An Introduction to UNIX

Andrew Hazel

Department of Mathematics,

University of Manchester

Outline of course

11:00-12:00: First Lecture
General Introduction and basic concepts

12:00-13:00: Group 1: Lunch
Group 2: Practical Session 1

13:00-14:00: Group 1: Practical Session 1
Group 2: Lunch

14:00-14:45: Second Lecture
The UNIX filesystem and shells

14:45-15:00: Break

15:00-15:30: Final Lecture
Using remote machines and job control

15:30-16:30: Final Practical Session

What is UNIX ?

Multi-tasking, multi-user operating system

“Standard” for big computing

UNIX underpins the internet and many of the services it provides
Departmental fileserver and most powerful computers run UNIX

What is UNIX ?

Multi-tasking, multi-user operating system
“Standard” for big computing

UNIX underpins the internet and many of the services it provides
Departmental fileserver and most powerful computers run UNIX

Advantages
True multi-tasking
Flexible
Portable

“Nice” programming environment

What is UNIX ?

Multi-tasking, multi-user operating system

“Standard” for big computing

UNIX underpins the internet and many of the services it provides
Departmental fileserver and most powerful computers run UNIX

Advantages
True multi-tasking
Flexible
Portable
“Nice” programming environment

Disadvantages
Not that user friendly
Steep learning curve
Not 100% compatible with the microsoft world

What can UNIX do for you ?

Departmental E-mall
World Wide Web

Scientific Programming
FORTRAN
C/C++
Matlab
Maple
Text Processing
IATEX 2¢
Plotting packages
Gnuplot
tecplot

UNIX philosophy

Small specialised programs ... not complete integration
Everything is a file

Power is more important than style

Many users can work at once

To use UNIX effectively you need to master a number of different
programs and couple them together

... but most people survive on a small handful of commands

UNIX commands

UNIX commands take the generic form:

command [options] [expression] [files]
Is -1 *.c

emacs junk.txt

lpqg -l

Error messages are often cryptic

Commands are entered on the command line and interpreted by
the shell

Choice of shell can affect your working environment

Getting help

Use the man and info commands for online documentation

man -k or apropos can be used to search for commands
associated with keywords

Try man man and info info to find out how to use these
commands !

Ask others in the computer rooms

Look at the departmental web pages for documentation
Look at books (lots of linux/unix books available)

Send e-mail to support@ma.man.ac.uk

Electronic (E-)mail

E-mall is a way of sending text between users on computer
systems

An e-mall address is of the form username@hostname

You should have a university e-mail account that can be accessed
at https://webmail _.manchster.ac.uk

You will need to register on a university PC in order to obtain your
University user name and password, which are NOT the same as
your Departmental user name and password.

E-mail will be used to circulate
iImportant information, so make sure

that you can use it !

Editing files

Most of your time will be spent editing files
There are a number of text editors available under UNIX
emacs Is one of the easiest to learn initially

The control key (CTL) and the Escape key (Esc) are used to
access specialised editing commands

The only way to learn an editor Is to
use It, so practice

Printing

The basic printing commands are lpr, Ipg and lprm

Ipr -Pprinter file Sends file to the printer printer
Ipq -I -Pprinter Lists the print queue for printer
lprm -Pprinter n Removes job number n from printer’s queue

Printing

The basic printing commands are lpr, Ipg and lprm

Ipr -Pprinter file Sends file to the printer printer
Ipq -I -Pprinter Lists the print queue for printer
lprm -Pprinter n Removes job number n from printer’s queue

You can set your default printer by using the printer command
[This is a custom command and will only work in the department]

Generally files must be converted into Postscript before being
sent to the printer

a2ps file.txt will convert the text file file.txt to postscript and send it
to the default printer

Postscript files may be previewed onscreen using the gv
command

The UNIX filesystem

Tree-like structure
/ is the root directory (the top of the tree)
Every other directory is a subdirectory of /

Every subdirectory has two special directories
. IS the directory itself
.. I1s the parent directory

cd (or change directory) is used to move between directories

If you get lost pwd (or print working directory) will show you the
complete path from the root / to your current directory

mkdir creates (or makes) new directories and rmdir deletes (or
removes) directories

cd with no arguments changes to home directory
~ refers to your home directory

Copying and moving files

cp filel file2 copies filel to file2
cp filel dir copies filel into the directory dir
Its path-name will be dir/filel
cp filel file2 &c dir copies multiple files into the directory dir

Copying and moving files

cp filel file2 copies filel to file2
cp filel dir copies filel into the directory dir
Its path-name will be dir/filel
cp filel file2 &c dir copies multiple files into the directory dir

mv oldfile newfile renames oldfile to newfile
mv filel dir moves filel into the directory dir
Its path-name will be dir/filel
mv filel file2 &c dir moves multiple files into the directory dir

cp -i and mv -i will warn you before overwriting an existing file

Deleting files

rm filel deletes the file filel

rm filel file2 &c deletes multiple files

rm -i filel warns you before deleting files

rm -r dir removes all files in the directory dir

Be very careful using rm -r

Examining files

5 lists the files and directories in the current directory
Is-I gives a long listing of the files

Is -a lists hidden files (those starting with a period)

Is -t list files in order of creation time

Is -R lists contents of directories

File permissions

Is -I shows the file permissions:

Permissions Link Owner Group Filesize Timestamp Name
-rW-I—I— 1 andrew wusers O Sep 12 17:58 filel
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dirl/

File permissions

Is -I shows the file permissions:

Permissions Link Owner Group Filesize Timestamp Name
-rW-I—I— 1 andrew wusers O Sep 12 17:58 filel
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dirl/

First entry in permissions is file type i.e. d for directory

File permissions

Is -I shows the file permissions:

Permissions Link Owner Group Filesize Timestamp Name
-rW-I—I— 1 andrew wusers O Sep 12 17:58 filel
drwxr-xr-x 2 andrew users 1024 Sep 12 17:59 dirl/

First entry in permissions is file type i.e. d for directory

Access permissions are in three groups of three
u, User permissions
g, Group permissions
0, Other permissions

ris read permission
W IS write permission
X IS execute permission

Changing file permissions

chmod n1n2n3 file changes file permissions

Permissions can be changed using numbers or symbolic codes
e.g. chmod 741 file gives the permissions - rwx r— —x file
e.g. chmod a=r file gives the permissions - r— r— r— file

Full details may be found on the info pages

Shells

A shell is a command interpreter. It translates the commands you
type into instructions to the main operating system

Advantage of a shell is that it can make life a lot easier with
wildcards, filename completion and history mechanisms

The shell can also be used as a programming language to write
shell scripts
Many different shells

Bourne

C

Korn

Bash

Only going to cover the tcsh (default) shell. Use the ypchsh
command to change your default shell.

Wildcards

Wildcards are special characters than can be used to make life
easier
The most used is * which replaces any string

Is * lists all files

Is *.txt lists all files ending in .txt

rm a*.txt deletes all files starting with a and ending in .txt e.qg.
andrew.text, awfully boring.txt, another _long_file.txt

Wildcards

Wildcards are special characters than can be used to make life
easier
The most used is * which replaces any string

Is * lists all files

Is *.txt lists all files ending in .txt

rm a*.txt deletes all files starting with a and ending in .txt e.qg.
andrew.text, awfully boring.txt, another _long_file.txt

? will replace only a single character

rm a?.txt will only delete files of the form ab.txt or ac.txt, not
andrew.txt

Wildcards

Wildcards are special characters than can be used to make life
easier
The most used is * which replaces any string

Is * lists all files

Is *.txt lists all files ending in .txt

rm a*.txt deletes all files starting with a and ending in .txt e.qg.
andrew.text, awfully boring.txt, another _long_file.txt

[] encloses a choice of values
Is [ab]*.txt will list files that start with a or b and end in .txt

The hyphen denotes a range e.g. rm [a-z].txt will remove any
of the files a.txt, b.txt, c.txt, etc

Warning the only sensible ranges are 0-9, a-z, A-Z or
subsets thereof (unless you happen to be conversant in
the numerical order of ASCIl symbols)

Wildcards

Wildcards are special characters than can be used to make life
easier

The most used is * which replaces any string
Is * lists all files
Is *.txt lists all files ending in .txt

rm a*.txt deletes all files starting with a and ending in .txt e.qg.
andrew.text, awfully boring.txt, another _long_file.txt

A caret ~ as the first character in square brackets acts as a logical
not

Is [" e]* lists all files that don’t start with e.

Quoting

What do you do if you have a filename containing a wildcard ?

Quoting (or escaping) removes the special nature of wildcard
characters

Backslash, \, single quotes, ’, or double quotes, “, are used to
guote characters

For example to delete a file with a space in it

rm “strange file” rm 'strange file’ rm strange\ file
Or with a star

rm “file*” rm “file* rm file*

There are subtle differences between guotes, safest are single or
strong quotes

May need to quote when passing arguments to commands

Editing the command line (Shell dependent)

You've probably been editing the command line without realising it!

Many emacs (or vi) editing commands are available on the
command line

Arrow keys move left, right, CTL-t transposes two letters, CTL-a
moves to start of line, etc

Editing the command line (Shell dependent)

You've probably been editing the command line without realising it!

Many emacs (or vi) editing commands are available on the
command line

Arrow keys move left, right, CTL-t transposes two letters, CTL-a
moves to start of line, etc

history will display a numbered list of previous commands
Up and down arrows move through the history list

Editing the command line (Shell dependent)

You've probably been editing the command line without realising it!

Many emacs (or vi) editing commands are available on the
command line

Arrow keys move left, right, CTL-t transposes two letters, CTL-a
moves to start of line, etc

history will display a numbered list of previous commands
Up and down arrows move through the history list

In Repeat command n

) Repeat last command

Istring Repeat last command starting with string
1”?string[?] Repeat last command containing string
In:m mth “word” of nth command

1$ last word of last command

In:s/old/new/ Repeat nth command substituting old for new

Completion

The TAB key will attempt to fill in commands a filenames for you
(In tcsh need to type set autolist first)

It works on the command line, in emacs and various other
programs

For example, if there are three files: filel, file2 & file3 typing Is f
and then TAB will expand the f to file and then beep. Pressing
TAB again should present a list of possible further choices

It also works with commands e.g. type | and then hit TAB twice.
You should see a list of all commands that start with |

I/0O Redirection

By default input comes from the keyboard and output goes to the
screen

Standard input is terminated by CTL-d

I/0O Redirection

By default input comes from the keyboard and output goes to the
screen

Standard input is terminated by CTL-d

Standard input can be redirected using <
cat < file will list the contents of file on the screen.

I/0O Redirection

By default input comes from the keyboard and output goes to the
screen

Standard input is terminated by CTL-d

Standard input can be redirected using <
cat < file will list the contents of file on the screen.

Standard output can be redirected using >
Is > Is.txt will send a file listing to the file Is.txt

I/0O Redirection

By default input comes from the keyboard and output goes to the
screen

Standard input is terminated by CTL-d

Standard input can be redirected using <
cat < file will list the contents of file on the screen.

Standard output can be redirected using >
Is > Is.txt will send a file listing to the file Is.txt

cat filel file2 > file3 will concatenate “add” the contents of filel
and file2 and put the result in file3

cat filed >> file3 will append file4 to the end of file 3

Pipes

A Pipe | passes the output of one command to the input of the
next

For example consider the two stage process
Is -| > Is.txt
more Is.txt

Is -I | more sends the output of the directory listing to the more
command (which stops the listing flying off the screen)

Pipes can be stacked together (called a pipeline)

Is -I | sort | more sorts the line entries alphabetically before
passing the output to more

Processes

A process is (basically) any running program
Every process is assigned a unique(ish) number or PID
To suspend the current process use CTL-z

To quit the current process use CTL-c (Remember this if nothing
else)

ps will list currently running processes
Kill PID will kill the process PID
kill -9 PID means really kill the process !

Job control

Programs (or jobs) may be run in the foreground or background

Running in the foreground prevents you from doing anything (in
the shell from which you launch the program) until the program is
finished.

Any foreground processes will be killed if you logout (quit the
shell)

Background jobs will continue to run after you logout and will
return control of the shell to you

To run a job in the background simply type command &

For safety you should also use the nohup command if you are
planning to logout

nohup command &

Job control 11

If you have a foreground job that you want to move to the
background type CTL-z (to stop the job) and then bg which moves
the job into the background

The fg command can be used to move background jobs back into
the foreground

Use the jobs command to check on currently running jobs

If you want to kill a background job you must find the PID using ps
and use the kill command

Job priority

Each job is assigned a priority number

If you are planning on running a long job (longer than 5 minutes)
you must use the nice command to alter the priority

Thus the whole command for a job running overnight would be

nohup nice +19 program &

Remote machines

The easiest way to access other public machines is to use the
remote machines menu

Standard networking commands are
ssh machine gives a remote shell on another machine
(Encrypted)

sftp machine allows remote file transfer

firefox Web browser

Final thoughts

Basic knowledge
Login and logout
Change your password
Send and receive e-mail
Edit and print files

Final thoughts

Basic knowledge
Login and logout
Change your password
Send and receive e-mail
Edit and print files

Average knowledge
Use directories to organise your files
Move about the filesystem confidently
Use a few simple wildcards and history
Monitor running processes

	Outline of course
	What is UNIX ?
	What can UNIX do for you ?
	UNIX philosophy
	UNIX commands
	Getting help
	Electronic (E-)mail
	Editing files
	Printing
	The UNIX filesystem
	Copying and moving files
	Deleting files
	Examining files
	File permissions
	Changing file permissions
	Shells
	Wildcards
	Quoting
	Editing the command line (Shell dependent)
	Completion
	I/O Redirection
	Pipes
	Processes
	Job control
	Job control II
	Job priority
	Remote machines
	Final thoughts

