the bonds.

Figure 11: Spot rate of bonds up to 10 years

c. Spot rate duration is:

τ B(t;T) τ B(t;T)
0.25 0.2360 5.25 1.9624
0.50 0.4461 5.50 1.9829
0.75 0.6331 5.75 2.0011
1.00 0.7996 6.00 2.0174
1.25 0.9478 6.25 2.0319
1.50 1.0797 6.50 2.0447
1.75 1.1972 6.75 2.0562
2.00 1.3017 7.00 2.0664
2.25 1.3948 7.25 2.0755
2.50 1.4776 7.50 2.0836
2.75 1.5514 7.75 2.0908
3.00 1.6170 8.00 2.0972
3.25 1.6754 8.25 2.1029
3.50 1.7275 8.50 2.1080
3.75 1.7738 8.75 2.1125
4.00 1.8150 9.00 2.1165
4.25 1.8517 9.25 2.1201
4.50 1.8844 9.50 2.1233
4.75 1.9134 9.75 2.1261
5.00 1.9393 10.00 2.1287
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Exercise 2.

a. Figure ?? presents the effect on the term structure of interest rates due

to changes in γ∗.

Figure 12: Term structure of interest rates for three choices of γ∗ (Vasicek)

b. Figure ?? presents the effect on the term structure of interest rates due

to changes in r̄∗.

Figure 13: Term structure of interest rates for three choices of r̄∗ (Vasicek)
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c. Figure ?? presents the effect on the term structure of interest rates due

to changes in σ.

Figure 14: Term structure of interest rates for three choices of σ (Vasicek)

Exercise 3.

a. Figure ?? presents the effect on the term structure of interest rates due

to changes in γ∗.

Figure 15: Term structure of interest rates for three choices of γ∗ (CIR)
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b. Figure ?? presents the effect on the term structure of interest rates due

to changes in r̄∗.

Figure 16: Term structure of interest rates for three choices of r̄∗ (CIR)

c. Figure ?? presents the effect on the term structure of interest rates due

to changes in σ.

Figure 17: Term structure of interest rates for three choices of σ (CIR)

Exercise 6. Short-term bonds have higher yield volatility than long-term

bonds (see Figure ??). Return volatility and yield volatility are not the same

since yields are a sort of ”average” measure in order to make comparable differ-
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ent maturities. Returns will be affected by the yield volatility times the time to

maturity. Return volatility is always increasing in relation to time to maturity.

Figure 18: Yield volatility with respect to τ

Exercise 7. The Fundamental Pricing Equation states:

∂Z

∂t
+

∂Z

∂r
m∗(r, t) +

1
2

∂2Z

∂r2
σ2 = rZ

where:

m∗(r, t) = γ∗(r̄∗ − r)

The Vasicek formula for pricing a zero coupon bond:

Z(r, t; T ) = eA(t;T )−B(t;T )r

where:

B(t; T ) =
1
γ∗

(
1 − e−γ∗(T−t)

)

A(t; T ) = (B(t; T ) − (T − t))
(

r̄∗ − σ2

2(γ∗)2

)
− σ2B(t; T )2

4γ∗

For the Left Hand Side of the Fundamental Pricing Equation we have:

∂Z

∂t
= [A′(t; T ) − B′(t; T )r]Z(r, t; T )

∂Z

∂r
= −B(t; T )Z(r, t; T )

∂2Z

∂r2
= B(t; T )2Z(r, t; T )
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Where:

B′(t; T ) = −e−γ∗(T−t)

A′(t; T ) = (1 + B′(t; T ))
(

r̄∗ − σ2

2(γ∗)2

)
− σ2

2γ∗ B′(t; T )B(t; T )

Note that:

B(t; T ) =
1
γ∗ (1 + B′(t; T ))

then:

γ∗B(t; T ) = 1 + B′(t; T )

and

γ∗B(t; T ) − B′(t; T ) = 1

So we can present A′(t; T ) as:

A′(t; T ) = γ∗B(t; T )
(

r̄∗ − σ2

2(γ∗)2

)
− σ2

2γ∗ B′(t; T )B(t; T )

= B(t; T )
[
γ∗r̄∗ − σ2

2γ∗ − σ2

2γ∗ B′(t; T )
]

= B(t; T )
[
γ∗ r̄∗ − σ2

2γ∗ (1 + B′(t; T ))
]

= B(t; T )
[
γ∗ r̄∗ − σ2

2γ∗ γ∗B(t; T )
]

= B(t; T )
[
γ∗r̄∗ − σ2

2
B(t; T )

]

So:

A′(t; T ) = γ∗r̄∗B(t; T ) − σ2

2
B(t; T )2

Which means that:

∂Z

∂t
=

[
B(t; T )γ∗ r̄∗ − σ2

2
B(t; T )2 − B′(t; T )r

]
Z(r, t; T )

So we can present the Left Hand Side of the Fundamental Pricing Equation as:

Z(r, t; T )
[
B(t; T )γ∗ r̄∗ − σ2

2
B(t; T )2 − B′(t; T )r − B(t; T )γ∗(r̄∗ − r) +

σ2

2
B(t; T )2

]

= Z(r, t; T ) [B(t; T )γ∗r − B′(t; T )r] = Z(r, t; T )r [B(t; T )γ∗ − B′(t; T )]

Recall that: B(t; T )γ∗ − B′(t; T ) = 1, so:

LHS = Z(r, t; T )r
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Exercise 9.

a. Parameter Estimation:

i. The risk neutral parameters are: γ∗ = 0.4841 and r̄∗ = 7.279%. Note

that σ is obtained through the regression estimate.

ii. The risk natural parameters are: γ = 0.1766, r̄ = 5.97% and σ =

0.017431.

iii. The risk neutral model has a quicker convergence speed and a higher

long-term rate than the risk natural model. This makes sense because

we need to compensate economic agents in order for them to become

risk neutral (we consider them to be risk averse).

b. Sensitivity to interest rates:

i. Because of the assumption r < 15%, we can say that:

P IF = Pzero + Pfixed − Pfloat

In other words we price the inverse floater as a portfolio of different

bonds, so ∂PIF

∂r
can be presented as:

∂P IF

∂r
=

∂Pzero

∂r
+

∂Pfixed

∂r
− ∂Pfloat

∂r

For the Vasicek model, the price of a zero coupon bond is given by:

Z(r, t; T ) = eA(t;T )−B(t;T )r

which means that:

∂Z(r, t; T )
∂r

= −B(t; T )Z(r, t; T )

We know all parameters for this so:

∂Pzero

∂r
=

∂Z(r, t; 3)
∂r

= −1.3608
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The fixed coupon bond is composed by several zeros:

∂Pfixed

∂r
=

3∑
T=1

c
∂Z(r, t; T )

∂r
+

∂Z(r, t; 3)
∂r

= −1.8547

From the Z(r, 0; 1) we can obtain the annually compounded 1-year

rate r1(0, 1) = 3.99% which we can use to obtain the value of a

floating rate bond:

PFloat = (1 + r1(0, 1))Z(0, r; 1)

So:
∂PFloat

∂r
= (1 + r1(0, 1))

∂Z(0, r; 1)
∂r

= −0.7927

Thus:
∂P IF

∂r
= −1.3608− 1.8547 + 0.7927 = −2.4227

ii. For convexity we have the same idea as in the previous exercise but

instead we use:

∂2Z(r, t; T )
∂r2

= B(t; T )2Z(r, t; T )

So:
∂2Pzero

∂r2
=

∂2Z(r, t; 3)
∂r2

= 2.1530

∂2Pfixed

∂r2
=

3∑
T=1

c
∂2Z(r, t; T )

∂r2
+

∂2Z(r, t; 3)
∂r2

= 2.7914

∂2PFloat

∂r2
= (1 + r1(0, 1))

∂2Z(0, r; 1)
∂r2

= 0.6284

Thus:
∂2P IF

∂r2
= 2.1530 + 2.7914− 0.6284 = 4.3160

iii. For the whole portfolio we simply weigh the sensitivities of interest

rate of both assets, so we get:

∂Π
∂r

= −40.1588
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∂2Π
∂r2

= 69.3465

c. The Fundamental Pricing Equation:

i. The equation that Π(r, t; T ) must satisfy is:

rΠ =
∂Π
∂t

+
∂Π
∂r

η∗ (r̄ − r) +
1
2

∂2Π
∂r2

σ2

ii. In order to obtain ∂Π
∂t we can rearrange the previous equation:

∂Π
∂t

= rΠ − ∂Π
∂r

η∗ (r̄ − r) − 1
2

∂2Π
∂r2

σ2

From previous exercises we know both ∂Π
∂r = −40.1588 and ∂2Π

∂r2 =

69.3465, so:
∂Π
∂t

= 1.4368

iii. In one day, the capital gain that can be contributed to the passage

of time is:

0.0751× 1
252

= 0.0057

This is the partial derivative of the value of the portfolio against

time. Thus, we can interpret this as the following: each day, the

value of the portfolio will rise by .0057 billion when interest rate does

not change. Since this portfolio is not ”Delta Hedged”, the Theta-

Gamma relation does not hold. However, holding Delta constant, we

can still see the impact that a low (or even negative) Gamma will

tend to lead to high Theta.
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d. ii. The following historgram plots the possible values for the portfolio

in one year.
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Figure 19: Historgram of possible Orange County portfolio values in one year

iii. The following table summarizes the results:

VaR Initial 1-year Loss
@ 5% 20.5 18.81 -1.68
@ 1% 20.5 18.36 -2.13

As seen in the table the results experienced by Oragne County’s

portfolio where completely forseeable.
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Solutions to Chapter 16

Exercise 1. We follow these steps:

1. Parameter Estimation: We use the data given in Table 15.4 to fit the

Vasicek model, for which we obtain γ∗ = 0.0290, r̄∗ = 2.09% and σ =

1.78%. The graph shows the yield curve and its fitted values according

to the Vasicek model. For σ one possiblity is to estimate the value from

historical data or simply include it as a free parameter in the optimization

process (see Figure ??).

Figure 20: Yield curve and Vasicek model (September 25, 2008)
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2. Relative Pricing Error Discovery: We look for the bond where there is the

highest difference between the model and the data prices.

τ ZData ZModel Diff.
0.139 99.908 99.821
0.389 99.488 99.457
0.639 98.989 99.038
0.889 98.483 98.569
1.139 97.992 98.050
1.389 97.497 97.485
1.639 96.889 96.875
1.889 96.304 96.224
2.139 95.732 95.533
2.389 94.840 94.805
2.639 94.314 94.042
2.889 93.284 93.247
3.139 92.967 92.421 0.546
3.389 91.082 91.567
3.639 90.715 90.688
3.889 89.284 89.784
4.139 88.508 88.858
4.389 87.488 87.913
4.639 86.694 86.950
4.889 85.998 85.970 0.028
5.139 85.024 84.977
5.389 84.009 83.971
5.639 83.182 82.954
5.889 82.195 81.928
6.139 81.267 80.895
6.389 79.716 79.855
6.639 78.908 78.811
6.889 77.982 77.764
7.139 76.782 76.714
7.389 75.895 75.664
7.639 74.447 74.614
7.889 73.603 73.566
8.139 72.096 72.520 -0.424

Two bonds appear to be particularly promising τ = 3.139 and τ = 8.139,

since they have the biggest gap between prices. We will use τ = 3.139,

which seems to be overpriced.
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3. Set-Up Trading Strategy:

i. Since Z(3.139) seems to be overpriced we short sell it, making a profit

of $92.9670 per bond.

ii. Using the bond maturing at τ = 4.889 we buy a synthetic position:

Ẑ(3.139) = Δ × Z(4.889) + C0 = $92.4213

where:

Δ =
B(0, 3.139)× ZModel(r, 0; 3.139)

B(0, 4.889)× Z(4.889)
= 0.7074

C0 = ZModel(r, 0; 3.139)× 100− Δ × Z(4.889) × 100 = 31.5866

In other words, for each Z(3.139) bond we shorted, we buy 0.7074

of a Z(4.889) bond and take a $31.5866 cash position. This gives a

$0.5457 profit per bond.

Exercise 4.

a. The price of the option is: Call (x 100) = $13.23.

b. In order to hedge the call we pick the zero coupon bond maturing at the

same time. Two methodologies were proposed to obtain the hedge ratio

for the replicating portfolio:

i. Using equation (16.31) we obtain: Δ = 0.6608 and C0 = −0.4797.

ii. Through the numerical approximation we obtain: Δ = 0.6608 and

C0 = −0.4797. Which is almost identical to the number obtained

with the previous methodology.

c. Figure ?? shows that the strategy does a good job replicating the option.
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Figure 21: Value of the asset and of the replicating portfolio

Exercise 7. In order to perform the trade we proceed as follows:

1. Parameter Estimation:

i. Risk Natural Parameters. Recall that the Cox-Ingersoll-Ross (CIR)

process for the short rate is defined by:

dr = (η − γrt) dt +
√

αrtdX

As in the Vasicek case we would estimate risk neutral parameters

through calibrating the model to the data (using the Non-Linear

Least Squares methodology), yet the volatility parameter α we would

derive from the actual data. Additionally, if we want to test the

model against simulated values of interest rates we will eventually

need the risk natural parameters as well. For this reason, we start by

obtaining the risk natural parameters and the volatility parameter,

before calibrating the model to the risk neutral parameters. As a

reminder, recall that in the case of the Vasicek model we had:

drt = γ (r̄ − rt) dt + σdXt
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and we estimated the risk natural parameters through a regression of

the form (using data on the overnight repo rate from May 21, 1991 -

February 17, 2004):

rt+dt = α + β1rt + σS.E.ε

where: α = γr̄dt ; β1 = (1 − γdt), σ = σS.E.√
dt

and ε N(0, 1). In the

case of the CIR model this regression cannot be used because there

is a
√

rt in the variance term. In order to eliminate it we must divide

both sides of the equation by
√

rt:

drt√
rt

=
γ(r̄ − rt)dt√

rt
+

√
αdtε

Decomposing drt and rearranging a few terms, we have:

rt+dt√
rt

= γr̄dt
1√
rt

+ (1 − γdt)
rt√
rt

+
√

αdtε

Which can be summarized as the following regression:

rt+dt√
rt

= β1
1√
rt

+ β2
rt√
rt

+ σS.E.ε

where: β1 = γr̄dt, β2 = (1 − γdt) and σS.E. =
√

αdt.

Running a simple regression gives the following results (p-values in

parenthesis), as well as the following parameters for the CIR model.

α 0.000542 dt 1/252
(0.9224)

β1 0.000150 γ 1.6367
(0.7290) r̄ 0.0231

β2 0.993505 α 0.0265
(0.0000)

σS.E. 0.010258

Note that neither the intercept nor β1 are significant. The reason is

that the regression is including the intercept, which is not present in

the model above. We must run the regression without intercept in
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order to have a better fit with our model. The results of doing so are

the following:

α 0 dt 1/252
(N/A)

β1 0.000192 γ 1.2373
(0.0026) r̄ 0.0391

β2 0.995090 α 0.0265
(0.0000)

σS.E. 0.010256

ii. Risk Neutral Parameters. In order to price the bonds we need to find

the risk neutral parameters (γ∗ and r̄∗). To do so we use the Non-

Linear Least Squares approach to calibrate the parameters to the

data given in Table 16.4 (we follow the same steps as in section 16.8).

The minimization procedure yields r̄∗ = 16.53% and γ = 0.0622.

Figure ?? presents the spot rate from the CIR model.

Figure 22: Spot rate
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2. Relative Pricing Error Discovery. Figure ?? presents pricing errors from

the CIR model. Note that these are very similar to the ones given by using

the Vasicek model (see Figure 16.7 in the book), so hedging the 1.5-year

bond seems like a good idea. In this case, though, it seems that the 6-year

bond is a better hedging instrument than the 7.5-year bond.

Figure 23: Pricing Errors

3. Set Up a Trading Strategy. We decide to sell short the 1.5-coupon bond

and take a long position on the 6-year bond and the cash acount (in order

to replicate the shorted bond). At time zero, we have:

Δ0 =
∂P1.5−yr(r, 0)/∂r

∂P6.0−yr(r, 0)/∂r
=

−147.41
−456.45

= 0.3229

and:

C0 = −P CIR
1.5−yr+Δ0×P6.0−yr = −107.0385+0.3229×117.5625 = −69.0725

4. Simulations. We then simulate a path on interest rates to check how well

the model works (see Figure ??). Note that this model is not as good as

the Vasicek model in replicating the value of the bond.
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Figure 24: Asset value and replicating portfolio
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Solutions to Chapter 17

Exercise 1. Figure ?? presents the result of fitting the Vasicek model with

the parameters given in this chapter. Additionally we present four variations:
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Figure 25: Vasicek Bond Prices: Exact Formula and Simulation

i. Figure ?? presents the result when: γ∗ + 300 bps.
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Figure 26: Vasicek Bond Prices: Exact Formula and Simulations (γ∗ + 300 bps)
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ii. Figure ?? presents the result when: γ∗ - 300 bps.
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Figure 27: Vasicek Bond Prices: Exact Formula and Simulations (γ∗ - 300 bps)

iii. Figure ?? presents the result when: σ + 200 bps.
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Figure 28: Vasicek Bond Prices: Exact Formula and Simulations (σ + 200 bps)
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iv. Figure ?? presents the result when: σ - 200 bps.
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Figure 17.1. Vasicek Bond Prices: Exact Formula and Simulations (σ −200 bps)
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Figure 29: Vasicek Bond Prices: Exact Formula and Simulations (σ - 200 bps)

All results tend to converge to the analytical formula do to the Feynman-

Kac theorem. Note that decreasing γ∗ and increasing σ requieres more

simulations for the results to converge, this is intuitive since γ refers to the

”speed” by which the process converges to the long-term mean (r̄) and σ

refers to the volatility of the process. Lower convergence speed and higher

volatility will require more simulations for the methodologies to converge.

66



Exercise 3. Figure ?? presents the result of fitting the CIR model with the

parameters given in this chapter.
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Figure 30: CIR Bond Prices: Exact Formula and Simulations

Additionally we present four variations:

i. Figure ?? presents the result when: γ∗ + 3000 bps.
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Figure 31: CIR Bond Prices: Exact Formula and Simulations (γ∗ + 3000 bps)
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ii. Figure ?? presents the result when: γ∗ - 3000 bps.
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Figure 32: CIR Bond Prices: Exact Formula and Simulations (γ∗ - 3000 bps)

iii. Figure ?? presents the result when: α + 300 bps.
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Figure 33: CIR Bond Prices: Exact Formula and Simulations (α + 300 bps)
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iv. Figure ?? presents the result when: α - 300 bps.
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Figure 17.1. CIR Bond Prices: Exact Formula and Simulations (α −300 bps)
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Figure 34: CIR Bond Prices: Exact Formula and Simulations (α - 300 bps)

Exercise 6.

a. Fitting the Vasicek model we obtain the following parameters: γ∗ =

0.7738, r̄∗ = 0.0503 and σ = 8.3280e-005. Figures ?? and ?? present

the bootstrapped discount curve and yield curve, respectively.
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Figure 35: Bootstrapped Discount Curve
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Figure 36: Bootstrapped Yield Curve

b. Figures ?? and ?? present the comparisson of the fitted Vasicek model to

the bootstrapped discount curve and yield curve, respectively.
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Figure 37: Vasicek and Bootstrap Discount Curve
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Figure 38: Vasicek and Bootstrap Yield Curve
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c. The price of the Corridor Note is 1.1196.

d. These notes are essentially a bet on where the 6 month rate will stay

within the next 10 years. In particular, these notes could be used as a

hedge for positions which payoff if the 6 month LIBOR becomes either

unusually high or low. The floating nature of the payoff for the last 5

years of the life of the note could also be used as a hedge for 3 month

LIBOR swaps.

e. We have that Δ = -9.3965 and Γ = -0.0017116.
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Solutions to Chapter 18

Exercise 3. To perform the risk analysis we have the following steps:

i. Simulate n times the short rate up to six months using the risk natural

parameters.

ii. We have a cash flow occuring six months from now so we need to compute

it. So we have to count the days on which the 6-month rate has been within

the boundaries for the period between the previous coupon (3-months after

the beginning of the contract) and the current coupon (6-month coupon

after the beginning of the contract). Since this has already happened we

use the rates obtained from the risk natural parameters (approximately

the last half of the rates obtained in i., except the last rate). We get n cash

flows occuring in 6-months, one for each risk natural process simulated in

i.

iii. The last rate obtained in i. is the expected short rate in 6-months. We

now use it with the risk neutral parameters to price the corridor note with

6-months less maturity. This is particularly cumbersome (i.e. takes a long

time) because, in order to price, for each simulated rate in i. we have

to make additional simulations until final maturity (9.5 years times 360

days), but with the risk neutral parameters. Additionally there is a lot of

details to be aware of on obtaing the cash flow of the Corridor Note.

iv. We add the corresponding first cash flow (from ii.) with the value of

the remaining discounted cash flows (from iii.). These is a set of random
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posible values of the Corridor Note in 6-months (if we want the ex-coupon

value we don’t include ii.).

v. We subtract the original value of the Corridor Note (obtaining the Profit

and Loss values for the Corridor Note), from which we can obtain Value-

at-Risk and expected shortfall

Figure ?? presents the histogram for these values.
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Figure 39: Histogram for Profit/Loss after 6 months

For a 6-month horizon we have that the Value at Risk is (par = $100):

95% Value-at-Risk -8.4706
99% Value-at-Risk -13.4893

The expected shortfall is:

95% Expected Shortfall -11.3965
99% Expected Shortfall -15.8254

Exercise 5. The exercise uses the following basic parameters (see Table 18.1):

ī = 4.20%, γ = 0.3805, g = 0.02, σy = 0.02, σq = 0.0106, σi = 0.0073,

ρyq = −0.1409, ρyi = −0.2894, h = 104, and ρiq = 0.8360. Additionally, we

consider the case when i0 = 4.20%.
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a. For variations in risk aversion (h) we pick 103.7, 104 and 104.3. As seen

in Figures ?? and ??, as risk aversion increases the yield curve becomes

steeper and the spread increases. Also the values for λ are -0.5835, -0.5852

and -0.5870, respectively. As explained in this chapter, as risk aversion

increases so does the market price of risk (being the driving force behind

the changes in the yield curve and the spread).

Figure 40: Yield Curve for Variations of h

Figure 41: Term Spread for Variations of h

For variations in ’impatience’ (ρ) we pick 0.095, 0.100 and 0.105. As seen

in Figures ?? and ??, as impatience increases the higher rates are required
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(since agents will borrow more to consume), also the spread increases. The

values for λ is -0.5852 for all cases, because impatience does not affect risk

aversion, volatility of GDP growth or the correlation between GDP growth

and expected infaltion.

Figure 42: Yield Curve for Variations of ρ

Figure 43: Term Spread for Variations of ρ

b. For variations in the correlation between GDP growth and expected in-

flation (ρyi) we pick -0.1, -0.2894 and -0.5. As seen in Figure ??, as this

correlation increases so does the level of interest rates demanded. Also

the values for λ are -0.1913, -0.5852 and -1.0233, respectively. These re-
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sults reflect the fact that this is a risk factor (investors loose money when

growth is low and inflation is high), so investors will require additional

compensation.

Figure 44: Yield Curve for Variations of ρyi

For variations in the volatility of GDP (σy) we pick 0.01999, 0.02 and

0.02001. As volatility increases so do the level of interest rates demanded.

Also the values for λ are -0.5849, -0.5852 and -0.5855, respectively. These

results reflect the fact that this is a risk factor (high volatility will make

investments more risky), so investors will require additional compensation

(see Figure ??).
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Figure 45: Yield Curve for Variations of σy
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Solutions to Chapter 19

Exercise 1.

a. In order to obtain the LIBOR yield curve from the swap rates presented:

i. Obtain the quarterly disocunts from the swap rates.

ii. From the discounts obtain the continously compounded spot rates,

at a quarterly frequency.

iii. Fit a 10th order polynomial to the data to complete the gaps in the

curve (see Figure ??). The parameters from the polynomial are:

parameter value
α 2.56e-02
β1 3.84e-02
β2 -1.61e-01
β3 2.69e-01
β4 -2.47e-01
β5 1.38e-01
β6 -4.91e-02
β7 1.11e-02
β8 -1.55e-03
β9 1.22e-04
β10 -4.13e-06
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Figure 46: LIBOR yield curve

Note that, as explained in this chapter, when the forward rate is

above the yield curve; the yield curve is uppward sloping. Same

happens in the opposite case (see Figure ??).

Figure 47: LIBOR yield curve and forward curve

b. The value of σ is 1.00%. The fitted values of the Ho-Lee model match

exactly the yield curve.

c. The following chart presents the value of θt and the forward curve (See

Figure ??). Note that θt is very close to the slope of the forward curve.
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Figure 48: LIBOR yield curve

Exercise 4.

a. The value of the swaption through the Ho-Lee model is: $0.6522.

b. The value of the swaption through the Hull-White model is: $0.6483.

Exercise 5. Using a Ho-Lee tree the value of the American swaption is: $0.8637,

although this might be slightly overestimated since the price of the European

swaption via the Ho-Lee tree is: $0.7246. This difference comes mainly because

the tree used is ”cut to rough” in the sense that the time-step is: dt = 1/4. As

dt becomes smaller the result would converge to the one obtained previously.
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Solutions to Chapter 20

Exercise 1.

a. Figure ?? presents the results for the LIBOR curve. Note that the swap

curve was interpolated using a polynomial of 6th order. This is not the

ideal interpolation method (splines or cubic Hermite interpolation are bet-

ter), but it is done in order to present the result in Excel.
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Figure 49: LIBOR yield curve and forward curve

b. The dollar value of a 1-year cap (× 100) is: $0.3314 while the dollar value

of a 2-year cap (× 100) is: $1.0273.

Exercise 4. The flat volatilities corresponding to Table 20.7 are:
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τ Volatility
1Y 118.77%
2Y 75.79%
3Y 49.56%
4Y 35.85%
5Y 29.85%
7Y 24.65%
10Y 21.97%

Exercise 5.

a. The BDT can be calibrated through two methodologies:

i. Leaving σi free so that it is calibrated along with ri,1.

ii. Using the forward volatilities computed in the Black model as σi,

only ri,1 is free.

Figure ?? presents the caps through each different methodology.
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Figure 50: Cap prices under both BDT methodologies

b. Figure ?? presents the errors of each methodology with respect to the

data. Note that using the forward volatilities as σi is not as far from the

results using the first methodology.
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Figure 51: Pricing errors under both BDT methodologies
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Solutions to Chapter 21

Exercise 2. Applying the analytical formulas discussed in section 21.7 we have

that the value under the Unnatural Lag is: 0.5100. If we applied the convexity

adjustment as an approximation we would have: 0.5083, which is lower than the

actual value but higher than what we would have with the Natural Lag: 0.4873.

Exercise 4. Figure ?? presents the comparisson between both types of volatil-

ities (it is identical to Figure 21.2 from the book).
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Figure 52: Forward Volatility and Volatility of Forwards

Exercise 6. The value of the Constant Maturity Swap is: 3.3055.

Exercise 8. The convexity adjustment states that:

f(0, T, T + τ ) = ffut(0, T, T + τ ) −
∫ T

0

σZ(t, T + τ )2 − σZ(t, T )2

2τ
dt
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Recall that: x2 − y2 = (x + y)(x − y), so:

σZ(t, T + τ )2 − σZ(t, T )2 = (σZ(t, T + τ ) + σZ(t, T )) (σZ(t, T + τ ) − σZ(t, T ))

For the Hull-White model we have:

σZ(t, T ) = −B(t, T )σ = −1 − e−γ∗(T−t)

γ∗ σ

σZ(t, T + τ ) = −B(t, T + τ )σ = −1 − e−γ∗(T+τ−t)

γ∗ σ

also keep in mind that:

σf (t, T ) = σe−γ∗(T−t)

σf(t, T + τ ) = σe−γ∗(T+τ−t)

So:

σZ(t, T + τ ) + σZ(t, T ) =
−2σ + σf(t, T + τ ) + σf(t, T )

γ∗

σZ(t, T + τ ) + σZ(t, T ) =
σf (t, T + τ ) − σf(t, T )

γ∗

We have then that:

σZ(t, T+τ )2−σZ(t, T )2 =
1

(γ2)2
[
−2σσf (t, T + τ ) + 2σσf(t, T ) + σf(t, T + τ )2 − σf (t, T )2

]

The integral in the adjustment can be presented as:

∫ T

0

σZ(t, T + τ )2 − σZ(t, T )2

2τ
dt =

∫ T

0

1
2τ (γ2)2

[
−2σσf (t, T + τ ) + 2σσf(t, T ) + σf (t, T + τ )2 − σf (t, T )2

]
dt =

1
2τ (γ2)2

⎡
⎢⎢⎣−2σ

∫ T

0

σf(t, T + τ ) dt︸ ︷︷ ︸
A

+2σ

∫ T

0

σf (t, T ) dt︸ ︷︷ ︸
B

+
∫ T

0

σf(t, T + τ )2 dt︸ ︷︷ ︸
C

−
∫ T

0

σf(t, T )2 dt︸ ︷︷ ︸
D

⎤
⎥⎥⎦
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• For A:

−2σ

∫ T

0

σf(t, T+τ ) dt = −2σ

∫ T

0

σe−γ∗(T+τ−t) dt = −2σ2 e−γ∗(T+τ−t)

γ∗

∣∣∣∣
T

0

=

−2σ2

γ∗ eγ∗τ+
2σ2

γ∗ eγ∗(T+τ)+
(

2σ2

γ∗ − 2σ2

γ∗

)
︸ ︷︷ ︸

=0

=
2σ2

γ∗

(
1 − eγ∗τ

)
−2σ2

γ∗

(
1 − eγ∗(T+τ)

)

Recall the definition of σZ, so that:

−2σ

∫ T

0

σf (t, T + τ ) dt = −2σσZ(0, τ ) + 2σσZ(0, T + τ )

• For B:

2σ

∫ T

0

σf (t, T ) dt = 2σ

∫ T

0

σe−γ∗(T−t) dt = 2σ2 e−γ∗(T−t)

γ∗

∣∣∣∣
T

0

=

2σ2

γ∗ − 2σ2

γ∗ eγ∗T =
2σ2

γ∗

(
1 − eγ∗T

)
= 2σσZ(0, T )

• For C:

∫ T

0

σf(t, T + τ )2 dt = σ2

∫ T

0

e−2γ∗(T+τ−t) dt =
σ2

2γ∗ e−2γ∗(T+τ−t)

∣∣∣∣
T

0

=

σ2

2γ∗ e−2γ∗τ − σ2

2γ∗ e−2γ∗(T+τ) +
(

σ2

2γ∗

)
−

(
σ2

2γ∗

)
︸ ︷︷ ︸

=0

=

− σ2

2γ∗ (1−e−2γ∗τ )+
σ2

2γ∗ (1−e−2γ∗(T+τ)) =
σ

2
σZ(0, 2τ )− σ

2
σZ(0, 2(T +τ ))

• For D:

−
∫ T

0

σf (t, T )2 dt = −σ2

∫ T

0

e−2γ∗(T−t) dt = − σ2

2γ∗ e−2γ∗(T−t)

∣∣∣∣
T

0

=

− σ2

2γ∗ +
σ2

2γ∗ e−2γ∗T = − σ2

2γ∗

(
1 − e−2γ∗T

)
=

σ

2
σZ(0, 2T )

So putting everything together we have that:

∫ T

0

σZ(t, T + τ )2 − σZ(t, T )2

2τ
dt =
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σ

2τ (γ∗)2

[
2[σZ(0, T + τ ) − σZ(0, T ) − σZ(0, τ )]− 1

2
[σZ(0, 2(T + τ )) − σZ(0, 2T )− σZ(0, 2τ )]

]

So we have that the convexity adjustment for the Hull-White model is:

f(0, T, T + τ ) = ffut(0, T, T + τ )

− σ

2τ (γ∗)2

[
2[σZ(0, T + τ ) − σZ(0, T ) − σZ(0, τ )] − 1

2
[σZ(0, 2(T + τ )) − σZ(0, 2T ) − σZ(0, 2τ )]

]
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Solutions to Chapter 22

Exercise 1. Figure ?? and Figure ?? present the yield curve and the discount

prices under both the Vasicek and the 2-Factor Vasicek models, respectively.

Apparently there is no gain by using the 2-Factor model model. Yet this is

mostly due to the time framed selected to present these observations (Figure

22.1 expands the chart over 30 years, where there is a larger divergence in values

from the models). Additionally, when we take into account volatility we note

that the 2-Factor model does a much better job. Figure ?? presents the yield

volatility for both of these models and, also, the 2-Factor model with correlated

factors. Note that both 2-Factor models significantly outperform the single

factor Vasicek model. Figure ?? presents the correlation and how well each

model captures this. The 2-Factor model with correlated factors does a much

better job in capturing this.

0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

Time to Maturity

Y
ie

ld
 (

%
)

 

 
Data
Vasicek
Two−Factor Vasicek

Figure 53: Yield curve under Single Factor and 2-Factor Vasicek
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Figure 54: Discounts under Single Factor and 2-Factor Vasicek
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Figure 55: Yield volatility under Single Factor, 2-Factor and 2-Factor with
Correlated Factors Vasicek
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Figure 56: Correlation under Single Factor, 2-Factor and 2-Factor with Corre-
lated Factors Vasicek

Exercise 2.

a. Figure ?? presents the cap prices under the Hull-White models (Single

Factor and 2-Factor), as well as the Ho-Lee model. It is very difficult to

tell which one does a better job pricing the caps from this chart. Figure

?? shows the pricing errors. Here we can see clearly that the 2-Factor

Hull-White model does a better job than both the Ho-Lee and the Single

Factor Hull-White models.
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Figure 57: Cap Prices for Ho-Lee, Single Factor Hull-White and 2-Factor Hull-
White models
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Figure 58: Pricing Errors for Ho-Lee, Single Factor Hull-White and 2-Factor
Hull-White models

b. Figure ?? presents volatility estimates for all three models. Both Hull-

White models are very close to the volatility implied by the data.
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Figure 59: Volatility estimates for Ho-Lee, Single Factor Hull-White, 2-Factor
Hull-White models

c. Unsing the 2-Factor Hull-White we price the Eurpean swaptions quoted

in Table 22.3 (or 20.6). As it can be seen this swaption implied price is

much closer to the data than the cap implied price (see Figures ?? and

??). Also included is the volatility surface of these swaptions (Figure ??).
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Figure 60: Prices for swaptions
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Figure 61: Pricing Errors for swaptions
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Figure 62: Volatility surface of swaptions

Exercise 3. Price of the caplet is 0.1253.
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