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Nomenclature 

 

𝑒 Error between setpoint and the system output 

𝑢 Control variable 

y System output 

𝑦𝑠𝑝 Setpoint 

C Controller 

P Plant 

𝐺𝑙 Closed-loop system 

K Proportional gain 

𝐾𝑝 Static process gain 

𝑇𝑖 Integration time 

𝑇𝑑 Derivative time 

𝑙 Load disturbance 

𝑛 Measurement noise 

𝑢𝑏 Reset, usually fixed to (𝑢𝑚𝑎𝑥 + 𝑢𝑚𝑖𝑛)/2 

𝐾𝑢 Ultimate gain 

𝑇𝑢 Ultimate period 

𝑟 Radius of the polar coordinate system 

∅ Angle of the polar coordinate system 

k, ki and kd Parameters of the PID controller 

𝑒𝑝 Error in proportional part 

𝑒𝑑 Error in derivative part 

𝐺𝑓𝑓 Transfer function from the setpoint 𝑦𝑠𝑝 to the control signal 𝑢 
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A Matlab Platform for The Design and Tuning Methods of PID Controller Based on 

Four Different Tuning Methods 

 

Abstract 

by 

CHAO LIN 

 

The PID controller is the most widely used controller in industry. This thesis project 

explores the combination of the PID controller tuning methodologies and the use of 

soft computing methodologies in the design of controllers. It emphasizes ease-of-use 

for control engineers and provides a friendly interface CAD tool for controller 

designers.  

This Matlab CAD toolbox contains the applications of four specific soft-computing 

techniques to design PID controllers, in order to get an output with better dynamic 

and static performance.  

The application of the four algorithms to the PID controller make it an optimum 

system output by searching for the best set of solutions for the PID parameters, while 

the add-on features on the approximation of the plant model, the set point weight and 

a filter significantly impart the ability of tuning method itself in a process. The project 

also discusses the advantages and the disadvantages of the methods by comparing 

them. 
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Chapter 1: Introduction 

1.1 Motivation 

The Proportional-Integral-Derivative (PID) controller, is the most popular type of 

controller in industry today. A great number of control engineers use such control 

algorithms in their daily work. The controller’s uses are so diversified that control 

engineers must tune PID controllers to meet specific needs.  

PID controller tuning methods have been well-developed since the classic PID 

controller idea was introduced by John G. Ziegler and Nathaniel B. Nichols in 1940s. 

Pole placement is a straightforward tuning method introduced by Truxal in 1955, 

while the dominant pole method, which was introduced by Persson in 1992, specifies 

a few poles to avoid the difficulty of choosing poles for higher order models.  

This project attempts to combine the Matlab and the PID controller design theories with 

a friendly Matlab GUI interface. It also gives a different angle to look at the design 

problem by comparing the results of the 4 different PID control tuning methods. 

1.2 PID controller and its structure 

The basic structure of the PID controller is depicted below: 
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Figure 1 Block diagram of a simple PID feedback system 

The equations of this PID is given by:  

𝑢(𝑡) = 𝐾(𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) 

Where 𝑢 is the control variable and 𝑒 is the error between setpoint and the system 

output.  

1.2.1 Proportional Action 

The block diagram of the pure proportional control system is depicted below: 

𝐼      𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

 Plant 𝑃 ∑ 

-1 

ysp e u y 

 𝑃              𝐾p𝑒(𝑡) 

𝐷          𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
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Figure 2 Block diagram of a PID feedback system with pure proportional action 

The control equation is reduced to:  

𝑦 = 𝑥 + 𝑛 

𝑥 = 𝐾𝑝(𝑢 + 𝑙) 

𝑢(𝑡) = 𝐾𝑒(𝑡) + 𝑢𝑏 

Where 𝑢(𝑡) is the control signal, 𝐾 is the proportional gain, 𝐾𝑝 is the static 

process gain, 𝑙 is a load disturbance, 𝑛 is the measurement noise, 𝑒(𝑡) is the 

control error ( 𝑒 = 𝑦𝑠𝑝 − 𝑦 ) and 𝑢𝑏 is a reset. 𝑢𝑏 is usually fixed to 

(𝑢𝑚𝑎𝑥 + 𝑢𝑚𝑖𝑛)/2.  

Several properties of the pure proportional control can be understood by the following 

relation according to the above equations: 

𝑥 =
𝐾𝐾𝑝

1 + 𝐾𝐾𝑝
(𝑦𝑠𝑝 − 𝑛) +

𝐾𝐾𝑝

1 + 𝐾𝐾𝑝

(𝑙 + 𝑢𝑏) 

First, assuming noise n and reset 𝑢𝑏 are zero, the loop gain 𝐾𝐾𝑝 then has to be set 

high in order to make sure the output 𝑥 is close enough to the setpoint 𝑦𝑠𝑝 and also 

Pure P 

Controller 
Plant P ∑ 

-1 

ysp e u y 
∑ ∑ 

l 
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make the output 𝑥 insensitive to the load disturbance 𝑙. However, the loop gain has 

to be not too large if 𝑛 is not zero, otherwise the large loop gain will make the 

system sensitive to the measurement noise 𝑛. The situation for the reset 𝑢𝑏 is 

opposite: to ensure it influences the system, the loop gain should be small. Therefore, 

we have to consider whichever is better depend on different objectives. 

Second, 𝑢(𝑡) is only equal to 𝑢𝑏 when the control error is zero, so that the system 

output can stay stable and equal to the setpoint 𝑦𝑠𝑝. Basically, there will normally be 

a steady-state error with a pure proportional control.  

Third, the above analysis is based on the static model. However, if the process 

dynamics is considered, the high loop gain will normally be unstable in a closed-loop 

system. In practice, the maximum loop gain is determined by the process dynamics 

where the process gain is frequency-dependent in order to avoid the unstable in 

closed-loop systems. 

1.2.2 Integral Action 

The purpose of the Integral is to make sure the process output of the plant y equals to 

the setpoint 𝑦𝑠𝑝 in steady state. The proportional controller with integral action is 

given by: 

𝑢 = 𝐾(𝑒 +
𝑒

𝑇𝑖
𝑡) 

As we discuss above, with a pure proportional controller, there is always a control 

error in the steady state. Adding an integral portion to a proportional controller will 
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give additional reset to correct the error. A positive error, which is an error between 

setpoint and plant output, will give an increasing control signal to the plant and a 

negative error will give a decreasing control signal to the plant. 

The block diagram of the control system, depicted below, shows a proportional 

controller with an integral action: 

 

Figure 3 Block diagram of a system with PI controller 

The following equations are given from the block diagram: 

𝑢 = 𝐾𝑒 + 𝐼 

𝑇𝑖

𝑑𝐼

𝑑𝑡
+ 𝐼 = 𝑢 

Eventually, we have 

𝑇𝑖

𝑑𝐼

𝑑𝑡
= 𝐾𝑒 

The integral action is the history on the sum of the error. The features of the system 

response with PI controller is related to 𝑇𝑖/𝐾𝐾𝑝 approximately. For large values of 

the integration time 𝑇𝑖, the overshoot of the closed-loop system is larger and the 

1

1 + 𝑠𝑇𝑖

 

∑ 
e u 

𝐾 



14 
 

respond is slower to the error while smaller values of 𝑇𝑖 has a faster response to the 

error. Also the system is more oscillatory with a smaller value of 𝑇𝑖. 

1.2.3 Derivative Action 

The basic structure of a PD controller is: 

𝑢(𝑡) = 𝐾(𝑒(𝑡) + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) 

Expanse e(t) + 𝑇𝑑 by Taylor series gives: 

𝑒(𝑡 + 𝑇𝑑) ≈ 𝑒(𝑡) + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

The function of the derivative action on a controller is to predict future error and add 

to the controller in order to improve the stability of a closed-loop system. Assuming 

there is a change in the control variable, the action of a controller with derivative 

action may interpret the process output at time 𝑇𝑑 ahead, where the prediction is 

approximately calculated by extrapolating the error by the tangent to the error curve. 

1.3 Alternative Representations 

There are three different forms of PID controllers. 

1.3.1 The Standard Form 

Different controllers may have different structures. The controller parameters may 

also differ if one type of controller is replaced by another type of controller. 

This is also a non-interacting form given by the following equation: 
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𝐶(𝑠) = 𝐾(1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑) 

The integral time 𝑇𝑖 and the derivative part 𝑇𝑑 of this form are non-interacting, 

meaning that the derivative part 𝑇𝑑 or any changes in the derivative part 𝑇𝑑 does 

not affect the integral time 𝑇𝑖.  

1.3.2 The series form  

An interacting form is given by the following equation: 

𝐶′(𝑠) = 𝐾′(1 +
1

𝑠𝑇′𝑖
)(1 + 𝑠𝑇′𝑑) 

The integral action 𝑇𝑖 and derivative action 𝑇𝑑 do interact with each other. A non-

interacting controller can represent an interacting controller by: 

𝐾 = 𝐾′
𝑇′𝑖 + 𝑇′𝑑

𝑇′𝑖
 

𝑇𝑖 = 𝑇′𝑖 + 𝑇′𝑑 

𝑇𝑑 =
𝑇′𝑖𝑇′𝑑

𝑇′𝑖 + 𝑇′𝑑
 

However, an interacting controller can only represent a non-interacting controller only 

if 

𝑇𝑖 ≥ 4𝑇𝑑 

Therefore, the non-interacting controller form is more general.  

This thesis uses two algorithm related to the standard form. 
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1.3.3 The Parallel Form 

𝐶(𝑠) = 𝑘 +
𝑘𝑖

𝑠
+ 𝑠𝑘𝑑  

The parameters are related to the parameters of the standard form, but the values of 

the parameters are different: 

𝑘 = 𝐾 

𝑘𝑖 =
𝐾

𝑇𝑖
 

𝑘𝑑 = 𝐾𝑇𝑑 

The parallel form is often useful in the analytical calculation of PID controller design, 

because the parameters appear independently. This is also a ecumenical form because 

it is easy to obtain pure proportional, integral, or derivative action with number 

values. 

This thesis has two design methods related to this parallel form of PID controller. 

1.3.4 The Basic Structure of the Entire System 

 

Figure 4 Block diagram of a PID feedback system 

Controller 𝐶 Plant 𝑃 ∑ 

-1 

ysp e u y 
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The transfer function of this process is as follows: 

𝑃(𝑠) =
𝐺𝑙

1 + 𝐺𝑙
 

where 𝐺𝑙 : 

𝐺𝑙(𝑠) = 𝐶𝑃 

A block of diagram of a feedback system is shown in Figure 4. The system has two 

major components: the process and controller and the feedback loop. The purpose of 

the feedback system is to control the process variable (y) equal to the desired value 

(ysp). The control system increases the operation variable when the process variable 

is less than the desired value disturbance and decreases the operation variable when 

the process variable is greater than the desired value disturbance. This is achieved by 

the feedback loop, an explanation of which follows. Assume that the system is in 

balance and then a disturbance occurs so that the process variable becomes greater 

than the setpoint which is the desired value disturbance. The error between the 

setpoint and the process output is then negative, and the controller output decreases, 

which in turn causes the process output to decrease.  

1.4 The Plant Approximation 

This thesis is based on the assumption that the transfer function of the process is 

known.  

There are several reasons to simplify the plant model: 
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1. To simplify the best available model to design a control system to meet certain 

specifications. 

2. To speed up the simulation process. Using a smaller order model can reduce the 

calculation time. 

3. To reduce the control law complexity with only a small change in control system 

performance by eliminating the unnecessary high orders, which are greater than 

that which is truly needed in the design validation stage.  

In this thesis, the plant transfer functions are approximately reduced to a suitable one 

pole and two zeros transfer functions. A two-order system catches many processes in 

the real world, oscillatory systems, and systems with right half-plane zeros. However, 

it is important to keep in mind that plant reduction approximation error is unavoidable 

when lower order models approximate the higher models.  

For a give causal and rational model P, it can be decomposed to:  

𝑃(𝑧) = 𝑆(𝑧) + 𝑈(𝑧) 

Where S(z) is the stable portion with all poles strictly inside the unit circle and U(z) is 

the unstable part, only the stable part is approximated. 

An eigenvector of the a square matrix S means a non-zero vector 𝑣 that, when the 

matrix is multiplied by 𝑣, yields a constant multiple of 𝑣, the multiplier being 

commonly denoted by 𝜆: 
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𝑆𝑣 = 𝜆𝑣 

Where S contains all the stable modes of a system. 

The eigenvalue 𝜆 of each part of the model represents the energy of each part of the 

plant model. Eliminating all unnecessary states and keeping the larger energy states of 

the system preserves most of the system’s characteristics in terms of stability.   

In this thesis, the Matlab function ‘balred’ is used to implement this idea. ‘Balred’ 

first transfers the one zero two poles system into a state-space system, and then 

decomposes the system into two parts: the stable and unstable portions. This model 

reduction is based on the hankel singular values of the system in terms of stability. It 

can achieve a model in which the characteristics of the original system are preserved? 

States with relatively small eigenvalue values can be safely discarded. 

We use an example to illustrate this approximate method as following: 

Example 1.1 

Plant: 

𝑃(𝑠) =
𝑠3 + 4.5𝑠2 + 5.19𝑠 + 1.595

𝑠4 + 6𝑠3 + 11𝑠2 + 6𝑠 + 0.0001
 

Using balred function in Matlab and the approximated result becomes: 

𝑃(𝑠) =
0.9911𝑠 + 0.5188

𝑠2 + 1.952𝑠 + 0.0000325
 

Bode diagram of the plant in the original and approximated plant: 
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Figure 5 Block diagram of example 1.1 

Compare the original and reduced order model. We can see that the original and 

approximated plants are very similar in terms of the figure view.  

The figure below is the hankel singular value of the original and reduced order model. 
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Figure 6 Hankel Sigular Values of example 1.1 

 

The Matlab function ‘balred’ transfers the one zero two poles system into a state-

space system, then keeps the two highest energy singular value 1 and 2, and then 

discards the rest of the singular value. The process is implemented in term of the 

model stability. Balred is very useful at lease for many of the modeling 

approximation. The reduced model keeps the majorities’ characteristic of the original 

model. 

1.5 Measurement of the Approximation 

Approximated errors are inevitable while using the lower order models represents the 

higher order models. The performance of model approximation is measured by the 

corresponding approximation error. 
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The cost function of the error of the original plant and the approximated plant is given 

by 

CF = |𝑡𝑟𝑜 − 𝑡𝑟𝑎| + |𝑡𝑠𝑜 − 𝑡𝑠𝑎| + |𝑃𝑉𝑜 − 𝑃𝑉𝑎| 

This is a function based on the step respond of the original plant model and the 

approximated plant model functions where 𝑡𝑟𝑜 and 𝑡𝑟𝑎 are the rise time of the step 

responds of the original and approximated plant, 𝑡𝑠𝑜 and 𝑡𝑠𝑎 are the settling time and  

𝑃𝑉𝑜 and 𝑃𝑉𝑎 are the Peak value of the step responds. 

Chapter 2 the Four Tuning Methods  

2.1 Ziegler-Nichols Method  

The second design method presented by Ziegler and Nichols is based on a test data of 

the closed-loop step response of the system. In order to get the data, we first connect a 

PID controller that sets 𝑇𝑖 = ∞ and 𝑇𝑑 = 0 to the process and provide a feedback 

loop, then increase 𝐾 until the process oscillate. The gain when this happen is the 

ultimate gain 𝐾𝑢. And the period of this oscillation is the ultimate period 𝑇𝑢. We 

then can determine the ultimate gain 𝐾𝑢 and the ultimate period 𝑇𝑢 by doing such. 

The closed-loop step response of the system are also characterized by the two 

parameters 𝐾𝑢 and 𝑇𝑢. 

The controller parameters can be given in terms of the ultimate gain 𝐾𝑢 and the 

ultimate period 𝑇𝑢 as following: 
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Controller K Ti Td Tp 

P 0.5Ku    

PI 0.4Ku 0.8Tu  1.4Tu 

PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu 

 

Table 1 Ziegler-Nichols parameters of PID 

The controller is finally given by the standard form of the PID controller: 

𝐶(𝑠) = 𝐾(1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑） 

Or, 

𝐶(𝑠) = 0.6𝐾𝑢(1 +
1

𝑠0.5𝑇𝑢
+ 𝑠0.125𝑇𝑢） 

2.2 Modified Ziegler-Nichols Method 

The modified Ziegler-Nichols method is based on the frequency domain method that 

position one point of the Nyquist curve to another. With a PID controller, the picked 

plant point, generally this point is any point form the Nyquist curve, in this case is a 

specific point (−1/𝐾𝑢, 0) on the Nyquist curve which is moved by a PID controller to 

an arbitrary position in the complex plane, so called modified Ziegler-Nichols. 

Let the chosen point of the plant 𝑃 on the Nyquist curve be: 

𝐴 = 𝑃(𝑖𝜔0) = 𝑟𝑎𝑒𝑖(𝜋+∅𝑎) 

Then determine the PID controller move this point to: 
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𝐵 = 𝐺𝑙(𝑖𝜔0) = 𝑟𝑏𝑒𝑖(𝜋+∅𝑏) 

With the PID controller 𝐶(𝑖𝜔0) = 𝑟𝑐𝑒𝑖∅𝑐, we obtain: 

𝑟𝑏𝑒𝑖(𝜋+∅𝑏) = 𝑟𝑎𝑟𝑐𝑒𝑖(𝜋+∅𝑎+∅𝑐) 

The controller 𝐶 will be: 

𝑟𝑐 =
𝑟𝑏

𝑟𝑎
 

∅𝑐 = ∅𝑏 − ∅𝑎 

We then get: 

𝐾 =
𝑟𝑏cos (∅𝑏 − ∅𝑎)

𝑟𝑎
 

𝜔0𝑇𝑑 −
1

𝜔0𝑇𝑖
= tan (∅𝑏 − ∅𝑎) 

𝑇𝑑 = 𝛼𝑇𝑖 

Where 𝛼 = 0.25, 

A Ziegler-Nichols experiment is used to determine the point (−1/𝐾𝑢, 0) as we discuss 

above, we have the critical point 

𝑟𝑎 = −1/𝐾𝑢 

∅𝑎 = 0 

The PID controller parameters are then given by: 
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𝐾 = 𝐾𝑢𝑟𝑏𝑐𝑜𝑠∅𝑏 

𝑇𝑖 =
𝑇𝑢

𝜋
(
1 + 𝑠𝑖𝑛∅𝑏

𝑐𝑜𝑠∅𝑏
) 

𝑇𝑑 =
𝑇𝑢

4𝜋
(
1 + 𝑠𝑖𝑛∅𝑏

𝑐𝑜𝑠∅𝑏
) 

System with better damping can be achieved by suitable 𝑟𝑏 and ∅𝑏, which are 0.5 

and 0.3491 would be reasonable. A suggestion by Pessen to move the ultimately point 

to 𝑟𝑏 = 0.41 and ∅𝑏 = 1.0647 or 𝑟𝑏 = 0.29 and ∅𝑏 = 0.8029 will have better 

closed-loop system responses.  

In this thesis, the ultimately point 𝑟𝑏 = 0.41 and ∅𝑏 = 1.0647 is used. 

Note that since only one point on the Nyquist curve is moved by the PID controller 

and fixed in the Nyquist, the closed-loop system can still be changed significantly 

when the slope of the Nyquist curve is various.  

2.3 Pole Placement Method. 

The pole placement design method is a method based on the knowledge of the process 

transfer function.  

A process is represented by the second-order model: 

𝑃 =
𝑏1𝑠 + 𝑏2

𝑠2 + 𝑎1𝑠+𝑎2
 

This model has four parameters 𝑏1 𝑏2 𝑎1 𝑎1. This one zero and two poles system 

catches many processes in the real world such as oscillatory systems. We assume that 
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a parallel PID controller structure with parameters k, ki and kd showed as follow 

controls the process above: 

𝐶(𝑠) = 𝑘 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠 

A third order characteristic equation of the closed-loop system is then given by: 

𝑠(𝑠2 + 𝑎1𝑠 + 𝑎2) + (𝑏1𝑠 + 𝑏2)(𝑘𝑑𝑠2 + 𝑘𝑠 + 𝑘𝑖) = 0 

An objective closed-loop characteristic equation of this third-order system should 

have the following:  

(𝑠 + 𝛼𝜔0)(𝑠2 + 2𝜁𝜔0𝑠 +  𝜔0
2) = 0 

Equating coefficients of equal power in s in above equation and plant model with the 

PID controller gives the following equations: 

𝑎1 + 𝑏2𝑘𝑑 + 𝑏1𝑘 = (𝛼𝜔0 + 2𝜁𝜔0)(1 + 𝑏1𝑘𝑑) 

𝑎2 + 𝑏2𝑘 + 𝑏1𝑘𝑖 = (1 + 2𝛼𝜁)𝜔0
2(1 + 𝑏1𝑘𝑑) 

𝑏2𝑘𝑖 = 𝛼𝜔0
3(1 + 𝑏1𝑘𝑑) 

This is a set of linear equations in the controller parameters. The solution is given by  

𝑘 =
𝑎2𝑏2

2 + 𝑎2𝑏1𝑏2(𝛼 + 2𝜁)𝜔0 − (𝑏2 − 𝑎1𝑏1)(𝑏2(1 + 2𝛼𝜁)𝜔0
2 + 𝛼𝑏1𝜔0

3)

𝑏2
3 − 𝑏1𝑏2

2(𝛼 + 2𝜁)𝜔0 + 𝑏1
2𝑏2(1 + 2𝛼𝜁)𝜔0

2 − 𝛼𝑏1
3𝜔0

3  

𝑘𝑖 =
(−𝑎1𝑏1𝑏2 + 𝑎2𝑏1

2 + 𝑏2
2)𝛼𝜔0

3

𝑏2
3 − 𝑏1𝑏2

2(𝛼 + 2𝜁)𝜔0 + 𝑏1
2𝑏2(1 + 2𝛼𝜁)𝜔0

2 − 𝛼𝑏1
3𝜔0

3 
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𝑘𝑑 =
−𝑎1𝑏2

2 + 𝑎2𝑏1𝑏2 + 𝑏2
2(𝛼+2𝜁)𝜔0 − 𝑏1𝑏2𝜔0

2(1 + 2𝛼𝜁) + 𝑏1
2𝛼𝜔0

3

𝑏2
3 − 𝑏1𝑏2

2(𝛼 + 2𝜁)𝜔0 + 𝑏1
2𝑏2(1 + 2𝛼𝜁)𝜔0

2 − 𝛼𝑏1
3𝜔0

3  

These formulas are quite useful in design because, as we discuss above, the one zero 

two poles plant modeling equation can represent a lot of processes in real world. 

Incorporating with the second order plant approximation, the pole placement method 

can even be used to design controllers for higher order system. 

2.4 Dominant Pole Design PID controller tuning method. 

The pole placement method is attempts to assign all closed-loop poles, while the 

dominant pole design is to assign a few poles that represent the main characterization. 

The dominant pole method is first find the quantities 𝑎(𝜔0),    𝑏(𝜔0), 𝑎𝑛𝑑  𝜑(𝜔0) 

to represent the plant, then assign the poles with three parameters under the 

specifications. And compare the roots of 1 + 𝐶(𝑠)𝑃(𝑠) = 0 and the assigned poles 

then we will have the PID parameters.  

The controller is parameterized as  

𝐶(𝑠) = 𝑘 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠 

Specify three poles of the closed-loop system since the controller has three parameters 

We choose them as 

𝑝1,2 = 𝜔0 (−𝜁0 ± 𝑖√1 − 𝜁0
2) 
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𝑝3 = −𝛼0𝜔0 

Introduce the quantities 𝑎(𝜔0),    𝑏(𝜔0), 𝑎𝑛𝑑  𝜑(𝜔0) defined by 

𝑃(𝜔0𝑒𝑖(𝜋−𝛾)) = 𝑎(𝜔0)𝑒𝑖𝜑(𝜔0) 

𝑃(−𝛼𝜔0) = −𝑏(𝜔0) 

The condition that 𝑝1, 𝑝2 and 𝑝3 and roots of  

1 + 𝐶(𝑠)𝑃(𝑠) = 0 

Gives the conditions 

𝑘 = −
𝛼0

2𝑏(𝜔0) sin(𝛾 + 𝜑) + 𝑏(𝜔0) sin(𝛾 − 𝜑) + 𝛼0𝑎(𝜔0)sin 2𝛾

𝑎(𝜔0)𝑏(𝜔0)(𝛼0
2 − 2𝛼0𝑐𝑜𝑠𝛾 + 1)𝑠𝑖𝑛𝛾

 

𝑘𝑖 = −𝛼0𝜔0

𝑎(𝜔0)𝑠𝑖𝑛𝛾 + 𝑏(𝜔0)(sin(𝛾 − 𝜑) + 𝛼0𝑠𝑖𝑛𝜑)

𝑎(𝜔0)𝑏(𝜔0)(𝛼0
2 − 2𝛼0𝑐𝑜𝑠𝛾 + 1)𝑠𝑖𝑛𝛾

 

𝑘𝑑 = −
𝛼0𝑎(𝜔0)𝑠𝑖𝑛𝛾 + 𝑏(𝜔0)(𝛼0sin(𝛾 + 𝜑) − 𝑠𝑖𝑛𝜑)

𝜔0𝑎(𝜔0)𝑏(𝜔0)(𝛼0
2 − 2𝛼0𝑐𝑜𝑠𝛾 + 1)𝑠𝑖𝑛𝛾

 

Chapter 3 Setpoint Weighting and Filter 

3.1 PID Control Loop Setpoint Weighting 

A common form of a control system is shown as in Figure 1. 
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The control system perform operation on an error that is the difference between the 

setpoint and the process output. The controller produces a signal by operating on the 

error, which is then applied to the process. A PID-controller of this form is given by: 

𝑢(𝑡) = 𝐾(𝑒𝑝 +
1

𝑇𝑖
∫ 𝑒(𝑠)𝑑𝑠

𝑡

0

+ 𝑇𝑑

𝑑𝑒𝑑

𝑑𝑡
) 

Where the error in the proportional part is, 

𝑒𝑝 = 𝑏𝑦𝑠𝑝 − 𝑦 

And the error in the derivative part is, 

𝑒𝑑 = 𝑐𝑦𝑠𝑝 − 𝑦 

The error in the integral part is, 

𝑒 = 𝑦𝑠𝑝 − 𝑦 

When introduce b and c into a PID controller, we should have a different PID 

structure which is explained as following. 

A block diagram for a system with PID control is now given by Figure blow: 
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Figure 7 Block diagram for a PID with b and c 

Notice that the transfer function from the setpoint 𝑦𝑠𝑝 to the control signal 𝑢 is 

given by 

𝐺𝑓𝑓 = 𝐾 (𝑏 +
1

𝑠𝑇𝑖
+ 𝑐𝑠𝑇𝑑) 

And the transfer function from the process variable 𝑦 to the control variable 𝑢 is 

given by 

𝐶 = 𝐾 (1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑) 

The closed-loop system is given by 

𝐺𝑙 = 𝐺𝑓𝑓

𝑃

1 + 𝐶𝑃
 

A control system should have good transient responding with setpoint changes and 

rejecting load disturbances and noise.  

For b = 0, the overshoot changes is smallest and increases when b is increasing. A 

comparison on the different value of b and how it would affect the system is given by 

the test example later in the example 1. 

𝐶 Process 

𝐺𝑝 
∑ 

-1 

ysp 
𝑦𝑠𝑝 

u y 

𝐺𝑓𝑓 
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The parameter c is normally to be set as zero in order to avoid large transients when a 

sudden change happened in the setpoint. However, it is acceptable that c is nonzero in 

a cascade coupling of a secondary controller.  

In addition, there are no differences for the values of b and c on how they respond to 

load disturbances and measurement noise. However, the respond to setpoint change 

will depend on the value b and c. 

3.2 The Filter of the PID controller  

If there is high frequency measurement noise, the derivative action may result in 

trouble. A sinusoidal measurement noise is given by 

𝑛 = 𝑎 𝑠𝑖𝑛𝜔𝑡 

Gives the following contribution to the derivative term of the control signal: 

𝑢𝑛 = 𝐾𝑇𝑑

𝑑𝑛

𝑑𝑡
= 𝑎𝐾𝑇𝑑𝜔 𝑐𝑜𝑠𝜔𝑡 

The derivative term can be changed arbitrary large because that the high frequency 

measurement noise can change arbitrary which cause the arbitrary changes in the 

derivative term. The amplitude of the control signal can thus be huge with a noise 

high frequency (𝜔). The high frequency gain of the derivative term is then restricted 

to avoid this difficulty by adding two poles to the derivative term of the PID 

controller: 
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𝐷 =
𝑠𝑘𝑑

(1 +
𝑠

𝑝1
)2

 

Chapter 4 Experimental Measurements 

Example 1: 

One process model is used to test this PID controller platform and the idea how the 4 

PID tuning method works. 

The process is 

𝑃 =
𝑠 + 3

𝑠3 + 3𝑠2 + 3𝑠 + 1
 

Step 1: Menu 

In Matlab window input ‘Menu’ under the platform folder, the following window will 

appear: 

 

Figure 8 Step 1 ‘Menu’ of example 2 
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Step 2: Plant Approximation 

Click on ‘Plant Approximation’, then the following window appears:

 

Figure 9 Step 2 'Plant Approximation' of example 2 

  

In the two blank frame, put ‘1’ in the first raw and ‘1 3 3 1’ in the second raw, then 

click on ‘OK’, ‘Hankel Singular Value’ and the ‘Error Statics’ button, we obtain the 

following: 
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Figure 10 Plant Approximation with plant inputs 

The figure has the original and the approximated plant model, the step respond of the 

two functions, the Hankel Singular Value chart and the error measurement static of 

the two functions.  

The original plant represents the original model of the plant. And the next is the 

approximated plant which uses the matlab function ‘balred’ to approximate the 

original plant based on the hankel singular values of the system. The approximation 

discards the small eigenvalue values of the original model, so that the reduced model 

can presents the majorities’ characteristic of the original system. 

 This hankel singular value of the 𝑃 =
𝑠+3

𝑠3+3𝑠2+3𝑠+1
 is also showed in the right side 

on the figure. ‘Balred’ discards the relatively small eigenvalue values, which is the 

number 3 state. The comparison of the step characteristic of the reduced model and 

the original model is showed in the step figure.  
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The error statics gives a sense of the number on the error of the two model step 

characteristic. The cost function gives a total idea how different in the two model. 

Click on ‘bode’, the platform will give you Bode diagram:

 

Figure 11 Plant Approximation with bode diagram 

Step 3: Objectives 

When the functions are ready, next step is the objectives: 

The objectives are based on the third order characteristic function: 

(𝑠 + 𝛼𝜔0)(𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2) = 0 

Here we choose 𝛼 = 0.8, 𝜔0 = 1 𝑎𝑛𝑑 𝜁 = 0.7. Then the program gives a step 

response of rise time 3.27seconds, settling time 5.47 seconds and percent of overshoot 

0.38%. The step resonpse figure is also showed below. 
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Figure 12 Objectives 

 

Step 4: The Four Controller 

In the next step, the controller design process. There are four controller design 

methods: pole placement, dominant pole, Ziegler Nichols and modified Ziegler 

Nichols methods.  

Ziegler Nichols actually only interact with the ultimate response of the plant model. 

That means the objectives which is the last step objectives doesn’t not have anything 

to do with this control method. No matter what changes to objectives, there will be no 
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changes to the Ziegler Nichols method. However, it will be a good reference to 

compare with other control methods.  

Modified Ziegler Nichols is a method based on the frequency domain of the model. In 

this thesis it pointed the ultimate point in the plant Nyquist to another point. This 

gives the step response of the feedback system a more freedom and a better step 

response than the original Ziegler Nichols. But then the step respond will be different 

depend on different point on the Nyquist curve. And this different point can only be 

changed in the original source code.  

Pole placement is a method based on the mathematical calculation relationship 

between the product of the plant and controller and the objective function, while 

dominant pole method is based on the calculation that the needs of the controller of 

the feedback equals the ideal poles of the feedback system.  

They are all followed by the accurate number of rise time, setting time and the percent 

of overshoot of the step response. 
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Figure 13 Controller Design with Step Response 

The platform also provides Bode diagram and Root Locus, showed as below.  

 

Figure 14 Controller Design with Open Loop Bode Diagram 
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Figure 15 Controller Design with Root Locus 

Step 5: Set Point Weighting 

 

Figure 16 Set Point Weighting with Step Response 

The closed-loop system is given by 
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𝐺𝑙 = 𝐺𝑓𝑓

𝑃

1 + 𝑃𝐶
 

Where 

𝐺𝑓𝑓 = 𝐾 (𝑏 +
1

𝑠𝑇𝑖
+ 𝑐𝑠𝑇𝑑) 

𝐶 = 𝐾 (1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑) 

The control signal is given by  

𝑢(𝑡) = 𝐾(−(𝑏𝑦𝑠𝑝 − 𝑦) +
1

𝑇𝑖
∫(𝑦𝑠𝑝 − 𝑦)𝑑𝑠

𝑡

0

+ 𝑇𝑑

d(𝑐𝑦𝑠𝑝 − 𝑦)

𝑑𝑡
) 

The b and c are affecting the gain and the derivative part of the controller.  

 

Figure 17 Set Point Weighting with Bode Diagram 
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A comparison on different value of b 

 

Figure 18 Set Point Weighting with Step Response with b=1 and c=0 

 

Figure 19 Set Point Weighting with Step Response with b=0.5 and c=0 
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Figure 20 Set Point Weighting with Step Response with b=0 and c=0 

  

A table statics can be obtained from above figures. 

 Pole Placement Dominant 

Pole 

Ziegler 

Nichols 

Modified Ziegler 

Nichols 

b=1, c=0 19.45% 30.54% 77.06% 41.64% 

b=0.5, c=0 2.57% 14.58% 35.31% 15.37% 

b=0, c=0 0.38% 10.35% 16.69% 7.36% 

 

Table 2 Table of Percentage of Overshoot with Different b 

The table shows clearly about the effect to the percent of overshoot with the changing 

of b. The overshoot for the system is the smallest when b = 0, while the overshoot of 

the system is the largest when b =1. The percent of overshoot is increasing when the b 

in the proportional part is increasing.  
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The c is normally zero in order to avoid large transients when a sudden change 

happened in the setpoint.  

Step 6: Filter 

The following figures are the figures after adding the filter in the controller. Later on, 

there is another example to test how the filter work with a more zeros than a more 

poles situation. 

 

 

 

Figure 21 Filter with Step Response 
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Figure 22 Filter with Closed-loop Bode Diagram 

 

Figure 23 Filter with Open-loop Bode Diagram 

Step 7 Simulation 

The last step of the design process is the simulation, which is showed as following. 
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Figure 24 Simulation in example 2 

  

 

Figure 25 Simulation Result in example 2 
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Example 2  

In order to test the effect of the filter, an example is given by: 

𝑃 =
3𝑠4 + 3𝑠3 + 6𝑠2 + 6𝑠 + 3

𝑠4 + 3𝑠3 + 3𝑠2 + 3𝑠 + 1
 

The steps in design platform is exactly the same as example 1. The step 2 figure is 

showed as following. 

 

Figure 26 Plant Approximation in example 3 

The step 5 setpoint weight after the design process is showed below.  

The open loop bode diagram is  
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Figure 27 System Open-loop Bode Diagram without Filter 

The slope of the open loop bode diagram is positive and increases in high frequency. 

That means when a high frequency noise is introduced in the system, the system will 

keep amplifying the high frequency. This can cause the devise damage or the 

saturation which makes the controller workless. Therefore, it is important to 

implement the derivative term as   

𝐷 =
𝑠𝑘𝑑

(1 +
𝑠

𝑝1
)2

 

The poles added in the derivative term in the controller thus can limited the high 

frequency noise to avoid the difficulty. 

The Bode Diagram of the open loop diagram with the controller in a filter is presented 

as below. 
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Figure 28 Open-loop Bode Diagram with Filter 

The step response of the closed loop system with a PID controller with a filter is 

showed as following. 

 

Figure 29 Step Response of the Closed-loop System with Filter 



49 
 

Compare the step response of the process in the platform and the result of the 

simulation as following. 

 

Figure 30 Simulation Structure 
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Figure 31 Step Response in the Platform 

 

Figure 32 Test Result of the Simulation 

The result of the platform and the simulation are the same.  
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Chapter 5 Summary and Future work 

5.1 Summary 

As mentioned in the abstract section, the primary objective of this project was to 

combining the controller tuning methodologies and the using soft computing 

methodologies to create an easy-to-use interface of PID controller design platform 

which designs the most widely used controller in industrial within four different 

tuning methods. In addition, designing a platform for control engineer is kept in mind 

when designing this Matlab platform. The majority of the project has been fulfilled in 

the task. The approximation step reduces the high order model to a second order plant 

model. This step has many benefit to the controller design process. Using a smaller 

order model can speed up the simulation process and reduce the control law 

complexity by keeping the major characteristic of the original high order plant.  

The platform performs the designing of the four kind’s different PID controller based 

on the information from the approximation model and the requested objective 

specification. The set point weighting and filter will be designed and added into the 

PID controller to adjust the controller in order to have a better system responses in 

terms of rise time, settling time, percent of overshoot, load disturbance and 

measurement noise. There is another way to test the PID controller which is the 

simulation. In addition, simulation is a way to add a devices or noise into the system. 

It is appropriate to have another method to test the PID controller in a different aspect.  
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5.2 Future work 

There are several work can be considered to improve in the future.  

1. Plant uncertainties. Plants are sometimes have uncertainties parameters. Add on 

the plant uncertainties will provide more information about the plant and design a 

better PID controller based on the plant uncertainties. 

2. Design PIDs according to load disturbance or measurement noise. This will give a 

better controller design to meet the specification such as the load disturbance and 

the measurement noise. 

3. A better measurement of the approximation or even a better error measurement 

method. One possibility is look at the controllability and the observability of the 

plant and figure out how much differences are the original plant and the 

approximated plant according to the controllability and observability. 

4. Design which tuning method could work with the plant and which cannot at the 

beginning of the controller designing platform. 

5. More different controller specifications. A good design method should take a 

number of different specifications into account in a balanced way. 

6. Simulation with noise and disturbance. As said above, simulation is great to test 

the PID controllers. The users can update or add more noise or change to different 

devices as they want. It is also great to have the simulation initially with noise and 

disturbances. 
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7. How the set point weighting will affect the system when load disturbances and the 

measurement noise are introduced into the system. 
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