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STABILIZED SPARSE SCALING ALGORITHMS FOR ENTROPY REGULARIZED
TRANSPORT PROBLEMS

BERNHARD SCHMITZER

Abstract. Scaling algorithms for entropic transport-type problems have become a very popular numerical method,
encompassing Wasserstein barycenters, multi-marginal problems, gradient flows and unbalanced transport. However, a
standard implementation of the scaling algorithm has several numerical limitations: the scaling factors diverge and con-
vergence becomes impractically slow as the entropy regularization approaches zero. Moreover, handling the dense kernel
matrix becomes unfeasible for large problems. To address this, we combine several modifications: A log-domain stabilized
formulation, the well-known e-scaling heuristic, an adaptive truncation of the kernel and a coarse-to-fine scheme. This
permits the solution of larger problems with smaller regularization and negligible truncation error. A new convergence
analysis of the Sinkhorn algorithm is developed, working towards a better understanding of e-scaling. Numerical examples
illustrate efficiency and versatility of the modified algorithm.

1. Introduction.

1.1. Motivation and Related Work.

Applications of Optimal Transport. Optimal transport (OT) is a classical optimization problem dat-
ing back to the seminal work of Monge and Kantorovich (see monographs [47, 39] for introduction and
historical context). The induced Wasserstein distances lift a metric from a ‘base’ space (X, d) to proba-
bility measures over X. This is a powerful analytical tool, for example to study PDEs as gradient flows in
Wasserstein space [24, 3]. With the increase of computational resources, OT has also become a popular
numerical tool in image processing, computer vision and machine learning (e.g. [38, 42, 32, 18, 20]).

Many ideas have been presented to extend Wasserstein distances to general non-negative measures.
We refer to [26, 13, 31, 15] and references therein for some context. A transport-type distance for general
multi-channel signals is proposed in [46].

Computational Optimal Transport. To this day, the computational effort to solve OT problems re-
mains the principal bottleneck in many applications. In particular large problems, or even multi-marginal
problems, remain challenging both in terms of runtime and memory demand.

For the linear assignment problem and discrete transport problems there are (combinatorial) al-
gorithms based on the finite dimensional linear programming formulation by Kantorovich, such as the
Hungarian method [28], the auction algorithm [9], the network simplex [2] and more [22]. Typically,
they work for (almost) arbitrary cost functions, but do not scale well for large, dense problems. On
the other hand, there are more geometric solvers, relying on the polar decomposition [11], that tend to
be more efficient. There is the famous fluid dynamic formulation by Benamou and Brenier [5], explicit
computation of the polar decomposition [23], semi-discrete solvers [34, 30], and solvers of the Monge-
Ampére equation [8, 7] among many others. However, these only work on very specific cost functions,
most notably the squared Euclidean distance. In a compromise between efficiency and flexibility, several
discrete coarse-to-fine solvers have been proposed that adaptively select sparse sub-problems [41, 35, 40].

Entropy Regularization for Optimal Transport. In [27] entropy regularization of the linear assignment
problem is considered to allow application of smooth optimization techniques or the Sinkhorn matrix scal-
ing algorithm [44]. For sufficiently small regularization the true optimal assignment can be extracted from
the approximate solution. For increased numerical stability, the Sinkhorn algorithm is also reformulated
in the log-domain. Similarly, in [17] the Sinkhorn algorithm is applied to solve an entropy regularized
approximation of the discrete optimal transport problem. It is demonstrated that for moderate regular-
ization strengths the algorithm is trivial to parallelize, easy to implement on GPUs and fast. Besides,
it is shown that moderate regularization can actually be beneficial for classification applications. Regu-
larization also makes the optimization problem more well-behaved (e.g. uniqueness of optimal coupling,
optimal objective differentiable as function of marginal distributions), which led to the first practical
numerical method for approximate computation of Wasserstein barycenters [19]. Today, this approach is
widely used, for instance [45, 37, 46, 33].

More recently, the Sinkhorn algorithm has been extended to more general transport-type problems,
such as multi-marginal problems and direct computation of Wasserstein barycenters [6], gradient flows [36]
and unbalanced transport problems [14], resulting in a family of Sinkhorn-like diagonal scaling algorithms.

Convergence of the discrete regularized problem towards the unregularized limit is studied in [16].

1



In a continuous setting, this is related to the Schrédinger problem and the lazy gas experiment (see [29]
for a review and a very general convergence proof). [12] provides a simpler and direct analysis for the
2-Wasserstein distance on R? and studies the limit of entropy regularized gradient flows.

Convergence Speed of Sinkhorn Algorithm. In [21] the convergence rate of the Sinkhorn algorithm is
studied for positive kernel matrices, yielding a global linear convergence rate of the marginals in terms of
Hilbert’s projective metric. However, applied to entropy regularized optimal transport, the contraction
factor tends to one exponentially, as the regularization approaches zero. Thus, running the algorithm with
this particular measure of convergence is often not practically feasible. In [25] the local convergence rate
of the Sinkhorn algorithm near the solution is examined, based on a linearization of the iterations. This
bound is tighter and more accurately describes the behaviour of the algorithm close to convergence. But
these estimates do not apply when one starts far from the optimal solution, which is the usual case for small
regularization parameters. In [27] a comparison is made between the Sinkhorn algorithm and the auction
algorithm. In particular the role of the entropy regularization parameter is related to the slack parameter
€ of the auction algorithm and it is pointed out that convergence of both algorithms becomes slower, as
these parameters approach zero (but small parameters are required for good approximate solutions). For
the auction algorithm this can provably be remedied by e-scaling, where the € parameter is gradually
decreased during optimization. Analogously, it is suggested to gradually decrease entropy regularization
during the Sinkhorn algorithm to accelerate optimization. Consequently, in the following we will also
refer to the entropy regularization parameter as € and to the gradual reduction scheme as e-scaling. The
ideas of [27] are refined in [43]. In particular, the latter proves convergence of a modified algorithm with
‘deformed iterations’ where ¢ is gradually decreased during the iterations, similar to e-scaling. They
show that the primal iterate converges to the unregularized solution if the decrease is sufficiently slow.
Unfortunately, the number of iterations to reach a given value of ¢ increases exponentially, as ¢ decreases.
Thus it is “mostly interesting from the theoretical point of view” [43, p. §|.

Limitations of Entropic Transport. Despite its considerable merits, there are some fundamental con-
straints to the naive entropy regularization approach. Entropy introduces some blur in the optimal
assignment. While this may sometimes be beneficial (see above), in many applications it is considered
a nuisance (e.g. it quickly smears distinct features in gradient flows), and one would like to run the
scaling algorithm with as little regularization as possible. However, a standard implementation has some
major numerical limitations, becoming increasingly severe as the regularization approaches zero. The
diagonal scaling factors diverge in the limit of vanishing regularization, leading to numerical overflow
and instabilities. Moreover, the algorithm requires an increasing number of iterations to converge. In
practice this can often be remedied by e-scaling, but its efficiency is not yet well understood theoretically.
Therefore, numerically this limit is difficult to reach. In addition, naively storing the dense kernel matrix
requires just as much memory as storing the full cost matrix in standard linear programming solvers
and multiplications with the kernel matrix become increasingly slow. Thus, effective heuristics to avoid
storing of, and multiplication by, the dense kernel matrix have been conceived, such as efficient Gaussian
convolutions or approximation by a pre-factored heat kernel [45]. However, these remedies only work for
particular (although relevant) problems, and do not solve the issues of blur and diverging scaling factors.

1.2. Contribution and Outline. In Section 2 we recall the framework for transport-type problems
and corresponding scaling algorithms for their entropy regularized counterparts, as put forward in [14].
The main contributions of this article are twofold: In Section 3 we propose to combine four modifications
of the Sinkhorn algorithm to address issues with numerical instability, slow convergence and large kernel
matrices. In Section 4 a new convergence analysis for the Sinkhorn algorithm is derived, based on an
analogy to the auction algorithm. The two sections can be read independently from each other. The
modifications used in Section 3 are:

e Section 3.1: A log-domain stabilization of the Sinkhorn algorithm, as described in [14]. It allows
to numerically run the algorithm at small regularizations while largely retaining the simple matrix
scaling structure.

e Section 3.2: The well-known e-scaling heuristic, to reduce the number of required iterations.

e Section 3.3: Sparsification of the kernel matrix by adaptive truncation, to reduce memory demand
and accelerate iterations. We quantify the error induced by truncation and propose a truncation
scheme which reliably yields small error bounds that are easy to evaluate. While truncation has
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been proposed elsewhere (e.g. [33]), to the best of our knowledge the present article gives the
first concrete bounds for the inflicted error.

e Section 3.4: A multi-scale scheme, inspired, for instance, by [41, 40, 35]. This serves two purposes:
First, it allows for a more efficient computation of the truncated kernel. Second, we propose to
combine the coarse-to-fine approach with simultaneous e-scaling, which drastically reduces the
number of variables during early stages of e-scaling, without losing significant precision.

We emphasize that each modification builds on the previous ones (see Remark 10) and only combining
all four leads to an algorithm that can solve large problems with significantly less runtime, memory and
regularization, as compared to the naive algorithm. The adaptations extend to the more general scaling
algorithms for transport-type problems presented in [14].

In Section 4 we develop a new convergence analysis of the Sinkhorn algorithm, based on analogy to
the auction algorithm, different from the Hilbert metric approach of [21]. The structure of Section 4 is:
e Section 4.1: The classical auction algorithm for the linear assignment problem is recalled.

e Section 4.2: A slightly modified asymmetric variant of the Sinkhorn algorithm is given and a
bound is derived for the number of iterations until a prescribed accuracy is reached. As for the
auction algorithm, for fixed ¢ the maximal number of iterations scales as O(1/e). This is in
good agreement with numerical experiments (cf. Section 5.2). To avoid the difficulties with slow
convergence in Hilbert’s projective metric (cf. Section 1.1) we choose a weaker, but reasonable,
measure of convergence (cf. Remark 5).

e Section 4.3: We prove stability of optimal dual solutions of entropy regularized OT under changes
of the regularization parameter. This also implies stability of dual solutions in the limit of
vanishing regularization and therefore complements results of [16] (see also Remark 7).

e Section /.4: Our eventual goal is a better theoretical understanding of the e-scaling heuristic and
its efficiency. We show that the above stability result is an important step and discuss missing
steps for a full proof. To our knowledge (with the exception of [43], see above), these are the first
theoretical results towards e-scaling for the Sinkhorn algorithm.

Numerical experiments confirm the efficiency of the modified algorithm (Section 5.2). Examples for
unbalanced optimal transport, barycenters, and Wasserstein gradient flows illustrate that the modified
algorithms retain the versatility of the diagonal scaling algorithms presented in [6, 36, 14| (Section 5.3).

1.3. Notation and Preliminaries. We assume that the reader has a basic knowledge of convex
optimization, such as convex conjugation, Fenchel-Rockafellar duality and primal-dual gaps (cf. [4]).

Throughout this article, we will consider transport problems between two discrete finite spaces X
and Y. For a discrete, finite space Z (typically X, Y or X xY) we identify functions and measures over Z
with vectors in RI4!, which we simply denote by RZ. For v € R?, z € Z we write v(z) for the component
of v corresponding to z (subscript notation is reserved for other purposes). The standard Euclidean inner
product is denoted by (-,-). The sets of vectors with positive and strictly positive entries are denoted by
RZ and R%, . The probability simplex over Z is denoted by P(Z). We write R := R U {—o00, +o0} for
the extended real line and RZ for the space of vectors with possibly infinite components.

For a, b € RZ the operators ® and @ denote pointwise multiplication and division, e.g. a ® b € RZ,
(a®b)(2) := a(z)-b(z) for z € Z. The functions exp and log are extended to RZ by pointwise application
to all components: exp(a)(z) := exp(a(z)). We write a > bif a(z) > b(z) forall z€ Z,a > 0if a(z) >0
for all z € Z (and likewise for <, > and <). For a € R, az denotes the vector in R? with all entries
being a. We write maxa and mina for the maximal and minimal entry of a.

For 1 € RZ and a subset A C Z we also use the notation p(A) := Y, , pu(2), analogous to measures.
We say p € R is absolutely continuous w.r.t. v € RZ and write u < v when [v(z) = 0] = [u(z) = 0].
This is the discrete special case of absolute continuity for measures. The set sptu:={z € Z : u(z) # 0}
is called support of . The power set of Z is denoted by 22.

For a subset C C RZ the indicator function of C over RZ is given by t¢(v) = 0 if v € C and +oo else.
In particular, for v, w € R? one finds t{v}(w) = 0 if v = w and +o0 otherwise. Moreover, we merely write
ty for tpz . For v e RZ we introduce the short notation t<, : R — R with t<,(w) = 0 if w(z) < v(z) for
all z € Z and +oo otherwise.



The projection matrices Px € R¥X*(XXY) and Py € RY*(XXY) are given by

1 ifx=2a, 1 ify=4y,
0 else.

Py (y’ (.73/, y/)) :

0 else.

PX(x’ (x/’y/)) = {

They act on some 7 € RX*Y as follows:

(Pxm)(@) = Y mw(z,y) = n({z} x Y), (Py m)(y) = Y mlz,y) = m(X x {y}).

yey zeX

That is, they give the X and Y marginal in the sense of measures. Conversely, for some v € RX, w € RY
we find (Pxv)(x,y) = v(z) and (Pyw)(z,y) = w(y).

DEFINITION 1 (Kullback-Leibler Divergence). For u, v € R? the Kullback-Leibler divergence of u
w.r.t. v is given by

b k| SO0 D0 nzone

400 else.

The convex conjugate w.r.t. the first argument is given by KL*(alv) = >, ., (exp(a(z)) — 1) - v(2). The
KL divergence plays a central role in this article and is used on various different base spaces. Sometimes,
when referring to the KL divergence on a space Z, we will add a subscript KLy for clarification.

DEFINITION 2 (KL Proximal Step). For a convex, lower semicontinuous function f : R — R and
a step size T > 0 the prozimal step operator for the Kullback—Leibler divergence is given by

(1.2) prox . f R?Z - RZ, p > argmin (L KL(v|p) + f(v)) .
veERZ

A unique minimizer exists, if there is some v € R?, v < p such that f(v) # doo. Throughout this article
we shall always assume that this is the case.

For Sect. 4 we require the following Lemma.

LEMMA 3 (Softmax and Softmin). For a parameter ¢ > 0 and a € RZ let

z€Z z2€Z

softmax(a, €) := ¢ log (Z exp(a(z)/a)) , softmin(a, ) := —¢ log <Z exp(—a(z)/€)> .

Fore, A\ >0 and a, b € R? one has the relations

(1.3a) max(a) < softmax(a, ) < max(a) + ¢ log|Z|,
(1.3b) min(a) — € log | Z] < softmin(a, &) < min(a),
(1.3c) min(a — b) — A log|Z| < softmax(a,e) — softmax(b, A) < max(a — b) + ¢ log |Z|,
(1.3d) min(a — b) — € log|Z| < softmin(a, ) — softmin(b, A) < max(a — b) + A log|Z|.

Proof. The first line follows immediately from 0 < exp(a(z)/e) < exp(maxa/e). Line three then
follows from min(a — b) < max(a) — max(b) < max(a — b). The second and fourth line are implied by
softmin(a, ) = — softmax(—a, €). O

2. Entropy Regularized Transport-Type Problems and Diagonal Scaling Algorithms.

2.1. Transport-Type Problems. For two probability measures p € P(X) and v € P(Y) the set
M(p,v) :={m e P(X xY): Pxm = pu,Pym=v}is called the couplings or transport plans between
and v. A coupling 7 describes a rearrangement of the mass of p into v, w(x,y) can be interpreted as the
mass taken from x to y. Let ¢ € RX*Y be a cost function, such that the cost of taking one unit of mass
from z € X to y € Y is given by ¢(x,y). The cost inflicted by a coupling 7 is then given by (¢, 7) and
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the optimal transport problem between p and v is given by min{({c, 7) |7 € II(u,v)}. This means, we are
looking for the most cost-efficient mass rearrangement between p and v. Note that for 7 € R¥*Y one
can write try(y,.)(7) = t{uy (Px ™) + ¢} (Py 7) + ¢4 (7) where the first two terms represent the marginal
constraints and the last term ensures that 7 is non-negative. Then we can reformulate the problem as
(2.1) ﬂer]g)i(nxy tiy(Px ) + 1y (Py m) + (e, m) + 14 (7).

Recently it has been proposed to replace the constraints Px7m = p and Py = v by soft constraints.
This allows meaningful comparison between measures of different total mass. Such formulations were
studied e.g. in [31] (see also [14] for more context). A particularly relevant choice for the soft constraints
is the Kullback—Leibler divergence. A corresponding ‘unbalanced’ transport problem is given by
(2.2) min A KL(Px w|u) + A - KL(Py 7|v) + (¢, 7) + ¢4 (7).

WERX XY
where A > 0 is a weighting parameter. Note that neither y, v nor m need to be probability measures in
this case and each may have different total mass.

When X =Y is a metric space with metric d, for A = 1 and the cost function ¢ = d?, the square
root of the optimal value of (2.2) yields the so called Gaussian Hellinger-Kantorovich (GHK) distance
on RY, introduced in [31]. Similarly, for the cost function

—log ([cos(d(m,y))P) if d(z,y) < m/2
400 else.

(2.3) c(z,y) = {

one obtains the Wasserstein-Fisher-Rao (WFR) distance (or Hellinger-Kantorovich distance), introduced
independently and simultaneously in [26, 13, 31]. WFR is the length distance induced by GHK [31].
Problems (2.1) and (2.2) share a common structure: in both we optimize over non-negative measures
7 on the product space X x Y, there is a linear cost term (¢, 7) and two functions act on the marginals of
m. They are prototypical examples of a family of transport-type optimization problems with a common
functional structure that was introduced in [14]. The general structure is given in the following definition.

~ DErFINITION 4 (Generic Transport-Type Problem). For two convex marginal functions Fx : RX —
R, Fy : RY — R and a cost function ¢ € RX*Y the primal transport-type problem is given by:

(2.4a) min  E(n) with E(r) = Fx(Px 7))+ Fy(Py m) 4+ (¢, m) + ¢t ()

TERX XY

The corresponding dual problem is given by:

(24b) omax  J@B) with  J(e )= —Fi(-a) - F(-B) ~ izc(Px a + Py B)

The indicator function LSC(P)T( o+ P; B) denotes the classical optimal transport dual constraint a(x) +
B(y) < c(z,y) for all (z,y) € X XY (see Section 1.3).

This family also covers Wasserstein gradient flows and the structure can be extended to multiple
couplings to describe barycenter and multi-marginal problems (see [6, 14] for details). As indicated, the
standard optimal transport problem (2.1) is obtained as a special case.

DEFINITION 5 (Standard Optimal Transport). Problem (2.1) is a special case of Def. 4 with Fx :=
t{uy and Fy := g,y The primal and dual functional are given by:

(2.5a) E(m) = 1{uy(Px ™) + 1y (Py ) + (e, m) 4 ¢4 (7)
(2.5b) (@, B) = (a,p) + (B, v) = 1<c(Px a+ Py )
Likewise, we can proceed for the unbalanced transport problem (2.2).

DEFINITION 6 (Unbalanced Optimal Transport with KL Fidelity). Problem (2.2) is a special case
of Def. 4 with Fx := XA+ KL(:|u) and Fy := X -KL(:|v). The primal and dual functional are given by:

(2.6) E(m) =X-KL(Px 7|p) + A - KL(Py 7|v) + (¢, 7) + ()

(2.7) J(@,f) = =A-KL*(=a/A) = A- KL*(=/)) = t<c(Px a + Py 5)
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2.2. Entropy Regularization and Diagonal Scaling Algorithms. Now we apply entropy reg-
ularization to the above transport-type problems (see Sect. 1.1 for references) and replace the non-
negativity constraint in (2.4a) by the Kullback—Leibler divergence. For this we need to select some
reference measure p € RE Y. We then replace the term ¢4 (7) in (2.4a) by ¢ - KL(r|p), where ¢ > 0 is a
regularization parameter. Then one typically ‘pulls’ the linear cost term into the KL divergence:

(c,m)+¢e KL(n|p) = KL(n|K) + e (p(X xY) — K(X xY))
(2.8) where K € RY*Y with K (z,y) = exp(—c(z,y)/e) - p(z,y) .

with the convention exp(—oo) = 0. K is called the kernel associated with ¢ and the regularization
parameter €. For convenience we formally introduce the function

(2.9) getK : Ry, — RX*Y, e exp(—c/e) @p.
We obtain the regularized equivalent to Def. 4.

DEFINITION 7 (Regularized Generic Formulation).

(2.10a) min E(m) with E(rn):= Fx(Px7) + Fy (Pyn) + ¢ KL(n|K)
7T€]R+><

. L * * * T T
(2100)  max  J(f)  with J(,f) = ~Fi(~a) = F(-f) - KL ([PXOH—Pyﬁ]/e]K)

Primal optimizers ©t have the form

(2.11) 7! = diag(exp(a'/e)) K diag(exp(8T/¢))

where (af, BY) are dual optimizers. Conversely, for dual optimizers (af, %), 71 constructed as above is
primal optimal [1/].

Intuitively we see the relation between (2.4) and (2.10) as e — 0. For example, the term & KL* ([P}a +

P;B]/efK) in (2.10b) can be interpreted as a smooth barrier function for the dual constraint P a+Py. 8 <
¢ in (2.4b). We refer to Sect. 1.1 for references to rigorous convergence results.

Under suitable assumptions problem (2.10b) can be solved by alternating optimization in « and g
(see [14] for details). For fixed §, consider the KL*-term:

KLy (IPka+Pya)/z[K) =KLk (a/elK exp(8/e) + > K(w,y) (exp(B(y)/e) —1).
(z,y)EX XY

Note that the last term is constant w.r.t. a.. Therefore, optimizing (2.10b) over «, for fixed 8 corresponds
to maximizing

(2.12) JIx(a) = —Fx(-a) —e KLy (o/e|K exp(B/e)),

where K exp(f/e) denotes standard matrix vector multiplication. The corresponding primal problem
consists of minimizing

(2.13) Ex(0) = Fx(o) +¢e KLx(0|K exp(8/¢)) .

This is a proximal step of Fx for the KL divergence with step size 1/¢ (see Def. 2). So, by using the
PD-optimality conditions between (2.12) and (2.13) (see e.g. [4, Thm. 19.1]), for a given f the primal
optimizer of of (2.13) and the dual optimizer af of (2.12) are given by

(2.14) ol = prox.Fx (K exp(8/e)), af =elog(of @ (K exp(B/e))),

Analogously, optimization w.r.t. 8 for fixed « is related to KL proximal steps of Fy. Starting from some
initial 5(9), we can iterate alternating optimization to obtain a sequence 50, oV, 31 (2 as follows:
(2.15a) oY = ¢ log (prongX(K exp(8Y/e)) o [K exp(,@(e)/e)]) ,

(2.15Db) BUHD = ¢ log (pI‘OXEFy(KT exp(a™V/eN o [KT exp(a(”l)/fz‘)]) .
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The algorithm becomes somewhat simpler when it is formulated in terms of the effective variables

(2.16) u:=exp(a/e), v :=exp(f/e) .

For more convenient notation we introduce the proxdiv operator of a function F' and step size 1/e:
(2.17) proxdiv_F : o — prox_ F(c) © o

The iterations then become:

(2.18) w1 = proxdiv_ Fx (K v, v = proxdiv_ Fy (K Tu"tY).

The primal-dual relation (2.11) then becomes 7t = diag(u') K diag(v'), which is why u and v are often

referred to as diagonal scaling factors.

REMARK 1. Throughout this article, we will refer to the arguments of the dual functionals (2.4b) and
(2.10b) as dual variables and denote them with («, 8). The effective, exponentiated variables, introduced
in (2.16), will be denoted by (u,v) and referred to as scaling factors.

For future reference let us state the full scaling algorithm.

ALGORITHM 1 (Scaling Algorithm).
1: function SCALINGALGORITHM (g,0(?))

2 K < getK(e); v+ v // compute kernel, see (2.9); initialize scaling variable
3 repeat

4 u + proxdiv_Fx (K v); v < proxdiv_Fy (K "u)

5 until stopping criterion

6: return (u,v)

7: end function

The stopping criterion is typically a bound on the primal-dual gap between dual iterates (o, ) =
¢ log(u,v) and primal iterate 7 = diag(u) K diag(v), an error bound on the marginals of = (for standard
optimal transport) or a pre-determined number of iterations.

With alternating iterations (2.15) or (2.18) a large family of functionals of form (2.10a) can be
optimized, as long as the KL proximal steps of F'x and Fy can be computed efficiently. A particularly
relevant sub-family is, where F'x and Fy are separable and are a sum of pointwise functions. Then the
KL steps decompose into pointwise one-dimensional KL steps, see [14, Section 3.4] for details.

Since Section 4 focusses on the special case of entropy regularized optimal transport, let us explicitly
state the corresponding functional and iterations.

DEFINITION 8 (Entropic Optimal Transport). — For marginals p € P(X), v € P(Y) and a cost
function ¢ € RX*Y the entropy regularized optimal transport problem is obtained from Def. 7 by setting
Fx := 1, Fy := 1) (see Definition 5 for the unregularized functional). We find:

(2198,) E(ﬂ') :L{M}(PX 7T)+L{,,}(Py 7T)—|—€ KL(T{'|K)

(2.19b) J(a, B) = (a, u) + (B,v) — e KL* ([P;a + P;ﬁ]/E’K)

The prozimal steps of Fx and Fy are trivial (if K has non-empty columns and rows) and we recover the
famous Sinkhorn iterations:

(2.20a) proxdiv, Fx (o) =p@o, proxdiv_Fy (o) =vQo,
(2.20b) W = po (Ko), o) = v o (KTu),

3. Stabilized Sparse Multi-Scale Algorithm. Throughout this section we combine four adap-
tions to the Algorithm 1 to overcome the limitations of a naive implementation outlined in Section 1.1.
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3.1. Log-Domain Stabilization. When running Algorithm 1 with small regularization parameter
€, entries in the kernel K, and the scaling factors w and v may become both very small and very large,
leading to numerical difficulties. However, under suitable conditions (e.g. standard optimal transport,
finite cost function) it can be shown that the optimal dual variables («, /5) remain finite and have a stable
limit as € — 0 ([16], see also Remark 7). In [27, 43] and others it was proposed to formulate the Sinkhorn
iterations directly in terms of the dual variables, instead of the scaling factors. For example, an update
of a would be performed as follows:

(3.1a) D (@, y) = —c(a,y) + B9 w), PV (@,y) = (@) — max T (@,y)
Yy
(3.1b) o (z) = ¢ log u(x) — elog (gexp(i(“”(x, y)/e) - pla, y)) — ma U ()

Subtracting the maximum from ¥¢*+1) avoids large arguments in the exponential function. While this
resolves the issue of extreme scaling factors, it perturbs the simple matrix multiplication structure of the
algorithm and requires many additional evaluations of exp and log in each iteration.

As an alternative, we employ the redundant parametrization of the iterations as proposed in[14]. The
scaling factors (u,v), (2.16), are written as

(3.2) u=1u0Oexp(d/e), v="00exp(B/e).

Our goal is to formulate iterations (2.18) directly in terms of (&, ¥), while keeping (&, ) unchanged during
most iterations. The role of (&, ) is to occasionally ‘absorb’ the large values of (u,v) such that (i, 0)
remain bounded. This leads to two types of iterations: stabilized iterations, during which only (@, )
are changed, and absorption iterations, during which (@, ) are absorbed into (&, ). In this way, we
can combine the simplicity of the scaling algorithm in terms of the scaling factor formulation with the
numerical stability of the iterations in the log-domain formulation (3.1).

Analogous to the function getK, (2.9), we define the stabilized kernel as

(3.3a) getkC : R x RY x Ry, — RXXY, (o, B, €) — diag(exp(a/e)) get K (¢) diag(exp(8/¢)),

(3.3b) [getK(ar, B, 6))(x,y) = exp (= £ [e(w, y) — a(z) = BW)]) - plz,y) -

The second line, (3.3b), should be used for numerical evaluation such that extreme values in (o, §) and
¢ can cancel before exponentiation. Moreover, we introduce a stabilized version of the proxdiv operator:

(3.4) proxdiv_F : (g,v) — prox F(exp(—v/e)o) 0o

Note that the regular version of the proxdiv operator, (2.17), is a special case of the stabilized variant
with v = 0. With K = getK(¢) and K = getK (&, 8, e) we observe that

(3.5a) proxdiv, F(K 9, &) = proxdiv_ F (K v) @ exp(&/e),

(3.5b) proxdiv_F (K", 5) = proxdiv_ F(K " u) @ exp(3/e) .

For a threshold parameter 7 > 0 we formally state the stabilized variant of Algorithm 1.

ALGORITHM 2 (Stabilized Scaling Algorithm).
1: function SCALINGALGORITHMSTABILIZED (g,a(?),5(%))

(&, ) < (&, B) + e -log(@i,0); (@,0) « (1x,1y); K < getK(a,3,e) // absorption iteration
until stopping criterion

2 (& f) « (@9, 80)); (4,0) + (1x,1y); K + getK(d, 3,¢)

3: repeat

4: while [||tlococ < 7] A [|0]lo < 7] do

5: @i + proxdiv_Fx (K 9,d); © + proxdiv,Fy (KT, ) // stabilized iteration
6: end while

7

8..



9:  (&,B) + (&, B) + ¢ - log(ii, D)
10: return (é, ()
11: end function

Any successive combination of stabilized iterations and absorption iterations in Algorithm 2 is math-
ematically equivalent to Algorithm 1, in the sense that they produce the same iterates (keep in mind
(3.2-3.5)). But numerically, with finite floating point precision, combining both types of iterations can
make a significant difference. In practice one can run several stabilized iterations in a row, occasionally
checking whether (@, ?) become too large or too small (see line 4), and perform an absorption iteration
if required. This inflicts less computational overhead than the direct log-domain formulation (3.1) and
largely preserves the simple matrix multiplication structure of the scaling algorithms.

In the definitions for the stabilized kernel, (3.3b), and proxdiv-operator, (3.4), there still appear
exponentials of the form exp(-/¢), which may explode as ¢ — 0. Extending the max-argument trick in
(3.1) to more general scaling algorithms entails similar questions. In the examples studied in Section 5
and those given in [14] we find however, that evaluation of the exponential exp(—v/e) can be avoided.
For the special case of standard optimal transport € no longer appears in the stabilized step.

3.2. e-Scaling. It is empirically and theoretically well-known (cf. Section 1.1) that convergence of
Algorithm 1 becomes slow as € — 0. A popular heuristic remedy is the so-called e-scaling, where one
subsequently solves the regularized problem with gradually decreasing values for e. Let £ = (e1,€9,...,65)
be a list of decreasing positive parameters. We extend Algorithm 2 as follows:

ALGORITHM 3 (Scaling Algorithm with e-Scaling).
1: function SCALINGALGORITHMeSCALING (£,a(9),3(9))

2 (a,f) + (a0, 5)

3: fore €& do // iterate over list, form largest to smallest
4: (, B) + SCALINGALGORITHMSTABILIZED (€,c,(3)

5: end for

6: return («, 3)

7: end function

The dual variable 3 is kept constant while changing e, not the scaling factor v, because the optimal dual
variables («, 8) usually have a stable limit as € — 0, while the scaling factors (u,v) diverge (see Sect. 1.1
and also Theorem 20).

So far, very little is known theoretically about the behaviour of e-scaling for the Sinkhorn algorithm
(cf. Section 1.1). Empirically, it is shown in Sect. 5.2 that e-scaling is highly efficient and the number of
required iterations does not increase exponentially. We observe that in