Mathematica can be used to find power series expansions of functions. For example, to find the first five non-zero terms in the power series expansion of $\operatorname{Sin}[x]$ about the point $x=0$ we use the built in Mathematica function Series[] which has two arguments, the first of which is the function definition, and the second of which is a list which gives the expansion variable, the value of the point x_{0} about which the expansion will be expanded, and the number of terms in the series (in this case 9 some of which are 0). This is a Maclaurin series expansion.

The command \ll Graphics` loads the graphics package that contains Log and LogLog plots. The LogPlot command gives the following Log[y] vs x plot of the difference between $\mathrm{f}[\mathrm{x}]$, the five term series representation of $\operatorname{Sin}[\mathrm{x}]$ and $\operatorname{Sin}[\mathrm{x}]$. Even in the least accurate part of the plot when x is near Pi , the series approximation is well within 1% of the actual value of $\operatorname{Sin}[x]$.

As another example, we can find the first three non-zero terms in the series expansion of the function $\mathrm{e}^{\mathrm{x}} \sin (\mathrm{x})$:

```
ln[1]:= Series [Exp[x] Sin[x],{x, 0, 3}]
Out[1]= x+ (x }+\frac{\mp@subsup{x}{}{3}}{3}+0[x\mp@subsup{]}{}{4
```

We can expand this function in a Taylor's series expansion about the point $\mathrm{x}_{0}=1$. This gives the much more complicated looking expansion:

```
In[1]:= Series [ Exp [x] Sin[x], {x, 1, 3}]
```


Note that the last term, $O[x-1]^{4}$ is simply a statement that the first neglected term in the series is of order $(x-1)^{4}$.

We can also expand $\operatorname{Sin}[\mathrm{x}]$ about the point $\mathrm{x}_{0}=\mathrm{Pi} / 2$, i.e. a Taylor series expansion. Now we get:

```
Out[16]= - Graphics -
    \(\ln [17]:=\operatorname{Series}[\operatorname{Sin}[x],\{x, P i / 2,5\}]\)
Out[17] \(=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}+\frac{1}{24}\left(x-\frac{\pi}{2}\right)^{4}+0\left[x-\frac{\pi}{2}\right]^{6}\)
    \(\ln [18]:=\mathbf{g}\left[\mathbf{x}_{-}\right]=1-1 / 2(\mathbf{x}-\mathrm{Pi} / 2)^{\wedge} \mathbf{2}+\mathbf{1 / 2 4}(\mathbf{x}-\mathrm{Pi} / 2)^{\wedge} \mathbf{4}\)
Out[18] \(=1-\frac{1}{2}\left(-\frac{\pi}{2}+x\right)^{2}+\frac{1}{24}\left(-\frac{\pi}{2}+x\right)^{4}\)
    \(\ln [19]:=\mathbf{g}[\mathbf{Y}+\mathbf{P i} / \mathbf{2}]\)
Out[19] \(=1-\frac{Y^{2}}{2}+\frac{Y^{4}}{24}\)
\(\ln [20]:=\operatorname{Simplif} \mathbf{Y}[\operatorname{Sin}[\mathbf{Y}+\mathbf{P i} / 2]]\)
Out [20] \(=\operatorname{Cos}[\mathrm{Y}]\)
```

We see that $\operatorname{Sin}[y+P i / 2]=\operatorname{Cos}[y]$ and the first three terms in the series for $\operatorname{Cos}[y]$ are $1-y^{2} / 2+y^{4} / 24 \ldots$

As another example, lets find the value of e by summing terms in the power series for $\operatorname{Exp}[\mathrm{x}]$ with $\mathrm{x}=1$. The general term is $\mathrm{a}_{\mathrm{n}}=1 / \mathrm{n}$! We proceed as follows:

```
ln[1]:= a[n_] = 1./n!;
    Sum[a[n], {n, 0, 6}]
```

Out[2] $=2.71806$

Notice that we again define the function $\mathrm{a}[\mathrm{n}]$ and then use the built in Mathematica function Sum[] to evaluate the sum of a[n] terms as ngoes from 0 to 6 . The value of is accurate to three decimal places after 7 terms in the power series of e. Mathematica can also calculate the mathematical value of e . To do this we use the built in function N[] as follows:

```
ln[1]:= H[Exp [1]]
Out[1]= 2.71828
ln[2]:= H[Exp[1], 10]
Out[2]= 2.718281828
```

In the second example, we use the optional second argument of the N (Numerical) function to get 10 decimal place accuracy rather than the default 5 decimal place accuracy.

