Sections 4 and 5 - Properties and Conditions of Special Parallelograms

When you are given a parallelogram with certain properties, you can use those properties to determine if a parallelogram is a \qquad , \qquad or \qquad .

Rectangle $A B C D$

Square $A B C D$

Rectangles, rhombuses, and squares are sometimes referred to as special parallelograms.

Use your quadrilaterals page to complete the following:

Properties of Rectangles:

If a quadrilateral is a rectangle, then it is a \qquad parallelogram .

If a parallelogram is a rectangle, then \qquad

Since a rectangle is a parallelogram, a rectangle "inherits" all the properties of parallelograms.

Properties of Rhombuses:

A rhombus is a quadrilateral with four congruent sides
If a quadrilateral is a rhombus, then it is a parallelogram with one pair of consecutive sides congruent

If a parallelogram is a rhombus, then

- Its diagonals are perpendicular.

- Each diagonal bisects a pair of opposite angles

Like a rectangle, a rhombus is a parallelogram. So you can

$\overline{A C} \perp \overline{B D}$ apply the properties of parallelograms to rhombuses.

four congruent sides

 A square is a \qquad parallelogram , a\qquad
rectangle , and a \qquad rhombus . So a square has the properties of all three.

```
A woodworker constructs a rectangular picture frame so that \(J K=50 \mathrm{~cm}\) and \(J L=86 \mathrm{~cm}\). Find \(H M\).
```



```
\[
\begin{aligned}
& \overline{K M} \cong \overline{J L} \\
& K M=J L=86 \\
& H M=\frac{1}{2} K M \\
& H M=\frac{1}{2}(86)=43 \mathrm{~cm} \\
& \hline
\end{aligned}
\]
```

Determine whether each statement is always (A), sometimes (S) or never (N) true.

- A rhombus is a square. \qquad
- A rectangle is a parallelogram.
- The legs of a trapezoid are congruent. \qquad
- A square is a trapezoid. \qquad
- In a rhombus, opposite angles are \cong. \qquad
$T V W X$ is a rhombus. Find $T V$.
$W V=X T$
$13 b-9=3 b+4$
$10 b=13$
$b=1.3$
$T V=X T$
$T V=3 b+4$
$=3(1.3)+4=7.9$

$K L M N$ is a rhombus. Find each measure.
KL
$L M=M N$
$3 x+4=x+20$
$2 x=16$
$x=8$
$K L=L M=M N=28$
$m \angle M N K$

$$
9 y=90^{\circ}
$$

$$
y=10
$$

$m \angle L N K=m \angle L N M$ and
$m \angle M N K=m \angle L N K+m \angle L N M$
$m \angle M N K=2 y+5+2 y+5$
$m \angle M N K=2(10)+5+2(10)+5=50$

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.
Given: EF $\cong F G$ and
EG \perp FH
Conclusion: EFGH is a rhombus
The conclusion is not valid. If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus. If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. To apply either theorem, you must first know that $A B C D$ is a parallelogram.

Determine if the conclusion is valid.
If not, tell what additional information is needed to make it valid.
Given: $\overline{\boldsymbol{E B}} \cong \overline{\boldsymbol{B G}}, \overline{\boldsymbol{F B}} \cong \overline{\boldsymbol{B H}}, \overline{\boldsymbol{E G}} \cong \overline{\boldsymbol{F H}}$, $\Delta \mathrm{EBF} \cong \Delta \mathrm{EBH}$
Conclusion: EFGH is a square

- $\overline{E B} \cong \overline{B G}, \overline{F B} \cong \overline{B H}$, so EFGH is a parallelogram
- $\overline{\boldsymbol{E G}} \cong \overline{\boldsymbol{F H}}$ so EFGH is a rectangle

- $\overline{\boldsymbol{E F}} \cong \overline{\boldsymbol{E H}}$ because $\triangle \mathbf{E B F} \cong \triangle \mathbf{E B H}$
- EFGH is a rhombus because it is a parallelogram with one pair of consecutive sides \cong.
- EFGH is a rectangle and a rhombus therefore it has four right angles and four congruent sides so it is a square.

Given that $\mathrm{AB}=\mathrm{BC}=\mathbf{C D}=\mathrm{DA}$, what additional information is needed to conclude that ABCD is a square?
$\overline{A C} \cong \overline{B D}$

- What would you have to change in a rectangle to make it a square?
All 4 sides would have to be congruent.

