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Abstract. State of the art equation discovery systems start the discov-
ery process from scratch, rather than from an initial hypothesis in the
space of equations. On the other hand, theory revision systems start from
a given theory as an initial hypothesis and use new examples to improve
its quality. Two quality criteria are usually used in theory revision sys-
tems. The first is the accuracy of the theory on new examples and the
second is the minimality of change of the original theory. In this paper,
we formulate the problem of theory revision in the context of equation
discovery. Moreover, we propose a theory revision method suitable for
use with the equation discovery system Lagramge. The accuracy of the
revised theory and the minimality of theory change are considered. The
use of the method is illustrated on the problem of improving an exist-
ing equation based model of the net production of carbon in the Earth
ecosystem. Experiments show that small changes in the model parame-
ters and structure considerably improve the accuracy of the model.

1 Introduction

Most of the existing equation discovery systems make use of a very limited
portion of the theoretical knowledge available in the domain of interest. Usually,
the domain knowledge is used to constrain the search space of possible equations
to the equations that make sense from the point of view of the domain experts.
One of the aspects of the domain knowledge that is usually neglected by the
equation discovery systems are the existing models in the domain. Rather than
starting the search with an existing equation based model, equation discovery
systems always start their search from scratch. In contrast with them, theory
revision systems [9,3] start with an existing model and use heuristic search to
revise the model in order to improve its fit to observational data.

Most of the work on theory revision systems is on the revision of theories
in propositional and first-order logic [9]. In this paper, we propose a flexible
grammar based framework for theory revision in equation discovery. The ex-
isting initial model is transformed to a grammar, and alternative productions
are used to define a space of possible revised equation models. The grammar
based equation discovery system Lagramge [6] is then used to search through
the space of revised models and find the one that fits observational data best.
The use of the proposed framework is illustrated on revising an equation based
earth-science model of the net production of carbon in the Earth ecosystem.
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The paper is organized as follows. The following section give a brief introduc-
tion to grammar based equation discovery. Typical approaches to revision of the-
ories in propositional and first-order logic are briefly reviewed in Section 3. The
grammar based framework for theory revision in equation discovery is presented
in Section 4. Section 5 presents the experiments with revising the earth-science
equation model. The last section summarizes the paper, discusses related work
and gives direction for further work.

2 Equation Discovery

Equation discovery is the area of machine learning that develops methods for
automated discovery of quantitative laws, expressed in the form of equations, in
collections of measured data [1]. Equation discovery systems heuristically search
through a subset of the space of all possible equations and try to find the equation
which fits the measured data best.

Different equation discovery systems explore different spaces of possible equa-
tions. Early equation discovery systems used pre-defined (built-in) spaces that
were small enough to allow effective heuristic (or exhaustive) search. However,
this approach does not allow the user of the equation discovery system to tailor
the space of possible equation to the domain of interest. On the other hand,
recent equation discovery systems use different approaches to allow the user to
restrict the space of the possible equations. In equation discovery systems that
are based on genetic programming, the user is allowed to specify a set of algebraic
operators that can be used. A similar approach has been used in the EF [10]
equation discovery system. The equation discovery system SDS [7] effectively
uses user provided scale-type information about the dimensions of the system
variables and is capable of discovering complex equations from noisy data.

Finally, the equation discovery system Lagramge [6] allows the user to
specify the space of possible equations using a context free grammar. Note that
grammars are a more general and powerful mechanism for tailoring the space
of the equations to the domain of use than the ones used in SDS [7] and EF
[10]. In the rest of this section we will describe this grammar based approach to
equation discovery used in Lagramge.

2.1 Grammar-Based Equation Discovery

The problem of grammar based equation discovery can be formalized as follows.
Given:
– a set of variables V = v1, v2, . . . , vn of the observed system, including a
target dependent variable vd ∈ V ;
– a grammar G; and
– a table M of observations (measured values) of the system variables.
Find a model E in the form of one or more algebraic or differential equations
defining the target variable vd that:
1. is derived by the grammar G; and
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2. minimizes the discrepancy between the observed values of the target variable
vd and the values of vd obtained with simulating the model.

An example of a grammar for equation discovery is given in Table 1. The
grammar contains a set of two nonterminal symbols {P Vdiff, Vdiff}, with a
set of productions attached to each of them, and a set of three terminal symbols
{v1, v2, const[0:1]}. The semantics of the terminal and nonterminal symbols
in the grammar are explained below.

There are two types of terminal symbols used in the grammars for equation
discovery. The first group is used to denote the variables of the observed system
(v1 and v2 in the example grammar from Table 1). Another group of terminal
symbols of the form const[l:h] is used to denote the constant parameter in
the equation model whose value has to be fitted against the observational data
from M . A constraint [l:h] specifies that the value of the constant parameter
should be within the interval l ≤ v ≤ h.

Table 1. An example of a grammar for equation discovery defining the space of poly-
nomials of a single variable vdiff = v1 − v2.

P Vdiff -> const[0:1]
P Vdiff -> const[0:1] + (P Vdiff) * (Vdiff)
Vdiff -> v1 - v2

The nonterminal symbol Vdiff defines an intermediate variable which is the
difference between two system variables v1 and v2. This is done with the single
production for the nonterminal symbol Vdiff. The other nonterminal symbol
P Vdiff is used to build polynomials of an arbitrary degree.

2.2 Lagramge

The equation discovery system Lagramge applies heuristic (or exhaustive)
search through the space of models generated using user provided grammar
G. The values constant parameters (terminal symbols const) in the generated
models are fitted against input data M using standard non-linear constrained
optimization method. After fitting the values of the constant parameters tho
model is evaluated according to the sum of squared errors (SSE heuristic func-
tion [6]), i.e., the differences between observed values of the target variable vd

and the values of vd calculated by the model. Alternative MDL heuristic function
that takes into account the complexity of the model can be also used [6].

3 Theory Revision

The problem of theory revision can be defined as follows: Given an imperfect
domain theory in the form of classification rules and a set of classified examples,
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find an approximately minimal syntactic revision of the domain theory that
correctly classifies all of the examples.

A representative system that addresses this problem is Either [3]. Either
refines propositional Horn-clause theories using a suite of abductive, deductive
and inductive techniques. Deduction is used to identify the problems with the
domain theory, while abduction and induction are used to correct them. The
problem of theory revision has received a lot of attention in the field of inductive
logic programming [2], where a number of approaches have been developed for
revising theories in the form of first-order Horn clause theories. For an overview,
we refer the reader to [9].

Two kinds of problems are encountered within imperfect domain theories:
over-generality occurs when an example is classified into a class other than the
correct one, while over-specificity occurs when an example cannot be proven to
belong to the correct class. Note that a single example can be misclassified both
ways at the same time. Overly general rules are either specialized by adding new
conditions to their antecedents or are deleted from the knowledge base. Problems
of over-specificity are solved by generalizing the antecedents of existing rules, e.g.,
by removing conditions from them, or by the induction of new rules.

4 Grammar-Based Theory Revision of Equation Models

4.1 Problem Definition

The problem of grammar based theory revision can be formalized as follows.
Given:

– a set of variables V = v1, v2, . . . , vn of the observed system, including a
target dependent variable vd ∈ V ;
– an existing model E, represented as an equation(s) defining the target vari-
able vd. Note that this can actually be a set of (algebraic or differential)
equations defining the value of the target variable vd;
– a grammar G that derives the model E; and
– a table M of observations (measured values) of the system variables.

Find a revised model E′ (equation/set of equations as above) that:

1. is derived by the grammar G;
2. minimizes the discrepancy between the observed values of the target variable

vd and the values of vd obtained with simulating the model; and
3. differs from the existing model E as little as possible.

Items 2. and 3. above would typically appear in a formulation of a gen-
eral theory revision problem, regardless of the language in which the theories
are expressed. In contrast to our formulation, however, the possible changes to
the initial theory would be specified in terms of revision operators that can be
applied to the initial and intermediate theories. As theories are typically logical
theories in theory revision settings, operators typically include addition/deletion
of entire rules (propositional or first-order Horn clauses) and addition/deletion
of conditions in individual rules.
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4.2 From an Initial Model to a Grammar

In a typical setting of revising an existing scientific model, we would only have
observational data and a model, i.e., an equation developed by scientists to
explain a particular phenomenon. A grammar that would explain how this model
was actually derived and provide options for alternative models is typically not
available. The above is especially true for simpler models.

However, when the model (equation) is complex, it is only rarely written as
a single equation defining the target variable, but rather as a set of equations
defining the target variable, which typically contains equations defining interme-
diate variables. The latter typically define meaningful concepts in the domain of
discourse. Often, alternative equations defining an intermediate variable would
be possible and the modeling scientist would choose one of these: the alternatives
would rarely (if ever) be documented in the model itself, but might be mentioned
in a scientific article describing the derived model and the modeling process.

Table 2. Equations defining the NPPc variable in the CASA earth-science model.

NPPc = max(0, E · IPAR)
E = 0.389 · T1 · T2 · W

T1 = 0.8 + 0.02 · topt − 0.0005 · topt2

T2 = 1.1814/((1 + e0.2·(TDIFF−10)) · (1 + e0.3·(−TDIFF−10)))
TDIFF = topt − tempc

W = 0.5 + 0.5 · eet/PET
PET = 1.6 · (10 · max(tempc, 0)/ahi)A · pet tw m

A = 0.000000675 · ahi3 − 0.0000771 · ahi2 + 0.01792 · ahi + 0.49239
IPAR = FPAR FAS · monthly solar · SOL CONV · 0.5

FPAR FAS = min((SR FAS − 1.08)/srdiff , 0.95)
SR FAS = (1 + fas ndvi/1000)/(1 − fas ndvi/1000)

SOL CONV = 0.0864 · days per month

A set of equations defining a target variable through some intermediate vari-
ables can easily be turned into a grammar, as demonstrated in Tables 2 and 3,
which give an earth-science model and a grammar that derives this model only.
Having the grammar in Table 3, however, enables us to specify alternative mod-
els through providing additional productions for the nonterminal symbols in
the grammar. Additional productions for intermediate variables would specify
alternative choices, only one of which will eventually be chosen for the final
model. Observational data would be then used to select among combinations of
such choices, if we apply a grammar based equation discovery system (such as
Lagramge) with the grammar that includes additional productions to observa-
tional data as input.

While the presented approach from the previous paragraph does take into
account the initial model, it may allow for a completely different model to be
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Table 3. Grammar derived from the equations for NPPc variable in the CASA earth-
science model in Table 2. The grammar generates the original equations only.

NPPc -> max(const[0:0], E * IPAR)
E -> const[0.389:0.389] * T1 * T2 * W
T1 -> const[0.8:0.8] + const[0.02:0.02] * topt

- const[0.0005:0.0005] * topt * topt
T2 -> const[1.1814:1.1814] / ((const[1:1] + exp(const[0.2:0.2]

* (TDIFF - const[10:10]))) * (const[1:1]
+ exp(const[0.3:0.3] * (-TDIFF - const[10:10]))))

TDIFF -> topt - tempc
W -> const[0.5:0.5] + const[0.5:0.5] * eet / max(PET, const[0:0])
PET -> const[1.6:1.6]

* pow(const[10:10] * max(tempc, const[0:0]) / ahi, A)
* pet tw m

A -> const[0.000000675:0.000000675] * ahi * ahi * ahi
- const[0.0000771:0.0000771] * ahi * ahi
+ const[0.01792:0.01792] * ahi + const[0.49239:0.49239]

IPAR -> FPAR FAS * solar * SOL CONV * const[0.5:0.5]
FPAR FAS -> min((SR FAS - const[1.08:1.08]) / srdiff, const[0.95:0.95])
SR FAS -> (const[1:1] + fas ndvi / const[1000:1000])

/ (const[1:1] - fas ndvi / const[1000:1000])
SOL CONV -> const[0.0864:0.0864] * days per month

derived, depending on whether productions for alternative definitions are pro-
vided for each of the intermediate variables. It is here that the minimal revi-
sion/change principle comes into play: among theories of similar quality (fit to
the data), theories that are closer to the original theory are to be preferred.
Since we are dealing with theories that are not necessarily expressed in logic
(e.g., equations), only syntactic criteria of minimality of change are applicable
in a straightforward fashion.

4.3 Typical Alternative Productions

Note that when an alternative production is specified for an intermediate vari-
able, there are no restrictions (at least in principle) on these productions. For
example, they can introduce new intermediate variables and productions defin-
ing them. They can also specify arbitrary functional forms (in the case of equa-
tions). However, they do have to eventually derive (in the context of the entire
grammar) valid sub-expressions involving the set of terminal symbols (system
variables) associated to the initial model.

A very common alternative production would replace the particular constants
on the right-hand-side with generic constants, allowing the equation discovery
system to re-fit them to the given observational data. In the grammar from
Table 3 that change can be achieved by replacing a terminal symbol of the
form const[v:v], denoting a constant parameter with fixed value v, with a
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generic symbol const that allows for an arbitrary value of the particular constant
parameter. In our experiments with the earth-science CASA model we allow for
a 100% change of the original values of the constant parameters in the initial
model. This can be specified by replacing the terminal symbol const[v:v] with
const[0:2*v], where interval [0 : 2 ·v] is equal to [(v −100% ·v) : (v+100% ·v)]
(a 100% relative change).

A slightly more complex alternative production would replace a particular
polynomial on the right-hand-side of a production with an arbitrary polynomial
of the same (intermediate) variables. For example, in the grammar from Table 3
can be replaced by a grammar, similar to the example grammar from Table 1,
for generating an arbitrary polynomial of the variable topt.

4.4 Current Implementation

Our current implementation of the theory revision approach to equation discov-
ery outlined above involves applying Lagramge to the given observational data
and a grammar specifying the possible alternative productions to be used in
theory revision. The observational data are used to select a particular combina-
tion of the possible alternatives: note that these also include leaving parts of the
model unchanged (as the original productions are also a part of the grammar)
even if alternative productions for these exist.

We currently do not have an implementation of the minimal change prefer-
ence integrated within Lagramge. This however, can be achieved in a relatively
straightforward manner. One of the heuristic functions used by Lagramge to
search the space of equations, called MDL, takes into account the degree-of-fit
(sum of square errors) as well as the size of the equation model. A reasonable
approach to implement a minimality of change principle would be to replace
the second term in the MDL heuristic: replace the size of the equation with a
distance between the current model and the initial model. The distance mea-
sure can be a distance on tree-structured terms, which would take into account
the number and complexity of the alternative productions taken to derive the
current equation.

5 Experiments in Revising an Earth-Science Model

We illustrate the use of the proposed framework for theory revision in equation
discovery on the problem of revising one part of the earth-science CASA model
[4]. The CASA model predicts annual global fluxes in trace gas production on the
basis of a number of measured (observed) variables, such as surface temperatures,
satellite observations of the land surface, soil properties, etc. Because the whole
CASA model is a quite complex system of difference and algebraic equations, we
focused on the revision of the NPPc part of CASA (CASA-NPPc), presented in
Table 2, that is used to predict the monthly net production of carbon at a given
location.
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The values of the input variables (terminal symbols in the grammar from
Table 2) were measured (and/or calculated) for 303 locations on the Earth pro-
viding a data set with 303 examples. In order to evaluate the accuracy of the
model on unseen data we applied standard ten-fold leave-one-out cross valida-
tion method. The error of the original and revised models was calculated as root

mean squared error defined as
√∑N

i=1(NPPci − ˆNPPc)2i /N , where N is num-

ber of the data points; NPPci and ˆNPPci are the observed value and the value
calculated by the model, respectively.

5.1 Revisions Used in the Experiments

As described in Section 4 we first transformed the given NPPc model into a
grammar (given in Table 3) that derives that model only. Furthermore, we added
alternative productions to the grammar that define the space of possible revi-
sions. We used six alternative possibilities for the revision of the NPPc model,
described below.

E-c-100 : we allowed a 100% relative change of the constant parameter 0.389
in the equation defining the intermediate variable E. Therefore, we replaced
the original production for nonterminal symbol E in the grammar with E ->
const[0:0.778] * T1 * T2 * W, i.e., changed the constraint on the value
of the constant parameter from the original const[0.389:0.389], which
fixes the value of the constant parameter, to const[0:0.778], which allows
a 100% relative change of the original value of the constant parameter ([0 :
0.778] being equal to [(0.389− 100% · 0.389) : (0.389 + 100% · 0.389)]).

T1-c-100, T2-c-100 : we allowed the same revisions as the one described above
on the right hand sides of the productions for T1 and T2.

SR FAS-c-20 : we allowed 20% relative change of the constant parameters val-
ues in the equation defining the intermediate variable SR FAS . The relative
change of 20% was used to avoid values of the constant parameters lower
than 800, which would cause singularity (division by zero) problems in the
formula for calculating SR FAS .

T1-s : we allowed the original second degree polynomial for calculation of
T1 = 0.8 + 0.02 · topt − 0.0005 · topt2 with an arbitrary polynomial of the
same variable topt. The following alternative productions were added to the
grammar from Table 3 for this purpose: T1 -> const and T1 -> const +
(T1) * topt.

T2-s : the graph of the dependency between the T2 and TDIFF variables shows
a Gaussian-like slightly asymmetrical dependency curve. Following the fact
that this kind of dependency can be approximated also with a higher degree
polynomial we replaced the original T1 production in the grammar from
Table 3 with two productions (similar to the ones for T1-s, presented above)
that define an arbitrary polynomial of the TDIFF variable.

In addition to these six possibilities for revising the CASA-NPPc model we
also used different combinations of them.
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5.2 Results of the Experiments

The results of the experiments with different alternative grammars for revision
are presented in Table 4.

Table 4. Error reduction (in %) gained with revising the original CASA-NPPc model
using different grammars for revision.

Grammar Reduction of RMSE (in %)
SR FAS-c-20 14.93
T2-c-100 13.25
T1-s 13.05
T2-s 12.90
E-c-100 12.59
T1-c-100 12.39
SR FAS-c-20 + T2-s 15.56
SR FAS-c-20 + T1-s 15.46
T2-c-100 + T1-s 13.92
T2-s + T1-s 13.30
SR FAS-c-20 + T2-c-100 11.55
SR FAS-c-20 + T2-s + T1-s + E-c-100 16.19
SR FAS-c-20 + T2-s + T1-c-100 + E-c-100 15.44
SR FAS-c-20 + T2-c-100 + T1-s + E-c-100 14.82
SR FAS-c-20 + T2-c-100 + T1-c-100 + E-c-100 12.92

The first six rows of Table 4 shows that revising the value of the constant
parameters in the equation for calculating SR FAS gives the greatest improve-
ment of the original model. The original value of the parameters (equal to 1000)
defines an almost linear dependence of SR FAS on observed variable srdiff. The
revised values of the constant parameters were equal to 800 (lowest possible val-
ues), which increase the non-linearity of the dependence. Allowing lower values
of the parameters in the equation gives further improvement, but singularity
(division by zero) problems appear due to the range of the srdiff variable.

The analysis of the results of the structural revisions shows the following. T1-
s revision cause the second-degree polynomial for calculating the T1 variable to
be replaced by a fourth degree polynomial. On the other hand, the structural
revision T2-s reduced the complex formula for calculating T2 with a constant
value. This is a surprising result that would have to be discussed with the Earth
science experts that built the CASA model.

Furthermore, we tested pairwise combinations of the six model refinements.
The results are presented in the second part of the Table 4. Results show that im-
provements gained using individual refinement grammars do not combine addi-
tively. However, combinations do increase the improvements: maximal improve-
ment gained with pairwise combinations is 15.56% compared with the highest
improvement of 14.93% gained using individual revisions.
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Finally, the results of the experiments with combining all the refinements are
presented in the last four rows of Table 4. Note however, that revisions of the
T1 and T2 structures (T1-s and T2-s) are mutually exclusive with the respective
revisions of the T1 and T2 constants (T1-c-100 and T2-c-100). Therefore, four
possible combinations are possible, the one combining the structural revisions of
the T1 and T2 formulas and revisions of the values of the constant parameters in
formulas for the SR FAS and E gives the maximal improvement of the accuracy
of 16.19%.

In sum, the presented results of the experiments show that small revisions
of the CASA-NPPc model parameters and structure considerably improve the
accuracy of the model, the maximal improvement being above 16%. However,
Earth science experts should also evaluate the comprehensibility and acceptabil-
ity of the revised models. Nevertheless, if some of the revisions generate models
that do not make sense from their point of view, new alternative productions
would have to be defined to reflect the experts comments, and allow only revi-
sions that lead to acceptable models.

Note here that the most of the error reduction is gained using a fairly sim-
ple revision operator of changing the values of the constant parameters in the
SR FAS equation. Only minor additional reductions can be obtained by combin-
ing this revision with any of the other five revision operators described above.
Therefore, this revision would probably be the optimal one from the point of
view of the minimality of change criterion, discussed in Section 4.

6 Conclusions and Discussion

We have presented a general framework for the revision of theories in the form
of (sets of) quantitative equations. The method is based on grammars, which
can be derived from the original theory. Domain experts can focus the revision
process on parts of the model and guide it by providing relevant alternative
productions. In this way, the revision process can be interactive, as is quite
often the case when revising theories expressed in logic.

We have applied our approach to the problem of revising an existing equa-
tion based model of the net production of carbon in the Earth ecosystem. Ex-
perimental results show that small revisions in both the values of the constant
parameters and the structure of equations considerably reduce the error of the
model by 16%.

Saito et al. [5] address the same task of revising scientific models in the form
of equations. Their approach is based on transforming parts of the model into
a neural network, training the neural network, then transforming the trained
network back into an expression/equation. This indirect approach is limited to
revising the parameters or form of one equation in the model at a time. It also
requires some handcrafting to encode the equations as a neural network – the
authors state that “the need to to translate the existing CASA model into a
declarative form that our discovery system can manipulate” is a challenge to
their approach.
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Our approach allows for a straightforward representation of existing scien-
tific models as grammars, which can then be directly manipulated and used to
perform theory revision. The transition from the initial model to a grammar is
so straightforward that we consider automating this process as one of the topics
for immediate further work. Revisions to several equations of the original model
may be considered simultaneously, as illustrated by the experiments performed.

Whigham and Recknagel [8] also consider the specific task of revising an
existing model for predicting chlorophyll-a by using measured data. They use a
genetic algorithm to calibrate the equation parameters. They also use a grammar
based genetic programming approach to revise the structure of two sub-parts
(one at a time) of the initial model. A most general grammar that can derive an
arbitrary expression using the allowed arithmetic operators and functions was
used for each of the two sub-parts.

Unlike this paper, Whigham and Recknagel [8] do not present a general
framework for the revision of quantitative scientific models. Their approach is
similar to ours in that they use grammars to specify possible revisions. However,
the grammars they use are too general to provide much information about the
domain at hand. Also, they do not consider the notion of minimality of revision
and genetic programming typically produces very large expressions without a
simplicity bias.

As already mentioned, an immediate topic for further work is to automate the
grammar generation from the initial model. Another challenge is to provide the
domain experts an interactive tool for testing out different alternatives for revi-
sion. Furthermore, integrating the minimality of change criterion in Lagramge
is also an open issue. Minimal description length (MDL) heuristics in Lagramge
can be adapted to take into account the distance between the current and the
initial equation model. Finally, we plan to apply the proposed framework to the
task of revision of other portions of the CASA model as well as revision of other
equation based environmental models.
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