
Variables, Types, and Printing Things
A variable holds some piece of data for you to use later.
They will have a type that is usually handled by Python,
but it is useful to know about them.

Integers can be any whole number like -1, 0, 1, 2, 3

intNumber = 1		 # assigns intNumber as 1

Floating point numbers are numbers like 1.01

floatNumber = 1.00	 # .00 makes it a float	

Strings are text values and are set by using quotes (“ or ‘)

msg = “Hello Space!”	 # assign String to msg

You can output a variable with print

msg = “Hello Space!”	 # assign String to msg
print (msg)		 # displays text in window

you can output multiple values with a comma (,)

firstName = “Ada”	 #Assign String to firstName
lastName = “Lovelace”	 #Assign String to lastName
print (“Countess”, firstName, lastName)

You can change the type of a variable by ‘casting’

number = “1”		 # a String with the 1 character
number2 = 2			 # the integer 2
print (number+number2)		 # will cause an error
print (int(number)+number2)		 # prints 3
print (float(number)+number2)	 # prints 3.0
print (number+str(number2))	 	 # prints 12

Functions
Functions let you use one block of code in many places.

def add(x, y=2): 	# y=2 we set the default value
	 return x + y		 # add the inputs and return result
	 print (add(1))	 # call function : returns 3
	 print (add(1,9))	 # call function : returns 10

Import
You can get extra functions by using import, there are
many libraries you can import.

import time					 # import library
n=0						 # initialise counter
while True:					 # loop forever!
	 print (n += 1)	 #add one
	 time.sleep(1)	 # pauses the loop for 1 second

Maths Operators
maths operations can be done using the built-in
operators.

product = n + 1 	# will have the sum of n and 1
subtraction = n – 1	 # one subtracted from n
multiply = n * 8	 # eight times n
divide = n / 9		 # division
divide = n//9		 # integer division
remainder = n % 9	 # remainder from division
exponent = n ** 8	 # n raised to the 8th power

Any maths operator can be used with the equals symbol
to assign the vale and perform the operation

product += 1		 # product = product + 1

User Input
You can allow users to interact with your program with
inputs. raw_input will store the input as a string.

name = raw_input(“Who. are. you?“)	 # caterpillar question
print (“Explain yourself, “+name+”!”) # his response

Other data types are gotten with input; it will decide
which type to use based on the input.

planets = input(“How many planets are there? “)	 # integer
print (planets)		 # print 8 (we love Pluto, but no)
pi = input(“What’s the value of pi?“)	 # floating point
pi = float(pi)	 # 3.14159265…How long can this go for?

Booleans (True or False)
Booleans are a special type of variable that can either be
True or False

Blue = True		 # sets variable to True
Blue = False		 # sets variable to False

Booleans can be used for conditional arguments.

test = (n == 7)		 # True if n equal 7
test = (n != 7)		 # True if n not equal 7
test = (n > 7)		 # True if n greater than 7
test = (n >= 7)		 # True if n greater than or equal 7
test = (n < 7)		 # True if n less than 7
test = (n <= 7)		 # True if n less than or equal 7

If Statements
If statements Use Booleans to perform small blocks of
code if a test is True or False.

check = (temp >= 18)	 # check if the temp is above 18
if check:		 # test check
	 print (“It’s too hot!”)	 # run if check is True

if statements can run other code if the test is False.

if temp < 4:		 # first test
	 print (“It’s too cold!”)
elif temp < 18:		 # only tests if the first is False
	 print (“This is nice!”)
else:			 # run if the others are False
	 print (“It’s too hot!”)

Loops
A while loop repeats a block of code until a certain
condition is true. Hint: If you get stuck in a loop try Ctrl-C

counter = 1	 	 # initialise counter
while counter <= 5: 	 # test if condition is reached
	 print (counter) 	 # print the current value
	 counter += 1 	 # add one to the counter

Setting the condition for a while to True will make it loop
infinitely.

msg = “”		 # assign msg to be an empty string
while True:		 # Loop forever!
	 msg = raw_input(“Speak friend and enter”)
	 if msg == ‘mellon’:
		 break		 # end the loop

A for loop will run for a set number of times and then exit.

for i in range(1, 6):
 	 print (“Loop number”, i)

Working with Files
filename = ‘newFile.txt’			 # set filename
myfile = open(filename, ’r’)			 # open file for reading
lines = myfile.readlines()			 # load lines into a list
for line in lines: 			 # loop through lines
	 print (line)				 # print each line

Writing to a file

filename = ‘journal.txt’ 				 # set filename
myfile = open(filename, ‘w’)				 # open file to write
 myfile.write(“I love programming.”)	# write text to file

Appending to a file:

filename = ‘journal.txt’				 # set filename
myfile = open(filename, ‘a’) 				 # open file to write
 myfile.write(“\nI love making games.”)# write text to file

Python Cheat Sheet
If you need more help, just ask! support@starlab.education

http://starlab.education
http://obelisksystems.com

List
A List stores a series of items in particular order. You
access items using an index, or within a loop.

Make a list:

lukeLunch = [‘carrot’, ‘broccoli’, ‘corn’]		 # define list

Get the first item in a list:

first_lukeLunch = lukeLunch[0]			 # lists index from 0

Get the last item in a list:

last_lukeLunch = lukeLunch[-1]	 # -1 is shorthand for last

Looping through a list:

for veg in lukeLunch:	 # veg is the current element
	 print(veg)		 # displays element in window

Adding items to a list:

lukeLunch = []				 # define empty list
lukeLunch.append(‘carrot’)				 # add Element
lukeLunch.append(‘broccoli’)			 # add Element
lukeLunch.append(‘corn’)				 # add Element

Making numerical Lists:

squares = []					 # define empty list
for x in range(1, 11):
 squares.append(x**2) 				 # x^2

Slicing a list:

students = [‘grace’, ‘alan’, ‘ada’,’nikola’]		 # define list
first_two = students[:2]	 # ’:2’ selects everything before 2

Copying a list:

copy_of_lunch = lukeLunch[:]		 # ‘:’ selects everything

Conditional test with lists:

‘broccoli’ in lukeLunch		 # True if broccoli in list
‘potato’ not in lukeLunch		 # True if potato not in list

Connecting to StarLAB
Make sure you copy the StarLAB.pyc into the directory
that your python script is in. Then you can import the API.

import StarLAB		 # import the best library

Connect to the StarLAB with the IP on the OLED.

myStarLAB = StarLAB.Connect(IP = “192.168.0.1”)

When connecting to multiple StarLABs use different
names for each one.

myStarLAB = 	 StarLAB.Connect(IP = “192.168.0.1”)
lukeStarLAB = 	 StarLAB.Connect(IP = “192.168.0.2”)

StarLAB Spectrum Sensors
The spectrum sensors get information about the light that
the StarLAB can see. getSpectrum() returns a list from all
the sensors [[Red, Green, Blue], ambient, IR, UV]

data = myStarLAB.spectrum.getSpectrum() # all spectrum

getRGB returns a list of [Red, Green, Blue] in lux

data = myStarLAB.spectrum.getRGB()		 # RGB in lux

getAmbient, spectrum.getIR, and spectrum.getUV return
a Single value in Lux for the first two and μW/cm^2 for UV

data1 = myStarLAB.spectrum.getAmbient() 	 # Lux
data2 = myStarLAB.spectrum.getIR()				 # Lux
data3 = myStarLAB.spectrum.getUV()		 # μW/cm^2

StarLAB Movement Sensors
The IMU returns information about the movement of the
starLAB. They all return a list of three dimensions [X,Y,Z]

data1 = myStarLAB.IMU.getAccel()				 # m/(s^2)
data2 = myStarLAB.IMU.getGyro()				 # deg/s
data3 = myStarLAB.IMU.getMag()				 # m-Gauss
data4 = myStarLAB.IMU.getOrientation()		 # deg

StarLAB Atmospheric Sensors
The atmos sensors give you information about the
weather and are all single values.

data1 = myStarLAB.atmos.getHumidity()	 # percentage
data2 = myStarLAB.atmos.getPressure() 	 # hPa
data3 = myStarLAB.atmos.getAltitudeM() 	# meters
data4 = myStarLAB.atmos.getTempC()	 	 # celsius

StarLAB Hardware Temperature
The temperature of the board can be gotten with

data1 = myStarLAB.boardThermo.getTopTempC()
data2 = myStarLAB.boardThermo.getBotTempC()

StarLAB LED Lights
The StarLAB has 4 indicator LEDs (LED1-4) and one RGB
LED that is controlled by three values (Red, Green, and
Blue). To turn on or off any LED you use the set<name>On
and set<name>Off. The RGB brightness is changed with
set<name> with 0 being off and 255 being maximum.

myStarLAB.light.setRedOn()	 # turn on Red
myStarLAB.light.setGreenOff()	 # turn off Green
myStarLAB.light.setBlue(175)	 # set brightness of Blue

StarLAB Buzzer
To turn on the buzzer set the frequency using setFrequency.
This command takes an input between 0-8000Hz. Setting
a value of 0 will turn the buzzer off.

myStarLAB.buzzer.setFrequency(880)		 # buzzer in Hz
myStarLAB.buzzer.setFrequency(0)			 # turn buzzer off

StarLAB Buttons
The buttons on the StarLAB return a 1 when they are pressed
and 0 when they are not. The buttons can be checked all at
once with readButtonALL and returns the list [Left, Up, Down,
Right, Centre, A, B, C]

data = myStarLAB.button.readAll()				 # all!

Buttons can be checked individually using readButton<name>
where name is on of A, B, C, Up, Down, Left, Right, Centre.

data = myStarLAB.button.readA()				 # just A

StarLAB OLED Screen
Write messages on the OED with writeText it takes a string
input.

myStarLAB.OLED.writeText(“Hello Space”) # write hello

Write each line of the OLED with writeTextLine where each line
gets its own string.

L1 = “Haikus are easy”				 # String for line 1
L2 = “But sometimes they”				 # String for line 2
L3 = “Refrigerator”				 # String for line 3
myStarLAB.OLED.writeTextLine(Line1=L1,Line2=L2,Line3=L3)

Clear the screen with clear

myStarLAB.OLED.clear()

StarLAB Camera
Pictures can be taken with takePicture. The input will be the
name of the file in the location of the script.

myStarLAB.camera.takePicture(“filename”) # filename.jpg

StarLAB Rover
Take control of the Rover with the new API.

myStarLAB.enableRover()	 # enable control of the Rover

See the power usage of the rover and StarLAB.

data1 = myStarLAB.reactor.generator.getVoltage()			
				 # battery Level in Volts
data2 = myStarLAB.reactor.engine.getCurrent()
				 # motor current draw in mA
data3 = myStarLAB.reactor.processor.getPower()			
				 # power used by the Rover in mW

Set the motor power.

myStarLAB.motors.setMotorPower(60,60)	 # move forward
myStarLAB.motors.setMotorPower(-40,-40)# move backwards
myStarLAB.motors.turnRover(90)			 # turn by angle

Get the distance from an obstacle.

data1 = myStarLAB.ranger.getDistance()	# range in cm

