MATH 427: COMPLEX ANALYSIS (SUMMER 2018)

Note: In addition to Prof. Hart Smith's practice problems, consider the following problems.
(1) Evaluate the integral

$$
\int_{|z-a|=a} \frac{z}{z^{4}-1} d z, \quad a>1
$$

(2) Evaluate the integral

$$
\frac{1}{2 \pi i} \int_{|z-a|=1} \frac{z e^{z}}{(z-a)^{3}} d z, \quad a \in \mathbb{C}
$$

(3) Find the power series expansion of the following functions and determine the radius of convergence.
(a) $f(z)=\frac{z^{2}}{(z+1)^{2}}$ at $z=0$
(b) $f(z)=\log \frac{1+z}{1-z}$ for any branch of $\log z$ at $z=0$.
(4) Prove that if $f(z)$ is a noncostant function analytic on a connected open set U. Suppose f has no zeros in U, show that the minimum of $|f(z)|$ cannot be attained inside U.

