Albrecht Dold

Lectures on Algebraic Topology

Reprint of the 1972 Edition

Albrecht Dold Mathematisches Institut der Universität Heidelberg Im Neuenheimer Feld 288 69120 Heidelberg Germany

Originally published as Vol. 200 of the Grundlehren der mathematischen Wissenschaften

Mathematics Subject Classification (1991): Primary 57N65, 55N10, 55N45, 55U15-25, 54EXX Secondary 55M20-25

ISBN 978-3-540-58660-9 ISBN 978-3-642-67821-9 (eBook) DOI 10.1007/978-3-642-67821-9

Photograph by kind permission of Alfred Hofmann

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustration, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication or parts thereof is permitted only under the provision of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 1995

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

SPIN 11326144 41/3111 - 5 4 3 2 - Printed on acid-free paper

A. Dold

Lectures on Algebraic Topology

With 10 Figures

Springer-Verlag Berlin Heidelberg New York 1972

Albrecht Dold Mathematisches Institut der Universität Heidelberg

AMS Subject Classifications (1970) Primary 57A 65, 55B 10, 55B45, 55J15-25, 54E60 Secondary 55C20-25

ISBN-13:978-3-540-58660-9 e-ISBN-13:978-3-642-67821-9

DOI: 10.1007/978-3-642-67821-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin · Heidelberg 1972. Library of Congress Catalog Card Number 72-79062

To Z.

Foreword

This is essentially a book on singular homology and cohomology with special emphasis on products and manifolds. It does not treat homotopy theory except for some basic notions, some examples, and some applications of (co-)homology to homotopy. Nor does it deal with general(-ised) homology, but many formulations and arguments on singular homology are so chosen that they also apply to general homology. Because of these absences I have also omitted spectral sequences, their main applications in topology being to homotopy and general (co-)homology theory. Čechcohomology is treated in a simple ad hoc fashion for locally compact subsets of manifolds; a short systematic treatment for arbitrary spaces, emphasizing the universal property of the Čech-procedure, is contained in an appendix.

The book grew out of a one-year's course on algebraic topology, and it can serve as a text for such a course. For a shorter basic course, say of half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8), VI (§§ 3, 7, 9, 11, 12). As prerequisites the student should know the elementary parts of general topology, abelian group theory, and the language of categories—although our chapter I provides a little help with the latter two. For pedagogical reasons, I have treated *integral* homology only up to chapter VI; if a reader or teacher prefers to have general coefficients from the beginning he needs to make only minor adaptions.

As to the outlay of the book, there are eight chapters, I-VIII, and an appendix, A; each of these is subdivided into several sections, § 1, 2, Definitions, propositions, remarks, formulas etc. are consecutively numbered in each §, each number preceded by the §-number. A reference like III, 7.6 points to chap. III, § 7, no. 6 (written 7.6) — which may be a definition, a proposition, a formula, or something else. If the chapter number is omitted the reference is to the chapter at hand. References to the bibliography are given by the author's name, e.g. Seifert-Threlfall; or Steenrod 1951, if the bibliography lists more than one publication by the same author.

The exercises are meant to provide practice of the concepts in the main text as well as to point out further results and developments. An exercise or its solution may be needed for later exercises but not for the main text. Unusually demanding exercises are marked by a star, *.

I have given several courses on the subject of this book and have profited from many comments by colleagues and students. I am particularly indebted to W. Bos and D.B.A. Epstein for reading most of the manuscript and for their helpful suggestions.

Heidelberg, Spring 1972

ALBRECHT DOLD

Contents

C1		Darlinsian and Cotannian	
Chapter I		Preliminaries on Categories,	
	e 1	Abelian Groups, and Homotopy	1
		Categories and Functors	1
	8 2	Abelian Groups (Exactness, Direct Sums,	7
	6.3	Free Abelian Groups)	
	93	Homotopy	13
Chapter II		Homology of Complexes	16
	§ 1	Complexes	16
	§ 2	Connecting Homomorphism,	
	· · · · · · · · · · · · · · · · · · ·	Exact Homology Sequence	19
	§ 3	Chain-Homotopy	23
	§ 4	Free Complexes	26
Chapter III		Singular Homology	29
	§ 1	Standard Simplices and Their Linear Maps	29
		The Singular Complex	30
	§ 3	Singular Homology	32
	§ 4	Special Cases	33
	§ 5	Invariance under Homotopy	37
	§ 6	Barycentric Subdivision	40
	§ 7	Small Simplices. Excision	43
	§ 8	Mayer-Vietoris Sequences	47
Chapter IV		Applications to Euclidean Space	54
Chapter	§ 1	Standard Maps between Cells and Spheres	54
		Homology of Cells and Spheres	55
		Local Homology	59
		The Degree of a Map	62
		Local Degrees	66
		Homology Properties	
	·	of Neighborhood Retracts in IR"	71

X Contents

	§ 7	Jordan Theorem, Invariance of Domain	78
		Euclidean Neighborhood Retracts (ENRs)	79
Chapter V		Cellular Decomposition	
		and Cellular Homology	85
		Cellular Spaces	85
		CW-Spaces	88
	•	Examples	95
		Homology Properties of CW-Spaces	101
	§ 5	The Euler-Poincaré Characteristic	104
	§ 6	Description of Cellular Chain Maps and	
		of the Cellular Boundary Homomorphism	106
	§ 7	Simplicial Spaces	111
	§ 8	Simplicial Homology	119
Chapter VI		Functors of Complexes	123
_	§ 1	Modules	123
	§ 2	Additive Functors	127
	§ 3	Derived Functors	132
		Universal Coefficient Formula	136
		Tensor and Torsion Products	140
	§ 6	Hom and Ext	146
	§ 7	Singular Homology and Cohomology	
		with General Coefficient Groups	150
		Tensorproduct and Bilinearity	157
	§ 9	Tensorproduct of Complexes.	
		Künneth Formula	161
	§ 10	Hom of Complexes.	
		Homotopy Classification of Chain Maps	167
	•	Acyclic Models	174
	§ 12	The Eilenberg-Zilber Theorem.	170
		Künneth Formulas for Spaces	178
Chapter VII		Products	186
		The Scalar Product	187
		The Exterior Homology Product	189
	§ 3	The Interior Homology Product	404
		(Pontrjagin Product)	193
		Intersection Numbers in IR"	197
		The Fixed Point Index	202
	§ 6	The Lefschetz-Hopf Fixed Point	005
		Theorem	207
	§ 7	The Exterior Cohomology Product	214

X

2.2		
§ 8	The Interior Cohomology Product	-10
	(~-Product)	219
§ 9	-Products in Projective Spaces.	
	Hopf Maps and Hopf Invariant	222
	Hopf Algebras	227
	The Cohomology Slant Product	233
	The Cap-Product (~-Product)	238
§ 13	The Homology Slant Product,	
	and the Pontrjagin Slant Product	245
Chapter VIII	Manifolds	247
§ 1	Elementary Properties of Manifolds	247
	The Orientation Bundle of a Manifold	251
§ 3	Homology of Dimensions $\geq n$	
	in n-Manifolds	259
§ 4	Fundamental Class and Degree	266
§ 5	Limits	272
§ 6	Čech Cohomology	
	of Locally Compact Subsets of IR"	281
§ 7	Poincaré-Lefschetz Duality	291
§ 8	Examples, Applications	298
	Duality in ∂-Manifolds	303
§ 10	Transfer	308
§ 11	Thom Class, Thom Isomorphism	314
	The Gysin Sequence. Examples	325
	Intersection of Homology Classes	335
Appendix	Kan- and Čech-Extensions of Functors	348
§ 1	Limits of Functors	348
§ 2	Polyhedrons under a Space, and Partitions of Unity	352
8.3	Extending Functors from Polyhedrons	332
3.5	to More General Spaces	361
	Bibliography	368
	Subject Index	371