
OCR
The Open Community Runtime

Interface

Version 1.2.0 (Candidate Release), December, 2016

Editors: Tim Mattson, Romain Cledat

Copyright © 2016 OCR working group.
Permission to copy without fee all or part of this material is granted, provided the OCR working
group copyright notice and the title of this document appear.

This page intentionally left blank

Contents

1 Introduction 1
1.1 Scope . 2

1.2 Version numbers . 3

1.3 Glossary . 3

1.4 OCR objects . 6

1.4.1 Dependences, links and slots . 6

1.4.2 Event Driven Task (EDT) . 8

1.4.3 Events . 9

1.4.4 Data blocks . 10

1.4.5 Object lifetime . 12

1.5 Execution Model . 12

1.6 Memory Model . 16

1.6.1 Definitions . 16

1.6.2 OCR memory model . 17

1.7 Organization of this document . 19

2 The OCR API 20
2.1 OCR core types and macros . 20

2.2 OCR API conventions . 22

2.2.1 Conventions . 22

2.2.2 OCR error codes . 22

2.3 OCR entry point: mainEdt . 25

2.4 Supporting functions . 25

2.4.1 ocrShutdown . 26

i

2.4.2 ocrAbort . 26

2.4.3 getArgc . 27

2.4.4 getArgv . 27

2.4.5 ocrPrintf . 28

2.5 GUID management . 28

2.5.1 ocrGuidIsNull . 29

2.5.2 ocrGuidIsUninitialized . 29

2.5.3 ocrGuidIsError . 30

2.5.4 ocrGuidIsEq . 30

2.5.5 ocrGuidIsLt . 30

2.5.6 Macros for printing GUIDs . 31

2.6 Data block management . 31

2.6.1 ocrDbCreate . 32

2.6.2 ocrDbDestroy . 34

2.6.3 ocrDbRelease . 34

2.6.4 ocrDbDowngradeRelease . 35

2.7 Event Management . 36

2.7.1 ocrEventCreate . 37

2.7.2 ocrEventDestroy . 38

2.7.3 ocrEventSatisfy . 38

2.7.4 ocrEventSatisfySlot . 39

2.8 Task management . 40

2.8.1 ocrEdtTemplateCreate . 41

2.8.2 ocrEdtTemplateDestroy . 42

2.8.3 ocrEdtCreate . 42

2.8.4 ocrEdtDestroy . 44

2.9 Dependence management . 45

2.9.1 ocrAddDependence . 45

A OCR Examples 49
A.1 OCR’s “Hello World!” . 49

A.1.1 Code example . 49

A.2 Expressing a fork-join pattern . 50

A.2.1 Code example . 50

ii OCR – Version 1.2.0 (Candidate release) – December 2016

A.3 Expressing unstructured parallelism . 52

A.3.1 Code example . 52

A.4 Using a Finish EDT . 55

A.4.1 Code example . 55

A.5 Accessing a data block with “Read-Write” Mode 59

A.5.1 Code example . 59

A.6 Accessing a data block with “Exclusive-Write” Mode 61

A.6.1 Code example . 62

A.7 Acquiring contents of a data block as a dependence input 64

A.7.1 Code example . 64

B OCR API Extensions 66
B.1 User specified hints . 67

B.1.1 OCR hint framework . 67

B.1.2 ocrHintInit . 68

B.1.3 ocrHintSetValue . 69

B.1.4 ocrHintUnsetValue . 69

B.1.5 ocrHintGetValue . 69

B.1.6 ocrSetHint . 70

B.1.7 ocrGetHint . 70

B.1.8 Usage scenarios . 71

B.2 Labeled GUIDs . 72

B.2.1 Usage scenarios . 72

B.2.2 API . 73

B.2.3 Other API changes . 75

B.2.4 Other considerations . 76

B.3 Parameterized event creation . 77

B.3.1 Usage scenarios . 77

B.3.2 API . 77

B.3.3 ocrEventCreateParams . 77

B.4 Counted events . 78

B.4.1 API . 79

B.5 Channel events . 79

B.5.1 Usage scenarios . 79

Contents iii

B.5.2 API . 80

B.6 EDT Local Storage . 81

B.6.1 ocrEdtLocalStorageGet . 81

B.7 EDT Query . 82

B.7.1 ocrCurrentEdtGet . 82

B.7.2 ocrCurrentEdtOutputGet . 82

C Implementation Notes 83
C.1 General notes . 83

D OCR Change History 84

iv OCR – Version 1.2.0 (Candidate release) – December 2016

Acknowledgements

The OCR specification is an ongoing and collaborative effort in which multiple people have
participated. The following is a partial list of contributors, in alphebetical order as well as the
company or institution they represented at the time of their contribution:

Jorge Bellon Castro, Intel Corporation and Barcelona Supercomputing Center
Zoran Budimlic, Rice University
Vincent Cavé, Rice University and Intel Corporation
Sanjay Chatterjee, Intel Corporation
Romain Clédat, Intel Corporation
Jiri Dokulil, University of Vienna
Roger Golliver, Rice University
Min Lee, Intel Corporation
Timothy Mattson, Intel Corporation
Sri Raj Paul, Rice University
Nick Pepperling, Intel Corporation
Vivek Sarkar, Rice University
Bala Seshasayee, Intel Corporation
Rob van der Wijngaart, Intel Corporation
Nick Vrvilo, Rice University

v

1. Introduction

Extreme scale computers (such as proposed Exascale computers) contain so many components that
the aggregate mean-time-between-failure (MTBF) is small compared to the runtime of an
application. Programming models (and supporting compilers and runtime systems) must therefore
support a variety of features unique to these machines:

• The ability for a programmer to express O(billion) concurrency in an application program.

• The ability of a computation to make progress towards a useful result even as components within
the system fail.

• The ability of a computation to dynamically adapt to a high degree of variability in the
performance and energy consumption of system components to support efficient execution.

• The ability to either hide overheads behind useful computation or have overheads small enough
to allow applications to exhibit strong scaling across the entire exascale system.

There are a number of active research projects to develop runtime systems for extreme scale
computers. This specification describes one of these research runtime systems: the Open
Community Runtime or OCR.

The fundamental idea behind OCR is to consider a computation as a dynamically generated
directed acyclic graph (DAG) [15, 16, 19] of tasks operating on relocatable blocks of data (which
we call data blocks in OCR). Task execution is synchronized through the use of events. When the
data blocks and events a task depends upon are satisfied, the preconditions for the execution of the
task [13] are met and the task will, at some later point, run on the system. OCR tasks are
non-blocking. This means that once all preconditions of a task have been met, the task will
eventually run to completion regardless of the behavior of any other tasks or events.

Representing a computation in terms of an event-driven DAG of tasks decouples the work of a
computation from the “units of execution” that carry out the computation. The work of a
computation is virtualized giving OCR the flexibility to relocate tasks to respond to failures in the
system [18], achieve a better balance of load among the processing elements of the computer, or to
optimize memory and energy consumption [3, 5, 7, 11].

Representing the data in terms of data blocks similarly decouples the data in a computation from
the computer’s memory subsystem. This supports transparent placement and dynamic migration of
data across hardware resources.

1

1.1. Scope

OCR is a vehicle to support research on programming models and runtime systems for extreme
scale computers [9, 10]. This specification defines the state of OCR at a fixed point in its
development and will continuously evolve as limitations are identified and addressed.

OCR is both a low level runtime system designed to map onto a wide range of scalable computer
systems as well as a collection of low level application programming interfaces (API). It provides
the capabilities needed to support a wide range of programming models including data-flow (when
events are associated with data blocks), fork-join (when events enable the execution of post-join
continuations), bulk-synchronous processing (when event trees can be used to build scalable
barriers and collective operations), and combinations thereof. While some programmers will
directly work with the APIs defined by OCR, the most common use of OCR will be to support
higher level programming models. Therefore, OCR lacks high level constructs familiar to
traditional parallel programmers such as reductions and parallel for1. OCR is therefore
not designed to be the primary interface for application level programming.

All parallelism must be specified explicitly in OCR; OCR does not extract the concurrency in a
program on behalf of a programmer nor does it make any implicit assumption about the ordering of
tasks in contrast to, for example, Legion[1] which executes tasks in parallel as long as the
appearance of the sequential order specified implicitly by the ordering of the code is maintained.

OCR is designed to handle dynamic task driven algorithms expressed in terms of a directed acyclic
graph (DAG). In an OCR DAG, each node is visited only once. This makes irregular problems
based on dynamic graphs easier to express. However, it means that OCR may be less effective for
regular problems that benefit from static load balancing or for problems that depend on iteration
over regular control structures.

OCR is defined in terms of a C library. Programs written in any language that includes an interface
to C should be able to work with OCR.

OCR tasks are expressed as event driven tasks (EDTs). The overheads associated with OCR API
calls depend on the underlying system software and hardware. On current systems, the overhead of
creating and scheduling an event driven task can be fairly high. On system with hardware support
for task queues, the overheads can be significantly lower. An OCR programmer should experiment
with their implementation of OCR to understand the overheads associated with managing EDTs
and assure that the work per EDT is great enough to offset OCR overheads.

OCR is currently a research runtime system, developed as an open-source community project. It
does not as yet have the level of investment needed to develop a production system that can be used
for serious application deployment.

1Reductions can be supported in OCR using an accumulator/reducer approach [4, 14] and parallel for can be
supported in OCR using a fork-join decomposition similar to the cilk_for construct.

2 OCR – Version 1.2.0 (Candidate release) – December 2016

1.2. Version numbers

As OCR is evolving, newer versions of the API may break backward compatibility with older
versions of the API. To help the programmer navigate these incompatibilities, the version number
for the OCR API will follow the following rules:

• An OCR version number is composed of three integers X , Y and Z and represented as X .Y.Z.

• API compatibility is guaranteed between any versions that only vary on the last digit. For
example, 1.0.1 is compatible with 1.0.5.

• A change in any of the other digits indicates that an API incompatibility exists. The magnitude
of this incompatibility is indicated by whether the middle digit changed (smaller change) or the
first digit changed (big change).

• OCR provides macros to check the API version implemented as well as any extensions that are
supported.

1.3. Glossary

Acquired The state of a data block when its chunk of data is accessible to an OCR object. For
example, an EDT must acquire a data block before it can read-from or write-to that
data block.

Data Block (DB) The data, used by an OCR object such as an EDT, that is intended for access by other
OCR objects. A data block specifies a chunk of data that is entirely accessible as an
offset from a starting address.

Dependence A dependence is a link between the post-slot of a source event, data block or EDT
and the pre-slot of a destination EDT or event. The satisfaction of the source OCR
object’s post-slot will trigger the satisfaction of the destination OCR object’s pre-slot.

Event Driven Task
(EDT)

An OCR object that implements the concept of a task. An EDT with N dependences
will have N pre-slots numbered from 0 to N −1 and one post-slot. Each of the
pre-slots associated with an EDT connects to a single OCR object, while the EDT’s
single post-slot can connect to multiple OCR objects. An EDT transitions to the
runnable state when all its pre-slots have been satisfied; the pre-slots determine
which data blocks, if any, the EDT may access. In other words, an EDT can only
read and write to data blocks that are passed along one of its pre-slot or that it
creates. Once an EDT is runnable, it is guaranteed to eventually run unless the
program terminates early.

EDT function The function that defines the code to be executed by an EDT. An EDT function takes
as arguments the number of parameters, the actual array of parameters, the number

Introduction 3

of dependences and the actual array of dependences. Parameters are static 64-bit
values known at EDT creation time. Dependences are dynamic control or data
dependences and are also refered to as the EDT’s pre-slots. The parameter array is
copied by value when the EDT is created and enters the available state. The
dependences (namely the array of dependences) are determined at runtime and are
fully resolved when the EDT enters the resolved state. An EDT function’s return
type is a GUID. The GUID returned will be passed along to the EDT’s post-slot.

EDT template An OCR object from which an EDT instance is created. The EDT template stores
meta-data related to the EDT definition: the EDT function, and the number of
parameters and dependences available to EDTs instantiated (created) from this
template. Multiple EDTs can be created from the same EDT template.

Event An OCR object used as an indirection mechanism between other OCR objects
interested in each other’s change of state (unsatisfied to satisfied). Events are the
main synchronization mechanism in OCR.

Finish EDT A special class of EDT. As an EDT runs, it may create additional EDTs which may
themselves create even more EDTs. In the case of a finish EDT, the EDT’s post-slot
will only be satisfied after the EDTs created within its scope (i.e. its child EDTs and
further descendants) complete and satisfy their post-slots or are destroyed prior to
becoming runnable. The result is that any OCR object linked to the post-slot of the
finish EDT will, by necessity, not become runnable (i.e. be scheduled for execution)
until the finish EDT and all EDTs created during its execution have either completed
or been destroyed by the user.

Globally Unique ID
(GUID)

A value generated by the runtime system that uniquely identifies each OCR object.
The GUIDs for the OCR objects reside in a global namespace visible to all EDTs.
Creation and management of GUIDs is managed by the OCR runtime by default,
though user input can also be used to influence GUID allocation, if so desired.

Latch Event A special type of event that propagates a satisfy signal to its post-slot when it has
been satisfied an equal number of times on each of its two pre-slots. In other words,
if you imagine a monotonically increasing counter initially set to zero, on each of the
two pre-slots, the latch event’s post-slot will be satisfied if and only if both
monotonically increasing counters are non-zero and equal. Note that once the latch
event’s post-slot is satisfied, satisfaction on the latch event’s pre-slots will result in
undefined behavior; the latch event will therefore only satisfy its post-slot at most
one time.

Link A dependence between OCR objects typically expressed as a connection between the
post-slot of one OCR object and a pre-slot of another. For example if there is a path
between the post-slot of a data block and the pre-slot of an EDT, the data block is
said to be “linked to the EDT”.

OCR object An object managed by OCR. EDTs, events, EDT templates, and data blocks are the
most frequently encountered examples of OCR objects. Each OCR object has a

4 OCR – Version 1.2.0 (Candidate release) – December 2016

unique identifier, or GUID.

OCR program A program that is conformant to the OCR specification. Statements in the OCR
specification about the OCR program only refer to behaviors associated with the
constructs that make up OCR. For example, if an OCR program were to use a
parallel programming model outside of OCR, that program is no longer a purely
conformant OCR program and its behavior could no longer be defined by OCR.

Released The state of a linked data block that is no longer accessible by a certain OCR object.
For example, after an EDT has finished all of its modification to a data block and it is
ready to make those modifications accessible by other EDTs, it must release that data
block.

Slot Positional end point for a dependence. An OCR object has one or more slots.
Exactly one slot is a post-slot. This is used to communicate the state of the OCR
object to other OCR objects. The other zero or more slots are pre-slots, which are
used to manage input dependences of the OCR object. A slot can be:

• Unconnected: there are no links connecting to the slot;

• Connected: a link attaches a source’s post-slot to a destination pre-slot.

A slot in the connected state can be:

• Satisfied: the source of the link has been triggered;

• Unsatisfied: the source of the link has not been triggered.

Task A non-blocking set of instructions that constitute the fundamental “unit of work” in
OCR. By “non-blocking” we mean that once all preconditions on a task are met, the
task is runnable and it will execute at some point, regardless of what any other task in
the system does. The concept of a task is realized by the OCR object “Event Driven
Task” or EDT.

Trigger This term is used to describe the action of either a “satisfied” post-slot or of an event
whose trigger rule is satisfied. In the former case, when a post-slot on an OCR object
is satisfied, it triggers any connected pre-slots causing them to become “satisfied”. In
the latter case, when an event’s trigger rule is satisfied (due to satisfaction(s) on its
pre-slot(s)), it satisfies its post-slot. Therefore, for most events, when the event’s
pre-slot becomes satisfied, this will a) trigger the event causing it to satisfy its
post-slot and b) trigger the dependence link and satisfy all pre-slots connected to the
event’s post-slot. The conjugated form triggered is used as an attributive past
participle; that is: “an EDT that has finished executing the code in its EDT function
and released its data blocks will satisfy the event associated with its post-slot and
become a triggered EDT”.

Unit of Execution A generic term for a process, thread, or any other executable agent that carries out
the work associated with a program.

Introduction 5

Worker The unit of execution (e.g. a process or a thread) that carries out the sequence of
instructions associated with the EDTs in an OCR program. The details of a worker
are tied to a particular implementation of an OCR platform and are not defined by
OCR.

1.4. OCR objects

An OCR object is an entity managed by OCR. Every OCR object has a globally unique ID (GUID)
used to identify the object. An OCR program is defined in terms of three fundamental objects:

• Event Driven Task (EDT): A non-blocking unit of work in an OCR program.

• Data block (DB): A contiguous block of memory managed by the OCR runtime accessible to
any OCR object to which it is linked.

• Event: An object to manage dependences between OCR objects and to define ordering
relationships (synchronization) between them.

In addition to these fundamental objects, other OCR objects play a supporting role; making
programming more convenient or providing information the OCR runtime can use to optimize
program execution:

• EDT Template An OCR object used to manage the resources required to create an EDT.

Objects have two well defined states:

1. Created: Resources associated with an object and its GUID have been created.

2. Destroyed: An object that is destroyed is marked for destruction when the destruction command
executes. Some objects are destroyed automatically, when specific criteria is met. A destroyed
object, its GUID, and any resources associated with the destroyed object are no longer defined2.

More details regarding object creation and destruction are provided in Section 1.4.5. Furthermore,
data blocks have two additional states:

1. Acquired: the data associated with the data block is accessible to the acquiring OCR object.

2. Released: The object is no longer accessible to the OCR object that had earlier acquired it.

1.4.1. Dependences, links and slots

An OCR program is defined as a directed acyclic graph (DAG) with EDTs, data blocks and events
as nodes and edges that define links between objects. A link is a dependence between OCR objects.
The links are defined in terms of slots on the OCR object which define an end point for a

2As an optimization, the runtime may choose to reuse the same physical object for different logical objects [12, 17].
Similarly GUIDs may be reused for objects that have non-overlaping live ranges.

6 OCR – Version 1.2.0 (Candidate release) – December 2016

dependence: the “source” end-point is the source object’s post-slot and the “destination” end-point
is the destination object’s pre-slot.

1.4.1.1. Slots

Post and pre-slots can be in one of three states:

• Unconnected when no link is connected to the slot;

• Connected and unsatisfied when a link is connected to the slot but the condition that triggers
the slot has not been satisfied;

• Connected and satisfied when a link is connected to the slot and the condition that triggers the
slot has been met. Specifically, a pre-slot is satisfied when the post-slot it is linked to becomes
satisfied. A post-slot is satisfied when the OCR object it is attached to is triggered. Data blocks
are always considered triggered (conceptually, the data is always ready), EDTs become triggered
after they finish executing and release their data blocks and the trigger rules for events are
explained in Section 1.4.3.

Initially, all slots are unconnected. Note that post-slots can also be satisfied but unconnected.
This happens when, for example, an EDT completes but no other OCR object is waiting for its
completion.

1.4.1.2. Dependence

The source of a dependence is always an OCR object’s post-slot. Event, data blocks and EDTs
each have a single post-slot. A single post slot can be connected to multiple pre-slots thereby
allowing the satisfaction of multiple dependences (fan-out).

EDTs and events also have an optional set of pre-slots. A pre-slot defines an incoming dependence:
for an EDT, this translates to a pre-condition for its execution; for an event, this translates to a
pre-condition for its satisfaction.

1.4.1.2.1. Data dependence When a slot is satified, it can optionally be associated with a
data block. This mechanism is used to express data dependences in OCR. A data block’s post-slot
is associated with the data block itself. An EDT’s post-slot is associated with the data block whose
GUID is returned by the EDT. An event’s pre-slot can be satisfied and associated with a data block;
that data block will then be passed to the event’s post-slot (except for latch events).

As an example, consider a producer consumer relationships between a pair of EDTs. The post-slot
of the producer EDT is linked to the pre-slot of the consumer EDT. When the producer finishes its
work and updates the data block it wishes to share, it associates that data block with its post-slot
and changes the post-slot’s state to “satisfied”. This triggers the link between the producer and the

Introduction 7

consumer making the data block available to the consumer who can now safely use the data block
from the producer.

1.4.1.2.2. Control dependence In OCR, control dependences are equivalent to data
dependences where the data block associated with the dependence is an empty one.

1.4.2. Event Driven Task (EDT)

The fundamental unit of work in OCR is the Event Driven Task or EDT. When all pre-conditions on
an EDT have been met it becomes a runnable EDT. Later when its input data blocks are acquired,
the EDT is ready to execute. The OCR runtime guarantees that a runnable EDT will execute at
some point3 and once running, the EDT will progress to its terminal state and cannot be halted by
the action of other OCR objects; hence the execution of an EDT is said to be non-blocking.

The work carried out by an EDT is defined by the EDT function. The EDT function prototype and
return values are defined in more detail in the OCR API (see Section 2.8). Briefly, an EDT function
takes as input:

• An array of 64-bit values called parameters. These parameters must be known at the time the
EDT is created and are copied by value at that time.

• A number of dependences on other OCR objects (typically events and data blocks).

An EDT function also returns a GUID which, if non-NULL, can refer to another OCR object which
will be used to satisfy the EDT’s post-slot. The GUID returned by an EDT must be either a data
block GUID or the NULL GUID.

When the OCR API is used to create an EDT (using the ocrEdtCreate() function) one or two
GUIDs are returned. The first (always returned) is the GUID for the EDT itself. The second
(returned only on programmer request) is the GUID of the event implied by the post-slot of the
EDT4 When the OCR function returns a data block, the GUID of that data block is used to satisfy
this implied event.

Using a post-slot in a link to another object is just one method to trigger other OCR objects. OCR
includes the ocrEventSatisfy() function to trigger other OCR objects through explicitly
created dependence links. The OCR runtime, however, is allowed to defer all event satisfactions to
the end of the EDT. This is an important performance optimization designed into OCR. This is also
consistent with the intent of OCR to define the state of an evolving computation by the versions of
data blocks and a log of the EDTs that have completed. This implies that an OCR programmer
should ideally treat EDTs as small units of work that execute with transactional semantics.

3Unless the entire program is terminated while there are still runnable EDTs.
4It is important to note that although, semantically, an EDT can be the source of a dependence, when adding a

dependence, the programmer must use the GUID of the associated event as the source.

8 OCR – Version 1.2.0 (Candidate release) – December 2016

OCR also defines a special type of EDT; the finish EDT . An EDT will always execute
asynchronously and without blocking once all of its pre-conditions have been met. A finish EDT,
however, will not trigger its post-slot until all EDTs launched within its scope (i.e. its child EDTs
and all its transivitely created grand-child EDTs) have completed. The finish EDT still executes
asynchronously and without blocking. The implied event associated with the post-slot of a finish
EDT is a latch event, i.e. it is connected to the post-slots of all EDTs created within its scope and
does not trigger until they have all finished. Currently, the returned value of finish EDTs is ignored
and no data block can be passed through the post-slot of a finish EDT.

For both normal and finish EDTs, the EDT is created as an instance of an EDT template. This
template stores metadata about EDTs created from the template, optionally defines the number of
dependences and parameters used when creating an instance of an EDT, and is a container for the
function that will be executed by an EDT. This function is called the EDT function.

1.4.3. Events

An event is an OCR object used to coordinate the activity of other OCR objects. As with any OCR
object, events have a single post-slot. Events may also have one or more pre-slots; the actual
number of which is determined by the type of event.

The post-slot of an event can be connected to multiple OCR objects by connecting the single
post-slot to the pre-slots of other OCR objects. When the conditions are met indicating that the
event should trigger (according to the trigger rule), the event sets its post-slot to satisfied therefore
establishing an ordering relationship between the event and the OCR objects linked to the event.
Events therefore play a key role in establishing the patterns of synchronization required by a
parallel algorithm [8].

When an event is satisfied, it can optionally include an attached data block on its post-slot. Hence,
events not only provide synchronization (control dependences) but they are also the mechanism
OCR uses to establish data flow dependences. In other words, a classic data flow algorithm defines
tasks as waiting until data is “ready”. In OCR this concept is implemented through events with
attached data blocks.

Given the diversity of parallel algorithms, OCR has defined several types of events:

1. Once event: The event is automatically destroyed on satisfaction. Any object that has the Once
event as a pre-condition must already have been created and linked by the time the Once event is
satisfied.

2. Idempotent event: The event exists until explicitly destroyed by a call to
ocrEventDestroy(). It is satisfied once and subsequent attempts to satisfy (i.e. trigger) the
event are ignored.

3. Sticky event: The event exists until explicitly destroyed with a call to ocrEventDestroy().
It is satisfied once and subsequent attempts to satisfy (i.e. trigger) the event result in an error
code being returned when trying to satisfy the event.

Introduction 9

4. Latch event: The latch event has two pre-slots and triggers when the conditions defined by the
latch trigger rule are met. The event is automatically destroyed once it triggers; in this regard, it
is similar to a once event.

1.4.3.1. Event trigger rules

Events “trigger” when the appropriate trigger rule is met. The default trigger rule for events is to
trigger their post-slot when any of their pre-slot becomes satisfied. Any data block associated with
the pre-slot is also passed to the post-slot.

The trigger rule for a latch event is somewhat more complicated. The latch event has two pre-slots;
an increment slot and a decrement slot. The latch event will trigger its post-slot when the event
receives an equal but non-zero number of satisfy notifications on each of the pre-slots. Once a latch
event triggers, any subsequent triggers on the pre-slots of the latch event are undefined. For regular
events, when it is triggered with a data block, the GUID of that data block is passed along through
the post-slot of the event. For a latch event, however, the GUID of a data block that triggers a
pre-slot, if any, is ignored.

1.4.4. Data blocks

Data blocks are OCR objects used to hold data in an OCR program. A data block is the only way to
store data that persists outside of the scope of a collection of EDTs. Hence, data blocks are the only
way to share data between EDTs. The data blocks are identified by their GUIDs and occupy a
shared name space of GUIDs. While the name space is shared and globally visible, however, an
EDT can only access a) data blocks passed into the EDT through a pre-slot or b) a data block that
is created inside the body of the EDT.

When a data block is created, the default behavior is that the EDT that created the data block will
also acquire the data block. Optionally, an EDT can create a data block on behalf of another EDT.
In this case, a programmer can request that the data block is created, but not acquired by the EDT.

Conceptually, data blocks are contiguous chunks of memory that have a start address and a size.
They have the following characteristics:

• all memory within the data block is accessible from the start address using an offset, meaning an
EDT can manipulate the contents of a data block through pointers.

• The contents of distinct data blocks are guaranteed to not overlap.

• The pointer to the start of a data block is only valid between the acquire of the data block
(implicit when the EDT starts) and the corresponding ocrDbRelease() call (or the end of the
acquiring EDT, whichever comes first)

Data blocks can be explicitly connected to other OCR objects through the OCR dependence API
(see Chapter 2.9). The more common usage pattern, however, is to attach data blocks to events and

10 OCR – Version 1.2.0 (Candidate release) – December 2016

pass them through the directed acyclic graph associated with an OCR program to support a
data-flow pattern of execution.

Regardless of how the data blocks are exposed among a collection of EDTs, a program may define
constraints over how data blocks can be used. This leads to several different modes for how an EDT
may access a data block. The mode is set when the OCR dependences API is used to dynamically
set dependences between a data block and an EDT. Currently, OCR supports five modes:

1. Read-Write (default mode): The EDT may read and write to the data block. Note that no
exclusive access is enforced; multiple EDTs may write to the same data bock at the same time.
It is the responsibility of the programmer to ensure that when multiple writers are writing to a
read-write data block, appropriate synchronization (in the form of dependences) is included to
assure that the writes do not conflict. It is legal for an OCR program to contain data races.
Section 1.6 contains more information.

2. Exclusive write: The EDT may read and write to the data block and OCR will enforce that, at a
given time, it is the only EDT writing to the data block. When the writing EDT releases the data
block, another EDT may acquire it and write to it. Given the memory model described in
Section 1.6, the writes of multiple EDTs all acquiring a data block in exclusive write will be
sequential but the only ordering between said EDTs is determined by the explicit dependences.
In other words, if both EDTs A and B are runnable and access a data block D in exclusive write
mode, A and B can execute in any order and the only guarantee is that there will be no overlap
between the two following intervals: start of A to the release of D by A (or the end of A,
whichever comes first) and the start of B to the release of D by B (or the end of B, whichever
comes first).

3. Read only: The EDT will only read from the data block. OCR does not restrict the ability of
other EDTs to write to the data block, even if the writes from one EDT might overlap with reads
by the EDT with read only access. If an EDT writes to a data block it has acquired in read only
mode, the results of those writes are undefined should other EDTs later acquire the same data
block.

4. Constant: The EDT will only read from the data block and OCR will ensure that once the data
block is acquired, writes from other EDTs will not be visible to the EDT acquiring the data
block in constant mode. This is the distinction between this mode and the read only mode. If an
EDT writes to a data block it has acquired in constant mode, the results of those writes are
undefined should other EDTs later acquire the same data block.

5. NULL: The EDT will not access the data block either to read or write. This mode allows the
user to convert a data dependence into a pure control dependence. This is useful, if, for example,
two EDTs A and B depend on the completion of an event E but only one, A for example, caresis
to let the runtime know that the EDT does not care about the data passed to the EDT (through an
event for example) and has the effect of converting a potential data dependence into a pure
control dependence. Note that the GUID of the data block, if any, is still passed to the EDT.

Introduction 11

1.4.5. Object lifetime

OCR objects are created by the appropriate OCR API call, for example ocrEventCreate. Even
though the runtime may defer the actual creation of the object, it ensures that it appears to be valid
to all subsequent OCR API calls. Objects are destroyed either automatically or using an OCR API
call, such as ocrEventDestroy. Again, the runtime may actually destroy the object at a later
point in time, but the object cannot be used after it has been formally destroyed.

In this Section, we detail when a user can assume an object is destroyed.

1.4.5.1. Data blocks

Data blocks are explicitly destroyed using the ocrDbDestroy call. The runtime will delay the
actual destruction of the data block and associated resources until all EDTs that have acquired the
data block prior to the call to ocrDbDestroy have released it. In practice, all EDTs whose start
happens before the call to ocrDbDestroy are guaranteed to be able to use the data block. For
example, if EDT A and EDT B both satisfy, at their beginning, two dependences that allow EDT C
to run, EDT C can safely destroy any data block that A and B are using.

1.4.5.2. Events

Once and latch events are destroyed automatically after they are triggered and the destruction
occurs before any pre-slots connected to the event’s post-slot are satisfied. Sticky and idempotent
events are destroyed explicitly and the runtime guarantees that any ocrAddDependence call
adding a dependence from the event to another object that happened before the destruction call will
be satisfied if the event destroyed is triggered. In particular, an event can be safely destroyed by any
EDT that depends on its satisfaction provided all dependences were added prior to the triggering of
the event.

1.5. Execution Model

OCR is based on an asynchronous task model. The work of an OCR program is defined in terms of
a collection of tasks organized into a directed acyclic graph (DAG) [15, 16, 19]. Task execution is
managed by the availability of data (the “data blocks”) and events; hence the reason the tasks are
called “Event Driven Tasks” or EDTs.

An OCR program executes on an abstract machine called the OCR Platform. The OCR platform is
a resource that can carry out computations. It consists of:

• A collection of network connected nodes where any two nodes can communicate with each other.

12 OCR – Version 1.2.0 (Candidate release) – December 2016

• Each node consists of one or more processing elements each of which may have its own private
memory5.

• Workers that run on the processing elements to execute enqueued EDTs.

• A globally accessible shared name space of OCR objects each denoted by a globally unique ID
(GUID).

OCR is designed to be portable and scalable, hence, the OCR Platform places minimal constraints
on the physical hardware.

The OCR program logically starts as a single EDT called mainEDT(). In other words, the
programmer does not provide a main() function. The OCR runtime system creates the main()
function on the programmer‘s behalf to set up the OCR environment and then calls the user
provided mainEDT(). The expected function prototype for the mainEDT() is described in
section 2.3.

The DAG corresponding to the executing program is constructed dynamically and completes when
the ocrShutdown() or ocrAbort() function is called. This rather simple model can handle a
wide range of design patterns including branch and bound, data flow, and divide and conquer.

To understand the execution model of OCR, consider the discrete states and transitions of an
executing EDT as defined in figure 1.1. An EDT is created and once its GUID is available for use
in API functions, the EDT is said to be Available. At some point, the dependences are fully defined
(all pre-slots of the EDT are “connected”) for the EDT and it becomes Resolved. Note that the
transition from Available to Resolved is not called out as a named transition. This implies that it is
not generally possible for the system to set a distinct time-stamp corresponding to when the
transition occurred. In this case, the transition is un-named because dependences may be added
dynamically up until the EDT Launch transition. At this point the EDT is Runnable.

Once an EDT is runnable, it will execute at some point during the normal execution of the OCR
program. At some point all data blocks linked to an EDT will be acquired and the EDT becomes
Ready. The EDT and any resources required to support its execution are then submitted to
workers [6] which execute the tasks on the processing elements within the OCR platform. The
workers and the data-structures used to store tasks waiting to execute (i.e. work-pools) are a low
level implementation detail not defined by the OCR specification. When reasoning about locality
and load balancing, programmers may need to explicitly reason about the behavior of the
workers [2], but they do not hold persistent state visible to an OCR program and are logically
opaque to OCR constructs. The scheduler inside the implementation of OCR will then schedule the
EDT for execution and the EDT Starts to execute and becomes a Running EDT.

Normal EDT execution continues until the EDT function returns. The EDT undergoes a Finish
transition and the EDT is in the End state. At some point the EDT will release the data blocks
associated with the EDTs execution and the EDT enters the Released state. At this point, any
changes made to data blocks will be available for use by other OCR objects. Later the EDT will
mark its post-slot as satisfied to Trigger the event associated with the EDT; thereby becoming a

5By “private” we mean a memory region that is not accessible to other processing elements.

Introduction 13

Available

Resolved

Runnable

Running

End

Ready

Launch

Triggered

Destroyed

Start

Create

Clean up

Finish

GUID usable by OCR API

Dependences defined

All pre-slots satisfied.

Data blocks acquired

EDT function executing

EDT function return statement

Post slot satisfied, event triggered

Resources deleted. GUID not usable by OCR API

Transitions

States

Observable
Execution
features

Released Data Blocks Released

Trigger

Figure 1.1.: Observable execution features.

14 OCR – Version 1.2.0 (Candidate release) – December 2016

Triggered EDT. At some later point the system will Clean-up resources used by the EDT (including
its GUID) and the EDT is destroyed.

Since an EDT is non-blocking, once it becomes Runnable it will run on the OCR platform at some
point in the future. During its run:

• The EDT can only access data blocks that have been passed in through its pre-slots as well as
any data blocks that the EDT creates internally. This means that before an EDT starts, the OCR
runtime knows all the data blocks that will be accessed (minus the ones created within the EDT).

• The EDT can call into the runtime to create and destroy data blocks, EDTs and events.

• The EDT can create links between the various OCR software constructs, termed dependences.
This is accomplished through the ocrAddDependence() function of the OCR API. The
following types of dependences can be created:

– Event to Event: The destination event’s pre-slot is chained directly to the source event’s
post-slot. For all events but the latch event, this means that the triggering of the source event
will trigger the destination event.

– Event to EDT: One of the destination EDT’s pre-slots is chained directly to the source event’s
post-slot. When the source event is triggered, this will satisfy the EDT’s pre-slot. If a data
block was associated with the triggering of the source event, that data block will be made
available to the EDT in the dependence array in the position of the pre-slot. This is a “control
and data” dependence. In the other case, no data block will be made available and the
dependence is akin to a pure control dependence.

– Data block to Event: Adding a dependence between a data block and an event will result in
the satisfaction of the event with the data block; however, the satisfaction of the event may be
deferred and may happen asynchronously.

– Data block to EDT: Directly adding a dependence between a data block and an EDT (a pure
data-dependence) immediately satisfies the EDT’s pre-slot and makes the data block available
to the EDT in the dependence array in the position of the pre-slot.

• The EDT cannot perform any synchronization operations that would cause it to block inside the
body of the task (i.e. the EDT must be non-blocking). The only mechanism for synchronization
within OCR is through the events that link OCR objects, which are explicit to the runtime.

A computation is complete when an EDT terminates the program (e.g. with a call to
ocrShutdown()). Typically, the EDT that terminates the program is the last EDT in the
program DAG, and the programmer has assured that all other EDTs in the DAG have completed
execution before the function to terminate the program is called.

Since the OCR runtime creates the main() function, the programmer does not need to manage the
low level details of initializing and cleanly shutting down OCR.

With both data and tasks conceptually decoupled from their realization on a computer system, OCR
has the flexibility to relocate tasks and data to respond to failures in the system, achieve a better

Introduction 15

balance of load among the processing elements of the computer, or to optimize memory and energy
consumption [3, 5, 7, 11]. This requires that the state of an OCR program can be defined strictly in
terms of which tasks have completed their execution and the history of updates to data blocks. By
saving a log of updates to data blocks relative to the tasks that have completed execution, the
system can recover the state of a computation should components of the system fail. This requires,
however, that EDTs execute with transactional semantics.

1.6. Memory Model

A memory model defines the values that can be legally observed in memory when multiple units of
execution (e.g. processes or threads) access a shared memory system. The memory model provides
programmers with the tools they need to understand the state of memory, but it also places
restrictions on what a compiler writer can do (e.g. which aggressive optimizations are allowed) and
restrictions on what a hardware designer is allowed to do (e.g. the behavior of write buffers).

1.6.1. Definitions

To construct a memory model for OCR, we need to present a few definitions. The operations inside
an EDT execute in a non-blocking manner. The order of such operations are defined by the
sequenced-before relation defined by the host C programming language.

When multiple EDTs are running, they execute asynchronously. Usually, a programmer can make
few assumptions about the relative orders of operations in two different EDTs. At certain points in
the execution of EDTs, however, the OCR program may need to define ordering constraints. These
constraints define synchronized-with relations.

The “transitive closure” of sequenced-before operations inside each of two EDTs combined with
the synchronized-with relations between two EDTs defines a happens-before relationship. For
example:

• if A is sequenced-before B in EDT1

• if C is sequenced-before D in EDT2

• and B is synchronized-with C in EDT2

• then A happens-before D.

These basic concepts are enough to define the memory model for OCR.

16 OCR – Version 1.2.0 (Candidate release) – December 2016

1.6.2. OCR memory model

OCR provides a relatively simple memory model. Before an EDT can read or write a data block, it
must first acquire the data block. This is not an exclusive relationship by which we mean it is
possible (depending on the mode of the data block in question) for multiple EDTs to acquire the
same data block at the same time. When an EDT has finished with a data block and it is ready to
expose any modifications to the data block to other EDTs, it must release that data block.
Acquiring data blocks happens implicitly only at the start of an EDT while releasing data blocks
can happen either implicitly at the end of an EDT or explicitly through an API call.

When an EDT calls an OCR function that releases a data block, the OCR runtime must
ensure that all loads and stores to the data block by that EDT complete before the data
block is released. Furthermore, the OCR runtime must ensure that the release
completes before returning from the release function call.

The only way to establish a synchronized-with relation is through the behavior of events. If the
pre-slot of EDT2 is connected to the post-slot of EDT1, then EDT2 waits for event associated with
the post-slot of EDT1 to trigger. Therefore, the satisfy event from EDT1 synchronizes-with the
triggering of the pre-slot of EDT2. We can establish a happens-before relationship between all
operations in EDT1 and any operation in EDT2 if we define the following rule for OCR.

The OCR runtime must ensure that an EDT completes the release of all of its data
blocks before it marks its post-event as satisfied.

An EDT can use data blocks to satisfy events in the body of the task in addition to the event
associated with its post-slot. We can reason about the behavior of the memory model and establish
happens-before relationships if we define the following rule.

Before an EDT calls a function to satisfy an event, for any data block potentially
exposed to other EDTs by that event satisfaction, all writes to that data block must
complete and the data block must be released before the event is satisfied.

Without this rule we cannot assume a release operation followed by satisfying an event defines a
sequenced-before relationship that can be used to establish a happens-before relation.

The core idea in the OCR memory model is that happens-before relationships are defined in terms
of events (the only synchronization operation in OCR) and the release of OCR objects (such as data
blocks). This is an instance of a Release Consistency memory model which has the advantage of
being relatively straightforward to apply to OCR programs.

The safest course for a programmer is to write programs that can be defined strictly in terms of the
release consistency rules. OCR, however, lets a programmer write programs in which two or more
EDTs can write to a single data block at the same time (or more precisely, the two EDTs can issue
writes in an unordered manner). This may result in a data race in that the value that is ultimately
stored in memory depends on how a system chooses to schedule operations from the two EDTs.

Introduction 17

Most modern parallel programming languages state that a program that has a data race6 is an illegal
program and the results produced by such a program are undefined. These programming models
then define a complex set of synchronization constructs and atomic variables so a programmer has
the tools needed to write race-free programs. OCR, however, does not provide any synchronization
constructs beyond the behavior of events. This is not an oversight. Rather, this restricted
synchronization model helps OCR better scale on a wider range of parallel computers.

OCR, therefore, allows a programmer to write legal programs that may potentially contain data
races. OCR deals with this situation by adding two more rules. In both of these rules, we say that
address range A and B are non-overlapping if and only if the set A1 of 8-byte7 aligned 8-byte words
fully covering A and the set B1 of 8-byte aligned 8-byte words fully covering B do not overlap. For
example, addresses 0x0 and 0x7 overlap (assuming byte level addressing) whereas 0x0 and 0x8 do
not. The first rule deals with the situation of multiple EDTs writing to a data block with
non-overlapping address ranges.

If two EDTs write to a single data block without a well defined order, if the address
ranges of the writes do not overlap, the correct result of each write operation must
appear in memory.

This behavior may seem obvious making it trivial for a system to support. However, when
addresses are distinct but happen to share the same cache lines or when aggressive optimization of
writes occur through write buffers, an implementation could mask the updates from one of the
EDTs if this rule were not defined in the OCR specification.

The last rule addresses the case of overlapping address ranges. Assume that a system writes values
to memory at an atomicity of N-bytes. This defines the fundamental store-atomicity for the system.

If two EDTs write to a single data block without a well defined order, if the address
ranges of the writes overlap, the results written to memory must correspond to one of
the legal interleavings of statements from the two EDTs at an N-byte aligned
granularity. Overlapping writes to non-aligned or smaller than N-byte granularity are
not defined.

For systems that do not provide store-atomicity at any level, N would be 0 and the above rule states
that unordered writes to overlapping address ranges are undefined. This rule is the well known
sequential consistency rule. It states that the actual result appearing in memory may be
nondeterministic, but it will be well defined and it will correspond to values from one EDT or the
other.

Release consistency remains the safest and best approach to use in writing OCR programs. It is
conceivable that some of the more difficult rules may be relaxed in future versions of OCR
(especially the sequential consistency rule), but the relaxed consistency model will almost
assuredly always be supported by OCR.

6A data race occurs when loads and stores by two units of execution operate on overlapping memory regions without a
synchronized-with relation to order them

7The reference to “8-byte” words assumes the processing elements utilize a 64-bit architecture. For other cases, all
references to an 8-byte word in this specification must be adjusted to match the architecture of the processing elements.

18 OCR – Version 1.2.0 (Candidate release) – December 2016

Any memory in OCR that can be accessed by multiple EDTs resides in data blocks. As discussed
in Section 1.4.4 there are four access modes for the data blocks in OCR, namely Read-Write,
Exclusive write, Read only, and Constant.

1.7. Organization of this document

The remainder of this document is structured as follows:

• Chapter 2 defines the OCR Application Programming Interface.

• Appendix A contains a set of pedagogical examples.

• Appendix B contains a set of proposed OCR Extensions.

• Appendix C contains notes specific to current implementations of OCR.

• Appendix D documents the “change history” for OCR and this specification.

Introduction 19

2. The OCR API

This chapter describes the syntax and behavior of the OCR API functions, and is divided into the
following sections:

• The core types, macros and error codes used in OCR. (Section 2.1 on page 20)

• A description of OCR main entry point: mainEdt. (Section 2.3 on page 25)

• Supporting functions. (Section 2.4 on page 25)

• Functions to create, destroy, and otherwise manage the contents of OCR data blocks.
(Section 2.6 on page 31)

• Functions to manage events in OCR. (Section 2.7 on page 36)

• Functions to create and destroy tasks in OCR. (Section 2.8 on page 40)

• Functions to manage dependences between OCR objects. (Section 2.9 on page 45)

Types, constants, function prototypes and anything else required to use the OCR API are made
available through the ocr.h include file. You do not need to include any other files unless using
extended or experimental features (described in the appendices).

2.1. OCR core types and macros

The OCR Application Programming Interface (API) is defined in terms of a C language binding.
The functions comprising the OCR API make use of a number of basic data types defined in the
include file ocr.h.

Base low-level types The lowest level data types are defined in terms of the following C
typedef statements:

• typedef uint64_t u64 64-bit unsigned integer;

• typedef uint32_t u32 32-bit unsigned integer;

• typedef uint16_t u16 16-bit unsigned integer;

20

• typedef uint8_t u8 8-bit unsigned integer;

• typedef int64_t s64 64-bit signed integer;

• typedef int32_t s32 32-bit signed integer;

• typedef int8_t s8 8-bit signed integer;

• typedef u8 bool 8-bit boolean.

• ocrEdtDep_t: Type of dependences as passed into the EDTs. It contains at least two fields
that can be used by the programmer: guid which contains the GUID of the data block passed in
and ptr which contains a pointer to the aforementioned data block.

OCR opaque types In addition to these low level types, OCR defines a number of opaque data
types to manage OCR objects and to interact with the OCR environment:

• ocrGuid_t: Opaque handle used to reference all OCR objects. An ocrGuid_t is truly
opaque and the user cannot assume that it is of a given size;

OCR version utilities OCR provides macros to determine the API implemented and the
extensions that are enabled:

• OCR_VERSION: A string representing the API version implemented.

• OCR_VERSION_GET_MAJOR(vers): Extract the unsigned integer representing the major
revision of the OCR API. This is the first digit of the version string.

• OCR_VERSION_GET_MINOR(vers): Extract the unsigned integer representing the minor
revision of the OCR API. This is the middle digit of the version string.

• OCR_VERSION_GET_PATCH(vers): Extract the unsigned integer representing the patch
number of the OCR API. This is the last digit of the version string.

• OCR_VERSION_EXTENSION_BITMAP: A bitmap representing the extensions enabled. The
file “ocr-version.h” defines the possible extensions that are encoded in this bitmap.

Other constants The C API for OCR makes use of a set of basic macros defined inside
ocr.h:

• #define true 1;

• #define TRUE 1;

• #define false 0;

• #define FALSE 0;

• #define NULL_HINT: A NULL pointer to an ocrHint_t.

The OCR API 21

• #define NULL_GUID: A reserved GUID value, used to indicate the absence of an OCR
object. This value is roughly analogous to a NULL pointer; however, it cannot be assumed to be
equal to zero.

• #define UNINITIALIZED_GUID: A reserved GUID value, used as a placeholder to
indicate that a value is uninitialized.

• #define ERROR_GUID: A reserved GUID value, used to indicate that an error has occurred.

2.2. OCR API conventions

In OCR, most APIs are allowed to be deferred or executed asynchronously by the runtime
implementation but all implementations guarantee that the effects of the execution of the API calls
by the runtime will be identical to the non-deferred and sequential execution of the calls as
specified by the user. Note that for APIs that return a value to the user (for example a GUID, a
pointer, etc.), all runtime implementations guarantee that the values returned are valid; in other
words, a portion of the call may be deferred but the user can rely on the returned values.

2.2.1. Conventions

In this chapter, the OCR APIs are discussed in detail. API calls not related to support functions
(Section 2.4) or GUID management (Section 2.5) all follow certain conventions described below

API names All API names start with “ocr” followed by the type of object the call refers to 1

such as “Edt”, “Db” or “Event” followed by the action on that event.

Arguments Arguments that are used as “out” or “in/out” arguments, if any, are listed first in the
calls. “Out” or “in/out” arguments are always pointers. “In” arguments are either values or pointers
to constants.

Error codes All API calls return an error code with the convention that 0 means the call was
successful. Error codes are discussed in more detail in Section 2.2.2.

2.2.2. OCR error codes

The OCR error codes are derived from standard error codes. They are defined internally to limit
OCR’s dependence on standard libraries. OCR uses the convention that a function’s return value is

1ocrAddDependence() being the lone exception to this naming convention.

22 OCR – Version 1.2.0 (Candidate release) – December 2016

its error code where a code of zero signifies successful completion. It is, however, important to note
that given the potential deferred and asynchronous nature of OCR API calls, not all errors will be
reported at the site of the call. This distinction is discussed later in this section. The error codes
returned are found in the ocr-errors.h include file and described in Table 2.2.2.

The OCR API 23

Error code Generic Interpretation

OCR_EPERM
Operation not permitted

OCR_ENOENT No such file or directory
OCR_EINTR Interrupted OCR runtime call
OCR_EIO I/O error
OCR_ENXIO No such device or address
OCR_E2BIG Argument list too long
OCR_ENOEXEC Exec format error
OCR_EAGAIN Try again
OCR_ENOMEM Out of memory
OCR_EACCES Permission denied
OCR_EFAULT Bad address
OCR_EBUSY Device or resource busy
OCR_ENODEV No such device
OCR_EINVAL Invalid argument
OCR_ENOSPC No space left on device
OCR_ESPIPE Illegal seek
OCR_EROFS Read-only file system
OCR_EDOM Math argument out of domain of func
OCR_ERANGE Math result not representable
OCR_ENOSYS Function not implemented
OCR_ENOTSUP Function is not supported
OCR_EGUIDEXISTS The objected referred to by GUID already exists
OCR_EACQ Data block is already acquired
OCR_EPEND Operation is pending
OCR_ECANCELED Operation canceled

Immediate versus deferred error Since the OCR APIs can be deferred or executed
asynchronously by the underlying implementation, not all error codes can be reported immediately
at the API call-site. In the API description in the following sections, the error codes returned are
separated into two categories: a) the immediate error codes that are guaranteed to be returned at the
call-site and b) the deferred error codes that may be returned either at the call-site but also later (see
the following paragraph for more detail).

Immediate errors are typically errors that result from incorrect arguments. Deferred errors are
either returned at the call-site or reported later, depending on the implementation. In other words, if
the return code of an API call is zero, this means that either the function completed without any
errors or that one of the deferred errors may occur later.

Reporting of deferred errors Currently, if an error occurs in a deferred manner,
implementations are allowed to crash but will report the API call that caused the crash (deferred
error) by reporting to the user at least the following information:

24 OCR – Version 1.2.0 (Candidate release) – December 2016

• File and line-number of the API call that caused the error;

• Error code;

• GUIDs of both the EDT in which the error occurred and the target object for the error (typically
the first argument of the API call).

Future revisions of this specification will provide a handler mechanism which would allow a user to
determine if an error is fatal or if it can be recovered from.

2.3. OCR entry point: mainEdt

An OCR program’s single point of entry is the user-defined main EDT (mainEdt()). This EDT
has a function prototype that is identical to any other EDT; its parameters and dependences are
however special: the main EDT has no parameters and has a single input data block that encodes
the arguments passed to the program from the command line. The arguments can be accessed using
ocrGetArgc() and ocrGetArgv().

ocrGuid_t mainEdt(u32 paramc, u64* paramv, u32 depc, ocrEdtDep_t depv[])

Parameters
in paramc Parameters count will always be 0.
in paramv Parameter vector will always be NULL.
in depc Dependence count will always be 1.
in depv Dependence vector will have exactly 1 entry containing a data

block that encodes the command line arguments.

Returns mainEdt returns a ocrGuid_t which is ignored by the runtime. The returned value
of an OCR program is set using ocrShutdown() or ocrAbort().

2.4. Supporting functions

OCR provides a set of basic capabilities to support a program execution environment, handled
through the following functions.

Functions

• void ocrShutdown(void)

Called by an EDT to indicate the normal end of an OCR program.

The OCR API 25

• void ocrAbort(u8 errorCode)

Called by an EDT to indicate an abnormal end of an OCR program.

• u64 ocrGetArgc(void ∗dbPtr)

Retrieves the traditional ‘argc’ value from mainEdt()’s input data block.

• char ∗ ocrGetArgv(void ∗dbPtr, u64 index)

Retrieves the indexth argument from mainEdt()’s input data block.

• u32 ocrPrintf(const char ∗format, ...)

printf() equivalent for OCR.

2.4.1. void ocrShutdown()

The user is responsible for indicating the end of an OCR program using an explicit shutdown call
(either this function or ocrAbort()). Any EDTs which have not reached the runnable state will
never be executed. EDTs in the runnable or ready state may or may not execute. Calling
ocrShutdown() will properly terminate the runtime; all memory and computing resources will
be released. Furthermore, a zero exit code will be returned to the caller of the OCR program
indicating a normal termination.

Note

Program behavior after this call is undefined. Specifically:
• The statements in the calling EDT after this function call may or may not be executed;
• EDTs in the runnable or ready state may or may not execute.
Although most programs will choose to call ocrShutdown() in the “last” EDT, OCR
specifically allows another EDT to call ocrShutdown() to support, for example, a
computation of the type “find-first-of”; in such a computation, the program can successfully
complete even if not all EDTs have executed.

2.4.2. void ocrAbort(u8 errorCode)

This function is very similar to ocrShutdown() except that it allows for the return of a non-zero
value. This function also does not guarantee that the runtime will properly shut itself down and
some implementations may choose to crash out to provide, for example, a core dump for
debugging. This call should only be used to indicate an abnormal termination.

The abort error code is passed back to the runtime and its handling is implementation dependent

Parameters
in errorCode User defined error code returned to the runtime.

26 OCR – Version 1.2.0 (Candidate release) – December 2016

Description See notes in Section 2.4.1.

2.4.3. u64 getArgc(void ∗ dbPtr)

Returns the number of arguments (traditionally called ‘argc’) passed to the OCR program. The
value is extracted from the unique data block passed to mainEdt.

Parameters
in dbPtr Pointer to the start of the argument data block

Returns The number of arguments passed to the OCR program on the command line

Description When starting, the first EDT (called mainEdt) is passed a single input data block
which encodes the arguments passed to the main program:

• The first 8 bytes encode ‘argc’;

• The following ‘argc’ 8-byte values encode the offset from the start of the data block to the
arguments;

• The arguments are then appended as NULL terminated character arrays.

2.4.4. char ∗ getArgv(void ∗ dbPtr u64 index)

Returns the 0-based indexth argument passed to the OCR program. The value is extracted from the
unique data block passed to mainEdt.

Parameters
in dbPtr Pointer to the start of the argument data block
in index Index of the argument to extract

Returns A NULL terminated string corresponding to argv[index].

Description See Section 2.4.3 for details.

Note

Attempting to extract an argument with index greater or equal to the value returned by
ocrGetArgc will result in undefined behavior.

The OCR API 27

2.4.5. u32 ocrPrintf(const char ∗ fmt ...)

A platform independent limited printf functionality.

Parameters
in fmt NULL terminated C format string containing the format of the

output string
in ... A variable length list of arguments in agreement with fmt

Returns This function returns the number of bytes written out as a u32.

Description OCR must support a wide variety of platforms including simulators that emulate
real systems. Often, core functionality provided by standard C libraries are not available on all
platforms, and, as a result, an OCR program cannot depend on these functions. There was one case,
however, where it was felt support was critical: basic printf. This function supports basic printing
functionality and supports the following format specifiers:

• Strings using %s;

• 32-bit integers using %d, %u, %x and %X;

• 64-bit integers using %ld, %lu, %lx, %lX, and versions with two ‘l’;

• 64-bit pointers using %p;

• Floating point numbers using %f, %e and %E;

• The ‘#’ flag is supported for %x, %lx and %llx;

• Precision modifiers are also supported for %f, %e and %E.

Note

A conforming implementation may limit the number of characters in the output string.

2.5. GUID management

GUIDs are opaque values used to uniquely identify OCR objects. In previous versions of OCR,
GUID values could be safely cast to 64-bit values. To preserve the runtime’s freedom in encoding
information into GUIDs, users can no longer rely on the ability to convert GUIDs to 64-bit values
and must instead use the provided functions to manipulate GUIDs.

28 OCR – Version 1.2.0 (Candidate release) – December 2016

Functions

• bool ocrGuidIsNull(ocrGuid_t guid)

Checks if the GUID provided is equivalent to NULL_GUID.

• bool ocrGuidIsUninitialized(ocrGuid_t guid)

Checks if the GUID provided is equivalent to UNINITIALIZED_GUID.

• bool ocrGuidIsError(ocrGuid_t guid)

Checks if the GUID provided is equivalent to ERROR_GUID.

• bool ocrGuidIsEq(ocrGuid_t guid1, ocrGuid_t guid2)

Checks if the two GUIDs provided are equivalent.

• bool ocrGuidIsLt(ocrGuid_t guid1, ocrGuid_t guid2)

Checks if guid1 is less than guid2 (useful to implement a total order on GUIDs)

2.5.1. bool ocrGuidIsNull(ocrGuid_t guid)

NULL_GUID is a special value representing a NULL ocrGuid_t. This returns true if guid is
equivalent to NULL_GUID.

Parameters
in guid GUID to be evaluated.

Returns A boolean:

• true: guid is equivalent to NULL_GUID

• false: guid is not equivalent to NULL_GUID

2.5.2. bool ocrGuidIsUninitialized(ocrGuid_t guid)

UNINITIALIZED_GUID is a special value representing an uninitialized ocrGuid_t. This function
checks if the GUID provided is equivalent to UNINITIALIZED_GUID.

Parameters
in guid GUID to be evaluated.

Returns A boolean:

• true: guid is equivalent to UNINITIALIZED_GUID

The OCR API 29

• false: guid is not equivalent to UNINITIALIZED_GUID

2.5.3. bool ocrGuidIsError(ocrGuid_t guid)

ERROR_GUID is a special value representing a invalid ocrGuid_t. This function checks if the
GUID provided is equivalent to ERROR_GUID.

Parameters
in guid GUID to be evaluated.

Returns A boolean:

• true: guid value is equivalent to ERROR_GUID

• false: guid value is not equivalent to ERROR_GUID

2.5.4. bool ocrGuidIsEq(ocrGuid_t guid1, ocrGuid_t guid2)

This function checks if guid1 and guid2 are equivalent.

Parameters
in guid1 GUID to be evaluated.
in guid2 GUID to be evaluated.

Returns A boolean:

• true: guid1 and guid2 are equivalent

• false: guid1 and guid2 are not equivalent

2.5.5. bool ocrGuidIsLt(ocrGuid_t guid1, ocrGuid_t guid2)

This function checks if guid1 is less than guid2.

Parameters
in guid1 GUID to be evaluated.
in guid2 GUID to be evaluated.

Returns A boolean:

• true: guid1 is less than guid2

30 OCR – Version 1.2.0 (Candidate release) – December 2016

• false: guid1 is greater than or equal to guid2

2.5.6. Macros for printing GUIDs

It is often desirable in both applications and runtime to print the value of a GUID for debugging
purposes. Under previous assumptions that GUIDs were unsigned long values, they were
printed using the "%PRIx64" placeholder. Since GUIDs are opaque, their size cannot be assumed
and format specifiers are therefore provided to properly print GUIDs.

• GUIDF Format placeholder representing a GUID.

• GUIDA(guid) Expands guid value into format arguments corresponding to the GUIDF format
placeholder.

The following snippet shows how to print a GUID:

1 o c r P r i n t f ("DB Guid "GUIDF" a c q u i r e d by "GUIDF" \ n " , GUIDA(db . gu id) , GUIDA(e d t . gu id)) ;

Note that the GUIDF format placeholder macro may actually expand into multiple concrete format
placeholders. Likewise, the GUIDA macro may expand its single GUID argument into multiple
arguments for a format function’s argument list, corresponding to the number of concrete
placeholders included by the GUIDF macro.

2.6. Data block management

Data blocks are the only form of non-ephemeral storage and are therefore the only way to “share”
data between EDTs. Conceptually, data blocks are contiguous chunks of memory that have a start
address and a size. They also have the following characteristics:

• all memory within the data block is accessible from the start-address using an offset (ie:
addresses [start-address; start-address+size[uniquely and totally address the entire data-block);

• a data block is non-overlapping with other distinct data blocks

• the pointer to the start of a data block is only valid between the start of the EDT (or the data
block creation) and the corresponding ocrDbRelease (or the end of the EDT).

The following macros and enums are used with OCR data blocks.

• enum ocrInDbAllocator_t containing:

– NO_ALLOC The data block is not used as a heap

• enum ocrDbAccessMode_t containing the four access modes. The meaning of the access
modes is given in Section 1.4.4:

– DB_MODE_RW

The OCR API 31

– DB_MODE_EW

– DB_MODE_RO

– DB_MODE_CONST

– DB_MODE_NULL

• DB_DEFAULT_MODE which is an alias of DB_MODE_RW

• DB_PROP_NONE which specifies no special properties on the data block

• DB_PROP_NO_ACQUIRE which specifies that the data block should not be acquired on creation

Functions

• u8 ocrDbCreate(ocrGuid_t ∗db, void ∗∗addr, u64 len, u16 flags, const ocrHint_t ∗hint,
ocrInDbAllocator_t allocator)

Request the creation of a data block.

• u8 ocrDbDestroy(ocrGuid_t db)

Request the destruction of a data block.

• u8 ocrDbRelease(ocrGuid_t db)

Release the data block indicating the end of its use by the EDT.

• u8 ocrDbDowngradeRelease(ocrGuid_t db)

Release updates made to a writable data block while retaining read-only access to the data block.

2.6.1. u8 ocrDbCreate(ocrGuid_t ∗ db, void ∗∗ addr, u64 len, u16
flags, const ocrHint_t ∗ hint, ocrInDbAllocator_t allocator)

Requests the creation of a data block of the specified size. After a successful call, the runtime will
return the GUID for the newly created data block and a pointer to it (if requested).

Parameters
out db On successful creation, contains the GUID of the data block. If the

call fails, the returned value is undefined.
out addr On successful creation and if the DB_PROP_NO_ACQUIRE is

not specified in flags, the created data block will be acquired
and its starting address will be returned in this parameter. If
DB_PROP_NO_ACQUIRE is specified in flags, the value
returned will be NULL. If the call fails, the returned value is
undefined

in len Non-zero size, in bytes, of the data block to create

32 OCR – Version 1.2.0 (Candidate release) – December 2016

in flags Flags controlling the behavior of the data block creation. The
supported flags are:
• DB_PROP_NONE: Default behavior (described in this section)
• DB_PROP_NO_ACQUIRE: The created data block may not be

used by this EDT (NULL will be returned in addr). Note that
a conforming implementation may delay the creation of the data
block until it is acquired by another EDT.

in hint Reserved for future use. This parameter should be NULL_HINT
in allocator A data block can be used as the backing memory for malloc/free-

like operations. This parameter specifies the allocator to use for
these operations inside this data block. Note that if a data block
allocator is used, the user should not write directly to the data
block as this may overwrite the meta data used by the allocator.
The ’NO_ALLOC’ allocator is used to indicate that the data
block is not used by any allocator and is therefore entirely usable
for user data. Supported values for this parameter are given by
ocrInDbAllocator_t.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): The arguments passed (flags, allocator, etc.) were not valid

• 0: Successful

• OCR_ENOMEM (deferred): The runtime could not provide a data block of size ’len’ due to
insufficient memory

• OCR_EBUSY (deferred): A resource required for this call was busy. A retry is possible

Description This function is used to create the basic unit of data in OCR: the data block. Unless
DB_PROP_NO_ACQUIRE is specified in flags, this function also acquires the newly created
data block and returns a pointer to the start of the data block in addr.

The created data block:

• Will always be 8-byte aligned

• Will not necessarily be zeroed out; the value of the created data block is undefined;

• Will have a GUID that is unique from this call until the user calls ocrDbDestroy() on this
data block.

Note

• Using the DB_PROP_NO_ACQUIRE flag is recommended to allow the runtime to make

The OCR API 33

placement decisions for newly created data blocks. Not specifying this flag may result in a
sub-optimal memory placement for the created data block.

• When DB_PROP_NO_ACQUIRE is specified, a conformant implementation may choose
not to create the data block immediately and instead create it lazily before the using EDT
runs.

• Like all GUIDs, the uniqueness of a data block’s GUID is not necessarily unique throughout
the entire program. A data block’s GUID is guaranteed unique only as long as the data block
exists (between ocrDbCreate() and ocrDbDestroy()).

2.6.2. u8 ocrDbDestroy(ocrGuid_t db)

Request for the destruction of a data block. All created data blocks should be destroyed when no
longer needed to reclaim the space they utilize.

Parameters
in db GUID of the data block to destroy

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EPERM (deferred): The data block was already destroyed

• OCR_EINVAL (deferred): The GUID passed as argument does not refer to a valid data block

Description OCR does not perform automatic garbage collection; all created data blocks
therefore need to be explicitly destroyed by the user. This function will request the destruction of a
data block but said destruction will be delayed until all EDTs that have acquired the data block have
released it (either explicitly with ocrDbRelease() or by transitioning to the released state).

This function does not need to be called by an EDT that has acquired the data block. If the EDT did
acquire the data block, however, this function will implicitly release it (equivalent to calling
ocrDbRelease().

Note

Not all instances of the errors indicated by the error codes can be caught. In other words,
attempting the destroy a data block multiple times may result in the return of an error code but
may also result in undefined behavior.
At the end of an OCR program, all data blocks are destroyed by the OCR runtime.

2.6.3. u8 ocrDbRelease(ocrGuid_t db)

An EDT acquires a data block either on creation with ocrDbCreate() or implicitly when it
transitions to the ready state. All acquired data blocks will be implicitly released by the runtime

34 OCR – Version 1.2.0 (Candidate release) – December 2016

when the EDT transitions to the released state but they can be released earlier using this function.
Releasing a data block indicates that the EDT no longer has use for it and also enables other EDTs
to “see” the eventual changes to the data block (release consistency).

Parameters
in db GUID of the data block to release

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): The GUID passed as argument does not refer to a valid data block

• OCR_EACCESS (immediate): The calling EDT has not acquired the data block and therefore
cannot release it

Description This function is critical in ensuring proper memory ordering in OCR. A data block
can be “shared” with another EDT B by satisfying an event that B depends on. B is only
guaranteed to see the changes made to the data block by this EDT if this EDT releases the data
block before satisfying the event B depends on with this data block.

Note

Once the EDT releases a data block, it can no longer read or write to it (the pointer it had to it
should be considered invalid). Violating this rule will result in undefined behavior. A
consequence of this is that a data block can only be released at most once by an EDT.

2.6.4. u8 ocrDbDowngradeRelease(ocrGuid_t db)

This function allows for any writes made to a data block in the current EDT to be released (in
terms of OCR’s release consistency memory model) while still allowing the data block to be read
later in the current EDT. In contrast, a call to ocrDbRelease() indicates the end of both write
and read access to the target data block within the current EDT.

Parameters
in db GUID of the data block to downgrade/release

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (deferred): The GUID passed as argument does not refer to a valid data block

• OCR_EACCESS (immediate): The calling EDT has not acquired the data block and therefore
cannot downgrade/release it

The OCR API 35

Description OCR’s release-consistency memory model requires a release operation on a data
block for synchronization, ensuring that writes to that data block are visible to all EDTs ordered
after the release operation. For a data block that is acquired in a writable mode by the current EDT,
this function performs a release operation (making all preceding writes visible in terms of the
memory model); however, the current EDT retains read-only access to the data block by
downgrading the data block’s access mode to a read-only access mode (i.e., DB_MODE_RO or
DB_MODE_CONST). The user should assume that the mode for the downgraded data block is
DB_MODE_RO but conformant implementations may downgrade certain data blocks to
DB_MODE_CONST. If the target data block is already in a read-only access mode, then this
function does nothing.

Note

Unlike ocrDbRelease(), it is safe to call this function multiple times with the same target
data block within a single EDT. The target data block can later be fully released via a call to
ocrDbRelease(), otherwise it will be released implicitly at the end of the current EDT.

2.7. Event Management

Events are used to coordinate the execution of tasks and to help establish dependences in the
directed acyclic graph representing the execution of an OCR program.

The following macros and enums are used with OCR events:

• enum ocrEventTypes_t containing the types of supported events. The meaning of these
event types is given in Section 1.4.3:

– OCR_EVENT_ONCE_T

– OCR_EVENT_IDEM_T

– OCR_EVENT_STICKY_T

– OCR_EVENT_LATCH_T

• enum ocrLatchEventSlots_t containing constants to identify the two pre-slots of the
latch event type:

– OCR_EVENT_LATCH_DECR_SLOT identifying the decrement slot of the latch event. The
numeric equivalent of this value is 0.

– OCR_EVENT_LATCH_INCR_SLOT identifying the increment slot of the latch event. The
numeric equivalent of this value is 1.

36 OCR – Version 1.2.0 (Candidate release) – December 2016

Functions

• u8 ocrEventCreate(ocrGuid_t ∗guid, ocrEventTypes_t eventType, u16 flags)

Request the creation of an event.

• u8 ocrEventDestroy(ocrGuid_t guid)

Explicitly destroys an event.

• u8 ocrEventSatisfy(ocrGuid_t eventGuid, ocrGuid_t dataGuid)

Satisfy the first pre-slot of an event and optionally pass a data block to the event.

• u8 ocrEventSatisfySlot(ocrGuid_t eventGuid, ocrGuid_t dataGuid, u32 slot)

Satisfy the specified pre-slot of an event and optionally pass a data block to the event. Note that, in the
case of a latch event, the slot parameter is of type enum ocrLatchEventSlots_t

2.7.1. u8 ocrEventCreate(ocrGuid_t ∗ guid, ocrEventTypes_t
eventType, u16 flags)

Requests the creation of an event of the specified type. After a successful call, the runtime will
return the GUID for the newly created event. The returned GUID is immediately usable.

Parameters
out guid On successful creation, contains the GUID of the event. If the call

fails, the returned value is undefined.
in eventType The type of event to create. See .
in flags Flags impacting the creation of the event. Currently, the following

flags are supported:
• EVT_PROP_NONE: Default behavior
• EVT_PROP_TAKES_ARG: If this flag is not set, the event

will ignore any data block passed to it when it is satisfied. The
satisfaction call will raise a deferred error if a data block is
passed in the satisfy call. If the flag is set, the event can take a
data block or NULL_GUID when it is satisfied. In other words,
EVT_PROP_TAKES_ARG, if set, only tells the runtime that the
event may take a data block on satisfaction but does not force it
to.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): The eventType argument is invalid or incompatible with
flags

The OCR API 37

• OCR_ENOMEM (deferred): The runtime could not create the event due to insufficient memory

Description This function is used to create the basic synchronization mechanism is OCR: the
event. The lifetime of the created event is dependent on its type. See Section 1.4.3 for more detail.

2.7.2. u8 ocrEventDestroy(ocrGuid_t guid)

Certain event types, specifically sticky or idempotent events do not get automatically destroyed
when they are satisfied. The user must explicitly destroy these events when they are no longer
needed.
Parameters

in guid GUID of the event to destroy.

Returns 0 if no immediate error was detected or the following error codes:

• 0: Successful

• OCR_EINVAL (deferred): The GUID passed as argument does not refer to a valid event

Description Once and latch events are automatically destroyed by the runtime when they
trigger and propagate their satisfaction to the objects connected to their post-slots; those events
should not be destroyed using this function. Other events, however, need to be destroyed when they
are no longer needed.

Note

If, before this call, the event has EDTs waiting on it that are not yet in the ready state, those
EDTs will never start unless their dependences are reset to another event. If the waiting EDTs
are in the runnable state, the behavior is undefined.
Using the GUID of an event after it has been destroyed using this call will result in undefined
behavior.

2.7.3. u8 ocrEventSatisfy(ocrGuid_t eventGuid, ocrGuid_t dataGuid)

Equivalent to ocrEventSatisfySlot(eventGuid, dataGuid, 0). See Section 2.7.4
for more detail.
Parameters

in eventGuid GUID of the event to satisfy
in dataGuid GUID of the data block to pass to the event or NULL_GUID if this

event does not take any data blocks (pure control dependence)

38 OCR – Version 1.2.0 (Candidate release) – December 2016

Returns 0 if no immediate error was detected or the following error codes:

• OCR_ENOMEM (deferred): The runtime could not satisfy the event due to insufficient memory

• OCR_EINVAL (deferred): eventGuid or dataGuid do not refer to valid event or data block
GUIDs respectively

• OCR_EACCES (deferred): a non NULL_GUID was passed as dataGuid when the event does
not take an argument

• OCR_EPERM (deferred): The event has already been satisfied and does not support multiple
satisfactions or a data block was passed to an event which does not take arguments

Description See Section 2.7.4 for a detailed discussion of this function.

2.7.4. u8 ocrEventSatisfySlot(ocrGuid_t eventGuid, ocrGuid_t
dataGuid, u32 slot)

Satisfy the specified pre-slot of an event thereby potentially causing waiting EDTs to become
runnable. This function is the primary method of synchronization in OCR.

Parameters
in eventGuid GUID of the event to satisfy
in dataGuid GUID of the data block to pass to the event or NULL_GUID if this

event does not take any data blocks (pure control dependence)
in slot Pre-slot on the destination event to satisfy

Returns 0 if no immediate error was detected or the following error codes:

• OCR_ENOMEM (deferred): The runtime could not satisfy the event due to insufficent memory

• OCR_EINVAL (deferred): eventGuid or dataGuid do not refer to valid event or data block
GUIDs respectively

• OCR_EPERM (deferred): The event has already been satisfied and does not support multiple
satisfactions or a data block was passed to an event which does not take arguments

Description Satisfying the pre-slot of an event will potentially trigger the satisfaction of its
post-slot depending on its trigger rule:

• Once, idempotent and sticky events will satisfy their post-slot upon satisfaction of their pre-slot

• Latch events will trigger if and only if the number of satisfactions on both their pre-slots is equal.
See Section 1.4.3 for more detail.

The OCR API 39

The dataGuid argument is used to associate a data block with the event. Once, idempotent and
sticky events will pass this data block down their post-slot. An EDT connected to the post-slot of
the event (or the post-slot of a chain of events connected to this event) will acquire the data block
associated with this event when it transitions to the ready state. A data block passed to a latch event
is ignored.

Note

OCR’s memory model (see Section 1.6) imposes that, to guarantee the visibility of the writes
to a data block passed to an event (and therefore potentially immediately acquired by an EDT),
data blocks need to be released with ocrDbRelease prior to the satisfaction of the event.
Failure to follow this rule will result in undefined behavior. Note that data blocks written to by
a preceding EDT will already have been released when that EDT finished and moved to the
release stage.

2.8. Task management

Event driven tasks – EDTs – act as the task abstraction in OCR, and all program computations are
expressed using EDTs.

A support type for EDTs is the EDT template which factor out some information about EDTs. To
create an EDT, an EDT template first needs to be created. The EDT template can be reused for all
instances of an EDT of the same type.

The following macros and enums are used with OCR tasks.

• EDT_PROP_NONE which specifies no special properties for the creation of an EDT

• EDT_PROP_FINISH which specifies that the created EDT is a finish EDT

• EDT_PROP_OEVT_VALID which specifies that the output event passed when creating an EDT
is a valid event

• EDT_PARAM_UNK which specifies that the number of parameters or dependences to an EDT
template is unknown and each EDT will specify the number of parameters or dependences. This
allows a single template to be created for EDTs that can take a varying number of parameters or
dependences.

The prototype of an EDT function is given by ocrGuid_t (∗ocrEdt_t)(u32 paramc, u64
∗paramv, u32 depc, ocrEdtDep_t depv[])

Functions

• u8 ocrEdtTemplateCreate(ocrGuid_t ∗guid, ocrEdt_t funcPtr, u32 paramc, u32 depc)

Request the creation of an EDT template.

40 OCR – Version 1.2.0 (Candidate release) – December 2016

• u8 ocrEdtTemplateDestroy(ocrGuid_t guid)

Request the destruction of an EDT template.

• u8 ocrEdtCreate(ocrGuid_t ∗guid, ocrGuid_t templateGuid, u32 paramc, const u64
∗paramv, u32 depc, const ocrGuid_t ∗depv, u16 flags, const ocrHint_t ∗hint, ocrGuid_t
∗outputEvent)

Request the creation of an EDT instance using the specified EDT template

• u8 ocrEdtDestroy(ocrGuid_t guid)

Request the explicit destruction of an EDT.

2.8.1. u8 ocrEdtTemplateCreate(ocrGuid_t ∗ guid, ocrEdt_t funcPtr,
u32 paramc, u32 depc)

The EDT template encapsulates information concerning the basic signature and behavior of all
EDTs created based on the template. This function creates an EDT template.

Parameters
out guid On successful creation, contains the GUID of the EDT template. If

the call fails, the returned value is undefined.
in funcPtr The function the EDT will execute when it runs. This function must

be of type ocrEdt_t.
in paramc The number of parameters EDTs created based on this template

will take. If EDTs created based on this template can take a
variable number of arguments, the constant EDT_PARAM_UNK
can be used.

in depc The number of pre-slots that EDTs created based on this template
will take. If EDTs created based on this template can take a
variable number of arguments, the constant EDT_PARAM_UNK
can be used.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_ENOMEM (deferred): The runtime could not allocate the template

Description An EDT template encapsulates the EDT function and, optionally, the number of
parameters and arguments that EDTs instantiated from this template will use. It needs to be created
only once for each function that will serve as an EDT.

Note

If the runtime is compiled with OCR_ENABLE_EDT_NAMING, the name of the function
will also be stored in the EDT template object to aid in debugging.

The OCR API 41

2.8.2. u8 ocrEdtTemplateDestroy(ocrGuid_t guid)

Destroy an EDT template.

Parameters
in guid GUID of the EDT template to destroy

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (deferred): The GUID passed as argument does not refer to a valid EDT
template

Description This function will destroy the EDT template object.

Note

The destruction of the EDT template can occur even if all EDTs created from it have not run to
completion. The EDT template cannot, however, be used to create new EDTs once it has been
destroyed.

2.8.3. u8 ocrEdtCreate(ocrGuid_t ∗ guid, ocrGuid_t templateGuid,
u32 paramc, const u64 ∗ paramv, u32 depc, const ocrGuid_t ∗
depv, u16 flags, const ocrHint_t ∗ hint, ocrGuid_t ∗ outputEvent
)

Creates a new instance of an EDT based on the specified EDT template. In OCR, an EDT will run
at most once and be automatically destroyed once it completes execution.

Parameters
out guid On successful creation, contains the GUID of the EDT. If the call

fails, the returned value is undefined.
in template-

Guid
GUID of the template to use to create the EDT.

in paramc Number of parameters (64-bit values) contained in the paramv
array.

in paramv Pointer to an array of paramc u64 values. The values are copied in
and can therefore be freed/reused after this call returns. If paramc
is 0, this parameter must be set to NULL.

in depc Number of pre-slots for this EDT.

42 OCR – Version 1.2.0 (Candidate release) – December 2016

in depv Pointer to an array of depc ocrGuid_t values or NULL.
All pre-slots specified in this way will be acquired using
DB_DEFAULT_MODE. Use ocrAddDependence() to specify
an alternate mode. If you only want to specify some of the pre-slots
use UNINITIALIZED_GUID for the unknown ones.

in flags Flags controlling the behavior of EDT creation. The supported flags
are:
• EDT_PROP_NONE: Regular EDT
• EDT_PROP_FINISH: Create a finish EDT
• EDT_PROP_OEVT_VALID: The output event’s (last argument)

value is a valid event to use as an output event

in hint Reserved for future use. Set to NULL_HINT.
in,out

outputEvent
The meaning of this field is controlled by the value of the ‘flags’
argument. If EDT_PROP_OEVT_VALID is specified in the flags,
outputEvent must be non-NULL and point to the GUID of a valid
user created event. Note that if the event given as an argument
is a latch event, only the OCR_EVENT_LATCH_DECR_SLOT
is satisfied. If EDT_PROP_OEVT_VALID is not specified
in the flags: if non-NULL on input, on successful creation,
contains the GUID of the event associated with the post-
slot of the EDT; if NULL, no output event will be returned.
When the event is automatically created by the runtime (if
EDT_PROP_OEVT_VALID is not specified), the event returned
will be automatically destroyed on satisfaction. It is therefore
crucial to ensure that all waiters on this event are set up properly
before the EDT transitions to the runnable state. If this behavior
is undesirable, the EDT_PROP_OEVT_VALID allows you to
override the event that will be used as the output event and the
programmer can provide a sticky event which will not be destroyed
on satisfaction. In all cases, the post-slot of the output event (either
specified by the user or created by the runtime) will be satisfied:
a) for a finish EDT, when the EDT and all of its descendant EDTs
(the closure of all EDTs created in this EDT and its children) have
completed execution or b) for a non finish EDT, the post-slot of this
event will be satisfied when the EDT completes execution and will
carry the data block returned by the EDT.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_ENOMEM (deferred): The runtime could not create the EDT

• OCR_EINVAL (deferred): The GUID specifying the template is invalid or the number of

The OCR API 43

parameters or pre-slots are invalid or the combination of flags and other parameter values is
invalid

Description The EDT is created based on the function provided during the creation of its
template. It is required that the number of parameters (paramc) and number of pre-slots (depc)
be resolved at this time. In other words, the number of parameters and dependences must be
explicitly specified at this time. If the EDT template used for this EDT specified specific numbers
of parameters or dependences, the values for paramc and depc must match those specified for
the template.

Note

If the EDT is created with all its pre-slots specified and resolved, it may execute immediately,
which means that the GUIDs returned (guid and outputEvent, if created by the runtime)
may be invalid by the time this function returns. It is the responsibility of the programmer – if
these returned values are needed – to ensure that the EDT cannot start until a later time (e.g.,
by inserting an extra pre-slot that is satisfied only after setting up all dependences on the output
event).

2.8.4. u8 ocrEdtDestroy(ocrGuid_t guid)

EDTs are automatically destroyed after they execute. This call provides a way to explicitly destroy
a created EDT if the programmer later realizes that it will never become runnable.

Parameters
in guid GUID of the EDT to destroy

Description Most programmers will not have use for this function as OCR implicitly destroys
all EDTs that execute. There are some cases, however, where an EDT is created and the
programmer later realizes that the task will never execute. This function allows the programmer to
reclaim the memory used by the EDT. If the destroyed EDT is a descendant of a finish EDT, the
destruction preserves the finish EDT’s property – i.e., its latch event is updated so that the finish
EDT is allowed to trigger its post-slot as if the destroyed EDT was not part of its finish scope.

Note

Destroying an EDT that is in the runnable state or later will result in undefined behavior.
If the EDT had an associated outputEvent, that event will also be explicitly destroyed.

Returns 0 if no immediate error was detected. There are no error codes for this function.

44 OCR – Version 1.2.0 (Candidate release) – December 2016

2.9. Dependence management

At the core of OCR is the concept of a directed acyclic graph that represents the evolving state of
an OCR program. EDTs become runnable once their dependences are met. These dependences can
be set explicitly when creating the EDT or dynamically using the functions from this section of the
API.

Functions

• u8 ocrAddDependence(ocrGuid_t source, ocrGuid_t destination, u32 slot,
ocrDbAccessMode_t mode)

Adds a dependence between OCR objects

2.9.1. u8 ocrAddDependence(ocrGuid_t source, ocrGuid_t
destination, u32 slot, ocrDbAccessMode_t mode)

Adds a dependence between two OCR objects. Concretely, this will link the post-slot of the
source object to the slotth pre-slot of destination. When a dependence exists between
post-slot A and pre-slot B, when A becomes satisfied, B will also become satisfied.

Parameters
in source GUID of the source OCR object. The source can be a data block or

an event or NULL_GUID
in

destination
GUID of the destination OCR object. The destination can be an
event or an EDT

in slot Index of the pre-slot on destination
in mode If destination is an EDT, access mode with which the EDT

will access the data block. If destination is an event, this value
is ignored.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (deferred): slot is invalid

• OCR_ENOPERM (deferred): source and destination cannot be linked with a
dependence (for example, if destination is a data block)

Description The following dependences can be added:

• Event to event: The destination event’s pre-slot will become satisfied upon satisfaction of the
source event’s post-slot. Any data block associated with the source event’s post-slot will be

The OCR API 45

associated with the sink event’s pre-slot, except when the sink event is a latch event. This allows
the formation of event chains.

• Event to EDT: Upon satisfaction of the source event’s post-slot, the EDT’s pre-slot will be
satisfied. When the runtime transitions the EDT from the runnable to ready state, the data block
associated with the post-slot of the event will be acquired using the mode specified.

• Data block to event: Adding a dependence between a data block and an event will result in the
eventual satisfaction of the event with the data block; i.e., ocrAddDependence(db, evt,
slot, mode) is similar to ocrEventSatisfySlot(evt, db, slot), but the
satisfaction of the target event is not guaranteed to happen synchronously.

• Data block to EDT: This represents a pure data dependence. Adding a dependence between a
data block and an EDT immediately satisfies the pre-slot of the EDT. When the runtime
transitions the EDT from the runnable to the ready state, the data block will be acquired using
the mode specified.

• NULL_GUID to event or EDT: This is equivalent to “data block to event” or “data block to
EDT” where the data is non-existent.

Note that an EDT instance may legally have multiple pre-slots satisfied with the same data block if
those dependences have the same access mode. An EDT instance acquiring the same data block
through multiple pre-slots, but with differing access modes, results in undefined behavior. The user
is always responsible for ensuring that each data block is explicitly released (via ocrDbRelease)
at most once per EDT instance.

46 OCR – Version 1.2.0 (Candidate release) – December 2016

Bibliography

[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing locality and
independence with logical regions. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los
Alamitos, CA, USA, 2012. IEEE Computer Society Press. 2

[2] S. Chatterjee. Runtime Systems for Extreme Scale Platforms. PhD thesis, Rice University,
Dec 2013. 13

[3] S. Chatterjee, S. Tasirlar, Z. Budimlić, V. Cavé, M. Chabbi, M. Grossman, Y. Yan, and
V. Sarkar. Integrating Asynchronous Task Parallelism with MPI. In IPDPS ’13: Proceedings
of the 2013 IEEE International Symposium on Parallel&Distributed Processing. IEEE
Computer Society, 2013. 1, 16

[4] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other cilk++
hyperobjects. In Proceedings of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’09, pages 79–90, New York, NY, USA, 2009. ACM. 2

[5] Y. Guo. A Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Task
Parallelism. PhD thesis, Rice University, Aug 2010. 1, 16

[6] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling policies for
async-finish task parallelism. In IPDPS ’09: Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, pages 1–12, Washington, DC, USA, May
2009. IEEE Computer Society. 13

[7] Y. Guo, J. Zhao, V. Cavé, and V. Sarkar. SLAW: a Scalable Locality-aware Adaptive
Work-stealing Scheduler. In IPDPS ’10: Proceedings of the 2010 IEEE International
Symposium on Parallel&Distributed Processing, pages 1–12, Washington, DC, USA, Apr
2010. IEEE Computer Society. 1, 16

[8] S. Imam and V. Sarkar. Cooperative Scheduling of Parallel Tasks with General
Synchronization Patterns. In 28th European Conference on Object-Oriented Programming
(ECOOP), Jul 2014. 9

[9] V. Sarkar et al. DARPA Exascale Software Study report, September 2009. 2

[10] V. Sarkar, W. Harrod, and A. E. Snavely. Software Challenges in Extreme Scale Systems.
January 2010. Special Issue on Advanced Computing: The Roadmap to Exascale. 2

47

[11] D. Sbîrlea, Z. Budimlić, and V. Sarkar. Bounded memory scheduling of dynamic task graphs.
In Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 343–356, New York, NY, USA, 2014. ACM. 1, 16

[12] D. Sbîrlea, K. Knobe, and V. Sarkar. Folding of tagged single assignment values for
memory-efficient parallelism. In Proceedings of the 18th International Conference on Parallel
Processing, Euro-Par’12, pages 601–613, Berlin, Heidelberg, 2012. Springer-Verlag. 6

[13] D. Sbîrlea, A. Sbîrlea, K. B. Wheeler, and V. Sarkar. The Flexible Preconditions Model for
Macro-Dataflow Execution. In The 3rd Data-Flow Execution Models for Extreme Scale
Computing Workshop (DFM), Sep 2013. 1

[14] J. Shirako, V. Cave, J. Zhao, and V. Sarkar. Finish Accumulators: a Deterministic Reduction
Construct for Dynamic Task Parallelism. In The 4th Workshop on Determinism and
Correctness in Parallel Programming (WoDet), March 2013. 2

[15] S. Taşırlar and V. Sarkar. Data-Driven Tasks and their Implementation. In ICPP’11:
Proceedings of the International Conference on Parallel Processing, Sep 2011. 1, 12

[16] S. Tasirlar. Scheduling Macro-Dataflow Programs on Task-Parallel Runtime Systems, Apr
2011. 1, 12

[17] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and V. Sarkar. A practical
approach to doacross parallelization. In Proceedings of the 18th International Conference on
Parallel Processing, Euro-Par’12, pages 219–231, Berlin, Heidelberg, 2012. Springer-Verlag.
6

[18] N. Vrvilo. Asynchronous Checkpoint/Restart for the Concurrent Collections Model, Aug
2014. MS thesis. 1

[19] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a "codelet" program
execution model for exascale machines: Position paper. In Proceedings of the 1st
International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era,
EXADAPT ’11, pages 64–69, New York, NY, USA, 2011. ACM. 1, 12

48 OCR – Version 1.2.0 (Candidate release) – December 2016

A. OCR Examples

This chapter demonstrates the use of OCR through a series of examples. The examples are ordered
from the most basic to the most complicated and frequently make use of previous examples. They
are meant to guide the reader in understanding the fundamental concepts of the OCR programming
model and API.

A.1. OCR’s “Hello World!”

This example illustrates the most basic OCR program: a single function that prints the message
“Hello World!” on the screen and exits.

A.1.1. Code example

The following code will print the string “Hello World!” to the standard output and exit. Note that
this program is fully functional (ie: there is no need for a main function).

i n c l u d e < o c r . h>

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
4 o c r P r i n t f (’ H e l l o World ! \ n ’) ;

ocrShutdown () ;
re turn NULL_GUID ;

}

A.1.1.1. Details

The ocr.h file included on Line 1 contains all of the main OCR APIs. Other more experimental
or extended APIs are also located in the extensions/ folder of the include directory.

EDT’s signature is shown on Line 3. A special EDT, named mainEdt is called by the runtime if
the programmer does not provide a main function1.

1Note that if the programmer does provide a main function, it is the responsability of the programmer to properly
initialize the runtime, call the first EDT to execute and properly shutdown the runtime. Refer to the legacy mode
extension and the ocr-legacy.h header file for more detail.

49

The ocrShutdown function called on Line 5 should be called once and only once by all OCR
programs to indicate that the program has terminated. The runtime will then shutdown and any
non-executed EDTs at that time are not guaranteed to execute.

A.2. Expressing a fork-join pattern

This example illustrates the creation of a fork-join pattern in OCR.

A.2.1. Code example

/ * Example o f a " f o r k−j o i n " p a t t e r n i n OCR
*

3 * I m p l e m e n t s t h e f o l l o w i n g dependence graph :
*
* mainEdt
* / \
* fun1 fun2

8 * \ /
* shu tdownEdt
*
* /

13 # i n c l u d e " o c r . h "

ocrGuid_t fun1 (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
i n t * k ;
ocrGuid_t db_guid ;

18 oc rDbCrea t e (& db_guid , (void **) &k , s i z e o f (i n t) , 0 , NULL_HINT , NO_ALLOC) ;
k [0] = 1 ;
o c r P r i n t f (" H e l l o from fun1 , s e n d i n g k = %" PRId32 " \ n " ,* k) ;
re turn db_guid ;

}
23

ocrGuid_t fun2 (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
i n t * k ;
ocrGuid_t db_guid ;
oc rDbCrea t e (& db_guid , (void **) &k , s i z e o f (i n t) , 0 , NULL_HINT , NO_ALLOC) ;

28 k [0] = 2 ;
o c r P r i n t f (" H e l l o from fun2 , s e n d i n g k = %" PRId32 " \ n " ,* k) ;
re turn db_guid ;

}

33 ocrGuid_t shutdownEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
o c r P r i n t f (" H e l l o from shutdownEdt \ n ") ;
i n t * d a t a 1 = (i n t *) depv [0] . p t r ;
i n t * d a t a 2 = (i n t *) depv [1] . p t r ;
o c r P r i n t f (" Rece ived d a t a 1 = %" PRId32 " , d a t a 2 = %" PRId32 " \ n " , * da ta1 , * d a t a 2) ;

38 ocrDbDes t roy (depv [0] . gu id) ;
oc rDbDes t roy (depv [1] . gu id) ;
ocrShutdown () ;
re turn NULL_GUID ;

}
43

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
o c r P r i n t f (" S t a r t i n g mainEdt \ n ") ;
ocrGuid_t e d t 1 _ t e m p l a t e , e d t 2 _ t e m p l a t e , e d t 3 _ t e m p l a t e ;

50 OCR – Version 1.2.0 (Candidate release) – December 2016

ocrGuid_t ed t1 , ed t2 , ed t3 , o u t p u t E v e n t 1 , o u t p u t E v e n t 2 ;
48

/ / Cr ea t e t e m p l a t e s f o r t h e EDTs
o c r E d t T e m p l a t e C r e a t e (& e d t 1 _ t e m p l a t e , fun1 , 0 , 1) ;
o c r E d t T e m p l a t e C r e a t e (& e d t 2 _ t e m p l a t e , fun2 , 0 , 1) ;
o c r E d t T e m p l a t e C r e a t e (& e d t 3 _ t e m p l a t e , shutdownEdt , 0 , 2) ;

53

/ / Cr ea t e t h e EDTs
o c r E d t C r e a t e (& edt1 , e d t 1 _ t e m p l a t e , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF, NULL,

EDT_PROP_NONE, NULL_HINT , &o u t p u t E v e n t 1) ;
o c r E d t C r e a t e (& edt2 , e d t 2 _ t e m p l a t e , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF, NULL,

EDT_PROP_NONE, NULL_HINT , &o u t p u t E v e n t 2) ;
o c r E d t C r e a t e (& edt3 , e d t 3 _ t e m p l a t e , EDT_PARAM_DEF, NULL, 2 , NULL, EDT_PROP_NONE,

NULL_HINT , NULL) ;
58

/ / S e t u p dependences f o r t h e shutdown EDT
ocrAddDependence (o u t p u t E v e n t 1 , ed t3 , 0 , DB_MODE_CONST) ;
ocrAddDependence (o u t p u t E v e n t 2 , ed t3 , 1 , DB_MODE_CONST) ;

63 / / S t a r t e x e c u t i o n o f t h e p a r a l l e l EDTs
ocrAddDependence (NULL_GUID , ed t1 , 0 , DB_DEFAULT_MODE) ;
ocrAddDependence (NULL_GUID , ed t2 , 0 , DB_DEFAULT_MODE) ;
re turn NULL_GUID ;

}

A.2.1.1. Details

The ocr.h file included on Line 13 contains all of the main OCR APIs. The mainEdt is shown
on Line 44. It is called by the runtime as a main function is not provided (more details in
hello.c).

The mainEdt creates three templates (Lines 50, 51 and 52), respectively for three different EDTs
(Lines 55, 56 and 57). An EDT is created as an instance of an EDT template. This template stores
metadata about the EDTs created from it, optionally defines the number of dependences and
parameters used when creating an instance of an EDT, and is a container for the function that will
be executed by an EDT (called the EDT function). For the EDTs edt1, edt2 and edt3, the EDT
functions are, respectively, fun1, fun2 and shutdownEdt. The last parameter to
ocrEdtTemplateCreate is the total number of data blocks on which the EDTs depends. The
signature of EDT creation API, ocrEdtCreate, is shown in Lines 55, 56 and 57. When edt1
and edt2 will complete, they will satisfy the output events outputEvent1 and
outputEvent2 repectively. This is not required for edt3. However, edt3 should execute only
when the events outputEvent1 and outputEvent2 are satisfied. This is done by setting up
dependences on edt3 by using the API ocrAddDependence, as shown in Lines 60 and 61.
This spawns edt3 but it will not execute until both the events are satisfied. Finally, the EDTs
edt1 and edt2 are spawned in Lines 64 and 65 respectively. As they do not have any
dependences, they execute the associated EDT functions in parallel. These functions (fun1 and
fun2) create data blocks using the API ocrDbCreate (Lines 18 and 27). The data is written to
the data blocks and the GUID is returned (Lines 21 and 30). This will satisfy the events on which
the edt3 is waiting. The EDT function shutdownEdt executes and calls ocrShutdown after
reading and destroying the two data blocks.

OCR Examples 51

A.3. Expressing unstructured parallelism

A.3.1. Code example

This example illustrates several aspect of the OCR API with regards to the creation of an irregular
task graph. Specifically, it illustrates:

1. Adding dependences between a) events and EDTs, b) data blocks and EDTs, and c) the
NULL_GUID and EDTs;

2. The use of an EDT’s post-slot and how a “producer” EDT can pass a data block to a “consumer”
EDT using this post-slot;

3. Several methods of satisfying an EDT’s pre-slot: a) through the use of an explicit dependence
array at creation time, b) through the use of another EDT’s post-slot and c) through the use of an
explicitly added dependence followed by an ocrEventSatisfy call.

/ * Example o f a p a t t e r n t h a t h i g h l i g h t s t h e
* e x p r e s s i v e n e s s o f t a s k dependences

3 *
* I m p l e m e n t s t h e f o l l o w i n g dependence graph :
*
* mainEdt
* | \

8 * s t a g e 1 a s t a g e 1 b
* | \ |
* | \ |
* | \ |
* s t a g e 2 a s t a g e 2 b

13 * \ /
* shu tdownEdt
* /

i n c l u d e " o c r . h "

18 # d e f i n e NB_ELEM_DB 20

t y p e d e f s t r u c t {
ocrGuid_t ev tGu id ;

} guidPRM_t ;
23

/ / How many p a r a m e t e r s does i t t a k e t o encode a GUID
d e f i n e PARAM_SIZE (s i z e o f (guidPRM_t) + s i z e o f (u64) − 1) / s i z e o f (u64)

ocrGuid_t shutdownEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
28 o c r A s s e r t (depc == 2) ;

u64* d a t a 0 = (u64 *) depv [0] . p t r ;
u64* d a t a 1 = (u64 *) depv [1] . p t r ;

o c r A s s e r t (* d a t a 0 == 3ULL) ;
33 o c r A s s e r t (* d a t a 1 == 4ULL) ;

o c r P r i n t f (" Got a DB (GUID "GUIDF") c o n t a i n i n g %" PRIu64 " on s l o t 0 \ n " ,
GUIDA(depv [0] . gu id) , * d a t a 0) ;

o c r P r i n t f (" Got a DB (GUID "GUIDF") c o n t a i n i n g %" PRIu64 " on s l o t 1 \ n " ,
GUIDA(depv [1] . gu id) , * d a t a 1) ;

/ / Free t h e da ta b l o c k s t h a t were p as s ed i n
38 ocrDbDes t roy (depv [0] . gu id) ;

oc rDbDes t roy (depv [1] . gu id) ;

52 OCR – Version 1.2.0 (Candidate release) – December 2016

/ / Shutdown t h e r u n t i m e
ocrShutdown () ;

43 re turn NULL_GUID ;
}

ocrGuid_t s t a g e 2 a (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) ;

48 ocrGuid_t s t a g e 1 a (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
o c r A s s e r t (depc == 1) ;
o c r A s s e r t (paramc == PARAM_SIZE) ;
/ / paramv c o n t a i n s t h e e v e n t t h a t t h e c h i l d EDT has t o s a t i s f y
/ / when i t i s done

53

/ / We c r e a t e a da ta b l o c k f o r one u64 and p u t da ta i n i t
ocrGuid_t dbGuid = NULL_GUID , s t a g e 2 a T e m p l a t e G u i d = NULL_GUID ,

s t a g e 2 a E d t G u i d = NULL_GUID ;
u64* d b P t r = NULL;

58 oc rDbCrea t e (&dbGuid , (void **)&dbPt r , s i z e o f (u64) , 0 , NULL_HINT , NO_ALLOC) ;
* d b P t r = 1ULL;

/ / Cr ea t e an EDT and pass i t t h e da ta b l o c k we j u s t c r e a t e d
/ / The EDT i s i m m e d i a t e l y ready t o e x e c u t e

63 o c r E d t T e m p l a t e C r e a t e (& s t age2aTempla t eGu id , s t a g e 2 a , PARAM_SIZE , 1) ;
o c r E d t C r e a t e (& s t a g e 2a E d t Gu i d , s t age2aTempla t eGu id , EDT_PARAM_DEF,

paramv , EDT_PARAM_DEF, &dbGuid , EDT_PROP_NONE, NULL_HINT , NULL) ;

/ / Pass t h e same da ta b l o c k c r e a t e d t o s t a g e 2 b (l i n k s s e t u p i n mainEdt)
68 re turn dbGuid ;

}

ocrGuid_t s t a g e 1 b (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
o c r A s s e r t (depc == 1) ;

73 o c r A s s e r t (paramc == 0) ;

/ / We c r e a t e a da ta b l o c k f o r one u64 and p u t da ta i n i t
ocrGuid_t dbGuid = NULL_GUID ;
u64* d b P t r = NULL;

78 oc rDbCrea t e (&dbGuid , (void **)&dbPt r , s i z e o f (u64) , 0 , NULL_HINT , NO_ALLOC) ;
* d b P t r = 2ULL;

/ / Pass t h e c r e a t e d da ta b l o c k c r e a t e d t o s t a g e 2 b (l i n k s s e t u p i n mainEdt)
re turn dbGuid ;

83 }

ocrGuid_t s t a g e 2 a (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
o c r A s s e r t (depc == 1) ;
o c r A s s e r t (paramc == PARAM_SIZE) ;

88

guidPRM_t * params = (guidPRM_t *) paramv ;

u64 * d b P t r = (u64 *) depv [0] . p t r ;
o c r A s s e r t (* d b P t r == 1ULL) ; / / We g o t t h i s from s t a g e 1 a

93

* d b P t r = 3ULL; / / Update t h e v a l u e

/ / Pass t h e m o d i f i e d da ta b l o c k t o shutdown
o c r E v e n t S a t i s f y (params−>evtGuid , depv [0] . gu id) ;

98

re turn NULL_GUID ;
}

ocrGuid_t s t a g e 2 b (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
103 o c r A s s e r t (depc == 2) ;

o c r A s s e r t (paramc == 0) ;

OCR Examples 53

u64 * d b P t r = (u64 *) depv [1] . p t r ;
/ / Here , we can run c o n c u r r e n t l y t o s t a g e 2 a which m o d i f i e s t h e v a l u e

108 / / we s e e i n depv [0] . p t r . We s h o u l d s e e e i t h e r 1ULL or 3ULL

/ / On depv [1] , we g e t t h e v a l u e from s t a g e 1 b and i t s h o u l d be 2
o c r A s s e r t (* d b P t r == 2ULL) ; / / We g o t t h i s from s t a g e 2 a

113 * d b P t r = 4ULL; / / Update t h e v a l u e

re turn depv [1] . gu id ; / / Pass t h i s t o t h e shudown EDT
}

118

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {

ocrGuid_t s t a g e 1 a T e m p l a t e G u i d = NULL_GUID , s t a g e 1 b T e m p l a t e G u i d = NULL_GUID ,
s t a g e 2 a T e m p l a t e G u i d = NULL_GUID , s t a g e 2 b T e m p l a t e G u i d = NULL_GUID ,

123 shu tdownEdtTempla teGuid = NULL_GUID ;
ocrGuid_t shutdownEdtGuid = NULL_GUID , s t a g e 1 a E d t G u i d = NULL_GUID ,

s t a g e 1 b E d t G u i d = NULL_GUID , s t a g e 2 b E d t G u i d = NULL_GUID ,
ev tGu id = NULL_GUID , s t a g e 1 a O u t = NULL_GUID , s t a g e 1 b O u t = NULL_GUID ,
s t a g e 2 b O u t = NULL_GUID ;

128

/ / Cr ea t e t h e shutdown EDT
o c r E d t T e m p l a t e C r e a t e (& shutdownEdtTempla teGuid , shutdownEdt , 0 , 2) ;
o c r E d t C r e a t e (& shutdownEdtGuid , shutdownEdtTempla teGuid , 0 , NULL, EDT_PARAM_DEF, NULL,

EDT_PROP_NONE, NULL_HINT , NULL) ;
133

/ / Cr ea t e t h e e v e n t t o s a t i s f y shu tdownEdt by s t a g e 2a
/ / (s t a g e 2a i s c r e a t e d by 1a)
o c r E v e n t C r e a t e (& evtGuid , OCR_EVENT_ONCE_T, t r u e) ;

138 guidPRM_t tmp ;
tmp . ev tGu id = ev tGu id ;
/ / Cr ea t e s t a g e s 1a , 1b and 2b
/ / For 1a and 1b , add a " f a k e " dependence t o a v o i d r a c e s be tween
/ / s e t t i n g up t h e e v e n t l i n k s and r u n n i n g t h e EDT

143 o c r E d t T e m p l a t e C r e a t e (& s t age1aTempla t eGu id , s t a g e 1 a , PARAM_SIZE , 1) ;
o c r E d t C r e a t e (& s t a g e 1 aE d t Gu i d , s t age1aTempla t eGu id , EDT_PARAM_DEF, (u64 *) (&tmp) ,

EDT_PARAM_DEF, NULL, EDT_PROP_NONE, NULL_HINT , &s t a g e 1 a O u t) ;

o c r E d t T e m p l a t e C r e a t e (& s tage1bTempla t eGu id , s t a g e 1 b , 0 , 1) ;
148 o c r E d t C r e a t e (& s tage1bEd tGu id , s t age1bTempla t eGu id , EDT_PARAM_DEF, NULL,

EDT_PARAM_DEF, NULL, EDT_PROP_NONE, NULL_HINT , &s t a g e 1 b O u t) ;

o c r E d t T e m p l a t e C r e a t e (& s tage2bTempla t eGu id , s t a g e 2 b , 0 , 2) ;
o c r E d t C r e a t e (& s tage2bEd tGu id , s t age2bTempla t eGu id , EDT_PARAM_DEF, NULL,

153 EDT_PARAM_DEF, NULL, EDT_PROP_NONE, NULL_HINT , &s t a g e 2 b O u t) ;

/ / S e t up a l l t h e l i n k s
/ / 1a −> 2b
ocrAddDependence (s t age1aOu t , s t age2bEd tGu id , 0 , DB_DEFAULT_MODE) ;

158

/ / 1b −> 2b
ocrAddDependence (s t age1bOut , s t age2bEd tGu id , 1 , DB_DEFAULT_MODE) ;

/ / Even t s a t i s f i e d by 2a −> shutdown
163 ocrAddDependence (evtGuid , shutdownEdtGuid , 0 , DB_DEFAULT_MODE) ;

/ / 2b −> shutdown
ocrAddDependence (s t age2bOut , shutdownEdtGuid , 1 , DB_DEFAULT_MODE) ;

/ / S t a r t 1a and 1b
168 ocrAddDependence (NULL_GUID , s t a ge 1 a Ed t G u id , 0 , DB_DEFAULT_MODE) ;

ocrAddDependence (NULL_GUID , s t age1bEd tGu id , 0 , DB_DEFAULT_MODE) ;

54 OCR – Version 1.2.0 (Candidate release) – December 2016

re turn NULL_GUID ;
}

A.3.1.1. Details

The snippet of code shows one possible way to construct the irregular task-graph shown starting on
Line 5. mainEdt will create a) stage1a and stage1b as they are the next things that need to
execute but also b) stage2b and shutdownEdt because they are the immediate dominators of
those EDTs. In general, it is easiest to create an EDT in its immediate dominator because that
allows any other EDTs who need to feed it information (necessarily between its dominator and the
EDT in question) to be able to know the value of the opaque GUID created for the EDT. stage2a,
on the other hand, can be created by stage1a as no-one else needs to feed information to it.

Most of the “edges” in the dependence graph are also created in mainEdt starting at Line 157.
These are either between the post-slot (output event) of a source EDT and an EDT or between a
regular event and an EDT. Note also the use of NULL_GUID as a source for two dependences
starting at Line 168. A NULL_GUID as a source for a dependence immediately satisfies the
destination slot; in this case, it satisfies the unique dependence of stage1a and stage1b and
makes them runable. These two dependences do not exist in the graph shown starting at Line 5 but
are crucial to avoid a potential race in the program: the output events of EDTs are similar to ONCE
events in the sense that they will disappear once they are satisfied and therefore, any dependence on
them must be properly setup prior to their potential satisfaction. In other words, the
ocrAddDependence calls starting at Line 157 must happen-before the satisfaction of
stage1aOut and stage1bOut. This example shows three methods of satisfying an EDT’s
pre-slots:

• Through the use of an explicit dependence array known at EDT creation time as shown on
Line 64;

• Through an output event as shown on Line 68. The GUID passed as a return value of the EDT
function will be passed to the EDT’s output event (in this case stage1aOut). If the GUID is a
data block’s GUID, the output event will be satisfied with that data block. If it is an event’s
GUID, the two events will become linked;

• Through an explicit satisfaction as shown on Line 97).

A.4. Using a Finish EDT

A.4.1. Code example

The following code demonstrates the use of Finish EDTs by performing a Fast Fourier Transform
on a sparse array of length 256 bytes. For the sake of simplicity, the array contents and sizes are
hardcoded, however, the code can be used as a starting point for adding more functionality.

OCR Examples 55

/ * Example usage o f F i n i s h EDT i n FFT .
*

3 * I m p l e m e n t s t h e f o l l o w i n g dependence graph :
*
* MainEdt
* |
*

8 * F i n i s h E d t
* {
* DFT
* / \
* FFT−odd FFT−even

13 * \ /
* Twidd le
* }
* |
* Shutdown

18 *
* /

i n c l u d e " o c r . h "
i n c l u d e " math . h "

23

d e f i n e N 256
d e f i n e BLOCK_SIZE 16

/ / The below f u n c t i o n p e r f o r m s a t w i d d l e o p e r a t i o n on an a r r a y x _ i n
28 / / and p l a c e s t h e r e s u l t s i n X_ re a l & X_imag . The o t h e r argument s

/ / s i z e and s t e p r e f e r t o t h e s i z e o f t h e a r r a y x _ i n and t h e o f f s e t t h e r e i n
void d i t f f t 2 (double * X_rea l , double *X_imag , double * x_in , u32 s i z e , u32 s t e p) {

i f (s i z e == 1) {
X _r ea l [0] = x_ in [0] ;

33 X_imag [0] = 0 ;
} e l s e {

d i t f f t 2 (X_rea l , X_imag , x_in , s i z e / 2 , 2 * s t e p) ;
d i t f f t 2 (X _r ea l + s i z e / 2 , X_imag+ s i z e / 2 , x_ in + s t e p , s i z e / 2 , 2 * s t e p) ;
u32 k ;

38 f o r (k =0; k< s i z e / 2 ; k ++) {
double t _ r e a l = X_ re a l [k] ;
double t _ imag = X_imag [k] ;
double t w i d d l e _ r e a l = cos (−2 * M_PI * k / s i z e) ;
double t w i d d l e _ i m a g = s i n (−2 * M_PI * k / s i z e) ;

43 double xr = X _r e a l [k+ s i z e / 2] ;
double x i = X_imag [k+ s i z e / 2] ;

/ / (a+b i) (c+d i) = (ac − bd) + (bc + ad) i
X _r ea l [k] = t _ r e a l +

48 (t w i d d l e _ r e a l * x r − t w i d d l e _ i m a g * x i) ;
X_imag [k] = t_ imag +

(t w i d d l e _ i m a g * xr + t w i d d l e _ r e a l * x i) ;
X _r ea l [k+ s i z e / 2] = t _ r e a l −

53 (t w i d d l e _ r e a l * x r − t w i d d l e _ i m a g * x i) ;
X_imag [k+ s i z e / 2] = t_ imag −

(t w i d d l e _ i m a g * xr + t w i d d l e _ r e a l * x i) ;
}

}
58 }

/ / The below f u n c t i o n s p l i t s t h e g i v e n a r r a y i n t o odd & even p o r t i o n s and
/ / c a l l s i t s e l f r e c u r s i v e l y v i a c h i l d EDTs t h a t o p e r a t e on each o f t h e p o r t i o n s ,
/ / t i l l t h e a r r a y o p e r a t e d upon i s o f s i z e BLOCK_SIZE , a pre−d e f i n e d

63 / / parame te r . I t t h e n t r i v i a l l y computes t h e FFT o f t h i s array , t h e n spawns
/ / t w i d d l e EDTs t o combine t h e r e s u l t s o f t h e c h i l d r e n .

56 OCR – Version 1.2.0 (Candidate release) – December 2016

ocrGuid_t f f t C o m p u t e E d t (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
ocrGuid_t computeGuid = paramv [0] ;
ocrGuid_t t w i d d l e G u i d = paramv [1] ;

68 double * d a t a = (double *) depv [0] . p t r ;
ocrGuid_t d a t a G u i d = depv [0] . gu id ;
u64 s i z e = paramv [2] ;
u64 s t e p = paramv [3] ;
u64 o f f s e t = paramv [4] ;

73 u64 s t e p _ o f f s e t = paramv [5] ;
u64 b l o c k S i z e = paramv [6] ;
double * x_ in = (double *) d a t a ;
double * X _r ea l = (double *) (d a t a + o f f s e t + s i z e * s t e p) ;
double *X_imag = (double *) (d a t a + o f f s e t + 2* s i z e * s t e p) ;

78

i f (s i z e <= b l o c k S i z e) {
d i t f f t 2 (X_rea l , X_imag , x_ in + s t e p _ o f f s e t , s i z e , s t e p) ;

} e l s e {
/ / DFT even s i d e

83 u64 c h i l d P a r a m v [7] = { computeGuid , tw idd leGu id , s i z e / 2 , 2 * s t e p ,
0 + o f f s e t , s t e p _ o f f s e t , b l o c k S i z e } ;

u64 c h i l d P a r a m v 2 [7] = { computeGuid , tw idd leGu id , s i z e / 2 , 2 * s t e p ,
s i z e / 2 + o f f s e t , s t e p _ o f f s e t + s t e p , b l o c k S i z e } ;

88 ocrGuid_t edtGuid , edtGuid2 , t w id d l e E d t G u id , f i n i s h E v e n t G u i d , f i n i s h E v e n t G u i d 2 ;

o c r E d t C r e a t e (& edtGuid , computeGuid , EDT_PARAM_DEF, ch i ldParamv ,
EDT_PARAM_DEF, NULL, EDT_PROP_FINISH , NULL_HINT ,
&f i n i s h E v e n t G u i d) ;

93 o c r E d t C r e a t e (& edtGuid2 , computeGuid , EDT_PARAM_DEF, ch i ldParamv2 ,
EDT_PARAM_DEF, NULL, EDT_PROP_FINISH , NULL_HINT ,
&f i n i s h E v e n t G u i d 2) ;

ocrGuid_t t w i d d l e D e p e n d e n c i e s [3] = { da taGuid , f i n i s h E v e n t G u i d , f i n i s h E v e n t G u i d 2 } ;
98 o c r E d t C r e a t e (& tw i d d l e Ed t Gu i d , tw idd leGu id , EDT_PARAM_DEF, paramv , 3 ,

t w i d d l e D e p e n d e n c i e s , EDT_PROP_FINISH , NULL_HINT , NULL) ;

ocrAddDependence (da taGuid , edtGuid , 0 , DB_MODE_RW) ;
ocrAddDependence (da taGuid , edtGuid2 , 0 , DB_MODE_RW) ;

103 }

re turn NULL_GUID ;
}

108 / / The below f u n c t i o n p e r f o r m s t h e t w i d d l e o p e r a t i o n
ocrGuid_t f f t T w i d d l e E d t (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {

double * d a t a = (double *) depv [0] . p t r ;
u64 s i z e = paramv [2] ;
u64 s t e p = paramv [3] ;

113 u64 o f f s e t = paramv [4] ;
double * x_ in = (double *) d a t a + o f f s e t ;
double * X _r ea l = (double *) (d a t a + o f f s e t + s i z e * s t e p) ;
double *X_imag = (double *) (d a t a + o f f s e t + 2* s i z e * s t e p) ;

118 d i t f f t 2 (X_rea l , X_imag , x_in , s i z e , s t e p) ;

re turn NULL_GUID ;
}

123 ocrGuid_t endEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
ocrGuid_t d a t a G u i d = paramv [0] ;

oc rDbDes t roy (d a t a G u i d) ;
ocrShutdown () ;

128 re turn NULL_GUID ;
}

OCR Examples 57

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {

133 ocrGuid_t computeTempGuid , twiddleTempGuid , endTempGuid ;
o c r E d t T e m p l a t e C r e a t e (&computeTempGuid , &f f tComputeEd t , 7 , 1) ;
o c r E d t T e m p l a t e C r e a t e (& twiddleTempGuid , &f f t T w i d d l e E d t , 7 , 3) ;
o c r E d t T e m p l a t e C r e a t e (&endTempGuid , &endEdt , 1 , 1) ;
u32 i ;

138 double *x ;

ocrGuid_t d a t a G u i d ;
oc rDbCrea t e (& dataGuid , (void **) &x , s i z e o f (double) * N * 3 , DB_PROP_NONE, NULL_HINT ,

NO_ALLOC) ;

143 / / Cook up some a r b i t r a r y da ta
f o r (i =0 ; i <N; i ++) {

x [i] = 0 ;
}
x [0] = 1 ;

148

u64 ed tParamv [7] = { computeTempGuid , twiddleTempGuid , N, 1 , 0 , 0 , BLOCK_SIZE } ;
ocrGuid_t edtGuid , eventGuid , endGuid ;

/ / Launch compute EDT
153 o c r E d t C r e a t e (& edtGuid , computeTempGuid , EDT_PARAM_DEF, edtParamv ,

EDT_PARAM_DEF, NULL, EDT_PROP_FINISH , NULL_HINT ,
&even tGu id) ;

/ / Launch f i n i s h EDT
158 o c r E d t C r e a t e (&endGuid , endTempGuid , EDT_PARAM_DEF, &dataGuid ,

EDT_PARAM_DEF, NULL, EDT_PROP_FINISH , NULL_HINT ,
NULL) ;

ocrAddDependence (da taGuid , edtGuid , 0 , DB_MODE_RW) ;
163 ocrAddDependence (eventGuid , endGuid , 0 , DB_MODE_RW) ;

re turn NULL_GUID ;
}

A.4.1.1. Details

The above code contains a total of 5 functions - a mainEdt() required of all OCR programs, a
ditfft2() that acts as the core of the recursive FFT computation, calling itself on smaller sizes
of the array provided to it, and three other EDTs that are managed by OCR. They include -
fftComputeEdt() in Line 65 that breaks down the FFT operation on an array into two FFT
operations on the two halves of the array (by spawning two other EDTs of the same template), as
well as an instance of fftTwiddleEdt() shown in Line 109 that combines the results from the
two spawned EDTs by applying the FFT “twiddle” operation on the real and imaginary portions of
the array. The fftComputeEdt() function stops spawning EDTs once the size of the array it
operates on drops below a pre-defined BLOCK_SIZE value. This sets up a recursive cascade of
EDTs operating on gradually smaller data sizes till the BLOCK_SIZE value is reached, at which
point the FFT value is directly computed, followed by a series of twiddle operations on gradualy
larger data sizes till the entire array has undergone the operation. When this is available, a final
EDT termed endEdt() in Line 123 is called to optionally output the value of the computed FFT,

58 OCR – Version 1.2.0 (Candidate release) – December 2016

and terminate the program by calling ocrShutdown(). All the FFT operations are performed on
a single data block created in Line 141. This shortcut is taken for the sake of didactic simplicity.
While this is programmatically correct, a user who desires reducing contention on the single array
may want to break down the data block into smaller units for each of the EDTs to operate upon.

For this program to execute correctly, it is apparent that each of the fftTwiddleEdt instances
can not start until all its previous instances have completed execution. Further, for the sake of
program simplicity, an instance of fftComputeEdt-fftTwiddleEdt pair cannot return until
the EDTs that they spawn have completed execution. The above dependences are enforced using
the concept of Finish EDTs. As stated before, a Finish EDT does not return until all the EDTs
spawned by it have completed execution. This simplifies programming, and does not consume
computing resources since a Finish EDT that is not running, is removed from any computing
resources it has used. In this program, no instance of fftComputeEdt or fftTwiddleEdt
returns before the corresponding EDTs that operates on smaller data sizes have returned, as
illustrated in Lines 92,95 and 99. Finally, the single endEdt() instance in Line 155 is called only
after all the EDTs spawned by the parent fftComputeEdt() in Line 160, return.

A.5. Accessing a data block with “Read-Write” Mode

This example illustrates the usage model for data blocks accessed with the Read-Write (RW)
mode. The RW mode ensures that only one master copy of the data block exists at any time inside a
shared address space. Parallel EDTs can concurrently access a data block under this mode if they
execute inside the same address space. It is the programmer’s responsibility to avoid data races. For
example, two parallel EDTs can concurrently update separate memory regions of the same data
block with the RW mode.

A.5.1. Code example

/ * Example usage o f RW (Read−W r i t e)
* da ta b l o c k a c c e s s mode i n OCR
*

4 * I m p l e m e n t s t h e f o l l o w i n g dependence graph :
*
* mainEdt
* [DB]
* / \

9 * (RW) / \ (RW)
* / \
* EDT1 EDT2
* \ /
* [DB]

14 * shu tdownEdt
*
* /

i n c l u d e " o c r . h "
19

d e f i n e N 1000

OCR Examples 59

ocrGuid_t exampleEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u64 i , lb , ub ;

24 l b = paramv [0] ;
ub = paramv [1] ;
u32 * d b P t r = (u32 *) depv [0] . p t r ;

f o r (i = l b ; i < ub ; i ++)
29 d b P t r [i] += i ;

re turn NULL_GUID ;
}

34 ocrGuid_t a w a i t i n g E d t (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u64 i ;
o c r P r i n t f (" Done ! \ n ") ;
u32 * d b P t r = (u32 *) depv [0] . p t r ;
f o r (i = 0 ; i < N; i ++) {

39 i f (d b P t r [i] != i * 2)
break ;

}

i f (i == N) {
44 o c r P r i n t f (" P as s ed V e r i f i c a t i o n \ n ") ;

} e l s e {
o c r P r i n t f (" ! ! ! FAILED ! ! ! V e r i f i c a t i o n \ n ") ;

}

49 ocrDbDes t roy (depv [0] . gu id) ;
ocrShutdown () ;
re turn NULL_GUID ;

}

54 ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u32 i ;

/ / CHECKER DB
u32* p t r ;

59 ocrGuid_t dbGuid ;
oc rDbCrea t e (&dbGuid , (void **)&p t r , N * s i z e o f (u32) , DB_PROP_NONE, NULL_HINT , NO_ALLOC) ;
f o r (i = 0 ; i < N; i ++)

p t r [i] = i ;
oc rDbRe lease (dbGuid) ;

64

/ / EDT Templa te
ocrGuid_t exampleTemplGuid , exampleEdtGuid1 , exampleEdtGuid2 , exampleEventGuid1 ,

exampleEventGuid2 ;
o c r E d t T e m p l a t e C r e a t e (&exampleTemplGuid , exampleEdt , 2 / * paramc * / , 1 / * depc * /) ;
u64 a r g s [2] ;

69

/ / EDT1
a r g s [0] = 0 ;
a r g s [1] = N/ 2 ;
o c r E d t C r e a t e (& exampleEdtGuid1 , exampleTemplGuid , EDT_PARAM_DEF, a rgs , EDT_PARAM_DEF, NULL,

74 EDT_PROP_NONE, NULL_HINT , &exampleEventGuid1) ;

/ / EDT2
a r g s [0] = N/ 2 ;
a r g s [1] = N;

79 o c r E d t C r e a t e (& exampleEdtGuid2 , exampleTemplGuid , EDT_PARAM_DEF, a rgs , EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_HINT , &exampleEventGuid2) ;

/ / AWAIT EDT
ocrGuid_t awai t ingTemplGuid , a w a i t i n g E d t G u i d ;

84 o c r E d t T e m p l a t e C r e a t e (& awai t ingTemplGuid , a w a i t i n g E d t , 0 / * paramc * / , 3 / * depc * /) ;

60 OCR – Version 1.2.0 (Candidate release) – December 2016

o c r E d t C r e a t e (& a w a i t i n g E d t G u i d , awai t ingTemplGuid , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF,
NULL,

EDT_PROP_NONE, NULL_HINT , NULL) ;
ocrAddDependence (dbGuid , a w a i t i n g E d t G u i d , 0 , DB_MODE_CONST) ;
ocrAddDependence (exampleEventGuid1 , a w a i t i n g E d t G u i d , 1 , DB_DEFAULT_MODE) ;

89 ocrAddDependence (exampleEventGuid2 , a w a i t i n g E d t G u i d , 2 , DB_DEFAULT_MODE) ;

/ / START
o c r P r i n t f (" S t a r t ! \ n ") ;
ocrAddDependence (dbGuid , exampleEdtGuid1 , 0 , DB_MODE_RW) ;

94 ocrAddDependence (dbGuid , exampleEdtGuid2 , 0 , DB_MODE_RW) ;

re turn NULL_GUID ;
}

A.5.1.1. Details

The mainEdt creates a data block (dbGuid) that may be concurrently updated by two children
EDTs (exampleEdtGuid1 and exampleEdtGuid2) using the RW mode.
exampleEdtGuid1 and exampleEdtGuid2 are each created with one dependence, while
after execution, each of them will satisfy an output event (exampleEventGuid1 and
exampleEventGuid2). The satisfaction of these output events will trigger the execution of an
awaiting EDT (awaitingEdtGuid) that will verify the correctness of the computation
performed by the concurrent EDTs. awaitingEdtGuid has three input dependences: dbGuid
is passed into the first input, while the other two would be satisfied by exampleEventGuid1
and exampleEventGuid2. Once awaitingEdtGuid’s dependences have been setup, the
mainEdt satisfies the dependences on exampleEdtGuid1 and exampleEdtGuid2 with the
data block dbGuid.

Both exampleEdtGuid1 and exampleEdtGuid2 execute the task function called
exampleEdt. This function accesses the contents of the data block passed in through the dependence
slot 0. Based on the parameters passed in, the function updates a range of values on that data block.
After the data block has been updated, the EDT returns and in turn satisfies the output event. Once
both EDTs have executed and satisfied their ouput events, the awaitingEdtGuid executes
function awaitingEdt. This function verifies if the updates done on the data block by the concurrent
EDTs are correct. Finally, it prints the result of its verification and calls ocrShutdown.

A.6. Accessing a data block with “Exclusive-Write” Mode

The Exclusive-Write (EW) mode allows for an easy implementation of mutual exclusion of
EDTs. When an EDT depends on one or several data blocks in EW mode, the runtime guarantees
that only one EDT in the entire system will have write access to the data block Hence, the EW mode
is useful when one wants to guarantee there is no race condition writing to a data block or when
ordering among EDTs does not matter as long as the execution is in mutual exclusion. The
following example shows how two EDTs may share access to a data block in RW mode, while one

OCR Examples 61

EDT requires EW access. In this situation the programmer cannot assume the order in which the
EDTs are executed. It might be that EDT1 and EDT2 are executed simultaneously or
independently, while EDT3 happens either before, after or in between the others.

A.6.1. Code example

/ * Example usage o f EW (E x c l u s i v e −W r i t e)
* da ta b l o c k a c c e s s mode i n OCR

3 *
* I m p l e m e n t s t h e f o l l o w i n g dependence graph :
*
* mainEdt
* [DB]

8 * / | \
* (RW) / | (RW) \ (EW)
* / | \
* EDT1 EDT2 EDT3
* \ | /

13 * \ | /
* \ | /
* [DB]
* shu tdownEdt
*

18 * /

i n c l u d e " o c r . h "

d e f i n e NB_ELEM_DB 20
23

ocrGuid_t shutdownEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u64 * d a t a = (u64 *) depv [3] . p t r ;
u32 i = 0 ;
whi le (i < NB_ELEM_DB) {

28 o c r P r i n t f ("%" PRIu64 " " , d a t a [i]) ;
i ++;

}
o c r P r i n t f (" \ n ") ;
oc rDbDes t roy (depv [3] . gu id) ;

33 ocrShutdown () ;
re turn NULL_GUID ;

}

ocrGuid_t w r i t e r E d t (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
38 u64 * d a t a = (u64 *) depv [0] . p t r ;

u64 l b = paramv [0] ;
u64 ub = paramv [1] ;
u64 v a l u e = paramv [2] ;
u32 i = l b ;

43 whi le (i < ub) {
d a t a [i] += v a l u e ;
i ++;

}
re turn NULL_GUID ;

48 }

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
void * d b P t r ;
ocrGuid_t dbGuid ;

53 u32 nbElem = NB_ELEM_DB;
oc rDbCrea t e (&dbGuid , &dbPt r , s i z e o f (u64) * NB_ELEM_DB, 0 , NULL_HINT , NO_ALLOC) ;
u64 i = 0 ;

62 OCR – Version 1.2.0 (Candidate release) – December 2016

i n t * d a t a = (i n t *) d b P t r ;
whi le (i < nbElem) {

58 d a t a [i] = 0 ;
i ++;

}
oc rDbRe lease (dbGuid) ;

63 ocrGuid_t shu tdownEdtTempla teGuid ;
o c r E d t T e m p l a t e C r e a t e (& shutdownEdtTempla teGuid , shutdownEdt , 0 , 4) ;
ocrGuid_t shutdownGuid ;
o c r E d t C r e a t e (&shutdownGuid , shutdownEdtTempla teGuid , 0 , NULL, EDT_PARAM_DEF, NULL,

EDT_PROP_NONE, NULL_HINT , NULL) ;
68 ocrAddDependence (dbGuid , shutdownGuid , 3 , DB_MODE_CONST) ;

ocrGuid_t w r i t e E d t T e m p l a t e G u i d ;
o c r E d t T e m p l a t e C r e a t e (& w r i t e E d t T e m p l a t e G u i d , w r i t e r E d t , 3 , 2) ;

73 ocrGuid_t e v e n t S t a r t G u i d ;
o c r E v e n t C r e a t e (& e v e n t S t a r t G u i d , OCR_EVENT_ONCE_T, f a l s e) ;

/ / RW ’1 ’ from 0 t o N/ 2 (p o t e n t i a l l y c o n c u r r e n t w i t h w r i t e r 1 , b u t d i f f e r e n t range)
ocrGuid_t oeWr i t e r0Gu id ;

78 ocrGuid_t w r i t e r 0 G u i d ;
u64 w r i t e r P a r a m v 0 [3] = {0 , NB_ELEM_DB/ 2 , 1 } ;
o c r E d t C r e a t e (& w r i t e r 0 G u i d , w r i t e E d t T e m p l a t e G u i d , EDT_PARAM_DEF, wr i t e rPa ramv0 ,

EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_HINT , &oeWr i t e r0Gu id) ;

ocrAddDependence (oeWri te r0Guid , shutdownGuid , 0 , f a l s e) ;
83 ocrAddDependence (dbGuid , w r i t e r 0 G u i d , 0 , DB_MODE_RW) ;

ocrAddDependence (e v e n t S t a r t G u i d , w r i t e r 0 G u i d , 1 , DB_MODE_CONST) ;

/ / RW ’2 ’ from N/ 2 t o N (p o t e n t i a l l y c o n c u r r e n t w i t h w r i t e r 0 , b u t d i f f e r e n t range)
ocrGuid_t oeWr i t e r1Gu id ;

88 ocrGuid_t w r i t e r 1 G u i d ;
u64 w r i t e r P a r a m v 1 [3] = {NB_ELEM_DB/ 2 , NB_ELEM_DB, 2 } ;
o c r E d t C r e a t e (& w r i t e r 1 G u i d , w r i t e E d t T e m p l a t e G u i d , EDT_PARAM_DEF, wr i t e rPa ramv1 ,

EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_HINT , &oeWr i t e r1Gu id) ;

ocrAddDependence (oeWri te r1Guid , shutdownGuid , 1 , f a l s e) ;
93 ocrAddDependence (dbGuid , w r i t e r 1 G u i d , 0 , DB_MODE_RW) ;

ocrAddDependence (e v e n t S t a r t G u i d , w r i t e r 1 G u i d , 1 , DB_MODE_CONST) ;

/ / EW ’3 ’ from N/ 4 t o 3N/ 4
ocrGuid_t oeWr i t e r2Gu id ;

98 ocrGuid_t w r i t e r 2 G u i d ;
u64 w r i t e r P a r a m v 2 [3] = {NB_ELEM_DB/ 4 , (NB_ELEM_DB / 4) *3 , 3 } ;
o c r E d t C r e a t e (& w r i t e r 2 G u i d , w r i t e E d t T e m p l a t e G u i d , EDT_PARAM_DEF, wr i t e rPa ramv2 ,

EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_HINT , &oeWr i t e r2Gu id) ;

ocrAddDependence (oeWri te r2Guid , shutdownGuid , 2 , f a l s e) ;
103 ocrAddDependence (dbGuid , w r i t e r 2 G u i d , 0 , DB_MODE_EW) ;

ocrAddDependence (e v e n t S t a r t G u i d , w r i t e r 2 G u i d , 1 , DB_MODE_CONST) ;

o c r E v e n t S a t i s f y (e v e n t S t a r t G u i d , NULL_GUID) ;

108 re turn NULL_GUID ;
}

OCR Examples 63

A.7. Acquiring contents of a data block as a dependence
input

This example illustrates the usage model for accessing the contents of a data block. The data
contents of a data block are made available to the EDT through the input slots in depv. The input
slots contain two fields: the GUID of the data block and pointer to the contents of the data block.
The runtime process grabs a pointer to the contents through a process called “acquire”. The
acquires of all data blocks accessed inside the EDT have to happen before the EDT starts
execution. This implies that the runtime requires knowledge of which data blocks it needs to
acquire. That information is given to the runtime through the process of dependence satisfaction.
As a result, a data block’s contents are available to the EDT only if that data block has been passed
in as the input on a dependence slot or if the data block is created inside the EDT.

A.7.1. Code example

1 / * Example t o show how DB g u i d s can be p as s ed t h r o u g h a n o t h e r DB .
* Note : DB c o n t e n t s can be a c c e s s e d by an EDT o n l y when t h e y a r r i v e
* i n a dependence s l o t .
*
* I m p l e m e n t s t h e f o l l o w i n g dependence graph :

6 *
* mainEdt
* [DB1]
* |
* EDT1

11 * |
* [DB0]
* shutdownEdt
*
* /

16

i n c l u d e " o c r . h "

d e f i n e VAL 42

21 ocrGuid_t exampleEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
ocrGuid_t * d b P t r = (ocrGuid_t *) depv [0] . p t r ;
ocrGuid_t passedDb = d b P t r [0] ;
o c r P r i n t f (" P a s s i n g DB: "GUIDF" \ n " , GUIDA(passedDb)) ;
oc rDbDes t roy (depv [0] . gu id) ;

26 re turn passedDb ;
}

ocrGuid_t a w a i t i n g E d t (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u64 i ;

31 u32 * d b P t r = (u32 *) depv [0] . p t r ;
o c r P r i n t f (" Rece ived : %" PRIu32 " \ n " , d b P t r [0]) ;
oc rDbDes t roy (depv [0] . gu id) ;
ocrShutdown () ;
re turn NULL_GUID ;

36 }

ocrGuid_t mainEdt (u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []) {
u32 i ;

64 OCR – Version 1.2.0 (Candidate release) – December 2016

41 / / Cr ea t e DBs
u32* p t r 0 ;
ocrGuid_t * p t r 1 ;
ocrGuid_t db0Guid , db1Guid ;
oc rDbCrea t e (&db0Guid , (void **)&p t r 0 , s i z e o f (u32) , DB_PROP_NONE, NULL_HINT , NO_ALLOC) ;

46 oc rDbCrea t e (&db1Guid , (void **)&p t r 1 , s i z e o f (ocrGuid_t) , DB_PROP_NONE, NULL_HINT ,
NO_ALLOC) ;

p t r 0 [0] = VAL;
p t r 1 [0] = db0Guid ;
o c r P r i n t f (" Send ing : %" PRIu32 " i n DB: "GUIDF" \ n " , p t r 0 [0] , GUIDA(db0Guid)) ;
oc rDbRe lease (db0Guid) ;

51 oc rDbRe lease (db1Guid) ;

/ / Cr ea t e Middle EDT
ocrGuid_t exampleTemplGuid , exampleEdtGuid , exampleEventGuid ;
o c r E d t T e m p l a t e C r e a t e (&exampleTemplGuid , exampleEdt , 0 / * paramc * / , 1 / * depc * /) ;

56 o c r E d t C r e a t e (& exampleEdtGuid , exampleTemplGuid , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_HINT , &exampleEventGuid) ;

/ / Cr ea t e AWAIT EDT
ocrGuid_t awai t ingTemplGuid , a w a i t i n g E d t G u i d ;

61 o c r E d t T e m p l a t e C r e a t e (& awai t ingTemplGuid , a w a i t i n g E d t , 0 / * paramc * / , 1 / * depc * /) ;
o c r E d t C r e a t e (& a w a i t i n g E d t G u i d , awai t ingTemplGuid , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF,

NULL,
EDT_PROP_NONE, NULL_HINT , NULL) ;

ocrAddDependence (exampleEventGuid , a w a i t i n g E d t G u i d , 0 , DB_DEFAULT_MODE) ;

66 / / START Middle EDT
ocrAddDependence (db1Guid , exampleEdtGuid , 0 , DB_DEFAULT_MODE) ;

re turn NULL_GUID ;
}

A.7.1.1. Details

The mainEdt creates two data blocks (db0Guid and db1Guid). It then sets the content of
db0Guid to be an user-defined value, while the content of db1Guid is set to be the GUID value
of db0Guid. The runtime then creates an EDT (exampleEdtGuid) that takes one input
dependence. It creates another EDT (awaitingEdtGuid) and makes it dependent on the
satisfaction of the exampleEdtGuid’s output event (exampleEventGuid). Finally, mainEdt
satisfies the dependence of exampleEdtGuid with the data block db1Guid.

Once exampleEdtGuid starts executing function “exampleEdt”, the contents of db1Guid are
read. The function then retrieves the GUID of the data block db0Guid from the contents of
db1Guid. Now in order to read the contents of db0Guid, the function satisfies the output event
with db0Guid.

Inside the final EDT function “awaitingEdt”, the contents of db0Guid can be read. The function
prints the content read from the data block and finally calls “ocrShutdown”.

OCR Examples 65

B. OCR API Extensions

This chapter describes API extensions to OCR that are being considered for inclusion in the
specification. The extensions described in this chapter may not be fully functional on all platforms.
Feedback on the usefulness of these extensions as well as any modifications to them is welcomed
and should be emailed to the OCR User mailing list (ocr-user@eci.exascale-tech.com).

66

B.1. User specified hints

OCR allows application developers to provide hints about the application using an extension of the
standard API. The motivation of the hints API is to enable the transfer of knowledge, which is
usually lost when expressing an program using the standard OCR API. Hints never impact the
correctness of a program but are instead “extra” information that the runtime can use, for example,
to improve the allocation of data blocks and scheduling of EDTs. Note that an OCR
implementation can ignore all hints or selectively choose the ones to respect.

B.1.1. OCR hint framework

• ocrHint_t: Hints in OCR use a special type called ocrHint_t. A variable of this type can
be declared inside an EDT.

• ocrHintType_t: The hint variable has to be initialized for a specific usage type. Currently,
there are four types of hints:

– OCR_HINT_EDT_T is used to initialize the hint variable to be used for EDT specific hints.
EDT specific hints can also be used for EDT templates. When an EDT is created, it is
initialized with the hints that are set on the EDT template.

– OCR_HINT_DB_T is used for data block specific hints.

– OCR_HINT_EVT_T is used for event specific hints.

– OCR_HINT_GROUP_T is used for group specific hints. OCR groups are logical entities to
which multiple OCR objects can be associated. Providing a hint for a group will help the
runtime guide the scheduling of these OCR objects. Group hints can be applied either to each
individual object in the group or to the group as a whole.

• ocrHintVal_t: The type of a hint object’s value can vary depending on the hint being set;
therefore, values are provided via ocrHintVal_t, which is defined as a union with at least the
following fields:

– s64 s64Value

– ocrGuid_t guidValue

In the future, this union may be expanded to provide more value-type options.

• ocrHintProp_t: User hints are set as hint properties in the hint variable. The runtime defines
the hint properties that can be set for a specific hint type. Supported properties are an ongoing
developement. Please refer to ocr-types.h for all the currently supported hint properties.

After the variable has been initialized, it can start accepting hint properties. The hint variable can
then be used to transfer all the set properties to an OCR object guid.

OCR API Extensions 67

It is also possible for the user to read the hints that are set on a specific OCR object. The user may
then choose to update the values of the properties on the guid.

Functions

• u8 ocrHintInit(ocrHint_t ∗hint, ocrHintType_t hintType)

Initializes a user hint variable

• u8 ocrHintSetValue(ocrHint_t ∗hint, ocrHintProp_t hintProp, ocrHintVal_t value)

Sets the value of a specific hint property

• u8 ocrHintUnsetValue(ocrHint_t ∗hint, ocrHintProp_t hintProp)

Unsets the value of a specific hint property

• u8 ocrHintGetValue(ocrHint_t ∗hint, ocrHintProp_t hintProp, ocrHintVal_t ∗value)

Gets the value of a specific hint property

• u8 ocrSetHint(ocrGuid_t guid, ocrHint_t ∗hint)

Sets all hint properties defined in the hint variable to the target guid

• u8 ocrGetHint(ocrGuid_t guid, ocrHint_t ∗hint)

Gets the existing hint properties from a specific guid

B.1.2. u8 ocrHintInit(ocrHint_t ∗ hint, ocrHintType_t hintType)

Initializes a user hint variable of a specific type. The hint variable has to be initialized before any
hint properties can be set.

Parameters
in hint The hint variable to be initialized.
in hintType The usage type for the hint variable

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): error in initializing hint when hintType is unrecognized

Description User hint objects in OCR are of type ocrHint_t. A user hint object is a stack
allocated variable that can only exist within the lifetime of an EDT. The user has to first call
ocrHintInit to initialize a local hint variable before using it. Subsequent calls to ocrHintInit will
reset the variable to an empty state, that is where none of the properties are set.

68 OCR – Version 1.2.0 (Candidate release) – December 2016

B.1.3. u8 ocrHintSetValue(ocrHint_t ∗ hint, ocrHintProp_t hintProp,
ocrHintVal_t value)

Sets the value of a specific hint property on to a hint variable. Multiple hint properties of the same
usage type can be set on a single hint variable.

Parameters
in hint The hint variable for which hints are set.
in hintProp The hint property to set
in value The value of the hint property

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If property is invalid for the hint type.

Description A value for a specific hint property can be set if that property is supported for that
specific hint type. If a property value is already set, then the value is updated.

B.1.4. u8 ocrHintUnsetValue(ocrHint_t ∗ hint, ocrHintProp_t hintProp
)

Unsets the value of a specific hint property in a hint variable.

Parameters
in hint The hint variable for which hints are set.
in hintProp The hint property to unset

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If property is invalid for the hint type.

Description A value for a specific hint property can be unset if that property is supported for
that specific hint type and is already set. If a property value was not set earlier, then unset is a
no-op.

B.1.5. u8 ocrHintGetValue(ocrHint_t ∗ hint, ocrHintProp_t hintProp,
ocrHintVal_t ∗ value)

Gets the value of a specific hint property from a hint variable.

OCR API Extensions 69

Parameters
in hint The hint variable from which to get hints
in hintProp The hint property to get
out value The value of the hint property read from the hint variable

Gets the value of a specific hint property that was already set on the hint variable.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If property is invalid for the hint type.

• OCR_ENOENT (immediate): If property is not set on this hint variable

Description A value for the hint property can be gotten from a hint object if the property is
supported and it has already been set.

B.1.6. u8 ocrSetHint(ocrGuid_t guid, ocrHint_t ∗ hint)

Sets all the hint properties in the hint variable on to the target OCR object guid. The target guid has
to be of a compatible type with the hint variable’s usage type.

Parameters
in guid The target guid of the hints
in hint The hint variable used to set the hint properties

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (deferred): If hint type and target guid kind are incompatible

• OCR_EFAULT (deferred): Some hints were not set due to insufficient or invalid values of hint
properties

Description If the target guid has some of the hints already set then their values are updated. If
hints are set on the same guid concurrently, then the final values are undefined.

B.1.7. u8 ocrGetHint(ocrGuid_t guid, ocrHint_t ∗ hint)

Gets the existing hint properties that have been set on a specific guid.

Parameters

70 OCR – Version 1.2.0 (Candidate release) – December 2016

in guid The target guid of the hints
out hint The hint variable that will be populated with the target guid’s

existing hints

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If hint type and target guid kind are incompatible

Description The hint variable that is used as the output argument will be updated with hint
property values from the guid. The type of the hint variable should be compatible with the guid
kind. If the hint properties that exist on the guid are already set on the hint variable then those
properties will be updated. The hint properties that are present on the guid but not on the hint
variable will be added to the hint variable. If the hint variable has other properties set which do not
exist on the guid, those properties will be retained in the hint variable.

B.1.8. Usage scenarios

As an example, we show how hints can be added to an OCR program solving a tiled cholesky
factorization problem.

/ / Here we s e t h i n t s on t h e EDT t e m p l a t e f o r t h e v a r i o u s t a s k s :
/ / In t h i s example , we show how t o s e t t h e d e f a u l t a f f i n i t y o f a l l EDTs
/ / b e i n g g e n e r a t e d o u t o f t h e s e EDT t e m p l a t e s w i l l be s e t t o t h e DB t h a t
/ / i s pa s s ed i n t o s l o t 0 . That i s why we s e t t h e v a l u e o f t h e h i n t p r o p e r t y

5 / / OCR_HINT_EDT_SLOT_MAX_ACCESS t o be 0

o c r H i n t _ t h i n t V a r ;
o c r H i n t I n i t (& h i n t V a r , OCR_HINT_EDT_T) ;
o c r H i n t V a l _ t s l o tN u mb er H in tV a lu e = { . s64Value = 0 } ;

10 i f (o c r H i n t S e t V a l u e (& h i n t V a r , OCR_HINT_EDT_SLOT_MAX_ACCESS , s l o t N um b er Hi n tV a l u e) == 0) {
o c r S e t H i n t (t e m p l a t e S e q , &h i n t V a r) ;
o c r S e t H i n t (t e m p l a t e T r i s o l v e , &h i n t V a r) ;
o c r S e t H i n t (templa teUpdateNonDiag , &h i n t V a r) ;
o c r S e t H i n t (t e m p l a t e U p d a t e , &h i n t V a r) ;

15 }

OCR API Extensions 71

B.2. Labeled GUIDs

GUIDs are used to identify OCR objects and are opaque to the programmer. A consequence of this
opacity is that if two EDTs need to use a common object, they both need to have a-priori
knowledge of the GUID for that object. If the object was created much earlier in the execution
flow, both EDTs therefore need to have the GUID passed down either through data blocks or
parameters. This is inconvenient and can lead to a glut of parameters and data blocks solely
dedicated to passing down GUIDs.

Labeled GUIDs provide a mechanism by which a programmer can reason about GUIDs; an API is
provided to “translate” a programmer defined index range into GUIDs. The transformation is such
that all EDTs invoking this API with the same input will get the same resulting GUID. In effect,
EDTs no longer need to agree on an opaque GUID (which requires a-priori knowledge) but only on
a common index which can be achieved only through semantic knowledge of the application.
Concretely, this is the difference between “the ‘neighbor’ EDT you need to communicate with has
GUID X” and “give me X, the GUID of my neighbor Y”.

B.2.1. Usage scenarios

Several usage scenarios have been identified for labeled GUIDs. These scenarios are by no means
exhaustive but have driven the current design.

B.2.1.1. Referring to a previously created OCR object

In this scenario, a root EDT R creates a sink EDT S (for example a reduction EDT) and then
spawns multiple child EDTs which will in turn spawn EDTs which will satisfy a slot of S. Without
labeled GUIDs, S’s GUID would need to be passed down to each and every producer. Labeled
GUIDs allow the producers to ask the runtime for S’s GUID.

B.2.1.2. Unsynchronized object creation

Traditionally, if an EDT wants to refer to an OCR object, that object’s creation needs to have
happened before its use, and, conversely, the object’s eventual destruction needs to happen after its
use. In a situation where two EDTs A and B need to use an object, that object’s creation needs to
happen in a third EDT C which happened before A and B. In other words, there is a dependence
chain between C and A as well as one between C and B.

This behavior is not always desired. For example, suppose an algorithm where, at each iteration,
each EDT creates its “clone” for the next iteration; in other words, the algorithm avoids a global
barrier between iterations. Suppose that within an iteration, an EDT B depends on another EDT A.
Without labeled GUIDs, B and A would have no way on agreeing on the event to use to

72 OCR – Version 1.2.0 (Candidate release) – December 2016

synchronize. Labeled GUIDs allow both A and B to “create” the event and the runtime will
guarrantee that a) only one event is created and b) both A and B get the same GUID for that event.

B.2.2. API

The following enum is used to specify the types of objects a GUID can refer to: enum
ocrGuidUserKind containing:

• GUID_USER_NONE The GUID is invalid and does not refer to any object.

• GUID_USER_DB The GUID refers to a data block.

• GUID_USER_EDT The GUID refers to an EDT.

• GUID_USER_EDT_TEMPLATE The GUID refers to an EDT template.

• GUID_USER_EVENT_ONCE The GUID refers to a ONCE event.

• GUID_USER_EVENT_IDEM The GUID refers to an IDEMPOTENT event.

• GUID_USER_EVENT_STICKY The GUID refers to a STICKY event.

• GUID_USER_EVENT_LATCH The GUID refers to a LATCH event.

The primary functions supporting labeled GUIDs are listed below. These functions allow the user
to reserve a flat range of GUIDs, and then retrieve a particular GUID by its index in that range. The
user may decide to map an N-dimensional tuple space onto the flat index space for a labeled GUID
range.

• u8 ocrGuidRangeCreate(ocrGuid_t ∗rangeGuid, u64 guidCount, ocrGuidUserKind kind)

Reserves a range of GUIDs to be used by the labeling mechanism.

• u8 ocrGuidRangeDestroy(ocrGuid_t rangeGuid)

Destroy a GUID range as created by ocrGuidRangeCreate.

• u8 ocrGuidFromIndex(ocrGuid_t ∗outGuid, ocrGuid_t rangeGuid, u64 idx)

Converts an index into a GUID. This function is used with GUID ranges created using
ocrGuidRangeCreate.

• u8 ocrGetGuidKind(ocrGuidUserKind ∗outKind, ocrGuid_t guid)

Gets the type from a GUID. This can be used to indicate if the GUID refers to a valid object.

OCR API Extensions 73

B.2.2.1. u8 ocrGuidRangeCreate(ocrGuid_t ∗ rangeGuid, u64 guidCount,
ocrGuidUserKind kind)

Creates a new instance of a GUID range which can be used to map indices (from 0 to
guidCount) to GUIDs.

Parameters
out rangeGuid On successful creation, contains the GUID of the range created.

This GUID should be used with ocrGuidFromIndex. If the call
fails, the returned value is undefined.

in guidCount The number of GUIDs to reserve in this range.
in kind Kind of the GUIDs stored in this range.

Returns 0 if no immediate error was detected. There are no other defined error codes for this
call.

Description The rangeGuid returned by this function should be used with
ocrGuidFromIndex.

B.2.2.2. u8 ocrGuidRangeDestroy(ocrGuid_t ∗ rangeGuid)

Destroys a range created by ocrGuidRangeCreate.

Parameters
in rangeGuid GUID of the range to destroy.

Returns 0 if no immediate error was detected. There are no other defined error codes for this
call.

Description This function does not affect any of the GUIDs that have already been created with
the range or in the range. It does, however, un-reserve all the ones that have been reserved but not
used.

B.2.2.3. u8 ocrGuidFromIndex(ocrGuid_t ∗ outGuid, ocrGuid_t rangeGuid, u64 idx)

Uses the range created using ocrGuidRangeCreate and referenced by rangeGuid to convert idx
into a GUID.
Parameters

74 OCR – Version 1.2.0 (Candidate release) – December 2016

out outGuid GUID corresponding to the index.
in rangeGuid GUID of the range to use.
in idx Index to convert to a GUID.

Returns 0 if no immediate error was detected. There are no other defined error codes for this
call.

Description This function assumes that the programmer has already calculated the target index
in the GUID range. This index is then used to index into the GUID space reserved by the
ocrGuidRangeCreate call.

B.2.2.4. u8 ocrGetGuidKind(ocrGuidUserKind ∗ outKind, ocrGuid_t guid)

This function returns the type of OCR object (event, data block, EDT) that the GUID refers to or
OCR_GUID_NONE if the GUID is invalid.

Parameters
out outKind The kind of object this GUID refers to.
in guid The GUID to get information from.

Returns 0 if no immediate error was detected. There are no other defined error codes for this
call. Note that returning OCR_GUID_NONE is considered a successful execution.

Description With labeled GUIDs, having a GUID does not necessarily mean that it refers to a
valid object. This function addresses this concern by determining if a GUID refers to a valid object.
Note that the information returned may be stale if concurrent creation/destruction of the object is
happening.

B.2.3. Other API changes

The creation calls are all modified to allow them to accept a GUID as input (as opposed to just
output). In the current implementation, events, EDTs and data blocks can be labeled. There are
some restrictions on using labeled EDTs, namely: a) labeled EDTs cannot have dependences listed
in the create call, b) labeled EDTs cannot request an output event and c) if an instance of a labeled
EDT is created within a finish scope, that instance will only be registered in one of the finish scopes
if the instance is created in multiple places. To use labeled GUIDs, the programmer should pass in
the GUID returned by ocrGuidFromIndex as the first argument of an ocrXXCreate call and also
add an additional flag to the properties field of that call:

OCR API Extensions 75

• GUID_PROP_IS_LABELED The input GUID to the call should be used as the GUID for the
created object. Note that with this flag, the user is responsible for ensuring that only one EDT
creates the object (in other words, this is a “trust me” mode) where the runtiem incurs very little
cost to creating the object.

• GUID_PROP_CHECK Similar to GUID_PROP_IS_LABELED, this property will also cause the
use of labeled GUIDs. However, the runtime ensures that the object is only created once. In
other words, other EDTs trying to create the same object (same GUID) will get an error code and
know that the object has already been created.

• GUID_PROP_BLOCK This property blocks the creation call until the object no longer exists and
can therefore be recreated. This property is not in line with the non-blocking philosophy of OCR
but is there to support legacy programming models.

B.2.4. Other considerations

This extension is a work in progress. For example, one issue with this proposal (and with many of
the other creation calls) is that the creation of the GUID may be delayed and require
communication. This is particularly true with labeled GUIDs as the runtime is constrained in the
GUID is can use to create an object. One proposal is to have the notion of a local identifier which
could only be used inside an EDT. This would allow creation calls to return immediately and allow
the runtime to defer all long-latency calls till after the EDT finishes.

Normally, the exact definition of the point in time that an object is destroyed is not necessary. The
object cannot be used after the destroy call was made or after it was supposed to be destroyed
automatically. It is up to the runtime to determine the right time to reclaim the object’s resources.
However, if the object is created using a labeled GUID, it is possible to re-use the GUID to create
another object. When the create call is made with GUID_PROP_CHECK, the outcome depends on
the state of the object. A new object is only created if an object with the same GUID was not
created elsewhere or if any such object was already destroyed. It’s therefore necessary to establish
a clear relation between the destruction of the object and the create call. For the purpose of labeled
GUIDs, all objects are considered to be completely destroyed by a call to the appropriate destroy
function or at the moment they should be automatically destroyed. EDTs are exception to this rule.
An EDT releases its labeled GUID for re-use at some point after it becomes ready, but before it
starts running.

76 OCR – Version 1.2.0 (Candidate release) – December 2016

B.3. Parameterized event creation

This extension allows the user to provide an additional parameter at the creation of an event to
customize its behavior. For example, with latch events, the user may specify an initial count for the
latch.

B.3.1. Usage scenarios

This extension makes the initialization of latch events simpler. Previously the programmer had to
write a loop to increment or decrement the counter to reach a certain value. The same is now
achieved by passing the counter value as part of the extra parameter.

B.3.2. API

A new API call named ocrEventCreateParams is added. It has the same signature as
ocrEventCreate with an additional argument of type ocrEventParams_t*. The later is a
struct composed of a union of sub-structure declarations that are referenced by name, one for each
type of event that can be configured. Note a runtime implementation can make no assumptions
about the lifetime of the passed pointer and must ensure that the parameter can be safely destroyed
by the user after returning from the call.

The following parameters are available for latch events:

• EVENT_LATCH:

– u64 counter: Initial value of the latch counter.

Functions

• u8 ocrEventCreateParams(ocrGuid_t ∗ guid, ocrEventTypes_t eventType, u16 properties,
const ocrHint_t ∗hint, const ocrEventParams_t ∗params)

DOC TODO

B.3.3. u8 ocrEventCreateParams(ocrGuid_t ∗ guid, ocrEventTypes_t
eventType, u16 flags, const ocrHint_t ∗ hint, const
ocrEventParams_t ∗ params)

Requests the creation of an event of the specified type, initialized with the provided parameters.
After a successful call, the runtime will return the GUID for the newly created event. The returned
GUID is immediately usable.

OCR API Extensions 77

Parameters
out guid On successful creation, contains the GUID of the event. If the call

fails, the returned value is undefined.
in eventType The type of event to create. See enum ocrEventTypes_t.
in flags Flags impacting the creation of the event. Currently, the following

flags are supported:
• EVT_PROP_NONE: Default behavior
• EVT_PROP_TAKES_ARG: The created event will potentially

carry a data block on satisfaction.

in hint Reserved for future use. This parameter should be NULL_HINT.
in params Parameters to initialized the event with.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_ENOMEM (deferred): The runtime could not create the event due to insufficient memory

• OCR_EINVAL (immediate): The eventType argument is invalid or incompatible with
flags

Description This function is used to create the basic synchronization mechanism is OCR: the
event. The lifetime of the created event is dependent on its type. See Section 1.4.3 for more details.

B.4. Counted events

A counted event will destroy itself automatically after both of the following conditions are true: a)
it has been satisfied and b) a pre-determined number of OCR objects have a dependence on the
event. In other words, a counted event is like a once event in the sense that it auto-destroys once
satisfied but is safer than a once event because it will expect to have a certain number of
dependences waiting on it and will ensure that those dependences are satisfied before destroying
itself. This eliminates the necessity for programmers to ensure that all add dependences that have
the once event as a source happen before satisfying the event.

Counted events trigger immediately when satisfied. Precisely, a satisfy call triggers the event
immediately which will, in turn, satisfy any dependence already registered at that time. Calls to
ocrAddDependence that happen after the satisfy call, immediately turn into satisfy calls
themselves. The event is destroyed when it has been satisfied and the count of expected
dependences is reached.

78 OCR – Version 1.2.0 (Candidate release) – December 2016

B.4.1. API

Counted events extend the enum ocrEventTypes_t type with a
OCR_EVENT_COUNTED_T declaration. Counted events rely on the parameterized event
creation extension (see Section B.3 to allow the programmer to specify the number of dependences
the counted event will have. A counted event’s parameters are accessible under the
EVENT_COUNTED field of the ocrEventParams_t type.

The following parameters are available for counted events:

• EVENT_COUNTED:

– u64 nbDeps: Expected number of dependences to be added to the event.

Note it is an error to create a counted event with zero dependences.

B.5. Channel events

Channel events represent a whole new class of OCR events that can trigger multiple times. We
define a generation as the time between consecutive triggers of the event (the first generation is
defined as the time between the event creation and its first trigger).

Channel events have a different triggering rule; a channel event will trigger when both the
following conditions are met: a) the event has been satisfied a certain number of times and b) a
certain number of dependences has been added to the event. Once a channel event triggers, the
event is reset and a new generation starts.

Channel events also preserve FIFO ordering when there is a sequenced-before or happen-before
relationship between two satisfy calls made on the same channel event GUID. Note that the
ordering is only guaranteed when using the GUID of the channel event; any indirection through
other types of events may break the ordering.

B.5.1. Usage scenarios

The current implementation is restricted and defines a generation as one satisfy paired with one
dependence being added. This extension is meant to explore the usefulness of channel events
before a more general model is defined and implemented. The implementation provides a
‘window’ of generations in the form of an internal bounded buffer for which the size is known at
the creation of the channel event. This essentially translates into the implementation being able to
buffer a number of satisfy calls that do not yet have a matching dependence registered (and
vice-versa) up to the bound value. In order to not exceed the bound, the programmer must enforce
proper synchronization.

OCR API Extensions 79

The current implementation is geared toward use-cases found in domain-decomposition
applications where each domain communicates its halo to its neighbor at each iteration of the
algorithm. A typical implementation is to represent each sub-domain and iteration as an EDT that
depends on a set of data blocks for its own domain as well as data blocks corresponding to
contributions from its neighbor domains. In such situations, where the communication pattern is
static, it is beneficial to setup a topology of channel events once during the startup of the
application and keep reusing the same event GUIDs to satisfy the neighbors’ upcoming EDT
iteration instances.

B.5.2. API

Channel events extend the enum ocrEventTypes_t type with an
OCR_EVENT_CHANNEL_T declaration. Channel events also rely on the parameterized event
creation extension to allow the programmer to customize the type of channel event. A channel
event’s parameters are accessible under the EVENT_CHANNEL field of the ocrEventParams_t
type. Note the actual parameters and their semantic are still under active development.

The following parameters are available for channel events:

• EVENT_CHANNEL:

– u32 maxGen: The maximum number of generations the event can buffer.

– u32 nbSat: The number of satisfy required to trigger. Currently must be set to 1.

– u32 nbDeps: The number of dependences required to trigger. Currently must be set to 1.

80 OCR – Version 1.2.0 (Candidate release) – December 2016

B.6. EDT Local Storage

This extension provides a dedicated portion of fixed-size pre-allocated memory made available to
each EDT for its private use, analogous to TLS (Thread Local Storage). They are typically used by
user-level libraries and high-level language translators to maintain per-EDT state in a uniform
manner.

The extension proposes the use of the following API:

B.6.1. u8 ocrEdtLocalStorageGet(void ∗∗ ptr, u64 ∗ elsSize)

Exposes the local data-store associated with the current EDT and its size.

Parameters
out ptr Pointer to the local data-store.
out elsSize Size of the local data-store

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If the pointer is invalid.

OCR API Extensions 81

B.7. EDT Query

The extension provides interfaces to allow the application code in EDTs to query themselves.
These are currently used for application’s diagnostics and debugging.

This extension provides two API calls as detailed below.

B.7.1. u8 ocrCurrentEdtGet(void ∗ curEdt)

Exposes the GUID of the executing EDT from which this function is called.

Parameters
out curEdt GUID of the executing EDT.

Returns 0 if no immediate error was detected or the following error codes:

• 0: Successful

• OCR_EINVAL (immediate): If the pointer is invalid.

B.7.2. u8 ocrCurrentEdtOutputGet(void ∗ outputEvent)

Exposes the GUID of the output event of the executing EDT from which this function is called.

Parameters
out

outputEvent
GUID of the executing EDT’s output event.

Returns 0 if no immediate error was detected or the following error codes:

• OCR_EINVAL (immediate): If the pointer is invalid.

82 OCR – Version 1.2.0 (Candidate release) – December 2016

C. Implementation Notes

This appendix contains details on the ways in which the various OCR reference implementations
differ from the specification. This section will keep evolving as the implementations become more
compliant.

C.1. General notes

This section describes the limitations common to all OCR implementations.

Data block access modes The data block access modes are only supported using the
lockableDB implementation of data blocks. The regularDB implementation ignores the modes.
Furthermore, the read-only mode has not been fully tested.

83

D. OCR Change History

September 2014 Release of OCR 0.9 including the first version of this specification.

April 2015 Release of OCR 0.95. Fixed some typos in the spec and cleaned up some subtle flaws
in the memory model.

June 2015 Release of OCR 1.0.0. Restructured the specification for clarity and updated the API
to make the names of the memory modes more intuitive. Also moved the API documentation
from doxygen to human-readable TEX with proper specification language.

September 2015 Release of OCR 1.0.1. Added Section B on labeled GUIDs and hints. Minor
other clarifications.

March 2016 Release of OCR 1.1.0 and 1.0.2. Notable changes include:

• API changes for ocrDbCreate and ocrEdtCreate to use hints instead of affinities

• Added GUID management section (2.5)

• Added counted and channel event extensions

• Clarification on API return codes, multiple acquire of the same data block

• Added section on version numbers

December 2016 Release of OCR 1.2.0 (Candidate). This release breaks certain APIs thus the
naming change to 1.2. This is a candidate release as no implementations fully implement 1.2.0 as
of December 2016. Notable changes include:

• Added the “downgrade release” of data blocks

• Added the possibility to use hints when creating events

• Added the possibility to self-identify an EDT (and its output event)

• Added the possibility of specifying an output event when creating an EDT

• Made the API calls more “asynchronous” friendly in particular by: a) removing the option of
using EDT_PARAM_DEF, and b) relaxing the requirements on the values returned through
error codes.

• Added several clarifications, in particular on: a) OCR object lifetimes, b) zero-sized data
blocks, c) behavior of EDTs destroyed in a finish scope, and d) the flags during event creation.

84

• Clarified the behavior of several extensions, namely: a) hints, b) labeled GUIDs, and c) the
ELS.

OCR Change History 85

	Introduction
	Scope
	Version numbers
	Glossary
	OCR objects
	Dependences, links and slots
	Event Driven Task (EDT)
	Events
	Data blocks
	Object lifetime

	Execution Model
	Memory Model
	Definitions
	OCR memory model

	Organization of this document

	The OCR API
	OCR core types and macros
	OCR API conventions
	Conventions
	OCR error codes

	OCR entry point: mainEdt
	Supporting functions
	ocrShutdown
	ocrAbort
	getArgc
	getArgv
	ocrPrintf

	GUID management
	ocrGuidIsNull
	ocrGuidIsUninitialized
	ocrGuidIsError
	ocrGuidIsEq
	ocrGuidIsLt
	Macros for printing GUIDs

	Data block management
	ocrDbCreate
	ocrDbDestroy
	ocrDbRelease
	ocrDbDowngradeRelease

	Event Management
	ocrEventCreate
	ocrEventDestroy
	ocrEventSatisfy
	ocrEventSatisfySlot

	Task management
	ocrEdtTemplateCreate
	ocrEdtTemplateDestroy
	ocrEdtCreate
	ocrEdtDestroy

	Dependence management
	ocrAddDependence

	OCR Examples
	OCR's ``Hello World!''
	Code example

	Expressing a fork-join pattern
	Code example

	Expressing unstructured parallelism
	Code example

	Using a Finish EDT
	Code example

	Accessing a data block with ``Read-Write'' Mode
	Code example

	Accessing a data block with ``Exclusive-Write'' Mode
	Code example

	Acquiring contents of a data block as a dependence input
	Code example

	OCR API Extensions
	User specified hints
	OCR hint framework
	ocrHintInit
	ocrHintSetValue
	ocrHintUnsetValue
	ocrHintGetValue
	ocrSetHint
	ocrGetHint
	Usage scenarios

	Labeled GUIDs
	Usage scenarios
	API
	Other API changes
	Other considerations

	Parameterized event creation
	Usage scenarios
	API
	ocrEventCreateParams

	Counted events
	API

	Channel events
	Usage scenarios
	API

	EDT Local Storage
	ocrEdtLocalStorageGet

	EDT Query
	ocrCurrentEdtGet
	ocrCurrentEdtOutputGet

	Implementation Notes
	General notes

	OCR Change History

