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Foreword 

This is essentially a book on singular homology and cohomology with 
special emphasis on products and manifolds. It does not treat homotopy 
theory except for some basic notions, some examples, and some applica
tions of (co-)homology to homotopy. Nor does it deal with general(-ised) 
homology, but many formulations and arguments on singular homology 
are so chosen that they also apply to general homology. Because of these 
absences I have also omitted spectral sequences, their main applications 
in topology being to homotopy and general (co-)homology theory. Cech
cohomology is treated in a simple ad hoc fashion for locally compact 
subsets of manifolds; a short systematic treatment for arbitrary spaces, 
emphasizing the universal property of the Cech-procedure, is contained 
in an appendix. 
The book grew out of a one-year's course on algebraic topology, and it 
can serve as a text for such a course. For a shorter basic course, say of 
half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8), 
VI (§§ 3, 7, 9, 11, 12). As prerequisites the student should know the 
elementary parts of general topology, abelian group theory, and the 
language of categories - although our chapter I provides a little help 
with the latter two. For pedagogical reasons, I have treated integral 
homology only up to chapter VI; if a reader or teacher prefers to 
have general coefficients from the beginning he needs to make only minor 
adaptions. 
As to the outlay of the book, there are eight chapters, I-VIII, and an 
appendix, A; each of these is subdivided into several sections, § 1,2, ..... 
Definitions, propositions, remarks, formulas etc. are consecutively num
bered in each §, each number preceded by the §-number. A reference like 
III, 7.6 points to chap. III, § 7, no. 6 (written 7.6) - which may be a 
definition, a proposition, a formula, or something else. If the chapter 
number is omitted the reference is to the chapter at hand. References to 
the bibliography are given by the author's name, e.g. Seifert-Threl
fall; or Steenrod 1951, ifthe bibliography lists more than one publica
tion by the same author. 



The exercises are meant to provide practice of the concepts in the main 
text as well as to point out further results and developments. An exercise 
or its solution may be needed for later exercises but not for the main text. 
Unusually demanding exercises are marked by a star, *. 
I have given several courses on the subject of this book and have profited 
from many comments by colleagues and students. I am particularly 
indebted to W. Bos and D.B.A. Epstein for reading most of the manu
script and for their helpful suggestions. 

Heidelberg, Spring 1972 ALBRECHT DOLO 
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