Lesson 18. Improving Search: Convexity and Optimality

1 Overview

1 Find an initial feasible solution \mathbf{x}^{0}
2 Set $k=0$
3 while \mathbf{x}^{k} is not locally optimal do
Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^{k}
Set $k=k+1$
end while

- Step 3 - Improving search converges to local optimal solutions, which aren't necessarily globally optimal
- Wishful thinking: when are all local optimal solutions are in fact globally optimal?

2 Convex sets

Example 1. Let $\mathbf{x}=(1,1)$ and $\mathbf{y}=(4,3)$. Compute and plot $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ for $\lambda \in\{0,1 / 3,2 / 3,1\}$.

λ	$\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$
0	
$1 / 3$	
$2 / 3$	
1	

- Given two solutions \mathbf{x} and \mathbf{y}, the line segment joining them is

$$
\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \quad \text { for } \lambda \in[0,1]
$$

- A feasible region S is convex if for all $\mathbf{x}, \mathbf{y} \in S$, then $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in S$ for all $\lambda \in[0,1]$
- A feasible region is convex if for any two solutions in the region, all solutions on the line segment joining these solutions are also in the region
- Geometrically: convex vs. nonconvex

Example 2. Show that the feasible region of the LP below is convex.

$$
\begin{array}{ll}
\operatorname{minimize} & 3 x_{1}+x_{2} \\
\text { subject to } & 3 x_{1}+4 x_{2} \leq 12 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 \tag{3}
\end{array}
$$

Proof.

- Let $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$ be arbitrary points in the feasible region
- In other words, \mathbf{x} and \mathbf{y} satisfy (1), (2), (3)
- We need to show $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ also satisfies (1), (2), (3) for any $\lambda \in[0,1]$
- Note that

$$
\lambda \mathbf{x}+(1-\lambda) \mathbf{y}=\square
$$

- One constraint at a time: does $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ satisfy (1)?

$$
\begin{aligned}
3\left(\lambda x_{1}+(1-\lambda) y_{1}\right)+4\left(\lambda x_{2}+(1-\lambda) y_{2}\right) & =\lambda\left(3 x_{1}+4 x_{2}\right)+(1-\lambda)\left(3 y_{1}+4 y_{2}\right) \\
& \leq 12 \lambda+12(1-\lambda) \\
& =12
\end{aligned}
$$

- We can show $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ also satisfies (2) and (3) in a similar fashion

- In general, the feasible region of an LP is convex

3 Convex functions

- Given a convex feasible region S, a function $f(\mathbf{x})$ is convex if for all solutions $\mathbf{x}, \mathbf{y} \in S$ and for all $\lambda \in[0,1]$

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})
$$

- Example:

Example 3. Show that the objective function of the LP in Example 2 is convex.
Proof.

- Let $f(\mathbf{x})=3 x_{1}+x_{2}$
- For any \mathbf{x} and \mathbf{y}, we have:

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =3\left(\lambda x_{1}+(1-\lambda) y_{1}\right)+\left(\lambda x_{2}+(1-\lambda) y_{2}\right) \\
& =\lambda\left(3 x_{1}+x_{2}\right)+(1-\lambda)\left(3 y_{1}+y_{2}\right) \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})
\end{aligned}
$$

- In general, the objective function of an LP - a linear function - is convex

4 Minimizing convex functions over convex sets

Big Theorem. Consider the following optimization model:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x}) \\
\text { subject to } & g_{i}(\mathbf{x})\left\{\begin{array}{l}
\leq \\
\geq \\
=
\end{array}\right\} b_{i} \quad \text { for } i \in\{1, \ldots, m\} \tag{*}
\end{array}
$$

Suppose f is convex and the feasible region is convex. If \mathbf{x} is a local optimal solution, then \mathbf{x} is a global optimal solution.

Proof. - By contradiction - suppose \mathbf{x} is not a global optimal solution

- Then there must be another feasible solution \mathbf{y} such that $f(\mathbf{y})<f(\mathbf{x})$
- Take $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ really close to \mathbf{x} (λ really close to 1$)$
- Since the feasible region is convex, $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ is also in the feasible region
- We have that:

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) & & (\text { since } f \text { is convex) } \\
& <\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{x}) & & (\text { since } f(\mathbf{y})<f(\mathbf{x})) \\
& =f(\mathbf{x}) & &
\end{aligned}
$$

- Therefore: $f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})<f(\mathbf{x})$
- $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ is a feasible solution in the neighborhood of \mathbf{x} with better objective value than \mathbf{x}
- This contradicts \mathbf{x} being a local optimal solution!
- Therefore, \mathbf{x} must be a global optimal solution
- Remember that an improving search algorithm finds local optimal solutions
- Since the objective function of an LP is convex, and the feasible region of an LP is convex:

Big Corollary 1. A global optimal solution of a minimizing linear program can be found with an improving search algorithm.

- A similar theorem and corollary exists when maximizing concave functions over convex sets
- See pages 222-225 in Rader for details

Big Corollary 2. A global optimal solution of a maximizing linear program can be found with an improving search algorithm.

