mathcentre

The double angle formulae

This unit looks at trigonometric formulae known as the double angle formulae. They are called this because they involve trigonometric functions of double angles, i.e. $\sin 2 A, \cos 2 A$ and $\tan 2 A$.

In order to master the techniques explained here it is vital that you undertake the practice exercises provided.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

- derive the double angle formulae from the addition formulae
- write the formula for $\cos 2 A$ in alternative forms
- use the formulae to write trigonometric expressions in different forms
- use the formulae in the solution of trigonometric equations

Contents

1. Introduction 2
2. The double angle formulae for $\sin 2 A, \cos 2 A$ and $\tan 2 A$ 2
3. The formula $\cos 2 A=\cos ^{2} A-\sin ^{2} A$ 3
4. Finding $\sin 3 x$ in terms of $\sin x$ 3
5. Using the formulae to solve an equation 4

1. Introduction

This unit looks at trigonometric formulae known as the double angle formulae. They are called this because they involve trigonometric functions of double angles, i.e. $\sin 2 A, \cos 2 A$ and $\tan 2 A$.

2. The double angle formulae for $\sin 2 A, \cos 2 A$ and $\tan 2 A$

We start by recalling the addition formulae which have already been described in the unit of the same name.

$$
\begin{gathered}
\sin (A+B)=\sin A \cos B+\cos A \sin B \\
\cos (A+B)=\cos A \cos B-\sin A \sin B \\
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{gathered}
$$

We consider what happens if we let B equal to A. Then the first of these formulae becomes:

$$
\sin (A+A)=\sin A \cos A+\cos A \sin A
$$

so that

$$
\sin 2 A=2 \sin A \cos A
$$

This is our first double-angle formula, so called because we are doubling the angle (as in 2 A). Similarly, if we put B equal to A in the second addition formula we have

$$
\cos (A+A)=\cos A \cos A-\sin A \sin A
$$

so that

$$
\cos 2 A=\cos ^{2} A-\sin ^{2} A
$$

and this is our second double angle formula.
Similarly

$$
\tan (A+A)=\frac{\tan A+\tan A}{1-\tan A \tan A}
$$

so that

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

These three double angle formulae should be learnt.

Key Point

$$
\sin 2 A=2 \sin A \cos A \quad \cos 2 A=\cos ^{2} A-\sin ^{2} A \quad \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

3. The formula $\cos 2 A=\cos ^{2} A-\sin ^{2} A$

We now examine this formula more closely.
We know from an important trigonometric identity that

$$
\cos ^{2} A+\sin ^{2} A=1
$$

so that by rearrangement

$$
\sin ^{2} A=1-\cos ^{2} A
$$

So using this result we can replace the term $\sin ^{2} A$ in the double angle formula. This gives

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =2 \cos ^{2} A-1
\end{aligned}
$$

This is another double angle formula for $\cos 2 A$.
Alternatively we could replace the term $\cos ^{2} A$ by $1-\sin ^{2} A$ which gives rise to:

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =\left(1-\sin ^{2} A\right)-\sin ^{2} A \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

which is yet a third form.

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

4. Finding $\sin 3 x$ in terms of $\sin x$

Example

Consider the expression $\sin 3 x$. We will use the addition formulae and double angle formulae to write this in a different form using only terms involving $\sin x$ and its powers.

We begin by thinking of $3 x$ as $2 x+x$ and then using an addition formula:

$$
\begin{aligned}
\sin 3 x & =\sin (2 x+x) \\
& =\sin 2 x \cos x+\cos 2 x \sin x \\
& =(2 \sin x \cos x) \cos x+\left(1-2 \sin ^{2} x\right) \sin x \\
& =2 \sin x \cos ^{2} x+\sin x-2 \sin ^{3} x \\
& =2 \sin x\left(1-\sin ^{2} x\right)+\sin x-2 \sin ^{3} x \\
& =2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x \\
& =3 \sin x-4 \sin ^{3} x
\end{aligned}
$$

using the first addition formula
using the double angle formula $\cos 2 x=1-2 \sin ^{2} x$
from the identity $\cos ^{2} x+\sin ^{2} x=1$

We have derived another identity

$$
\sin 3 x=3 \sin x-4 \sin ^{3} x
$$

Note that by using these formulae we have written $\sin 3 x$ in terms of $\sin x$ (and its powers). You could carry out a similar exercise to write $\cos 3 x$ in terms of $\cos x$.

5. Using the formulae to solve an equation

Example

Suppose we wish to solve the equation $\cos 2 x=\sin x$, for values of x in the interval $-\pi \leq x<\pi$.
We would like to try to write this equation so that it involves just one trigonometric function, in this case $\sin x$. To do this we will use the double angle formula

$$
\cos 2 x=1-2 \sin ^{2} x
$$

The given equation becomes

$$
1-2 \sin ^{2} x=\sin x
$$

which can be rewritten as

$$
0=2 \sin ^{2} x+\sin x-1
$$

This is a quadratic equation in the variable $\sin x$. It factorises as follows:

$$
0=(2 \sin x-1)(\sin x+1)
$$

It follows that one or both of these brackets must be zero:

$$
2 \sin x-1=0 \quad \text { or } \quad \sin x+1=0
$$

so that

$$
\sin x=\frac{1}{2} \quad \text { or } \quad \sin x=-1
$$

We can solve these two equations by referring to the graph of $\sin x$ over the interval $-\pi \leq x<\pi$ which is shown in Figure 1.

Figure 1. A graph of $\sin x$ over the interval $-\pi \leq x<\pi$.

From the graph we see that the angle whose sine is -1 is $-\frac{\pi}{2}$. The angle whose sine is $\frac{1}{2}$ is a standard result, namely $\frac{\pi}{6}$, or 30°. Using the graph, and making use of symmetry we note there is another solution at $x=\frac{5 \pi}{6}$. So, in summary, the solutions are

$$
x=\frac{\pi}{6}, \quad \frac{5 \pi}{6} \quad \text { and } \quad-\frac{\pi}{2}
$$

Example

Suppose we wish to solve the equation

$$
\sin 2 x=\sin x \quad \pi \leq x<\pi
$$

In this case we will use the double angle formulae $\sin 2 x=2 \sin x \cos x$.
This gives

$$
2 \sin x \cos x=\sin x
$$

We rearrange this and factorise as follows:

$$
\begin{aligned}
2 \sin x \cos x-\sin x & =0 \\
\sin x(2 \cos x-1) & =0
\end{aligned}
$$

from which

$$
\sin x=0 \quad \text { or } \quad 2 \cos x-1=0
$$

We have reduced the given equation to two simpler equations. We deal first with $\sin x=0$. By referring to the graph of $\sin x$ in Figure 1 we see that the two required solutions are $x=-\pi$ and $x=0$. The potential solution at $x=\pi$ is excluded because it is outside the interval specified in the original question.
The equation $2 \cos x-1=0$ gives $\cos x=\frac{1}{2}$. The angle whose cosine is $\frac{1}{2}$ is 60° or $\frac{\pi}{3}$, another standard result. By referring to the graph of $\cos x$ shown in Figure 2 we deduce that the solutions are $x=-\frac{\pi}{3}$ and $x=\frac{\pi}{3}$.

Figure 2. A graph of $\cos x$ over the interval $-\pi \leq x<\pi$.

Exercises

1. Verify the three double angle formulae (for $\sin 2 A, \cos 2 A$, $\tan 2 A$) for the cases $A=30^{\circ}$ and $A=45^{\circ}$.
2. By writing $\cos (3 x)=\cos (2 x+x)$ determine a formula for $\cos (3 x)$ in terms of $\cos x$.
3. Determine a formula for $\cos (4 x)$ in terms of $\cos x$.
4. Solve the equation $\sin 2 x=\cos x$ for $-\pi \leq x<\pi$.
5. Solve the equation $\cos 2 x=\cos x$ for $0 \leq x<\pi$

Answers

2. $4 \cos ^{3} x-3 \cos x$
3. $8 \cos ^{4} x-8 \cos ^{2} x+1$
4. $-\frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
5. 0 and $\frac{2 \pi}{3}$
