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Nomenclature

e Error between setpoint and the system output
Control variable

y  System output

Ysp Setpoint

C Controller

P Plant

G; Closed-loop system

K Proportional gain

K,, Static process gain

T; Integration time

T, Derivative time

[ Load disturbance

n  Measurement noise

u, Reset, usually fixed to (Unqx + Umin) /2

K, Ultimate gain

T, Ultimate period

r  Radius of the polar coordinate system

@ Angle of the polar coordinate system

k, ki and kd Parameters of the PID controller

e, Errorin proportional part

eq Error in derivative part

Gy Transfer function from the setpoint y,, to the control signal u
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A Matlab Platform for The Design and Tuning Methods of PID Controller Based on

Four Different Tuning Methods

Abstract

by

CHAO LIN

The PID controller is the most widely used controller in industry. This thesis project
explores the combination of the PID controller tuning methodologies and the use of
soft computing methodologies in the design of controllers. It emphasizes ease-of-use
for control engineers and provides a friendly interface CAD tool for controller
designers.

This Matlab CAD toolbox contains the applications of four specific soft-computing
techniques to design PID controllers, in order to get an output with better dynamic
and static performance.

The application of the four algorithms to the PID controller make it an optimum
system output by searching for the best set of solutions for the PID parameters, while
the add-on features on the approximation of the plant model, the set point weight and
a filter significantly impart the ability of tuning method itself in a process. The project
also discusses the advantages and the disadvantages of the methods by comparing

them.



Chapter 1: Introduction

1.1 Motivation

The Proportional-Integral-Derivative (PID) controller, is the most popular type of
controller in industry today. A great number of control engineers use such control
algorithms in their daily work. The controller’s uses are so diversified that control

engineers must tune PID controllers to meet specific needs.

PID controller tuning methods have been well-developed since the classic PID
controller idea was introduced by John G. Ziegler and Nathaniel B. Nichols in 1940s.
Pole placement is a straightforward tuning method introduced by Truxal in 1955,
while the dominant pole method, which was introduced by Persson in 1992, specifies

a few poles to avoid the difficulty of choosing poles for higher order models.

This project attempts to combine the Matlab and the PID controller design theories with
a friendly Matlab GUI interface. It also gives a different angle to look at the design

problem by comparing the results of the 4 different PID control tuning methods.

1.2 PID controller and its structure

The basic structure of the PID controller is depicted below:



— P Kpe(t)

t
Ysp e u - g
z I Kife(f)dr > Plant P >
A 0
de(t
D Kd d(t)
-1 |«

Figure 1 Block diagram of a simple PID feedback system

The equations of this PID is given by:

de(t)
dt

u(t) = K(e(t) + Tij e(t)dt + Ty, )

{
0

Where u is the control variable and e is the error between setpoint and the system

output.
1.2.1 Proportional Action

The block diagram of the pure proportional control system is depicted below:

10



u
ﬂ, ° Pure P —> Plant P ‘—V@
Controller

Figure 2 Block diagram of a PID feedback system with pure proportional action

The control equation is reduced to:

y=x+n
x=K,(u+l)
u(t) = Ke(t) + u,

Where u(t) is the control signal, K is the proportional gain, K, is the static
process gain, [ is a load disturbance, n is the measurement noise, e(t) isthe

control error ( e = y5, —y ) and w, isareset. u, isusually fixed to

(umax + umin)/z-

Several properties of the pure proportional control can be understood by the following

relation according to the above equations:

KK

_ KKy S P
x_1+KKp(ySp ")+1+KK,,

(l + ub)

First, assuming noise n and reset w,, are zero, the loop gain KK, then has to be set

high in order to make sure the output x is close enough to the setpoint yg, and also

11



make the output x insensitive to the load disturbance [. However, the loop gain has
to be not too large if n is not zero, otherwise the large loop gain will make the
system sensitive to the measurement noise n. The situation for the reset w, is
opposite: to ensure it influences the system, the loop gain should be small. Therefore,

we have to consider whichever is better depend on different objectives.

Second, u(t) isonlyequal to u; when the control error is zero, so that the system
output can stay stable and equal to the setpoint ys,. Basically, there will normally be

a steady-state error with a pure proportional control.

Third, the above analysis is based on the static model. However, if the process
dynamics is considered, the high loop gain will normally be unstable in a closed-loop
system. In practice, the maximum loop gain is determined by the process dynamics
where the process gain is frequency-dependent in order to avoid the unstable in

closed-loop systems.
1.2.2 Integral Action

The purpose of the Integral is to make sure the process output of the plant y equals to
the setpoint 1y, in steady state. The proportional controller with integral action is

given by:

e
=K(e+—t
u (e T )

L

As we discuss above, with a pure proportional controller, there is always a control

error in the steady state. Adding an integral portion to a proportional controller will
12



give additional reset to correct the error. A positive error, which is an error between
setpoint and plant output, will give an increasing control signal to the plant and a

negative error will give a decreasing control signal to the plant.

The block diagram of the control system, depicted below, shows a proportional

controller with an integral action:

e

1
1+STi

v

A

Figure 3 Block diagram of a system with PI controller

The following equations are given from the block diagram:

u=Ke+1

dl

Eventually, we have

dl
Ti%: Ke

The integral action is the history on the sum of the error. The features of the system

response with PI controller is related to T;/KK,, approximately. For large values of

the integration time T;, the overshoot of the closed-loop system is larger and the

13



respond is slower to the error while smaller values of T; has a faster response to the

error. Also the system is more oscillatory with a smaller value of T;.

1.2.3 Derivative Action

The basic structure of a PD controller is:

de(t)
dt

u(t) =K(e(t) +Tq )

Expanse e(t) + T; by Taylor series gives:

de(t)
dt

e(t+Ty) =e(t)+Ty

The function of the derivative action on a controller is to predict future error and add
to the controller in order to improve the stability of a closed-loop system. Assuming
there is a change in the control variable, the action of a controller with derivative
action may interpret the process output at time T, ahead, where the prediction is

approximately calculated by extrapolating the error by the tangent to the error curve.

1.3 Alternative Representations

There are three different forms of PID controllers.

1.3.1 The Standard Form

Different controllers may have different structures. The controller parameters may

also differ if one type of controller is replaced by another type of controller.

This is also a non-interacting form given by the following equation:

14



1
C(s) =K1+ —+sT,
() = K(L+ o+ 5T)

The integral time T; and the derivative part T, of this form are non-interacting,
meaning that the derivative part T; or any changes in the derivative part T; does

not affect the integral time T;.
1.3.2 The series form

An interacting form is given by the following equation:

C'(s) =K'(1+

1
1+ sT’

The integral action T; and derivative action T,; do interact with each other. A non-

interacting controller can represent an interacting controller by:

T+ T
T'l-
T,=T,;+T,
T"T,d
Ty =
T, +T,

However, an interacting controller can only represent a non-interacting controller only

if

T, = 4T,

Therefore, the non-interacting controller form is more general.

This thesis uses two algorithm related to the standard form.

15



1.3.3 The Parallel Form
k;
C(s) = k+?+skd

The parameters are related to the parameters of the standard form, but the values of

the parameters are different:

k=K

k_K

l_Tl
kd:KTd

The parallel form is often useful in the analytical calculation of PID controller design,
because the parameters appear independently. This is also a ecumenical form because
it is easy to obtain pure proportional, integral, or derivative action with number

values.

This thesis has two design methods related to this parallel form of PID controller.

1.3.4 The Basic Structure of the Entire System

ysp e u y

Controller C Plant P

Figure 4 Block diagram of a PID feedback system

16
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The transfer function of this process is as follows:

P(s) = 2!
) =173,
where G;:
G;(s) =CP

A block of diagram of a feedback system is shown in Figure 4. The system has two
major components: the process and controller and the feedback loop. The purpose of
the feedback system is to control the process variable (y) equal to the desired value
(ysp). The control system increases the operation variable when the process variable
is less than the desired value disturbance and decreases the operation variable when
the process variable is greater than the desired value disturbance. This is achieved by
the feedback loop, an explanation of which follows. Assume that the system is in
balance and then a disturbance occurs so that the process variable becomes greater
than the setpoint which is the desired value disturbance. The error between the
setpoint and the process output is then negative, and the controller output decreases,

which in turn causes the process output to decrease.

1.4 The Plant Approximation

This thesis is based on the assumption that the transfer function of the process is

known.

There are several reasons to simplify the plant model:

17



1. To simplify the best available model to design a control system to meet certain
specifications.

2. To speed up the simulation process. Using a smaller order model can reduce the
calculation time.

3. To reduce the control law complexity with only a small change in control system
performance by eliminating the unnecessary high orders, which are greater than

that which is truly needed in the design validation stage.

In this thesis, the plant transfer functions are approximately reduced to a suitable one
pole and two zeros transfer functions. A two-order system catches many processes in
the real world, oscillatory systems, and systems with right half-plane zeros. However,
it is important to keep in mind that plant reduction approximation error is unavoidable

when lower order models approximate the higher models.

For a give causal and rational model P, it can be decomposed to:

P(2) =S2)+U(2)

Where S(z) is the stable portion with all poles strictly inside the unit circle and U(z) is

the unstable part, only the stable part is approximated.

An eigenvector of the a square matrix S means a non-zero vector v that, when the
matrix is multiplied by v, yields a constant multiple of v, the multiplier being

commonly denoted by A:

18



Sv=A4v

Where S contains all the stable modes of a system.

The eigenvalue A of each part of the model represents the energy of each part of the
plant model. Eliminating all unnecessary states and keeping the larger energy states of

the system preserves most of the system’s characteristics in terms of stability.

In this thesis, the Matlab function ‘balred’ is used to implement this idea. ‘Balred’
first transfers the one zero two poles system into a state-space system, and then
decomposes the system into two parts: the stable and unstable portions. This model
reduction is based on the hankel singular values of the system in terms of stability. It
can achieve a model in which the characteristics of the original system are preserved?

States with relatively small eigenvalue values can be safely discarded.

We use an example to illustrate this approximate method as following:

Example 1.1

Plant:

s3 +4.552 +5.195 + 1.595
s*+ 653+ 11s2 + 65 + 0.0001

P(s) =

Using balred function in Matlab and the approximated result becomes:

0.9911s + 0.5188

P(s) =
(8) = 52719525 + 0.0000325

Bode diagram of the plant in the original and approximated plant:
19



Bode Diagram

100 = N L T
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=]
e

(=]

T
=

-50 L r r L
0= T -
Original Plant
Approximated Plant

=)

()

z

o -45f-

@

=

o

-90 =
-6 -4 -2 0 2
10 10 10 10 10

Frequency (rad/s)

Figure 5 Block diagram of example 1.1

Compare the original and reduced order model. We can see that the original and

approximated plants are very similar in terms of the figure view.

The figure below is the hankel singular value of the original and reduced order model.



Hankel Singular Values (State Contributions)

8000 T - :
E] : :I I Original Plant
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= ] .
] 3
2000 }----- SN - - - - - - Dzl T« Lassmanamad
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State

2000

6000

4000

State Energy

2000

Figure 6 Hankel Sigular Values of example 1.1

The Matlab function ‘balred’ transfers the one zero two poles system into a state-
space system, then keeps the two highest energy singular value 1 and 2, and then
discards the rest of the singular value. The process is implemented in term of the
model stability. Balred is very useful at lease for many of the modeling
approximation. The reduced model keeps the majorities’ characteristic of the original

model.

1.5 Measurement of the Approximation

Approximated errors are inevitable while using the lower order models represents the
higher order models. The performance of model approximation is measured by the

corresponding approximation error.

21



The cost function of the error of the original plant and the approximated plant is given

by

CF = |tr, — tr,| + |ts, — ts,| + |PV, — PV, ]|

This is a function based on the step respond of the original plant model and the
approximated plant model functions where tr, and tr, are the rise time of the step
responds of the original and approximated plant, ts, and ts, are the settling time and

PV, and PV, are the Peak value of the step responds.

Chapter 2 the Four Tuning Methods

2.1 Ziegler-Nichols Method

The second design method presented by Ziegler and Nichols is based on a test data of
the closed-loop step response of the system. In order to get the data, we first connect a
PID controller that sets T; = o and T; = 0 to the process and provide a feedback
loop, then increase K until the process oscillate. The gain when this happen is the
ultimate gain K,,. And the period of this oscillation is the ultimate period T,,. We
then can determine the ultimate gain K,, and the ultimate period T,, by doing such.
The closed-loop step response of the system are also characterized by the two

parameters K, and T,,.

The controller parameters can be given in terms of the ultimate gain K,, and the

ultimate period T,, as following:

22



Controller K Ti Td Tp
P 0.5Ku
Pl 0.4Ku 0.8Tu 1.4Tu
PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu

The controller is finally given by the standard form of the PID controller:

Or,

2.2 Modified Ziegler-Nichols Method

Table 1 Ziegler-Nichols parameters of PID

C(s) = 0.6K,(1 +

1
C(s)=K(1+—+sT
(s) (+sTi+Sd)

s0.5T,

+ 50.125T,)

The modified Ziegler-Nichols method is based on the frequency domain method that

position one point of the Nyquist curve to another. With a PID controller, the picked

plant point, generally this point is any point form the Nyquist curve, in this case is a

specific point (—1/K,, 0) on the Nyquist curve which is moved by a PID controller to

an arbitrary position in the complex plane, so called modified Ziegler-Nichols.

Let the chosen point of the plant P on the Nyquist curve be:

Then determine the PID controller move this point to:

A =P(iw,) = r,e!™+0a)

23



B = G,(iwg) = r,e'™+%)
With the PID controller C(iw,) = r.e'%, we obtain:

1, e 0T400) = 1. - oi(T+0a+00)

The controller ¢ will be:

We then get:

Where a = 0.25,

A Ziegler-Nichols experiment is used to determine the point (—1/K,, 0) as we discuss

above, we have the critical point

The PID controller parameters are then given by:

24



K = K, r,cos®,,

T, 1+ sin®,
T, =2 (———
T~ cosQ,

_ T, 1+sin®,
7 4n cosQy,

)

System with better damping can be achieved by suitable 1, and @,, which are 0.5
and 0.3491 would be reasonable. A suggestion by Pessen to move the ultimately point
to r, = 0.41 and @, = 1.0647 or r, = 0.29 and @, = 0.8029 will have better

closed-loop system responses.
In this thesis, the ultimately point r;, = 0.41 and @, = 1.0647 is used.

Note that since only one point on the Nyquist curve is moved by the PID controller
and fixed in the Nyquist, the closed-loop system can still be changed significantly

when the slope of the Nyquist curve is various.
2.3 Pole Placement Method.

The pole placement design method is a method based on the knowledge of the process

transfer function.

A process is represented by the second-order model:

_ bis+b,
524 a;s+a,

This model has four parameters b, b, a; a,. This one zero and two poles system

catches many processes in the real world such as oscillatory systems. We assume that

25



a parallel PID controller structure with parameters k, ki and kd showed as follow

controls the process above:
C(s) = k+%+kds
A third order characteristic equation of the closed-loop system is then given by:
s(s?2+a;s+ ay) + (bys + by)(kgs? + ks + k) =0

An objective closed-loop characteristic equation of this third-order system should

have the following:
(s + awy)(s? + 2{wes + w3) =0

Equating coefficients of equal power in s in above equation and plant model with the

PID controller gives the following equations:
a, + bykg + b1k = (awg + 2{wy)(1 + b ky)
a, + bk + bk = (1 + 2ad)wi(1 + biky)
byk; = awd(1 + biky)
This is a set of linear equations in the controller parameters. The solution is given by

_ azbg + azblbz(a + 2{)(1)0 - (bz - albl)(bz(l + 2“()(1)(2) + abla)g)

k
b3 — bib2(a + 20wy + b?b,(1 + 2ad) wé — abiw?

(—a,b1b, + ayb? + b3 aw?

k; =
" b3 — bib2(a + 20wy + b2b,(1 + 2ad)wE — abdw?

26



L = —a b3 + a,b by + b2 (a+2))wy — bib,w3(1 + 2al) + biaw}
¢ b3 — byb2(a + 20)wg + b2b, (1 + 2ad) w? — abdw?

These formulas are quite useful in design because, as we discuss above, the one zero
two poles plant modeling equation can represent a lot of processes in real world.
Incorporating with the second order plant approximation, the pole placement method

can even be used to design controllers for higher order system.
2.4 Dominant Pole Design PID controller tuning method.

The pole placement method is attempts to assign all closed-loop poles, while the
dominant pole design is to assign a few poles that represent the main characterization.
The dominant pole method is first find the quantities a(w,), b(wy), and @(wy)
to represent the plant, then assign the poles with three parameters under the
specifications. And compare the roots of 1+ C(s)P(s) = 0 and the assigned poles

then we will have the PID parameters.
The controller is parameterized as
C(s) = k+%+kds
Specify three poles of the closed-loop system since the controller has three parameters

We choose them as

P12 = wo(‘(oii /1_<g>

27



b3 = —QpWo
Introduce the quantities a(wy), b(wy), and @(w,) defined by
P(woe'™ M) = a(wg)el@@o
P(—awy) = —b(wy)
The condition that p;, p, and p; and roots of
1+C(s)P(s)=0
Gives the conditions

aib(wy) sin(y + @) + b(wy) sin(y — @) + apa(wy)sin 2y

k =
a(wg)b(wy) (at — 2aycosy + 1)siny

a(wg)siny + b(wy)(sin(y — @) + aysing)
a(wg)b(wy)(at — 2aycosy + V)siny

ki = _aowo

apa(wy)siny + b(wy) (apsin(y + @) — sing)
woa(wy)b(wy) (a2 — 2aycosy + 1)siny

kd=

Chapter 3 Setpoint Weighting and Filter

3.1 PID Control Loop Setpoint Weighting

A common form of a control system is shown as in Figure 1.
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The control system perform operation on an error that is the difference between the
setpoint and the process output. The controller produces a signal by operating on the

error, which is then applied to the process. A PID-controller of this form is given by:

ded
dt

t
1
u(t) = K(ep, + —f e(s)ds + Ty
T; ,
Where the error in the proportional part is,
ey = bysp -y
And the error in the derivative part is,
€q =CYsp —Y
The error in the integral part is,

€=Ysp— Y

When introduce b and ¢ into a PID controller, we should have a different PID

structure which is explained as following.

A block diagram for a system with PID control is now given by Figure blow:
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Figure 7 Block diagram for a PID with b and ¢

Notice that the transfer function from the setpoint 1y, to the control signal u is

given by

1

L

And the transfer function from the process variable y to the control variable u is

given by

1
C=K(1 — T)
+STi+Sd

The closed-loop system is given by

P

6= G ep

A control system should have good transient responding with setpoint changes and

rejecting load disturbances and noise.

For b =0, the overshoot changes is smallest and increases when b is increasing. A
comparison on the different value of b and how it would affect the system is given by

the test example later in the example 1.
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The parameter c is normally to be set as zero in order to avoid large transients when a
sudden change happened in the setpoint. However, it is acceptable that ¢ is nonzero in

a cascade coupling of a secondary controller.

In addition, there are no differences for the values of b and ¢ on how they respond to
load disturbances and measurement noise. However, the respond to setpoint change

will depend on the value b and c.
3.2 The Filter of the PID controller

If there is high frequency measurement noise, the derivative action may result in

trouble. A sinusoidal measurement noise is given by
n = a sinwt
Gives the following contribution to the derivative term of the control signal:
u, = KT, P aKT w coswt

The derivative term can be changed arbitrary large because that the high frequency
measurement noise can change arbitrary which cause the arbitrary changes in the
derivative term. The amplitude of the control signal can thus be huge with a noise
high frequency (w). The high frequency gain of the derivative term is then restricted
to avoid this difficulty by adding two poles to the derivative term of the PID

controller:
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Chapter 4 Experimental Measurements

Example 1:

One process model is used to test this PID controller platform and the idea how the 4

PID tuning method works.

The process is

P s+ 3
T s3+43s243s+1

Step 1: Menu

In Matlab window input ‘Menu’ under the platform folder, the following window will
appear:

Menu - O

Menu

Plant Approximation
Specificatons
Controllers Design
Setpoint Weighting

Pre-filter

Simuliation

Figure 8 Step 1 ‘Menu’ of example 2
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Step 2: Plant Approximation

Click on ‘Plant Approximation’, then the following window appears:

— Plant =

b1b2..bn = 13 ex:23 oK Hankel Singular Value
08
ala2.an= 1331 extad. | Bada 06
04
0.2
0 . . . . )
0 02 04 06 08 1
1
1
08
09F
0.6
03 04
07F 0.2
06 - 0
Error Statics 0 02 04 06 08 1
05k —Error tati
Original Plant ~ Approxi Plant  Differences
04 =
Rising Time Static Text Static Text Static Text
0.3 Settling Time ~ Static Text Static Text Static Text
02k Peak Static Text Static Text Static Text
01k Cost Function CF = Sla(ic
0 | | L 1 | | L | | )
0 0.1 02 03 04 05 06 07 08 09 1 Direction.

’7 < MENU >

Figure 9 Step 2 'Plant Approximation' of example 2

In the two blank frame, put 1’ in the first raw and ‘1 3 3 1” in the second raw, then
click on ‘OK’, ‘Hankel Singular Value’ and the ‘Error Statics’ button, we obtain the

following:



EE B Hankel Singular Values (State Contributions)
b1b2..bn = 13 ex23 [ OK | Hankel Singular Value
ala2.an= 1331 ex134 | Bode 5
] £
Original_Plant = Approxi_Plant = ]
s+3 -0.07254 s + 1.404
$3+32+35+1 $'2+ 1195 +04745 =
Hankel Singular Values (State Contributions)
T
Step Response
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Original Plant 5
Approximated Plant 2
/ 3
// [
',/ Error Statics
g 1 3 = __Error tati tate
za S Original Plant ~ Approxi Plant Differences
1 / -
// Rising Time 4.1289 3.9553 0.17362
L / | Settling Time ~ 7.1351 62287 080647
/” Peak 2.9998 29734 0.02632
o 1 Cost Function CF = 1.0064

Direction.

& 8 1
Time (seconds) ’7 < MENU >

Figure 10 Plant Approximation with plant inputs

The figure has the original and the approximated plant model, the step respond of the
two functions, the Hankel Singular Value chart and the error measurement static of

the two functions.

The original plant represents the original model of the plant. And the next is the
approximated plant which uses the matlab function ‘balred’ to approximate the
original plant based on the hankel singular values of the system. The approximation
discards the small eigenvalue values of the original model, so that the reduced model

can presents the majorities’ characteristic of the original system.

s+3

————— is also showed in the right side
s34352+43s5+1

This hankel singular value of the P =
on the figure. ‘Balred’ discards the relatively small eigenvalue values, which is the

number 3 state. The comparison of the step characteristic of the reduced model and

the original model is showed in the step figure.
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The error statics gives a sense of the number on the error of the two model step

characteristic. The cost function gives a total idea how different in the two model.

Click on ‘bode’, the platform will give you Bode diagram:

— Approximation Measure

— Plant-
Hankel Singular Values (State Contributions)
b1b2..bn= 13 x23 oK Hankel Singular Value '
¥ ] L) iy
ala2 _an= 1331 ex134 | Bode | &
2
| S| FU——
£
Original_Plant = Approxi_Plant = 5ol T
s+3 -0.07254 s + 1.404 :
_________________________________________ 0
s'3+3s2+3s+1 s'2+1.19 s +0.4745 ° ! State
Hankel Singular Values (State Contributions)
T
Bode Di —xlmateo Plant
ode Diagram _

State Energy

Error Statics 1 2 3
— Error tat State
ol it Original Plant  Approxi Plant Differences

e Original Pant Rising Time 41289 39553 017362
‘ TS Approximated Pant || Settling Time ~ 7.1351 6.3287 0.80647
— Peak 29998 29734 0.02632

Phase (deg)

1 Cost Function CF = 1.0064

-180 & n
10 10° 10! 10 T Direction—————
’7 < MENU >

Frequency (radis)

Figure 11 Plant Approximation with bode diagram

Step 3: Objectives

When the functions are ready, next step is the objectives:

The objectives are based on the third order characteristic function:
(s + awg)(s? + 2{wos + w3) =0

Here we choose a = 0.8, w, = 1 and { = 0.7. Then the program gives a step

response of rise time 3.27seconds, settling time 5.47 seconds and percent of overshoot

0.38%. The step resonpse figure is also showed below.
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Amplitude

— Objectives
objective fits: (s+aw)(s*2+2{w s+ w*2)=0

9= 038 Rise Time (sec)= 3.2721
= 1 Settling Time (sec) = 5.4667
Overshoot (%) = 0.3807
& &1 show obj
Step Response CL
Step Response
1.4 T T T T T T T T
12} i
0 | | | | | | | |
0 1 2 3 4 5 6 7 3 9
Time (seconds) Direction
( < MENU >

Figure 12 Objectives

Step 4: The Four Controller

In the next step, the controller design process. There are four controller design
methods: pole placement, dominant pole, Ziegler Nichols and modified Ziegler

Nichols methods.

Ziegler Nichols actually only interact with the ultimate response of the plant model.
That means the objectives which is the last step objectives doesn’t not have anything

to do with this control method. No matter what changes to objectives, there will be no
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changes to the Ziegler Nichols method. However, it will be a good reference to

compare with other control methods.

Modified Ziegler Nichols is a method based on the frequency domain of the model. In
this thesis it pointed the ultimate point in the plant Nyquist to another point. This
gives the step response of the feedback system a more freedom and a better step
response than the original Ziegler Nichols. But then the step respond will be different
depend on different point on the Nyquist curve. And this different point can only be

changed in the original source code.

Pole placement is a method based on the mathematical calculation relationship
between the product of the plant and controller and the objective function, while
dominant pole method is based on the calculation that the needs of the controller of

the feedback equals the ideal poles of the feedback system.

They are all followed by the accurate number of rise time, setting time and the percent

of overshoot of the step response.
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— Controllel

— Pole

Pole Placement PID

pole_Placement_PID = Rise Time (sec) =  1.3601
Settling Til = 44876 [ &l
06977 512+ 11235 + 0.5408 “citing Time (sec) Step Response CL | | Bode Diagram OL | | Root Locus
T Overshoot (%) = 6.0668
s
Step Response
— Dominant Pole. 18 T T T T
Dominant Pole PID Pole Placement
Dominant Pole [1
dominant_Pole_PID = Rise Time (sec) = 1.2383 Ziegler Nichols |
Settling e (sec) -~ 7.0969 Modified Ziegler Nichols
0.6977 s*2 + 1.123 s + 0.7554 : i
— Overshoot (%) = 13.9917
s
e
— Ziegler Nichok 3 n
Ziegler Nichols PID ?
Ziegler_Nichol_PID = Rise Time (sec) = 0.28685 |
ing Ti = 6.3056
103392 +6377 s + 0845 g Time (sec) |
B P Overshoot (%) = 63.1384
06478 s |
— Modified Ziegler Nichols——
Modified Ziegler Nichols PID 0.2 ! | | 1 1 |
0 2 4 6 8 10 12 14
5 S L Time (seconds)
modified_Ziegler_Nichols_PID = Tise Time (sec) = 0.55491
i i = 42109 recton————————————_
150452+ 3771 s+3261  Soing Time (sec) Daciae —
e Overshoot (%) = 25.9981 < MENU >
1.157 s

Figure 13 Controller Design with Step Response

The platform also provides Bode diagram and Root Locus, showed as below.

— Controllel

— Pole

Pole Placement PID

1157 s

pole_Placement_PID = Rise Time (sec) = 1.3601
i i = 44876 [ =
0.6977 s'2 + 1.123 s + 0.5408 SeinglamciCec) Step Response CL Root Locus
T Overshoot (%) = 6.0668
S
Bode Diagram
— Dominant Pole
Dominant Pole PID
dominant_Pole_PID = Rise Time (sec) = 1.2383 %
Settling Ti = 70089 |3
06977 %2+ 11235 + 07554 “cng Time (sec) H
— Overshoot (%) = 13.9917 2
S
— Ziegler Nichols
Ziegler Nichols PID o : : ‘ '
- - _ Pole Placement
Ziegler_Nichol_PID = R Time (Cec) SR 02508 ) Dorinant Poe
X % _ 3 Ziegler Nichols
1.033s"2+6.377s+9845 Seting Time (sec) = 6.3056 2 sl Wodified Ziegler Nichols
— Overshoot (%) = 631384 | &
06478 s =
— Modified Ziegler Nichol -
Modified Ziegler Nichols PID 180 L _ : - A
107 10" 10° 10 10° 10°
modified_Ziegler_Nichols PID = Rise Time (sec) = 055491 AR
i i = 42109 irection—————————
1504502 +3 771 s+ 3261 Soning Time (sec) Disctie: p—
e Overshoot (%) = 25.9981 < MENU >

Figure 14 Controller Design with Open Loop Bode Diagram
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— Controllel

— Pole

Pole Placement PID

1157 s

Figure 15 Controller Design with Root Locus

Step 5: Set Point Weighting

— Controlle

— Pole

Pole Placement PID

Rise Time (sec) = 25683
Settling Time (sec) = 3.7983
Overshoot (%) = 1.6783

— Dominant Pole —————————————————————

Dominant Pole PID
Rise Time (sec) = 1.9167
Settling Time (sec) = 7.9937
Overshoot (%) = 12.9281
— Ziegler Nichols.

Ziegler Nichols PID
Rise Time (sec) = 0.43234
Settling Time (sec) = 5.6902

Overshoot (%) = 31.9835

— Modified Ziegler Nichols-
Modified Ziegler Nichols PID

Rise Time (sec) = 1.0681

Settling Time (sec) = 4.7133

Overshoot (%) = 12.8281

pole_Placement_PID = Rise Time (sec) = 1.3601
i i = 44876
06977 /2 +1.123 5 + 05408 >°1ting Time (sec) Step Response CL | | Bode Diagram OL
T Overshoot (%) = 6.0668
s
Root Locus
— Dominant Pole. 8 : . ’ -
Dominant Pole PID ' Pole Placement
6 Dominant Pole ||
dominant_Pole_PID = Rise Time (sec) = 1.2383 Ziegler Nichols
i i = 7.0969 4r e
06977 42+ 1.123 5 + 07554 oming Time (sec) _
e Overshoot (%) = 13.9917 2 |
8
— Ziegler Nichol & & s
Ziegler Nichols PID % ¥
z
Ziegler_Nichol_PID = Rise Time (sec) = 0.28685 E R =
ing Ti = 63056 || .| |
103392 +6377 s + 0845 g Time (sec) 4
T R R Overshoot (%) = 63.1384
06478 s E3 4
— Modified Ziegler Nichols——
Modified Ziegler Nichols PID 8 L L 1 L L L
=30 20 -10 0 10 20 20 40
i i = Real Axis (: ds™")
modified_Ziegler_Nichols PID =  Rise Time (sec) = 0.55491 s (secon
i i = 42109 jrecton——————
150452+ 3771 s +3261  Soring Time (sec) Decex ‘
e e Overshoot (%) = 25.9981 < MENU >

Ampltude

Setpoint Weighting-
L [ Step
b= 05
Bode CL
€= 01
Bode OL
Step Response
T T
Pole Placement
Dominant Pole H
Ziegler Nichols
Modified Ziegler Nichols
! I I ! L
2 4 6 8 10 12

Time (seconds)

Figure 16 Set Point Weighting with Step Response

The closed-loop system is given by
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Where

The control signal is given by

t
1
u(t) = K(—(bysp —¥) + Ff(ysp —y)ds + Ty
0

d(cysp - y)

)

The b and c are affecting the gain and the derivative part of the controller.

Pole Placement
Dominant Pole
Ziegler Nichols (|
Modified Ziegler Nichols

)]
— Controlle
e Setpoint Weighting————————————
Pole Placement PID
Rise Time (sec) = 2.5683 b= o5 Step
Settling Time (sec) = 3.7983
cC= 01 Bode
Overshoot (%) = 1.6783 g
— DominantPole—————————————————————
Dominant Pole PID Bode Diagram
10
Rise Time (sec) = 1.9167 .
Settling Time (sec) = 7.9937 T ol
=
Overshoot (%) = 12.9281 $ 20 g
i NN
—ZeglerNichos— S 2oF \x
Ziegler Nichols PID 40 M
Rise Time (sec)= 0.43234 = ' '
Settling Time (sec) = 5.6902 15|
Overshoot (%) = 31.9835 ;:" 270 |
®
— Modified Ziegler Nichols ———————— g 2251
Modified Ziegler Nichols PID 180 |
Rise Time (sec) = 1.0681 it b T o
10 10 10 10

Settling Time (sec) = 4.7133
Overshoot (%) = 12.8281

Frequency (rad/s)

Direction

=T

Figure 17 Set Point Weighting with Bode Diagram
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A comparison on different value of b

— Controller

— Pole

Pole Placement PID

Rise Time (sec) = 14054
Settling Time (sec) = 6.4571
Overshoot (%) = 19.4524

— Dominant Pole———————————————————

Dominant Pole PID 5

Setpoint Weightng————————
R

Step Response

Settling Time (sec) = 4.8517
Overshoot (%) = 41.6411

Rise Time (sec) = 1.2486 Pole Placement
s N 18 Dominant Pole [1
Settling Time (sec) = 8.5629 Ziegler Nichols
14 & H
Overshoot (%) = 1305379 Modified Ziegler Nichols
1.2 4
— Ziegler Nichols—————————————————————
o
Rise Time (sec) = 0.2844 § b 1
Settling Time (sec) = 6.5367 16 fil
Overshoot (%)= 77.0644 04 g
02 4
— Modified Ziegler Nichols—————————
Modified Ziegler Nichols PID 0 E
Rise Time (sec) = 064653 2 = ; i s T

Time (seconds) o
irection

(D) Gl 5

Figure 18 Set Point Weighting with Step Response with b=1 and c=0

— Controller

— Pole

Pole Placement PID

Rise Time (sec) = 2.3894
Settling Time (sec) = 56894
Overshoot (%) = 2.5681

— DominantPole——————————————————

Dominant Pole PID

Setpoint Weighting———————
-

Step Response

Rise Time (sec) = 1.7956
Settling Time (sec) = 8.3648
Overshoot (%) = 14.5778

— Ziegler Nichols—————————————————————

Settling Time (sec) = 4.8225
Overshoot (%) = 15.3666

Ziegler Nichols PID ® Pole Placement
3 Dominant Pole il

Rise Time (sec) = 0.4074 g Ziegler Nichols

Hodified Ziegler Nichols
Settling Time (sec) = 57294 e e
Overshoot (%) = 353135 Il
— Modified Ziegler Nichols—————
Modified Ziegler Nichols PID fil
: - - ¥ L 1 1 L

Rise Time (sec) = 0.98966 0»20 = P T 5 v

Time (seconds) e
irection

(D) Gee] 5

Figure 19 Set Point Weighting with Step Response with b=0.5 and c=0
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— Contr

e

— Pole

Settling Time (sec) = 55168

Pole Placement PID

Rise Time (sec) = 3.2701

Overshoot (%) = 0.38162

— DominantPole———————————— |

Settling Time (sec) =

Dominant Pole PID

Rise Time (sec) = 22174
6.909
Overshoot (%) = 10.3496

Ziegler Nichols——————————————————————

Ziegler Nichols PID

Rise Time (sec) = 0.56781
Settling Time (sec) = 5.116

Overshoot (%) = 16.6851

Modified Ziegler Nichols-

Modified Ziegler Nichols PID

Rise Time (sec)= 1.3634
Settling Time (sec) = 3.8399
Overshoot (%)= 7.3584

Amplitude

Setpoint Weighting

b=

(=

-
z

:_ /\. /”“\/’: e

/ N/ ,

Step Response
T

T
Pole Placement
Dominant Pole

Ziegler Nichols

Modified Ziegler Nichols

|

L |

Time (seconds)

12 14

— Direction——————————

Figure 20 Set Point Weighting with Step Response with b=0 and ¢c=0

A table statics can be obtained from above figures.

Pole Placement Dominant Ziegler Modified Ziegler
Pole Nichols Nichols
b=1, c=0 19.45% 30.54% 77.06% 41.64%
b=0.5, c=0 2.57% 14.58% 35.31% 15.37%
b=0, c=0 0.38% 10.35% 16.69% 7.36%

Table 2 Table of Percentage of Overshoot with Different b

The table shows clearly about the effect to the percent of overshoot with the changing

of b. The overshoot for the system is the smallest when b = 0, while the overshoot of

the system is the largest when b =1. The percent of overshoot is increasing when the b

in the proportional part is increasing.




The c is normally zero in order to avoid large transients when a sudden change

happened in the setpoint.

Step 6: Filter

The following figures are the figures after adding the filter in the controller. Later on,

there is another example to test how the filter work with a more zeros than a more

poles situation.

— Control

— Pole

Pole Placement PID
Rise Time (sec) = 26156
Settling Time (sec)= 3.9716

Overshoot (%) = 1.296

— Dominant Pole-
Dominant Pole PID
Rise Time (sec) = 1.9054
Settling Time (sec)= 6.2113
Overshoot (%) = 11.3436

— Ziegler Nichols
Ziegler Nichols PID

Rise Time (sec) = 0.36281

Settling Time (sec) = 4.7553

Overshoot (%) = 29.7727

— Modified Ziegler Nichols
Modified Ziegler Nichols PID
Rise Time (sec) = 1.0232
Settling Time (sec) = 3.3037
Overshoot (%) = 8.5809

Amplitude

— Fitter—

20

Step
Bode CL

Bode OL

Step Response
T

T
Pole Placement
Dominant Pole

Ziegler Nichols
Modified Ziegler Nichols

Time (seconds)

10 12

— Direction

< MENU Simulation

Figure 21 Filter with Step Response
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— Controlle

Foe T — Fitter-
Pole Placement PID
’ 5 Step
Rise Time (sec)= 26156 |
Settling Time (sec) = 3.9716 n=20 Bode CL

Overshoot (%)= 1.296 Bode OL

— Dominant Pole-
| Dominant Pole PID Bode Diagram

Rise Time (sec) = 1.9054

Settling Time (sec) = 6.2113

g 20f ~ |
Overshoot (%) = 11.3436 g B
-
— Ziegler Nichols. Y 50|
Ziegler Nichols PID -80 |
Rise Time (sec) = 0.36281 ;ﬂ:g
Settling Time (sec) = 4.7553 m
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— Modified Ziegler Nichols —————

Modified Ziegler Nichols PID

Phase (deg)
g
T

Rise Time (sec) =  1.0232 0 - ks = 5
10 10 107 10 10 10
Settling Time (sec) = 3.3037 Frequency (radis) e
Overshoot (%) = 8.5809 ’7 < | [ wew Simulation

Figure 22 Filter with Closed-loop Bode Diagram

— Controlle
e Fiter
Pole Placement PID
Ste,
Rise Time (sec)= 2.6156 B
Settling Time (sec) =  3.9716 n=120 Bode CL
Overshoot (%)= 1.296 Bode OL
— Dominant Pole-
Dominant Pole PID Bode Diagram
Rise Time (sec) = 1.9054
Settling Time (sec)= 6.2113 &
g
Overshoot (%) = 11.3436 g
2
— Ziegler Nichols. 2
Ziegler Nichols PID
Rise Time (sec) = 0.36281 o : : - ‘ '
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Settling Time (sec) 25| el I
Overshoot (%) = 29.7727 g 180 Ziegler Nichols |
= Modified Ziegler Nichols
— Modified Ziegler Nichols———— é 135
Modified Ziegler Nichols PID 90 -
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Figure 23 Filter with Open-loop Bode Diagram

Step 7 Simulation

The last step of the design process is the simulation, which is showed as following.



Pcle Placement FID

M

Step Pole Placement PID Gff

plant_Approximated

LTl System1
Pole Placement PID

Dominant Fole PID

In1  Outt

Step1 Dominant Pole PID Gff

Ziegler Nichels PID

In1  Outt

Step2  Zielger Nichok PID Gff

Medified Ziegler Nichols PID

In1  Outt

Step2 McodifiedZielger Nichols PID Gff1

plant_Approximsted

LTl System2
Dominant Pole PID

tOutt  In1

plant_Approximsated

LTI System3
Ziegler Nichols FID

tOutt  Int

plant_Approximatsd

LTI System4
Modified Ziegler Nichols PID1

tOutt  Int

Scoped

Figure 24 Simulation in example 2

Figure 25 Simulation Result in example 2
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Example 2

In order to test the effect of the filter, an example is given by:

_354+353+652+6s+3

"~ s%4+3s343s2+43s+1

The steps in design platform is exactly the same as example 1. The step 2 figure is

showed as following.

— Plant-

b1 b2..bn = 36633 o
ala2 _an= 13331 ex134
Original_Plant = Approxi_Plant =

35 +6s'3+652+3s+3 3s"2-0.5455s + 1.753

s'4+3s'3+35"2+3s5+1 s'2+0.4251s +0.7127

Step Response

T T
Original Plant
Approximated Plant

Approximation Measure

Hankel Singular Values (State Contributions)

Error Statics

Ampltude

2
Hankel Singular Value

State Energy

State Energy

State
Hankel Singular Values (State Contributions)

tate

—Error

Rising Time 0 0.24884 -0.24884
Settling Time 18.9952 18.6291 0.36611
Peak 9.3493 24852 -15.5026

Original Plant ~ Approxi Plant ~ Differences

Cost Function CF = -6.1659

Time (seconds)

- Direction.

Figure 26 Plant Approximation in example 3

The step 5 setpoint weight after the design process is showed below.

The open loop bode diagram is
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— Controlle
— Pole Setpoint Weighting———————

(=]
Rise Time (sec) = 2.4893 B=| 05 :
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Ziegler Nichols
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Settling Time (sec) = 99.65 Frequency (rad/s) e on
Orershoot(9)= 0

Figure 27 System Open-loop Bode Diagram without Filter

The slope of the open loop bode diagram is positive and increases in high frequency.
That means when a high frequency noise is introduced in the system, the system will
keep amplifying the high frequency. This can cause the devise damage or the
saturation which makes the controller workless. Therefore, it is important to

implement the derivative term as

sk
1+—
( 'p1)

The poles added in the derivative term in the controller thus can limited the high

frequency noise to avoid the difficulty.

The Bode Diagram of the open loop diagram with the controller in a filter is presented

as below.
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Figure 28 Open-loop Bode Diagram with Filter

The step response of the closed loop system with a PID controller with a filter is

showed as following.
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Figure 29 Step Response of the Closed-loop System with Filter
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Compare the step response of the process in the platform and the result of the

simulation as following.

Pcle Placement PID

W + plant_Approximated » D
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Figure 30 Simulation Structure
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Figure 31 Step Response in the Platform

Figure 32 Test Result of the Simulation

The result of the platform and the simulation are the same.
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Chapter 5 Summary and Future work

5.1 Summary

As mentioned in the abstract section, the primary objective of this project was to
combining the controller tuning methodologies and the using soft computing
methodologies to create an easy-to-use interface of PID controller design platform
which designs the most widely used controller in industrial within four different
tuning methods. In addition, designing a platform for control engineer is kept in mind
when designing this Matlab platform. The majority of the project has been fulfilled in
the task. The approximation step reduces the high order model to a second order plant
model. This step has many benefit to the controller design process. Using a smaller
order model can speed up the simulation process and reduce the control law

complexity by keeping the major characteristic of the original high order plant.

The platform performs the designing of the four kind’s different PID controller based
on the information from the approximation model and the requested objective
specification. The set point weighting and filter will be designed and added into the
PID controller to adjust the controller in order to have a better system responses in
terms of rise time, settling time, percent of overshoot, load disturbance and
measurement noise. There is another way to test the PID controller which is the
simulation. In addition, simulation is a way to add a devices or noise into the system.

It is appropriate to have another method to test the PID controller in a different aspect.
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5.2 Future work

There are several work can be considered to improve in the future.

1. Plant uncertainties. Plants are sometimes have uncertainties parameters. Add on
the plant uncertainties will provide more information about the plant and design a
better PID controller based on the plant uncertainties.

2. Design PIDs according to load disturbance or measurement noise. This will give a
better controller design to meet the specification such as the load disturbance and
the measurement noise.

3. A better measurement of the approximation or even a better error measurement
method. One possibility is look at the controllability and the observability of the
plant and figure out how much differences are the original plant and the
approximated plant according to the controllability and observability.

4. Design which tuning method could work with the plant and which cannot at the
beginning of the controller designing platform.

5. More different controller specifications. A good design method should take a
number of different specifications into account in a balanced way.

6. Simulation with noise and disturbance. As said above, simulation is great to test
the PID controllers. The users can update or add more noise or change to different
devices as they want. It is also great to have the simulation initially with noise and

disturbances.
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7. How the set point weighting will affect the system when load disturbances and the

measurement noise are introduced into the system.
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