

Importance of Research Integrity

Lex Bouter

Content

- Research Integrity
- Replicability crisis
- Plea for transparency
- What can we do?

Top of the ice berg

- 1. Not all research misconduct will be detected
- 2.On the aggregate level sloppy science may be a much larger problem

Spectrum of research practices

How it should be done:

Relevant, Valid, Efficient

Sloppy science:

Ignorance, honest error or dubious integrity

Scientific fraud:

Fabrication, Falsification, Plagiarism

Responsible Conduct of Research

Questionable Research Practices

Research Misconduct

How often do RM and QRP occur?

average of 21 surveys

- Self-reported FF at least once in last 3 yrs → 2%
- Self-reported QRP at least once in last 3 yrs → 34%

Top 5 – Frequency

rank	item	score
1	Selectively cite to enhance your own findings or convictions	3.5
2	Insufficiently supervise or mentor junior coworkers	3.5
3	Not publish a valid 'negative' study	3.4
4	Demand or accept an authorship for which one does not qualify	3.3
5	Selectively cite to please editors, reviewers or colleagues	3.3

Top 5 – Impact on Truth

rank	item	score
1	Fabricate data	4.6
2	Selectively delete data, modify data or add fabricated data after performing initial data-analyses	4.4
3	Modify the results or conclusions of a study due to pressure of a sponsor	4.4
4	Choose a clearly inadequate research design or using evidently unsuitable measurement instruments	4.2
5	Conceal results that contradict your earlier findings or	4.0

Top 5 – Frequency X Truth

rank	item	score
1	Insufficiently supervise or mentor junior coworkers	12.6
2	Insufficiently report study flaws and limitations	12.3
3	Keep inadequate notes of the research process	12,2
4	Turn a blind eye to putative breaches of research integrity by others	12,1
5	Ignore basic principles of quality assurance	12,0

Fabrication and Falsification

Rank numbers

item	freq	truth	freq x
			truth
Delete data before performing data analysis without disclosure	45	6	19
Selectively delete data, modify data or add fabricated data after performing initial data-analyses	50	2	24
Fabricate data	59	1	34

Determinants Research Misbehaviour

SYSTEM

publication pressurehyper competitionlow risk – high rewards

CULTURE

wrong role models insufficient mentoring no RCR education no clear guidance

INDIVIDUAL

justifying misbehavior conflicts of interest moral attitudes personality traits

How things can go wrong

Non-publication → publication bias Selective reporting → (outcome) reporting bias

- Both favour preferred ('positive') findings
- Leading to a distorted picture in the published body of evidence
- Leading to Flawed Systematic Reviews and Low Replication Rates
- Leading to substantial Research Waste

Raise standards for preclinical cancer research

C. Glenn Begley and Lee M. Ellis propose how methods, publications and incentives must change if patients are to benefit.

Only 6 of 53 preclinical landmark cancer studies could be confirmed by replication

When negative studies are rarely published, published positive studies are likely to be chance findings

Non-confirmed studies

- sometimes inspire many new studies > waste of resources!
- sometimes lead to clinical trials -> unethical situation!

Considerations about Replication

- Lack of replicability is NOT a strong indication of fraud
- Many alternative explanations like chance and honest error
- Lack of replication is most likely due to selective reporting
- Attempt to replicate means the original study is important
- Redundant replication may be a problem as well

Transparency of

prospectively

Study Protocol
Log of Data Collection
Analysis Plan
Syntaxes
Conflicts of Interest
Amendments
Data Sets → Open Data
Reports → Open Access

Conditions for transparency

- adequate skills, systems and facilities
- some months of embargo
- proper acknowledgements
- opportunity to participate
- guarantees against breaches of privacy and misuse
- predefined study protocol for re-use of data

10 Commentaries Journal of Clinical Epidemiology February Issue 2016

Journal of Clinical Epidemiology

Journal of Clinical Epidemiology 70 (2016) 1-3

EDITORIAL

Promoting transparency of research and data needs much more attention

How can we promote transparency?

re-design reward system

- No exclusive focus on citations and high IF journals
- Reward publication of protocols and 'negative' results
- And reward data sharing and replication
- As well as dissemination and application of findings

The Leiden Manifesto for research metrics

Nature 2015; 520: 429-31

REDEFINE EXCELLENCE Fix incentives to fix science

Rinze Benedictus and Frank Miedema

Nature 2016; 538: 453-5

How can we promote transparency?

by nudging and forcing

- Permission to conduct study → (review) boards
- Condition for (last) payment → funders
- Eligibility for next grant application → funders
- Condition for publication → journals

What can our institutions do?

- Being clear about what is expected values and norms
- Having adequate procedures for handling allegations
- Remove perverse incentives in reward system
- Offer good RCR education for staff and students
- Promote open discussion about dilemmas scientist face

Conclusions

- Sloppy science is a larger evil than research misconduct
- Especially selective reporting threatens validity and efficiency
- Leading to a replication crisis
- More transparency is urgently needed
- For that we need to re-design the reward system
- And let multiple stakeholders take action

Website: www.nrin.nl

www.wcri2017.org

lm.bouter@vu.nl