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We provide constant ratio approximation algorithms for two NP-hard problems,
the rectangle stabbing problem and the rectilinear partitioning problem. In the rect-
angle stabbing problem, we are given a set of rectangles in two-dimensional space,
with the objective of stabbing all rectangles with the minimum number of lines
parallel to the x and y axes. We provide a 2-approximation algorithm, while the
best known approximation ratio for this problem is O�log n�. This algorithm is then
extended to a 4-approximation algorithm for the rectilinear partitioning problem,
which, given an mx ×my array of nonnegative integers and positive integers v� h,
asks to find a set of v vertical and h horizontal lines such that the maximum load
of a subrectangle (i.e., the sum of the numbers in it) is minimized. The best known
approximation ratio for this problem is 27. Our approximation ratio 4 is close to
the best possible, as it is known to be NP-hard to approximate within any factor less
than 2. The results are then extended to the d-dimensional space for d ≥ 2, where a
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d-approximation algorithm for the stabbing problem and a dd-approximation algo-
rithm for the partitioning problem are developed.  2002 Elsevier Science (USA)

Key Words: rectangle stabbing; rectilinear partitioning; combinatorial optimiza-
tion; approximation algorithms.

1. INTRODUCTION

We consider in this paper two NP-hard problems, the rectangle stabbing
problem and the rectilinear partitioning problem. An important application
of the rectilinear partitioning problem arises when a two-dimensional array
of processors connected as a mesh is used in areas such as numeric com-
putation and image processing. The computation is done over an array of
numbers, where each number represents computation load. The underlying
algorithm may involve finite element methods or two-dimensional finite dif-
ference equations for numeric computation or iterative computation such
as convolution for image processing (see, e.g., [7]). The problem is to map
the numbers (or loads) to the processors, so as to minimize the total load
(sum of the numbers) assigned to one processor.

When the processors in a parallel system are connected as a two-
dimensional mesh, a useful method to map the numbers to the processors
is to first perform a rectilinear partitioning of the two-dimensional array of
numbers, in which a set of v vertical and h horizontal lines are drawn to
subdivide the array of numbers. Each subrectangle (subarray of numbers
enclosed by successive vertical and horizontal lines) is now assigned to a
processor in the mesh. This type of mapping is particularly useful when
communication between adjacent processors on the mesh (adjacent in a
row or column) is fast compared to communication between non-adjacent
processors. In a mapping using rectilinear partitioning, adjacent data in the
array are always mapped to adjacent processors, thereby reducing the com-
munication overhead. It is noted that the rectilinear partitioning method
can be applied for dimensions other than two. As an example, given a
one-dimensional array of data points and a one-dimensional array of pro-
cessors, the problem is to allocate consecutive data points to processors to
optimize some criterion [5]. The d-dimensional partitioning problem using
�d − 1�-dimensional hyperplanes, for d ≥ 2, will be discussed in Section 4.2
of this paper.

In the above applications, either the same instruction stream applies to all
processors (in the SIMD model of computation), or computation proceeds
iteratively, where in each iteration every processor finishes its computation
before the next iteration is started (accomplished by a synchronization step
in the MIMD model of computation). In both these models of computation,
it is important to minimize the maximum load on a processor, where the
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load on a processor is the sum of the computation loads assigned to the
processor. The load for a mapping is therefore defined as the largest load
among the loads on all the processors. This largest load determines the
execution time (for an instruction in SIMD and for an iteration in MIMD)
and is thus the bottleneck in the total execution time of the program. The
objective is therefore to seek a mapping that minimizes the largest load.

In this paper, we study the rectilinear two-dimensional data partitioning
problem. Berger and Bokhari [3] look at the partitioning problem where
the two-dimensional array is partitioned into rectangles such that the load
is balanced (each rectangle has the same load). However, the partition-
ing they investigate is not by straight lines, but by those having right-angle
bends. Then, they investigate the cost of mapping such a partition onto
the set of processors connected as a mesh, as a tree, and as a hypercube.
Bokhari [4] discusses the one-dimensional version and provides an O�n3p�
algorithm to obtain the optimal load for n data points and p processors. A
better algorithm with running time O�pn log n� is proposed in [17], which
is later improved to O�pn� using a dynamic programming formulation
[5]. For an excellent treatise on the rectilinear partitioning problem, the
reader is referred to Nicol’s paper [16]. It provides an O�n + �p log n�2�
algorithm for the one-dimensional partitioning problem and proves that
the three-dimensional rectilinear partitioning problem is NP-hard. It states
that the complexity of the two-dimensional rectilinear partitioning problem
is open.

More recent work on this problem establishes the NP-hardness of the
two-dimensional problem [9]. The ��√p� approximation algorithm that
was provided for this problem [1] was later improved, when a simple
approximation algorithm with a performance ratio of 27 was provided [13].
Aspvall et al. [1] point out that the NP-hardness proof in [9] implies that it
is NP-hard to approximate the problem within any factor less than 2. Both
the approximation algorithms assume that the number of horizontal lines
equals the number of vertical lines. In this paper, we provide an approxi-
mation algorithm with a performance ratio of 4, for an mx ×my array of
data points, which is to be partitioned by h �≤mx� horizontal lines and
v �≤my� vertical lines.

Our algorithm for the rectilinear partitioning problem is based on a
reduction to the problem of stabbing a set of rectangles by the minimum
number of lines parallel to the axes. The latter problem has been studied
before by Hassin and Megiddo, for which the best known approximation
algorithm has a performance ratio of O�log n� for n rectangles [10]. The
algorithm we provide in this paper has an approximation ratio of 2.

These results in this paper are then extended to the d-dimensional space
for d ≥ 2, where stabbing and partitioning are done by �d − 1�-dimensional
hyperplanes. For the stabbing problem,we have ad-approximation algorithm,
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and for the rectilinear partitioning problem, we have a dd-approximation
algorithm.

In Section 2, we discuss the rectangle stabbing problem (denoted
RS) and provide a 2-approximation algorithm. In Section 3, we pro-
ceed to the rectilinear partitioning problem (denoted RP), and use the
2-approximation algorithm for RS to obtain a 4-approximation algorithm
for RP. In Section 4, we consider various extensions of the results, including
those for d-dimensions.

2. AN APPROXIMATION ALGORITHM FOR
RECTANGLE STABBING

We formally define problem RS, and then provide a 2-approximation
algorithm.

Problem RS. We are given a set R of n rectangles, which are aligned to
the x and y axes in the two-dimensional space, whose corners are all located
at integer points and whose areas are more than 1 (i.e., unit squares are
excluded). Using at least h horizontal lines and v vertical lines, respectively,
the problem is to stab all the rectangles by the minimum number of lines
located at integer coordinates.

A horizontal (resp., vertical) line is said to stab a rectangle r if it goes
through its interior. Since all corners of r are integer points, a horizontal
line y = c stabs r if a + 1 ≤ c ≤ b − 1 holds for the coordinate y = a
(resp., y = b) of the lower edge (resp., upper edge) of r, where a� b� c are
all restricted to be integers. A similar argument also holds for vertical lines.
Unit squares are not permitted in set R because it is not possible to stab
them in the above sense.

The NP-hardness of problem RS was established by Hassin and Megiddo
[10]. This problem is a special case of the set covering problem and the
hitting set problem 
6� 11� 12�. The set covering problem and the hitting set
problem admit no approximation algorithm with a constant performance
ratio 
2� 14�, where the performance ratio is the worst-case ratio of the
solution value returned by the algorithm to the optimum value. The best
known approximation ratio for RS is O�log n� [10].

We begin by describing the integer and linear programming formulations
for RS. Let H be the set of all horizontal lines whose coordinates are
one larger than those of the lower edges of the given rectangles or whose
coordinates are one smaller than those of the upper edges:

H = �y = a+ 1� y = b− 1  y = a is the lower edge and

y = b is the upper edge of a rectangle r ∈ R such that b− a ≥ 2��
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Correspondingly, let V be the set of all vertical lines whose coordinates are
one larger than those of the left edges of the given rectangles or whose
coordinates are one smaller than those of the right edges:

V = �x = a+ 1� x = b− 1  x = a is the left edge and

x = b is the right edge of a rectangle r ∈ R such that b− a ≥ 2��
To solve problem RS, we can assume without loss of generality that lines
are chosen from set H ∪ V , since any horizontal or vertical line can be
shifted to a line in H ∪ V without changing the stabbing condition of all
the rectangles.

The cardinalities of H and V are at most 2n, respectively. Let xi be the
decision variable corresponding to the ith horizontal line in the set H, and
let yj be the decision variable corresponding to the jth vertical line in V .
For each rectangle rk� k ∈ �1� 2� � � � � n�, let Hk be the set of horizontal
lines in H that stab rectangle rk, and let Vk be the set of vertical lines in V
that stab rectangle rk. Permitting slight abuse of notations, we also write
i ∈ H and j ∈ V to denote the ith horizontal line in H and the jth vertical
line in V . Similarly, we write i ∈ Hk and j ∈ Vk to denote the ith horizontal
line in Hk and the jth vertical line in Vk. Finally we let 
n� represent the
set �1� 2� � � � � n�.

Now consider the following integer program P and its linear program-
ming relaxation �P .

P �P
min

∑

i∈H
xi +

∑

j∈V
yj min

∑

i∈H
xi +

∑

j∈V
yj

∑

i∈Hk

xi +
∑

j∈Vk
yj ≥ 1� k ∈ 
n� ∑

i∈Hk

xi +
∑

j∈Vk
yj ≥ 1� k ∈ 
n�

∑

i∈H
xi ≥ h

∑

i∈H
xi ≥ h

∑

j∈V
yj ≥ v

∑

j∈V
yj ≥ v

xi� yj ∈ �0� 1�� i ∈ H� j ∈ V xi� yj ≥ 0� i ∈ H� j ∈ V

Note that any feasible solution to the integer program P above defines a
set of lines that stab all the rectangles, and an optimal solution to P gives an
optimal solution to RS. In particular, if a solution exists with h horizontal
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lines and v vertical lines that stab all rectangles, then the optimal solution
to the above program P will indeed return such a solution.

Now let �x̄i� i ∈ H� ȳj� j ∈ V � be an optimal fractional solution to problem
�P . Such a solution satisfies

either
∑

i∈Hk

x̄i ≥ 1/2 or
∑

j∈Vk
ȳj ≥ 1/2

for every rectangle k ∈ 
n�. Let RH (resp., RV ) be the set of all k for which∑
i∈Hk

x̄i ≥ 1/2 (resp.,
∑

j∈Vk ȳj ≥ 1/2) holds. Based on these, we introduce
the following integer programs PH and PV .

PH PV

min
∑

i∈H
xi min

∑

j∈V
yj

∑

i∈Hk

xi ≥ 1� k ∈ RH

∑

j∈Vk
yj ≥ 1� k ∈ RV

∑

i∈H
xi ≥ h

∑

j∈V
yj ≥ v

xi ∈ �0� 1�� i ∈ H yj ∈ �0� 1�� j ∈ V

It should be noted that every constraint in integer programs PH and PV

contains a subset of variables in the corresponding constraint of P . Let a
feasible solution to PH be xH , and let a feasible solution to PV be yV . It is
then easy to see that the composite solution �xH� yV � is feasible in P .

We denote the linear programming relaxations of PH and PV (i.e., xi ∈
�0� 1� is relaxed to xi ≥ 0, and yj ∈ �0� 1� is relaxed to yj ≥ 0) by �PH

and �PV , respectively. Then we denote the optimal values for the programs
P� �P� PH� PV � �PH , and �PV by P∗� �P∗� P∗

H� P
∗
V � �P∗

H , and �P∗
V , respectively. The

following lemmas provide relationships among these values.

Lemma 1. P∗
H = �P∗

H and P∗
V = �P∗

V .

Proof. We first consider PH and order all the horizontal lines i ∈ H
from the lowest to the highest. Then all the horizontal lines in Hk of each
k are consecutive in this ordering. Thus the rows of the coefficient matrix
of PH , which correspond to the first set of constraints for all k ∈ RH ,
have the interval property (i.e., the elements 1’s are located consecutively
in each row), and such a matrix is totally unimodular (e.g., pp. 540–544,
Corollary 2.10, and Proposition 2.1 in [15]). Thus any fractional optimal
solution to �PH is integral and solves PH , proving that P∗

H = �P∗
H . A similar

argument also applies to PV and �PV .
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Lemma 2. P∗
H + P∗

V ≤ 2P∗.

Proof. Let �x̄� ȳ� be an optimal fractional solution to problem �P . We
observe that the solutions �2x̄� and �2ȳ�, where every variable value is
multiplied by 2, provide a feasible solution to �PH and �PV , respectively. This
is true because, for every constraint of �PH for k ∈ RH�

∑
i∈Hk

x̄i ≥ 1/2
holds and hence

∑
i∈Hk

2x̄i ≥ 1. Furthermore,
∑

i∈H 2x̄i ≥ h is obvious for
�PH since

∑
i∈H x̄i ≥ h holds by definition. Thus �2x̄� is feasible to �PH . A

similar argument can also be applied to �PV . Consequently it follows that
�P∗
H + �P∗

V ≤ 2�P∗. This, together with Lemma 1 and �P∗ ≤ P∗, proves the
lemma statement.

The following theorem gives us the desired performance ratio.

Theorem 1. There exists a polynomial time 2-approximation algorithm for
problem RS.

Proof. From Lemmas 1 and 2, it is evident that the following algorithm
APPROX RS has approximation ratio 2 for problem RS. It requires us to
solve three linear programs, �P� �PH , and �PV , which can obviously be done
in polynomial time.

Algorithm APPROX RS

Input: A set R of n rectangles aligned to the x and y axes, and
nonnegative integers h and v.

Output: h′ �≥h� horizontal lines and v′ �≥v� vertical lines that
together stab all rectangles in R.

1. Solve linear program �P , and obtain the fractional optimal solu-
tion �x̄� ȳ� = �x̄i� i ∈ H� ȳj� j ∈ V �.

2. Construct the two integer programs PH and PV from �x̄� ȳ�, and
obtain their optimal solutions x∗

H and y∗V �by solving linear programs �PH

and �PV �see Lemma 1��, respectively.
3. Output the ith horizontal lines such that �x∗

H�i = 1 and the jth
vertical lines such that �y∗V �j = 1.

The time complexity of APPROX RS is dominated by the time to solve
three linear programs in Steps 1 and 2. As our linear programs have 0–1
coefficient matrices, they can be solved in strongly polynomial time (i.e.,
polynomial in the numbers of variables and constraints) [18]. The time
complexity for the algorithm is O�n5� for n rectangles.
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Corollary 1. If an instance of RS has a solution with h horizontal lines
and v vertical lines, then APPROX RS outputs a solution with h′ horizontal
lines and v′ vertical lines such that h ≤ h′ ≤ 2h and v ≤ v′ ≤ 2v.

Proof. In this case, any optimal solution �x̄� ȳ� to �P has objective values∑
i∈H x̄i = h and

∑
j∈V ȳj = v in �PH and �PV , respectively. Hence the

argument in the proof of Lemma 2 shows that h′ = P∗
H ≤ 2h and

v′ = P∗
V ≤ 2v. The remaining properties h ≤ h′ and v ≤ v′ are obvious.

3. THE RECTILINEAR PARTITIONING PROBLEM

We define the rectilinear partitioning problem (denoted RP) in this
section and provide a 4-approximation algorithm. We are given an mx ×my

array A of nonnegative integers aij� 1 ≤ i ≤ mx� 1 ≤ j ≤ my . We are also
given the numbers h of horizontal lines and v of vertical lines. A hori-
zontal line can only be placed between two successive rows of the array,
and a vertical line can only be placed between two successive columns. For
convenience, we regard the lower boundary (resp., upper boundary) of A
as the 0th (resp., �h + 1�-st) horizontal line. Similarly, the left boundary
(resp., right boundary) of A is regarded as the 0th (resp., �v + 1�-st) ver-
tical line. Given the pth and �p + 1�-st horizontal lines, and the qth and
�q + 1�-st vertical lines, we define the rectangle rpq as comprising all the
numbers aij enclosed by the four lines. We define the load of rpq by

Lpq = ∑

aij∈rpq
aij�

Problem RP. Given anmx ×my arrayA = �aij� 1 ≤ i ≤ mx� 1 ≤ j ≤ my�
of nonnegative integers, and nonnegative integers h and v, place h horizon-
tal lines and v vertical lines such that the largest load max�Lpq  0 ≤ p ≤ h,
0 ≤ q ≤ v� is minimized.

Before providing an approximation algorithm for RP, we introduce the
following decision problem version of RP (denoted DRP).

Problem DRP. Given an mx ×my array A of nonnegative integers and
nonnegative integers h� v and L, decide whether there are h horizontal
lines and v vertical lines such that maxp� q Lpq ≤ L holds.

If we had an algorithm for solving DRP exactly, we could solve RP opti-
mally by finding the minimum L such that the corresponding DRP outputs
‘YES.’ To find such L, the value of L may be initially set to

asum = ∑

i� j

aij�
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and a binary search is conducted over the interval 
0� asum�. As DRP
is NP-complete, however, we solve it only approximately by the follow-
ing algorithm, which uses APPROX RS in the previous section as a
subalgorithm.

Algorithm APPROX DRP

Input: An mx ×my array A of nonnegative integers and nonneg-
ative integers h� v, and L.

Output: ‘YES’ together with h′ horizontal lines and v′ vertical
lines such that h ≤ h′ ≤ 2h� v ≤ v′ ≤ 2v, and maxp� q Lpq ≤ L hold;
else ‘NO.’

1. Generate all rectangles r in A such that
∑

aij∈r aij > L, and
denote the resulting set as R. This defines an instance of problem RS.

2. Call APPROX RS to obtain a set of h′ �≥h� horizontal lines
and v′ �≥v� vertical lines that stab all the rectangles in R.

3. If h′ ≤ 2h and v′ ≤ 2v, then return ‘YES,’ together with the h′

horizontal lines and v′ vertical lines obtained in Step 2; else return ‘NO.’

In Step 1, we transform an instance of problem DRP into an instance
of problem RS by constructing the set of all rectangles R in array A such
that every rectangle r ∈ R satisfies

∑
aij∈r aij > L. As each rectangle r can

be specified by two elements of A located at its upper left corner and
its lower right corner and there are mxmy elements in A�R contains at
most m2

xm
2
y rectangles. Therefore, by considering each of these rectangles

systematically, it is not difficult to see that Step 1 can be done in O�m2
xm

2
y�

time.
The heart of the above algorithm is Steps 2 and 3. Corollary 1 tells that, if

the instance of problem RS defined in Step 1 has a solution with h horizon-
tal lines and v vertical lines, the APPROX RS outputs h′ �≤2h� horizontal
lines and v′ �≤2v� vertical lines, and hence APPROX DRP returns ‘YES.’
In this case, the largest load of a subrectangle generated by the solution of
APPROX DRP is at most L, because otherwise there exists a rectangle r
with

∑
aij∈r aij > L, which is not stabbed by any of the lines in the solution,

a contradiction.
These are summarized as follows.

Lemma 3. (a) If an instance of DRP has a solution, then APPROX DRP
returns ‘YES.’
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(b) If APPROX DRP returns ‘YES,’ then the associated output satisfies
h ≤ h′ ≤ 2h� v ≤ v′ ≤ 2v, and maxp� q Lpq ≤ L.

Algorithm APPROX DRP calls algorithm APPROX RS with at most
m2

xm
2
y rectangles as input. Thus, algorithm APPROX DRP also runs in

strongly polynomial time. In the following algorithm APPROX RP, we
find the smallest L for which APPROX DRP returns ‘YES,’ by repeatedly
calling APPROX DRP. By using the fact that if APPROX DRP returns
‘NO’ for the current L, then it returns ‘NO’ for all L′ ≤ L; the smallest L
for which APPROX DRP returns ‘YES’ can be obtained by performing a
binary search over the interval 
0� asum�. This takes �log2 asum� iterations.
Given the solution for this smallest L = Lmin, we then reduce the numbers
of horizontal lines h′ and vertical lines v′ to h and v, respectively. This can
be done by removing every second horizontal and vertical line, until the
number of horizontal lines becomes equal to h and the number of vertical
lines becomes equal to v. After this modification, it is easy to observe that
the load of each of the resulting subrectangles is at most 4Lmin.

Algorithm APPROX RP

Input: An mx ×my array A of nonnegative integers, and nonneg-
ative integers h and v.

Output: h horizontal lines and v vertical lines.

1. Apply a binary search over 
0� asum� to find the minimum L
�denoted Lmin� such that APPROX DRP returns ‘YES.’

2. Consider the output of APPROX DRP for Lmin �i.e., h′ hori-
zontal lines and v′ vertical lines�. Noting that h′ ≤ 2h and v′ ≤ 2v hold,
remove alternate horizontal and vertical lines, respectively, until the result-
ing set contains h horizontal lines and v vertical lines. Then output the
remaining horizontal and vertical lines.

Theorem 2. Algorithm APPROX RP outputs a feasible solution of prob-
lem RP, and its approximation ratio is 4.

Proof. Let the optimal load for problem RP be Lopt. Then, by Lemma 3,
APPROX DRP for L = Lopt returns ‘YES’ using at most 2h horizontal
lines and 2v vertical lines. Therefore, the Lmin found by APPROX RP
satisfies Lmin ≤ Lopt. This implies that, by removing every alternate line
among the horizontal and vertical lines, the load computed by algorithm
APPROX RP is at most 4Lmin �≤4Lopt�. Thus the approximation ratio as
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stated in the theorem follows. It is also obvious that the output contains h
horizontal lines and v vertical lines; hence it is feasible to RP.

Algorithm APPROX RP calls algorithm APPROX DRP at most O�log2
asum� times and therefore also runs in strongly polynomial time.

4. EXTENSIONS

We consider two types of extensions of problems RS and RP in the
following sections.

4.1. Total Number of Horizontal and Vertical Lines

Our results readily extend to a version of RS in which there are no lower
bounds on the number of horizontal and vertical lines. Consider that we
are given a set of n rectangles aligned to the axes in two-dimensional space,
and the objective is to minimize the total number of lines parallel to the
axes, which stab all the given rectangles. For this, we delete the constraints∑

i∈H xi ≥ h and
∑

j∈V yj ≥ v from the formulations P� �P� PH , and PV . It is
easily verified that the approximation ratio stays the same.

Similarly, we can extend our results to the total number version of prob-
lem RP. That is, given an input array A and a nonnegative integer t, it asks
to find a total of t horizontal and vertical lines that minimize the maximum
load maxp� q Lpq. Based on the approximate algorithm for the above ver-
sion of RS, it is straightforward to modify algorithm APPROX RP so that
the same approximation ratio 4 holds for this problem.

4.2. Higher Dimensions

All the discussion so far can be extended to the d-dimensional space with
d ≥ 2. Let d coordinates be denoted xl� l ∈ 
d�, and assume that a set R
of n d-dimensional rectangles rk� k ∈ 
n�, are given. Each d-rectangle rk is
the intersection of 2d halfspaces xl ≥ akl1 and xl ≤ akl2� l ∈ 
d�, where aklj
are all assumed to be nonnegative integers. A hyperplane xl = b then stabs
a rectangle rk if akl1 < b < akl2 holds for the given l. The d-dimensional
counterpart of problem RS, denoted d-RS, is then defined as follows.

Problem d-RS. Given a set R of n d-rectangles, as described above,
and d nonnegative integers hl� l ∈ 
d�, we are asked to stab all the rect-
angles with the minimum number of hyperplanes under the constraint that
at least hl hyperplanes of type xl = b are used for each l ∈ 
d�.

Now define the sets of hyperplanes,

Hl =
{
xl = akl1 + 1� xl = akl2 − 1  k ∈ 
n�}� l ∈ 
d�
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and

Hkl =
{
i ∈ Hl  the ith hyperplane in Hl stabs rk

}
� k ∈ 
n�� l ∈ 
d��

in which we again permit slight abuse of notations such as i ∈ Hl.
Then introducing 0–1 variables yli to denote if the ith hyperplane in Hl

is selected �yli = 1� or not �yli = 0� in the solution, we formulate problem
d-RS as the following integer program:

d-P � min
∑

l∈
d�

∑

i∈Hl

yli

∑

l∈
d�

∑

i∈Hkl

yli ≥ 1� k ∈ 
n�
∑

i∈Hl

yli ≥ hl� l ∈ 
d�

yli ∈ �0� 1�� i ∈ Hl� l ∈ 
d��
The continuous relaxation of d-P , denoted d-�P , is then defined by replacing
constraints yli ∈ �0� 1� with yli ≥ 0. Let �ȳl� l ∈ 
d�� denote the optimal
fractional solution of d-�P , where �ȳl� = �ȳli� i ∈ Hl�. For each k ∈ 
n�, it is
obvious that at least one l ∈ 
d� satisfies

∑

i∈Hkl

ȳli ≥ 1/d�

For each l ∈ 
d�, let Rl be the set of all k ∈ 
n� for which the above
inequality holds. Similarly to PH and PV in Section 2, we introduce the
following d integer programs d-Pl� l ∈ 
d�:

d-Pl � min
∑

i∈Hl

yli

∑

i∈Hkl

yli ≥ 1� k ∈ Rl

∑

i∈Hl

yli ≥ hl

yli ∈ �0� 1�� i ∈ Hl�

We denote the continuous relaxation of d-Pl by d-�Pl, which is defined sim-
ilarly to d-�P .

Then the argument in Section 2 can be directly generalized to this
d-dimensional case by using the solution �dȳl� l ∈ 
d�� in place of �2x̄� 2ȳ�,
and we have the next result.

Theorem 3. For a given dimension d �≥2�, there exists a polynomial time
d-approximation algorithm for problem d-RS.
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Such an approximation algorithm may be described as follows.

Algorithm APPROX d-RS

Input: A set R of n d-rectangles aligned to d axes xl� l ∈ 
d� and
nonnegative integers hl� l ∈ 
d�.

Output: h′
l �≥hl� hyperplanes of type xl = b� l ∈ 
d�, which

together stab all rectangles in R.

1. Solve program �P , and obtain the fractional optimal solution
�ȳl� l ∈ 
d��.

2. Construct the d integer programs d-Pl� l ∈ 
d�, from �ȳl� l ∈

d��, and obtain their optimal solutions �y∗l �� l ∈ 
d� �by solving linear
programs d-�Pl� l ∈ 
d��, respectively.

3. Output the ith hyperplane in Hl such that y
∗
li = 1 for i ∈ Hl and

l ∈ 
d�.

Corollary 2. If an instance of d-RS has a solution with hl hyperplanes
of type xl = b� l ∈ 
d�, then APPROX d-RS outputs a solution with h′

l hyper-
planes, l ∈ 
d�, such that hl ≤ h′

l ≤ dhl holds for all l ∈ 
d�.
Finally we introduce the extended version of problem RP.

Problem d-RP. Given a d-dimensional array A = �ai1i2···id  1 ≤ i1 ≤ m1�
1 ≤ i2 ≤ m2� � � � � 1 ≤ id ≤ md� and nonnegative integers hl� l ∈ 
d�, place
hl hyperplanes xl = blj� j ∈ 
hl� such that the largest load max�Lp1p2···pd


0 ≤ pl ≤ hl� l ∈ 
d�� is minimized, where Lp1p2···pd

is the sum of loads
ai1i2···id in the d-rectangle enclosed by plth and �pl + 1�-st hyperplanes of
type xl = b for all l ∈ 
d�.

The decision problem version d-DRP of d-RP is also defined similarly to
DRP in Section 2. For these, algorithms APPROX DRP and APPROX RP
can be naturally generalized to the d-dimensional space, resulting in algo-
rithms APPROX d-DRP and APPROX d-RP, respectively, though we omit
their details. In this process of defining algorithms, we only need to replace
conditions such as h′ ≤ 2h and v′ ≤ 2v by conditions h′

l ≤ dhl� l ∈ 
d�.
In algorithm APPROX d-RP, the hyperplanes of type xl = b� l ∈ 
d� are
chosen in such a manner that �d − 1� hyperplanes are removed after each
retained one.

As a result, we have the following extension of Theorem 2.

Theorem 4. Algorithm APPROX d-RP outputs a feasible solution of
problem d-RP , and its approximation ratio is dd.
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Algorithm APPROX d-RP runs in time O�dn5�, where n is the number
of d-dimensional rectangles.

5. CONCLUSION

In this paper, we provided improved approximation algorithms for two
NP-hard problems. An important result of the paper is a 2-approximation
algorithm for the rectangle stabbing problem. This improves on the
log n-approximation result, the best known so far. We then used this algo-
rithm to improve the approximation ratio for the rectilinear partitioning
problem. We provided a 4-approximation algorithm, which improves on
the best-known approximation ratio of 27. Considering that it is NP-hard
to approximate the problem to within any factor less than 2 
1� 9�, we
are within a factor 2 of the lower bound on the approximation ratio for
this problem. These results for the stabbing problem and the partitioning
problem are then extended to the general d-dimensional space.

ACKNOWLEDGMENTS

A preliminary version of this paper was presented in ESA2000 [8]. During the development
of our algorithms, the authors have benefited from discussions with various people. In partic-
ular, Kaz Makino of Osaka University gave us many useful comments, Magnus Halldórsson
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