On a generalized equation of Smarandache and its integer solutions

Chuan Lv

School of Mathematics and Computational Science, China University of Petroleum
Dongying Shandong, P.R.China

Abstract Let $a \neq 0$ be any given real number. If the variables $x_{1}, x_{2}, \cdots, x_{n}$ satisfy $x_{1} x_{2} \cdots x_{n}=1$, the equation

$$
\frac{1}{x_{1}} a^{x_{1}}+\frac{1}{x_{2}} a^{x_{2}}+\cdots+\frac{1}{x_{n}} a^{x_{n}}=n a
$$

has one and only one nonnegative real number solution $x_{1}=x_{2}=\cdots=x_{n}=1$. This generalized the problem of Smarandache in book [1].

Keywords Equation of Smarandache, real number solutions.

§1. Introduction

Let Q denotes the set of all rational numbers, $a \in Q \backslash\{-1,0,1\}$. In problem 50 of book [1], Professor F. Smarandache asked us to solve the equation

$$
\begin{equation*}
x a^{\frac{1}{x}}+\frac{1}{x} a^{x}=2 a . \tag{1}
\end{equation*}
$$

Professor Zhang [2] has proved that the equation has one and only one real number solution $x=1$. In this paper, we generalize the equation (1) to

$$
\begin{equation*}
\frac{1}{x_{1}} a^{x_{1}}+\frac{1}{x_{2}} a^{x_{2}}+\cdots+\frac{1}{x_{n}} a^{x_{n}}=n a \tag{2}
\end{equation*}
$$

and use the elementary method and analysis method to prove the following conclusion:
Theorem. For any given real number $a \neq 0$, if the variables $x_{1}, x_{2}, \cdots, x_{n}$ satisfy $x_{1} x_{2} \cdots x_{n}=1$, then the equation

$$
\frac{1}{x_{1}} a^{x_{1}}+\frac{1}{x_{2}} a^{x_{2}}+\cdots+\frac{1}{x_{n}} a^{x_{n}}=n a
$$

has one and only one nonnegative real number solution $x_{1}=x_{2}=\cdots=x_{n}=1$.

§2. Proof of the theorem

In this section, we discuss it in two cases $a>0$ and $a<0$.

1) For the case $a>0$, we let

$$
f\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}\right)=\frac{1}{x_{1}} a^{x_{1}}+\frac{1}{x_{2}} a^{x_{2}}+\cdots+\frac{1}{x_{n-1}} a^{x_{n-1}}+\frac{1}{x_{n}} a^{x_{n}}-n a
$$

If we take x_{n} as the function of the variables $x_{1}, x_{2}, \cdots, x_{n-1}$, we have
$f\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}\right)=\frac{1}{x_{1}} a^{x_{1}}+\frac{1}{x_{2}} a^{x_{2}}+\cdots+\frac{1}{x_{n-1}} a^{x_{n-1}}+x_{1} x_{2} \cdots x_{n-1} a^{\frac{1}{x_{1} x_{2} \cdots x_{n-1}}}-n a$.
Then the partial differential of f for every $x_{i} \quad(i=1,2, \cdots, n-1)$ is

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}} & =\frac{1}{x_{i}} a^{x_{i}}\left(\log a-\frac{1}{x_{i}}\right)+\frac{1}{x_{i}} a^{\frac{1}{x_{1} x_{2} \cdots x_{n-1}}}\left(x_{1} x_{2} \cdots x_{n-1}-\log a\right) \\
& =\frac{1}{x_{i}}\left(a^{x_{i}}\left(\log a-\frac{1}{x_{i}}\right)+a^{x_{n}}\left(\frac{1}{x_{n}}-\log a\right)\right) .
\end{aligned}
$$

Let

$$
\begin{equation*}
g\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}\right)=a^{x_{i}}\left(\log a-\frac{1}{x_{i}}\right)+a^{x_{n}}\left(\frac{1}{x_{n}}-\log a\right) \tag{3}
\end{equation*}
$$

the partial differential quotient of g is

$$
\begin{aligned}
\frac{\partial g}{\partial x_{i}} & =a^{x_{i}}\left(\log ^{2} a-\frac{\log a}{x_{i}}+\frac{1}{x_{i}^{2}}+\frac{a^{x_{n}}}{x_{i} x_{n}}\left(x_{n}^{2} \log ^{2} a-x_{n} \log a+1\right)\right) \\
& =\frac{a^{x_{i}}}{x_{i}^{2}}\left(\left(x_{i} \log a-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)+\frac{a^{x_{n}}}{x_{i} x_{n}}\left(\left(x_{n} \log a-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)>0 .
\end{aligned}
$$

It's easy to prove that the function $u(x)=a^{x}\left(\log a-\frac{1}{x}\right)$ is increasing for the variable x when $x>0$. From (3) we have:
i) if $x_{i}>x_{n}, g>0, \frac{\partial f}{\partial x_{i}}>0$, and f is increasing for the variable x_{i};
ii) if $x_{i}<x_{n}, g<0, \frac{\partial f}{\partial x_{i}}<0$, and f is decreasing for the variable x_{i};
iii) if $x_{i}=x_{n}, g=0, \frac{\partial f}{\partial x_{i}}=0$, and we get the minimum value of f.

We have

$$
f \geq f_{x_{1}=x_{n}} \geq f_{x_{1}=x_{2}=x_{n}} \geq \cdots \geq f_{x_{1}=x_{2}=\cdots=x_{n}} \geq f_{x_{1}=x_{2}=\cdots=x_{n}=1}=0,
$$

and we prove that the equation (2) has only one integer solution $x_{1}=x_{2}=\cdots=x_{n}=1$.
2) For the case $a<0$, the equation (2) can be written as

$$
\begin{equation*}
\frac{1}{x_{1}}(-1)^{x_{1}}|a|^{x_{1}}+\frac{1}{x_{2}}(-1)^{x_{2}}|a|^{x_{2}}+\cdots+\frac{1}{x_{n}}(-1)^{x_{n}}|a|^{x_{n}}=-n|a| \tag{4}
\end{equation*}
$$

so we know that $x_{i} \quad(i=1,2, \cdots, n)$ is not an irrational number.
Let $x_{i}=\frac{q_{i}}{p_{i}}\left(q_{i}\right.$ is coprime to $\left.p_{i}\right)$, then p_{i} must be an odd number because negative number has no real square root. From $x_{1} x_{2} \cdots x_{n}=1$, we have $p_{1} p_{2} \cdots p_{n}=q_{1} q_{2} \cdots q_{n}$, so q_{i} is odd number and $(-1)^{x_{i}}=-1(i=1,2, \cdots, n)$. In this case, the equation (4) become the following equation:

$$
\frac{1}{x_{1}}|a|^{x_{1}}+\frac{1}{x_{2}}|a|^{x_{2}}+\cdots+\frac{1}{x_{n}}|a|^{x_{n}}=n|a| .
$$

From the conclusion of case 1) we know that the theorem is also holds. This completes the proof of the theorem.

References

[1] F. Smarandache, Only problems,not solutions, Xiquan Publishing House, Chicago, 1993, pp. 22.
[2] Zhang Wenpeng, On an equation of Smarandache and its integer solutions, Smarandache Notions (Book series), American Research Press, 13(2002), 176-178.
[3] Tom M.Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
[4] R.K.Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1981.
[5] "Smarandache Diophantinc Equations" at http://www.gallup.unm.edu/ smarandache/ Dioph-Eq.txt.

