Scientia Magna Vol. 2 (2006), No. 2, 82-84

On a generalized equation of Smarandache and its integer solutions

Chuan Lv

School of Mathematics and Computational Science, China University of Petroleum Dongying Shandong, P.R.China

Abstract Let $a \neq 0$ be any given real number. If the variables x_1, x_2, \dots, x_n satisfy $x_1x_2 \cdots x_n = 1$, the equation

$$\frac{1}{x_1}a^{x_1} + \frac{1}{x_2}a^{x_2} + \dots + \frac{1}{x_n}a^{x_n} = na$$

has one and only one nonnegative real number solution $x_1 = x_2 = \cdots = x_n = 1$. This generalized the problem of Smarandache in book [1].

Keywords Equation of Smarandache, real number solutions.

§1. Introduction

Let Q denotes the set of all rational numbers, $a \in Q \setminus \{-1, 0, 1\}$. In problem 50 of book [1], Professor F. Smarandache asked us to solve the equation

$$xa^{\frac{1}{x}} + \frac{1}{x}a^{x} = 2a.$$
 (1)

Professor Zhang [2] has proved that the equation has one and only one real number solution x = 1. In this paper, we generalize the equation (1) to

$$\frac{1}{x_1}a^{x_1} + \frac{1}{x_2}a^{x_2} + \dots + \frac{1}{x_n}a^{x_n} = na,$$
(2)

and use the elementary method and analysis method to prove the following conclusion:

Theorem. For any given real number $a \neq 0$, if the variables x_1, x_2, \dots, x_n satisfy $x_1x_2 \cdots x_n = 1$, then the equation

$$\frac{1}{x_1}a^{x_1} + \frac{1}{x_2}a^{x_2} + \dots + \frac{1}{x_n}a^{x_n} = na$$

has one and only one nonnegative real number solution $x_1 = x_2 = \cdots = x_n = 1$.

§2. Proof of the theorem

In this section, we discuss it in two cases a > 0 and a < 0.

1) For the case a > 0, we let

$$f(x_1, x_2, \cdots, x_{n-1}, x_n) = \frac{1}{x_1}a^{x_1} + \frac{1}{x_2}a^{x_2} + \cdots + \frac{1}{x_{n-1}}a^{x_{n-1}} + \frac{1}{x_n}a^{x_n} - na$$

If we take x_n as the function of the variables $x_1, x_2, \cdots, x_{n-1}$, we have

$$f(x_1, x_2, \cdots, x_{n-1}, x_n) = \frac{1}{x_1} a^{x_1} + \frac{1}{x_2} a^{x_2} + \cdots + \frac{1}{x_{n-1}} a^{x_{n-1}} + x_1 x_2 \cdots x_{n-1} a^{\frac{1}{x_1 x_2 \cdots x_{n-1}}} - na.$$

Then the partial differential of f for every x_i $(i = 1, 2, \dots, n-1)$ is

$$\frac{\partial f}{\partial x_i} = \frac{1}{x_i} a^{x_i} \left(\log a - \frac{1}{x_i} \right) + \frac{1}{x_i} a^{\frac{1}{x_1 x_2 \cdots x_{n-1}}} \left(x_1 x_2 \cdots x_{n-1} - \log a \right) \\ = \frac{1}{x_i} \left(a^{x_i} \left(\log a - \frac{1}{x_i} \right) + a^{x_n} \left(\frac{1}{x_n} - \log a \right) \right).$$

Let

$$g(x_1, x_2, \cdots, x_{n-1}, x_n) = a^{x_i} \left(\log a - \frac{1}{x_i} \right) + a^{x_n} \left(\frac{1}{x_n} - \log a \right),$$
(3)

the partial differential quotient of g is

$$\frac{\partial g}{\partial x_i} = a^{x_i} \left(\log^2 a - \frac{\log a}{x_i} + \frac{1}{x_i^2} + \frac{a^{x_n}}{x_i x_n} \left(x_n^2 \log^2 a - x_n \log a + 1 \right) \right)$$
$$= \frac{a^{x_i}}{x_i^2} \left(\left(x_i \log a - \frac{1}{2} \right)^2 + \frac{3}{4} \right) + \frac{a^{x_n}}{x_i x_n} \left(\left(x_n \log a - \frac{1}{2} \right)^2 + \frac{3}{4} \right) > 0.$$

It's easy to prove that the function $u(x) = a^x (\log a - \frac{1}{x})$ is increasing for the variable x when x > 0. From (3) we have:

i) if $x_i > x_n$, g > 0, $\frac{\partial f}{\partial x_i} > 0$, and f is increasing for the variable x_i ; ii) if $x_i < x_n$, g < 0, $\frac{\partial f}{\partial x_i} < 0$, and f is decreasing for the variable x_i ; iii) if $x_i = x_n$, g = 0, $\frac{\partial f}{\partial x_i} = 0$, and we get the minimum value of f. We have

$$f \ge f_{x_1=x_n} \ge f_{x_1=x_2=x_n} \ge \dots \ge f_{x_1=x_2=\dots=x_n} \ge f_{x_1=x_2=\dots=x_n=1} = 0,$$

and we prove that the equation (2) has only one integer solution $x_1 = x_2 = \cdots = x_n = 1$.

2) For the case a < 0, the equation (2) can be written as

$$\frac{1}{x_1}(-1)^{x_1}|a|^{x_1} + \frac{1}{x_2}(-1)^{x_2}|a|^{x_2} + \dots + \frac{1}{x_n}(-1)^{x_n}|a|^{x_n} = -n|a|,$$
(4)

so we know that x_i $(i = 1, 2, \dots, n)$ is not an irrational number.

Let $x_i = \frac{q_i}{p_i}$ $(q_i \text{ is coprime to } p_i)$, then p_i must be an odd number because negative number has no real square root. From $x_1x_2\cdots x_n = 1$, we have $p_1p_2\cdots p_n = q_1q_2\cdots q_n$, so q_i is odd number and $(-1)^{x_i} = -1$ $(i = 1, 2, \dots, n)$. In this case, the equation (4) become the following equation:

$$\frac{1}{x_1}|a|^{x_1} + \frac{1}{x_2}|a|^{x_2} + \dots + \frac{1}{x_n}|a|^{x_n} = n|a|.$$

From the conclusion of case 1) we know that the theorem is also holds. This completes the proof of the theorem.

References

[1] F. Smarandache, Only problems,
not solutions, Xiquan Publishing House, Chicago, 1993, pp. 22.

[2] Zhang Wenpeng, On an equation of Smarandache and its integer solutions, Smarandache Notions (Book series), American Research Press, **13**(2002), 176-178.

[3] Tom M.Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.

[4] R.K.Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1981.

[5] "Smar andache Diophantinc Equations" at http://www.gallup.unm.edu/ smar andache/ Dioph-Eq.txt.