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Abstract— Among the patch-based image denoising processing 

methods, smooth ordering of local patches (patch ordering) has 

been shown to give state-of-art results. For image denoising the 

patch ordering method forms two large TSPs (Traveling 

Salesman Problem) comprised of nodes in N-dimensional space. 

Ten approximate solutions of the two large TSPs are then used in 

a filtering process to form the reconstructed image. Use of large 

TSPs makes patch ordering a computationally intensive method. 

A modified patch ordering method for image denoising is 

proposed. In the proposed method, several smaller-sized TSPs 

are formed and the filtering process varied to work with solutions 

of these smaller TSPs. In terms of PSNR, denoising results of the 

proposed method differed by 0.032 dB to 0.016 dB on average. In 

original method, solving TSPs was observed to consume 85% of 

execution time. In proposed method, the time for solving TSPs 

can be reduced to half of the time required in original method. 

The proposed method can denoise images in 40% less time. 

 

Index Terms— Denoising, patch-based processing, pixel 

permutation, traveling salesman.  

I. INTRODUCTION 

EVERAL image denoising methods employing local image 

patches have been developed lately [1]–[5]. Among these 

methods, smooth ordering of local patches (patch ordering) [6] 

has been shown to give state-of-art results for image denoising 

giving comparable performance to the BM3D algorithm [7]. 

However, patch ordering method has been reported as a 

computationally intensive because it employs solutions of 

large Traveling Salesman Problems (TSPs). 

For image denoising, the patch ordering method forms two 

large TSPs with nodes in ℝ𝑛; depending on noise intensity n 

ranges from 25 to 64. Ten approximate solutions of both TSPs 

are used in the subsequent filtering process to form the 

reconstructed image. During experiments, the two TSPs were 

observed to have a median size of 176,485 and 79,046 nodes 

and patch ordering method was spending about 85% of the 

execution time in computing solutions of TSPs. The TSP 

problem can become very computationally expensive for large 

set of points [8]. Computing solutions of large TSPs in ℝ𝑛 is 

the most computationally demanding step of the patch 

ordering method [6]. 

A modified patch ordering method for image denoising is 

proposed in which several smaller TSPs are formed instead of 

two large TSPs. The proposed method’s denoising 
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performance is comparable to the original method. Overall, 

the proposed method can perform denoising in 40% less time. 

In Section II the original patch ordering method’s 

formulation for denoising are recapped. In Section III the 

proposed modified patch ordering method is described. In 

Section IV the experimental setup is described. In Section V 

performance of the proposed method is discussed. 

II. PATCH ORDERING FOR IMAGE DENOISING 

Using √𝑛 𝑏𝑦 √𝑛 overlapping image patches, the patch 

ordering method for image processing is given by 

 

 �̂� = 𝐃−1 ∑ 𝐑j
T𝐏−1𝐻(𝐏𝐑j𝐳)

n

j=1

  (1) 

 

To denoise an image corrupted by Gaussian noise, all 

overlapping patches of the noisy image z (in column stacked 

form) are divided into two categories. Based on the standard 

deviation of its pixel values a patch is categorized as smooth 

or edge and texture [6]. Let the set Ss contain all smooth 

patches and the set Se contain all patches with edge and 

texture. Next, every overlapping sub-image, �̃�𝑗 = 𝑹𝑗𝒛, is 

divided into two signals �̃�𝑗,𝑠 and �̃�𝑗,𝑒. The signal �̃�𝑗,𝑠 is made of 

jth sub-image’s pixels corresponding to smooth patches and 

the signal �̃�𝑗,𝑒  is made of jth sub-image’s pixels corresponding 

to edge and texture patches. A matrix 𝐏𝑠 is constructed that 

extracts �̃�𝑗,𝑠 from �̃�𝑗, and applies a permutation to it. Also, 

matrix 𝐏𝑒 is constructed to extract �̃�𝑗,𝑒 from �̃�𝑗, and permute it. 

To obtain �̃�𝑗
𝑝

= 𝐏�̃�𝑗 , the jth sub-image with ordered pixels, �̃�𝑗
𝑝
, 

and the permutation matrix P are defined as  

 

 �̃�𝑗
𝑝

= [
�̃�𝑗,𝑠

𝑝

�̃�𝑗,𝑒
𝑝 ] , 𝐏 = [

𝐏𝒔

𝐏𝒆
]. (2) 

 

The matrix 𝐏𝑠 is constructed using solution of the TSP 

formulated by considering patches in set Ss as points in ℝ𝑛. 

Similarly, permutation matrix 𝐏𝑒  is constructed using solution 

of the TSP formulated by treating all patches in set Se as 

points in ℝ𝑛. n is the number of pixels per patch. Depending 

on noise intensity n ranges from 25 to 64 with larger values 

for processing images with higher noise [6]. 

It has been demonstrated that use of multiple permutation 

matrices, P, gives improved results [6]. When K permutation 

matrices are employed in patch ordering, the reconstructed 
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image �̂� is given by 

 

 �̂� =  
1

𝐾
∑ (𝐃−1 ∑𝐑j

T𝐏k
−1𝐻𝐏k𝐑j𝐳

n

j=1

) .

𝐾

𝑘=1

 (3) 

 

The 1D smoothing operator H corresponds to use of two 

pre-learned filters 𝐡s and 𝐡e applied on the ordered signals �̃�𝑗,𝑠
𝑝

 

and �̃�𝑗,𝑒
𝑝

 respectively. Steps for learning the 25-tap filters 𝐡s 

and 𝐡e can be found in [6]. With convolution matrices for 

ordered signals �̃�𝑗,𝑠
𝑝

 and �̃�𝑗,𝑒
𝑝

 denoted by 𝐌𝑗,𝑠
𝑝

 and 𝐌𝑗,𝑒
𝑝

 

respectively, the equation for image denoising via patch 

ordering method takes the form  

 

 �̂� =  
1

𝐾
∑ (𝐃−1 ∑ 𝐑j

T𝐏k
−1𝐌j

p
𝐡

n

j=1

)

𝐾

𝑘=1

 (4) 

 

with 𝐌𝑗
𝑝
and 𝐡 given by 

 

 𝐌𝑗
𝑝

= [
𝐌𝑗,𝑠

𝑝
0

0 𝐌𝑗,𝑒
𝑝 ] , 𝐡 = [

𝐡𝑠

𝐡𝑒
]. (5) 

 

It has been shown in [6] that K=10 is a good compromise 

for image denoising. Therefore, ten permutation matrices 𝐏𝑘 

are constructed. Constructing one permutation matrix requires 

solutions of two large TSPs. With K=10, this corresponds to 

computing twenty TSP solutions for denoising an image. It is 

well known that solving large TSPs is computationally 

intensive [8]. Computing ten solutions of large TSPs is the 

most computationally intensive step of patch ordering 

method [6]. During experiments, this step was observed to 

consume a substantial 85% of patch ordering method’s total 

execution time. 

III. PROPOSED APPROACH 

To speed up patch ordering method for image denoising, 

changes are proposed that reduce the time required for 

constructing ten permutation matrices. Like the original patch 

ordering method, all overlapping patches are first divided into 

the two sets Ss and Se. But now, partitions of both sets Ss and 

Se are formed. Specifically, subsets Ssi and Sej are formed 

such that  

 𝑆𝑠 = ⋃𝑆𝑠𝑖

𝑊

𝑖=1

,   𝑆𝑒 = ⋃𝑆𝑒𝑗

𝑋

𝑗=1

 . (6) 

 

The image patches are now contained in a total of W+X 

disjoint sets. A consequence of forming these subsets is that 

now every overlapping sub-image, �̃�𝑗 = 𝑹𝑗𝒛, is divided into 

W+X shorter signals. All the W+X component signals of jth 

overlapping sub-image, �̃�𝑗, are permuted by different 

permutation matrices. For example, the component signal �̃�𝑗,𝑠2 

is made of jth sub-image’s pixels belonging to patches 

contained in second subset of set Ss. A matrix 𝑷𝑠2 is 

constructed that extracts �̃�𝑗,𝑠2 from �̃�𝑗 and applies a 

permutation to it yielding ordered signal �̃�𝑗,𝑠2
𝑝

. As another 

example, the signal �̃�𝑗,𝑒5 is made of jth sub-image’s pixels 

belonging to patches contained in fifth subset of set Se. A 

matrix 𝑷𝑒5 extracts �̃�𝑗,𝑒5 from �̃�𝑗 and applies a permutation to 

it yielding ordered signal �̃�𝑗,𝑒5
𝑝

. To obtain �̃�𝑗
𝑝

= 𝐏�̃�𝑗, the jth 

sub-image with piecewise ordered pixels, �̃�𝑗
𝑝
, and permutation 

matrix P are defined in proposed method as  

 

   �̃�𝑗
𝑝

=

[
 
 
 
 
 
 
 
 
 
�̃�𝑗,𝑠1

𝑝

�̃�𝑗,𝑠2
𝑝

⋮
�̃�𝑗,𝑠𝑊

𝑝

�̃�𝑗,𝑒1
𝑝

�̃�𝑗,𝑒2
𝑝

⋮
�̃�𝑗,𝑒𝑋

𝑝
]
 
 
 
 
 
 
 
 
 

, 𝐏 =  

[
 
 
 
 
 
 
 
 
 
𝐏𝒔𝟏

𝐏𝒔𝟐

𝐏𝒔𝟑

⋮
𝐏𝒔𝑾

𝐏𝒆𝟏

𝐏𝒆𝟐

𝐏𝒆𝟑

⋮
𝐏𝒆𝑿 ]

 
 
 
 
 
 
 
 
 

 . (7) 

 

To form permutation matrix, P, patches in the W+X disjoint 

subsets are taken as points in ℝ𝑛 to form W+X TSPs. 

Solutions of these smaller TSPs are used to construct W+X 

permutation matrices that are combined to form permutation 

matrix P. The algorithm of original patch ordering method is 

used to solve all W+X TSPs. 

All the W+X ordered component signals of �̃�𝑗
𝑝
 are filtered 

by separate pre-learned 25-tap filters. Each filter works on one 

component signal of �̃�𝑗
𝑝
. The steps to learn filters are the same 

as in original patch ordering method [6]. In the proposed 

method, the vector h that stores the taps for W+X filters is 

given by 

 

 𝐡 =

[
 
 
 
 
 
 
 
𝐡𝑠1

𝐡𝑠2

⋮
𝐡𝑠𝑊

𝐡𝑒1

𝐡𝑒2

⋮
𝐡𝑒𝑋 ]

 
 
 
 
 
 
 

 . (8) 

 

In the proposed method, the convolution matrix to perform 

filtering on jth overlapping sub-image is given in (9). As 

examples, 𝐌𝑗,𝑠2
𝑝

 and 𝐌𝑗,𝑒5
𝑝

 denote convolution matrices for the 

ordered component signals �̃�𝑗,𝑠2
𝑝

 and �̃�𝑗,𝑒5
𝑝

 respectively. The n 

matrices 𝐌𝑗
𝑝
,   𝑗 = 1,2, … , 𝑛 and the matrix P as well as the 

vector h computed by the proposed approach are used in (4) to 

perform image denoising. 
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𝑴𝒋
𝒑
 

=

[
 
 
 
 
 
 
 
 
 
𝐌𝑗,𝑠1

𝑝
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐌𝑗,𝑠2
𝑝

0 0 0 0 0 0

0 0 ⋱ 0 0 0 0 0
0 0 0 𝐌𝑗,𝑠𝑊

𝑝
0 0 0 0

0 0 0 0 𝐌𝑗,𝑒1
𝑝

0 0 0

0 0 0 0 0 𝐌𝑗,𝑒2
𝑝

0 0

0 0 0 0 0 0 ⋱ 0
0 0 0 0 0 0 0 𝐌𝑗,𝑒𝑋

𝑝
]
 
 
 
 
 
 
 
 
 

. 
(9) 

IV. EXPERIMENTAL SETUP 

The original method and the proposed method were both 

executed with same experimental parameter values as used by 

authors in [6]. The parameter values vary with standard 

deviation σ of Gaussian noise added to test images. The 

images Hill, Man, and Couple have been used for learning the 

filters in [6] and they were also used for learning filters in the 

proposed method. The images Barbara, Boats, and Lena were 

used as test images. 

In proposed method, W subsets of set Ss (smooth patches) 

and X subsets of set Se (edge and texture patches) are 

formed (7). During experiments, the proposed method was 

executed under two scenarios. In the first scenario, values of 

W and X were chosen so that subsets of both Ss and Se contain 

at most 20,000 (20K) patches. As the TSPs in the proposed 

method are formed from subsets, sizes of TSPs were also 

capped at 20,000 in the first scenario. In the second scenario, 

the size of all subsets, and hence TSPs as well, were capped at 

10,000 (10K) patches. The values of W and X for 

implementing the two scenarios are given in Table I.  

V. RESULTS 

In the original patch ordering method for image denoising, 

computing ten solutions of two large TSPs has been reported 

as the most computationally intensive step [6]. During 

experiments, this step was observed to consume 85% of total 

execution time. Results show that the proposed method 

requires less time for solving TSPs and gives denoising 

performance similar to the original method. 

Fig. 1 shows the time spent in computing ten solutions of 

TSPs in both the original and the proposed method. In the 

original method ten solutions of two large TSPs are computed 

and in the proposed method solutions of W+X smaller TSPs 

are computed. The proposed method was executed under two 

scenarios and times for both scenarios are shown in Fig. 1. In 

the first scenario, the proposed method took 30% less time for 

computing ten solutions of all TSPs. In the second scenario, 

this time further reduced to half of time taken by original 

method. In the first scenario, proposed method was executed 

with size of TSPs capped at 20,000 patches (Prop20K) 

whereas in second scenario it was capped at 10,000 patches 

(Prop10K). The results demonstrate that the proposed method 

can complete the most computationally demanding step of 

computing TSPs solution in half as much time taken by 

original method. Both methods were executed over an Intel® 

Core™ i3-2120 CPU. 

In both original and proposed method, all overlapping sub-

images are filtered and used in forming the reconstructed 

image. However, the two methods filter sub-images 

differently. To filter a sub-image, the original method forms 

two lengthy signals whereas the proposed method forms W+X 

shorter signals. In the original method, pixels of every sub-

image are divided into two disjoint sets yielding two 1D 

signals. In the proposed method, however, pixels of every sub-

image are divided into W+X disjoint sets to form W+X 1D 

signals. In both methods, separate pre-learned filters smooth 

the 1D constituent signals to form a filtered sub-image. 

Table II lists PSNR values of the three test images denoised 

by the original method as well as the proposed method. The 

latter is executed under two scenarios. In the first scenario, the 

proposed method’s performance differed by 0.032 dB on 

average. In the second scenario, the average difference 

reduced to 0.016 dB. In the first scenario, length of constituent 

signals was capped at 20,000 (Prop20K). In the second 

scenario, the cap was at 10,000 (Prop10K). The results 

demonstrate that the proposed method can yield denoising 

results extremely close to the original patch ordering method 

despite the difference in filtering of sub-images. 

VI. CONCLUSION 

Smooth ordering of local patches (patch ordering) has been 

shown to give state-of-art results for image denoising. 

However, using solutions of large TSPs makes it a 

computationally intensive method and about 85% of execution 

time is consumed in computing TSPs’ solutions. In the 

proposed method, two changes are made to the original patch 

ordering method. First, several smaller TSPs are formed 

instead of two large TSPs. Second, the filtering process is 

varied to work with solutions of several smaller TSPs. These 

changes can halve the time spent on computing TSPs’ 

solutions. At the same time, the proposed method performs 

extremely close to the original method in terms of PSNR. 

Overall, the proposed method can denoise images in about 

40% less time. The proposed approach may aid in speeding up 

patch ordering method for other image processing tasks. 
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TABLE I   
VALUES OF PARAMETERS W AND X USED IN EXPERIMENTS FOR EXECUTING 

THE PROPOSED METHOD. TO DENOISE AN IMAGE CORRUPTED  

WITH GAUSSIAN NOISE OF STANDARD DEVIATION σ, THE  

PROPOSED METHOD WAS EXECUTED UNDER TWO SCENARIOS: 

 1) THE SIZE OF SUBSETS AND TSPS CAPPED AT 20,000 (PROP20K).  

2) THE SIZE OF SUBSETS AND TSPS CAPPED AT 10,000 (PROP10K).  
 

σ 
Prop20K Prop10K 

W X W X 

25 10 6 19 12 

50 11 5 21 9 

 

 

 
(a) 

 
(b) 

Fig. 1. For image denoising, time spent on computing solutions of TSPs in 

original patch ordering method (Original) and in the proposed method run 
under two scenarios. The proposed method was executed with TSPs’ size 

limited to 20,000 (Prop20K) and 10,000 (Prop10K). Images were corrupted 

with Gaussian noise of standard deviation (a) σ = 25 and (b) σ = 50. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE II 
DENOISING RESULTS (PSNR IN dB) OF NOISY VERSIONS OF 3 IMAGES, 

OBTAINED WITH THE ORIGINAL PATCH ORDERING METHOD AND THE 

PROPOSED METHOD EXECUTED UNDER TWO SCENARIOS WITH TSPS’ SIZE 

LIMITED TO 20,000 (PROP20K) AND 10,000 (PROP10K). 

 

Image Method 
σ /PSNR 

25/20.25 50/14.64 

Barbara 

Original 30.36 26.97 

Prop20K 30.35 26.93 

Prop10K 30.30 26.15 

Boat 

Original 29.50 26.15 

Prop20K 29.46 26.15 

Prop10K 29.44 26.15 

Lena 

Original 31.54 28.47 

Prop20K 31.54 28.44 

Prop10K 31.54 28.48 
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