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new elements of discord. Hence, the principle of harmony tends to be-
come more effective with the advance of knowledge and to dominate the
energies of the investigator more powerfully as he attacks problems of
a more fundamental nature.

1 Speiser, A., "Die Theorie der Gruppen von Endlicher Ordung," 1927, p. 77.
2 Klein, F., "Vorlesungen uber die Enlivicklung der Mathematik im 19. Jahrhundert,"

1926, p. 97.
3Poincar6, H., "La Valeur de la Science," 1908, p. 7.

NOTE ON THE BEHAVIOR OF CERTAIN POWER SERIES ON
THE CIRCLE OF CONVERGENCE WITH APPLICATION

TO A PROBLEM OF CARLEMAN

BY EINAR HILLE

DEPARTMZNT OF MATHZMATICS, PRINCZTON UNIVERSITY

Communicated February 11, 1928

1. The first example of a continuous periodic function whose asso-
+ OD

ciated Fourier series E c, e"X is such that fc P converges for no p < 2

was given by Carleman.' Landau,2 who simplified the example, called
attention to a power series studied by Fabry3 and Hardy4 which series is
continuous on the unit circle, the series E fc,12- a being divergent for a
fixed but arbitrarily small 5 > 0. Hardy had to use a powerful machinery
in his study of the singularities of this function; if one is satisfied, however,
with determining merely the properties of convergence of the series on
the unit-circle, a simpler argument can be used which applies to a much
larger class of series. The method which I use for this purpose is based
on some recent applications of Weyl's ideas regarding equi-distributed
point-sets to number-theoretic questions due to van der Corput.5 A
fairly simple solution of Carleman's problem is obtained in this manner.

2. We shall study a class of power series

Zf(n) exp [27ria(n) ] zn (1)
,no

where f(n) and a(n) are subjected to one of the following three sets of
conditions:

I. (i) a(u) is a real differentiable function when u > no and lim a(u) =

(ii) a'(u) is positive, never increasing and lim a'(u) = 0;
(iii) , f(n) - f(n + 1) converges and lim f(n) = 0.
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II. (i) and (ii) as in I;
(iii) E f(n) - f(n + 1) [a'(n) ] converges and lim f(n) [a'(n) 0= 0.
III. (i) and (ii) as in I;
(iii) a"(u) exists and is never decreasing but remains <0;
(iv) E f(n) - f(n + 1)11 a"(n) -1"2 converges and lim f(n)-

| a"(n) |-12 = 0.
We shall say that case N occurs when our series satisfies the set of condi-

tions N.
THSORSM. In case I the series (1) converges when z - 1, z 5 +1.

The convergence is uniform when z 5 1, I 1 - z _ . In case II the series
converges when z - 1 and the convergence is uniform when I z | ; 1, arg
(1 - z) _ 7r/2 -e. In case III the series converges uniformly for Iz | 1.

3. Writing
n

z = exp(2irit), Pm,n(t) = f(k) exp{27ri[a(k) + tk]},
k=m

n
-Sm,n(t) - j exp{27ri[a(k) + tk]f,

k =m
we get

n

Pm,n(t) = E [f(k) -f(k + 1)] Sm,k(t) + f(n) Sm,n(t)
k=m

where m > no is to be suitably chosen. Thus in order to prove the theorem
we have merely to show the existence of constants KE B and C, independent
of k, such that

lSm,k(t)l . Ke ,whenO< e 5 t : 1-e, (2)
| Sm,k(t) . B[a'(k)]-> , when 0 < t . 1/2, (3)
|Sm,k(t) _ C a"(k) | 1/2, when 0 < t S 1, (4)

in cases I, II and III, respectively.6
4. The proof of these inequalities is based on the following three

lemmas:
LEMMA 1. Let F(u) be real and differentiable in the interval m ; u 2 n,

let F'(u) be monotone and F'(u) 1 - 5, 5 > 0 fixed. Then there
exists a constant Aa such that

n r
E exp [27ri F(v)] -f exp [27ri F(u) ]du < A a.mm

This lemma is due to van der Corput7 who considered the case 5 = 1/2.
It follows from his proof in this case that

Aa< 1 +l2 Ev(-1+5)
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LEMMA -2. Let F'(u) be monotone decreasing but remain >0, then

- f~exp[27ri F(u)]du , + ['(n)
Jm ~~~~~~~27r

This follows from the identity
rn rn

f exp [27ri F(u) ]du = (2iri) -1 [F'(u) ]-Id exp [27ri F(u)

by applying Bonnet's form of the second mean value theorem.
LEMMA 3. *Let F'(u) be monotone decreasing and suppose that F"(u)

exists and is monotone increasing but remains <0. Then

exp[27r F(u)]du . 5/2[-F`(u)]-l/2.

This lemma, save for the value of the numerical constant, is a special
case of van der Corput's Hilfsatz 2 (loc. cit., p. 62). Its proof follows
readily from lemma 2.

5. We can now set
F(u) = a(u) + I u.

Assuming -1 + e < t -1 e-, we can find an m 2 no and a a >0 such that

IF'(u)I = Ia'(u) + t 1 -5, when u 2 m.

Hence, we get by lemma 1

|Sm,n(t) A + f exp[27ri F(u)]du,
and by lemma 2 the integral is less than

2/5[a'(n) + t]-
provided O : tI 1 -e. This estimate is sufficient to prove formulas
(2) and (3). In case III we can apply lemma 3 for the estimating of
the integral, obtaining

ISm,n(t) : As + 5/2[a"(n)]'1/
which proves formula (4).

6. As an example to illustrate our theorem we can choose

a(n) = na, f(n) = n, 0 < a < 1, O< ,3.
The corresponding series

P(z, a, B) = E exp(27rina) zn (5)n3=l
is the series of Fabry and Hardy mentioned in §1. Applying our theorem,
we find that the series converges everywhere on the unit circle when
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a + 13 > 1, and uniformly if a/2 + 13 > 1. These are the precise limits
found by Hardy.8 Thus the function P(z, a, 13) is continuous on the
unit circle when 13 > 1 - a/2. This quantity can be made as close as
we please to 1/2 by choosing a near to 1. On the other hand, the series

CD

E (n-#)P converges only for p > 1/13 which can be made as close as
n=l

we please to 2. This is the essence of Landau's observation.
As a second example we take

a(n) = n(log n) -a, f(n) = n ('/2(log n), 0< a, 0< 13.

The corresponding series

pa,#(z) = Z n11'(log n)~ exp[27rin(logn)"a]z (6)
n=2

converges everywhere on the unit circle and the convergence is uniform
whenever 1 > 1/2(a + 3). The series E [f(n)]P is evidently never
convergent for any p < 2. Thus the function P.,# (z) is a solution of Carle-
man's problem whenever 13 > '/2(a + 3). The functions P(z, a, 13) andP,(z)
are both infinitely many-valued and their only singularities are 0, 1 and
0 .9

A more general solution of Carleman's problem can be found as follows.
Let a(n) and f(n) satisfy conditions III and the additional restriction
that E [f(n) ]P shall be convergent for p 2: 2 and divergent for p < 2.
The corresponding series (1) will be a solution of Carleman's problem.

1 T. Carleman, Acta Math., 41, 1918 (377-389).
2 E. Landau, Math. Zeitschrift, 5, 1919 (147-153). See also 0. Szasz, Ibid., 8, 1920

(222-236) and T. H. Gronwall, Bull. Amer. Math. Soc., 27, 1921 (320-321).
3 E. Fabry, Acta Math., 36, 1913 (69-104).
4 G. H. Hardy, Quart. Journ., 44, 1913 (147-160). Cf. G. H. Hardy and J. E.

Littlewood, these PROCZZDINGS, 2, 1916 (583-586).
6 J. G. van der Corput, Math. Annalen, 84, 1921 (53-79). Extensions are to be

found Ibid., 87, 1922 (39-65) and 89, 1923 (215-254). Cf. Landau, Acta Math., 48,
1926 (217-263).

6 The uniform convergence of the series in the regions stated in the theorem follows
readily from the uniform convergence on the various arcs of the unit circle implied by
the estimates (2)-(4).

7 First paper quoted in note 5, p. 58, Satz 1. A more general theorem is to be found
on p. 40 of the second paper.

8 Loc. cit., p. 157. That the series (5) diverges when a + ,B < 1 has been shown
by Hardy in Proc. London Math. Soc. (2) 9, 1911 (126-144).

9Proved by Hardy for series (5) who gives a thorough discussion of the nature of
the singularity at z = +1. The location and possibly also the nature of the singu-
larities can be determined for both series with the aid of a theorem due to E. Le Roy
and extended by E. Lindelof. See the latter's Calcul des residus, chapter V, especially
pp. 109 and 124. This method can be used for an attack on the problem proposed by
Hardy on p. 160 of his paper; it cannot give a complete solution of the problem, but
such a solution is scarcely to be expected from the nature of the problem.
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