
VARIATIONAL PROBLEMS IN LAGRANGIAN
GEOMETRY: Z2-CURRENTS

JON WOLFSON

1. Introduction

In this article we discuss aspects of the existence theory for extrema of
the lagrangian variational problem introduced in [S-W] and described in the
article of R. Schoen in this volume [Sc]. We will discuss questions about the
regularity of the extrema only as they relate to the existence question.

Recall the set-up. We let (X, ω) be a compact symplectic manifold of
dimension 2n equipped with a compatible metric g. In particular we could
take (X, ω, g) to be Kähler. An n-dimensional submanifold Σ of X is called
lagrangian if ω|Σ = 0. An n-dimensional cycle is lagrangian if each n-simplex
is lagrangian. We say a homology class α ∈ Hn(X, Z) is lagrangian if it can
be represented by a lagrangian cycle. We consider the variational problem of
finding extrema of volume among the lagrangian cycles (lagrangian currents,
lagrangian maps, etc.) representing the lagrangian homology class α. It is
also possible to formulate other variational problems, such as boundary value
problems, a homotopy problem, etc., but for simplicity we will emphasis the
homology problem. To be rigorous it is necessary to specify precisely the
class of lagrangians among which an extrema is sought.

Mapping Problem

When the domain manifold is 2-dimensional, because the energy of a con-
formal map equals the area of its image, it is possible to formulate a mapping
problem. Let Σ be a Riemann surface and consider the maps f : Σ → X in
W 1,2(Σ, X). These are maps such that f and Df are in L2(Σ, RN ) for some
isometric embedding of X into RN . Note that f∗ω is an L1-valued 2-form
on Σ. We say that a map f ∈ W 1,2(Σ, X) is weakly lagrangian if f∗ω = 0
a.e. An important ingredient in formulating the lagrangian mapping prob-
lem is the following compactness result [S-W]: The set of weakly lagrangian
maps in W 1,2(Σ, X) satisfying a uniform energy bound is closed in the weak
topology. As a consequence a minimizing sequence of lagrangian maps in
W 1,2(Σ, X) has a weakly lagrangian limit in W 1,2(Σ, X). If the maps in the
sequence represent a homology class then, as in the classical unconstrained
case, the limit map may not represent the same class. However there are
well-known techniques available to understand and handle this phenomenon.
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The main results for this problem were obtained in [S-W] and are surveyed
in [Sc].

Integral Currents

In general it is necessary to use currents in the formulation of our varia-
tional problem. The class of currents that are the geometric measure theory
generalization of oriented submanifolds are the integral currents. There are
two natural topologies for integral currents, the weak topology and the flat
norm topology. A sequence {Ti} of n-currents converges to the n-current T
in the weak topology if for every C∞ n-form φ on X with compact support

lim
i→∞

Ti(φ) = T (φ).

The sequence converges to T in the flat norm topology if there is a sequence
of n + 1- integral currents Pi and a sequence of n-integral currents Qi with

lim
i→∞

(|Pi|+ |Qi|) = 0,

satisfying:
Ti − T = ∂Pi + Qi.

where |P | denotes the mass (or volume) of the integral current P . Two
currents are close in the flat norm topology if they are the boundary (up to
a small n-volume current) of a current with small (n + 1)-volume. We say
an integral current T is lagrangian if for every C∞ (n−2)-form φ on X with
compact support,

T (ω ∧ φ) = 0.

It follows easily that if a sequence of lagrangian integral currents converges
weakly to an integral current then the limit current is lagrangian. From
the basic theory of currents (see [Si]) this implies the same result using the
flat norm topology. Applying these compactness results to a minimizing
sequence of lagrangian integral currents (representing a homology class) we
can find a minimizer that is also a lagrangian integral current and repre-
sents the homology class. Unfortunately, in the unconstrained case, there
are serious difficulties in the regularity theory of minimizers when the codi-
mension of the minimizer is greater than one. These problems persist in
the constrained (lagrangian) problem. Accordingly we seek a larger class of
currents.

Z2-currents

The Z2-currents are the geometric measure theory generalization of the
unoriented (in particular, non-orientable) submanifolds. Since there are
more comparisons available than for integral currents the regularity theory
for minimizers is better than that for integral currents [F]. Because the
currents are unoriented, the weak topology is not available so we must use
the flat norm topology. We say a Z2-current is lagrangian if its approximate
tangent planes are lagrangian planes a.e.. To use the lagrangian Z2-currents
in our variational problem we seek to establish a sequential compactness
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result in the flat norm topology. This problem is the subject of the next
section.

2. Lagrangian Z2-Currents

In R4 set λ = 1
2

∑2
j=1(xidyi − yidxi). Then dλ =

∑2
j=1 dxi ∧ dyi = ω is

the standard symplectic form. If γ is a closed curve in R4 the quantity
∫
γ λ

is called the period of the curve. A well known fact in symplectic geometry
is that a closed curve γ in R4 spans a lagrangian disc if and only if its
period vanishes. The following isoperimetric inequality due to Allcock [A]
and Gromov [G] is a quantitative version of this result.

Theorem 2.1. Let γ be a closed curve in R4 satisfying
∫
γ λ = 0. Then

there is a lagrangian disc D spanning γ with,

|D| ≤ c|γ|2,

where c is a universal constant.

Qiu [Q] proved the following non-orientable isoperimetric inequality using
ideas based on Allcock’s proof.

Theorem 2.2. Let γ be any closed curve in R4. Then there is a lagrangian
Möbius band M spanning γ with,

|M | ≤ c|γ|2,

where c is a universal constant.

This isoperimetric inequality has the following interesting application.
Recall ([Sc], [S-W]) that the 2-dimensional lagrangian cones in R4 ' C2

that are stationary under hamiltonian variations are parameterized by a
pair of relatively prime integers p, q ≥ 1. Explicitly the (p, q)-cone in C2

with coordinates (z1, z2) is:

Cp,q =
1√

p + q

(
r
√

qe
i
√

p
q
s
, ir
√

pe
−i

√
q
p
s
)

, (2.1)

where 0 ≤ s ≤ 2π
√

pq and r ≥ 0. The difference p − q is the Maslov
index of the cone. If |p − q| > 1 then the cone is unstable for compactly
supported hamiltonian variations and hence these cones are not tangent
cones on lagrangian minimizers. However for at least one pair (p, q) with
|p− q| = 1 the cone is a minimizer among oriented lagrangian comparisons
and occurs as a tangent cone on a minimizer. (This fact will discussed in
more detail below.) Using the non-orientable isoperimetric inequality the
following result is obtained in [S-W]:

Theorem 2.3. For any (p, q) with (p, q) 6= (1, 1), the cone Cp,q does not
minimize area among nonorientable lagrangian comparison surfaces.
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Outline of the Proof: Deform the annular region of the cone from r = 1
to r = ρ by the mean curvature H. Since H ≈ 1/r this decreases area by
c
∫∫ ρ

1 H2rdrds = c′ ln ρ. The mean curvature is a symplectic deformation so
the deformed region remains lagrangian however, because H is not hamil-
tonian, the curves r = 1 to r = ρ are deformed to curves that no longer
have zero period. Thus the deformed region cannot be joined to the unde-
formed regions of the cone by annular lagrangian strips. However they can
be joined by non-orientable lagrangians. Using the isoperimetric inequality
such non-orientable lagrangians can be constructed having bounded area
(independent of ρ). Therefore, for ρ sufficiently large, the new lagrangian
surface has smaller area.

Suppose that the ambient manifold X is Kähler-Einstein (ie., Ric = Rω).
On a smoothly immersed lagrangian the mean curvature vector H is an
infinitesimal symplectic motion and thus an admissible variation in the la-
grangian variational problem. Using this observation and a first variation
argument (see [Sc]) it follows that a regular lagrangian minimizer is a clas-
sical minimal submanifold (H = 0). In the mapping problem the regularity
theorem for minimizers ([S-W]) shows that a minimizer is an immersion ex-
cept at isolated points. These points are either branch points or singularities
with tangent cones Cp,q (2.1). The existence of non-planar tangent cones
that are minimizing (among oriented lagrangian comparisons) implies that
a minimizer for the mapping problem may have a singular point with such
a tangent cone. For such a minimizer we are then unable to use H as a
variation and therefore we cannot conclude that the minimizer is a classical
minimal surface. This same problem occurs in the variational problem using
2-dimensional lagrangian integral currents. However, Theorem 2.3 implies
that there are no non-planar tangent cones that are minimizing (among un-
oriented lagrangian comparisons). Using this observation and the regularity
theory developed for the mapping problem [S-W], we conclude that a 2-
dimensional lagrangian Z2 minimizer is regular (has no singularities) and
therefore H is an admissible variation. What is lacking is a result establish-
ing the existence of a lagrangian Z2-current minimizer. Unfortunately, the
following result of Qiu [Q], also an application of the non-orientable isoperi-
metric inequality, shows that the existence theory for lagrangian Z2-current
minimizers is problematic.

Theorem 2.4. The set of lagrangian Z2-currents in R4 is dense in the flat
norm topology in the set of all Z2-currents.

Proof. Throughout the proof c will denote universal constants. Fleming [Fl]
shows that the polyhedral chains are dense, in the flat norm topology, in
the Z2-currents. Therefore, it suffices to prove the theorem for a planar unit
square P in R4. Divide P into N2 subsquares Pj , j = 1, . . . , N2, so that each
Pj has sides of length 1

N . By Theorem 2.2 for each Pj there is a lagrangian
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Möbius band Mj with ∂Mj = ∂Pj and

|Mj | ≤ c|∂Pj |2 = c(
4
N

)2.

Set M =
∑

j Mj . Since interior boundaries cancel we have ∂P = ∂M . Note
that,

|M | ≤
∑
j

|Mj | ≤ N2c(
4
N

)2 = 16c.

Since ∂(Mj − Pj) = 0 by the classical isoperimetric inequality there is a
3-dimensional Z2-current Tj with ∂Tj = Mj − Pj and

|Tj | ≤ c|Mj − Pj |
3
2 .

But |Mj − Pj | ≤ |Mj |+ |Pj | ≤ c
N2 so,

|Tj | ≤
c

N3
.

Set T =
∑

j Tj . Then ∂T = M − P and

|T | ≤ N2 c

N3
=

c

N
.

It follows that as N →∞, M approximates P in the flat norm topology. �

Notice that the proof implies that a bounded domain in C ⊂ R4 can
be approximated by lagrangians satisfying a uniform area bound. Another
curious consequence of Qiu’s theorem is that in a symplectic 4-manifold
X every class in H2(X, Z2) is lagrangian, that is, can be represented by a
lagrangian cycle. By comparison a class α ∈ H2(X, Z) is lagrangian if and
only if

∫
α ω = 0.

For our purposes the main consequence of Qiu’s theorem is that the limit
of a sequence of lagrangian Z2-currents with uniformly bounded volumes
(masses) may not be lagrangian. It remains possible that a minimizing
sequence of lagrangian Z2-currents is always lagrangian. However Qiu’s
result suggests otherwise. Note that the construction, in the proof of the
theorem, introduces curves γ on the lagrangians for which

∫
γ λ 6= 0, where

λ = 1
2

∑2
j=1(xidyi − yidxi) is the Liouville form. An immersed lagrangian

Σ ⊂ R2n is called exact if
∫
τ λ = 0, for every closed curve τ on Σ. That is, the

approximating lagrangians constructed in the proof of Theorem 2.4 are not
exact. Thus it is possible that, restricting to exact lagrangians, sequential
compactness holds.

Recall that an equivalent formulation of exactness, one more convenient
for our purposes, is given as follows: Consider R2n+1 = {(x, y, ϕ)}. Denote
by π the projection R2n+1 → R2n (x, y, ϕ) 7→ (x, y). On R2n+1 define the
contact 1-form η = dϕ− 1

2

∑n
j=1(xidyi−yidxi). The pair (R2n+1, η) is called a

contact manifold. The hyperplane distribution defined by η = 0 is called the
contact distribution. An n-dimensional submanifold S is called legendrian if
η|S = 0 or equivalently if it is everywhere tangent to the contact distribution.
A n-dimensional Z2-current is called legendrian if its approximate tangent
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planes lie in the contact distribution a.e.. It is easy to see that if S is
legendrian then π(S) ⊂ R2n is an exact lagrangian. Conversely, a smoothly
immersed exact lagrangian Σ ⊂ R2n has a legendrian lift.

For a point p ∈ R2n+1, denote the contact 2n-plane at p by Hp. Then
dπp : Hp → R2n is an isomorphism. Define a metric g on the contact
distribution by requiring that dπp is an isometry for every p ∈ R2n+1. The
metric g is a Riemannian metric on the contact distribution but defines a
degenerate (Carnot) metric on R2n+1. The importance of the legendrians
for our purposes is due to the following theorem.

Theorem 2.5. Let {Σi} be a sequence of legendrian Z2-currents in R2n+1

that satisfy |Σi| + |∂Σi| < C (using the metric g). There is a subsequence
that converges in the flat norm topology to a legendrian Z2-current.

Proof. Introduce a Riemannian metric, depending on a parameter, on R2n+1

as follows. Choose a Reeb vector field V on L, that is, a vector field ev-
erywhere transverse to the contact distribution such that η(V ) = 1. De-
fine a metric g1 on R2n+1 so that dπ restricted to the contact subspace
H ⊂ TR2n+1 is an isometry and so that V is orthogonal to P and of unit
length. Thus, g1 = g + η2. Introduce the family of metrics gε = g + ε−2η2.

Consider the sequence of legendrian Z2-currents Σi. Choose a sequence
εj ↓ 0. For each j, using the metric gεj , choose a subsequence {Σij} that
converges in the flat norm topology to a Z2-current. Let Σ0 denote the limit
of a diagonal subsequence of {Σij}. It follows that, for any εj , Volεj (Σ0)
is bounded. If Σ0 is not legendrian, then there is a set E ⊂ Σ0 of positive
measure whose tangent planes are not subspaces of the contact planes. This
implies that Volεj (E) →∞ as εj → 0, a contradiction. �

Remark 1: The theorem shows that the set of legendrian Z2-currents has a
suitable compactness property. It is remarkable that to formulate the mono-
tonicity formula of [S-W] for lagrangian minimizers in R2n it is necessary to
introduce the legendrian lifts to the contact manifold R2n+1. There is no
obvious reason for this coincidence.

Remark 2: The theorem is also true for sequences of legendrian integral
currents. However in the case of legendrian integral currents convergence to
a legendrian current can be easily proved in the weak topology. Convergence
in the flat norm topology then follows.

An apparent conclusion of Theorem 2.5 is that minimizers among leg-
endrian Z2-currents can be found. However, Theorem 2.5 is a local result
and it is not clear how to generalize the notion of legendrian to manifolds.
Indeed if ω is not an exact form, in general, periods cannot be defined. Of
course, ω is locally exact and locally, by the Darboux theorem, every sym-
plectic manifold looks like R2n. One could try to exploit this to define a class
of “locally exact” lagrangians. However, fixing a covering of a symplectic
manifold X by Darboux neighborhoods, it is not difficult to construct a se-
quence of lagrangians that are exact in every neighborhood of the cover but
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that converge in the flat norm topology to a lagrangian lying in a Darboux
ball that is not exact. What is needed is a global version of exactness, that
is, a global version of legendrian.

3. Global Exactness

Let (X, ω) be a compact symplectic manifold of dimension 2n. Suppose
that the symplectic form ω is integral, that is, the homology class [ω] is an
integral class. Then there is an hermitian line bundle L over X with unitary
connection η such that the curvature of η is ω [K]. Let L also denote the total
space of the associated S1 principal bundle and let π : L → X denote the
bundle projection. On L the one-form η is globally well-defined and satisfies
dη = π∗ω. Thus η is a contact one-form. The horizontal distribution of the
connection η is the contact distribution. Define a metric g on the horizontal
distribution by requiring that dπp : Hp → Tp(X) is an isometry for each
p ∈ L, where Hp is the horizontal 2n-plane at p. Then g is a degenerate
(Carnot) metric on the contact manifold L. We say that an n-dimensional
smooth submanifold S is legendrian if η|S = 0 or, equivalently, if Tp(S) ⊂ Hp

for each p ∈ S. We say that a Z2-current is legendrian if its approximate
tangent planes lie in the horizontal distribution a.e..

Using the same argument as in the proof of Theorem 2.5 it follows that
a sequence of legendrian Z2-currents that satisfy a uniform mass bound for
the metric g (as in Theorem 2.5) has a subsequence that converges in the
flat norm topology to a legendrian Z2-current. Thus

Theorem 3.1. Let Lα be the set of legendrian Z2-cycles in L that represent
the homology class α ∈ Hn(L, Z2). A sequence of currents in Lα that mini-
mizes volume has a subsequence that converges in the flat norm topology to
a current in Lα.

Theorem 3.1 shows that there is a global existence theory for legendrian
Z2 minimizers. This existence theory can be applied to a class a in Hn(X, Z2)
that has a lift to a legendrian class α in Hn(L, Z2). The push forward by
π of the legendrian minimizer representing α is a lagrangian Z2-cycle that
minimizes volume among Z2-cycles that represent a and that have legendrian
lifts. We will call the lagrangian Z2 minimizer an “exact lagrangian” Z2

minimizer or, by abuse of nomenclature, a legendrian Z2 minimizer.
We remark that the minimizer of Theorem 3.1 is contact stationary in the

sense of [S-W]. That is, the minimizer is stationary with respect to the con-
tact transformations of L. These are the diffeomorphisms of L that preserve
the contact distribution. In the case that the currents are 2-dimensional, the
contact stationary currents satisfy a monotonicity inequality [S-W]. Using
this it can be shown that the minimizers satisfy a regularity result similar to
that satisfied by the minimizers of the mapping problem. In particular, the
minimizers are (nonorientable) immersed surfaces except at isolated points
which are singularities with (p, p+1) tangent cone. The regularity question
for the 2-dimensional legendrian minimizers is thus reduced to the question
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of whether or not the 2-dimensional (p, p+1) cones are minimizing among Z2

legendrian comparisons. (We saw above in Theorem 2.3 that they are not
minimizing among Z2 lagrangian comparisons. However the comparisons
used in the proof of Theorem 2.3 have non-trivial periods and are therefore
not legendrian comparisons.)

In [S-W] it is shown that at least one of the (p, p+1) cones is minimizing
among orientable lagrangian comparisons. Why such a cone exists and why
it is pausible to believe that such minimizing cones do not exist among
nonorientable legendrian comparisons can be seen as a consequence of the
following topological reasoning: Let ` : Σ → N be a lagrangian immersion
where Σ is a surface (orientable or not) and N is a symplectic 4-manifold.
Then there is a splitting `∗TN ' TΣ⊕T ∗Σ of `∗TN into a pair of lagrangian
subbundles over Σ. But then,

`∗TN ' TΣ⊕ T ∗Σ ' TΣ⊗ C, (3.1)

where the isomorphisms are of symplectic (or equivalently almost complex)
vector bundles over Σ. It follows that c1(`∗TN) ∈ H2(Σ, Z) is an ele-
ment of order 2 and so vanishes if Σ is orientable. Suppose α ∈ H2(N, Z)
is a lagrangian homology class and c1(N)(α) 6= 0. Then the minimizer
among orientable lagrangians representing α cannot be a (branched) immer-
sion and hence at least one cone singularity must occur on the minimizer.
Thus at least one of the (p, p + 1) cones must be a minimizer among ori-
ented lagrangian comparisons. On the other hand if Σ is nonorientable then
c1(`∗TN) need not vanish. In fact since it is an element of order 2 we can
replace c1(N) with its mod 2 reduction, w2(N), the second Stiefel-Whitney
class. Using (3.1) and the Whitney sum formula we have:

`∗w2(N) = w2(TΣ⊕ T ∗Σ)
= w2(TΣ) + w1(TΣ) · w1(T ∗Σ) + w2(T ∗Σ)
= w2

1(Σ).

Now suppose α ∈ H2(N, Z2) is a legendrian homology class and w2(N)(α) 6=
0. If the minimizer among Z2 legendrians representing α is immersed the
Stiefel-Whitney number w2

1 of the minimizer must be nonzero. What was
an obstruction to regularity in the orientable case becomes a restriction
on topology in the nonorientable case. Philosophically singularities in the
orientable case are replaced with Möbius bands in the nonorientable case.
The problem is to show that this philosophy is correct. If this can be done
then the introduction of legendrian Z2-currents will be justified.
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