
An Introduction to Software Testing

Luciano Baresi1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Milano, Italy

Mauro Pezzè2

Dipartimento di Informatica, Sistemistica e Comunicazione
Universitá degli Studi di Milano Bicocca

Milano, Italy

Abstract

The development of large software systems is a complex and error prone process. Faults might
occur at any development stage and they must be identified and removed as early as possible to
stop their propagation and reduce verification costs. Quality engineers must be involved in the
development process since the very early phases to identify required qualities and estimate their
impact on the development process. Their tasks span over the whole development cycle and go
beyond the product deployment through maintenance and post mortem analysis. Developing and
enacting an effective quality process is not a simple task, but it requires that we integrate many
quality-related activities with product characteristics, process organization, available resources and
skills, and budget constraints.
This paper discusses the main characteristics of a good quality process, then surveys the key testing
phases and presents modern functional and model-based testing approaches.

Keywords: Software Quality, Software Testing, Integration Testing, System and Acceptance
Testing, Functional Testing, Model-based Testing.

1 Introduction

The development of large software products involves many activities that need
to be suitably coordinated to meet the desired requirements. Among these

1 Email:baresi@elet.polimi.it
2 Email: pezze@disco.unimib.it

Electronic Notes in Theoretical Computer Science 148 (2006) 89–111

1571-0661 © 2 006 Else vier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.014
Open access under CC BY-NC-ND license.

mailto:baresi@elet.polimi.it
mailto:pezze@disco.unimib.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

tasks, we can distinguish activities that contribute mainly to the construction
of the product, and activities that aim at checking the quality of the develop-
ment process and of produced artifacts. This classification is not sharp, since
most activities contribute to some extent to both advancing the development
and checking the quality. In some cases, this characterization of activities is
not precise enough, but helps identify an important thread of the development
process that includes all quality-related activities and is often referred to as
the quality process.

The quality process is not a phase, but it spans through the whole devel-
opment cycle: it starts with the feasibility study, and goes beyond product
deployment through maintenance and post mortem analysis. The qualities
relevant to the product must be defined in the feasibility study; requirements
and design specifications must be inspected and analyzed as early as possible
to identify and remove design errors otherwise hard to reveal and expensive
to remove; tests must be designed and planned in the early design phases to
improve the specifications and reduce the chances of delivering badly tested
and low quality products, and must be executed many times through different
builds and releases to avoid regression of product functionality.

The quality process includes many complementary activities that must be
suitably blended to fit the specific development process, and meet cost and
quality requirements. The quality engineer must sometimes face contradict-
ing requirements, like keeping costs low, guaranteeing high quality, avoiding
interference with the development process, and meeting stringent deadlines.
The selection of a suitable set of quality activities is hard and requires deep
experience of software validation, strong knowledge of design and develop-
ment, good background of management and planning, and excellent abilities
to mediate among different aspects and needs.

Quality activities address two different classes of problems: revealing faults
and assessing the readiness of the product. Quality cannot be added at the
end of the process, but it must be enforced throughout the whole development
cycle. Important classes of faults are difficult to reveal and hard to remove
from the final product. Many analysis and testing techniques aim at reveal-
ing faults, which can then be eliminated. Identifying and removing faults
through the development process certainly help increase the quality of the
final product, but cannot assure the absence of faults that can persist after
product delivery. Continuing to search for faults until all faults are revealed
and removed would lead to executing quality activities forever without any
rationale. Users are interested in solving problems, and measuring the qual-
ity of the software products in terms of dependability, usability, costs, and
ultimately ability of meeting users’ expectations, and not in terms of avoided

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–11190

or removed faults. Users tolerate few annoying failures in products that ad-
dress their problems cost-effectively, but do not accept critical failures —even
if they are very rare—, or too frequent annoying failures. Thus, it is impor-
tant to pair quality activities that aim at revealing faults, with activities that
estimate the readiness of a product in terms of dependability and usability.

Most quality activities are carried on independently of the development,
but their effectiveness strongly depends on the quality of the development
process. For example, reviews and inspections of requirements specifications
are much more effective when specifications are well-structured than when they
are badly written, and integration testing is more effective when software is
implemented according to good design principles than when it is developed
without a coherent approach. Quality activities can help increase the quality
of the development practice by providing feedback on the causes of faults and
common errors.

The rest of the paper is organized as follows. Section 2 discusses the
main characteristics of the quality process and emphasizes the design of a
good quality plan. Section 3 introduces the differences between verification
and validation activities. Section 4 addresses the problems of functional and
model-based testing by sampling some popular modern approaches, and high-
lighting their complementarities. Section 5 describes the different levels of
testing activities and presents the main approaches to module, integration,
system and acceptance testing. Section 6 concludes the paper and identifies
relevant open research problems.

2 Quality process

The quality process involves many activities that can be grouped in five main
classes: planning and monitoring, verification of specifications, test case gen-
eration, test case execution and software validation, and process improvement.

Planning and monitoring activities aim at steering the quality activities
towards a product that satisfies the initial quality requirements. Planning
activities start in the early phases of development with the identification of
the required qualities and the definition of an early analysis and test plan, and
continue through the whole development by monitoring the quality process
and by refining and adjusting it to take care of new problems and avoid that
deviations from the original plan lead to project failures.

Specifications can be verified for both internal consistency and consis-
tency with respect to the corresponding specifications. Verification of intra-
specification consistency aims at revealing and eliminating inconsistency or
incompleteness of specifications; verification of inter-specification consistency

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 91

aims at revealing deviations in the development process that manifest them-
selves as either differences in respect to the corresponding specifications or
missing elements in detailed specifications. Specifications can be verified by
means of many technologies that span from simple syntactic checks and low-
technology inspection to model checking and formal verification.

Test cases are usually generated from specifications, and are integrated
with information from the application environment, development technology,
and code coverage. The application environment and development technol-
ogy can provide information on common faults and risks. Many organizations
collect general test suites that derive from legacy systems and characterize
specific application environments, either in the form of regression test suites
for specific applications, or in the form of general suites for well known fea-
tures. Programming languages and development technologies present different
weaknesses that can lead to specific classes of faults. For example, the C++
freedom in memory management comes with well-known risks that can lead
to dangerous memory leaks, which can be limited —but not avoided— with
disciplined design and programming practice, suitably paired with analysis
and tests. Code coverage indicates regions of code that have not been ade-
quately tested, and may suggest additional test cases to complete functional
test suites or indicate ill-designed code.

Test cases might and should be generated as soon as the corresponding
specifications are available. Early test case generation has the obvious ad-
vantage of alleviating scheduling problems: tests can be generated in parallel
with development activities, and thus be excluded from critical paths. More-
over, test execution can start as soon as the corresponding code is ready, thus
reducing the testing time after coding. Early generation of test cases has also
the important side effect of helping validate specifications. Experience shows
that many specification errors are easier to detect early than during design or
validation. Waiting till when specifications are used for coding may be too
late and may lead to high recovery costs and expensive project delays. Many
modern methodologies suggest early generation of test cases up to the case
of extreme programming that substitutes module specification with test case
generation.

Test cases may need to be executed in absence of the complete system.
This can be due either to the decision of incrementally testing modules with-
out waiting for the development of the whole system, or the need of isolating
the modules-under-test to focus on particular features and facilitate the lo-
calization of faults. Executing test cases without the whole system requires
the development of adequate scaffolding, i.e., a structure that substitutes the
missing parts of the systems. Adequate scaffolding includes drivers, stubs, and

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–11192

oracles. Drivers and stubs surrogate the execution environment by preparing
the activation environment for the module-under-test (drivers) and by simulat-
ing the behavior of missing components that may be required for the execution
of the module-under-test (stubs). Oracles evaluate the results of executed test
cases and signal anomalous behaviors. To build adequate scaffolding, software
engineers must find a good compromise between costs and benefits. Accurate
scaffolding can be very useful for fast test execution, but it can be extremely
expensive and dangerously faulty. Cheap scaffolding can reduce costs, but
may be useless for executing tests.

Testing can reveal many kinds of failures, but may not be adequate for
others, and thus it should be complemented with alternative validation ac-
tivities. For example the Cleanroom approach [7] suggests that testing be
complemented with code inspection to reveal faults at the unit level.

Process improvement focuses mostly on clusters of projects that share sim-
ilar processes, engineering teams, and development environments. Quality
experts collect and analyze data on current projects to identify frequent prob-
lems and reduce their effects. Problems can be either eliminated by changing
development activities, or alleviated by introducing specific quality activities
for removing problems as early as possible. Although some corrective actions
can be already taken in the current project, in many cases, corrective actions
are usually applied to future projects.

2.1 Quality Plan

The quality engineer should design the quality plan in the very early phases of
the design cycle. The initial plan is defined according to the test strategy of
the company and the experience of the quality engineer. The test strategy de-
scribes the quality infrastructure of the company that includes process issues,
e.g., the adoption of a specific development process, organizational issues, e.g.,
the choice of outsourcing specific testing activities, tool and development el-
ements, e.g., the need for using a particular toolsuite, and any other element
that characterizes and influences the quality plan.

The initial plan is then refined to take into account the incremental knowl-
edge about the ongoing project, e.g., by detailing module testing activities
once design specifications are available. When the plan cannot be detailed
and adapted to the project needs, the current plan must be substituted with
an emergency plan, to cope with new unforeseen situations.

A quality plan should include all information needed to control and monitor
the quality process, from general information, like the items to be tested, to
very detailed information, like a scheduling of the single quality activities and
the resources allocated to conduct them. The main elements of a good quality
plan are:

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 93

Test items characterize the items that have to be tested, indicating for example the versions or
the configurations of the system that will be tested

Features to be tested indicate the features that have to be tested, among all the features offered
by the items to be tested.

Features not to be tested indicate the features that are not considered in the plan. This helps
check for completeness of the plan, since we can check if we explicitly considered all features
before selecting the ones to be tested.

Approach describe the approach to be chosen. We can for example require that all modules be
inspected, and we may prescribe specific testing techniques for subsystem and system testing,
according to the company standards.

Pass/Fail criteria define the acceptance criteria, i.e., the criteria used for deciding the readiness
of the software-under-test. We may for example tolerate some moderate impact faults, but ask
for the absence of severe and critical faults before delivering a module.

Suspension and resumption criteria describe the conditions under which testing activities
cannot be profitably executed. We may for example decide to suspend testing activities when
the failure rate prevents a reasonable execution of the system-under-test, and resume testing
only after the success of a “sanity test” that checks for a minimum level of executability of the
unit-under-test.

Risks and contingencies identify risks and define suitable contingency plans. Testing may face
both risks common to many other development activities: e.g., personnel (loss of technical staff),
technology (low familiarity with the technology) and planning (delay in some testing tasks)
risks, and risks specific to testing, e.g., development (delivery of poor quality components to the
testing group), execution (unexpected delays in executing test cases) and requirements (critical
requirements) risks.

Deliverables list all required deliverables.

Task and Schedule articulate the overall quality process in tasks scheduled according to devel-
opment, timing and resources constraints to meet the deadlines. The early plan is detailed while
progressing with the development, to adjust to the project structure. The early plan for exam-
ple indicates generic module testing and inspection tasks that will be detailed when the design
identifies the specific modules of the system.

Staff and responsibilities identify the quality staff and allocate responsibilities.

Environmental needs indicate any requirements that may derive from the environment, e.g.,
specific equipment that is required to run the test cases.

2.2 Monitoring the Quality Process

The quality process must be monitored to reveal deviations and contingencies,
and to adapt the quality activities to the new scenarios as early as possible.
Monitoring can take two forms: the classic supervision of the progress of
activities and the evaluation of quantitative parameters about testing results.

The supervision of the progress consists in periodically collecting informa-
tion about the amount of work done and compare it with the plan: the quality
engineer records start and end dates, consumed resources, and advances of
each activity, and reacts to deviations to the current plan by either adapting
it, when deviations are tolerable, or adopting a contingency plan, when devi-
ations are critical. The evaluation of quantitative progress is difficult and has
been exploited only recently. It consists in gathering information about the

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–11194

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Builds

F
a
u
lt
s

Critical

Severe

Moderate

Fig. 1. A typical distribution of faults for system builds over time.

distribution of faults and comparing it with historical data. Fault exposure
follows similar patterns across similar projects both in terms of frequency of
faults and in terms of distribution across different fault categories.

The diagram of Figure 1 is taken from [9] and illustrates the distribution of
faults over releases, considering three levels of severity. The diagram clearly
indicates that fault occurrence grows for the first builds before decreasing.
The number of faults decreases with different speed: critical and severe faults
decrease faster than moderate ones, and we can even expect a slight growth
of moderate faults. Different distributions of faults signal possible anomalies
in the quality process: a non-increasing fault occurrence in the early builds
may indicate poor tests, while a non-decreasing fault occurrence in the latter
releases may indicate bad fault diagnosis and removal.

The Orthogonal Defect Classification (ODC) introduced by IBM in the
early nineties proposes a detailed classification of faults and suggests monitor-
ing different distributions to reveal possible problems in the quality process.
Details about ODC can be found in [3,1].

Despite available technologies and tools, the quality process heavily de-
pends on people. The allocation of responsibilities is a key element of quality
strategies and plans and can determine the success of a project. As with
many other aspects, there is no unique solution, but approaches depend on
organizations, processes and projects. Large organizations usually prefer to
separate development and quality teams, while small organizations and ag-
ile processes (e.g., extreme programming) tend to assign development and
quality responsibilities to the same team. Separating development and qual-
ity teams encourages objective judgment of quality and prevents it from being

Total

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 95

Actual Needs and

Constraints
Delivered

Package
Requirements

specifications

VERIFICATION

VALIDATION

Fig. 2. The different perspectives of validation versus verification.

subverted by scheduling pressure, but restrict scheduling freedom and requires
good communication mechanisms between the two teams.

3 Verification and validation

Activities that aim at checking the correspondence of an implementation with
its specification are called verification activities, while activities that aim at
checking the correspondence between a system and users’ expectations are
called validation activities. The distinction between validation and verification
is informally illustrated by the diagram of Figure 2 and has been well-framed
by Barry Boehm [2], who memorably described validation as “building the
right system” and verification as “building the system right”.

Validation and verification activities complement each other. Verification
can involve all development stages with users’ reviews of requirements and
design specifications, but the extent of users’ reviews is limited by the ability of
users to understand design and development details. Thus, the main validation
activities concentrate on the final product that can be extensively tested by
the users during acceptance testing. Users’ needs and the late execution of
validation activities lead to high costs and risks, thus validation must be paired
with verification activities, which can be extensively executed at early stages
and do not involve expensive and not-always available users’ availability.

Software is characterized by many properties that include dependability,
usability, security, interoperability, etc. Some properties can be naturally
verified. For example, the ability of a Web application to serve up to a given
number N of users with response time below a given threshold τ can be verified
by simulating the presence of N users and measuring the response time. Other
properties can be difficult to verify and are a natural target for validation. For
example, the ability of users to easily obtain the required information from a
Web application is hard to verify, but can be validated, e.g., by monitoring a

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–11196

sample population of users.

Ultimately, the verifiability of properties depends on the way properties are
expressed. For example, a property of a Web application expressed as: users
must be able to easily add an item to the shopping cart without experiencing
annoying delays cannot be intuitively verified, since it refers to subjective
feelings (“easily” and “annoying”). However, the same property expressed as:
users must be able to add a given item to the shopping cart with no more than
4 mouse clicks starting from the home page, and the delay of the application
must not exceed a second after the click when the application is serving up
to ten thousand users working concurrently can be verified, since subjective
feelings are rendered as quantifiable entities (“number of mouse clicks” and
“delays in seconds”). Thus, system testing starts early in the design when
writing requirements specifications. Mature development processes schedule
inspection activities to assess their testability and thus maximize the verifia-
bility of the software product.

Verification and validation of different properties require specific approaches.
Dependability properties can be verified using functional and model-based
testing techniques discussed in the next section, but usability properties for
example require special-purpose techniques for their validation. In this case,
a standard process includes the following main steps:

• Inspecting specifications with classic inspection techniques and ad-hoc check-
lists.

• Testing early prototypes produced by statically simulating the user inter-
faces.

• Testing incremental releases with both usability experts and end users.

• Considering final system and acceptance testing that includes expert-based
inspection and testing, user-based testing, comparison testing, and auto-
matic analysis and checks.

We can notice that usability testing heavily relies on users, unlike func-
tional and model-based testing that do not require user intervention. User
based testing is carefully planned and evaluated: the usability team identi-
fies classes of users, selects suitable samples of the population according to
the identified classes, defines sets of interactions that well represent common
and critical usages of the system, carefully monitors the interactions of the
selected users with the system, and finally evaluates the results. More details
on usability testing can be found in [13].

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 97

4 Functional and model-based testing

Moving to verification, functional testing is the base-line technique for design-
ing test cases. It applies to all levels of the requirements specification and
design process, from system to module testing, it is effective in finding some
classes of faults that typically elude code- and fault-based testing, it can be
applied to any description of program behavior, and finally, functional test
cases are typically less expensive to design and execute than tests designed by
means of other techniques.

A functional specification is a description of the expected behavior of the
program. Specifications can be given in many ways. From the testing view-
point, we distinguish between specifications expressed in natural language and
specifications expressed in some (semi-)formal languages, e.g., finite state ma-
chines, decision tables, control flow diagrams, UML diagrams. When specifi-
cations are expressed in natural language. Functional testing techniques define
a set of steps that help analyze specifications to obtain a satisfactory set of
test cases. When specifications are given as (semi-)formal models, functional
testing consists in applying suitable criteria to extract a set of test cases. We
also refer to this activity as model-based testing.

4.1 Functional testing

Modern general-purpose functional testing approaches include category-parti-
tion [14], combinatorial [4], and catalog-based [12] testing.

Category partition testing applies to specifications expressed in natural
language and consists of three main steps. We start decomposing the specifi-
cation into independently testable features: the test designer identifies specifi-
cation items that can be tested independently, and identifies parameters and
environment elements that determine the behavior of the considered feature
(categories). For example, if we test a Web application, we may identify the
catalog handler functionality as an independently testable feature. The fol-
lowing excerpt of a specification determines the production and the sale of
items on the basis of the sales and the stock in the last sale period:

The production of an item is suspended if in the last sales period the number
of orders falls below a given threshold t1 or if it falls below a threshold t2 > t1
and the amount in stock is above a threshold s2. An item is removed from the
catalog if it is not in production, the amount of orders in the previous period
remains below t1 and the amount in stock falls below a threshold s1 < s2.
The production of an item in the catalog is resumed if the amount of orders
in the former period is higher than t2 and the amount in stock is less than

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–11198

s1.
Items that are also sold in combination with other items are handled

jointly with the assembled items, i.e., the production is not suspended if
one of the assembled items is still in production, despite the sales and the
stock of the considered item, and similarly it is kept in the catalog even if
eligible for withdraw, if the assembled items are kept in the catalog.

The amount in stock cannot exceed the maximum capacity for each item.

¿From the informal specification, we can deduce the following categories that
influence the behavior of the functionality: number of orders in the last period,
amount in stock, type and status of the item, status of assembled items.

Then we identify relevant values: the test designer selects a set of repre-
sentative classes of values (choices) for each parameter characteristic. Values
are selected in isolation, independently of other parameter characteristics. For
example, Figure 3 shows a possible set of choices for the categories extracted
from the specification of the catalog handler (readers should not consider the
keywords in square parenthesis yet). We notice that choices are not always
individual values, but in general indicate classes of homogeneous values.

When selecting choices, test designers have to refer to normal values as well
as boundary and error values, i.e., values on the borderline between different
classes (e.g., zero, or the values of the thresholds for the number of orders or
the amount in stock that are relevant for the considered case.)

In the end, we generate test case specifications: test case specifications can
straightforwardly be generated as combinations of the choices identified in the
above steps.

Unfortunately, the mere combination of all possible choices produces ex-
tremely large test suites. For example, the simple set of choices of Figure 3
produces more than 1,000 combinations. Moreover, many combinations may
make little or no sense. For example, combining individual items with differ-
ent status of assembled items makes no sense, or test designers may decide to
test only once the boundary cases.

Test designers can eliminate erroneous combinations and limit singletons
by imposing simple constraints: [error] marks erroneous values and requires at
most one test case for that value, [single] marks singleton values and requires
at most one test cases for them as well, pairs [“label”], [if-”label”] constrain
one value to occur in combination with a value indicated by the label. The
constraints given in Figure 3 reduce the number of generated test cases from
more than 1,000 to 82 that represent an adequate set of test cases.

The category partition approach helps when natural constraints between
choices reduce the number of combinations, as in the simple catalog handler

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 99

orders in the period amount in stock status of the item

0 [single] 0 [single] in production

< t1 < s1 in catalog

t1 [single] s1 [single] not available [error]

< t2 < s2 status of assembled item

t2 [single] s2 [single] in production [if assmbl]

> t2 < smax in catalog [if assmbl]

>> t2 smax [single] not available [if assmbl][error]

type of item > smax [error]

individual

assembled [assmbl]

Fig. 3. Category partition testing: A simple example of categories, choices and constraints for the
example catalog handler. The choices for each category are listed in the corresponding columns.
Constraints are shown in square brackets.

example. However, in other cases, choices are not naturally constrained, and
the amount of test cases generated by considering all possible combinations of
choices may exceed the budget allocated for testing.

Let us consider for example the informal specification of a discount policy.
The following excerpt of a specification of a discount policy handler determines
the applicable discount on the basis of the status of the customer and the
amount of purchases.

Discount is applied to both individuals and educational institutions. Addi-
tional discounts are applied if the amount of orders in the considered sale
period exceeds a threshold o1 or a threshold o2 > o1, respectively. Discounts
are applied also if the amount of the current invoice or the total amount of
invoices in the current sales period exceeds given thresholds (i1 and i2 > i1
for the current invoice, and t1 and t2 > t1 for the total invoices in the pe-
riod). Discounts can be cumulated without limits. Customers with a risky
credit history do not qualify for any discount.

None of the choices of Figure 4, which derive from the above specification,
are naturally constrained, and thus we obtain a combinatorial amount of test
cases. In the current example, it goes up to 182 test cases and grows expo-
nentially when the number of categories or choices increases as in most real
cases.

Forcing artificial constraints does not help, since it reduces the number of
generated test cases by eliminating combinations of values that could reveal
important faults. A different approach consists in limiting the combinations

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111100

customer # of orders amount total invoices credit

type in the period in the invoice in the period situation

individual ≤ o1 ≤ i1 ≤ t1 ok

business ≤ o2 ≤ i2 ≤ t2 risky

educational > o2 > i2 > t2

Fig. 4. A set of categories and choices that do not have natural constraints

by covering only pairwise combinations of choices. For example, all pairwise
combinations of Figure 4 can be covered with less than 18 test cases. Generat-
ing test cases that cover only pairwise combinations is known as combinatorial
testing and is based on experimental evidence that most failures depend on sin-
gle choices or pairwise combinations of choices, and rarely depend on specific
combinations of many different choices. Thus covering all pairwise combina-
tions of choices can reveal most potential failures with test suites of limited
size.

Category partition and combinatorial testing can be fruitfully combined by
first constraining the combination of choices and then covering only pairwise
combinations.

When selecting choices for the identified categories, we identify both nor-
mal values and boundary and error conditions. In general many faults hide in
special cases that depend on the type of considered elements. For example,
when dealing with a range [low, high] of values, test experts suggest consider-
ing at least a value within the boundaries, the bounds low and high themselves,
the values before and after each bound, and at least another value outside the
range. The knowledge of expert test designers can be captured in catalogs that
list all possible cases that have to be considered for each type of specification.
We may build both general purpose and specialized catalogs. The first can be
used in most cases, while the second only apply to specific domains that are
characterized by particular cases. Catalogs apply well to well-structured spec-
ifications. Thus in general, catalog-based testing first transforms specifications
in the form of pre- and post-conditions, variables, definitions, and functions,
and then applies catalogs to derive a complete set of test cases.

4.2 Model-based testing

When specifications are expressed in a (semi-)formal language, we can derive
test cases by applying test generation criteria to these models. Test designers
concentrate on the creative steps of testing (the derivation of the finite state
model) and use automatic techniques for the repetitive tasks (the applica-
tion of test case generation criteria). In this paper we focus on finite state

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 101

automata, but the same approach can be applied to several different models.

When specifications describe transitions among a finite set of states, it is
often natural to derive a finite state model for generating test case specifica-
tions. For example, let us consider the following informal specifications of the
functionality of a shoppingCart of a Web application:

A shopping cart can be manipulated with the following functions:
• createCart() creates a new empty cart.
• addItem(item, quantity) adds the indicated quantity of items to the

cart.
• removeItem(item, quantity) removes the indicated quantity of items

from the cart.
• clearCart() empties the cart regardless of its content.
• buy() freezes the content of the cart and computes the price.

Alternatively, the shopping cart can be modeled with the finite state ma-
chine of Figure 5. It does not substitute the informal specification, but cap-
tures state-related aspects. Test cases can be generated by deriving sequences
of invocations that cover different elements of the finite state machine. A
simple criterion requires that all transitions be covered (transition coverage).
Sophisticated criteria require that different kinds of paths be covered (sin-
gle state path coverage, single transition path coverage, boundary interior loop
coverage).

noCart emptyCart filledCart

createCart()

addItem(item, quantity) addItem(item, quantity)

removeItem(item, quantity)

removeItem(item, quantity)

clearCart()

clearCart()

buy()buy()

ready for

purchasing

Fig. 5. A finite state machine model extracted from the informal specification of the shopping cart

Often finite state behaviors are rendered with models that provide features
for simplifying the model. Statecharts are one of the most well-known exam-
ples: and- and or-decomposed states as well as histories and default states
can greatly simplify a finite state machine. For example, in the Statecharts
of Figure 6, we grouped the empyCart and filledCart states of the finite state
machine of Figure 5, in a single or-decomposed state, thus merging the two
buy edges into a single one. In most cases, we can easily extend the criteria
available for finite state machines and add new ones that take advantage of the

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111102

specific structure of the new model. For example, with large Statecharts, we
can reduce the size of generated test cases by covering only the transitions of
the Statecharts and not all transitions of the equivalent finite state machine.
In the example, we would cover transition buy only once and not twice as in
the equivalent machine.

noCart emptyCart filledCart

createCart()
addItem(item, quantity)

addItem(item, quantity)

removeItem(item, quantity)

removeItem(item, quantity)

clearCart()

clearCart()

buy()

Fig. 6. A Statecharts specification of the shopping cart described above

5 Testing levels

Software development involves different abstraction levels: modules or compo-
nents, which may be developed for the specific system or reused from previous
systems or libraries, subsystems, which are obtained by integrating sets of re-
lated components, and the final system, which is obtained by assembling com-
ponents and subsystems in an application that satisfies initial requirements.
Testing is performed at each level, as illustrated by the classical V model of
Figure 7. We often distinguish module, integration, system and acceptance
testing.

5.1 Module Testing

Modules or components are first verified in isolation usually by the developers
themselves who check that the single modules behave as expected (module
testing). Thorough module testing is important to identify and remove faults
that otherwise can be difficult to identify and expensive to remove in later
development phases. Module testing includes both functional and structural
testing. Functional test cases can be derived from module specifications using
an appropriate functional or module-based testing technique, like the ones
outlined in the previous section.

Functional tests may fail in revealing some classes of problems, since de-
velopers may implement the same feature in different ways and the test cases
derived from a given feature may not cover all possible implementations. An
intuitive example is a well-designed sorting routine that implements different
algorithms to cope with very small sets, reasonably large sets, and sets larger

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 103

review

module test

Actual Needs and

Constraints

Delivered

Package

System

Integration

Subsystems

Modules

System

specifications

subsystem

design

Component

specifications

acceptance test

system test/analysis

integration test/analysis

validation

verification

LEGEND

Fig. 7. Development and testing phases in the V model

than available memory. We all know that a simple quadratic algorithm, like
bubblesort, is adequate for sorting small sets, while quicksort may be preferred
for sorting large sets that fits in memory, but sets larger than available mem-
ory are sorted better with an algorithm like treesort. If the choice of the
algorithms is left to the programmer and not included in the specifications,
functional test cases that are derived without knowing this choice might not
cover the whole implementation even if well designed.

Structural testing complements functional testing by covering the struc-
ture of the code and thus coping with cases not included in functional testing.
Structural testing is often applied at two stages: first programmers measure
the code coverage with simple coverage tools that indicate the amount of cov-
ered code and highlight the uncovered elements of the code, and then generate
test cases that traverse uncovered elements. Coverage may be measured by
taking into account different elements of the code. The simplest coverage
criterion focuses on statements, and measures the percentage of statements
executed by the test cases. Branch and condition coverage criteria measure
the amount of branches or conditions exercised by the tests. Path coverage
criteria measure the amount of paths covered by the tests. Different path
coverage criteria can be identified based on the way paths are selected. Addi-
tional criteria refer to flow of data. Readers may find additional information
on code coverage in [5].

Coverage criteria refer to all the considered elements, e.g., statements, as
statically identified, and thus includes also non executable elements. Unfor-
tunately the problem of identifying executable elements is undecidable, and
thus we cannot automatically select only the right subset of executable ele-

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111104

ments. In most cases, code coverage is not used as an absolute indicator, but
it is rather employed as an approximate measure to monitor module testing
activities. For example, if we refer to statement coverage, the presence of up
to 10-15% of non-executable statements may be acceptable, but a higher per-
centage of non-executable statements, i.e., a statement coverage below 85-90%
may indicate either a bad design, which leads to far too many non-executable
statements, a bad specification, which does not allow to derive a suitable set
of functional test cases, or a shallow module testing with an insufficient set
of test cases. When the coverage falls below an acceptable threshold, test
designers and developers examine the module closer to identify and fix the
problem.

In some critical cases, all elements that are not covered by the tests are
examined to understand if they can be covered or motivate the presence of non-
executable statements. For example, the RTCA/DO-178B “Software Consid-
erations in Airborne Systems and Equipment Certification,” and its European
equivalent EUROCAE ED-12B, which are quality standards commonly used
in the avionic industry, require MCDC coverage for on-board software and
require manual inspection of elements that are not covered by tests.

The modified condition adequacy (MCDC) criterion applies to basic con-
ditions, i.e., elementary components of predicates that select the branch of
the program to be executed, and requires that each basic condition be shown
to independently affect the outcome of each decision. That is, for each basic
condition C, there are two test cases in which the truth values of all conditions
except C are the same, and the compound condition as a whole evaluates to
true for one of those test cases and false for the other.

5.2 Integration and component-based testing

The quality of single modules is necessary but not sufficient enough to guaran-
tee the quality of the final system. The failure of low quality modules fatally
leads to system failures that are often difficult to diagnose, and hard and
expensive to remove. Unfortunately, many subtle failures are caused by un-
expected interactions among well-designed modules. Well-known examples of
unexpected interactions among well-designed software modules are described
in the investigation reports of the Ariane 5 accident that caused the loss of
the rocket on July 4th, 1996 [11], and of the Mars Climate Orbiter failure to
achieve the Mars orbit on September 23rd, 1999 [8].

In the Ariane accident, a module that was adequately tested and success-
fully used in previous Ariane 4 missions failed in the first Ariane 5 mission
causing the chain of events that led to the loss of the rocket. The module
was in charge of computing the horizontal bias, and it failed because of an

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 105

overflow caused by the higher horizontal velocity of the Ariane 5 rocket than
that of the Ariane 4. The Mars Climate Orbiter failure was caused by the
unexpected interactions between software developed by the JPL laboratories
and software developed by the prime contractor Lockheed Martin. The soft-
ware developed by Lockheed Martin produced data in English units, while
the Spacecraft operating data needed for navigation were expected in met-
ric units. Both modules worked well when integrated in systems referring to
homogenous measure systems, but failed when incorrectly integrated.

Integration faults are ultimately caused by incomplete specifications or
faulty implementations of interfaces, resource usage, or required properties.
Unfortunately, it may be difficult or cost-ineffective to specify all module in-
teractions completely. For example, it may be very difficult to predict in-
teractions between remote and apparently unrelated modules that share a
temporary hidden file that happens to be given the same name by two mod-
ules, particularly if the name clash appears rarely and only in some particular
configurations. Integration faults can come from many causes:

• Inconsistent interpretation of parameters or values, as in the case of the
Mars Climate that interpreted English and metric units;

• Violations of value domains or of capacity/size, as it happened in some
versions of the Apache 2 Web server that could overflow a buffer while
expanding environment variables while parsing configuration files;

• Side effects on parameters or resources, as can happen when modules use
resources not explicitly mentioned in their interfaces;

• Missing or misunderstood functionality, as can happen when incomplete
specifications are badly interpreted;

• Non-functional problems, which derive from under specified non-functional
properties, like performances;

• Dynamic mismatches, which derive from unexpected dynamic bindings.

Integration testing deals with many communicating modules. Big bang
testing, which waits until all modules are integrated, is rarely effective, since
integration faults may hide across different modules and remain uncaught, or
may manifest in failures much later than when they occur, thus becoming
difficult to localize and remove. Most integration testing strategies suggest
testing integrated modules incrementally. Integration strategies can be classi-
fied as structural and feature-driven. Structural strategies define the order of
integration according to the design structure and include bottom-up and top-
down approaches, and their combination, which is sometimes referred to as
sandwich or backbone strategy. They consist in integrating modules according

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111106

to the use/include relation, starting from the top, the bottom or both sides,
respectively.

Feature-driven strategies define the order of integration according to the
dynamic collaboration patterns among modules, and include thread and criti-
cal module strategies. Thread testing suggests integrating modules according
to threads of execution that correspond to system features. Critical mod-
ule testing integrates modules according to the associated risk factor that
describes the criticality of modules.

Feature-driven test strategies better match development strategies that
produce early executable systems, and may thus benefit from early user feed-
back, but they usually require more complex planning and management than
structural strategies. Thus, they are preferable only for large systems, where
the advantages overcome the extra costs.

The use of COTS components further complicates integration testing.
Components differ from classical modules for being re-used in different con-
texts independently of their development. System designers, who reuse com-
ponents, do not often have access to the source code or to the developers of
such components, but can only rely on the specifications of the components’
interfaces. Moreover, components are often reused in contexts that are not
always foreseen at development time, and their behavior may not fully match
the specific requirements. When testing components, designers should iden-
tify the different usage profiles of components and provide test suites for each
of the identified profiles. System designers should match their requirements
with provided profiles and re-execute the integration tests associated with the
identified profiles before deriving test suites specific to the considered context.

5.3 System, acceptance, and regression testing

Module and integration testing can provide confidence on the quality of the
single modules and on their interactions, but not about the behavior of the
overall system. For example, knowing that a module correctly handles the
product database and that the product database inter-operates correctly with
the module that computes prices does not assure that the whole system imple-
ments the discount policies as specified in the system requirements. Moreover,
knowing that the system matches the requirements specifications does not as-
sure that it behaves as expected by the users, whose expectations may not fully
match the results of the requirements analysis. We thus need to complete the
verification and validation process by testing the overall system against its
specifications and users’ needs. System testing verifies the correspondence
between the overall system and its specifications, while acceptance testing
verifies the correspondence between the system and the users’ expectations.

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 107

System and acceptance testing consider the behavior of the overall system
in its functional and non-functional aspects. Module and integration testing
are largely based on the internals of the software, which is hardly accessible to
the user. Thus, they focus on verification activities that provide useful results
without requiring the deployment of the whole system and the presence of
the users. Most module and integration testing activities focus on functional
properties, as discussed earlier in this section.

Some non-functional properties, like modularity, maintainability, and testa-
bility can be enforced through design rules and checked with simple static
analysis tools and manual inspection during development, but do not involve
extensive testing. Other important non-functional properties, like usability,
and performance, can be partially enforced through good design practice, but
their testing requires the presence of the whole system and the users. Perfor-
mance and usability tests and analysis on early prototypes can assess impor-
tant design decisions and prevent some errors in the development, but tests on
the deployed system is essential to provide reliable data. Other non-functional
properties, such as safety and security, do not involve the testing team, but are
considered by special teams of experts that work in parallel with the testing
team.

Structural testing is of little help in system testing, due to the size of the
software. Measuring code coverage over millions of lines of code or identifying
a path not yet exercised is of little help. On the other hand, identifying the
set of offered features and covering all possible cases is very important for
revealing system errors. Thus system testing is mostly based on functional
and model-based testing. The most important problem in system testing is
mastering the requirements specifications that can be very large and complex.
Fortunately, specifications are written for software architects, who need to be
able to understand the overall system and identify a coherent architecture of
the software. Thus, specifications are often well structured and quality engi-
neers can identify features that can be tested in isolation. Figure 8 outlines
the main steps of system testing. Quality engineers start identifying individu-
ally testable features, i.e., features that can be handled coherently by a single
test designer. For each of the identified features, test designers identify the
best testing approach, which can be model-based (bottom path in the figure)
or functional testing (top path in the figure).

Software is not produced linearly, but undergoes several builds and releases.
Each new build or release may introduce or uncover faults and results in
failures not experienced in previous versions. It is thus important to check
that each new release does not regress with respect to the previous ones. Such
testing is often called non-regression testing, or, for short, regression testing.

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111108

Requirements

specifications

Independently

testable feature

Representative

values

model

(finite state machine,

Statecharts, logic

specification,...)

Test case

specifications

identify

independently

testable

features

apply test

selection criteria
derive

a model

combine values

into test case

specifications

identify

representative

values

Fig. 8. A systematic approach to system testing

A simple approach to regression testing, known as the retest all approach,
consists in re-running all the test cases designed for the previous versions,
to check if the new version presents anomalous behaviors not experienced in
the former versions. This simple approach may present non trivial problems
and significant costs that derive from the need of adapting test cases not
immediately re-executable on the new version. Moreover, the costs of re-
running all test cases may be too expensive and not always useful.

The number of test cases to be re-executed can be reduced with ad-hoc
techniques tailored to the specific application or with general-purpose selection
or prioritization techniques. Selection techniques work on code or specifica-
tions. The ones that work on code record the program elements exercised
by the tests on previous releases, and select test cases that exercise elements
changed in the current release. Various code-based selection techniques focus
on different programming elements: control-flow, data-flow, program slices,
etc... Code-based selection techniques find good tool support and work even
when specifications are not properly maintained, but do not scale up easily:
they apply well to simple local changes, but present difficulties when changes
affect large portions of the software.

Specification-based selection techniques focus on changes in the specifica-
tions. They scale up much better than code-based techniques, since they are
not bound to the amount of changed code, but require properly-maintained
specifications. They work particularly well with model-based testing tech-
niques, that can be augmented with change trackers to identify tests to be
re-executed. For example, if the system is modeled with finite state machines,

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 109

we can easily extend classic test generation criteria to focus on elements of
the finite state machines that are changed or added in the current build [6].

Test case prioritization techniques do not select a subset of test cases, but
rather define priorities among tests and suggest different execution strategies.
Priorities aim at maximizing the effectiveness of tests by postponing the exe-
cution of cases that are less likely to reveal faults. Popular priority schemas
are based on execution histories, fault detection effectiveness, and code struc-
ture. History-based priority schemas assign low priority to recently executed
test cases. In this way, we guarantee that all test cases will be re-executed in
the long run. This technique works particularly well for frequent releases, e.g.,
overnight regression testing. Priority schemas that focus on fault-detection ef-
fectively raise the priority of tests that revealed faults in recent versions, and
thus are likely to exercise unstable portions of the code and reveal new or
persistent faults. Structural priority schemas give priority either to test cases
that exercise elements not recently executed or to test cases that result in high
coverage. In the first case, they try to minimize the chances that portions of
code are not tested across many consecutive versions; in the second case, they
try to minimize the set of tests to be re-executed to achieve high coverage [10].

All regression testing techniques rely on good maintenance of test cases
and good test documentation. High-quality test suites can be maintained
across versions by identifying and removing obsolete test cases, and revealing
and suitably marking redundant test cases. Good test documentation includes
planning, test specifications and reporting documents. Planning documents
include test plans, which are briefly described in Section 2, and test strategies
that summarize the quality strategies of the company or the group. Test
specification documents focus on test suites and single test cases. Reporting
documents summarize the results of the execution of single test cases and
test suites. Regression testing requires the coordination of specification and
reporting documents.

6 Conclusions

Software testing has been an active research area for many decades, and to-
day quality engineers can benefit from many results, tools and techniques.
However, challenges are far from being over: while many traditional research
areas are still open, advances in design and applications open many new prob-
lems. So far, research on testing theory produced mostly negative results that
indicate the limits of the discipline, but call for additional study. We still
lack a convincing framework for comparing different criteria and approaches.
Available testing techniques are certainly useful, but not completely satisfac-

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111110

tory yet. We need more techniques to address new programming paradigms
and application domains, but more important, we need better support for test
automation.

Component-based development, heterogeneous mobile applications, and
complex computer systems raise new challenges. It is often impossible to pre-
dict all possible usages and execution frameworks of modern software systems,
and thus we need to move from classic analysis and testing approaches that
mostly work before deployment, to approaches that work after deployment,
like dynamic analysis, self healing, self managing and self organizing software.

References

[1] I. Bhandari, M. J. Halliday, J. Chaar, K. Jones, J. Atkinson, C. Lepori-Costello, P. Y. Jasper,
E. D. Tarver, C. C. Lewis, and M. Yonezawa. In-process improvement through defect data
interpretation. The IBM System Journal, 33(1):182–214, 1994.

[2] B. W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ, 1981.

[3] J.K. Chaar, M.J. Halliday, I.S. Bhandari, and R. Chillarege. In-process evaluation for software
inspection and test. IEEE Transactions on Software Engineering, 19(11):1055–1070, November
1993.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: An approach
to testing based on combinatiorial design. IEEE Transactions on Software Engineering,
23(7):437–444, July 1997.

[5] P. G. Frankl and O. Iakounenko. Further empirical studies of test effectiveness. In
Proceedings of the ACM SIGSOFT 6th International Symposium on the Foundations of
Software Engineering (FSE-98), volume 23, 6 of Software Engineering Notes, pages 153–162,
New York, Nov. 3–5 1998. ACM Press.

[6] T. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical study of
regression test selection techniques. In Proceedings of the 20th International Conference on
Software Engineering, pages 188–197. IEEE Computer Society Press, April 1998.

[7] P. A. Hausler, R. C. Linger, and C. J. Trammell. Adopting cleanroom software engineering
with a phased approach. IBM Systems Journal, March 1994.

[8] Independent Assesment Team. Mars program independent assessment team summary report.
Technical report, 2000.

[9] A. Jaaksi. Assessing software projects: Tools for business owners. In Proceedings of the 9th
European Software Engineering Conference held jointly with 10th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE 2003), pages 15–18. ACM
Press, September 2003.

[10] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression testing in
resource constrained environments. In Proceedings of the International Conference on Software
Engineering (ICSE 2002), May 2002.

[11] J. L. Lions. Ariane 5, flight 501 failure, report by the inquiry board. Technical report, 1996.

[12] B. Marick. The Craft of Software Testing: Subsystems Testing Including Object-Based and
Object-Oriented Testing. Prentice-Hall, 1997.

[13] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Publishing,
Indianapolis, 2000.

[14] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating
functional tests. Commun. ACM, 31(6):676–686, June 1988.

L. Baresi, M. Pezzè / Electronic Notes in Theoretical Computer Science 148 (2006) 89–111 111

	Introduction
	Quality process
	Quality Plan
	Monitoring the Quality Process

	Verification and validation
	Functional and model-based testing
	Functional testing
	Model-based testing

	Testing levels
	Module Testing
	Integration and component-based testing
	System, acceptance, and regression testing

	Conclusions
	References

