
An Introduction to UNIX

Andrew Hazel

Department of Mathematics,

University of Manchester

An Introduction to UNIX – p.1/29

Outline of course

• 11:00–12:00: First Lecture
• General Introduction and basic concepts

• 12:00–13:00: Group 1: Lunch
Group 2: Practical Session 1

• 13:00–14:00: Group 1: Practical Session 1
Group 2: Lunch

• 14:00–14:45: Second Lecture
• The UNIX filesystem and shells

• 14:45–15:00: Break

• 15:00–15:30: Final Lecture
• Using remote machines and job control

• 15:30–16:30: Final Practical Session
An Introduction to UNIX – p.2/29

What is UNIX ?

• Multi-tasking, multi-user operating system
• “Standard” for big computing
• UNIX underpins the internet and many of the services it provides
• Departmental fileserver and most powerful computers run UNIX

An Introduction to UNIX – p.3/29

What is UNIX ?

• Multi-tasking, multi-user operating system
• “Standard” for big computing
• UNIX underpins the internet and many of the services it provides
• Departmental fileserver and most powerful computers run UNIX

• Advantages
• True multi-tasking
• Flexible
• Portable
• “Nice” programming environment

An Introduction to UNIX – p.3/29

What is UNIX ?

• Multi-tasking, multi-user operating system
• “Standard” for big computing
• UNIX underpins the internet and many of the services it provides
• Departmental fileserver and most powerful computers run UNIX

• Advantages
• True multi-tasking
• Flexible
• Portable
• “Nice” programming environment

• Disadvantages
• Not that user friendly
• Steep learning curve
• Not 100% compatible with the microsoft world

An Introduction to UNIX – p.3/29

What can UNIX do for you ?

• Departmental E-mail
• World Wide Web
• Scientific Programming

• FORTRAN
• C/C++
• Matlab
• Maple

• Text Processing
• LATEX 2ε

• Plotting packages
• Gnuplot
• tecplot

An Introduction to UNIX – p.4/29

UNIX philosophy

• Small specialised programs ... not complete integration
• Everything is a file
• Power is more important than style
• Many users can work at once
• To use UNIX effectively you need to master a number of different

programs and couple them together

• ... but most people survive on a small handful of commands

An Introduction to UNIX – p.5/29

UNIX commands

• UNIX commands take the generic form:

command [options] [expression] [files]

ls -l *.c
emacs junk.txt
lpq -l

• Error messages are often cryptic
• Commands are entered on the command line and interpreted by

the shell
• Choice of shell can affect your working environment

An Introduction to UNIX – p.6/29

Getting help

• Use the man and info commands for online documentation
• man -k or apropos can be used to search for commands

associated with keywords
• Try man man and info info to find out how to use these

commands !
• Ask others in the computer rooms
• Look at the departmental web pages for documentation
• Look at books (lots of linux/unix books available)
• Send e-mail to support@ma.man.ac.uk

An Introduction to UNIX – p.7/29

Electronic (E-)mail

• E-mail is a way of sending text between users on computer
systems

• An e-mail address is of the form username@hostname
• You should have a university e-mail account that can be accessed

at https://webmail.manchster.ac.uk
• You will need to register on a university PC in order to obtain your

University user name and password, which are NOT the same as
your Departmental user name and password.

• E-mail will be used to circulate
important information, so make sure
that you can use it !

An Introduction to UNIX – p.8/29

Editing files

• Most of your time will be spent editing files
• There are a number of text editors available under UNIX
• emacs is one of the easiest to learn initially
• The control key (CTL) and the Escape key (Esc) are used to

access specialised editing commands

• The only way to learn an editor is to
use it, so practice

An Introduction to UNIX – p.9/29

Printing

• The basic printing commands are lpr, lpq and lprm

lpr -Pprinter file Sends file to the printer printer
lpq -l -Pprinter Lists the print queue for printer
lprm -Pprinter n Removes job number n from printer ’s queue

An Introduction to UNIX – p.10/29

Printing

• The basic printing commands are lpr, lpq and lprm

lpr -Pprinter file Sends file to the printer printer
lpq -l -Pprinter Lists the print queue for printer
lprm -Pprinter n Removes job number n from printer ’s queue

• You can set your default printer by using the printer command
[This is a custom command and will only work in the department]

• Generally files must be converted into Postscript before being
sent to the printer

• a2ps file.txt will convert the text file file.txt to postscript and send it
to the default printer

• Postscript files may be previewed onscreen using the gv
command

An Introduction to UNIX – p.10/29

The UNIX filesystem

• Tree-like structure
• / is the root directory (the top of the tree)
• Every other directory is a subdirectory of /
• Every subdirectory has two special directories

• . is the directory itself
• .. is the parent directory

• cd (or change directory) is used to move between directories
• If you get lost pwd (or print working directory) will show you the

complete path from the root / to your current directory
• mkdir creates (or makes) new directories and rmdir deletes (or

removes) directories
• cd with no arguments changes to home directory
• ˜ refers to your home directory

An Introduction to UNIX – p.11/29

Copying and moving files

cp file1 file2 copies file1 to file2
cp file1 dir copies file1 into the directory dir

Its path-name will be dir/file1
cp file1 file2 &c dir copies multiple files into the directory dir

An Introduction to UNIX – p.12/29

Copying and moving files

cp file1 file2 copies file1 to file2
cp file1 dir copies file1 into the directory dir

Its path-name will be dir/file1
cp file1 file2 &c dir copies multiple files into the directory dir

mv oldfile newfile renames oldfile to newfile
mv file1 dir moves file1 into the directory dir

Its path-name will be dir/file1
mv file1 file2 &c dir moves multiple files into the directory dir

cp -i and mv -i will warn you before overwriting an existing file

An Introduction to UNIX – p.12/29

Deleting files

rm file1 deletes the file file1
rm file1 file2 &c deletes multiple files
rm -i file1 warns you before deleting files
rm -r dir removes all files in the directory dir

Be very careful using rm -r

An Introduction to UNIX – p.13/29

Examining files

ls lists the files and directories in the current directory
ls -l gives a long listing of the files
ls -a lists hidden files (those starting with a period)
ls -t list files in order of creation time
ls -R lists contents of directories

An Introduction to UNIX – p.14/29

File permissions

• ls -l shows the file permissions:

Permissions Link Owner Group File size Timestamp Name
-rw-r–r– 1 andrew users 0 Sep 12 17:58 file1
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dir1/

An Introduction to UNIX – p.15/29

File permissions

• ls -l shows the file permissions:

Permissions Link Owner Group File size Timestamp Name
-rw-r–r– 1 andrew users 0 Sep 12 17:58 file1
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dir1/

• First entry in permissions is file type i.e. d for directory

An Introduction to UNIX – p.15/29

File permissions

• ls -l shows the file permissions:

Permissions Link Owner Group File size Timestamp Name
-rw-r–r– 1 andrew users 0 Sep 12 17:58 file1
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dir1/

• First entry in permissions is file type i.e. d for directory
• Access permissions are in three groups of three

• u, User permissions
• g, Group permissions
• o, Other permissions

• r is read permission
• w is write permission
• x is execute permission

An Introduction to UNIX – p.15/29

Changing file permissions

chmod n1n2n3 file changes file permissions

• Permissions can be changed using numbers or symbolic codes
• e.g. chmod 741 file gives the permissions - rwx r– –x file
• e.g. chmod a=r file gives the permissions - r– r– r– file

• Full details may be found on the info pages

An Introduction to UNIX – p.16/29

Shells

• A shell is a command interpreter. It translates the commands you
type into instructions to the main operating system

• Advantage of a shell is that it can make life a lot easier with
wildcards, filename completion and history mechanisms

• The shell can also be used as a programming language to write
shell scripts

• Many different shells
• Bourne
• C
• Korn
• Bash

• Only going to cover the tcsh (default) shell. Use the ypchsh
command to change your default shell.

An Introduction to UNIX – p.17/29

Wildcards

• Wildcards are special characters than can be used to make life
easier

• The most used is * which replaces any string
• ls * lists all files
• ls *.txt lists all files ending in .txt
• rm a*.txt deletes all files starting with a and ending in .txt e.g.

andrew.text, awfully_boring.txt, another_long_file.txt

An Introduction to UNIX – p.18/29

Wildcards

• Wildcards are special characters than can be used to make life
easier

• The most used is * which replaces any string
• ls * lists all files
• ls *.txt lists all files ending in .txt
• rm a*.txt deletes all files starting with a and ending in .txt e.g.

andrew.text, awfully_boring.txt, another_long_file.txt

• ? will replace only a single character
• rm a?.txt will only delete files of the form ab.txt or ac.txt, not

andrew.txt

An Introduction to UNIX – p.18/29

Wildcards

• Wildcards are special characters than can be used to make life
easier

• The most used is * which replaces any string
• ls * lists all files
• ls *.txt lists all files ending in .txt
• rm a*.txt deletes all files starting with a and ending in .txt e.g.

andrew.text, awfully_boring.txt, another_long_file.txt

• [] encloses a choice of values
• ls [ab]*.txt will list files that start with a or b and end in .txt
• The hyphen denotes a range e.g. rm [a-z].txt will remove any

of the files a.txt, b.txt, c.txt, etc
• Warning the only sensible ranges are 0-9, a-z, A-Z or

subsets thereof (unless you happen to be conversant in
the numerical order of ASCII symbols)

An Introduction to UNIX – p.18/29

Wildcards

• Wildcards are special characters than can be used to make life
easier

• The most used is * which replaces any string
• ls * lists all files
• ls *.txt lists all files ending in .txt
• rm a*.txt deletes all files starting with a and ending in .txt e.g.

andrew.text, awfully_boring.txt, another_long_file.txt

• A caret ˆ as the first character in square brackets acts as a logical
not
• ls [ˆ e]* lists all files that don’t start with e.

An Introduction to UNIX – p.18/29

Quoting

• What do you do if you have a filename containing a wildcard ?
• Quoting (or escaping) removes the special nature of wildcard

characters
• Backslash, \, single quotes, ’, or double quotes, “, are used to

quote characters
• For example to delete a file with a space in it

• rm “strange file” rm ’strange file’ rm strange\ file
• Or with a star

• rm “file*” rm ’file*’ rm file*
• There are subtle differences between quotes, safest are single or

strong quotes
• May need to quote when passing arguments to commands

An Introduction to UNIX – p.19/29

Editing the command line (Shell dependent)

• You’ve probably been editing the command line without realising it!
• Many emacs (or vi) editing commands are available on the

command line
• Arrow keys move left, right, CTL-t transposes two letters, CTL-a

moves to start of line, etc

An Introduction to UNIX – p.20/29

Editing the command line (Shell dependent)

• You’ve probably been editing the command line without realising it!
• Many emacs (or vi) editing commands are available on the

command line
• Arrow keys move left, right, CTL-t transposes two letters, CTL-a

moves to start of line, etc

• history will display a numbered list of previous commands
• Up and down arrows move through the history list

An Introduction to UNIX – p.20/29

Editing the command line (Shell dependent)

• You’ve probably been editing the command line without realising it!
• Many emacs (or vi) editing commands are available on the

command line
• Arrow keys move left, right, CTL-t transposes two letters, CTL-a

moves to start of line, etc

• history will display a numbered list of previous commands
• Up and down arrows move through the history list

!n Repeat command n
!! Repeat last command
!string Repeat last command starting with string
!?string[?] Repeat last command containing string
!n:m mth “word” of nth command
!$ last word of last command
!n:s/old/new/ Repeat nth command substituting old for new

An Introduction to UNIX – p.20/29

Completion

• The TAB key will attempt to fill in commands a filenames for you

(In tcsh need to type set autolist first)

• It works on the command line, in emacs and various other
programs

• For example, if there are three files: file1, file2 & file3 typing ls f
and then TAB will expand the f to file and then beep. Pressing
TAB again should present a list of possible further choices

• It also works with commands e.g. type l and then hit TAB twice.
You should see a list of all commands that start with l

An Introduction to UNIX – p.21/29

I/O Redirection

• By default input comes from the keyboard and output goes to the
screen

• Standard input is terminated by CTL-d

An Introduction to UNIX – p.22/29

I/O Redirection

• By default input comes from the keyboard and output goes to the
screen

• Standard input is terminated by CTL-d

• Standard input can be redirected using <

• cat < file will list the contents of file on the screen.

An Introduction to UNIX – p.22/29

I/O Redirection

• By default input comes from the keyboard and output goes to the
screen

• Standard input is terminated by CTL-d

• Standard input can be redirected using <

• cat < file will list the contents of file on the screen.
• Standard output can be redirected using >

• ls > ls.txt will send a file listing to the file ls.txt

An Introduction to UNIX – p.22/29

I/O Redirection

• By default input comes from the keyboard and output goes to the
screen

• Standard input is terminated by CTL-d

• Standard input can be redirected using <

• cat < file will list the contents of file on the screen.
• Standard output can be redirected using >

• ls > ls.txt will send a file listing to the file ls.txt
• cat file1 file2 > file3 will concatenate “add” the contents of file1

and file2 and put the result in file3
• cat file4 >> file3 will append file4 to the end of file 3

An Introduction to UNIX – p.22/29

Pipes

• A Pipe | passes the output of one command to the input of the
next

• For example consider the two stage process
• ls -l > ls.txt
• more ls.txt

• ls -l | more sends the output of the directory listing to the more
command (which stops the listing flying off the screen)

• Pipes can be stacked together (called a pipeline)
• ls -l | sort | more sorts the line entries alphabetically before

passing the output to more

An Introduction to UNIX – p.23/29

Processes

• A process is (basically) any running program
• Every process is assigned a unique(ish) number or PID
• To suspend the current process use CTL-z
• To quit the current process use CTL-c (Remember this if nothing

else)
• ps will list currently running processes
• kill PID will kill the process PID
• kill -9 PID means really kill the process !

An Introduction to UNIX – p.24/29

Job control

• Programs (or jobs) may be run in the foreground or background
• Running in the foreground prevents you from doing anything (in

the shell from which you launch the program) until the program is
finished.

• Any foreground processes will be killed if you logout (quit the
shell)

• Background jobs will continue to run after you logout and will
return control of the shell to you

• To run a job in the background simply type command &
• For safety you should also use the nohup command if you are

planning to logout
• nohup command &

An Introduction to UNIX – p.25/29

Job control II

• If you have a foreground job that you want to move to the
background type CTL-z (to stop the job) and then bg which moves
the job into the background

• The fg command can be used to move background jobs back into
the foreground

• Use the jobs command to check on currently running jobs
• If you want to kill a background job you must find the PID using ps

and use the kill command

An Introduction to UNIX – p.26/29

Job priority

• Each job is assigned a priority number
• If you are planning on running a long job (longer than 5 minutes)

you must use the nice command to alter the priority
• Thus the whole command for a job running overnight would be

nohup nice +19 program &

An Introduction to UNIX – p.27/29

Remote machines

• The easiest way to access other public machines is to use the
remote machines menu

• Standard networking commands are

ssh machine gives a remote shell on another machine
(Encrypted)

sftp machine allows remote file transfer

firefox Web browser

An Introduction to UNIX – p.28/29

Final thoughts

Basic knowledge
• Login and logout
• Change your password
• Send and receive e-mail
• Edit and print files

An Introduction to UNIX – p.29/29

Final thoughts

Basic knowledge
• Login and logout
• Change your password
• Send and receive e-mail
• Edit and print files

Average knowledge
• Use directories to organise your files
• Move about the filesystem confidently
• Use a few simple wildcards and history
• Monitor running processes

An Introduction to UNIX – p.29/29

	Outline of course
	What is UNIX ?
	What can UNIX do for you ?
	UNIX philosophy
	UNIX commands
	Getting help
	Electronic (E-)mail
	Editing files
	Printing
	The UNIX filesystem
	Copying and moving files
	Deleting files
	Examining files
	File permissions
	Changing file permissions
	Shells
	Wildcards
	Quoting
	Editing the command line (Shell dependent)
	Completion
	I/O Redirection
	Pipes
	Processes
	Job control
	Job control II
	Job priority
	Remote machines
	Final thoughts

