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Abstract

A Methodology for the Design and Implementation of
Communication Protocols for Embedded Wireless Systems

by
Thomas Eugene Truman

Doctor of Philosophy
in

Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert W. Brodersen, Chair

Communication protocol design involves 4 complementary domains: specification,

verification, performance estimation, and implementation. Typically, these

technologies are treated as separate, unrelated phases of the design: formal

specification, formal verification, and implementation, in particular, are rarely

approached from an integrated systems perspective. For systems that are

implemented using a combination of hardware and software, a significant technical

barrier to this integration is the lack of an automated, formal mapping from an

abstract, high-level specification to a detailed implementation in either

synchronous hardware or non-deterministically interleaved software threads.

This dissertation presents a design methodology that uses a combination of formal

and informal mappings to refine a high-level specification into an implementation.

A taxonomy of formal languages that are commonly used for protocol or finite-state

machine (FSM) description is developed and used to identify when a particular
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formal model is most useful in the design flow. The methodology relies on an

informal specification to develop a formal description that can be formally verified

at the asynchronous message-passing behavioral level. Central to the methodology

is application of compositional refinement verification to relate a synchronous

implementation finite-state machine to an asynchronous specification state

machine. An architectural template for an embedded communication system is

used to facilitate the mapping between the specification and a software

implementation, and a prototype operating system and low-level interface units

provide the necessary interprocess communication infrastructure between

hardware and software.

__________________________________________________

Professor Robert W. Brodersen, Chair
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A c k n o w l e d g m e n t s

"It is not the critic who counts; not the man who points out how the strong man stumbles, or
where the doer of deeds could have done better. The credit belongs to the man who is
actually in the arena, whose face is marred by dust and sweat and blood; who strives

valiantly; who errs, and comes short again and again; because there is not effort without
error and shortcoming; but who does actually strive to do the deeds; who knows the great
enthusiasms, the great devotions; who spends himself in a worthy cause, who at the best

knows in the end the triumphs of high achievement and who at the worst, if he fails, at least
fails while daring greatly, so that his place shall never be with those cold and timid souls who

know neither victory nor defeat."
-Theodore Roosevelt.

Perhaps the most difficult aspect of writing this dissertation was trying to place a

linear order on concepts: the first chapter must be followed by a second, which is

followed by a third, and so on, implicitly leading the reader to believe that one idea

is in some way more fundamental than another. I find this way of thinking very

unnatural, and as I write this final section I find that once again I am faced with

the impossible task of placing an order on the people to which I feel indebted. I

have opted for an order that is mostly chronological, or at least the way that I

remember arriving at this point in life. In any case, my perspective throughout

graduate school is that my education is a process, rather than a product. The

relationships with the people around me at Berkeley – both on and off the campus

– are by far the most invaluable aspect of the past six years.

My choice of electrical engineering and computer science as a profession is largely

the result of my grandfather, who in the midst of a Pascal programming course that

he was taking (at age 70!) would frequently ask for help with the problem solving
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part of his homework assignments. At the time (1987), I was intent on a career in

medicine, and was spending far too many hours in the quantitative analysis lab

trying to determine the composition of unknown inorganic compounds, and the

temptation to distract myself with programming problems was too strong to resist.

With the help and guidance of Dan Morrow, then a professor at a local college, the

Pascal I picked up during this time opened the door for a part-time job with Pacific

Western Systems. (Dan is now the president of PWS). The next several years with

PWS immersed me in a mix of hardware and software projects, and soon I found

my interest in problem solving and system building far outweighed my interest in

medicine.

In my junior year at Berkeley (1990-1991), I found that my first-choice lecture to

introductory course to solid-state devices and low-level circuit design was full with

a rather long waiting list. Thus, I decided to go with a different section that was

taught by a post-graduate instructor, Bill Barringer.

During the first week of class, Bill described the lab in which he was working as

one that “turned algorithms into architectures,” and invited students to drop by

and see what they did. I took him up on the offer, and after a discussion about my

hardware/software background, Bill introduced me to his former advisor, Bob

Brodersen (who became my graduate advisor) – they were both looking for someone

with experience in embedded systems to work with Bill on a real-time image

processing system. In retrospect, I doubt that my path through graduate school

and my work with Bob Brodersen would have occurred without the fortuitous

influence of the “course crashing” system at Cal.
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My final undergraduate year at Berkeley brought two life-changing events. The first

was the death of my younger sister in an auto accident, and the second was my

decision to stay at Berkeley for graduate school. As part of my formative history,

these events are intertwined because it was during the process of dealing with the

loss of my sister that I began to seek resolution to the open questions that I had

about life purpose and meaning. This exploration involved an intense grappling

with issues of faith and God, and end the end I came to fully embrace a

relationship with the Creator.

In September of 1992, I met Jolly Chen in a course on how to do a startup, and he

pointed me in the direction of the First Presbyterian church in Berkeley. It was here

that I became deeply involved in Crossroads, a community that became my

extended family. Peter Akemann, John Warren, Michele Loberg (now Sullivan), and

Andrea Hoover (now Truman!) invited me, during my first visit, to an afternoon at

Great America. They are still among my closest friends: I married Andrea, Peter and

Michele were in our wedding, and John and Lori Burrows-Warren are still involved

with us on a day-to-day basis. My vision for this dissertation came together during

a Presidents Day weekend trip to Santa Barbara to visit Jay and Michele Sullivan,

and my vision for my next phase of life has grown fantastically during walks, talks,

and weekend retreats with John and Lori.

The list of people who have been an integral part of my life in Berkeley seems

endless, and looking back it is clear that I was more involved outside of the Cal

campus than within it. Marc and Suzi Coudeyre, Jill Moriarty (Wait), John and

Lailina Nadell, Jeannie Lee, Brad Loftin, Dan Lam, Jason Gong, Kim Wells, Todd

McIlraith, Martin Donaldson, Ryan Grant, Dave Hoffman and Debbie Mossman-

Hoffman, Kelly and Ole Bentz, Liz and Jolly Chen, Nancy McNabb, Alan and Dorene
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Marco, Timothy and Kate Kam, and Joel and Barbie Kleinbaum are close friends

that I share many memories with.

There were several friends whose consistency in hanging out over a long period of

time gives me a deep sense of connection and history. Peter Akemann and I had

many interesting discussions at Fat Slice about real analysis. Early on, Brad Hall,

and later Alan Marco, and I met weekly for lunch for several years – something I

already miss. The monthly lunches with John Fanous had a huge impact on my

vision of community and life purpose. Jon Schmidt, who taught me everything I

know about the architectural history of North Berkeley, continuously amazed me

with his willingness to drive across town to meet me on a moment’s notice. My

walks with Marc Coudeyre around Piedmont, or around Rockridge or North

Berkeley with Joel Kleinbaum were times that drove home the fact that I have had

an incredible opportunity to live in a place that is truly unique – culturally,

architecturally, and in the diversity of people that live in the Berkeley area.

My colleagues at Cal also played a significant here, both in and out of Cory Hall.

Roger Doering, Trevor Pering, and I were confined to a tiny office on the 4th floor of

Cory Hall during the first 3 years; out of that office – and our discussions,

arguments, and collaborations – came the core of the InfoPad. Roger is an

incredible teacher, generous with his time, and taught me a lot about embedded

system design. Trevor is one of the few other graduate students that had a life

outside of Cory: his stories about Cal Band, acapella chorus, jazz band, and

orienteering were always fun to hear. When I moved to the 5th floor, Tony Stratakos

kept me in stitches with his stories of trying to acquire a cup of coffee at Peets or

Starbucks (“coffee boy”). Rick Han, who traveled in Italy with Andrea and me, is a

deep thinker with profound insight, and as I look to joining him on the East Coast
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during my next phase of life, I anticipate many more camping, backpacking, and

traveling experiences with him. Finally, Craig Teuscher has become a close friend

that I deeply respect for his technical depth, life balance, and integrity; our

discussions about everything from communications theory to fatherhood to faith

have enriched my view on how the pieces of life can be integrated.

The encouragement from my family was an essential ingredient. From the earliest

time I can remember, my mother built in me the confidence that I could achieve

whatever I set out to do, along with the tenacity and perseverance to endure

difficulties and challenges. My grandparents, who provided both moral and

financial support throughout my formative years, reinforced these character

qualities. My brother has been a patient listener during difficult times and has been

a constant source of encouragement. And, since I have been married, Tom and

Marge Hoover have been second parents to me; their support, affirmation, and

encouragement have been invaluable.

I cannot say enough about the role that Andrea, my wife, has played during the

past six years. During the first three years, before we were married, she was an

incredibly fun antidote to the discipline that coursework demands. The ski trips,

barbecues on the deck of the Thornhill house, trips to the Berkeley Bowl, road trips

to Ashland or Santa Barbara or Redding, hosteling through the Canadian Rockies,

or hanging out at the Montell house with Lori are what I remember most about my

bachelor days at Berkeley. Since we have been married, her perseverance at

Chevron has enabled us to do things that a graduate student stipend simply will

not allow. From managing the Recovery One project, to driving a car without air

conditioning in the 100-plus degree afternoons coming from Concord, to dealing

with irate customers on the Chevron Travel Club’s customer service line, the
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sacrifices that she made greatly eased the growing pains that I was experiencing as

I finished grad school and wrote my dissertation. As we look forward to the next

phase in life, my hope is to repay the debt of gratitude by enabling her to pursue

her vision and dreams for her “life after Chevron.”

Finally, I owe Bob Brodersen, my advisor, an enormous thank-you for investing

time, energy, and an incredible amount of money in my ideas. Through the 8 years

I have known him, he has seen me mature into adulthood, and guided my

transformation into an independent researcher. The many days he spends on the

road marketing ideas, raising support, and gathering feedback have provided an

exciting, wonderful environment in which to explore new ideas. His advice has

helped steer me onto a path that I am confident will provide an endless supply of

interesting, relevant problems to work on throughout my career.
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Chapter  1

I n t r o d u c t i o n

1.1 Overview

Data communications protocols govern the way in which electronic systems

exchange information by specifying a set of rules that, when followed, provide a

consistent, repeatable, and well-understood data transfer service. In designing

communication protocols and the systems that implement them, one would like to

ensure that the protocol is correct and efficient. Correctness means that the rules of

exchange are internally consistent and unambiguously handle all possible events.

Informally, we wish to know that the protocol is free from unwanted behavior, such

as deadlock, and that it can indefinitely provide data transfer service under any

input sequence. These correctness properties are only part of the design problem: it

is equally important to guarantee that the protocol is efficient.

Efficiency, used here to indicate how well a given protocol performs relative to an

implementation with unconstrained complexity, is a much more difficult property

to quantify. The measures of efficiency are largely dependent upon the context in
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which the protocol is to be used and upon the services that the protocol is

supposed to provide. Throughput, delay, channel utilization, spectral efficiency,

and end-to-end distortion are but a few of the measures commonly used to

compare alternatives in protocol design.  The underlying question is “all constraints

considered, is there a better approach that provides the same service?”

In practice, most new protocol designs are approached in an ad-hoc fashion that

relies heavily on simulation to answer both the question of correctness and

efficiency. Formal approaches such as formal specification and formal verification

are usually relegated to the domain of theorists. This thesis, in contrast, addresses

the problem of integrating formal methods within a comprehensive design flow.

The context for the protocol design methodology is link-level communication

protocols for wireless networks that provide multimedia services to mobile users,

such as the one described in example system of Chapter 2. (In particular,

infrastructure-based networks that support mobile clients are considered;

challenges specific to peer-to-peer communication between mobile hosts are not

addressed). Portable devices, in this context, have severe constraints on the size,

the power consumption, and the communications bandwidth available, and are

required to handle many classes of data transfer service over a limited-bandwidth

wireless connection, including delay sensitive, real-time traffic such as speech and

video.  This combination of limited bandwidth, high error rates, and delay-sensitive

data requires tight integration of all subsystems in the device, including aggressive

optimization of the communication protocols to suit the intended application.  The

protocols must be robust in the presence of errors; they must be able to

differentiate between classes of data, giving each class the exact service it requires;
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and they must have an implementation suitable for low-power portable electronic

devices.

There are at least four aspects of this protocol design problem that make it both

challenging and interesting.  The first is common to all protocol designs: because

designing a protocol involves reasoning about a distributed system, the designer

must be able to conceptualize and model the interaction between independent

actors. Within the context of infrastructure-based mobile networking the problems

are particularly challenging because despite the best intentions of the actors, it

cannot be assumed that the physical link even exists! Obviously, design language

and modeling tools must handle concurrency, asynchrony, and interprocess

communication, yet the breadth of ongoing work on concurrent systems attests to

the challenges that remain to be solved to find the “right” language for protocol

design.

The second aspect is the particular class of protocols: data link protocols. Data link

protocols are usually divided into two main functional components, the logical link

control (LLC) and the media access control (MAC), that are responsible for providing

(1) a point-to-point packet transfer service to the network, and (2) a means by

which multiple users can share the same physical transmission medium.  Since it

must interact both with network-level services and the physical transmission

medium, the data link protocol spans several levels of service abstraction and

several orders of magnitude in time granularity.  This complicates modeling,

simulation, and formal analysis because no single design language is capable of

working well across so many levels of abstraction and across so many levels of

time. Synchronous languages, such as Esterel and SMV, are appropriate for

designing and verifying implementation-level state machines, but are not able to
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model distributed systems that exchange messages asynchronously.  Formal

description languages like SDL solve the problem of distributed, asynchronous

systems, but are inadequate for use in describing detailed behavior of synchronous

circuits that are typical in modem interface hardware.

The third design challenge is the difficulty of obtaining performance estimates for

media access and physical layer protocols for wireless networks.  Because the

users are mobile and the communications channel is highly time-varying, estimates

of error rates and coding performance are largely dependent upon the traffic

patterns of other users, the modulation scheme used, and the extent to which the

channel changes with time. Developing realistic statistical models for traffic

patterns, channel noise and interference, and for the time-varying wireless channel

are essential to the design of good protocols.  Obtaining experimental data that

gives the designer insight about the time-varying statistics of the wireless channel

is still a subject of active research. One approach to using experimental data to

characterize the time statistics of an indoor wireless link is presented in Appendix

A.

The fourth aspect is the design context itself: the combination of wireless

communications and portable devices.  Taken in isolation, each of these presents a

rich basis for new approaches to solving mature problems.  Taken together, they

offer the chance to completely rethink classical approaches to communication,

networking, computing, and system design.  It is this aspect which provides the

greatest opportunity for technical contributions because designs must be

approached with a holistic view, rather than by composition of individually

optimized subsystems.
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Data communications networks have historically been limited to fixed-wire

networks: wireless media was utilized in very specialized applications, such as

military tactical networks or communication with satellites, with few real-time

applications. Most protocol design methodologies implicitly assume an environment

that is static, and thus radically different than wireless. It is only in the last decade

that wireless communications has completely pervaded modern life, and in doing so

has made relevant the question of a design methodology that considers the

particular problems and opportunities that are present in this context.

The primary goal of this thesis is to identify how the demanding requirements for

high-bandwidth, low-latency wireless communication for portable devices requires

a complete rethinking of the methodology for designing these systems; the

methodology presents one approach to integrating specification, formal verification,

performance simulations, and a path to implementation.

1.2 Dimensions of the Problem Space:
Specification, Verification, Performance Estimation,
and Implementation

As described above, the focus of this dissertation is on simplifying the protocol

design problem, which has four key elements: specification, verification,

performance estimation, and finally, implementation.  Historically, these

dimensions have largely been separated.  To give the reader a view of what lies

ahead, the approach taken here begins with the assumption that performance

estimation and protocol verification are equally important problems that must be

addressed at some point before implementation.  Thus, what is needed is



6

• A language that is formal, yet has the capability to both abstract and to

refine, as needed, throughout the design process.  The language must

provide a means of expressing performance constraints.

• A set of tools that facilitate design exploration and evaluating performance

• Clear understanding of the relationships of key parameters in the protocol

design, and the relationships to the network layer and physical layer

characteristics

• A means of separating simulation models while still capturing essential

interdependencies – for example, simulating both the backbone network

(packet-level abstraction) and the signal-space modulation details is

prohibitively expensive and provides little intuition about the way the

system should be designed.  Instead, one would like to abstract where

possible without losing essential performance information.

Thus, what is needed is a methodology that addresses the exploration phase, the

“standardization” phase1, and the implementation phase.

1.2.1 The specification problem

As a starting point, we take the well-known fact that protocols of any significance

are notoriously difficult to design.  First, there is the problem of saying what the

protocol does and, without constraining the implementation, detailing the services

that it provides.  The services, legal sequences of message exchanges, and the

behavior under all exceptional conditions must be defined in such a way that there

can be no semantic ambiguity.  This is the specification problem.

To have any hope of applying automated methods of formal verification to the

problem, the protocol must itself be described in a language that has well-defined
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semantics and an underlying mathematical model of the system being represented.

Chapter 3 explores the existing formal languages used to describe protocols and

compares their models of computation, concurrency, communication, and other

features that either aid or hinder the integration of performance metrics.

1.2.2 The verification problem

The verification problem deals with the issue of proving correctness properties

about a system.  These properties usually fall into two broad classes: safety, or

“invariance”, properties and liveness, or “eventually”, properties [OL82, Pnu85,

Eme90].  Intuitively, a safety property asserts that “nothing bad happens,” while

liveness properties state that “something good eventually happens.” Though it will

be explored in detail in later sections, it is introduced here with the observation

that formal verification is perhaps the most challenging and least-understood

technologies available to system designers.

The challenge for a designer lies in the fact that formally proving anything about a

system requires a precise mathematical model of the system.  Further, for practical

systems, proving the safety and liveness properties is computationally intractable

without abstracting away all but the most relevant detail needed to prove that the

properties hold, and in practice is more an art than a science.  The art of abstrac-

tion requires a deep understanding of the protocol as well as knowledge of how the

representation of a system impacts the capability to prove properties about it.

                                                                                                                                               
1 By standardization, we mean the protocol must be described in an implementation-
independent, unambiguous way.
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Fortunately protocol systems can be modeled as finite automata, giving us a

starting point for the mathematical model.  But reducing the size of the model to a

point where an automated formal verification system becomes useful requires a

deep understanding of operation of the system and the subtle relationships

between each subsystem.  This step is still the limiting factor that impedes the

application of formal verification.

1.2.3 “Correctness” and performance

Two other critical points about formal verification techniques are that 1) they are

capable of working with the possible states that a system might be in rather than

the probability of being in a given state, and 2) time is abstracted to the point that it

is only possible to distinguish between orderings of events.  Thus, proving

correctness is limited to proving properties that are concerned with the ordering of

two events, rather than the absolute interval that separates them.  Thus it is

possible to say that the event b follows the event a or occurs simultaneously with

event a . This is a critical point because the third dimension of interest,

performance modeling, is particularly interested in the times and probabilities.  The

“correctness” of a protocol, for many applications, cannot be expressed solely in

terms of safety and liveness properties.  Determining that a given protocol system

meets a throughput requirement can be as important as answering the question of

formal correctness.

For example, formal verification can determine that it is possible for a buffer to

overflow, but provides no information about how likely that event is. In practice one

would like to optimize for the common case – sizing buffers to handle typical

occupancies without overflow – while being able to recover from the corner cases
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(buffer overflow).  As another example, throughput and delay estimates are typically

based on statistical models of the communications channels, the number of users,

and the traffic patterns for each user.  The most natural simulation domain for

modeling these phenomena is using discrete event simulation systems that provide

essentially unrestricted input specifications (e.g., Ptolemy, VHDL, and Bones).

Discrete event systems are in general not finite-state [ELLS97] and hence are

incompatible with formal verification.  Thus, although answering the questions is a

crucial part of showing that a protocol is “correct,” the design is approached from

two fundamentally different paradigms.  Both seek to answer the question that

must precede implementation efforts – namely, “does the protocol provide, in a

fundamental way, the desired behavior?”

1.2.4 Relating abstract models to implementation

Finally, the implementation domain of the protocol also has a significant ability to

impede an integrated design approach, especially when the implementation

contains a mix of hardware and software.  The media access control layer, in

particular, is closely tied to the underlying physical layer and control logic must

respond to events at the microsecond level; for power efficiency, it is most efficient

to implement this control logic in hardware.  Product differentiation, firmware

upgrades, and the flexibility of a software-based approach, on the other hand, pull

towards implementing as much as possible in software.  In practice, the final

implementation is a mix of hardware and software.

The problem of designing these hybrid systems and obtaining meaningful

performance estimates is an area of active research known as “co-design” (see

[ELLS97] and the references cited therein).  At the heart of the issue is that
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hardware and software naturally have two very different types of concurrency –

interleaved and true parallel – and so design styles, representations, and

simulation semantics are extremely domain-specific. We will explore these issues

further in Chapter 3.

Summarizing, we are presented with conflicting objectives in our specification

languages, in our ways of checking “correctness”, and it becomes difficult to relate

these various conceptual models to the domain of our implementation.  For a pure

specification, such as a standards body might produce, all detail must be included

in the model.  For performance modeling, we would like the capability to model

many users, to quantify throughput, delay, and buffer occupancy, etc. – we need to

have a higher-level statistical model of the system with both time and probabilistic

metrics.  For verification, we would like to compact, abstract, and remove as much

detail as possible without changing the protocol.  It is not surprising that the

languages used to describe a particular model are strongly influenced by whether

the model is to be used for specification, for formal verification, for performance

modeling, or for the actual implementation.

Before proceeding, it is beneficial to take a brief look at the history of protocol

design, protocol specification, and the various technical tools that have been used

to verify correctness and estimate performance.

1.3 Abstract Services and the OSI Protocol “Stack”

Because it is the most common decomposition of protocol services, a good starting

point for discussing communication protocols is the Open Systems Interconnection

(OSI) “protocol stack” [DZ83].  In the OSI model, protocols are conceptually
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organized as a series of layers, each one built upon its predecessor.  Each layer

offers a set of services to the higher layers, hiding the details of how the services

are implemented.  The goal is to present the illusion to layer n on host A that the

message exchange takes place atomically via layer n - 1 to a layer n peer on host B,

as shown in Figure 1— 1.  In reality, each layer passes data and control information

the layer immediately below it, until the lowest (physical) layer is reached. The

function of each layer is outlined in Table 1— 1.

Figure 1— 1.  OSI Protocol Layers

Two dimensions of abstraction are present in this model: service abstraction and

inter-layer communication abstraction.  Between each pair of adjacent layers there

is an interface that defines the primitive operations and services provided by the

lower layer.  Usually, a foremost objective is to specify the set of services that each

layer offers, while abstracting the details of how these services are provided.

Implicitly with this objective is the desire to limit dependencies between each layer

to a set of interface primitives known as service access points (SAPs).
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 The rationale behind this objective is that it makes it possible, in principle, to

replace the implementation of a particular layer with another implementation,

requiring only that each implementation provide a consistent interface that offers

the same services and service access points to the upper layer. Thus, the goal of

service abstraction is modularity and freedom to choose the implementation that is

best suited for a particular environment. Detail about inter-layer communication,

on the other hand, is usually considered to be a concern that is orthogonal to the

design of the protocol.

Layer
Number

Layer Name Layer Function

7 Application User functions. For example, file transfer, database
query.

6 Presentation Data representation and translation.

5 Session Conversation initiation, coordination, and
breakdown. A session protocol controls which peer
can transmit, provides services to synchronize the
queue between peers, and defines how Protocol
Data Units (PDUs) are related for error recovery.

4 Transport Reliable end-to-end data delivery between peers.
Depending on the quality of service offered by the
network layer, transport usually performs error
correction and flow control.

3 Network Handles routing between peers, global naming and
addressing, fragmentation and re-assembly.

Logical
link
control
(LLC)

2 Data
Link

Medium
Access
Control
(MAC)

For point-to-point connections, handles framing,
station addressing, error control and flow control.

For networks where transmitting stations share a
common medium, the protocol governing access to
the medium is separated into a sub-layer referred
to in the IEEE standards as the media access
control (MAC) layer.

1 Physical Electrical and mechanical attributes governing
connection to the communication medium.

Table 1— 1.  The OSI Service Layers
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While this model provides an excellent starting point for conceptually partitioning a

set of protocol services, it must be used with care.  This model has two implicit

assumptions that fail to hold in many practical contexts.  First, there is the

assumption that cost of abstraction and separation is negligible compared to

advantage of being able to interchange layers.  Second, there is an assumption that

interchanging layers that provide the same logical services – for example, a wired

physical layer and a wireless physical layer – provide equivalent service.

Since in wired networks the point-to-point network topology is essentially static,

physical-layer channels can be modeled as time-invariant systems and user-to-user

interference can be modeled as a stationary random process.  Both of these

properties provide simple, understandable statistical models for characterizing the

probability of errors, justifying abstractions that allow the services provided to be

partitioned into orthogonal concerns.  For example, a networked file system

provides the abstraction that all files reside on a single logical file system, greatly

simplifying the design of an application that read and write files using a standard

file I/O interface.  In turn, the networked file system is simplified if it can assume a

black box, reliable packet delivery service from the lower-level network services.

The difficulty in applying this layering approach lies not in defining clean service

access points and abstracting lower level functionality; the real difficulty is in

separating the semantics of the service primitives. This is a subtle point, and one

worth further discussion.

The specification for the widely used ARPA Transmission Control Protocol (TCP), for

example, contains no explicit reference to a physical media or to any particular

style of implementation. Instead, it is assumed that the implementation has a

means of providing a best-effort datagram transfer service between endpoints, and



14

the TCP specification focuses solely upon higher level issues such as setting up a

connection, maintaining order, and so on.  Informally, the SAPs to the lower levels

are primitives to send and receive datagrams.  TCP maintains its own timer for

datagrams that still require an acknowledgement, and since corrupted packets

received by lower layers are discarded, TCP has no way of distinguishing between a

packet corrupted by bit errors from packets that are lost due to congestion in the

network.

TCP has been successfully used with a variety of lower-level media access protocols

such as carrier-sense multiple access (CSMA) and token ring, and on a variety of

physical media, including wireless, optical fiber, and wired media. Although the

TCP specification makes no explicit reference to the characteristics of the lower

layers, implicitly in the timeout and retransmission mechanisms there are the

assumption that the error rate is low, and that lost packets occur due to network

congestion.  Accordingly, lost packets trigger a congestion-avoidance mechanism in

TCP that reduces the rate at which packets are sent. Thus when TCP is used over a

wireless link, a slight change in the packet error rate can mean that the

performance drops drastically due to the compounded effect of lost packets and a

rate reduction by the sender. An aggregate throughput of 25% of the link capacity

is typical of TCP over wireless [BPSK97].

The problem here arises due to misinterpreting the semantics of the event “lost

packet.” The appropriate behavior for the protocol depends strongly on the

semantics of this event, and misinterpretation leads to behavior that, although it

does not violate any safety or liveness properties, severely limits the usefulness of

the protocol.
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1.4 An approach to integrating protocol design disciplines

This above example attests to the need to tailor protocols to the environment they

operate in, and is the strongest argument for a design methodology that integrates

performance metrics with functional correctness. Separating the design of the

protocol from the context in which it exists leads to performance penalties that are

unacceptable for wireless, portable applications. The remainder of this dissertation

explores the relationships between specification, verification, performance

estimation, and implementation. The summary of this exploration is presented here

as a guide for the reader.

The formal methods community has long advocated a methodology that begins with

an abstract, formal description of the system functionality that is supposed to be

the basis for rigorous formal verification and architectural exploration.

Conceptually, this provides the designer with an implementation-independent way

of evaluating a protocol or an algorithm.  Further, this methodology proposes that

the designer refine this abstract description by successively adding implementation

details, proving at each step that the refinement is consistent with the original

specification.

In practice few if any formal methods are employed in the design community.

Informal text documents usually specify the system requirements, and the typical

design flow starts with simulation models based on these informal descriptions.

Simulation is then used to drive the bulk of the algorithmic exploration, and the

results of these simulations are used to elaborate and fine-tune the original design.

Typically, it is only after a prototype of the system has been built and checked via
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black-box conformance testing [Hol92] that the system is checked against the

standard.

Formal
Verification
(Promela)

Formal
Spec

(Message
Sequence

Charts)

Hardware
Design
(SMV/

Verilog)

Software
Design

(C/C++/ASM)

Perf.
Estimation

(DE
simulation)

Functional
Reqt’s

Formal
Model
(SDL)

MAC

LLC

Figure 1— 2. Mixed Formal/Informal design flow for data link protocols

The premise of this thesis is that a mix of informal and formal specifications and

models are needed in order to facilitate the design of robust protocols that have

reasonable performance. However, it is essential to understand where each is most

appropriate in the design flow as well as the relationships between formal and

informal models. With this in mind, we recommend the following methodology:

1) Develop a set of functional requirements that specify the services that a

protocol is required to provide, along with performance considerations. For

example, a data link protocol for mobile applications must support roaming,

thus part of the functional requirement is “support for mobility”.
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2) Develop an informal, coarse-grained architectural definition of the system that

identifies a set of message passing entities (e.g., mobile devices and

basestations), along with a (perhaps incomplete) set of message exchange

sequences for each protocol function. Performance considerations, along with

details about computation, data structures, etc., are omitted. The primary

purpose of this phase is to focus on the exchange sequences that comprise the

protocol, without regard to implementation, in typical scenarios. Message

sequence charts (MSCs) are one semi-formal approach that is provides a means

to graphically depict the actors, the state of each actor as time progresses, and

their possible interactions. In addition, this specification can be used later

during verification to check the trace-equivalence of the implementation at the

message passing and state transition level.

3) Develop a more detailed, formal state machine model of each actor in the

system, omitting performance-tuning features of the protocol during the early

stages. Though a variety of formal languages exist, the most widely accepted of

these is SDL, and is a reasonable choice for modeling functionality that is likely

to be implemented in software (e.g., the logical link and high-level MAC

functionality). The strength of SDL at this level is that it allows the designer to

focus on the state machines, the messages that are exchanged, and the

structure of the system at the block-diagram level. The formal semantics of

timers, channels, and message passing allows the designer to focus creative

effort on the design of the protocol rather than on developing a simulation

infrastructure and defining the state machine using the semantics of a

simulator.



18

4) At this point the design process branches into two largely independent tasks:

formal verification and performance estimation. Logical link protocols are by

nature distributed-state concurrent systems and the design process must

insure the logical consistency of the protocol, and are thus the primary target

for formal verification in our context1. This is because formal verification

focuses on proving properties about the system given a set of possible events,

without regard to the probability of any event.  So, for example, one would like

to prove that the logical link could not deadlock under packet reordering or loss

events.  On the other hand, the media access control protocol consists of an

algorithm that is designed to minimize the interference between users, and its

evaluation must be done in terms of the probabilities of collision, loss, and

corruption. Thus, performance estimation will largely focus on the media access

algorithm.

5) Finally, the system is ready to be implemented as a mix of hardware and

software. For hardware subsystems, it is not desirable to directly map an SDL

process onto a hardware implementation: the result is semantically incon-

sistent with the abstractions that SDL enforces (detailed in Chapter 3 and

Chapter 5). Chapter 5 presents a compositional refinement methodology

whereby it is possible to informally relate a high-level, asynchronous FSM,

message-passing view of the system to a detailed hardware implementation. In

Chapter 6, we consider a path from a high-level language such as SDL to

software, and present an operating system implementation that provides the

                                                  
1 For wireless systems, logical link protocols include both link establishment protocols and
link management protocols that support mobile users.
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infrastructural "glue" that is necessary to combine the hardware and software

implementations.

1.5 Summary of Contributions

This work addresses the design methodology for link-level protocols that are

implemented in embedded systems. The primary contributions are as follows:

1) A taxonomy of formal languages that have been applied to protocol design

2) The relationship between specification, formal verification, performance

estimation, and implementation as applied to the protocol design and

implementation

3) A semi-formal methodology for mapping SDL to synchronous hardware

implementations using compositional refinement to verify that an

implementation conforms to a high-level specification

4) A decomposition of a generalized data transfer network that allows end-to-end

verification of data integrity, transfer completion, and data ordering

5) A roadmap for further research on the problem of integrating formal description

techniques into to design and implementation flow

In this thesis, we do not address the technologies underlying the "performance

estimation" phase of protocol design. Of the four protocol design technologies,

performance estimation is the one that is most often used in working designs, and

for this reason we focus our energies on aspects of the design that are less familiar

to the design community.
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1.6 Outline of the dissertation

The dissertation is organized as follows. Chapter 2 uses a large-scale system design

example to explore the process of starting with a set of informal constraints and

mapping these constraints onto a protocol design. Chapter 3 investigates the

languages that are used to specify protocols using formal (i.e., mathematical)

languages, and presents a taxonomy of execution and communication models for

the most well-known formal languages. Given a formal model of a protocol, it

becomes possible to address the problem of formally proving properties about the

model. Chapter 4 presents a tutorial on the most common formal verification

technologies as they apply to hardware and protocol verification, and introduces

some recent work in compositional refinement verification that provides the

theoretical underpinnings for the following chapter.

In Chapter 5, we consider the methodological challenge of mapping protocols from

a high-level, asynchronous concurrent execution, abstract “message-passing”

domain (e.g., SDL) to an implementation-level domain with synchronous

concurrent execution. This forms the basis of a “semi-formal” approach to protocol

design and implementation that combines SDL modeling with an informal mapping

to a high-level model using a synchronous language known as SMV. This high-level

SMV model can then be incrementally refined into an implementation, and at each

step of the refinement process it is possible to check that a refinement is consistent

with the original high-level specification.

Chapter 6 turns to the more general problem of relating an SDL system to an

implementation in a mix of hardware and software. The problem is one of mapping

high-level message-passing semantics of SDL onto a combination of synchronous
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hardware and non-deterministically interleaved software threads, as well as

providing the infrastructural resources such as queues, timers, and schedulers in

an embedded operating system.

Finally, Chapter 7 provides an in-depth look at the design of the data link

initialization and link management protocols for the InfoPad system and outlines

the challenges of formally verifying the link level protocols. Chapter 8 concludes the

dissertation with an eye to extensions of this work.
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Chapter  2

I n f o rma l  Spec i f i ca t i on  o f
P r o t o co l  Sys t em

R e q u i r e m e n t s

2.1 Overview

The first step in any protocol design is to determine the service requirements. That

is, what set of services is the protocol intended to provide to external programs

(which include higher layers in the protocol stack). Simultaneously one must define

required services that the protocol layer of interest will not provide: this defines the

dependencies on services from the lower level protocols.

The scope of our methodology ranges from specification through implementation.

To motivate and define the context for the data link and media access protocols, we

start by examining a full system design of a wireless communication system known

as InfoPad [TPD97][NSH96]. Our goal is to give the reader a feeling for the range of

problems that the methodology must address.
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The InfoPad system is an example of a large system design in which ad-hoc design

methodologies were used. The data link protocols were informally documented

using graphical representations of state transition systems. With a few sketches of

protocol state machines, an implementation in hardware and software was the next

objective, before any high-level performance estimates or formal verification results

were obtained. Finally, the implementation was incrementally debugged over a

period of several months as the implementation began to stabilize. In hindsight, the

strength of an abstract state machine language with clean message-passing

semantics and language constructs that are designed to facilitate protocol

specification would have greatly simplified the eventual task of implementing the

protocol simply because it would be easier to understand what must be

implemented.

In Section 2.2, the top-level system is described qualitatively together with the

overarching design objectives; from this we derive a set of informal constraints for

the link level protocols. In Section 2.3, we outline a functional partitioning of the

system that identifies the message-passing interactions between functional units.

For our system, the message-passing entities generally fall into one of 3 categories:

1) network management or mobility support; 2) multimedia server or client; or 3)

the mobile device. We consider each of these in Sections 2.3.1.1, 2.3.1.2, and 2.3.2,

respectively.

Once the initial system architecture is in place, we turn our attention to the

qualitative performance objectives. These objectives define a set of constraints can

be broadly classified as either functional or performance-oriented. (A subset of

these constraints is discussed in Section 2.4.)
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For example, a qualitative performance objective is that the wireless network

connection should be maintained transparently to a roving user: cell-to-cell

handoffs should, if at all possible, avoid dropping the link. We can split this

requirement into the following constraints:

1) Performance constraint: The protocol should minimize the probability of

dropping the link

2) Functional constraint: protocol must provide both for handoff without drop-out

and for recovery in the case where the link is dropped

The point here is that an informal constraint often translates into a series of formal

constraints1, some of which are performance-oriented and some of which are

function-oriented. It is important to understand the difference because the tools

used to analyze and determine whether the implementation meets the constraint

are radically different for the two types of constraints. Performance-oriented

constraints are usually handled using a combination of hand analysis and discrete-

event simulation; functional constraints must be formally verified.

This abstract view of the system must undergo a series of refinements before an

implementation is possible. Since the latter part of our methodology focuses on the

implementation phase, it is useful to follow a portion of the system through to

implementation, laying the groundwork for the refinement methodology presented

in Chapter 5.

                                                  
1 In this example, we use the word formal in the sense that it is possible to prove whether the
constraint is satisfied



25

Since the InfoPad was designed to be a tool for research in mobile communication

systems, there are many features in the hardware implementation that support

dynamic configuration for protocol support and would be of interest to a protocol

systems designer. Section 2.5 presents an in-depth look at the design of the mobile

device, and will be referenced in Chapter 5; however, it is intended primarily as a

reference section and may be safely skipped in a first reading.

2.2 An informal high-level description of  the InfoPad
system

There is presently a re-examination of the requirements of the system architecture

and hardware needed for personal computing for the new and ever-growing class of

users whose primary computing needs are to access network information and

computing resources, as well as real-time interactive activities (chat rooms, games)

and direct communications with other people. These applications, which are more

communications-oriented than computation-oriented, require a “personal

computer” that primarily has support for high bandwidth real-time

communications as well as multimedia I/O capabilities – including audio,

text/graphics and video. User-accessible general-purpose programmability and

local high-performance computation are a secondary requirement, desirable only if

the increased complexity and cost to support stand-alone operation, which is

required for disconnected or poorly connected operation, can be justified.

As the dependence on network information storage and computation increases, the

desire to ubiquitously access the network will require the terminal to have the

portability of a paper notebook (1 lb., 8/12x11x1/4”) while still being able to

support real-time multimedia capabilities. These goals require a sophisticated
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wireless communications link that must provide connectivity even in the situation

of large numbers of co-located users, such as in a classroom. These are the goals of

the InfoPad system, and though not all of these specifications were met in the

realization discussed here, the architecture that was developed would meet these

goals with the application of even present state-of-the-art component technologies.

The InfoPad system design explores a highly optimized solution to the above goals,

and critical to the design is the assumption that high bandwidth network

connectivity is available (Figure 2— 1). The user device, the InfoPad, consists of a

radio modem, notebook-sized display, a pen pointing device, and video and audio

input/output. The radio modem bandwidths are asymmetric, reflecting the

importance of network information retrieval, with higher bandwidth (1-2 Mbits/sec

per user) connectivity from the supporting backbone network to the terminal

(downlink) and lower bandwidth connectivity (64-128 Kbits/sec) in the reverse,

uplink direction.

VIDEO DATABASE

Compressed Video

Gigabit Fiber Optic Backbone 

Wireless

GRAPHICS

SPEECH
RECOGNITION

 DATABASE

TEXT/

- Video

PORTABLE TERMINAL

PERSONAL
COMMUNICATORS

Airline schedule,
Newspaper,...

SERVER

Compute
Server Basestation

- Speech
- Graphics Terminal

Figure 2— 1. The InfoPad System Architecture



27

Since portability and widespread consumer use was an important requirement, it

was necessary to reduce the energy consumption, weight and cost of the design as

much as possible. For this reason, exploitation of the availability of the network

connectivity and access to network servers was deeply built into the overall system

architecture [NSH96]. The InfoPad essentially functions as a remote I/O interface,

in which computing and storage resources are removed from the portable device

and are placed on a shared, high-speed backbone network of servers, which

provide mass storage, general-purpose computation, and execution of system and

user-level applications [SCB92][BBB94][CBB94].

The InfoPad system architecture allows dramatic simplifications in both the actual

hardware that is used as well as the software and system management. A brief

summary of some of the most important advantages is outlined below:

Reduced cost, complexity and energy consumption – Moving the general purpose

computing resources out of the portable device maximally reduces the cost, weight and

energy consumption, by eliminating mass storage, high performance processors, and

memories. Energy consumption for specific communication or I/O functions can be

reduced by several orders of magnitude by replacing general-purpose computation with

dedicated architectures.

Ease of use and remote system support – Support for sophisticated applications and

operating systems is provided by remote network managers. In this respect the use

model is closer to that provided by the telecommunications industry, in which the user

I/O device, the telephone, has little complexity and the network providers perform

system support and maintenance.
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Appearance of unlimited storage and computational resources – since applications and

server processes run on servers on the backbone network, it is possible to run

sophisticated applications and computationally-intensive I/O algorithms – speech and

handwriting recognition, for example – without the cost or energy consumption incurred

in providing local high performance computation. Similarly, mass data storage is

provided by storage and application servers rather than in local disks or flash memory.

We mentioned in earlier that the overall system constraints often have a dramatic impact

on the service requirement for the link level protocol and on the implementation of the

protocol. Considering the system described above, we can infer that the most critical

constraints are as follows:

1) High-bandwidth, low-latency service that supports interactive multimedia

2) An energy-efficient implementation

3) Support for mobility, with dynamic network reconfiguration

4) Data-dependent quality of service, given the over-subscribed wireless link

Since the link-level protocol handles only the point-to-point link, these constraints are

viewed in terms of their impact on the design of the mobile device and the "basestation"

that provides the logical and physical connection between the wireless link and the

backbone network. However, since part of the link protocol includes support for mobility,

we must also consider network-wide support for roaming.

2.3 A “message-passing” architectural pa rtitioning

At this point, we have a first-order description of the design objectives for the entire

system. The second step in the methodology outlined in Chapter 1 requires



29

translating this high-level description into a coarse architectural partitioning that is

used to identify the actors and required protocols.

Mobile Base PadServer Cell Server
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Figure 2— 2. Message sequence chart illustration (explanatory items in bold)
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Figure 2— 2 depicts a Message Sequence Chart [ITU93c][RGG95] partition of the

system architecture that includes the backbone network support for resource

allocation and mobility (the CellServer and PadServer) along with the basestation

and the mobile device. Each of these entities can be further refined to include a

more detailed view of the particular subsystem of interest – in fact, this is precisely

what the latter steps in the methodology will address.

The development of a set of message sequences capturing the various scenarios

that the protocol is expected to encounter is perhaps the most useful, yet most

frequently overlooked, step in the protocol design flow because it clearly identifies

the interaction and state relationships between concurrent processes. Further, the

high degree of abstraction provides a clear view of the essential interactions.

The difficulty with this step is that a message sequence represents an execution of

some part of the system, and for complex designs the number of cases one must

consider quickly grows beyond what is tractable for complete specification using

message sequences. Thus, typically a few critical sequences are specified, while

others are at the discretion of the designer, relegated to the next phase, in which a

finite-state transition system is used to model the protocol system.

In any case, a thorough understanding of the functional requirements is necessary

before detailed message sequences can be defined. To provide the reader with the

functional requirements placed on a reasonably complex protocol, in the following

sections we address the major features of the mobility support protocols, the

multimedia I/O servers, and the mobile device. We begin with an overview of the

backbone network support for mobility.
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2.3.1 The InfoNet network infrastructure

As described in [NSH96], the InfoNet system provides the backbone network

support for the InfoPad. An overarching system requirement for the InfoNet was

that it must support both legacy applications and mobile/InfoPad-aware

applications.

To this end, InfoNet provides a proxy agent – the Pad Server – that acts logically as

a single, fixed (non-mobile) InfoPad. All network connections to other servers (e.g.,

video server or graphics server) are routed directly to the Pad Server and logically

terminate there.

2.3.1.1 Mobility support

The network is physically divided into picocells, typically about the size of a single

room. Each cell has a basestation/gateway that provides the physical and logical

interface between the wireless and wired network. This gateway interacts closely

with a Cell Server that is responsible for resource management within each cell.

Upon startup, the mobile device listens for periodic beacons that are broadcast by

the basestation. These beacons identify the basestation, the cell to which the

basestation is logically attached, and other information that will be used to

synchronize the mobile with the basestation.

When the mobile has located one or more candidate cells, it requests to join a cell

by sending a JoinRequest to the basestation. This request is forwarded to the cell

server for the current cell, and the cell server in turn contacts the "pad server"

proxy agent and negotiates the join process.
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After a mobile has successfully joined a cell, the pad server periodically requests

status updates from the mobile. These status reports include the signal strength

measurements taken from adjacent cells, which are used to drive the decision to

handover a mobile to an adjacent cell.

2.3.1.2 Multimedia I/O support

The multimedia services provided by the network to the InfoPad are contained

within 4 primary I/O servers:

1) The speech server, which accepts audio from the uplink and performs speech

recognition

2) The pen server, which accepts stylus coordinates from the uplink and provides

logical “pointer” functions

3) The graphics server, a modified X11 server that provides a logical windowing

system interface to applications, and manages the screen-refresh policies for

the InfoPad

4) The video server, which compresses a real-time video stream and forwards the

compressed video and compression codebooks to the InfoPad

As mentioned above, each of these I/O servers are logically connected to the Pad

Server.

The following section presents the architecture of the InfoPad portable multimedia

terminal itself, which can be thought of as a simple I/O interface that is logically

connected directly to each of the above servers via a wireless link.
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2.3.2 Architecture of the InfoPad terminal

Externally, the InfoPad terminal provides a pen- and speech-based user interface to

applications, along with a graphics and full-motion video display. Since the link to

the network is central to the operation of the device, a natural model for the

portable device is that it is simply a multimedia-enabled extension of the backbone

network. Several architectural features distinguish the InfoPad from desktop,

notebook, and network computers as well as from PDAs and PIMs. These features

are outlined below.

Peripheral vs. central processing unit
Experience with an earlier prototype [BBB94] indicated that the microprocessor

subsystem, which was responsible for managing data transfers between the

wireless modem and the I/O-processing chipset, consumed a significant fraction of

the overall power budget and was also a primary performance bottleneck. The most

delay-sensitive activities, such as moving the pen and expecting the cursor to track

location in real-time, typically generate a large number of very small data transfers,

so that the microprocessor spends the majority of its cycles entering and exiting

interrupt service routines and setting up data transfers. Due to the delay-

sensitivity and asynchronous nature of these transfers, it is difficult to amortize the

transfer setup overhead over more than one or two I/O packets.

The requirements outlined above lead to an optimization in which the user

accessible central processing unit (CPU) is functionally removed from the

architecture of the portable and networked based resources are used instead.

Unlike a local CPU architecture, in which I/O peripherals enhance the functionality

of the core processor, our goal was to design intelligent peripherals that process

I/O events and manage data transfers without relying on a centralized processor.
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Instead, the general-purpose processing unit is viewed as simply another peripheral

subsystem which exists to complement the functionality of the I/O peripherals,

thus the processor is more appropriately termed a peripheral processing unit (PPU).

Class-based communications protocols
Throughout the Pad architecture, it was necessary to distinguish between classes

of data, where each class has its own service needs, primarily because of the

required support of interactive multimedia over a wireless network, where

bandwidth is limited and reliability can vary dramatically. The heterogeneous mix

of traffic supported over the wireless link requires that the link level protocol be

aware of the delay and reliability requirements of a particular packet, and tailor the

behavior of the protocol to meet the requirements of each class of traffic.

For example, in a vector-quantized image compression scheme, it is possible to

differentiate the quantization codebook from the quantized image. Since the

codebook is relatively small and will be used to decode many image frames,

increasing the reliability of the codebook transmission (via forward error correction

coding, retransmission, or a combination of both) has little impact on the overall

bandwidth requirements but has a dramatic impact on the overall quality of the

decompressed image. Data frames, which require more bandwidth and are more

delay-sensitive, can be transmitted with little or no error correction: corrupted

image frames with bit-error rates of up to  still provide the viewer with a good idea

of the overall image composition [HM96].

Low-overhead, minimal-state communications
Consistent with the goal of exploiting network resources, the amount of state

maintained in the portable device is minimized and for this reason explicit support
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for end-to-end transport and internetworking protocols over the wireless link is

avoided. Instead, focus was is on the link between the mobile and basestation, in

which optimized link-level protocols are tailored to variable rate multimedia traffic

and the low reliability of wireless transmission.

Since applications execute on the backbone network, and general-purpose network

connections between applications exist entirely within the backbone infrastructure,

the mobile is relieved from the task of handling “standard” protocols. Often these

protocols are designed for generality, and either require superfluous fields in the

protocol data structures or exhibit behavior that is unsuitable for use on error-

prone wireless links. Additionally, by assuming a connection-oriented protocol

between the basestation and the other servers on the backbone network, it is

possible to view the wireless link as a simple extension of this connection, where

the basestation acts as a proxy network termination for the transport- and

network-layer protocols. Since the connection to the backbone network is a single-

hop link, routing between the basestation and the Pad is not required, obviating the

need for an internet protocol and the associated overhead.

At the transport layer, an end-to-end, connection-oriented protocol such as TCP is

not well-suited to the transmission of real-time, isochronous data across a wireless

link.  Re-transmitting a lost image frame from a streaming movie, or attempting to

retransmit a lost audio frame would in many cases violate the delay constraints for

these data types. Further, no well-known transport protocol is particularly suited to

the burst error characteristics of the wireless channel. (With TCP in particular, the

congestion-avoidance mechanism enhance negative effects of retransmission, since

a burst of errors interpreted as severe congestion in the channel, forcing the sender

to further restrict the rate of transmission [BPSK96]).
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An infrastructure for mobile multimedia computing research
In order to support the architectural features described above, it is necessary to

design and build an infrastructure of network resources. This includes the design

of interactive applications, multi-modal user interfaces, source and channel coding

algorithms, network protocols, and base station architectures that are specifically

targeted to wireless multimedia.

2.4 Service Requirements: Performance aspects vs.
functional aspects

The above system-architecture objectives provide a starting point for defining the

service requirements for the data link and media access protocols. In such a

design, we are starting with an almost unlimited solution space. Thus, we need a

means by which we can compare different approaches.

As mentioned above, we can identify both a performance aspect and a “functional

correctness” aspect. Performance issues are primarily optimization problems, and

so of necessity they focus on common-case behavior and are typically addressed

using probabilistic analysis or discrete-event simulation. Functional issues, on the

other hand, are often dealing with corner cases that are difficult to exercise using

simulation tools and are typically addressed using formal verification.

In this section, we provide a few selected examples from this InfoPad system that

illustrate how one moves from a high-level informal specification to specific service

requirements, and show how the service requirements can be broken into

performance estimation issues and verification issues.

First, we identify the primary services that our protocols are to provide:
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1) Data link: provides an unreliable, point-to-point “bit pipe” between the InfoPad

and a basestation

2) Media access: provides a means by which multiple InfoPad devices can

physically share the same airspace, minimally interfering with each other

Data Stream Uplink Downlink

Video -- 400 Kbits/s

Audio/Speech 64 Kbits/s 64 Kbits/s

Pen 8 Kbits/s --

Graphics -- 128 Kbits/s

Control < 1Kbit/s < 1Kbit/s

Total ~ 75 Kbits/s ~ 600 Kbits/s

Table 2— 1. Average Bandwidth Requirement

Together with these primary services, we consider the bandwidth and latency

constraints placed on the system. Table 2— 1 details a first-order approximation of

the bandwidth requirements for each of the data streams that the wireless link

must support.

To estimate the delay constraints, we use the interactive response time of the

graphics system as our benchmark. Since we are trying to provide the illusion of

local computation, it is extremely important that the primary user interface – the

pen/stylus and LCD graphics output – present the visual illusion that interactive

window functions are performed locally.

For example, when the user points the stylus at a particular pixel, we would like a

very low-latency response time for the cursor to appear at the new location. An
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aggressive upper bound of 30 milliseconds1 was placed on the round-trip time that

it takes for a stylus coordinate to be generated, sent via the uplink, basestation,

and gateway to the pen server, which then forwards the coordinate to the X11

server. The X server renders the background fill for the old location, renders the

cursor in the new location, and forwards both of these bitmap blocks to the

gateway/basestation before it is transmitted via the downlink.

For this system, the round-trip latency bound together with the bandwidth

requirements form the primary basis for evaluating the suitability of various media

access and handoff strategies.

Table 2— 2 summarizes selected functional requirements that the data link protocol

must provide, and illustrates how these functional requirements can be mapped to

performance constraints and functional constraints. In this partitioning of protocol

support, the data link protocol is required to provide the point-to-point link

between the mobile and the base. Thus, the protocol must provide a mechanism for

establishing, creating, monitoring, and using this point-to-point link.

For example, initially a mobile must scan for candidate cells and basestations to

which it will present a request to join.  Thus, the protocol must provide for

“announcements” from a basestation and  “join requests” from a mobile. There

must also be a protocol for assigning a mobile to exactly one cell, and a protocol for

distributing this information to the rest of the system. If the request to join a cell is

rejected, the protocol must specify what options the mobile can exercise in seeking

                                                  
1 This 30 millisecond figure is based on the screen refresh rate: generating the new cursor
position any sooner would give no perceptible improvement to the interactive feel of the user
interface.
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a new cell to join. Once the mobile has joined a cell, a dedicated set of frequencies

is allocated for exclusive use by the mobile. Since the user may be in transit, there

must be a means of monitoring the quality of the link and requesting either an

increase in transmit power or a “handover” to an adjacent cell.

All of these control-oriented protocol functions include the possibility of deadlock or

non-progress states due to an erroneous design. Formal verification to check and

prove safety and liveness properties should be used to check the correctness of

these control aspects.

Protocol
Service

Description Performance issues “Functional
correctness”

 issues

Startup:
scan, request,
& link
establishment

Polls for
basestation on
startup, requests to
join cell, waits for
answer.

Due to dropped
packets, multiple
requests may be
issued

Time-to-discovery Multiple requests to
multiple cells –
potential deadlock or
lockout

Adjacent-
channel
polling

Mobile listens for
adjacent cells. May
request change to a
new cell

Overhead due to
polling

Missing packets on
primary frequency

Dropping link due to
user moving out of
range during adjacent
cell scan. Potential
deadlock.

Cell-handoff
 (network-
directed)

Migrate link-layer
connection between
cells

Lost packets during
handoff

User-user
interference

Timing sensitivities
& handoff hysterisis

Deadlock due to
inconsistent distributed
state (due to lost or
corrupted packets)

Potential livelock
(oscillating between
cells)

Frequency
hopping

Spectral shaping
requirements
imposed by FCC:
can only “dwell” in
single frequency for
400 ms every 30
seconds.

Hopping overhead
vs. penalty for
remaining in bad
slot for a long time

Probability of
colliding with
another user

Synchronization
protocol between
mobile and basestation

Uplink data Pen, speech, Latency Variable-rate coding
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delivery control protocol Buffer overflow

Downlink data
delivery

Video data  &
codebooks,
graphics, audio,
and control
protocols

Latency

Buffer overflow

Variable-rate decoding

Table 2— 2. Selected protocol services and their performance and functional
constraints

On the other hand, the “performance” aspects of the protocol have softer

correctness metrics that capture the probabilistic, common case behavior. We

would like to characterize the average delay and queue length of the transmit path,

for example. We would also like to know how well we are utilizing the available

bandwidth, and how much we are wasting due to protocol overhead.

These performance issues are best characterized using discrete event simulation.

However, a common mistake is to attempt to model the performance of the system

at the implementation level, rather than first developing high-level, abstract models

of various pieces of the system and using these high-level simulations to drive

architectural choices. As we move through the descriptions of the InfoPad in the

following sections, we will point out implementation decisions that were strongly

influenced by performance goals, and will discuss a variety of abstractions that

could be used to model aspects of the system.

2.5 Following the methodology through to implementation:
the design of the InfoPad terminal

The purpose of integrating a high-level protocol description language into the

design flow is that it enables a much simpler initial specification because the

language itself provides semantic constructs that are useful for describing protocol
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systems. The problem, however, is that the abstractions that enable high-level

system design are inappropriate for use in the low-level implementation, especially

when the implementation is in the synchronous hardware domain. We will address

this problem in great depth in Chapters 3 and 5. At this point we simply note that a

bridge is needed to relate a protocol specification to its implementation.

Chapter 5 considers in great detail one approach to relating the specification to the

implementation, using a technique known as compositional refinement verification.

In that chapter, we consider the implementation of the multimedia I/O subsystems

on the InfoPad hardware terminal, and the interaction of these subsystems with the

wireless link control system.

The remainder of this section presents in detail the design and implementation of

the hardware components of the InfoPad multimedia terminal. It is included for

completeness and to explain in detail how the data processing subsystems interact

with the wireless link protocols. It can safely be skipped during a first reading.
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Figure 2— 3. The InfoPad portable multimedia terminal

2.5.1 Hardware support for remote I/O

The implementation of the InfoPad portable hardware (Figure 2— 3) centers around

the model of parallel I/O processing modules connected to a backbone network via

a single-hop wireless link. With the long-term vision that the backbone network

would exist within a virtual circuit-switched framework, our design philosophy was

that the InfoPad should be an extension of the backbone network. Thus, the main

function of the hardware is to support data flow between multimedia sources (or

sinks) and the wireless link.

The core of the InfoPad hardware is a low-power bus, called the IPbus, dedicated to

the movement of I/O data. Attached to this bus in a modular fashion are bus-
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mastering data sources and bus-slave sinks, as depicted in Figure 2— 5. Together,

these I/O devices support two-way audio, pen input, monochrome graphics, and

color video capabilities over a full-duplex wireless link; they are implemented as 10

full-custom ASICs in a 1.2-micron CMOS process. A microprocessor system is used

to handle system initialization and higher-level protocol functions (e.g., collecting

error statistics and signal strength measurements).

Conceptually, the architecture is analogous to an output-buffered, self-routing

packet switch. At run-time, each data source is given a type-tag1 which is used to

identify the type of data generated (e.g., pen vs. speech), and for each {data source,

type tag} pair a unique device destination address is assigned. When a source has

data of a particular type available, it uses the type tag to dynamically determine the

corresponding sink to which the data should be sent. Thus, once initialization is

complete, data transfers between source and sink are autonomous, requiring no

microprocessor intervention.

The type tag provides a mechanism to support lightweight protocols that provide

data-specific transport services. For example, the transmitter interface module uses

the tag to determine how the current packet is to be encapsulated, since optional

fields such as packet length, forward error correction, or sequence number, may be

omitted for certain types.

                                                  
1The assignment of tags to a particular data class is globally shared with the backbone network software.
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Figure 2— 4. InfoPad computation resource partitioning (left)
vs. traditional computer architecture (right)

Similarly, the receiver interface uses the type tag to decode a packet and to

determine the destination of the incoming data (e.g., video frame buffer vs. audio

codec interface). Using this mechanism, physical and link-level protocols can

adaptively select what level of service a given packet requires by changing its type,

or by changing the type-specific packetization options associated with that tag (to

be discussed in 2.5.2). At a higher level, protocols supported by the InfoNet

[NSH96] gateway are able to utilize the type tag in making scheduling decisions.

2.5.1.1 Design trade-offs

Although the I/O devices were designed to operate autonomously, we chose not to

eliminate the microprocessor from the design, primarily for the flexibility afforded

by a general-purpose processor, for exploring these protocols is easiest in software.

Since this does result in a less-than-optimal power budget, the system is designed

to operate with the microprocessor providing only 3 support services: start-up

initialization, packet scheduling for transmission over the wireless link, and

support for link- and media-access protocols (including support for mobility).
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A second power-related concession was made in the design of the wireless

interface: the physical interface to the RF modems utilizes an commercially-

available FPGA to enable experimentation with both the wireless modem and the

physical-layer protocols (e.g., FEC coding, clock recovery, etc.). Radio technology is

rapidly advancing; and while current radio technology is adequate for experimental

designs (the current downlink radios operate at 640 Kbit/s), they do not provide

the 2-10 Mbit/s envisioned for future devices. The FPGA design provides an

interface which is easily changed to take advantage of new radios as they become

available.

Overall, the primary technical challenge was to balance the low-power design

against system flexibility (for use as a research tool), and system responsiveness

(for actual use). In the following sections, as we discuss the specifics of the I/O

subsystems, we will identify the design trade-offs and implementation choices that

are driven by the architectural goals presented in Section II.

2.5.1.2 IPbus Description

The IPbus is an 8- bus designed to run at a speed of 1MHz and a supply voltage of

1.2-1.5 Volts. This design provides a maximum throughput of 8Mbit/s, well above

the 1 Mbit/s maximum supported by the radios, ensuring that the IPbus

bandwidth is adequate for system dataflow. An 8-bit word size was chosen to

minimize pin count, and hence package size, of the custom ASICs; a larger word

size would not measurably improved system performance since the system

throughput is constrained by the bandwidth of the radio channel.
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The IPbus supports direct read/write transfers as well as a packet-based transfer

mechanism. Utilized only by the microprocessor subsystem, the direct read/write

mechanism allows the processor to directly configure a device, query status, and

respond to interrupt conditions. Packet-based transfers are used for inter-device

communication: the source device indicates a new transfer by sending a start of

packet (SOP) byte, followed by a variable number of data bytes, and terminates the

transfer by sending an end of packet (EOP) byte to the sink device. Included in the

SOP byte is the 6-bit type tag which identifies the data-type of the packet (e.g. pen,

audio, etc.). The EOP byte contains additional (optional) status information, which

can be used to identify packets that are corrupted during transmission over the

wireless link, for example.

Data transfers are not required to be atomic: distinct data streams from different

sources can be interleaved across the bus, and simultaneous transfers to the same

sink device by multiple sources are allowed. For example, it is possible for the
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audio, the pen, and the microprocessor to simultaneously transfer data to the

transmitter interface. This removes the requirement for store-and-forward protocols

in the I/O peripherals, decreasing the overall system delay, but requires that the

sink devices be capable of demultiplexing the incoming data.

2.5.2 Wireless Interface Subsystem

In the early design phases (1992-1993), the dearth of high-speed wireless modems

suitable for use in the InfoPad and the uncertainty that standard link-level

protocols would provide adequate performance for multimedia over wireless,

demanded reconfigurable wireless interface - one that was flexible in its ability to

interface to a variety of wireless modems, as well as the ability to support

experimentation with link and media access protocols. Our strategy was to

partition the interface into three parts, shown in Figure 2— 6: a transmitter (TX)

interface ASIC; a receiver (RX) interface ASIC; and a reconfigurable physical

interface module, implemented in an FPGA. The TX and RX modules handle

packet- and byte-oriented functions, while the FPGA provides bit-level

manipulations, such as forward error correction (FEC) coding, and the physical

signalling interface to the wireless modems. This partitioning allows the underlying

modem to change, requiring neither a change to byte- and packet-oriented

operations nor an ASIC refabrication.
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Figure 2— 6. Block diagram of wireless interface subsystem

In the following subsections, we outline the salient features of the protocol support

primitives.

Packet structure
The basic packet structure supported over the wireless link is an extension of the

IPbus packet format, shown in Figure 2— 7. The minimum overhead added by the

wireless link is the single-byte pad alias, which is an address equivalent.

Optionally, sequence number, packet length, and CRC fields may also be added.

The inclusion of sequence numbers is a Pad-specific configuration parameter. The

other optional fields are type-specific, giving a very fine granularity on how the link

protocols treat particular classes of data, supporting our goal of providing

lightweight, type-specific communications protocols.
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Figure 2— 7. Packet Format

Dynamic network addressing
Each InfoPad is assigned a unique identifier that is stored in non-volatile memory

and is presented to the backbone network to establish a connection. The backbone

network uses this identifier to assigns a pad alias, which is a temporary, 1-byte,

local network address used by both Pad and basestation indicate a radio packet’s

destination address. (Provision for multicast addressing is included, and will be

discussed in 2.5.2).

Type-specific protocol options
Many of the protocol primitives can be selectively enabled on a type-specific

granularity. We outline these primitives below:

Variable error control: Multiple levels of error control and reliability effort are

supported. At the lowest level of reliability, transmissions are unacknowledged and
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no error correction or error detection is employed; at the highest-level of reliability,

a Type-1 Hybrid ARQ protocol is used. Additionally, two different error correction

codes1 are available: a BCH (15,5,3) code, and a BCH (15,11,1) code. These

variable-level encoding schemes allow bandwidth-intensive data (such as graphics

or video) to be minimally encoded, while latency or content-critical data (such as

video codebooks or pen packets) can be maximally encoded.

Differentiation of packet header and packet payload: An insight gained from

experience with the earlier prototype is that for many classes of data packets, there

often are a few content-critical bytes which require higher reliability than the rest of

the payload - a bitmap, for example, has an x- and y-coordinate followed by a series

of pixel values, and displaying the bitmap at the correct location is far more critical

than displaying every pixel value correctly.

For this reason, we chose to provide a mechanism that allows the link protocols to

differentiate between packet header and packet payload: at a type-specific

granularity, it is possible to encode the first 1-7 bytes of the payload with the same

FEC coding as the packet header, while the remainder of the payload is encoded

independently. An optional payload CRC field is available for data types that

require correct transmission. In this way, it is possible to have the content-critical

bytes maximally encoded, while the remainder of the payload is encoded at a

completely different level. Interleaving is a standard mechanism for increasing the

effectiveness of error correcting codes in the presence of burst errors [LC83].

                                                  
1 An (n,k,t) error correcting block code uses  transmitted bits to send  information bits, and
can correct up to  errors in  bits.
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Interleaving:  The TX and RX subsystems provide a 15x16 interleaver/de-

interleaver, which redistributes 240-bit blocks of FEC-encoded data into 16 15-byte

blocks. In this configuration, we are able to correct a large number of burst errors

of up to 48 bits in each 240-bit block.

In the remainder of this section, we outline the particular features of the wireless

interface components.

TX Interface

The TX subsystem is responsible for demultiplexing interleaved data streams (sent

from different sources) and buffering them until they can be encapsulated and

metered out to the FPGA interface. Data is encapsulated with the InfoPad radio

packet format which provides additional functionality such as error detection,

length information, etc. Packet scheduling is accomplished in cooperation with the

microprocessor subsystem.

The TX chip provides five distinct logical channels, each of which can handle one

non-interleaved data stream. A single source per logical channel mapping is

enforced in software. Associated with each logical channel is a ring buffer which

provides storage for packets pending transmission (Figure 2— 8). Each ring buffer

has a programmable number of entries - pointers to packets in an external memory

- with up to 32 entries per ring. The number of buffers for each channel, as well as

the size of each buffer, can be dynamically adjusted according to the type of traffic

carried by the channel.
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Figure 2— 8. Logical organization of the TX buffering scheme

Since the link-level packet format is type-specific, the TX subsystem supports this

functionality by optionally prepending Pad alias, sequence number, and length

fields to each packet. At the start of each transmission, an internal lookup table –

indexed by type – is consulted to determine which fields should be added to the

current packet. In this way, the device provides a mechanism by which the link-

level packet format can be dynamically adapted to the current transmission

environment.

The architecture separates packetization from packet scheduling. For research

purposes, the importance of this feature cannot be overstated, as it allows the

processor to implement an arbitrary scheduling policy, without requiring the

processor to manage the transfers between peripheral I/O devices. Packet

scheduling and link protocols are supervised by the microprocessor as follows.
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Upon the receipt of a complete packet, the TX chip issues an interrupt to the

processor subsystem. The processor reads the {ring number, buffer number, packet

type, length} information from the device and records this information. At some

time in the future, the processor may choose to queue this packet for transmission

by pushing the {ring number, buffer number} to a “ready for transmit” FIFO in the

TX module. At the completion of packet transmission, the TX chip again issues an

interrupt, indicating that the packet represented by {ring number, buffer number}

has completed transmission.

RX Interface

The RX subsystem is responsible for processing the incoming radio traffic. It

processes the packet headers received from the FPGA and routes the data body to

the appropriate destination. Packet headers can optionally be duplicated and

forwarded to the local microprocessor for statistical monitoring, allowing the

microprocessor to monitor the packet traffic, dropped packets, and passed/failed

CRCs without processing or transporting body data.

The internal architecture of the device is a simple state machine that controls data

flow to an internal FIFO. Packet destination is determined by a programmable

lookup table based on the packet’s type field, which enables a number of data flow

scenarios. In normal operation, data is sent directly to the appropriate sink device,

though for debugging, specific data types can be routed through the

microprocessor, allowing monitoring, modifying, and rescheduling the packet before

forwarding to its final destination.

The device performs only simple, pass-through routing: once data is available in

the receive FIFO, it is transferred out to the IPbus at the first opportunity. One
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disadvantage of this pipelined reception path is the inability of the receiver

subsystem to drop incoming packets, since the payload CRC is not available until

after the packet data has been forwarded on to the data sink. Therefore, data sinks

that wish to discriminate between clean and corrupted data must buffer incoming

bytes before processing can proceed.

In addition to supporting point-to-point addressing via the pad alias, the RX

interface supports both multicast and broadcast addressing. A second alias, the

group alias, is used to identify a particular multicast group; incoming packets with

an Alias field matching either the pad alias register or the group alias register are

accepted by the receiver module. With the exception of broadcast packets, all other

packets are ignored.

FPGA Interface

The FPGA subsystem is the intermediary between the RX or TX subsystems and

the physical radios. In addition to providing the error correction coding and CRC

modules, the primary responsibilities are outlined below:

Signaling interface: since there is no standard physical interface to wireless

modems, supporting multiple physical interfaces is a task which is particularly

well-suited to programmable logic. Virtually all wireless modems support a

common set of control signals such as power up/down, channel selection,

transmit/receive selection. The FPGA module provides an abstraction of the

underlying mechanisms, so that the RX, TX, and processor modules have a

uniform view of the wireless modem primitives.
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Timing and data recovery: On the downlink, the DE6003 modem interface

presents only the raw received data signal - i.e., the analog output of a hard-

limiting comparator (binary FSK modulation is used). This signal, which is has a

nominal bit rate of 625 Kbits/sec, is oversampled by a factor of 16 (10 MHz), and is

used to recover both the timing information and data sequence. At the start of a

transmission, a sequence of 48 alternating 1’s and 0’s is sent, followed by a 32-bit

framing character; once this is received, the tracking feedback loop is opened for

the duration of the packet. Due to an implementation limitation of these modems,

the maximum continuous transmission is 10 milliseconds, so that clock drift

between transmitter and receiver during a packet time is small enough to ignore1.

Real-time interrupt: To support real-time protocol requirements (e.g., frequency

hopping), a real-time interrupt is provided with up to a 5 microsecond resolution.

For reservation-based media access, the guard interval between channel uses is

inversely proportional to the accuracy of the reservation timer. Placing the timer

block near the receive path provides a convenient mechanism for accurately (within

a bit-time) synchronizing the mobile with the basestation.

2.5.3 Microprocessor Subsystem

The microprocessor is responsible for system initialization and various high-level

protocols. The system is based around an ARM60 microprocessor running at 10

MHz with 512 KB of RAM, with 128 KB ROM for program storage.

                                                  
1 The 20 MHz system clocks are accurate to plus/minus 20 PPM
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To maintain power efficiency, the microprocessor system is designed with hardware

support for a software-initiated idle state. When the software determines that it has

no more work to be done, i.e., when waiting for some external stimulus, it signals

an external controller to initiate the idle state. This controller gates the system

clock, freezing the processor in mid-cycle and driving its power consumption to a

minimum. The processor interrupt line is monitored by the controller, and with the

next interrupt (e.g., a timer event or incoming data), the controller reactivates the

processor clock.

2.5.4 Microprocessor Interface Chip

The processor interface (ARMIF) device is the bridge between the microprocessor

bus and the IPBus, and its main roles are buffering data, byte-to-word conversion,

and performing miscellaneous control functions. In the active mode, the Master

channel directs data from the processor to the peripheral I/O chips (video,

text/graphics, audio, transmitter), while the Slave channel collects packets from

the chipset (pen, speech, and radio transmitter). A third channel, the Direct

read/write channel, provides an unbuffered read and write mechanism so that the

processor is able to program the control registers and read back the status

registers of the peripheral chips.

2.5.5 User Interface I/O Peripherals

2.5.5.1 Graphics Subsystem

The graphics subsystem is the primary output device for the InfoPad system. It

consists of a low-power SRAM frame buffer (described fully in [CBB94]), a controller

module, and 640x480 monochrome LCD. Graphics operations (e.g., line drawing
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and text display) are performed in the backbone network in the graphics server

[NSH96], and the resulting bitmaps are sent directly over the wireless link and are

rendered by the controller module.

Three shapes of bitmaps are supported: rectangular block, horizontal line, and

vertical swath (32 bits wide, variable height.) Normally, received bitmaps are

displayed regardless of the correctness of their content; if bit errors are incurred

during wireless transmission then the data is displayed with errors. This design

choice was driven by the desire to maintain a responsive interactive user interface

with bit error rates above .

A second mode, called protected mode, queues incoming bitmap data and displays

it only if it the packet payload passes CRC. This is used in conjunction with a

technique known as asymptotically reliable transmission [HM96],[Han97]. To

maintain the responsiveness of the user interface, an initial, possibly corrupted,

version of a bitmap is rendered as quickly as possible; in the background, the

graphics server follows the initial transmission with low-priority1, protected-mode

update packets that cyclically refresh the entire screen. In this scheme, corrupted

packets that were previously displayed are eventually replaced by either a clean

refresh image or an entirely new image (again possibly corrupted). This approach

provides a very responsive interactive feel while providing a means by which,

asymptotically, the screen image can be rendered without errors.

                                                  
1 These packets can be transmitted at lowest priority, utilizing unused transmission
bandwidth.
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2.5.5.2 Pen Subsystem

The pen interface utilizes a commercially-available digitizer tablet, which is

attached to the underside of the graphics LCD panel. This digitizer feeds pen

coordinates and button status to a custom ASIC, which provides a buffered

interface to the IPbus. With the first available byte of pen data, the ASIC initiates

an IPBus transfer to the Target Address, followed by a programmable number of

data bytes; this configuration allows the system software to fine-tune the buffer size

in order to balance round trip delay against the overhead incurred by sending very

short packets. (In the current implementation, the default pen packet size is 5

bytes).

2.5.5.3 Audio Subsystem

The audio subsystem performs bi-directional audio buffering and provides a

physical interface to a commercial codec, amplifier, and speaker. The audio

channel supports 8 KHz 8-bit -law encoded audio, which presents the wireless link

with 64 Kbit/s raw audio bandwidth. Downlink audio is buffered in a 1 Kbyte FIFO,

smoothing the delay jitter in the incoming audio packets. Uplink audio is generated

at the same 8 KHz rate and transferred to its destination (typically the TX interface)

via the IPBus.

2.5.5.4 Video Interface

The video subsystem supports full-motion color video. A custom ASIC

implementation consisting of 5 decompression chips plus 4 custom, low-power

frame buffer ASICs, drives the external add-on color display [CBB94]. Ideally, the

video display and graphics display would be combined, reducing system
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complexity; however, during the design phase, lightweight, thin, low-power, color

LCDs were unavailable.

As detailed in [CBB94], video data is transmitted using an adaptive vector

quantization compression scheme which divides the compressed information into

two distinct types -- video data and video codebooks – each of which has differing

transport demands. The compression scheme used can deliver up to 30

frames/second over the wireless link.

2.5.6 Evaluation and Measurements

The implementation described in the proceeding section uses a combination of full-

custom ASICs and commercially available components to provide the required

functionality and demonstrate the viability of the architecture. In several places,

providing this functionality with commercial components came at a significant

increase in the power budget. However, the lack of available components (or

weaknesses in the underlying technology) has fueled further research efforts to

close the gap: energy efficient microprocessor design [BB97]; low-power, energy-

efficient DC-DC conversion [SSB94]; fully-integrated, CDMA transmitter and

receiver implemented in CMOS [SLP96]; and circuit design for energy-efficient

reconfigurable logic devices are several of the complementary research projects

which were spawned from the InfoPad project.

In this section, we evaluate the strengths and weaknesses of the design, making a

distinction between architecture limitations and implementation-specific

limitations. We begin with a power breakdown by subsystem.
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2.5.6.1 Architectural Evaluation

As a preface to an architectural evaluation, we return to the fundamental

assumption about the role of the terminal in the overall system: that the portable

terminal is a remote interface to networked I/O servers, where the interface devices

generate data at a pre-determined maximum rate. Hence, data throughput or

computational performance is not a useful characterization of the system, since as

long as the device is able to process incoming and outgoing I/O packets at the pre-

determined rate (e.g., video frame rate, graphics frame rate, pen I/O packet rate,

etc.) there is no advantage to making the device “faster.” Our evaluation is thus

restricted to a consideration of how well the internal architecture supported the

design requirements.

Processor Utilization

As mentioned earlier, one of the goals was to minimize, and ideally eliminate, the

role of the microprocessor subsystem in the overall design, in order to reduce power

consumption. Fig. 8 illustrates that of the non-video power budget the

microprocessor subsystem accounts for 20% of the power consumption

(approximately 1.4 Watts) in fully-active operation (100% duty cycle). However,

since the microprocessor subsystem is composed of fully-static CMOS components,

gating the clock reduces the power consumption to approximately 0.25 Watts

(power due to clock distribution only). During normal operation of the InfoPad, the

measured duty cycle shows that the processor is active 7% of the time when

running at 10 MHz; this yields an average power consumption of 0.33 Watts.

While active, the processor spends the majority of its cycles servicing the TX

module, which has only a 1 MHz read/write interface. Waiting for I/O peripherals
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while responding to packet-ready notifications, clearing packets for transmission,

and responding to transmission-complete notifications dominate the time that the

processor subsystem is not in sleep mode.

Remote-I/O Processing Latency

A critical metric of the usefulness of the remote I/O architecture is the round-trip

latency incurred as a packet moves through successive stages in the system. While

the dominant source of latency is the network interfaces on the backbone network,

early measurements ([NSH96] [BBB94] [LBS95]) using standard workstations

attached to a 10 Mbit/s Ethernet backbone demonstrate that a 30 millisecond

round-trip latency was an achievable design constraint for a LAN-based backbone.

This goal is based on the graphics refresh interval and gives the user an

imperceptible difference between local- and remote-I/O processing for the pen-

based user interface. Given this constraint, it is useful to evaluate the processing

latency introduced by the interface between the IPbus peripherals and the wireless

link. We break this latency into the following three components:

Packet generation: 3 microseconds. This is defined to be the time elapsed from

when the last byte of available uplink data until the packet is reported ready (i.e., a

request for scheduling is generated). The bus-mastering architecture of the IPbus

provides a direct path from each data source to the wireless network interface (via

the TX chip buffers) without involving the processor. Thus, the packet generation

latency is typically less than three IPbus clock cycles.

Scheduling : 160 microseconds. This is the time required to process the

scheduling request and clear the packet for transmission. To facilitate

experimentation with a variety of scheduling algorithms and media-access
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protocols, packetization and scheduling are separated. Partitioning these functions

into physically separate units increases the complexity of the packetizer by

requiring it to support random access to available packets. This partitioning also

increases inter-module communication by requiring the packetizer to interact with

the scheduler several times for each packet, and each interaction requires several

bus transactions.

The current implementation, with an idle transmitter and an empty transmit

queue, has a worst case time on the order of 160 microseconds Ñ 50 microseconds

to notify the processor, 10 microseconds for the processor to clear the packet for

transmission, and 100 microseconds for the first bit of data (after 64 bits of

synchronization preamble) to be transmitted over the wireless link.

Packet distribution: 1 microsecond. This is defined as the time elapsed from the

moment the first byte of available downlink data is ready until the first byte of the

packet is sent to its destination device (e.g., pen, audio, etc.). Since the architecture

employs direct, unbuffered routing from source to destination, the packet

distribution latency is simply the time required to determine the hardware

destination address for the given type, which can be accomplished in a single IPbus

clock cycle.

The sum of these three components is 164 microseconds. This latency is

insignificant compared to the latency incurred in the backbone network (10-20

milliseconds).
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Communications Protocol Support

Because the InfoPad architecture supports type-specific link protocols, it is possible

to experiment with a variety of protocols, and, given the current transmission

environment, to fine-tune the parameters of each protocol to best handle each type

of data. By characterizing the typical traffic patterns for each data type – a

characterization which may be performed either off-line or dynamically – it is

possible to eliminate unused fields, and to optimize for the common case.

The data link protocol, which provides a unreliable point-to-point link over the

wireless medium, relies on the 1-byte pad alias field to indicate the receive address,

and on the type-tag field (1 byte) to identify the data type of the current packet.

Optionally, this layer includes any combination of the following: packet length (2

bytes), sequence number (1 byte), header CRC (1 byte), and payload CRC (1 byte).

Relative to standard protocols for wireless transmissions, this 7-byte overhead is

significantly less: on a 5-byte pen packet, for example, typically only the pad alias

and two CRC fields are added, incurring a 37% overhead. For comparison, the

IEEE 802.11 draft standard, which uses a 28-byte MAC frame header, requires

660% overhead.

2.5.6.2 Implementation Evaluation

Power consumption

The totals for the power consumption, broken down by subsystem, are presented in

Table 1, and are graphically summarized in Fig. 8. The figures indicates the

maximum power consumption, which is measured when all subsystems are fully

active (100% duty cycle). Complete with the video display module, the InfoPad



64

consumes 9.6 Watts, an order of magnitude higher than the ideal power budget.
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Figure 2— 9. Power breakdown by subsystem with video display (left) and without
video display (right)

The external video display, however, was intended to demonstrate the feasibility of

compressed full-motion video over a wireless link and to demonstrate the low-

power decompression chipset. It is worthwhile to consider the system without the

external color video display because it is such a large fraction of the power

consumption (3.9 Watts), and since comparable color LCD panels that consume

less than 1 Watt are now commercially available. In the discussion below, we

analyze the non-video power budget.

Without the video display, the inefficiencies of DC/DC conversion surprisingly

dominates the total power dissipation. These standard, off-the-shelf converters

typically operate at 70-80% efficiency, expending nearly 2.5 Watts (42% of the total

power) in providing the required supply voltages. The need for efficient DC/DC

conversion is clear: a 90%-efficient voltage conversion, for example, reduces the 2.5

Watts currently dissipated to 0.9 Watts – a 25% reduction in the total InfoPad

power budget.
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To address this need, a new DC/DC conversion design methodology has been

developed, and a proof-of-concept low-voltage prototype IC has been demonstrated

which remedies many of the limitations of current-day solutions [SSB94]. Smaller

size and lower power systems are achieved through the highest levels of CMOS

integration together with higher operating frequencies and minimum-sized inductor

selection. A synchronous rectifier, whose timing is controlled in a low-power DLL,

enables nearly ideal soft-switching and efficient conduction, even at ultra-low

output voltages. Typical converter efficiencies range from above 90% at full load

and 1.5 V and above, to 80% at minimum current load and voltages as low as 200

mV.

The second largest power consumer is the wireless link subsystem: including the

FPGA interface module (0.6 Watts), the uplink and downlink radios (0.55 and 0.53

Watts, respectively), and the A/D converter for measuring received signal strength

(0.25 Watts). This accounts for 30% of the total power dissipation, and the desire to

substantially reduce the power dissipation in this subsystem has fueled research

both in low-power reconfigurable logic [AR96], and in low-power RF transceiver

design [SLP96].

Form factor

Including the battery pack, the InfoPad measures 11 inches by 12 inches, is 1.3

inches thick, and weighs 3.3 pounds (1.1 kg). An open-case view of the InfoPad is

shown in Figure 2— 10. Figure 2— 11 graphically summarizes the contribution, by

subsystem, to the weight and surface area of the device.
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Figure 2— 10. Interior view of the InfoPad terminal

Higher levels of integration are the most obvious way to improve the form factor.

Since the total number of transistors in the I/O processing ASIC is fewer than 5

million, it would be possible to fit the entire functionality onto a single die with

current semiconductor technology. Reducing the number of high-pinout ASICs is

beneficial in 3 ways: 1) eliminates the weight of the chips; 2) reduces the surface

area, and hence weight, of the PCB board; and 3) simplifies the PCB routing, and

allows for a reduction in the number of layers in the board. Together, these

reductions could eliminate approximately 30-50% of the current weight. Pushing

the higher integration between the analog and digital components is needed as well,

given the large fraction of the overall board area that is utilized by discrete

components.
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Breakdown of Board Surface Area, by Subsystem
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Figure 2— 11. Weight Breakdown by Subsystem (left), and surface area of board by
subsystem (right)

2.6 Summary

Optimizing the system architecture and design of the future “personal computer”

for mobile wireless access to network based services requires a new relationship

between local computation and network access capability. The InfoPad explores a

design point where the terminal functions as a remote I/O interface to user-

accessible computing, information, and storage resources that are removed from

the portable device and are placed on a shared, high-speed backbone network of

servers. This optimization allows the minimal cost, weight, and energy

consumption.

Results show that by using an optimized architecture for communications along

with low-power design techniques that high real-time multimedia data can be

manipulated while requiring only a small fraction of the overall system power.

Future research should focus on the other power consuming components, which
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includes displays, high-efficiency DC/DC conversion; energy-efficient

microprocessor design; fully-integrated, low-power RF transceivers; and low-power

programmable logic technologies.
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Chapter  3

Pro t o co l  Des i gn  and
F o r m a l  S p e c i f i c a t i o n

Languages

After all, when you come right down to it, how many people speak the same language even when
they speak the same language?

Russell Hoban, in The Lion of Boaz-Jachin and Jachin-Boaz (1973).

3.1 Overview

In the preceding chapter, we took an in-depth look at how system-level constraints

impact the service requirements of the link level protocol. These service

requirements are typically expressed informally, as in a textual description, and

must be translated into constraints on the state machines that define the protocol.

This informal approach to defining the behavior of the protocol gives rise to several

problems. First, there is the problem of checking that the protocol provides the

required service. Without a formal description of the service requirements, it is

impossible to determine whether a protocol formally meets the service
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requirements. Yet to date there is no formal means of specifying service

requirements.

A second problem is that of specifying the protocol itself. Assuming a protocol

designer is capable of capturing and understanding the full set of service

requirements and (mentally) designing a protocol that meets these requirements, a

language that has precise, unambiguous semantics is needed in order to capture

the protocol. Such a language is referred to as a formal language, and for these

languages it is possible to uniquely determine the meaning of each language

construct.

A rather large body of work exists in the formal languages area. Thus, the first

problem is that of choosing an appropriate language to describe the system of

interest. In this chapter, we lay the foundation for understanding formal languages,

and also for understanding the basis for the formal verification techniques

presented in Chapter 4. We begin by introducing formal specification of protocols

and the languages that have been used for formal specification.

3.2 Specification of Protocols

The protocols we are interested in involve concurrent systems, and the behavior of

concurrent systems is usually modeled as a sequence of states or actions, or both.

A specification of a protocol – what the protocol is supposed to do – consists of the

set of all possible behaviors, or sequences of states, considered to be correct. The

problem at hand is to determine a language that is suitable for specifying a protocol

in an implementation-independent way; however, this language must allow one to

easily map the essential features of the protocol down onto an implementation.  A
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problem that we will discover is that many of the specification languages have

semantics that are particularly biased toward high-level software implementation

and are practically impossible to directly map onto a hardware implementation.

Another dimension of the specification problem is that of combining design with

specification.  That is, in the early phases of a protocol design it must be possible to

estimate performance while working at a very high level with sections of the system

only partially specified.  The specification language should facilitate this iterative

design process rather than orthogonalizing the design and standardization/-

specification problem.

With these issues in mind, we develop a formal definition of a specification, a model

for protocol systems, and consider the major efforts in protocol specification

languages.

3.2.1 A formal model of protocol systems

A protocol is analogous to a language in that it consists of a vocabulary of

messages, a precise syntax for encoding the messages, a grammar that defines the

rules for composing and exchanging messages, and semantics for interpreting the

meaning of strings in the vocabulary. Just as a spoken language serves to convey

an idea from one person to another, so a protocol provides some service based on

exchange. The protocol specification is a precise, unambiguous formulation of this

language of exchange.

If we assume that the set of messages that can be exchanged is finite, the analogy

between languages and protocols leads to very convenient, well-developed

formalisms: formal languages and finite automata.  A formal language is a set of
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strings of symbols from some one alphabet, where an alphabet is a finite set of

symbols and is usually denoted as S  [HU79].  Relating this to protocols, S  is the

set of messages that can be sent or received, including messages that come from

the environment (such as the expiration of a timer, for example).

A finite automaton consists of a finite set of states and a set of transitions from

state to state that occur on input symbols chosen from S .  For each input symbol

there is exactly one transition out of each state, possibly a self-transition.  The

initial state, usually denoted q0 , is the state at which the automaton starts.  If the

set of transitions out of a particular state consists of only a self-transition, then

that state is called a final or accepting state.  Formally, an automaton is

represented by a 5-tuple ( , , , , )Q q FS d 0 , where Q  is a finite set of states, S  is a

finite input alphabet, q Q0 Œ  is the initial state, F QÕ  is the set of final states, and

d is the transition function mapping Q Q¥ ÆS .  Given the current state qn and

an input s , the transition relation d s( , )q qn nÆ + 1  defines the next state.

A common way of modeling protocols is by using communicating processes, where

each process is a finite automaton and the network of processes is connected via

error-free, full-duplex FIFO channels [BZ80]. The definition for a finite automaton

above does not provide a way of explicitly representing or manipulating variables

other than by explicitly manipulating the state of the automaton.  A notational

convenience for separating a named set of variables V that are implicitly part of the

state encoding yields a structure known as an extended finite state machine

(EFSM).  Formally, if V is a set of variables, each of which can assume a finite

number of values, then the EFSM is the automaton given by ( , , , , )Q V q F¥ S d 0 .
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The problem that a protocol attempts to address is how concurrent – and often

independent – systems are able to exchange information.  In order to design a

protocol to facilitate this type of exchange, we must have the ability to represent

concurrency and communication.  There has been a great deal of work in a variety

of research communities in an attempt to define a formal (i.e., mathematical) model

of concurrency and communication, giving rise to a rich selection of “models of

computation.” A basic grasp of the major works in this area is requisite before

further discussion of specification languages, because beyond the cosmetic

(syntactic) differences in specification languages, there are subtle semantic

differences that greatly determine whether a language is suitable for our purposes.

(An excellent introduction with good bibliographies can be found in [LS96], [HU79],

[LL90] and [Mil89]). With this in mind, we review major themes in concurrent

systems theory.

3.2.2 Models of concurrency and communication

For distributed systems, the models of computation usually considered are some

variation of concurrent execution of sequential processes that communicate and

coordinate their actions by message passing via queues.  Implicit in the message-

passing model is the assumption that each process can continue to operate

correctly despite the failure of other processes in the system.   These computational

models can be grouped according to the how events are ordered among processes

(execution semantics) and according to the degree of communication synchrony

(communication semantics) between processes [LL90].
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3.2.2.1 Semantics of event ordering

A natural question that arises when modeling a system of distributed interacting

processes is how the ordering of events is represented at the system level. Lee and

Sangiovanni-Vincentelli [LS96] present a framework for comparing models of

computation based on how time is represented. Their framework uses a tagged

signal model, where events consist of a (tag, value) pair and signals are simply sets

of events. Processes – fragments of the system – are relations on signals, which are

expressed as sets of n-tuples of signals. Models of computation are differentiated

according to how order imposed on tags and by how the process evolves [ELLV97].

Timed systems impose a total order on event tags, since given any two events it is

possible to say that either one preceded the other or that they occur

simultaneously. Untimed systems, where there is no assumed temporal relationship

between processes, are said to have partial order execution semantics. In these

systems, event tags within a process can be ordered, but ordering event tags

between processes is meaningless.

Asynchronous systems are untimed systems – for example, it is assumed that

messages that are inserted into a queue are eventually delivered.  In asynchronous

systems, there is no concept of how long it takes the message to be delivered, how

fast a process executes relative to another process, how much time passes between

events, and there can be no assumption about when messages will arrive. However,

completely removing the notion of time is usually too strong for practical systems,

so other models introduce abstract time [ITU93a][Est89][Hol92]. Here it is possible

to specify that a message is to be delivered within some upper bound d that has no

correspondence to physical time, but creates a formal representation for a time-out

event and allows the specification to handle these events.



75

Discrete-event systems layer a total ordering on events on top of a communicating

sequential process model.  Each process in the system advances independently, yet

all observable events have a total ordering. Other models of execution strengthen

the assumptions about time by assuming that two systems run at a known rate

with a fixed time offset e . Lamport and Lynch review algorithms for constructing

synchronized clocks between processes using the relative rates of execution, and

bounds on message and processing delay [LL90].

Synchronous systems have the strongest model of time. Two events are

synchronous if they have the same tag, and two signals are synchronous if all

events in one signal are synchronous with an event in the other signal.  A

synchronous system, then, is a system in which all signals are mutually

synchronous. In these systems, computation takes place at discrete instants: at

instant n, every process sends messages (possibly to every other process).  These

messages are used in during instant n + 1 to compute the messages that will be

sent during that instant1.

In summary, within this framework a sequential process can be viewed as having a

single signal that places a total order on the events that transpire as the process

evolves.  Communicating sequential processes – the model most often used to

describe protocol systems – are a collection of sequential processes, each having a

total order on its own signal. However, the system as a whole may be timed or

untimed.

                                                  
1 A subtle but important point of clarification is needed to differentiate synchronous events
and concurrent events.  Two events are said to be concurrent if it is impossible to distinguish
the occurrence of one before the other; this definition includes partial order systems where it
is not possible to compare event tags. Synchronous events, however, have identical tags. In
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The languages discussed in the following subsections support various

combinations of the above execution semantics.  For example, some languages

allow one to group sets of processes and have a total ordering on a set, yet a partial

ordering between sets. For the protocol designer, it is important to understand the

subtle differences between models of concurrency, execution, and communication

that are provided by the common languages used to specify protocols.

3.2.2.2 True- and quasi-parallelism

A common way of modeling concurrent execution is by using interleaving. In the

interleaving model, time is divided into a sequence of instants in which exactly one

process is selected, perhaps non-deterministically, for execution, and the selected

process executes a single transition that defines the end of the current instant. The

results of this transition are propagated throughout the system instantaneously,

and these results are used to compute the set of processes that are enabled to run

in the next instant.  If the selection process is deterministic, then the interleaving

semantics places a total linear order on the execution of the system.

In the non-deterministic interleaving model, a single process from the ready-to-run

set is chosen non-deterministically and is allowed to execute in the next instant.

Essentially, these execution semantics place a temporal order on the sequence of

observable events that has a linearly ordered past, but a future that branches non-

deterministically. Thus, every instant has a unique past but an indeterminate

future, which models untimed systems very well: each process can assume nothing

                                                                                                                                               
several of the languages discussed below, a system is viewed as operating concurrently
between points of synchronous communication.
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about the relative execution speed of any other process, so a “correct” design must

behave properly under all timing conditions (equivalently, no timing assumptions).

As detailed above, in the synchronous parallel model time is divided into a series of

instants during which all processes execute transitions simultaneously.  The effects

of the transitions are visible immediately, requiring special restrictions against

nonsensical assignments. Figure 3— 1 shows an example of two processes

simultaneously assigning a different value to a shared variable; another example

are zero-delay “loops” of the form x x= ÿ .

Global X;

Process1() {
  X = 0;
}

Process2(){
  X = 1;
}

Figure 3— 1.  Multiple assignment in synchronous parallelism

Which model of concurrency is more useful is strongly dependent upon what one

wishes to represent. At higher levels of abstraction, where it is useful to be able to

consider events such as “message received” or tasks such as “message send” to be

atomic, the non-deterministic interleaving model greatly reduces the complexity of

the inter-process interaction that one must consider.  Since during each instant

only one transition can occur, each process can assume that it need only consider

one event at a time. Thus a process must be ready to communicate with any other

process at each instant, but actually communicates with only one of them before

performing some further processing.

At lower levels of abstraction, closer to the implementation, the synchronous

parallel model becomes more useful, especially when describing systems are likely
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candidates for hardware implementation using synchronous circuits. Here there is

a need to be able to represent simultaneity in a way that an asynchronous

interleaving cannot provide.

The disconnection between high-level modeling and implementation appears when

one attempts to map a model from one computation domain to another.  For

example, consider the example shown in Figure 3— 2.  Here there are two processes

that share common state variables x  and y , with operations Init and Next, that

set the initial value and the value during the next instant. If we start the system in

the state ( , ) ( , )x y = 0 0 , then for the interleaved case we can see that at the end of

each instant the state vector is either ( , )1 0  or ( , )01 , and it is never possible for the

system to reach the state ( , )11 .  However, for the synchronous case, at the end of

each instant, the state is either ( , )0 0  or ( , )11 .

Global x,y;

Process1() {
  Init(x) := 0;
  Next(x) := ~y;
}

Process2(){
  Init(y) := 0;
  Next(y) := ~x;
}

Figure 3— 2. Pseudo-code for concurrent processes

The important point here is that there are behaviors that non-deterministic

interleaving can exhibit that are not possible in a synchronous execution

environment, and vice versa. As we consider the variety of specification languages

in the following sections, this point will become a limiting factor for systems that we

wish to refine to a hardware implementation. A language that does not support

both asynchronous and synchronous execution is inherently biased away from
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graceful refinement to synchronous hardware. The task of mapping a model in one

computation domain to another is one that is still an area of active research.

3.2.2.3 Communication Synchrony

A further point of differentiation in formal languages is the semantics of message

transfer, where the differentiation is made based on whether the sender must wait

on the receiver before continuing.  Hoare’s language for communicating sequential

processes (CSP) [Hoa78] introduces a model where processes execute

asynchronously (in the sense that the relative rates of execution are not specified)

but communicate synchronously – a mechanism commonly referred to as a

rendezvous.

In CSP, processes execute asynchronously, but the message sending operation

requires the sender to wait for the receiver to accept the offered message before

proceeding to the next step in its execution.  Thus, message passing defines

discrete synchronization points where the participants in a message exchange

execute simultaneously during the instant of message transfer.  In the literature,

this style of communication is often referred to as a rendezvous between processes,

and, for example, is the communication that underlies remote procedure calls.

Asynchronous communication, on the other hand, allows the sender to post a

message to a queue and continue processing without waiting for the receiver to

accept the message.  While this simplifies the description, it can lead to difficulties

during the implementation or validation phase because, for example, it is possible

to specify systems that require infinite buffering capacity, rendering many safety

and liveness properties formally undecidable.  However, the asynchronous
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communication using unrestricted queues is by far the most common abstraction

in protocol description languages, as we shall see in the following section.

3.2.3 Formal Languages for Protocol Specif ication

Since the models of computation usually considered are based on concurrent

execution of sequential processes, the primary function of a protocol specification is

to provide the legal execution sequences that each process can exhibit.  Thus a very

natural way to think about and specify protocols is by using a language that is

based on concepts rooted in programming languages. In programming linguistics,

as in the study of natural languages, syntax is separated from semantics.

Language syntax is concerned with the structural aspects of the language, such as

the symbols and the phrases used to relate symbols; syntactic analysis determines

whether a program is legal.  The semantics of a programming language, on the

other hand, deals with the meaning of a program – that is, what behavior is

produced when the program statements are executed.

In order to create an unambiguous specification, one must use a language that has

unambiguous semantics, so that a legal phrase in the language has a single

interpretation. In a protocol context, this requires an underlying mathematical

model of process execution, inter-process communication, and the system state

space.  A language having these properties is known as a formal description

technique (FDT).

A variety of languages have been proposed and developed for the purpose of

describing protocols. Some of these languages were developed with the goal of

augmenting informal descriptions in protocols published by standards committees,

while others were developed as aids for the design and verification of protocols.
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These languages can be differentiated according to the model of computation,

communication infrastructure, synchronization primitives, notion of time, and

support for data types. In sections 3.2.3.1 through 3.2.3.3, the most well known

formal languages are presented with a comparison of their suitability for protocol

specification.

3.2.3.1 Standardized FDTs for Protocol Spec ification

Several early attempts at developing a language formalizing a protocol description

[Ans86][ARC82][AC83] gave birth to three parallel standardization efforts by the

International Standards Organization (ISO) and Comité Consultatif International

Télégraphique et Téléphonique (CCITT). The resulting languages are described

below:

Estelle

Estelle [Est89][ISO9074] is a second generation FDT and was heavily influenced by

earlier prototype languages [Ans86][ARC82][AC83].  The underlying model is that of

extended finite state machines1 that communicate by exchanging messages and by

restricted sharing of some variables.

Model of computation: Estelle supports both non-deterministic interleaving and a

“synchronous parallel” model of computation, denoted by activities or processes,

respectively.  The top-level construct, a specification, consists of a set of modules,

where the execution of each module is non-deterministically interleaved with that

                                                  
1 “Extended” finite state machines do not treat variables as part of the state per se: instead of
having an explicit state and transition for each value of a variable, there is a many-to-one
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of all other modules and the communication between top-level modules, called

systems, is asynchronous.  A system must be attributed as either of the activity

type (systemactivity) or the process type (systemprocess).  A systemactivity can

consist only of activity instances, while a systemprocess, on the other hand, can

consist of both activity and process instances. The legal parent-child relationships

are depicted in Figure 3— 3.

systemprocess systemactivity

process

process

activity

activity

activity

activity

activity

activity

activity

activity

module

Figure 3— 3. Estelle concurrency constructs

                                                                                                                                               
mapping between variable values and states. This is strictly a notational convenience that is
used to clarify the design of a transition system.
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Communication: Instances can communicate by message exchange or by sharing

variables in a restricted way.  In the message passing case, the basic model is that

each instance has a single unbounded message FIFO that is shared by all of the

instance’s messaging ports (called interaction points). Since the message FIFO is

unbounded, senders can always send a message immediately, and Estelle provides

no support for a rendezvous mechanism.  Messages arriving at an interaction point

are placed into this shared FIFO, and during the next execution of the instance the

next message is pulled from the FIFO and processed. This configuration is

illustrated in Figure 3— 4.

process/activity
state machine

incoming
interaction

point A

incoming
interaction

point B

incoming
interaction

point C

outgoing
interaction

point A

outgoing
interaction

point B

outgoing
interaction

point C

unbounded
message

FIFO

Figure 3— 4. Inter-module communication in Estelle

Additional concurrency semantics: Instances may also communicate via shared

variables, but the restriction is that a module may only share a variable with its

parent module.  Simultaneous access to variables is excluded via the so-called

parent/child priority scheduling rule: a module that has transitions that are ready
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to fire will execute those transitions before any of its child modules are allowed to

execute.  A module thus acts like a scheduling supervisor for its child instances: a

child process or activity cannot run unless its parent is selected to run, and it must

“offer” transitions to its parent, who in turn must enable the transition to run.

Each computation step of a system begins by non-deterministic selection of one (in

the case of a systemactivity) or several (in the case of a systemprocess) transitions

among those ready-to-fire and offered by the system component modules. The

selected transitions are then executed in parallel, and the computation step ends

when all of them are completed. The Estelle language definition considers this to be

synchronous parallel execution.

However, the semantics of interprocess communication conflicts with the ability to

represent simultaneity in the parallel execution of processes.  To see this, suppose

there are three processes labeled S1 , S2 , and R . If S1  and S2  both send a message

to R  during the same computation step, the message must appear to R  as if one

precedes the other, though both message are placed in the queue in the same

computation cycle.  The choice about which message gets inserted first is made

non-deterministically, thus the receiver must handle all possible interleaving cases.

This inability to represent simultaneity eliminates the usefulness of a synchronous

parallel model of execution.  Essentially, internal actions do occur simultaneously,

but interaction with other processes is by definition always asynchronous.

Time: Estelle supports a delay qualifier on state transitions.  However, the

computational model for Estelle is intentionally formulated in time-independent

terms: one of the principal assumptions of this model is that nothing is known

about the execution time of a transition in a module instance.  In this perspective,

no specific relationship between a time unit and execution speed of a module
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instance can be known or taken into account. The only assumptions about time are

that (a) time progresses as the computation does and (b) this progression is

uniform with respect to delay values of transitions. Thus, given two enabled

transitions whose delay timers are active (i.e., the transitions will be enabled to

execute when a specified delay has expired), at the beginning of the next

computation instant their delay values would decrease by the same amount

[Dem89].

SDL

The Specification and Description Language (SDL) [ITU93a][ITU93b] was developed

by the CCITT, and was designed specifically for the specification and design of

telecommunications systems.  Started in 1968, SDL was accepted as an

international standard in 1987; ongoing work to add object-oriented constructs to

the language resulted in a revision in 1992 (SDL-92).  Today it is the most widely

used and accepted of the FDTs, as evidenced by the commercially available tool

suites and the publication of several new international protocol standards with an

SDL specification [IEEE97][ETSI95][ETSI96].

Model of Computation: As in Estelle, SDL is based on an extended finite state

machine framework.  A top-level system is composed of blocks, which are in turn

composed of processes, which are the actual state machines. Each process is a

state machine that executes by waiting in a state until an enabling condition exists

that allows it to transition to the next state.  These transitions can include actions

such as modifying local variables and sending messages, but are modeled as if they

occur in zero time. Processes execute asynchronously and independently, and can

make no assumptions about the relative execution speed of other processes or

about the arrival order of signals, and thus have partial order execution semantics.
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Communication:  SDL processes communicate by sending signals via zero-delay

signalroutes (for inter-process communication) or arbitrary-delay channels for inter-

block communication. Normally, communication between processes is

asynchronous and, as in Estelle, a process has a single unbounded queue that is

shared between all incoming signalroutes.  Arriving signals are placed in the queue

in the order of arrival, and two signals that arrive simultaneously are placed in the

queue in arbitrary order.  Thus, all possible interleavings of arriving signals must

be considered.

The remote procedure call provides a mechanism for synchronous communication

by using exchange of signals of signals between the “server” process and the

“client” process. The requesting process (the client) sends a signal containing the

actual parameters of the procedure call, to the server process and waits for the

reply. In response to this signal, the server process executes the corresponding

remote procedure, sends a signal back to the requesting process with the value of

all in/out -parameters, and then executes the transition. . These signals are

implicit and are conveyed on implicit channels and signal routes.

A rather non-intuitive property of SDL communication is that, by default, SDL

handles unspecified reception by implicitly consuming unexpected signals.  For

example, suppose the set of all possible incoming messages is { , , , }A B C D .  If the

process is in a state where it is waiting for a signal from the set { , }A B , then all

occurrences of C  or D are discarded until an A or Barrives. There is a

mechanism by which unanticipated signals can be saved on the input queue, thus

allowing FIFO ordering to be overridden, but this is not the default behavior.
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The third mechanism of interprocess communication is via imported and exported

variables.  A process can export a local variable that can be read – but not written –

by any process that imports that variable. This is a syntactic simplification over an

explicit query/response message exchange between a reader and the process that

owns the variable.

The final mechanism for communication is via viewed or revealed signals, which

essentially provides the capability to export and import a signal that is

continuously sampled.

Time: SDL represents time in terms of an abstract system clock that can be read by

any process.  As in Estelle, time advances by virtue of timer expiration.  A process

sets a timer by specifying the expiration to be now duration+ , where now is the

current value of the system clock.  At the end of the current computation instant,

the next process to run is chosen from the set U T» , where U  is the set of all

processes without active timers, and T  is the set of processes with active timers

that have the smallest value for expiration time.  If a process in T  is chosen for

execution, the system clock is set to the expiration time, and processes in T  must

execute before a timer having any other expiration time.

Other Features: The wide acceptance of SDL can in part be attributed to its support

for inheritance and refinement.  The idea is that designs should proceed in a top-

down fashion, and that the behavior of any process, service, channel, or block

should be able to be incrementally refined.  While this is a simple syntactic

improvement over the basic semantics, it proves to be quite useful in practice.

Figure 3— 5 illustrates channel refinement – at one level, it is possible to model the

communication between A and B as taking place over a zero-delay, ideal channel X.
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However, it is possible to refine the message-passing behavior of X  to include more

detailed behaviors as the design develops.

process
A

process
B

process C
(refines

channel X)

channel X

Figure 3— 5. SDL channel refinement example

LOTOS

The Language of Temporal Ordering Specifications (LOTOS) was developed by the

ISO and was passed as an international standard in early 1989.  LOTOS is strongly

based on Milner’s Calculus of Communicating Systems (CCS) [Mil89], with

additional influence by Hoare’s CSP (introduced in 3.2.2 above). It falls into a class

of languages known as a process algebra, which can be characterized by (1) a

thorough-going use of equations and inequalities among process expressions, and

by (2) exclusive use of synchronized communication as the means of interaction

among system components. Process-algebraic languages define a rigorous set of

transformations and equivalence relations that allows a designer to reason about

behaviors.
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LOTOS, though accepted as an international standard, has in practice gained little

acceptance and use.  The highly mathematical way of reasoning and proving

equivalence relations proves to be unwieldy for large, real-world designs.

Model of Computation: As in both SDL and Estelle, LOTOS is based on

communicating extended finite state machines, called processes.  The execution of

the EFSMs occurs via non-deterministic interleaving. Events are considered to be

atomic, and the parallel execution of two events aand b  is defined as a situation of

choice, where either aoccurs before bor vise-versa.

Communication: As with all of the process algebraic languages, LOTOS provides

only for synchronous communication between processes.  The sending process

must wait for the receiving process before continuing with computation; likewise, a

receiver must wait for a sender before continuing.  It is possible to model

asynchronous communication by inserting queues between communicating

processes; these queues are themselves represented using processes.

LOTOS provides several synchronization primitives that are not found in either SDL

or Estelle.  Mulitway synchronization, borrowed from CSP, allows a number of

processes to rendezvous. Anonymous synchronization allows a process to propose a

synchronization to its environment without being able to dirct its proposal to a

specific process; the (static) structure of the systems determines which process will

have to participate in the synchronization. Finally, non-deterministic

synchronization allows the system to non-deterministically choose the processes

involved in a given synchronization.

Time: LOTOS does not provide for a notion of time.
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3.2.3.2 Specialized Languages

Several languages that are specifically directed toward the verification problem

have been developed and proposed by some as languages for formal specification.

Promela [Hol92], Murf [DDH92], and SMV [McM93] are three languages that

evolved as front-end specification languages for formal verification systems.

Semantically, Promela and Murf are not significantly different than the other EFSM

formalisms presented in the preceding section in that they both use non-

deterministic interleaving to model concurrency. However, they do have syntactical

properties that are tailored for formal verification. Both of these languages have

been used to demonstrate verification of simple communication protocols, but their

main area of application has been in verifying cache coherence protocols.

Murpf
Murf,  (pronounced “Murphi”) on the other hand, treats the system state as a

globally-shared vector, and defines rulesets that consist of an arbitrary number of

actions, define the rules for manipulating this global state.  As in ProMela,

Murf employs a non-deterministic interleaving execution semantics, but the unit of

atomic execution is the ruleset rather than the individual statement.

Promela
In ProMela (PROtocol MEta Language), sequential processes execute

asynchronously under a non-deterministic interleaving semantics, and

communicate either synchronously or asynchronously via finite-length queues. The

basic unit of atomic execution is an individual statement, though there are

provisions for aggregating statements as atomic actions. The state of the system is
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composed of the local variables in each process, the contents of all queues, and the

program counters for each process.

The model of execution is untimed, though a timeout event can be specified to

occur whenever all of the other system queues are empty and no process can send

a new message.  However, completely removing the concept of time increases the

complexity of the modeling system relative to a language such as SDL that provides

a mechanism for specifying the duration of timers.

This inability to distinguish between "fast" and "slow" timeouts proves to be the

most difficult aspect of using Promela as an early-prototyping language that

The strength of Promela as a modeling tool is that it is simple to define

communicating systems of finite state machines that can be formally verified for

safety, liveness, and other properties specified as linear temporal logic formulae.

SMV
SMV, the front-end language for the SMV model checker, is an extremely elegant,

syntactically concise language that supports almost all execution semantic features

required for designing and specifying communication protocols.  It supports both

synchronous and non-deterministically interleaved execution.  However, its

communication semantics were born out of a hardware circuit environment, thus

its signaling mechanisms are modeled after hardware communication signals, so it

is not especially convenient for high-level modeling message exchange, since

timers, queues, and message exchange must be handled at the signal level.

Although in its current form it is not well-suited for use as a high-level, distributed-

systems language, it is appropriate for use in the implementation phase.  In fact, it
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is perhaps the best choice for an implementation language because of its formal

semantics and close ties to the verification tools. We will give an extended

introduction to SMV

3.2.3.3 The Synchronous Languages

We mention synchronous languages [Hal93) here only because they have been

extensively used for modeling systems of finite state machines.  The underlying

assumption – the synchrony hypothesis – is that all processes view at exactly the

same instant. For implementing portions of a protocol, this model may be an

adequate representation of a particular implementation. However, because

protocols deal with systems that are distributed, the synchronous hypothesis is

inappropriate for describing the interaction relationships of distributed

components.

3.2.4 Summary of Formal Languages

Table 3— 1 presents a summary of the various formal languages presented in the

preceding sections. An evaluation of these languages resulted in using SDL as the

choice for high-level “message-passing” protocol design, and SMV as the language

for use in synchronous systems.
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Language Formalism Concurrency Communication Implementation
Suitability

Estelle EFSM Non-deterministic
interleaving,
Synchronous
parallelism,
or both

Asynchronous message
passing

Infinite buffers

Limited shared variables

Parent-child priority
scheduling would be
impractical for use in
hardware systems

SDL EFSM Asynchronous
independent
processes

Asynchronous message
passing via infinite
buffers

Rendezvous remote
procedure call

Single input queue
per process is
impractical for direct
map to many
hardware systems

ProMeLa EFSM Non-deterministic
Interleaving

Asynchronous or
rendezvous

Finite buffers

Primitive elements are
too restricted for a
general specification
language

Interleaving semantics
are not appropriate
for most hardware
systems

Murf EFSM Non-deterministic
interleaving

Shared memory Primitive elements are
too restricted for a
general specification
language. Language
targeted for
verification.

LOTOS Process
Algebra

Non-deterministic
Interleaving

Synchronous, with a
variety of rendezvous
mechanisms

Inappropriate for
system design

SMV EFSM Both synchronous
or non-
deterministic
interleaving

Synchronous Communication
semantics are too
hardware specific to
be easily used as a
high-level design
language

Best choice for
circuit-level
implementation of
protocol state
machines

Table 3— 1. Summary of Formal Languages
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Chapter  4

P r a c t i c a l  A p p r o a c h e s  t o  t h e
F o r m a l  V e r i f i c a t i o n  o f

C o m m u n i c a t i o n  P r o t o c o l s

4.1 Overview of formal verification

Protocol design is error prone because it involves designing distributed concurrent

systems and that must behave correctly under all conditions.  Pnueli, in a seminal

paper [Pnu77], argued that a special type of modal logic1 called temporal logic could

be a useful formalism for specifying and verifying correctness of computer

programs, especially for “reactive” systems that continuously interact with their

environment. Temporal logic provides operators that allow one to reason about how

the truth of an assertion varies with time.  For example, eventually Q is true if there

                                                  
1 Modal logic was originally developed by philosopers to study different “modes” of truth.  For
example, the assertion P may be false in the present world, yet the assertion possibly P may
be true if there exists an alternate world where P is true [Eme90].
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is some moment in the future where the proposition Q holds, and always P is true

if for all moments P holds.

Table 4— 1. Commonly used temporal logic formulas

Mnemonic Temporal Logic
Formula

 (or equivalent macro)

Interpretation

Invariant(p) AG p( ) A condition that must hold in all
states

Possible(p) EF p( ) Asserts that starting from the
current state it is possible to reach
a state where p holds

AlwaysPossible(p) Invariant(Possible(p)) Asserts that from any state it must
always be possible to reach a state
where p holds.  This can be used to
detect deadlocks, since in a
deadlock it is not possible to reach
any other state.

Finally(p) AF p( ) Asserts that from the current state,
p must eventually hold

InfinitelyOften(p) Invariant(Finally(p)) Asserts that for all states, Finally(p)
must hold – in other words, the
system should never reach a state
where it is impossible for p to occur
at some time in the future.

Liveness(p,q) AG p AF q( ( ))fi
“Invariant( p implies
Finally(q))”

P  must always be eventually
followed by q. This can be used to
assert that “something good
eventually happens”

Precedence(p,q) A p U q( ) Asserts that p must hold until q.
This can be used to describe safe
liveness – that is, nothing bad
happens until something good
happens

StopUpon(p,q,r) Invariant(p implies
Precedence(q,r))

Asserts that in any state of the
system that if p holds, then q must
hold until r holds.

EventuallyTestUpon(p,q,r) Finally(StopUpon(p,q,r)) Asserts that infinitely often
whenever a state is reached where p
is true, q will remain true until r
becomes true.
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Before this application of temporal logic, proving the correctness of sequential

programs was approached using Hoare’s Logic. Here, correctness is formulated in

terms of initial- and final-state properties that must hold before and after

execution, respectively.  Under this method of proof, a program is said to be correct

if given the correct initial state, the program terminates in the proper final state.

However, protocol systems are reactive in that they must continually respond to

stimulus that comes from the environment, so it is difficult to reason in terms of

“final states.” Pnueli’s contribution was the realization that temporal logic operators

provide a formalism that can adequately handle the non-terminating behavior of

reactive systems.

Historically, the application of temporal logic to reasoning about concurrent

distributed systems can grouped into two broad categories: proof-theoretic

techniques and model-theoretic techniques.  Informally, the proof approach relies

on the basic idea that the system model (what the system is) and specification (what

the system is supposed to do) can be expressed as a collection of logical

propositions, axioms, and inference rules, and the task is to prove that the model

implies the specification.  The most serious limitation of this approach is that it is

too far removed from practicable design styles: for a reasonably sized system, the

hundreds of lemmas must be proved in full detail to render this approach valid.

For this reason, theorem proving in general is not a serious candidate for proving

properties of real systems.

The model-theoretic approach uses the global state transition graph of a finite state

concurrent system as a finite temporal logic structure, and a model-checking

algorithm is applied to determine if the structure is a model of a specification

expressed as a temporal logic formula. Thus, the model checking algorithm is able
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to determine if a given finite-state program meets a particular correctness

specification.

Recent work by McMillan, termed compositional refinement verification, uses a

combination of theorem-proving and model-theoretic techniques.  By exploiting

symmetry that is common in many designs, it simplifies the proof technique as well

as offering the possibility of handling larger designs. Compositional refinement

verification forms the basis for relating a high-level specification to an

implementation in our design methodology and will be explored in the next chapter.

At the moment, we take a brief tour of the main efforts in formal verification and

consider their applicability to a protocol design methodology.

4.2 Model Checking

The most well developed tools use a technique known as model checking, where

invariants and temporal propositions can be checked by traversing the state space.

McMillan’s SMV symbolic model checking system [McM93], Holzmann’s Spin

[Hol92], and AT&T’s COSPAN fall into this category.

Model checking is suitable for full automation yet is limited to systems that can be

modeled as a finite state machine (the model). A specification, written as a set of

temporal logic formulae, is taken together with a finite state machine, and the job

of the tool is to show that the behavior of the model implies the specification. An

automated model checker can simply traverse the state space and find a state in

which some part of the specification is violated, and can produce the execution

trace of the counter example by stepping the execution back to an initial state.
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Though the expressiveness of temporal logic is somewhat limited when compared to

the power of general theorem proving, many properties central to designing sound

communication protocols (safety, liveness, fairness, etc.) can be handled quite well

[McM92].  However, both the strength and limitation of automated model checkers

is that they are based on exhaustive reachability analysis.  To establish the truth or

state invariants, it suffices to verify that in each state that is reachable from an

initial state, the invariants hold [Hol92]. Inevitably, however, one must face the

unfortunate property of finite state systems: the state explosion problem, which is

the exponential relationship between the number of states in the model to the size

of the state vector required to capture the state of the system. (The largest systems

that have been checked to date have are on the order of 1020 states, corresponding

to about 64 bits of state.)

The size of the state vector depends on several factors.  Obviously, the number of

explicit variables in each process (i.e., state machine), and the range of values

assumed by each variable is a factor.  The number of queues, the length of the

queues, and the size of each queue entry is also a factor.

But, more subtly, the granularity of atomic execution has perhaps the most

dramatic influence on the number of possible states that the system can visit.

Informally, all possible interleavings of atomic events must be verified, so that

increasing the granularity of atomicity has a dramatic impact on the number of

executions the system can realize.

For this reason, actors in the protocol must be modeled at a very high level of

abstraction in order to keep the size of the problem within reach of automated
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tools, excluding the checking a fully detailed implementation for all but the

simplest of systems.

In the following subsections, we explore the various techniques that have been

applied to cope with the computational complexity of formally verifying concurrent

systems.

4.2.1 Symbolic Model Checking

Arguably, the biggest advancement in reducing the limitations imposed by the state

explosion problem was made with the advent of symbolic model checking [McM93].

The SMV system designed by McMillan uses symbolic model checking to verify

synchronous systems. McMillan’s contribution to the field came from the

realization that ordered binary decision diagrams (OBDDs) [Bry86] could be used to

avoid explicitly representing the transition relation. Instead, the transition function

encoded as functions on sets of Boolean variables.

The basic symbolic model checking algorithm translates the specification and the

model into temporal logic formulae that subsequently translated to a fixed-point

representation. The algorithm calculates these fixed points by performing

operations on the OBDD that represents the transition relation. After each

iteration, the result is again an OBDD, so that the system state graph need never

be explicitly constructed. For systems where there is some regularity, the OBDD

representation of the system can be very compact.

However, in systems where the mutual information between variables is small, the

OBDD approach breaks down, leaving us again searching for ways to reduce the

state space.
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4.2.2 Partial Order Reduction

A second technique to cope with the state space explosion problem tries to directly

reduce the number of observable states by clustering independent events into

equivalence classes in which the order of execution is indistinguishable.

As mentioned in Section 3.2.2.2, interleaving observable events can be used to

model concurrency.  Since interleaved semantics places a total order on the events

that occur during an execution of the system, given any pair of events a and b, it is

possible to say that either a precedes b or b precedes a.  Interleaving semantics are

simple and are strongly connected to a well-developed body of work on automata

theory, and for this reason most model checking systems use interleaving

semantics to model concurrency. Formally verifying a totally ordered semantics

model requires the system to consider all possible interleavings of events.

Recently, much attention has been given to modeling concurrent systems using

partial order execution semantics [Pra86][AM97]. In concurrent systems, events are

often independent, so that trying to impose a total order on the execution is far too

strong a statement.  For example, given the set {graduation,marriage,death}, it is

possible to say that both graduation and marriage must occur before death, but

since graduation and marriage are independent events, it is meaningless to insist

that one must precede the other. Thus, using the notation <  to indicate

precedence, we can only infer

marriage death
graduation death

<
<

Partial order semantics offer a more intuitive representation of the executions of a

concurrent system by allowing independent events to be identified and reordered
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arbitrarily.  By definition, two events are independent if changing the order of

occurrence results in equivalent observable behavior.

The motivation for representing a system using partial order semantics comes from

the fact that independent events can be grouped into equivalence classes, thus

reducing the number of states that that the system can reach and easing the state

space explosion problem.

Process A() { Process B() {
Statement 1; Statement 3;
Statement 2; }

}

Figure 4— 1. Interleaved process pseudo code

Considering the pseudo code in Figure 4— 1, we can see that if the unit of atomic

execution is the statement, then the possible executions of the system are

{ , , },{ , , },{ , , }1 2 3 13 2 31 2 . In general, if there are N processes with K statements each,

there are KN )!( possible interleavings. (To see this, there are N ways to chose the

first statement, N ways to choose the second, etc., for the first K statements. Then

there are N-1 ways to choose the K+1 statement, and so on.)

Partial order reduction techniques have been successfully applied in the LTL model

checker Spin [Hol92][HP96][Van96]. Holzmann reports speed-ups of several orders

of magnitude in the execution time of the model checker.
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4.2.3 Symmetry Reduction

A third mechanism, pioneered by Ip and Dill [ID93] is to use symmetry inherent in

many systems to reduce the size of the state space. The basic idea is to chose a

representative case from an equivalence class and perform the verification for that

representative case. Using the symmetry of the design, the result of the verification

can be extended to all members of the equivalence class.

An example we will consider in Chapter 5 makes heavy use of symmetry to prove

properties about a packet switching circuit.  The basic system in this example

consists of N data sources feeding packets into a switched, a single word at a time.

The words from each data source may be interleaved during their entry into the

switch, but we would like to prove that at the output of the switch the data comes

out in the correct order and that the packets emitted from the switch were actually

transmitted by one of the N sources.

Using symmetry, we can verify the desired properties for a single bit of a single

word of a single packet of a single data source. This is because, within a given

word, all bits are symmetric: we are not concerned about the particular values or

bit-position, but want to say that the properties hold for all bits in a word.

Similarly, the words in a packet are symmetric in the sense that, independent of

the order in which they were transmitted, they all appear at the output and have

the correct value. (We would need to prove ordering separately.) We can extend this

argument to say that at some level, all of the N senders are equivalent.

By using symmetry, we can reduce the number of states that the system can be in

by many orders of magnitude. In the example in Chapter 5, for example, the packet

switch system was verified for 10 senders transmitting 128-word packets, with 64
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bits per word. Without the use of symmetry, scaling the verification to handle a

practical system would be impossible.

4.2.4 Compositional Refinement Verification

Given the state-space explosion problem, there has long been the idea that design

should be approached top-down, moving from the abstract to the implementation.

Automated verification tools are envisioned to be the enabling link that allows the

designer to incrementally verify the design as implementation detail is added, so

that the final implementation is consistent with the abstract specification.

The compositional aspect comes from the idea that the design is decomposed into

small parts whose properties can be verified in isolation, and the final system is

taken as the composition of these elements. Properties that must hold for at the

system level are proven in terms of the properties of the individual elements, and a

compositional rule specifies exactly when the composition of properties can be used

to infer the properties of the entire system.

A compositional proof is usually build using the following reasoning. If P and Q are

processes, φ an assumption about the environment, and is the property that we

wish to prove then we must first show that given the environment assumption φ,

the property ψ holds in P, written as P, |φ ψ= . We must also show that the

environment assumption φ holds in Q, or Q |= φ. Then we can infer that the

composition of P and Q maintains the property ψ . This is written as
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P
Q

P Q

, |
|

|| |

φ ψ
φ
ψ

=
=
=

The difficulty in such a proof arises from the fact that the environment

assumptions needed to verify interacting processes are interdependent.  For

example, take P and Q to be sender and receiver entities, respectively, in a protocol

system. We wish to prove that property ψ holds in P given some assumption about

the environment – here we might take the environment to be the high-level behavior

of Q.

Informally, the proof is as follows “given that Q exhibits the proper behavior up to

time t, show that P exhibits the proper behavior up to time t + 1 .” However, the

behavior of Q up to time t depends on the behavior of P up to time t , so we have

circularity if we attempt to apply the above compositional rule.

Recent work by McMillan [McM97][McM98] overcomes the circularity for the cases

of hardware processes involving zero-delay gates and unit-delay latches. He defines

a compositional rule for Mealy machines by defining a signal to be a sequence of

values, and a machine to be a collection of assertions about a set of signals. That is,

M M
S

= ∧
∈σ

σ

where σ is a signal in the finite collection S, and Mσ is a component. Composition

of processes in this framework is simply conjunction – that is, each component can

be viewed as a process that produces a single signal, so that the system is

composed of the conjunction of all the components.
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The goal of this approach is to show that a detailed implementation Q implies an

abstract specification P.  To show this, a set of models (temporal logic assertions)

are associated with the specification P and the implementation Q. The proof

amounts to showing that the set of models associated with P contains the set of

models associated with Q.

Abadia and Lamport break the circularity problem described above by using

induction over time. Letting mA τ  stand for “m holds up to time t = τ ”, the

following induction is used [AL93]:

m m

m m

m m

1
1

2

2 1

1 2

A ⇒ A
A ⇒ A
A ∧ A

−τ τ

τ τ

ω ω

That is, if m1  up to time t = −τ 1 implies m2 up to the current time, and if m2 up to

the current time implies m1  up to the current time, then at any time ω  the

properties of the conjunction are satisfied.

McMillan’s contribution to this approach was to define an inference rule for

composition that can allows cyclic use of environment signals using synchronous

processes that have zero-delay, as opposed to the interleaving, unit delay model of

Abadi and Lamport. Further, his inference rule is sound even when the

environment contains many processes that constrain the same signal. Other

approaches [Kur94][GL94] do not allow cyclic assumptions, and his is the first

work to define a sound inference rule in the presence of multiple assignments to

the same signal (the value of which will be explored in the next chapter).
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Without undue detail, the inference rule is presented here for completeness and to

lay the theoretical groundwork for the refinement techniques presented in Chapter

5. The reader is referred to [McM97][McM98] for the proof.

Let P and Q be a set of processes, and →  a given well founded order on the signals

in P. We will call P the specification, and Q the implementation. If p p1 2→ , then

p2 depends on p1 , we use p1 A τ to prove p2 A τ , else we use p1
1A −τ . Define

Z Q p P p pp = ′∈ ′→U :l q

to be the set of processes that can be used to prove p with zero delay. Then to prove

a particular p up to the present timeτ , an arbitrary set of environment

assumptions ε p P Q⊆ U  may be chosen, with those signals in Zp assumed up to

the present time, and the reset assumed up to the last instant τ − 1 . Then, with a

process understood to be the conjunction of its components, the following theorem

holds.

Theorem 1 [McM98]: For all p P∈ , choose ε p P Q⊆ U . The following inference rule

is sound:

for all p P p

Q P

p p p p
cZ Z∈ A ∧ A ⇒

A ⇒ A
−: ε ετ τ

ω ω

I Id i d i 1

In words, this says that for all p in P, if the environment assumptions taken up to

the appropriate time (depending on whether the assumed signal is in Zp ) implies p,

then the implementation implies the specification.
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McMillan used this approach to verify Tomasulo’s algorithm using an automated

model checking system (SMV). In his example, the specification is a machine P that

executes instructions in order as they arrive, stalling non-deterministically before

emitting the answer. The implementation Q is a pipelined arithmetic unit that

executes a stream of operations on a register file. Tomasulo’s algorithm allows

execution of instructions in data-flow order, rather than sequential order, so that

the proof entails showing that the implementation produces the correct stream of

output answers. Combining this approach with symmetry reductions described in

the preceding section, it was possible to prove the system for 32-bit data, 16 32-bit

registers, and 16 32-bit reservation stations.

In the next chapter, we apply this technique to solve two problems. First, we would

like to relate an SDL model with asynchronous, atomic message-passing semantics

to a synchronous, sequential message transfer implementation. Second, we would

like to verify properties about our hardware implementation of data transfer

protocols. Due to the state space explosion problem, verifying properties about

large blocks of data moving through a system has to date been out of reach of

automated verification tools.
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Chapter  5

A  H a r d w a r e
I m p l e m e n t a t i o n

Me thodo l ogy  Us ing
R e f i n e m e n t  V e r i f i c a t i o n

5.1 Overview

The design methodology presented in this work has as its goal linking formal

specification to implementation. This chapter focuses on an approach by which it is

possible to refine a high-level finite state machine with large-granularity, atomic-

transfer message passing semantics to an implementation in synchronous

hardware where message transfers take place in a sequence of smaller

transactions. Further, the approach will allow us to formally verify the equivalence

of the high-level specification and the low-level implementation.

The basic problem is that the high level specification must be both time granularity

and behavioral detail.  A state machine described in the SDL language, for example,

has execution semantics in which signals arrive instantaneously over channels
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with non-deterministic delay. SDL processes react to a signal arrival by executing a

transition that executes in zero time, and in which other signals may be emitted.

The convenience of dealing with packet-level transfers using these execution

semantics is that it allows one to focus on what the system does rather how it does

it. It frees the designer from worrying about shared resources such as system

busses and memories, and instead allows the focus to be on message-passing,

transaction-level interactions.

In the implementation, however, one must face design details such as passing

messages a single word at a time over a shared bus, allowing many messages to be

interleaved and simultaneously in transit. And, not surprisingly, it is in the detailed

level wherein the greatest chance for design error arises.

In this chapter, we consider the problem of relating an SDL specification to a

hardware implementation. We will start with an SDL specification for a finite state

machine to define the asynchronous, atomic message-passing behavior of the

processes in our system. This SDL specification is used to manually (i.e., informally)

create a high-level, synchronous atomic message-passing specification for the

hardware implementation in the SMV language. The SMV specification is then

refined to a cycle-accurate model of synchronous hardware implementation in

which the high-level “atomic” message transfers correspond to a sequence of

smaller transfers. We will use the compositional refinement verification technique

outlined in the preceding chapter to check that the implementation-level SMV

model is consistent with the specification-level SMV model (Figure 5— 1).
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Figure 5— 1. A “semi-formal” refinement methodology
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5.2 Refinement and verification of a generalized data
transfer network

We begin the discussion by considering a very general data transfer model in which

we have a collection of data sources, a network of switches, and a set of destination

nodes (Figure 5— 2). The network is responsible for moving a collection of packets

from a particular source node to a particular destination node, and the problems

we would like to address are as follows:

1) Given an SDL-like specification in which packets are transferred

instantaneously and atomically, we seek develop a set of refinement maps that

relate a synchronous hardware implementation to the specification

2) We would like to verify that the sequential-transfer implementation preserves

certain data transfer properties that an atomic transfer specification possesses

(e.g., ordering, completeness, and data integrity)

The motivation to develop a refinement methodology is twofold. The first comes

from the desire to work at a high level of abstraction during the system-level design

phase and to be able to relate the behavior of the implementation to the

specification. For example, Figure 5— 3 shows the “message-passing” architecture

of the InfoPad system that was described in Chapter 2: each block corresponds to a

is represented by an SDL process, and we are only concerned with the message

exchanges between these functional entities. Arbitrarily large blocks of data can

accompany these messages, yet at this level of abstraction all transfers are modeled

as if they are instantaneous and atomic.
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However, as we move toward implementation, our view of each functional entity

must include physical interfaces, data representations, and functional

transformations on the data. For example, the protocol control process in Figure

5— 3 maps onto a software process in the implementation architecture shown in

Figure 5— 4. Message transfers from the microprocessor to the physical wireless

link involve 6 interfaces and several encoding transformations. Thus, our first

objective is to establish a relationship between the implementation and the

specification.

The second motivation for developing a refinement methodology comes from the

fact that compositional refinement allows us to break the formal verification

problem into smaller sub-problems; without compositional refinement, the

enormous state space required to represent blocks of data eliminates this class of

problems from the realm of formal verification. A “large” formal verification problem

that can be handled by automatic tools is limited to about 220  states. As a means of

comparison, an N-bit data block introduces 2N  states into the verification problem.

For example, for each interface, format transformation, and encoding

transformation shown in Figure 5— 4, we would like to verify that the data that is

fed into the wireless modem is what was actually intended. We would like know

that the implementation neither erroneously reorder bytes within a packet nor

mixes data from different packets.

Before proceeding, a word about relating systems under different models of

computation is in order. Since a computational model (e.g., asynchronous,

interleaved, synchronous, etc.) is by definition an abstraction, it presents a view of

the system that indicates both what a designer deems important and what the
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designer is willing to ignore for the moment. At the SDL level, for example, one is

implicitly discarding the mechanics of message passing; in a synchronous

language, one discards the absolute measure of time between system ticks.

As outlined in 3.2.2, it is in general not possible to automatically map an

asynchronous system onto a synchronous system. Thus, it is not possible to

directly generate a synchronous hardware implementation from an SDL process

specification. Thus, we take the approach of using an informal mapping between an

asynchronous specification (SDL) and a high-level synchronous specification (SMV).

By preserving “instantaneous transfer” semantics in the synchronous specification,

we simplify the manual mapping procedure, reducing the chance of errors. The

instantaneous transfer specification can then be formally refined into a sequential

implementation using the techniques presented in the remainder of this chapter.

5.3 Zen and the art of protocol abstraction1

We define a token to be a (tag,value) pair {( , ): , }t v t T v V∈ ∈ , where T and V are

both finite sets. A packet is defined to be a finite collection of N tokens where for all

i j N, ∈ −0 1K  where i j t ti j≠ ⇒ ≠  (i.e., the tags in a given packet are unique).

The problem at hand is to move a collection of packets from a source to a receiver

via an intermediate agent called a switch, whose job is to regulate and organize the

transfers. (For convenience, we will assign a unique identification tag to each

                                                  
1 The title for this section was inspired by the combination of a conversation with Ken
McMillan (in which he likened the highest level abstraction to a “Zen-like” approach:
“packets exist.”) and a simultaneous reading of Zen and the Art of Motorcycle Maintenance
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packet in the source, thus we denote the ith packet as the set

( , ), | |, ,t v k Ti k i k i∈ −0 1Km r .) The goal is to show that a packet that appears in the

receiver matches a packet in the source, without restricting the mechanism by

which the transfer occurs.

To show this, we can separate the problem of token integrity from token ordering

and packet completeness. Verifying token integrity amounts to showing for each

token tag at the receiver, the token value matches the corresponding token at the

sender. Completeness guarantees that all tokens in the source’s version of a packet

appear in the receiver’s version of the packet. Finally, the ordering problem is one of

showing that given a class of bijective ordering functions φ : | |T Ta K0 1− , that

φ φs r i it t− =1( ( )) , where φs is the order that the sender intents for the receiver to use.

In other words, we must show that the order that the receiver places on the tokens

is the same order that the sender uses.

5.3.1 A divide-and-conquer approach

The verification strategy will be to break this large system into a collection of

smaller systems that can be individually verified. We will use the compositional

verification techniques discussed in Chapter 4 (specifically, Theorem 1) to ensure

that the properties verified in the individual systems hold true in the composed

system.

Structurally, we will break the problem into a series of point to point transfers. We

will verify that transfers between the original data source and the first switch occur

correctly (i.e., data integrity, token ordering, and packet completeness hold). Next,

we verify that transfers from the first switch to the second occur correctly, and so
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on, until the last switch in the network transfers data to the destination node. The

compositional rule of Theorem 1 assures us that end-to-end transfers occur

correctly.

The refinement example detailed in Sections 5.5-5.8 was motivated by design of the

transmit buffering module in the InfoPad mobile terminal shown in Figure 5— 4 (cf.

Section “TX Interface” on page 1), which was required to support simultaneous

transfers from multiple data sources via the IPBus. Incoming data is buffered in a

pool of local packet memory, and scheduled for transmission via the wireless link

at some time in the future. Several errors in the design of the head/tail pointer for

the ring buffers used in the memory interface caused data corruption both as the

packet was stored in memory and again as it was retrieved. Experience with other

such designs, such as the bus bridge module in Figure 5— 4 presented similar

challenges, thus motivating the following work.

5.3.2 Generalized interfaces

A very common approach to design and debugging is to divide the system along

physical interface boundaries in an attempt to separate concerns. For our purpose,

we require a much more general definition of an interface because we wish to verify

that both ends of an interface cooperate in such a way that the data integrity,

token ordering, and packet completeness properties are known to hold.

One approach is to view the network as being a composition of memory elements

and interfaces. At an abstract level, we can think of each node in the network as

having an unlimited pool of packet buffers; all other logic in the system is viewed as

part of an interface. Each interface is responsible for moving data between memory

elements, perhaps applying a functional transformation along the way.
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Source Node 2

decompress

Node 1

compress

compress

identity

Figure 5— 5. Example of a generalized interface: specifications define relationships
between the original source and the node of interest

5.3.2.1 Specifications, implementations, and  abstract
variables

An example of a generalized interface is shown in Figure 5— 5. The memory array in

the source node is connected to an array in Node 1 via an interface that applies a

compression function, and a decompression interface connects the memory arrays

in Nodes 1 and 2. With this view of the system, we can clearly differentiate the roles

of the specification from the implementation: the specification defines a functional

relationship between memory elements (i.e., the result of an operation), while the

implementation defines how the result is obtained.

For example, in Figure 5— 5 we have two components of the specification, which we

can view in equation form as follows:
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Mem k Compress Mem k

Mem k Mem k
1 0

2 0

=
=

( )

which requires the contents of a memory element in the Node 1 to be a compressed

version of the contents in the sender, and requires the contents in the destination

node (Node 2) to be identically equal to the contents in the source node.

Structuring the specification using functional relationships between memory

elements allows us to clearly identify the verification tasks. In this example, we are

obligated to prove that the implementation of the interface between the source and

Node 1 implements the specified compress function, and we must prove that the

concatenation of the two interfaces is equivalent to the identity function (i.e., pure

transfer). Compositional verification allows us to assume the result of the first

verification in proving the second verification, as follows:

assume

Mem k Compress Mem k

Decompress Compress x x
prove

Mem k Decompress Mem k

1 0

2 1

=
=

=

( )

( ( ))

( )

Using the compositional inference rule of Theorem 1, we can safely infer that the

concatenation of the two interface functions implements the identity function.

Abstract variables

Before continuing, it is worthwhile to explain the role of abstract variables (also

called history variables) in the specification and verification process. The

generalized interface assumes the existence of memory arrays in each node in the
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network, enabling a specification that treats packets as entire entities that exist as

complete units at various points in the network.

In practice, however, few implementations would include such physical memory.

Instead, we are using abstract variables as a means of remembering the history of

the system so that we can make an assertion about the behavior at some time in

the future.

Figure 5— 6 illustrates this concept, where tokens that are generated sequentially

by the implementation of a data source are “remembered” in an array of abstract

packet variables. Using such an array in each node in the network allows us to

functionally relate the value of an abstract variable in one node to the value of an

abstract array in another node.

Token stream in data source implementation

Abstract
packet
array
in sources

Figure 5— 6. Using abstract history variables to remember the past

Symmetry reductions

We note here that abstract variables simplify the verification problem because they

allow us to reason at the functional specification level (e.g., the



120

compress/decompress example of Figure 5— 5). At a first glance, it would appear

that we have increased the state space by using these abstract arrays. However, the

symmetry reduction techniques outlined in the previous chapter are especially well-

suited to arrays of symmetric objects, and when combined with compositional

verification we find that the verification problem falls apart if the refinement maps

are constructed appropriately.

One of the primary contributions of the refinement strategy presented in the

remainder of the chapter is the decomposition of the verification problem in such a

way that, for the class of data transfer networks under consideration, the

verification becomes essentially independent of the size of the system. The key

insight is that by separating the problem of “correctness” into a completeness

property, a data integrity property, and an ordering property, we can make

extensive use of symmetry.

The completeness problem can be expressed as a constraint on the tags in a packet

at the destination node. Given an “abstract variable” copy at the source node, the

completeness property asserts that all token tags in the output packet must appear

in the source packet, and vice-versa. Since the assertion is over the entire set of

tags in a given packet, ordering is unimportant, and thus the tags become

symmetric with respect to permutation. As will be discussed in Section 5.4, this

allows SMV to choose a representative set of two tokens and prove that the

property holds for an equivalent system in which there are only two tokens; by

symmetry the result extends to the full system.

The data integrity property asserts that the token values in the output packet must

match those in the source’s copy of the packet. Here, the token tags are used to

identify a particular token, but once again the order in which tokens are
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transferred or compared is irrelevant to the outcome of the integrity property. Thus,

in proving the integrity property, SMV is once again able to use symmetry under

permutation to chose a representative token1 for which the integrity property is

checked.

Finally, the ordering problem addresses the fact that, in reality, ordering does

matter and tokens are not symmetric. When combined with a refinement in which

token transfers occur sequentially, the run-time of the verification problem

becomes essentially linear in the number of tokens in a packet. (We will investigate

this further in Section 5.4.4).

5.3.2.2 The role of refinement maps and witness functions

At the highest level of abstraction, we say that packets exist only in their entirety

and at discrete instants they may move from one point in the system to another.

Thus, in our example, the high-level abstraction requires that packets exist either

in the sender, the switch, or the receiver. Eventually, we map this onto an

implementation in which it is entirely possible that the packet does not exist as a

discrete entity at any point, but instead is simply a sequence of tokens that are

generated in a particular order. The purpose of the refinement maps in the following

discussion is to relate the low-level, detailed-timing behavior to a particular instant

where, from the high-level view, transfers occur atomically.

Temporally, we move to slightly lower-level view in which we allow a packet to exist

in three states: unsent, partially sent or completely sent, an abstraction that will be

                                                  
1 Actually, if the SMV specification is structured correctly, the bits within each token are also
symmetric, allowing the verification environment to be collapsed to a single bit-slice of the
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further refined to represent a specific number of token transfers, and so on. This

approach is depicted in Figure 5— 7.

It is possible to structurally refine the high-level specification into a model where

there are multiple sources that each “own” a disjoint subset of all packets, or where

the intermediate “switch” is actually comprised of several nodes.

The strength of this abstraction is that it only makes assertions about the packets

after they have been transferred to the receiver, and allows for arbitrary ordering

and data encoding during the intermediate stages. Further, by separating order,

completeness, and data integrity, we structure the verification problem in such a

way that there is perfect symmetry at all but the lowest levels of abstraction,

allowing us to handle systems of essentially any size.

                                                                                                                                               
system.
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p a c k e t

t r a n s fers
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s e n t

t o k e n  # N
s e n t

 Figure 5— 7. Refinement hierarcy

The driving example that is used to demonstrate the technique is the packet

multiplexing chip in the InfoPad (see Section 0). Several data sources share a

common bus that is used to send packets – one word at a time – to the packet mux.

The task at hand is to show that the behavior of the implementation is functionally

equivalent to an SDL-level specification in which packets arrive atomically, are non-

deterministically delayed, and are sent on to the RF subsystem. We begin with a

brief introduction to the support mechanism for refinement verification in the SMV

system. The following section summarizes the major features of SMV relevant to

this refinement checking approach; an in-depth treatment can be found in

[McM93,McM97,McM98].
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5.4 Refinement Verification in SMV

Recalling the discussion in Section 4.2.4, the compositional rule allowed us to use

induction over time by breaking zero-delay loops in the circuit. Further, in each

process pi we could constrain any signal as long as there was a well-founded order

→  between assignments.

In the SMV language the implementation of such a compositional rule defines a

“process” to be an assignment to a signal. Since the SMV language (as opposed to

the SMV model checking system) is a synchronous language, the advancement of

time is implicit. Assignments are made either to gates or latches; for gates we write

signal := expression;

and for a latch,

init(signal) := expression1;
next(signal) := expression2;

Here, init(x) is the initial value of the signal, and next(x) is the value of the

signal at time t + 1 .

5.4.1 Layers

A design can be broken into layers, with the restriction that a given signal may be

assigned only once in any layer. Hence, an assignment (or process) can be uniquely

identified by a signal-layer pair, written as signal//layer. Since the core of the

SMV model checker deals with temporal logic assertions, each process is translated

into a temporal assertion about the behavior of the signal of interest.
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The verification technique consists of defining the environment signals and using

them to prove that the model (i.e., collection of temporal assertions) of particular

signal in one layer implies a model of that signal in a higher layer. That is, the

behavior of a signal in a lower layer must be contained by behavior defined in a

higher layer. Syntactically, we write

using
signal1//layer1,signal2//layer2,…

prove
signalX//layerX;

to indicate that {signal1//layer1,signal2//layer2,…}  should imply

{signalX//layerX}. In doing so, we take the conjunction of all of the environment

signals {signal1//layer1,signal2//layer2,…}  and attempt to show that this

conjunction implies the specification {signalX//layerX}.

Two default layers, undefined and free, provide a flexible mechanism for proving

robustness as well as simplifying the job of the model checker. Assigning an

environment signal q to the undefined layer implies that the signal of interest p

should in no way depend on q 1. Assigning q to the free layer, on the other hand, is

used to indicate that the correct behavior of p should not depend on the particular

value of q – as long as q is well-defined. Signals assigned to these layers require no

space in the BDD used to represent the transition relationship.

                                                  
1 The system is monotonic with respect to undefined values: logical operation can only tend
towards being more undefined.
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5.4.2 Refinement

The refinement process is one of establishing a well-founded order between all

processes. Most of the time, the order →  can be inferred from signal dependencies:

SMV assumes that an assumption about signal σ1 should be used to prove an

assertion about σ2 only when there is some actual zero-delay dependency from σ1

to σ2 .  However, ambiguity arises if there is a zero delay path from σ2 toσ1 or if

there are multiple assignments to the same signal. To clarify these cases, the user

specifies the →  order explicitly:

<implementation> refines <specification>;

indicating that the assignments in the lower layer (“implementation”) should be

contained by assignments in the higher level (“the specification”).

The power of this abstraction and refinement technique is twofold. The first lies in

the fact that, starting from the specification, we can break the verification problem

into localized steps that prove that an implementation is consistent with the

specification. These localized refinements usually require only a small fraction of

the entire system, and can be handled by an automated model checker. This is

illustrated in Figure 5— 8 in the refinement relationship between specificationB

and implementationB.
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Spec A

Implementation A

Spec B

Implementation B

Figure 5— 8. Simplifying the verification problem by using abstractions in the
environment

The verification of implementationA depicted Figure 5— 8 illustrates a second win:

in constructing the environment model, we can use the highest level, abstract

specifications of all other components in the system to prove properties about a

single component. Again we reduce the size of the state space that needs to be

explored by hiding implementation detail whenever possible.

5.4.3 Abstract signals

In the example discussed in the following sections, the abstract view of the output

of the packet switch includes several signals that do not exist in the

implementation. For example, pktOut is the set of signals associated with

transferring an entire packet atomically, which in the implementation have no

realization.
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SMV provides the capability to define abstract signals that will not actually be

implemented, but that assist in the verification process. Referring to an abstract

signal from the implementation layer is not allowed.

5.4.4 Symmetry reduction techniques

The final concept needed in the groundwork for our verification technique is the

result of the application of symmetry reduction techniques (see Section 4.2.3). SMV

borrows the concept of scalarset types from the language Murφ[ID96].

5.4.4.1 Restrictions on Scalarsets

Scalarsets are finite types that have restrictions on the way in which they can be

used in order to guarantee that a program is semantically equivalent under any

permutation of the elements of the scalarset. Syntactically, we write

scalarset SENDER_TAG 0..(N – 1);

to create a scalarset whose elements take values in range 0 to N − 1 . However,

explicitly referring to a particular element of a scalarset is disallowed. Instead, only

certain constructs that are symmetric with respect to all elements in the scalarset

are allowed. These are:

1) Testing equality between two scalarset expressions of the same type

2) Arrays that are indexed by scalarsets

3) In a forall statement of the form

forall (i in <scalarset>) { <statements> }
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4) Any commutative/associative operator may be applied as a “reduction operator”

over a scalarset type. For example, we can take the conjunction of the elements

of z as follows:

&[ z[i] : i in <scalarset>]

5) “Comprehension expressions” of the form {i : i in <scalarset>, z[i]} ,

which denotes the set of values i in the scalarset such that z[i] is true.

5.4.4.2 Dealing with asymmetry

The power of symmetry is that it allows the verification task to be reduced down to

a few cases, and the proof result is extended via symmetry.  However, in the final

implementation layers this symmetry assumption no longer holds.

For example, we break the packet switch problem into 3 parts: token integrity,

packet completeness, and token ordering. For the first two of these, the tokens in a

packet are entirely symmetric, which allows us to write expressions of the form

forall(s in SENDERS)
forall(p in PACKETS)

forall (t in TOKENS) {
using

<environment>
prove

<token integrity (s,p,t)>,
<packet completeness (s,p) >

}

The above proof then reduces to only two verification problems that are shown for a

single token of a single packet of a single sender. Thus we can ignore all other

senders, packets, and tokens, so that the size of the model used to verify the

property is essentially independent of the size of the system.
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However, at some point on the path to implementation the symmetry argument no

longer applies. For example, in showing that end-to-end ordering is preserved, the

tokens are no longer symmetric because we place an asymmetric order on them.

Hence we must break the symmetry assumption to show that a particular

implementation order is consistent with an arbitrary order defined in the

specification. The proof in this case is of the form:

breaking(TOKENS) {
using

<environment>,
<transfer in particular order>

prove
<transfer in arbitrary order>

}

However, this verification problem is very localized and for practical packet sizes is

essentially linear in the number of words in the packet.

5.5 SDL Specification of a Packet Multiplexing sy stem

The basic architecture of the system we are considering is shown in Figure 5— 9.

This system consists of N senders that feed packets into a switching system that

stores the packets and, under the supervision of an external scheduling agent,

produces them at the output of the mux at some time in the future. Additionally, a

packet may be discarded if there is no available storage space, or if the scheduling

agent instructs the switch to eliminate a packet from its buffers. Reasoning in the

abstract, we can say that the switch accepts packets, delays them for a non-

deterministic period of time (perhaps forever, since the scheduler can cause the

switch to discard a packet), and produces them at the output. Our goal is to show

that whatever appears at the output corresponds to the data sent by one of the

senders.
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Figure 5— 9. Packet Mux System
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Process PacketMux 1(1)

dcl
 chanbufs ChannelBufferArray,
 bufID PACKET_TAG,
 pktID PACKET_TAG,
 srcID SOURCE_TAG;
 

Idle

Packet(
srcID,dataIn)

ReleasePacket(
srcID,pktID)

DiscardPacket(
srcID,pktID)

bufferAvailable
PacketOut(
chanbufs(srcID,pktID))
via RF_INTERFACE

'discard packet'
'set bufID :=

a free buffer in
chanbufs(srcID)'

'return bufID to
the free store'

chanbufs(srcID,bufID) 
:= dataIn Idle

PacketReady(
srcID)
to Scheduler

Idle

false
true

Figure 5— 10. SDL Specification for Packet Mux

For comparison purposes, the SDL specification for the packet switch is shown in

Figure 5— 10. Each incoming signal Packet(srcID,data) presents the switch with the

sender’s identification tag and the data block of a new packet. The switch stores the

data and subsequently, by sending a PacketReady(srcID,bufID) signal, notifies an

external scheduling agent that a packet is available for transmission. If a free buffer
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is not available for the incoming packet, it is dropped. At some time in the future,

the external scheduler may release a packet for transmission on the output link (by

sending a ReleasePkt(srcID,bufID) signal), or it may notify the switch to discard the

packet.

5.6 Sequential implementation of the switch

The SDL view of the switch presents the abstractions that packets arrive

atomically. However, in a realistic implementation, the packets would be spread out

over time, arriving sequentially word-by-word.

One such implementation is the TX subsystem in the InfoPad (see Chapter 2). In

the InfoPad, the data sources are the audio, pen, keyboard, and microprocessor

subsystems, and these sources transfer packets to the TX subsystem a single byte

at a time via the IPBus. Since all data sources may simultaneously be in the

process of transferring a packet, the TX subsystem must maintain a separate

queue for each possible data source. The basic data transfer protocol begins with a

special Start of Packet (SOP) tag, followed by some number of data bytes, and

terminates the transfer with an End of Packet (EOP) tag.

The motivation for using this example is the highly parallel/pipelined nature of the

operation. In principle, each sender can have a packet in progress, and our

experience with the actual implementation was that it was difficult to keep track of

the various pointers, counters, and buffers associated with each sender. Subtle

design errors that escaped simulation were required several iterations of the

implementation before they were corrected. Before McMillan’s recent additions to
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SMV, formally verifying that the implementation preserved the order and integrity

of the data was an intractable problem.

Before continuing, it is worth noting that a key to relating the sequential

implementation to an SDL abstraction in which transfers happen atomically is the

fact that in the sequential version only a single packet can complete its transfer in

a given clock cycle. Thus in the synchronous version we can faithfully replicate the

SDL abstraction that only a single event is drawn from the input queue during a

transition. While this is not crucial to the overall abstraction/refinement approach

discussed earlier, the relationship between the SDL specification and the SMV

model is worth mentioning.

5.7 Outline of the proof

The decomposition of the system into layers that progress from the abstraction to

the implementation is shown in Figure 5— 11. The system is separated into

senders, a receiver, a set of miscellaneous “environment” functions (not shown),

and the packet switch itself. At the highest-level of abstraction, each sender non-

deterministically chooses to request a transfer, and from the requesting senders the

environment non-deterministically chooses a single sender, and the transfer takes

place atomically after a non-deterministic delay (which may be zero).

Independently, an external scheduler non-deterministically chooses from among

the buffers that the mux offers for transmission. When the receiver indicates that it

is ready, the mux transfers the packet atomically after a non-deterministic delay

(again, which may be zero).



135

atomicSend input_spec output_spec recv_spec

seqStore seqFetch

orderedFetch

recv_seq

recv_ordered

seqSend

Switch

Implementation

Specification

Refinement Maps

recv_via_switch

Figure 5— 11. Organization of Layers

This functional independence between transfers into and out of the switch provides

a natural point at which the proof can be broken into independent steps. We make

use of compositional verification in our proof by dividing the desired properties into

a set of constraints on the input to and the output from the local storage (i.e.,

packet buffers) in the switch.  We first show that we can get data into these packet

buffers correctly, ignoring the output of the switch. Next we assume that data in

the packet buffers is correct, and then show that we can get it out of the buffers

without corrupting it. This sort of reasoning is an example of the induction over

time mentioned earlier: we assume that the contents of the local store is correct up

to the last instant, and prove our properties from the current instant forward.

Our proof has three main objectives: proving integrity, completeness, and ordering.

The data integrity proof is done at the highest level of abstraction, where packet

transfers are atomic. At this level, ordering is irrelevant and completeness is an

assertion: the entire packet is either transferred or it is not. As we refine to a
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sequential view of the system, we must show that the sequential transfer (a)

maintains the data integrity, (b) transfers entire packets, and eventually (c) tokens

appearing at the output of the mux do so in a particular order.

5.8 SMV Specification

In the following sections, we explain the major features of each layer. Our goal is to

use this detailed example to present a feel for the approach to abstraction and for

the proof technique. From the outset, we should point out that there are many

possible abstractions for a given implementation – how one chooses to abstract a

design depends upon the properties that are to be proved. In general, it is

necessary to strike a balance between generality and timeliness. One would usually

like to minimize the number of proof obligations, which implies fewer layers with

more detail in each layer, while keeping the problem within the grasp of the model

checker. We will point out these tradeoffs in the following sections.

5.8.1 Specifying data integrity at the atomic transfer level

5.8.1.1 The atomicSend layer

We start with the high-level specification of a data source. Each source maintains a

collection of packets, each having a fixed number of tokens, where each token has

a fixed number of bits that are initialized with random values. We write this as
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layer atomicSend:   {

   forall(pkt in PACKET_TAG)
forall(t in TOKEN_TAG)

forall(bit in BIT_TAG) {
     packets[pkt].pkt_tag := pkt;

  init(packets[pkt].data[t].value[bit]) :=
{true,false};

  next(packets[pkt].data[t].value[bit]) :=
packets[pkt].data[t].value[bit];

}
…

}

Each sender is either in the idle state or the in_progress state. The basic

transfer protocol is as follows. When in the idle state, the sender non-

deterministically chooses to issue a request to the environment. If during the next

cycle the environment fails to respond with a grant, then the sender non-

deterministically chooses whether to continue to assert its request signal and the

process is repeated.

If, however, the environment responds with a grant, then a transfer is initiated

(startPkt is asserted), and the sender non-deterministically chooses whether to

delay the transfer or to complete it on this cycle. If it chooses to delay the

completion, the sender moves to the in_progress state, and at some (non-

deterministic) time in the future, the sender will choose to complete the packet by

asserting its endPkt signal. This behavior is specified as part of the atomicSend

layer, which is continued below:
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init(ctl.reqOut) := {false,true};
init(state) := idle;
endNow := {false,true};
ctl.endPkt := endNow & ctl.reqOut & ctl.grantIn;

default {
  ctl.startPkt := false;
}
in {
  /* If we are idle, ND choice to request */
  if( (state = idle) & (~ctl.reqOut | ~ctl.grantIn ))
     next(ctl.reqOut) := {true,false};

/* we have the grant…should we end now? */
else if ((state = idle) & ctl.reqOut & ctl.grantIn)  {

ctl.startPkt := true;
next(state) := (endNow ? idle : in_progress);

     next(ctl.reqOut) := (endNow ? false : true);
   }

/* we are in progress and want to continue */
   else if(  (state = in_progress) & ~ctl.endPkt )
     next(ctl.reqOut) := true;

  /* we are in progress,and choose to end */
   else if( (state = in_progress) & ctl.endPkt ) {
     next(state) := done;
     next(ctl.reqOut) := false;
   }
}

The final piece of control that we need here has to do with actually transferring the

data. Our specification must indicate that when the transfer is finished, then the

tokens are valid at the sender’s output. This is the defining moment in a transfer

when the low-level, sequential behavior must match the high-level atomic behavior.

When the endPkt signal is asserted, the transfer must be complete. At the atomic

level, this amounts to driving the sender’s output only when endPkt is asserted –

otherwise, the “output packet” is undefined. We write this as shown below:

ctl.pktOut   := ctl.endPkt ? packets[curPkt] : undefined;
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5.8.1.2 The input_spec layer

We shift our attention to the packet switch at this point. Overall, the job of the

switch is to store packets and later forward them. Thus our specification must

include some type of memory management, and a relationship between the

contents of memory and the packets in a sender module.

The most general memory management scheme is one in which the switch

maintains a pool of free buffers, and incoming packets are assigned arbitrarily to

any one of the free buffers. However, for our purposes we divide the buffers into

groups, where each sender module has its own dedicated group (called a channel).

(The motivation for doing this was based upon the fact that implementation is

structured into channels, and because the memory allocation scheme was not the

primary interest in the example. By starting with the general allocation scheme, we

would need to prove that the channel-reservation scheme implied the general

scheme. The current approach avoids this proof step at the expense of generality.)

The memory management specification is shown below:

layer input_spec: {
   forall(s in SENDER_TAG) forall(b in BUFFER_TAG) {
   next(localStore[s].bufstate[b]) :=
       switch(localStore[s].bufstate[b]){

 avail : {avail,used,ready};
 used : localStore[s].reset[b] ?

avail : {used,ready};
 ready : localStore[s].reset[b] ?

avail : ready;
       };

Buffers in the memory pool are in one of three states: available, used, or ready.

If a packet is ready, it has been received in its entirety by the switch and is eligible

for forwarding; used packets have been allocated but have tokens that have not
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arrived. (At the atomic-transfer level, buffers always move directly from the

available state to the ready state.)

The moment of primary interest is when an endPkt appears on the switch control

inputs (swctl). This is the instant in which the transfer completes, whether

atomically or sequentially, and is the instant in which a packet progresses to the

ready state.

In the specification of the switch, we have chosen not to specify the mechanism by

which transfer occurs. That is, the input_spec layer makes no mention of a

system bus; instead, we use an abstract signal  that indicates the unique packet

identification tag for the packet that is completing in the given instant. (Recall that

abstract signals are used only as proof aids, and no signal in the implementation

layer can refer to an abstract signal). Essentially, the input specification requires

the environment to identify the current sender and the identification tag of the

incoming packet.

if(s = swctl.curSender & b = destBuf & swctl.endPkt) {
next(localStore[s].buffers[b].pkt_tag) :=

swctl.pktIn.pkt_tag;
   }

else if(localStore[s].bufstate[b] ~= ready)
next(localStore[s].buffers[b].pkt_tag) := undefined;

The actual data transfer is stated as an invariant of the form “if a buffer is in the

ready state, then its contents are equal to the packet identified by (source tag,

packet id tag).” Otherwise, the contents of a memory cell are implicitly

undefined.
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forall(t in TOKEN_TAG)
  if(localStore[s].bufstate[b] = ready)

localStore[s].buffers[b].data[t] :=
senders[s].

packets[localStore[s].buffers[b].pkt_tag].data[t];

5.8.1.3 The output_spec layer

Once a buffer in the switch moves to the ready state, it becomes eligible for

scheduling and transmission (the scheduling function is considered to be part of

the environment for this example). Essentially, the transfer mechanisms out of the

switch are similar to those at the sender modules, but what is interesting about the

output_spec layer is that it demonstrates the power of symmetry and of multiple

signal assignments.

We start by considering the use of symmetry:

forall (s in SENDER_TAG) forall(b in BUFFER_TAG) {
layer output_spec[s][b]: {

which defines a separate layer output_spec[s][b] for each buffer of each source

channel.

Effectively, we have | _ | | _ |SENDER TAG BUFFER TAG× separate modules that

each place a set of constraints on the signals defined in the following code. The key

to consistency in the assignments is to recognize that at a given time, a single

buffer is selected for transmission, and that the layer corresponding to the current

buffer should define the signals during the current instant.

We handle the case where no layer is selected using a default assignment:
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     default {
       swctl.pktOutRdy := false;
       swctl.srcIDOut := undefined;
     }

Then we condition on the current channel and the current buffer to define output

behavior. As in the case of the input specification, we define a relationship between

the output packet of the switch and the contents of a packet in one of the senders.

Again we employ an abstract signal, pktOut, to model the appearance of an entire

packet at the output of the switch. It is this abstract signal that in the specification

we must relate to a packet in one of the senders. In words, the assertion is of the

form “if the current buffer is identified by (sender tag, packet id tag)  and the

output transfer is completing during the current cycle (swctl.pktOutRdy =

true), then the output packet of the switch is equal to the corresponding packet in

the sender.” We write this as follows (picking up after the default statement):

     in {
       if(s = curChanOut & b = curBufOut & swctl.destRdy & okToSend)
{
 swctl.pktOutRdy := {false,true};

if(swctl.pktOutRdy)
   swctl.pktOut := senders[s].packets[curPktTag];

For convenience we have chosen to include in the high-level specification an

assertion about token-level behavior at the output of the switch1.  At discrete

instants, tokenValidOut indicates that a token at the output of the switch is valid.

Our assertion says that at this instant, the switch output token is equal to the

token stored in a sender’s buffer (determined by the tuple (current channel

tag, current buffer tag, current token tag) .  We write this as:

                                                  
1If it necessary to hide all sequential behavior in the high-level specification, this assertion
could have been placed in a layer that refines output_spec. Again we have chosen to trade
generality for a simpler proof.
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if(swctl.tokenValidOut) {
  swctl.tokenOut.value :=

senders[curChanOut].
packets[curPktTag].data[swctl.tokenTagOut].value;

}

5.8.1.4 The recv_spec layer

The receiver specification is straightforward and is similar to our previous

approach. Our basic model is that the receiver has a single local storage element

that stores a single packet. Again, we use symmetry to break the receiver

specification into | _ |SENDER TAG  different layers – one layer for each sender –

and use the switch’s abstract output signals srcIDOut and pkt_tag to determine

which sender and input packet the current output packet corresponds to. In

defining the contents of the received packet, the specification bypasses the switch

entirely and requires the receive packet to be equal to corresponding the sender’s

packet:

forall(s in SENDER_TAG)
layer recv_spec[s]:

forall(t in TOKEN_TAG)
      if ((swctl.pktOutRdy) & (s = swctl.srcIDOut))

 rxPkt.data[t].value :=
senders[s].packets[swctl.pktOut.pkt_tag].data[t];

5.8.2 Switch input refinement: unordered, sequential
transfers into the switch

At this point we have a collection of specifications for the senders, the input and

output of the switch, and the receiver.  The general approach with each of these

specifications is to choose a particular instant when we declare a packet to be

completely transferred from one point to another. At that instant, the contents of
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the destination buffer (whether in the switch or the receiver) is declared to be equal

to the contents of the corresponding packet in the sender.

Our final goal is to show that the switch provides ordered sequential transfers that

preserve data integrity. However, by separating the ordering problem from the

integrity problem, we can use symmetry to prove data integrity, and independently

prove ordering. This allows us to verify data integrity for packets of any practical

length because the verification problem collapses to proving the integrity of a single

token moving through the system. In the following subsections, we present the

refinement approach to proving data integrity for unordered transfers.

5.8.2.1 The seqSend layer

The first refinement we consider is in the sender. The basic job of the seqSend layer

(which refines atomicSend) is to present tokens one at a time, and to ensure that

all tokens have appeared at the output when endPkt is asserted.

To accomplish this, we maintain an array of Boolean state variables that indicate

which words in the current packet have been sent: if tokensSent[i] is true, then

the ith token has been sent. At the end of the current transfer, we choose the next

token to be sent from among the remaining tokens:

forall(t in TOKEN_TAG) init(tokensSent[t]) := false;
nextToken := {t: t in TOKEN_TAG, tokensSent[t] = false};
ctl.tokenTagOut := nextToken;

When a the current token is transferred (ctl.reqOut = true & ctl.grantIn =

true), we set the abstract signal tokenTagOut to be equal to the tag of the current

token, and we mark tokensSent[nextToken]  to be true. When the current token

is the last remaining token to be transferred, we indicate that the end of the packet
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has been reached. (The following statement makes use of the reduction operator

+ []  to sum the number of tokens in the current packet that have been sent).

endNow :=
~((+[tokensSent[t]: t in TOKEN_TAG]) < (TOKENS_PER_BUFFER -

1));

The signal endNow is the only signal that is assigned in both the seqSend

refinement and the atomicSend abstraction. We explicitly declare the →  order:

seqSend refines atomicSend;

which implies that we must show that the behavior of endNow//seqSend implies

the behavior of endNow //atomicSend layer. Since we have

endNow//atomicSend := {true,false};
endNow//seqSend :=

~((+[tokensSent[t]: t in TOKEN_TAG]) < (TOKENS_PER_BUFFER -
1));

it is easy to see that the behaviors are consistent.

5.8.2.2 The seqStore layer

We turn our attention to the sequential refinement of the switch input specification.

The seqStore layer provides two main functions. First, it monitors tokenValidIn

to determine when a valid token is present at the input; when it finds one, it copies

it to local storage1:

                                                  
1 The details how buffers are allocated are captured in another layer that is not central to the
current discussion.
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layer seqStore: {
s := swctl.curSender;
t := senders[s].ctl.tokenTagOut;
if(swctl.tokenValidIn)

     next(localStore[s].buffers[destBuf].data[t]) := swctl.tokenIn;

Notice that in the above assignment, we are reading from the “system bus” input to

the switch to determine the value of the input token that we are placing into local

storage. In the specification, however, we defined the contents of the local storage

using a direct assignment from the sender’s store. Thus, if we are able to prove that

the contents of the local buffer is correct when the values are read sequentially

from the system bus, we have shown both that the sequential behavior is

consistent and that the system bus does not corrupt data.

The second task of this layer is to refine our view of how buffers in the free store

transition from the available state, to the used state, and finally to the ready state.

forall(s in SENDER_TAG) forall(b in BUFFER_TAG) {
     init(localStore[s].bufstate[b]) := avail;
     if(localStore[s].reset[b]) {
       next(localStore[s].bufstate[b]) := avail;
     }
     else {
     if(s = swctl.curSender & b = destBuf) {

 if(swctl.startPkt)
   next(localStore[s].bufstate[b]) :=

swctl.endPkt ? ready : used;
else if (swctl.endPkt)

   next(localStore[s].bufstate[b]) := ready;
      }
     }
   }

 The essence of the above code is that buffers move from the available state to the

used state when the current sender asserts the startPkt signal. The buffer

remains in this state until the same sender asserts endPkt, at which time the

buffer moves to the ready state. The point worth noting is that the way this

refinement is written, it assumes startPkt and endPkt are not simultaneously



147

asserted. In the specification of the sender it was entirely possible that both signals

are simultaneously asserted – this is the case in which the packet begins and

finishes in a single instant.

This difference in assumed behavior from between the specification and the

implementation illustrates the need to precisely identify the layers from which the

environment signals are drawn. In this case, to prove that the buffer state changes

according to the behavior specified in the input_spec layer, it is necessary to use

the implementation behavior of the sender.

5.8.2.3 Proving sequential transfers imply atomic transfers

At this point it is worthwhile to demonstrate the construction of a proof, and to

explain the various bag of tricks that one can use to fully exploit symmetry to

simplify the verification task. The overall goal of this section is to provide insight

about how one reasons about a system in order to simplify its verification.

The preceding section described the seqStore layer and its role in capturing

tokens at the input of the switch an storing them in local memory. Thus the

seqStore layer assigns data words to local memory using an assignment that is

equivalent to the following:

if(swctl.tokenValidIn)
     next(seqStore//localStore[s].buffers[destBuf].data[t]) :=

swctl.tokenIn;

However, the input specification also makes an assignment to the same local

storage by reading directly from the sender’s buffer. Recall from Section 5.8.1.2, we

had
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forall(t in TOKEN_TAG)
  if(localStore[s].bufstate[b] = ready)

localStore[s].buffers[b].data[t] :=
senders[s].packets[localStore[s].

buffers[b].pkt_tag].data[t];

Thus our proof obligation is to show that reading tokens out of our local store is

equivalent to simply reading them from the sender’s store. If this property holds,

then we are assured that at least we can transfer tokens into the switch without

corrupting them; proving that we can get them out of the switch is a separate

problem.

We start by recognizing the symmetry of senders, packets, and tokens. In the

description thus far, permuting the senders, the packets within a sender, the

tokens within a given packet, or the bits within a given token would change nothing

about the behavior of the system. Thus, we structure our proof in a similar fashion,

selecting an arbitrary word, of an arbitrary buffer, of an arbitrary sender:

forall(s in SENDER_TAG) forall(b in BUFFER_TAG) forall(t in
TOKEN_TAG) {

using
<environment specific to (s,b,t)>,
localStore[s].buffers[b].data[t]//seqStore

prove
localStore[s].buffers[b].data[t]//input_spec

}

The SMV system recognizes the symmetry in the above proof obligation and

reduces its verification to the problem of proving the implication for the single-bit

packet

localStore[0].buffers[0].data[0].value[0].

Figure 5— 12 illustrates the construction of the verification environment for the

current proof. Since we seek to prove properties about the sequential behavior of

the input storage mechanism in the switch, we will need to rely on the sequential
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behavior of the sender. However, by separating the input properties from the

output properties of the switch, we are able to ignore the switch output logic as well

as the receiver.

atomicSend

seqSend

environment

seqStore

input_spec

Figure 5— 12. Verification environment for sequential input

In the construction of the environment, we start by recognizing that since the proof

isolates a single sender, buffer, and token (s,b,t), the signals associated with all

other senders, buffers, and tokens should be irrelevant. Thus we start by assigning

the signals for all senders, and the contents of all local store to the undefined

layer.

using
localStore//undefined, senders//undefined,

The advantage of assigning signals to the undefined layer is that these signal

require no storage space in the BDD structure used to represent the transition

relation. Further, it guarantees a robust design, since logical functions are
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monotonic with respect to undefined signals (i.e., undefined values propagate

through the system). Hence, any unintended dependence can quickly be detected.1

Since SMV uses the most-defined layer available for a signal definition, we can

override the above assignment for the particular signals of interest. We start with

the local storage associated with the current token, local store buffer, and sender,

which in the sequel we denote by the 3-tuple (s,b,t).

localStore[s].reset[b]//free,
localStore[s].bufstate[b]//input_spec,
localStore[s].buffers[b].data[t]//seqStore,

The reasoning behind the above layer assignments is that the contents of the local

store associated with (s,b,t) is defined only when the buffer state is ready. That

is, if the buffer is in the ready state, then the data integrity property must hold.

Since we are not attempting to prove anything about when a transition between

ready and available is allowed, assigning the reset signal to the free layer

allows the buffer to return to the free store at any time. This enables us to ignore

all of the logic that drives the reset signal, reducing the number of variables in the

BDD.

Next, we add the signals from the current sender to the environment. The first

group of these deal mostly with the signaling protocol that indicates the boundaries

of packet transfers and can be drawn from the high-level atomic transfer

specification for the sender:

                                                  
1 The only disadvantage to this approach is that, at least in the current implementation of
SMV, you must explicitly and individually define every signal in the layer of interest,
resulting in rather verbose using… prove declarations.



151

senders[s].state//atomicSend,
senders[s].ctl.endPkt//atomicSend,
senders[s].ctl.pktOut//atomicSend,
senders[s].ctl.reqOut//atomicSend,
senders[s].ctl.grantIn//free,
senders[s].ctl.startPkt//atomicSend,

In the sequential view of the sender, the only signal of interest is the one that

defines the instant when all of the words have been transferred – this is the endNow

signal. Since the value of this signal is a function of which words have been

transferred, we must also add to our environment the tokensSent array. However,

because at endNow depends only on the fact that we are sending the last token in a

packet we can assign tokensSent to the free layer:

senders[s].tokensSent//free,
senders[s].endNow//seqSend,

Further, in verifying the integrity of data flowing through the switch, the particular

value of the data is inconsequential to the proof.  Thus, we can further simplify by

assigning the contents of all packets in the current sender to the free layer:

senders[s].packets//free,

Finally, there are several signals that are used by the layers that choose the sender,

control access to the switch, and choose the destination buffer for incoming

packets.

swctl.endPkt//senderControl[s],
swctl.startPkt//senderControl[s],
destBuf//destChoice[s],
curActiveBuf[s]//destChoice[s],
curActive[s]//destChoice[s]

The resulting BDD has only 10 state variables and 17 combinational variables,

independent of the number of senders, buffers, tokens, or bits per token, and can

be verified by the model checker in less than 3 seconds on a standard workstation.
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5.8.3 Switch output refinement

We pause for a moment to take stock of where we are. We started with a high-level

specification for source and switch where we used defined the value of local storage

in the switch directly in terms of packets in the senders’ store. At the instant in

which a transfer occurs, the sender identifies itself as well as the packet

identification tag, which are stored by the switch.

We then refined that view into one in which a system bus drives the input of the

switch and at precise moments the switch stores the value that is present on the

system bus. By verifying that this refinement implied the behavior of the abstract

specification (input_spec), we verified that getting data into the switch sequentially

did not alter the data.

input_spec

seqFetch

output_specsender[s].packet

Figure 5— 13. Verification environment for sequential output

Now we turn our attention to the output of the switch, and again we must show

that the integrity of the data is preserved. But here, the power of compositional

verification becomes apparent: in proving properties about the output of the switch,

we able to assume the correctness of the data in the local store, and thus can
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ignore the problem of getting data into the switch. This is illustrated in Figure 5—

13, and will become apparent in the following proof steps.

5.8.3.1 The seqFetch layer

The output specification related the value of the switch output packet and tokens

to data that are directly read from the sender. In the first refinement of the output

specification, we sequentially read tokens from local storage and place them onto

the output of the switch. Our proof obligation is to show that what is read from the

local storage is equivalent to what is read directly from the sender. (A separate

proof step that includes the receiver is needed to show that sequentially emitting

tokens is equivalent to emitting an entire packet atomically. We will address that in

a later section).

Again we use the multiple-assignment capability and define a separate layer

seqFetch[s][b] for each sender and buffer.  The function of seqFetch[s][b] is

to define (or “drive”) the output signal only when s is the ID of the sender that

generated the current output packet, and b is the index of the local storage buffer

that hold the packet. Conceptually, all | _ | | _ |SENDER TAG BUFFER TAG¥  layers

simultaneously monitor the currentChan and curBuf signals to determine if it

should drive the output of the switch. Since only one sender (curChan) and one

buffer (curBuf) can be active at a given time, we are guaranteed that only one layer

drives the logic. Since each of the resulting layers operates independently and deals

with a single buffer from a single sender, all layers seqFetch[s][b] are symmetric.

Again we have reduced the size of the verification task to something that is

essentially independent of the number of senders and buffers.
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The other simplification we make here is in separating the problem of data integrity

from ordering. In the seqFetch layer, we maintain an array of boolean variables

that indicate which tokens we have sent. At the beginning of a packet, we initialize

tokensSent[j] to false, and on each subsequent token we choose from among

the tokens that remain to be sent, and at the appropriate instant weset

tokenValidOut to be true and mark the token as having been sent:

  swctl.tokenTagOut := {t: t in TOKEN_TAG, tokensSent[t] = false};

  if(s = curChanOut & b = curBufOut & state = in_progress &
okToSend){

if(+[tokensSent[i]: i in TOKEN_TAG] < TOKENS_PER_BUFFER) {
swctl.tokenOut.value :=

localStore[s].buffers[b].data[swctl.tokenTagOut].value;
swctl.tokenValidOut := true;

      next(tokensSent[swctl.tokenTagOut]) := true;
}

At the end of the packet, we assert pktOutRdy,  return the buffer to the free store,

and return to the idle state:

   else {
swctl.pktOutRdy := true;
forall(t in TOKEN_TAG)  next(tokensSent[t]) := false;

      next(state) := idle;
      localStore[s].reset[b] := true;
  }

5.8.3.2 Proving sequential output meets the  specification

The seqFetch layer refines two specification signals: pktOutRdy, which indicates

that the end of a packet has been reached, and tokenOut, which is the value of the

output token. We present a brief explanation of the construction of the proof

environment signals to show that swctl.tokenOut//seqFetch[s][b]  implies

swctl.tokenOut//output_spec .
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As before, the proof is to be carried out for all senders and all buffers, which are

invariant under reordering:

forall(s in SENDER_TAG) forall(b in BUFFER_TAG) {
   seqFetch[s][b] refines output_spec[s][b];

Again we simplify the BDD construction by assigning any signals not relevant to

(s,b) to the undefined layers:

using
     senders//undefined,

  localStore//undefined,

Referring to Figure 5— 13, we start from the senders and work towards the output

of the switch. The only signals in the sender modules that are of interest in the

current proof is the contents of the current sender’s packet store. Further, the

particular value of the packet store doesn’t matter as long as it is well defined,

which allows us to assign to the free layer.

senders[s].packets//free,

This avoids having a variable in the BDD for each bit in the sender’s data array –

were this necessary, these variables would quickly dominate the state space.

Instead, the assignment to the free layer generates only a combinational function

for each bit in the sender’s packet storage.

Next we must define the local storage components associated with the current

(s,b).  Once again the power of compositional verification is apparent in that the

input specification may be used to provide the content definition of local storage.

Since in the input storage this content is defined as a combinational function of the

sender’s packet store, again we escape a blow-up in the number of state variables.
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     localStore[s].buffers[b].pkt_tag//free,
     localStore[s].bufstate[b]//input_spec,
     localStore[s].buffers[b].data//input_spec,

The assignment of the remaining signals needed for the proof is straightforward in

that most of the signals come from the seqFetch layer or can be taken as free

variables. These are shown below:

    swctl.tokenTagOut//free,
localStore[s].reset[b]//seqFetch[s][b],

    swctl.tokenValidOut//seqFetch[s][b],
    swctl.pktOutRdy//seqFetch[s][b],
    swctl.tokenOut//seqFetch[s][b],

state//seqFetch[s][b],
nxtchan//free,

    tokensSent//free,
     curPktTag//output_spec[s][b]
   prove
     swctl.tokenOut.value//output_spec[s][b];

The remaining signal that needs to be verified is pktOutRdy, and since the proof is

similar to the one just presented, it is omitted here. Interested readers are referred

to the accompanying source files.

5.8.4 Receiver Specification

As described in Section 5.8.1.4, the high-level specification for the receiver ignores

packet and token data on the output of the switch, and uses only the sourceIDOut

and pktTagOut provided by the switch to determine which source and packet it will

directly read data from.

Our first refinement map, shown in Figure 5— 7, relates the output of the switch to

the receive data using the atomic transfer model:
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forall(s in SENDER_TAG) {
layer  recv_via_mux[s]:

     if((swctl.pktOutRdy) & (s = swctl.srcIDOut))
       rxPkt := swctl.pktOut;

recv_via_mux[s] refines recv_spec[s]
}

   Thus, proving the above refinement map completes the verification – at the

atomic transfer level – that data emitted from the switch corresponds to data in one

of the senders. While we omit the details here, proving the above refinement is

consistent with recv_spec is done using only the high-level specifications of the

switch and the senders. We present the environment construction, and hope that

by now the reader will be able to determine why the layer assignments are

appropriate:

using
senders//undefined
senders[s].packets//free,

sw.localStore//undefined,
   sw.localStore[s].bufstate[b]//input_spec
   sw.localStore[s].bufstate[b]//free,
   sw.curBufOut//free, sw.curChanOut//free,
   sw.havePkt//free, sw.nxtchan//free, sw.okToSend//free,

swctl.pktOut//output_spec[s][b],
swctl.pktOutRdy//output_spec[s][b],

   swctl.srcIDOut//output_spec[s][b],

   rxPkt//recv_via_mux[s],
   swctl.destRdy//recv_spec[s],

 prove
   rxPkt//recv_spec[s];

5.8.5 Proving completeness and ordering at the receiver

The final properties that we must show are completeness and ordering.

Completeness guarantees that we receive the entire packet, and ordering ensures

that a particular ordering is preserved.
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To show completeness, we maintain an (abstract) array of boolean variables in the

receiver tokens_recvd[TOKEN_TAG] , where if tokens_recvd[j] is true, then the

token with tag j= has been seen by the receiver. When the receiver sees the

pktOutRdy signal, it assigns the data tokens in its local buffer according to whether

the corresponding token tag has been seen (the following is from the recv_seq[s]

layer):

if (swctl.pktOutRdy & (s = swctl.srcIDOut))
      forall(t in TOKEN_TAG)

 if(tokens_recvd[t] = true)
   rxPkt.data[t] := swctl.pktOut.data[t];

Thus, if any token has not arrived by the time pktOutRdy is asserted, then some

for some value of t, rxPkt.data[t] will be undefined. Thus, proving that

rxPkt.data//recv_seq is consistent with rxPkt.data//recv_via_mux  (and by

transitivity, is consistent with the receiver specification) guarantees that

completeness holds.

5.8.5.1 Breaking symmetric structures

Until now, we have made heavy use of symmetry to reduce the number of proof

obligation and to split our models into independent components that each provide

functionality for a single sender, buffer, or even token. In proving ordering

properties, unfortunately, we are unable to make use of symmetry. However, by

postponing the symmetry breaking behavior until the last, it becomes a simple

matter to show that a particular ordering is consistent with an arbitrary ordering.

For this example, we use a simple linear ordering on token tags, and the receiver

counts the number of received tokens in the current packet.
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layer recv_order[s]: {
init(tokenct) := 0;

   if(~swctl.pktOutRdy & (s = swctl.srcIDOut) &
swctl.tokenValidOut) {
       next(tokenct) := tokenct + 1;
   }
   else if(swctl.pktOutRdy & (s = swctl.srcIDOut)) {
   next(tokenct) := 0;
   }
   …
}

As shown above, the receiver counts the number of tokens in the current packet,

resetting the count when the end of the packet is reached.  We refine the definition

of tokens_recvd[t] to be consistent with an asymmetric ordering (filling in the

ellipsis above):

for(t = 0; t < TOKENS_PER_BUFFER; t = t + 1)
   BREAKING(TOKEN_TAG) tokens_recvd[t] := tokenct > t;

Thus, in proving that tokens_recvd[t]//recv_ordered[s]  refines

tokens_recvd[t]// recv_seq[s] , we are showing that at the end of the packet,

all the tokens have been received.  We omit the details of the proof here due to

limited space, and refer the reader to the source files for the full version.

5.9 Verification results

Using the verification strategy outlined in the preceding sections, a the data

integrity, packet completeness, and token ordering properties were formally verified

for a system with the following parameters:

• 32 senders

• 16 packets/sender

• 512 tokens/packet
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• 64 bits/token

The running time for the verification was approximately 30 minutes, and was

dominated by the verification that ordered transfers are contained by a system of

unordered transfers.

Counting only the number of bits in the packet memories, the equivalent state

space for this configuration is 2 232 16 512 64 224¥ ¥ ¥ =  states, which is to date the largest

known system that has been formally verified.
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Chapter  6

A n  I m p l e m e n t a t i o n
Me thodo l ogy  f o r  Embedded

S y s t e m s

6.1 Overview

The preceding chapters have focused on the problem of moving from an informal

specification to a formal model of the state machines that model the protocol, and

in the preceding chapter we considered an informal approach to moving from a

high-level, atomic-transfer model (e.g., SDL) to an implementation in synchronous

hardware. In this chapter, we consider the problem of moving not just to hardware,

but to a system that consists of a mix of hardware and software.

A key feature of the data link protocols that we are interested in is that the

granularity of time typically spans between 6 and 8 orders of magnitude. Low-level

functions in the media access protocol that directly manipulate the

transmit/receive interface typically operate on the order of a symbol period, which
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for our systems is usually in the range of 0.1 to 10 microseconds. For this reason,

most implementations will include both hardware and software.

For example, the frequency-hopping modems used in the InfoPad implementation

require the interface logic to “ramp” the power amplifier on over a period of several

microseconds. Similarly, when switching from one frequency to another the

modems require a 100 microsecond “settling time” during which the analog

circuitry reaches a steady-state operating point. Using these modems efficiently

requires tight timing control on the interface to the modems. Thus at least a

portion of the media access protocol is most naturally implemented in synchronous

hardware that operates at a rational multiple of the symbol period.

However, high-level protocol functionality in both the media access protocol and

the logical link protocol are more easily implemented in software. Adjacent cell

monitoring and reporting accumulated link quality statistics are tasks that execute

at intervals on the order of 1 to 10 seconds. This low-frequency operation, along

with the flexibility afforded by a fully programmable implementation, means that

many such tasks can be mapped to an embedded processor. Thus, our

implementation is highly likely to contain a mix of hardware and software.

The data link protocol provides a “packet” interface to the network layer, and in the

design of the state machines for the data link protocol we would like to start at a

packet-processing level of abstraction. Instead of starting with an implementation

language, we would first like to reason about the protocol at a high level,

abstracting away the mechanics of moving data through an implementation, and

focus only on the reactive behavior of the finite state machines in the protocol (i.e.,

the generation of packets and the response to arriving packets).



163

The media access protocol has a much closer interaction with the hardware

because it must control some part of the modem. The state machines that define

this behavior are almost entirely control-oriented, with little if any data flow.

Further, the state machines are usually highly dependent on time intervals that are

typically expressed as multiple of a symbol period.

In this domain, it is unclear if the asynchronous FSM semantics of SDL are

appropriate, since the implementations are almost always synchronous. Also, a

FSM in SDL can only retrieve a single message (i.e., event) from its input message

queue during each instant of execution. On the other hand, controller modules that

are implemented in synchronous hardware usually process multiple events in a

single instant.

This discrepancy points to an underlying problem that is commonly overlooked by

many designers: specification languages are useful for capturing the salient

features only. Languages such as SDL are not suitable for creating a cycle-accurate

model of the implementation, but instead are useful for modeling the system at a

higher level of abstraction.

For example a state machine in a time-slotted MAC protocol might switch the radio

on, transmit N symbols, and switch the radio off. An SDL model of such a system

might abstract the packet transfer into a series of events:

1) a “dead-time” timer expires, marking the start of the transmission

2) the radio is switched on; the packet (i.e., signal) is sent via an “output” action;

and a “stop transmit” timer is set

3) the “stop-transmit” timer expires and the radio is switched off
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This sequence of events captures three crucial features: dead-time duration, a

message send, and a transmit-time duration. It abstracts the byte-by-byte, or

symbol-by-symbol transmission details that would be present in the

implementation, and instead focuses on the salient property that transmissions

can only occur within certain pre-determined periods.

Thus, in the process of protocol design, we will find that we are required to think

and work at several levels of abstraction. The challenge is to be comfortable moving

between models of computation and being able to discern when to use the high-

level abstraction and when to use a more detailed implementation view. Since

formal relationships between all of the various levels of abstractions are not

possible, some interaction on the part of the designer is still required to be able to

map a higher level to a lower one.

Before we proceed with the problem of mapping a high-level SDL description onto a

mixed-system implementation, we pause to further consider the role that a high-

level specification language plays in the design. Following that, we address the

system partitioning problem by using an architectural template for both the

protocol description and the implementation. Finally, we present a real-time

microkernel operating system that has been implemented and used in the InfoPad

system, and which can be used to provide the infrastructural support required for a

mixed-system implementation.
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6.2  The relationship between specification  languages and
implementation

Ideally, we would like to be able to reason about protocols at a high level of

abstraction and be able to map a high-level model down onto an implementation.

Further, we would like an assurance that the implementation formally conforms to

the specification.

The difficulty in realizing this design flow lies in the fact that high-level models are

abstractions that by definition are intended to gloss over implementation details.

Intentionally, implementation-level details are removed in order to 1) simplify the

specification task by focusing on only the most essential features, and 2) allow the

system designer the latitude to optimize the implementation to a variety of criteria.

That is, a specification should not attempt to include all of the implementation

detail.

A consequence of using an abstraction is that some implementation behaviors are

either impossible or impractical to describe using the specification language. For

example, consider a system in which two process rely on the values of “shared”

variables, and each process is free to modify the values of the shared variables.

Since SDL disallows the use of shared variables, an SDL model of the system might

include a third “memory process” that is the keeper of the variables (see Figure 6—

1).

In SDL, the most natural way of modeling the reading and writing of variables is by

using synchronous remote procedure calls that are actually build on top of a

hidden message-passing mechanism in which an implicit channel between the

server and client processes exist. When the client process executes the remote
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procedure call, a request message is sent (along with any arguments to the

procedure call) via this implicit channel, and the client waits until an

acknowledgment is returned (along with any return value).

P1

Memory
Process

P2

Read/write
RPC

channels

Figure 6— 1. Modeling a shared memory system using SDL

Since, according to SDL semantics, the server process can only remove a single

message from its input queue during a given instant, there is no possibility that

both client processes can simultaneously – that is, in a given instant – attempt to

change the value of a shared variable.

Thinking at yet a higher level of reasoning, the essential features captured by the

SDL model is that of a central repository for maintaining shared state. By

disallowing simultaneous access, the execution and communication semantics

allow the designer to focus on a system in which only sequential accesses to the

shared variables is allowed.

One implementation of the above system would use dual-port memories to allow two

synchronous hardware devices to share the required variables.  Unlike the high

level specification in which simultaneous accesses are not possible, the
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implementation of the “client” processes in synchronous hardware is capable of

simultaneously requesting a write to the same memory location during the same

clock cycle. For deterministic behavior (highly desirable in an implementation), the

implementation must include an arbitration unit that insures mutually exclusive

writes to the same location, along with a protocol for requesting, granting, and

insuring fairness in the accesses.

If the purpose of the specification is to detail the behavior of the client processes

while assuming that an implementation for the memory process exists, then the

arbitration logic and protocol detail is irrelevant in a high-level specification.

The point here is that languages and computational models are tools for

abstraction, and depending on the level of abstraction, one model is better than

another. Attempting to directly map from one domain to another often leads to

inefficiencies or is simply awkward. Instead, high-level models can be used to

simplify the process of deciding what the protocol must do, and the role of a formal

language at this stage is that it eliminates ambiguity in the resulting description.

Implementations embody a set of decisions about how the result is achieved, and

automatically mapping between specification and implementation is still an area of

active research.

6.3 An architectural template for wireles s systems

One approach to mitigating the mapping problem is to restrict both the protocol

systems and the possible implementation architectures. Since the “abstract”

specification really defines a class of implementations, one can choose a subset by

defining an “implementation template” that predetermines some parts of the
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architecture and implementation. The loss of some generality and flexibility can be

offset by the ability to develop and reuse a library of implementation components

with well-understood and adequately characterized high-level abstractions. This

library can be created manually and tested extensively, easing the mapping for the

class of protocols of interest.

To develop such an architectural template we will need several pieces of

information:

1) An architectural template that defines the physical resources (hardware,

microprocessor, DSP, etc.) that are typical in the implementation domain

(wireless, mobile communications)

2) A functional model of that partitions the protocol into processes that will be

implemented in software and processes that will be implemented in hardware

3) A model of the communication between hardware processes, between software

processes, and between hardware and software processes

The first problem restricts the implementation space to implementations that would

be suitable for the domain of wireless, mobile computing. Systems with an ultra-

high performance microprocessor, or multiple microprocessors could be ruled out

for portable applications. Thus, we will look for a general architecture that would

be suitable for the constraints of portable, handheld devices that must be low-cost,

small form-factor, and energy efficient.

The second problem is one of taking a very general specification and breaking it

into smaller pieces that can be mapped onto hardware or software. Such decisions

are based on a rather complex set of tradeoffs that include factors such as energy
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efficiency, throughput constraints, how frequently a task is executed, and the

flexibility and cost advantage of implementing in software.

The third problem is that of providing an infrastructure that is consistent with the

abstractions provided by the high-level specification language. For example, SDL

processes communicate over channels that provide a logical inter-process

communication path; a process sending a signal cannot specify the delivery

mechanism that moves a signal to the destination process. Thus, to provide a

natural mapping between an SDL process and an implementation process, we

would like to provide an infrastructure that provides a service equivalent to the

SDL channel.

Tools that create an executable software implementation of an SDL system are

commercially available. Typically, these tools consist of a code generator that

creates a collection of C language procedures that correspond to SDL processes.

The execution environment consists of a scheduler and a set of user-supplied

library routines (e.g., system clock, interprocess communication primitives) that

provide a message-passing interface between the SDL system and the

“environment”.

Since our goal is to map onto a mixed hardware/software, we will need a modified

strategy that will allow us to selectively map pieces of the SDL system onto a

hardware implementation and map other pieces onto a software system. By

designing a set of interface routines that provide the infrastructural glue between

the hardware and software, we can develop a reusable methodology.
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Figure 6— 2. Typical Embedded System Architecture

6.3.1 A domain-specific implementation template

The focus of this thesis is on embedded systems implementation of link layer

protocols for wireless systems. It is envisioned that wireless communication

systems of the future will be realized in a single-chip implementation that provides

the RF, mixed signal, baseband processing, and link-level protocol control all on a

single die.

Such an architecture is depicted in Figure 6— 2. Although conceptually there is a

clean functional delineation between the RF/Mixed signal, signal processing, and

protocol subsystems, what complicates the implementation is that these functional
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lines begin to blur. For example, the media access protocol typically controls part of

the functionality of the other two subsystems.

The power amplifier in a transmitter, for example, can be controlled by both the

media access and the data link protocols. In a half-duplex frequency-hopping

transceiver, the power amplifier must be shut down prior to changing frequencies.

Digital circuitry in the signal processing layer may also be controlled by logic in the

data link protocol, as in the case of variable-rate error correction coding1.

At the block-diagram level, there are few differences between such a device and the

InfoPad portable terminal architecture presented in Chapter 2. What they have in

common is a mixture of custom-logic components, reconfigurable-logic

components, and general-purpose processor that are connected via communication

paths (busses).

Ideally, we would like to be able to take functional blocks from each of the high

level domains (mixed signal, DSP, and protocol) and map these blocks down onto

the desired architecture, and have an automated way of generating the necessary

infrastructural “glue.” Unfortunately, this capability does not yet exist. For the

present purpose, we restrict our attention to the problem of mapping the functional

units of the protocol down onto our architectural template.

                                                  
1 Typically error correction coding is associated with the data link layer (above the media
access layer in the OSI stack). With a variable rate code, there must be controller that
dictates which decoding algorithm is to be used, perhaps powering down other decoder logic
that is temporarily unused.
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6.3.2 A template for computation and communication in
mixed hardware/software implementations

Figure 6— 3 depicts a logical model of the architectural template for an embedded

system implementation of a system of communicating finite state machines. The

system consists of a collection of state machines that are mapped onto either a

software process or a hardware process. These state machines communicate using

either message passing or by using a direct read/write to evaluate or modify a

variable in another process.

The execution environment consists of an interprocess communication API that

supports both of these communication mechanisms. The high-level specification for

any of the processes sees the same API, independent of where the process will be

implemented.

HP1 HPN…SP1 SPN…

Interface Fabric

  HW/SW IPC LayerSW/HW IPC Layer

  IPC Abstraction Layer   IPC Abstraction Layer

Figure 6— 3. Architectural template for embedded system implementation
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6.3.3 Partitioning strategy: the SDL process as the smallest
partitioning unit

The architectural template described in the preceding section provides a framework

that will allow us to map SDL processes onto either a hardware or software process

in the implementation. One of the tenets of this thesis is that link-level protocols

for high-bandwidth, low-latency wireless communication in portable devices must

be tailored with the implementation domain in mind. Bandwidth efficiency, energy

efficiency, and support for mobile networks cannot be ignored in the design of the

protocol system. Thus, at least in the structural partitioning of functionality, the

specification must have some consideration of the possible implementations.

Because of this, it is not unreasonable to require the specification to partition

functionality into indivisible units that can be directly mapped to a software or

hardware process. Our approach is to jointly consider the implementation template

as the formal (SDL) specification is developed, and to use the SDL process as the

smallest unit of partitioning. These processes are later assigned to either hardware

or software resources, and the appropriate interprocess communication support

can be generated. In designing each process we will consider its likely

implementation – whether hardware or software – and will attempt to avoid

designing a process that will end up being partitioned into a partial hardware and

partial software implementation.

For example, the IEEE 802.11 protocol requires MAC entities to maintain a

“network allocation vector” that tracks, to the extent possible, media access

requests by other MAC entities. When a station needs to use the media, it sends a

short “request to send” (RTS) that includes the transmit duration of the following

payload to the destination station. The destination responds with a “clear-to-send”
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(CTS) message that also includes the length of the upcoming payload packet. Any

listening station who hears such an exchange is required to note the length of the

payload (plus a following “acknowledgement” packet) as part of its network

allocation vector, and it must refrain from using the media until its network

allocation vector is cleared.

It would be possible to capture this functionality in a single state machine that

encapsulated all of the required behavior, but the resulting state machine would

handle events that span about 6 orders of magnitude of time duration. If this state

machine were described as a single SDL process it would be impossible to partition

the functionality onto the appropriate hardware and software elements of a typical

implementation.

An alternative strategy, and one that would be much better suited for mapping to a

mixed system, is to partition the system along lines of similar time granularity.

Thus, in our example, we might identify a state machine that tracks the network

allocation vector and puts the rest of the system to sleep when the network is to be

occupied for a sufficient period. Another state machine might handle the low-level

bit-to-word construction, and a third state machine might interpret these incoming

words to determine how the network allocation vector should be updated.

With this guiding principle for our specification, we are able to utilize commercial

code generators to produce the code for the processes that are mapped to software.

For the processes that are mapped to hardware, the refinement approach presented

in the previous chapter can be employed. What remains is to provide the

communications interface between the hardware and software, and the execution

environment for the software processes.
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6.3.3.1 System partitioning and code generation

In the current SDL specification, there is no provision for partitioning a system or

for specifying execution priorities among processes. Commercial SDL tools provide

code generation directives that are embedded in the comments or informal text of

the SDL specification.1 These directives allow the user to specify the partitioning

granularity for code generation along SDL block and process boundaries.

These code generation tools assume that the entire system is to be mapped to

software, and that operating system support will be used to provide the

infrastructure. Since our implementation will include a mix of hardware and

software, a precise mapping from SDL to our hybrid system is difficult, since the

synchronous hardware subsystems and the microprocessor execute independently.

Once again, an informal mapping is used whereby we capture the essential features

of the SDL model in the final system, but lose the ability to formally verify if the

implementation behavior implies the specification behavior.

6.4 Interprocess communication support

SDL defines several interprocess communication primitives that are of interest for

hardware/software implementations: asynchronous message passing, synchronous

remote procedure call, and imported/exported variables. Each of these

mechanisms is built on top of an underlying asynchronous message passing

architecture. The first mechanism, pure message passing, is based on signals (i.e.,

                                                  
1 I would like to thank Tommy Eriksson of Telelogic, Inc., for the donation of the SDL
analysis and code generation tools.
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messages) and channels1. Signals can be sent between processes, and the channels

that carries a signal either delivers it immediately to the receiver’s input queue or

delays it for a non-deterministic duration. This communication is asynchronous in

that the sender does not wait for the receiver.

The second mechanism is based upon remote procedure call, where a process

synchronously calls a procedure that is located remotely in another block or

process. In this way, the RPC client can modify variables in the RPC server process.

The final mechanism is based upon import/export variables. An exported variable

declared in one process can be read by another process via the import mechanism:

an implicit set of signals between the exporter and the importer exist, and an

attempt to import actually generates a request/response message exchange that is

invisible to the two processes.

In the following sections, we present a system that supports these communication

semantics using a combination of hardware and software.

6.4.1 Supporting the hardware/hardware interface

Communication between hardware modules is supported via the refinement

methodology presented in the previous chapter. We start with a set of SDL

processes and map them informally to a high-level "behavioral" SMV specification.

This SMV specification is then refined using a series of incrementally more detailed

behavioral models until a cycle-accurate model of the hardware implementation is

                                                  
1 Here we use “channel” to include both SDL signalroutes (process-to-process) and SDL
channels (block-to-block)



177

reached. The consistency of each refinement is verified using the SMV model

checker.

To facilitate the mapping between SDL communication primitives and a hardware

implementation primitives, we define a "process template" as shown in Figure 6— 4.

The finite state machine logic in the center of Figure 6— 4 corresponds to the

hardware processes in Figure 6— 3, and the interfaces between the FSM logic and

the input/output registers and buffers correspond to the interprocess

communication “abstraction layer” depicted in Figure 6— 3.

In the following sub-sections, we outline the refinement strategy for each of the four

SDL interprocess communication mechanisms and show how they map onto the

various parts of the process template. We note that the mapping is currently

performed manually, though tools for automating the procedure are under

investigation.
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Figure 6— 4. Hardware process template
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6.4.1.1 Hardware-to-hardware message passing

The SDL semantics of message passing have 3 key abstractions that are usually

inapplicable in a hardware implementation: asynchronous finite-state machines,

private communication channels between processes, and atomic execution of a

message send or message receive.

Our refinement strategy is to relate the SDL description informally (i.e., manually

translate) to an SMV specification, changing only the asynchronous FSM

abstraction. That is, the "messaging input/packet buffers" and "messaging

output/packet buffers" shown in Figure 6— 4 have a top layer that is a

synchronous FSM that accepts "atomic" message inputs and generates "atomic"

message outputs. The user defines refinement maps (cf. Section 5.4) that relate the

implementation to this top-level view.

6.4.1.2 Hardware-to-hardware import/export

Imported and exported variables in SDL rely on a policy and a protocol for

synchronizing copies of an "exported" variable. The protocol consists of an implicit

request by the importer (requesting the current value of the variable), and a

corresponding response by the exporter. This protocol is transparent to the user,

but nevertheless must be supported by an implementation.

The process template of Figure 6— 4 supports exported variables via the set of

“readable registers.” The address space for the entire system can be viewed as a

tree with the global address space at the root. Each node in tree corresponds to a

subspace of its parent's address space, so that each readable register is mapped

into the deepest node in the tree that is a common ancestor of the all the

“importing” processes.
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An import operation is refined by starting equating an import with a read operation

that non-deterministically stalls the importing process until the exporting process

actually exports the variable. This specification is refined into an implementation

that includes a bus (or perhaps a point-to-point connection) protocol that

implements the read.

6.4.1.3 Hardware-to-hardware remote-procedure call

Remote procedure calls in hardware are equivalent to a request/response pair that

is similar to the import/export mechanism described above. The RPC client

synchronously sends a message to the server process, which reacts to the message

(executes the procedure) and perhaps returns a value. The communication is

synchronous in that the client waits for the server to complete the procedure.

The RPC scheme can be modeled in hardware using a set of mailbox registers,

where the client writes to the server’s mailbox to initiate the procedure, and the

server writes back to a client to indicate the response. The high-level specification

for the client uses a write-stall-resume sequence, where the stall is non-

deterministic. The user must refine this specification into an implementation

provides the bus logic.

6.4.1.4 Hardware-to-hardware design exampl e:
implementation of the IPBus

The IPBus described in Chapter 2 is one example of a system that supports the

communications primitives described in the preceding sections. The basic interface

architecture is shown in Figure 6— 5, and can be broken down into 5 main

sections:
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1) bus “master” – allows a device to initiate transfers to a “slave” device

2)  the bus “slave” – allows a device to respond to transfers from a master device

3) bus interface logic – includes request and grant logic, as well as  prioritized

arbitration

4) interrupt encoder logic – asserts an external interrupt line in response to one or

more internal interrupt conditions

5) register file – provides “mailbox” and “readable” registers described above

FIFO

FIFO

Master Channel

Slave Channel

IP Address[7:0]

IP Data[7:0]

IP Address[7:0]

IP Data[7:0]

status register
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Logic
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FIFO Interface
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Figure 6— 5. IPBus interface architecture
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Referring to Figure 6— 4, the bus interface components provide the hardware

implementation template without the core state machine that generates and reacts

to message transfers.

Transfers between a master and slave module occur in either of two forms: a

“packet” transfer or a single word read or write. Each slave module contains one or

more stream support interface, which consists of a signaling register and a data

transfer register. A packet transfer is initiated when the master writes a “start-of-

packet” (SOP) to the slaves signaling register. Writing values to the data transfer

register then transfers the data body, and the master indicates a transfer is

complete by writing an “end-of-packet” (EOP) to the signaling register.

...

FSM 1

FSM 2

FSM N

IPBus FIFOs ASICs

Mapped
from
SDL

System
infrastructure

Figure 6— 6. Logical organization of IPBus packet-transfer interface
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Figure 6— 6 depicts the logical configuration for interprocess communication using

the packet transfer mechanism. Each finite state machine (supplied by the user)

feeds messages into an output FIFO, and consumes incoming messages from the

input FIFO.

During system initialization, each bus master is given a set of target addresses. A

target address is used to determine the bus address of the slave module to which a

particular message is directed. Thus, since the FSMs see only a FIFO interface, the

system is able to provide a set of virtual channels over a shared bus transparently

to the FSMs that are generating and reacting to the messages.

In the design of InfoPad, the FSMs were designed using a hardware description

language (VHDL or Verilog). The primitives of these languages are well-suited for

implementation, but are cumbersome to use when focusing only on the message-

passing behavior of the FSMs. A better strategy is to use a high-level language such

as SDL to describe, simulate, and verify the behavior of the FSMs, followed by the

refinement strategy described in the previous chapter to design the final

implementation.

The other data transfer mechanism directly reads from or writes to a register. In

principle, this mechanism can be used for emulating remote procedure calls and

for imported/exported variables. In the implementation of the InfoPad signal

processing components, however, hardware-to-hardware RPC and import/export

was not a construct that was used. (These were used between the software and

hardware modules, and will be discussed later sections).
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6.4.2 Mapping the SDL model to software

As described in Chapter 3, the execution semantics of SDL is that of asynchronous

finite state machines that execute in parallel. Each process is a state machine that

has a single input message queue. When a process has a non-empty input queue,

it retrieves a single message from the queue, not-necessarily in FIFO order,

evaluates the message, perhaps produces output messages, and changes state

instantaneously. The communication channels that connect these state machines

introduce a non-deterministic delay (perhaps zero) before delivering a message.

6.4.2.1 Scheduling policies

The execution semantics of this model can be mapped onto a multi-threaded

software application in which threads communicate using message passing (no

shared memory). To mimic the SDL semantics, when a thread is scheduled for

execution it must remove a single message from its input queue, process it, and

generate any output messages instantaneously – that is, time cannot advance

during the transition from one state to another. However, since the times at which

enabled transitions actually fire is non-deterministic, the semantics of SDL assume

nothing about the relative execution rates between processes. Hence the class of

allowable thread scheduling policies is quite large.

6.4.2.2 Advancing time

A second consideration is that of the SDL semantics of advancing time. When a

process executes a transition in SDL – thus marking the “end” of the current

instant – a non-deterministic choice is made to either execute another process or to

expire the earliest active timer. The non-deterministic choice enforces the
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semantics of asynchronous execution in that the designer cannot assume anything

about the execution rates of processes.

If the choice is made to execute another process, the system time does not advance.

However, if the timer expires, three things happen:

1) The system time advances by the duration of the timer

2) An “expired timer” message is inserted at the head of the input queue of the

process that started the timer

3) This process executes

Since the processes execute asynchronously, the case where two timers expire at

exactly the same instant is disallowed (otherwise there would be a synchronization

point).

The implication of these semantics is that if a timer expires, the process that

started the timer must run before any other timer expires. Thus, a software

scheduler must insure that when a timer expires, the process are waiting on that

timer execute before any other timer expiry is visible to the processes.

6.5 IPos: operating system support in the  InfoPad system

Having the hardware/hardware and software/software execution and interprocess

communication models in hand, we now consider the support features required of

the operating system. The primary roles of the operating system in this context are

to
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1) Provide the execution environment for the software threads

2) Provide the software/software and hardware/software communications

primitives

The general constraints on the software execution environment have been

described in Section 6.4.2, and the model for the hardware execution environment

and hardware/hardware communication in 6.4.1. At this point, we consider the

InfoPad operating system, IPos, as one possible approach to addressing the

complete system design, including both the execution environment, the software

interprocess communication primitives, and the low-level support for the

software/hardware communications interface.

One way to view the execution model of SDL processes is that of event-driven,

reactive components. Each FSM executes only when there is a message available,

and when it finishes processing the message it terminates execution.

A programming model for event-driven systems employs “callbacks.” Given a set of

message-processing procedures and messages types, during system initialization

the procedures are registered as “handlers” for one or more message type. When

the operating system receives a message of a given type, the appropriate handler

procedure is notified, or “called back.”

IPos utilizes this callback paradigm to provide a mechanism for event-driven

programming that is especially common in protocol systems. The additional

infrastructure that the operating system must provide (for the systems described in

Section 6.4.2) consists of a scheduler, a concept of time, and miscellaneous

“housekeeping” functions such as memory management.
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The architecture of IPos can be separated into 5 primary entities

• data sources and data sinks

• streams

• timers

• a kernel (scheduler, memory manager, etc.)

We discuss each of these architectural components in the following.

6.5.1 Data sources, sinks and streams

Referring to Figure 6— 3 (page 172), our system model includes hardware

processes, software processes, and support for interprocess communication. In

IPos, a source generates messages, and a sink consumes messages. (It is possible

that a process acts as both a source and a sink.) It is assumed that the complete

set of possible process instances are known at compile time. Each process, whether

hardware or software, is assigned a unique tag that corresponds to a procedure

address (for software) or a physical address (for hardware).

A stream is a logical path for unidirectional information flow from a source to a

sink. As with SDL channels that support multiple message types (signal types), so

IPos streams support multiple message types. When a stream is created and

initialized, the list of message types are declared, giving the kernel hints about how

much memory to allocate for queues and buffers for a given stream.

A stream is created using the following kernel routine:

stream_Create(source id, sink id, message set);
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6.5.1.1 Hardware-hardware and software-software source s
and sinks

Each hardware source, as depicted in Figure 6— 4, contains an output messaging

block that contains a set of target registers that are used to determine the

destination address of a particular message as follows.

During a partitioning step, the designer identifies where each process in the system

will be mapped – either to hardware or to software. Further, the designer specifies

the possible communication paths (i.e., streams) between each process, together

with the allowable message set that is to be supported by each stream. A kernel

function, IPInit(), is responsible for initializing the system, and in this routine each

stream is explicitly created – regardless of whether the source and sink are both in

hardware, there must be a creation point in the IPos initialization code.

When a stream is created, the kernel determines if the source is a hardware

process. If so, for each message type the device is capable of generating, the kernel

sets the target address register to the address where messages of the specified type

should be sent. When the hardware module transfers a message, it uses the

message type to determine where the current token (i.e., byte) of the current

transfer should be directed. From the perspective of the hardware device transfer

mechanism, transfers to another hardware device are indistinguishable from

transfers to a software process.

An example hardware data source is the depacketizing module (“RX chip”) that

accepts frame-synchronized bytes from the modem interface and routes these bytes

to the appropriate data source. Since each packet from the wireless link must

specify its message type, the RX module is able to determine the destination for the
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incoming message by consulting a lookup table that maps message type to a

destination address.

Type 0

Type 1

Type 2

Type N

Pen

Speech

Control

Video

Target Address Map

Video
codebk

Video
data

graphics

control

audio

RX Chip

Graphics chip

Video decompression

IP Bus

Virtual
Path

(stream)

Figure 6— 7. Hardware-to-hardware stream example: RX chip to Video decompression
module

In a software data source, a message is explicitly sent via a kernel call to

stream_Write(). If the corresponding data sink is another software process, the

kernel simply adds the incoming message to the message queue of the sink

process.
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6.5.1.2 Crossing the hardware/software boundary

IPos provides an abstraction layer that presents the illusion of symmetry between

hardware and software data sinks. Given with a map of system memory, the IPos

kernel is able to determine during stream creation whether a particular source or

sink address is in hardware or software. As explained earlier, if the source is a

hardware device the kernel simply initializes a target register in the hardware

device; if the source is a software thread, the kernel allocates buffer space

proportionally to number and size of messages that the source can generate.

The IPos kernel also presents an abstraction layer for message transfers between

hardware and software. When a software source sends data to a hardware sink,

IPos immediately accepts the incoming message from a software process and

buffers it until it can be transferred to the hardware device, consistent with the

semantics of instantaneous message “sends” over channel that non-

deterministically delays its messages. Transfers from hardware to software are

typically spread out over time, so the IPos kernel buffers incoming data until a

complete packet is received. This packet is then placed in the input queue of the

destination process, and at some time in the future the presence of a packet in the

input queue enables the process to be executed.

An integral part of this abstraction layer is a hardware “bridge” that provides a

physical interface between the microprocessor subsystem and the I/O processing

components described in Chapter 2 (e.g., speech, text, graphics, etc.). The

architecture of the bridge is shown in Figure 6— 8.
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Figure 6— 8. Bus bridge and IPos kernel

In the hardware-to software direction, the bus bridge provides a logical channel for

each data source on the 8-bit IPBus. Hardware data sources transfer information a

single byte at a time, and since several transfers may be simultaneously in progress

(i.e., time-multiplexed onto the IPBus), the bridge must be able to de-multiplex the

incoming byte-stream into independent message transfer streams. The 8-bit

transfers for each channel are re-assembled into 32-bit words (for efficiency in the

processor interface), and buffered in logically separate FIFOs. The IPos kernel is

notified via interrupt when data is available in these FIFOs, and the data is read to

reassemble the packet in kernel space. When a complete packet is formed, it is
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placed in the input message queue for the callback procedure that is registered for

the given message stream and message type.

In the software-to-hardware transfer direction, the bridge provides a 64-word by

40-bit FIFO. The lowest 8 bits of the FIFO are used directly to determine the IPBus

address for the outbound word, and the upper 32 bits are transferred as a series of

4 single-byte transfers.

Thus, the IPos kernel and the bus bridge provide an abstraction layer that emulates

the transfer semantics of instantaneous message sends and message arrivals with

non-deterministically delayed communication channels between processes.

6.5.2 Timers

Protocols usually require some notion of timers or time-out events. Especially at

the media access control level, timing is important because many access strategies

use a form of time division multiplexing to regulate access to the channel, and

timing skew results in either collisions or requires unacceptably large guard times

that reduce the efficiency of the MAC protocol. Since we are supporting hardware

and software processes, our timer mechanism must support “timer events” for both

hardware and software.

The difficult with mapping SDL timers directly to hardware lies in the single input

queue abstraction used in SDL – as noted previously, the implication of the single

input queue is that each process can only consume one event during a given

transition. Thus, in SDL when a timer expires a timer event is inserted into the

input queue of the process that set the timer, and unless otherwise specified this

event is processed in the order in which it appears in the input queue.
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In synchronous hardware, on the other hand, it is possible that a bus transfer

occurs during the same cycle in which a timer expires, a situation that cannot be

explicitly represented in SDL. Thus in hardware the designer is forced to either

handle both simultaneously or to preserve the SDL model of computation in which

one event is processed before the other.

In software, however, the problem is one of handling real-time tasks that must

quickly respond to a timer event. Since in SDL a transition occurs instantaneously,

it is possible to service an expired timer immediately upon expiry by using a

“priority input” in the process that is waiting for the timer. In an implementation,

however, processes do not execute instantaneously, so it is possible that a low

priority task can completely starve a higher priority real-time task.

The approach that has been taken in the IPos kernel is to use a combination of

preemption and delayed procedure calls. A real-time (hardware) timer periodically

interrupts the kernel at a rate that exceeds the frequency of the most-frequently-

occurring task. Each time the kernel receives a timer interrupt, it checks the set of

active timers to determine if one has expired. If so, the kernel immediately calls the

associated “handler” routine that is specified when the timer is set.

Here the realities of practical implementations must be merged with the

impracticalities of an abstract specification. The user must decide whether the

timer handler routine is fast enough to allow it to execute at a non-interruptible,

non-preemptible priority. Updating a software clock, for example, can usually be

handled without difficulty. Longer tasks, on the other hand, must be split into a

timer handler and a delayed procedure call: the handler simply creates a “timer

expiry” event and places it in the input queue of the process that set the timer. This

event is later processed through the usual mechanism for scheduling processes.
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6.6 Current status and possible extensions

This chapter focused on the problem of starting with an abstract protocol

specification that modeled the system as a set of communicating finite state

machines and mapping down to an implementation in a system where the protocol

implementation consists of both hardware and software components. The key idea

is that by restricting the implementation domain (embedded systems that have an

architecture such as that in Figure 6— 2) as well as the protocol domain (media

access and data link protocols), we can ease the problem of mapping from the

abstract specification to the detailed implementation. The argument is that by

understanding the likely architecture of the implementation, we can partition and

structure the specification in such a way that the mapping becomes

straightforward.

The obvious limitation on the methodology presented in this chapter is that it

presupposes details about the implementation during the structuring of the

specification. Normally one seeks to remove all implementation dependencies from

a specification in order to allow maximum flexibility in the implementation.

However, the architecture chosen is relatively general and commonly thought to be

typical of next generation wireless systems. By fixing some aspects of the

implementation and folding these into the specification, we are able to rapidly

define and prototype communication systems, and are able to evaluate new

protocols. Given that wireless communication for portable computing devices is still

in its infancy, it is our belief that the reduction in generality is fully justified by the

ability to experiment with new protocol systems.
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Currently, the mapping from SDL to C and to SMV (which is refined to hardware

using the methodology presented in the preceding chapter) is done manually.

Commercial code generators are available, but their overall limitation lies in the

fact that they fail to distinguish between a specification language (SDL) and an

implementation language. Since they attempt to map the full (or almost full) set of

SDL constructs and semantics onto a software implementation, the resulting

implementation are typically not well suited for partitioning into hardware and

software units. Further, they are usually too code-heavy to use in an embedded

system with a limited amount of memory.

A better strategy for facilitating the mapping from SDL to C and SMV is to take the

structural aspects of SDL (blocks, processes, channels), and require the user to

manually (or automatically, if possible) map these structural units onto physical

resources such as hardware, software, and buses. Given this mapping, an

automated tool could map the functionality of an SDL process onto either hardware

or software. The scheduler, timers, and interprocess communications support are

provided by the embedded operating system.

In summary, relating a specification to an implementation is a complex process.

Many designers confuse the roles of a specification language and try to directly use

it as an implementation language, rather than leveraging the power in the

abstractions that a specification language offers. By restricting the space of

implementations to a particular architectural template, we enable the designer to

structure the specification in a way that can be more easily mapped onto the pre-

determined architecture, but the price is that the approach is not completely

general.
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Chapter  7

P r a c t i c a l  s t r a t e g i e s  f o r
i n t e g r a t i n g  f o r m a l  m e t h o d s

in  p r o t o co l  des i gn  and
i m p l e m e n t a t i o n

7.1 Overview

Given the overall goal of integrating a formal description technique into the protocol

design flow, it is beneficial to consider a complex system design example to discover

the strengths and limitations of a formal approach.  We take as our example the

InfoPad System [TPDB98][NSH96], and work from the informal and formal

constraints to develop a fully functional protocol. The early protocol design efforts

used only informal state diagrams; these are presented for a few of the key system
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entities, and the corresponding formal (SDL) descriptions can be found in the files

accompanying this thesis1.

Our primary context is in link layer protocols, and as discussed earlier these link

protocols typically consist of a logical link control portion and a media access

control portion. This chapter focuses on the communication protocols and state

machines that are implemented in the InfoPad system, with the goal of identifying

tradeoffs between several approaches to modeling the various components of the

protocols. We focus predominately on the MAC and logical link protocols that are

implemented in the multimedia terminal; however, because much of the logical link

control protocols involve centralized management functions located on the

backbone network, it is necessary to include some of the backbone networking

entities in our example2.

7.2 An informal system-level specification

The first step in the design of a protocol system is to determine the services that

the protocol is supposed to provide, along with any constraints that the system

must satisfy (e.g., a minimum throughput or maximum latency requirement).  At

the highest level of abstraction, the InfoPad system is required to provide mobile

access to multimedia services that reside on a backbone network, and the portable

device is intended to serve only as a remote I/O interface to a “virtual device” that

runs on the backbone network. A subjective constraint on this high-level view of

                                                  
1 The files can be obtained via anonymous FTP on
http://infopad.eecs.berkeley.edu/infopad-ftp/theses/truman.

2 We would like to acknowledge the efforts of the InfoNet group in designing and
implementing the backbone network software, enabling a much broader body of research.
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the system is that the protocols must hide the mobility from the servers and the

clients.

7.2.1 Delay, bandwidth and reliability constraints

Two global requirements for the system are that 1) it must support real-time,

interactive multimedia applications that run remotely on a wired network, and 2)

that it should present the user with the appearance that the applications are

running locally on the mobile device. This implies high-bandwidth, low-latency

access to the backbone network. Specifically, the downlink (from base to mobile)

was to required to support full-motion video (0.4 – 1.0 Mbits/sec) and audio

streams (64 Kbits/sec) along with graphics (100 – 300 Kbits/sec) and protocol

control data. The uplink was required to support audio (64 Kbits/sec), pen input (8

Kbits/sec), and protocol control data (1 Kbit/sec).

In addition to these bandwidth requirements, the “remote I/O” paradigm

introduced in Chapter 2 placed very stringent latency bounds on the data transfer

service. In order to preserve the appearance of local execution, a roundtrip “event

processing” delay of 30 milliseconds was imposed on the system. Thus we have

both a throughput and a delay constraint.

An additional limitation of the physical layer was that the best available commercial

modems for the wireless link provided only 650 Kbits/sec half-duplex aggregate

throughput. Thus, the available bandwidth was oversubscribed for the worst-case

bandwidth requirements. To cope with this, the data link protocol was required to

provide data-dependent quality-of-service (QoS) that could statistically multiplex

traffic onto the wireless link and provide a “reliability effort” that was tailored to the

class of data of a particular packet.
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The interesting aspect about the above constraints is that for the class of data

transfer service that is being provided (real-time multimedia), the constraints are

“soft” in that they are design objectives that are intended to provide subjective

quality. To the extent the system is able to satisfy the constraints, the subjective

quality is maintained. What is difficult, however, is to quantify the effect of failing to

meet the constraints, leaving the system designer with a large number of degrees of

freedom. For example, it is permissible to drop occasional video data blocks due to

a high error rate or to smooth an extended burst of traffic; it is difficult to quantify

the degradation as the fraction of dropped blocks increases.

This points to the underlying challenge in designing wireless communication

systems for real-time systems: typically these systems have some degree of loss

tolerance, and the designer must simultaneously optimize for delay, loss, and

reliability. Since the demand for wireless access is growing much faster than the

available (and usable) bandwidth, it is critical to use the spectrum efficiently by

tailoring the protocol to the class of applications supported. This requires an

understanding of the statistics of the traffic carried (burstiness, delay sensitivity),

the error characteristics of the wireless link, and a knowledge of the sensitivity to

loss. For entirely new designs that include both new applications and new

protocols, perhaps the biggest challenge is bringing all of this knowledge together

simultaneously in order to guide the optimizations and tradeoffs that are required

to produce a working system.

In the design of the InfoPad, the protocols were designed jointly with the system

hardware, software, and multimedia servers. Very little information about channel

characteristics or “remote I/O” traffic patterns was available during the design of

the protocols and the end-user system. For this reason, a large part of the research
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agenda was to be able to instrument the system so that an evaluation of the

subjective quality for varying delay, loss, and reliability could be performed. Thus, a

design constraint on the protocol system was that it should support a variety of

scheduling, error-control coding, and access schemes. We will return to this idea in

Section 7.3.

7.2.2 System-level services for I/O servers and clients

As described in [SSH96], the backbone services consist of video, graphics, and

audio streams on the downlink (to the mobile), as well as pen and speech servers

that process uplink traffic from the mobile.

One way of reasoning about the system is to use a structural

abstraction/refinement that at the highest level of abstraction views only the data

clients, servers, and an abstract channel that connects clients to servers. This

abstraction clarifies the “message-passing” protocols that are used between

individual servers and clients, and provides the environment or “test bench” for

testing and debugging the data link protocols. Such a view is presented in Figure

7— 1, where each server and client is represented by a different SDL block.

Before moving to the design of the data link protocols, it is worth noting where in

the design flow the system in Figure 7— 1 fits in. In its current form, SDL does not

support stochastic performance modeling, though work on a new SDL standard

(SDL 2000) is in progress and is expected to support this. Thus, the SDL view of

the I/O servers and clients should using enough detail so that it is possible to

verify that the message-passing behaviors satisfy any specified safety and liveness

properties. To verify these properties, it is necessary to know the possible

sequences of message exchanges without respect to the probability of a particular
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sequence. During performance estimation, however, a stochastic process that

produces particular message sequences according to a probability distribution on

the inter-arrival times would supplement the behavior specified in the formal

verification view of the block.
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Figure 7— 1.  Top-level system view: I/O servers and clients

This points to a weakness in the state of the art formal methods design

methodology: currently, it would be necessary to translate the SDL state machine

into something that can be used by a discrete-event simulator, and to informally

refine the state machine to include performance-related behavior. Currently, the

language does not support a notion of formal refinement (though it does support
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informal refinement), and analysis tools that can verify the refinements are not

available. We mention this with the sole purpose of identifying areas where future

work is required.

7.3 Designing the data link protocol

The traditional approach to breaking the data link layer into functional units

separates media access control (MAC) functions from “logical link control.” The

MAC is essentially a distributed algorithm for regulating access to the

communications media, and the logical link is responsible for maintaining a point-

to-point “bit-pipe.”

Logical link protocols are usually identified as either connectionless or connection-

oriented. In the connection-oriented protocols, there is usually a provision for

setting up and tearing down a connection at the beginning and end of a session,

respectively, but few protocols support dynamic reconfiguration (i.e., creating a

different connection) in the middle of a session.

Obviously for wireless systems one would desire to support mobility in a way that

allows the user to maintain a session and transparently reconfigure the point-to-

point link in order to provide the mobile user with the best possible level of service.

Thus, one approach to simplifying the protocol design problem is to divide the

logical link protocol into two components: one that deals with point-to-point data

transfer (e.g., error correction, ordering, reliability, etc.), and one that deals with

link management (e.g. handoff, setup, tear-down, power-control, etc.).

This is the approach taken in InfoPad, where it was crucial to have a lightweight,

low-latency protocol stack that hid the mobility aspects from the data sources and
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sinks without excessive buffering and store-and-forward points found in a typical

protocol stack. The data transfer service provides data-dependent scheduling and

reliability efforts (i.e., “class-based QoS”), while the link management services

handle all of the functionality required to maintain a point-to-point

communications link.

Data 
transfer
service

Link
management

services

Media
access
service

Modem
interface

Data
source/sink

Data
source/sink

Data
source/sink…

Figure 7— 2. InfoPad data link protocol architecture
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In the following subsections, we explore these four aspects of the data link protocol

in detail. We begin with the interface between the MAC and physical layer, followed

by media access protocol, followed by the link management protocol, and conclude

with the data transfer protocols.

We conclude each subsection with a discussion of the design tradeoffs and

heuristics that were used. Overall, simplicity often drove the design decisions

because the entire system design was very much a “bootstrapping” effort. Many key

parameters (error characteristics, modem performance, network traffic statistics,

usage patterns, etc.) were unknown and it was hoped that the system could be

used to empirically determine them. Given this, it was likely that a second pass at

the system design would be likely to change significant portions, so a direct first

pass was desired.

7.4 Physical layer interface

The best wireless modem commercially available during the design phase (1992-

1993) provided only 0.625 Mbits/sec half-duplex. Thus it was necessary to use two

wireless modems to provide a full-duplex link that met the throughput and

roundtrip delay target of approximately 0.75 Mbit/sec and 30 millisecond,

respectively. The slow frequency-hopping downlink modem provided 100

narrowband frequency “channels” of 0.625 MHz in the 2.4-2.5 GHz ISM band, and

used binary-FSK modulation. The uplink radio employed direct sequence spread

spectrum to spectrally shape (for FCC compliance) 0.25 Mbit/sec BFSK-modulated

data in the 902-924 MHz ISM band.
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The interface to the radio modems are similar and are representative of low-level

interfaces that are typical for wireless modems (Figure 7— 3). On the transmit side,

the user has the ability to set the channel, and provides serial data and clock; on

the receive side, the modem provides output “2-level analog” data, perhaps a

receive clock, and received signal power. (The downlink modem used in InfoPad (the

Plessey DE6003) did not provide clock recovery).

TX Clock

TX Data

TX/RX Select

RX Data

RSSI

Channel Select

RF
Modem

Figure 7— 3. Signaling interface to generic RF modem

The interface between the MAC and PHY layers by definition involves a hardware

implementation that are typically synchronous finite state machines. For example,

changing the transmit frequency on the frequency-hopping modem (i.e., the

transmitter in the basestation) involves a sequence of ramping the power amplifier

off, switching to receive mode, programming the new frequency, switching back to

transmit mode, and finally ramping the power amplifier back on. This state

machine involves microsecond-level timing and would in all practical cases be

implemented as a small hardware FSM.
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We draw attention to this point in order to demonstrate to key aspects of the design

methodology. The first is that data link and MAC protocols will involve synchronous

FSMs. The second point is that the “message passing” protocol abstraction

described in Section 5.4is not the most convenient formalism for describing and

implementing these lower-level protocols.

Our experience has been that it is best to capture the salient functional aspects of

the services that these low level protocols provide (e.g., data transfer with non-

deterministic loss and delay) and use a much higher level abstraction of these

layers in the design of the data link protocols.

Returning to the discussion on the interface between the MAC and PHY, these low-

level interfaces place the burden of synchronization on the user. Bit-level

synchronization may be provided by more advanced modems, but in all cases frame

synchronization – that is, finding the boundaries of packets – is left to the user. In

the following subsections, we outline the salient features of the interface logic

required to synchronize the transmitter and receiver.

7.4.1.1 Bit-level synchronization

The frame format for the data link is shown in Figure 7— 4. A 64-bit preamble of

alternating 1’s and 0’s is used to by the receiver to detect a receivable signal, select

an antenna (if diversity is used), and reach steady state in the analog circuitry of

the receiver.
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Figure 7— 4. Data link frame format

The clock recovery algorithm is based on an oversampling scheme in which the raw

input data stream is oversampled by some factor NSAMPLES (a factor of 10 in the

InfoPad), and “recovering the clock” amounts to choosing one of NSAMPLES

possible sampling points. For maximum immunity to clock or frequency drift, we

would ideally choose the sampling point to be exactly at the midpoint of a symbol

interval (Figure 7— 5).

Oversampled
input

stream

Ideal 
sampling 

points 

Figure 7— 5. Clock recovery illustration

To estimate the ideal midpoint of a symbol interval, we maintain a running

up/down counter and compare the current (oversampled) input sample with one

that is delayed by NSAMPLES sample times. If the two are the same, we do nothing.

                                                  
† Optional header CCITT CRC-16

† Optional body CCITT CRC-16
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If they are different then we either increment or decrement the counter (if the

current input is 0 and the delayed input is 1, increment; otherwise decrement).

This gives us an estimate of the midpoint of a symbol period. With this estimate,

many sampling schemes can be used to estimate the value of the current symbol.

One approach would be to use a single sample taken at the “ideal” sample point.

Another approach is to use an “early-midpoint-late” scheme where a majority vote

is used to resolve disagreeing sample values. In the InfoPad, an integrate-and-slice

approach is taken, which essentially gives a majority vote from among all of the

NSAMPLES taken during a symbol time.

7.4.1.2 Frame synchronization

The clock recovery algorithm operates in conjunction with a frame synchronization

unit. Initially, a receiver is in a “scan” mode, continuously revising the estimate of

bit-level timing and simultaneously searching for a frame synchronization word in

the incoming bit stream. As shown in Figure 7— 4, the 64-bit symbol

synchronization preamble is followed immediately by a 32-bit frame

synchronization word (four repetitions of 10110101). When the frame

synchronization is in unit recognizes this bit pattern, it declares itself to be

synchronized with the transmitter, and signals the clock recovery unit to lock the

sampling point estimate at the current sampling phase. At the end of a packet, the

frame and bit synchronization units are reset to scan mode, and the procedure is

repeated (Figure 7— 6).
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Figure 7— 6. Interaction of frame and clock synchronization units

7.4.1.3 Discussion of heuristics and design tradeoffs

The timing and frame recovery described above uses the preamble as an adaptive

training period and “opens the loop” once the frame synchronization word is

recognized. The shortcoming in this approach is that it is susceptible to timing

offsets and clock drift between transmitter and receiver.

An alternative method that was explored initially attempted to dynamically track

the bit-level timing throughout the duration of a transmission, adjusting for

mismatches between the transmitter and receiver. However, when a receiver moves

into a frequency null (i.e., fade), the output of the receiver oscillates wildly. Since

the timing recovery algorithm uses transitions in the input stream to form the

sampling point estimate, these high-frequency transitions must be filtered.

However, such a filter necessarily incorporates memory of the past, and hence the

training time of the filter increases proportionally to its ability to smooth noise- or

fade-induced bursts. Several schemes that used variable-window timing recovery

algorithms were explored in order to provide a fast initial synchronization followed

by a slow adaptation once frame synchronization was achieved. All of these
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approaches required tradeoffs in the complexity and required system resources,

and in isolation it was unclear which approach was most appropriate.

However, considering the design of the physical layer jointly with the range of

supported applications provided clarity for several decision criteria. For network

scheduling efficiency, most packets are short – on the order of 8 bytes for a pen

packet and 40 bytes for a speech packet, for example. Longer packets, such as

video data blocks, were typically no longer than 1 Kbyte. Thus it was desirable to

keep the synchronization preamble as short as possible to maintain bandwidth

efficiency.

An analysis of the need for adaptive timing recovery showed that the gains would

be negligible and would not justify the complexity required for the dynamic tracking

scheme. The oversampling clocks (a 10 MHz clock output of the downlink modem)

were accurate to within 10 parts per million (10 Hz/MHz). Assuming a worst-case

frequency offset of 20 PPM between transmitter and receiver, the drift in the

reconstructed 1 MHz data stream is on the order of 500 milliseconds per symbol.

(Thus, starting from perfect synchronization, the transmitter and receiver require

500 milliseconds to be out of alignment by 1 symbol period). If we allow for an

upper bound on the drift during a packet to be 0.25 bits, we have a maximum

transmit duration of 125 milliseconds, corresponding to about 16 Kbytes, which is

well below the typical “long” 1-Kbyte packets. Given this information, adaptive

timing recovery provides no perceptible improvement over open-loop timing

recovery.

The point here is that designing this layer of the protocol without knowledge of the

end-application can result in significant complexity and lengthen the design cycle.

This black-box separation of functionality is in principle the approach proposed by
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the OSI protocol. However, by jointly considering the application with the

capabilities of the system, we are able to prioritize the design efforts and avoid

“over-engineering” the system. It is our belief that for the class of applications that

were supported in InfoPad, it was absolutely critical to view the system as a whole,

rather than to independently optimize smaller pieces of the system.

7.4.1.4 Signal strength measurements & antenna diversity

Typical wireless modems provide an analog output signal that provides a measure

of the received power in the frequency band of interest. This signal is digitized and

is used to estimate the quality of the received signal, and can be used to choose one

of several possible receive antennas when antenna diversity is used. The downlink

modems provided two antenna connections and a 4 µsec switching time. In

principle, at the beginning of each transmission the receiver would sample one

antenna, switch to the other antenna and sample, then choose the antenna that

had the highest received signal strength.

The implementation of this portion of the system was not, in hindsight, given

adequate attention. Two critical factors were overlooked in the choice of A/D

conversion modules. First, to capture the received signal strength measurement, a

12-bit A/D1 with a bit-serial interface was chosen to minimize the pin count and

thus board area for the A/D unit. However, this serial interface required 16 data

“clock” pulses to serially generate the 12 bits of output data (the first 4 output bits

were constant 0’s). Since the data clocking interval was constrained to be at least 1

microsecond, the maximum conversion rate was on the order of 64 KHz. Thus, a

                                                  
1 Analog Devices part number AD8379
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complete sample-switch-sample-switch sequence requires at least 32

microseconds, or about 4 bytes worth of data. (The antenna selection can be

switched immediately after the first sample is taken).

The second issue that was overlooked initially was the details of the algorithm for

diversity sampling and antenna selection. Suppose that of the two antenna a1 and

a2, one is in a complete frequency null (a1, for example). To maximize the chance

of receiving a packet, the receiver constantly samples a1, switches to a2 and

samples, then switches back to a1 and repeats the process.

Assume that just prior to the start of transmission, the receiver switches to a1,

which is in a complete null. A sample is taken and the receiver switches back to a2

and takes a second sample. Since in the sample of a1 the receiver could not

differentiate between a null and a break in transmission, before the antenna

selection can be made the receiver must again switch to a1.

Preamble Header Data

Sample
1

16 bits

Sample
2

16 bits

Sample
1
&

decide

16 bits

Bit
sync

64 bits

Frame
Sync

32 bits

Figure 7— 7. Modified preamble incorporating antenna diversity

Thus, to fully utilize the potential of frequency diversity, the receiver must make 3

samples. Since in this implementation each sample requires at least 16

microseconds, the PHY preamble must be extended to include an additional

“antenna selection” sequence of approximately 48 bits. Since the samples are

simply a measurement of the in-band energy, the receiver still requires a timing

recovery sequence (64 bits in this system), so together with the 32-bit frame sync
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word, the total preamble length is 144 bits. This implies that a typical 5-byte pen

packet has an overhead of approximately 80%, and a 32-byte speech packet has

approximately a 20% overhead.

Several alternative approaches could produce a more bandwidth efficient

realization. For the class of highly energy efficient receivers discussed in [She96],

having a separate receiver path for each antenna would be a practical and energy-

efficient way to completely eliminate switching between antennas, since the entire

integrated receiver in [She96] required only 27 milliwatts, and the off-the-shelf 12-

bit A/D converter requires 25 milliwatts. Further, for the purposes of deciding

between antennas, a high-resolution A/D is unnecessary: we only need to know

which antenna produces the strongest signal, requiring only a 1-bit comparator to

choose between the antennas/receive arms.

Thus by approaching the problem from a system-level, we can increase both the

energy and the bandwidth efficiency by eliminating a high-resolution A/D and by

eliminating the antenna switching preamble entirely. Again we see that a systems-

level perspective completely restructures the architectural and algorithmic

optimizations.

7.5 Media access protocol for frequency-hopping modems

A well-known aspect of media access protocols is that contention-based access

protocols are inefficient for constant bit rate or isochronous data, and are better

suited to bursty traffic that is less sensitive to delay due to collisions [Tan89]. Since

the RF modem provided only an aggregate throughput of approximately 650
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Kbits/sec, the wireless link was almost fully utilized. For this reason, the media

access scheme was essentially forced to be a contention-free protocol.

Because the required bandwidth was so close to the maximum bandwidth

supported by the full-duplex link, the primary concern in the media access protocol

was to avoid collisions. Essentially, both the downlink and the uplink employ

frequency-division multiplexing scheme, where each mobile in a cell is assigned a

dedicated channel that is orthogonal to the other mobiles in the cell. (No attempt

was made at coordinating frequency assignments between cells).

The downlink modem, however, supports slow frequency hopping as a form of

whitening the transmit spectra (for use in the ISM band), which also offers a

coarse-grained frequency diversity. Utilizing a frequency-hopping scheme requires

3 synchronization points between the base and the mobile:

1) They must agree on a hopping sequence

2) They must agree on a starting point

3) They must agree on the dwell time, or length of time that a given frequency bin

is occupied

7.5.1.1 Choosing a hopping sequence

The choice of hopping sequence depends upon the objective behind using frequency

hopping. In the following subsections, we present several applications of wireless

modems with a “slow frequency hopping” capability. These systems have in

common a narrowband transmission scheme with a variable offset frequency, and

both the transmitter and receiver are able to select the appropriate offset frequency
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at a rate that is some multiple of the symbol rate. (For the downlink modem in the

InfoPad, changing the transmit or receive frequency required approximately 100

microseconds, or about 64 symbol periods).

Frequency hopping for coarse-grain frequency diversity

A primary objective for using frequency hopping is to obtain some degree of

immunity against long-duration fades and against interference. Spreading transmit

power over a wider frequency band limits ability of a strong interferer or a deep fade

to impair the quality of the received signal for a long period of time.

With this in mind, one approach to choosing a hopping sequence is to use a

pseudo-random hopping sequence that simply uses a PN generator to choose the

next frequency. Another approach uses physical channel characteristics such as

delay spread or coherence bandwidth and adds a minimum-distance criteria on the

hopping sequence so that no two sequential frequencies fall within the same

coherence bandwidth (the IEEE 802.11 standard uses this approach).

A third possible approach would be to adaptively choose the hopping sequence

based on received signal quality information from the receiver1. However, the

benefit of this approach appears to be mostly applicable to stationary, or mostly

stationary, wireless systems. Measurements taken in the indoor environment using

the InfoPad indicate that for mobile (walking) users, over a time period of 50

milliseconds or more the variation in received signal strength is typically (Appendix

                                                  
1 There is typically a larger set of available frequencies than a system is required to use, so it
is feasible to avoid using certain frequencies for a period of time. The InfoPad downlink
modem, for example, provided 100 frequency channels; FCC Part 15 requires using only 75
of these.
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A) greater than 9 dB. A protocol that used the signal strength information from

previous transmissions to adaptively chose its hopping sequence in order to

maximize the signal strength would need to determine those times when the

channel quality is changing too quickly for an adaptive algorithm to converge.

Frequency hopping for unregulated systems

Slow frequency hopping it is typically used in “unlicensed” systems in order to

whiten the transmit spectrum by restricting the fraction of time that a given

transmit frequency can be used. For example, the FCC Part 15 regulation on the

2.4-2.5 GHz ISM band restricts a transmitter to a transmit duration of 400

milliseconds in a 30 second interval (forcing the transmitter to use at least 75

different frequencies). A further restriction is usually placed on the coordination

between transmitters to insure some degree of statistical fairness between

unrelated systems that share the same frequency band.

In these systems, efficiency is sacrificed for the opportunity to avoid the regulatory

hurdles and expense of licensing a section of the spectrum for exclusive use. (Here,

efficiency is lost primarily in the form of collisions with other transmissions). A

relatively new IEEE standard, the 802.11 wireless LAN standard falls into this

category.

Slow frequency hopping code division multiple access

A third application for slow frequency-hopped modems uses a form of code-division

multiple access. In this approach, a code is a sequence of frequencies. Instead of a

static frequency allocation as is used in frequency-division multiple access, a user

(or perhaps a group of users that share the same code) sequences through the set
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of frequencies in the code. Again, the rational behind this scheme is the frequency

diversity that is gained by spreading transmitted power over a much wider

bandwidth.

The most spectrally efficient codes are orthogonal, so that no two users occupy the

same frequency at the same time. However, it is possible to combine other multiple

access techniques with SFH-CDMA in order to allow a group of users to share the

same code.

7.5.1.2 Synchronizing the transmitter and receiver

All of the above applications for slow frequency-hopping systems present the

problem of initial synchronization between transmitter and receiver. Assuming that

the transmitter and receiver agree on the hopping sequence and dwell time, there is

still the initialization problem for the receiver to find the transmitter in the hopping

sequence. Once this synchronization point is determined, the receiver and

transmitter know both the exact dwell time and next frequency in the hopping

sequence, so that they are able to proceed in lock-step. Many schemes exist, and to

give the reader a feel for the general approach taken in networks such as the IEEE

802.11 standard, we discuss a few of the key ideas below.

In all cases a timing master provides the time reference for the local network (or

cell). Given the hopping sequence, a dwell interval, and a starting point t, it is

possible to determine precisely when the timing master will return to the same

frequency. Thus, assuming perfect clocks, given the hopping sequence, the dwell

time, and the remaining time in the current dwell interval, it is possible to predict

where the station will be in the hopping sequence at any time in the system. Thus,
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for example, if we assume that time is measured in microseconds, we can assign a

unique index to each microsecond in the hopping sequence.

The timing master periodically transmits beacons that announce its network

identification, the selected hopping pattern, and a time stamp that declares the

index of the instant in which the beacon left the transmitter. Given this information

at the receiver, it is possible to predict exactly when the transmitter will next

change frequencies, and since the hopping pattern is known, the transmitter and

receiver are synchronized.

Synchronization schemes typically use a passive scan, an active scan, or a

combination of both. In a passive scheme, a receiver listens for beacons on a given

frequency for a fixed duration, then switches to the next frequency in the hopping

sequence and continues to listen. The rate at which the receiver changes

frequencies is either significantly faster or significantly slower than the transmitter

– which one hops faster is a matter of protocol design, but the basic idea is that one

of the systems eventually overtakes the other. The disadvantage of this case is that

usually the intervals at which beacons are transmitted are fairly long, and if

network traffic is light there is a chance that the receiver and transmitter are at the

same frequency waiting for a beacon timer to expire.

In an active scheme, the unsynchronized mobile proactively transmits a probe

packet and waits for a reply from one or more responders. If after a period of time

the initiator receives no response, the frequency is changed and the process is

repeated. Often, however, the initiator will receive responses from several stations,

and in this case a further negotiation is necessary to determine which responder to

synchronize with.
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7.6 Link management protocols

One of the design constraints is that the protocol services provided to the I/O

servers and clients should hide the mobility aspects. This constraint is imposed in

order to allow the system to utilize legacy packages that were designed for non-

mobile clients.

Narayanaswami, et al [NSH] describe the basic backbone service architecture that

realizes this objective. As in many systems that support mobile clients, the system

is divided into service areas, or cells. Each cell consists of a Cell Server that services

a number of access points (basestations) that provide the wired-to-wireless network

interface, and the duties of the cell server are primarily to regulate access to these

basestations by either accepting or refusing a request from a mobile client. These

requests may be from mobile clients that are entering the system, or they may be

from clients that are moving within the system.

Each mobile client that is active in the system has a corresponding proxy agent

that exists on the backbone network – the so-called Pad Server. The responsibility

of the Pad Server is to present a “static-client” image to the I/O servers described

above, and to monitor the signal strength measurements reported by its mobile

counterpart.

We present the portions of the initialization and mobility handoff protocols in the

following sections using message sequence charts to illustrate how communicating

processes interact over time. Since Chapter 3 focused specifically on formal

languages, we delayed introducing MSCs until this point.
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7.6.1.1 Overview of message sequence charts

MSCs are an informal notation that support the notion of processes, states,

messages, timers, and process termination. MSCs document a single execution

history, as they do not support the notion of branching. For example, Figure 7— 8

shows an execution trace of the link establishment protocol in which no packets

are lost or corrupted.

It is worth noting here that because MSCs are an informal notation, they are

perhaps the best place to start the design of a message passing protocol. As a

design aid, formal languages can be too structured during the exploration phase.

MSCs offer a nice compromise because although the language is informal, it is

restricted to a set of constructs that are useful for defining the temporal

relationships between interacting concurrent processes. The lack of structure and

informal notation make MSCs an excellent choice for free-form illustration, but as

the design becomes more detailed and structure or hierarchy becomes desirable,

their applicability becomes limited.

Thus, the role of MSCs in the design methodology begins with the identification of

the possible scenarios and cases that the system must handle. Once these

“specification MSCs” are defined, they can be used to generate a template for a

system of interacting SDL processes, and at that point, the methodology shifts to

working with SDL to flesh out the detailed state machines. The resulting SDL

system can then be simulated to generate a set of execution traces that are

compared to the original MSCs to check that the implementation is contained by

the specification.
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7.6.2 Establishing the link

As we noted in the previous section, the media access protocols employed

frequency division multiple access with a downlink bit rate of 625 Kbits/sec, and

an uplink of approximately 250 Kbits/sec. Although frequency hopping was

implemented in a prototype, in the working system implementation it was not

employed. Instead, the cell server would assign each mobile client a fixed downlink

frequency and a set of alternate frequencies of adjacent cells that could be

monitored for possible handoff requests.

The uplink modem supports 4 non-overlapping (e.g., non-interfering) channels of

approximately 250 Kbits/sec raw throughput. For the prototype network, each cell

supported only 2 mobile clients, each with a dedicated uplink frequency, and all

cells shared a common contention-based “control” channel on which mobiles can

request resource allocation.

Initially, the mobile listens for a beacon on a predetermined control channel. When

it receives a beacon, it initiates a request to join the cell by sending a JOIN

REQUEST to the backbone network. This request is forwarded to the cell server,

which decides whether or not to allow the mobile to use the cell’s resources. If the

request is rejected, the mobile must wait for a beacon from another cell or must

attempt to join at some time in the future.

If, however, the request is granted, a series of events happen. First, the cell server

reserves an uplink and a downlink channel for the mobile. Second, the cell server

sends a message to the mobiles “static proxy”, the pad server, indicating that the

mobile is now a part of a session in the current cell. The pad server records the
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logical network address for the mobile (i.e., the current cell) so that it is able to

redirect network connections directly to the gateway that is serving the mobile.

Once the pad server updates its connections to the mobile, the cell server responds

to the mobile by sending a JOIN ACK message, indicating that the request has been

accepted and specifying the exact resource allocations that have been made. The

mobile uses the assigned uplink and downlink channels for further communication

with the backbone network.
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Figure 7— 8. Link establishment protocol (without bit errors or lost packets)
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7.6.3 Maintaining the link

Once the link has been established, the pad server periodically sends requests for

status reports from the mobile. (Indicated by the repeated RstatusReq and

RstatusAck messages at the bottom of Figure 7— 8). These requests contain a list of

adjacent channels that are to be scanned by the mobile, and their received signal

strengths are to be reported to the pad server. This information is used by the pad

server to initiate a handoff or to adjust the transmit power on the downlink.

Alternatively, if the signal quality degrades for an extended period of time, the

mobile can itself request either an increase in transmit power or a handoff to an

adjacent cell.

The protocol for handing off a mobile from one cell to another is an excellent

candidate for the formal verification methods we described in Chapter 3. Typically,

a handoff involves at least 2 gateways, 2 cell servers, a pad server, and the mobile

itself. All of these processes are exchanging messages with the goal of maintaining

a consistent view of shared state that is distributed throughout the network, and it

is a simple matter to introduce timing dependencies or deadlock into the system.

7.6.3.1 Handoff between cells

Figure 7— 9 presents the MSC for a perfectly executed handoff (without lost or

corrupt packets that would imply retransmission). Starting with the system

successfully initialized and the mobile connected to Cell0, the MSC indicates the

procedure for migrating the connection to Cell1.
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If during a routine scan of adjacent channels it is discovered that the mobile has a

significantly better received signal from Base1 of Cell1, the Pad Server sends a

ChangeRequest to the Cell Server. In turn, the Cell Server will attempt to increase

the quality of the received signal – this may entail an increase in transmit power or

an increase in coding rate.

If the Cell Server is unable to increase its reliability effort, it indicates this by return

a negative response with the ChangeAck message. (The case where the Cell Server

returns a positive response is not shown in Figure 7— 9, and would require a

different MSC). With the negative response, the Pad Server decides to initiate a

handoff by choosing from among the adjacent cells the cell with the best received

signal strength (as determined by the result of the last scan result message).

When the target cell is determined, the Pad Server sends a PSDirectedJoinReq to

the cell, indicating that it wants to join the cell. Assuming the target cell is capable

of servicing the request and allocating the required resources, the target cell

chooses a basestation (i.e., gateway) in its jurisdiction and reserves it for the

incoming mobile. The target cell returns an acknowledgment to Cell0, indicating the

ID of the new basestation that the mobile is to use. When the Pad Server receives a

JoinAck from the target cell, it sends a Move message to the mobile device

indicating the IDs of the target cell and basestation.

Before continuing with the protocol, it is useful to think about a snapshot of the

system at this stage in the handoff procedure. Two cells and two basestations have

resources reserved for the pad and are awaiting further interaction from the mobile

before proceeding to a stable state. This is a point of extreme vulnerability to

deadlock or livelock – if the mobile goes to sleep or suddenly moves out of range or

is in a deep shadow, a well defined procedure for backing out of the handoff must
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be defined. We will return to this point later in the discussion about formal

verification.

Continuing with the protocol description, assuming the mobile receives the Move

message, it uses the target cell and base IDs, along with the indicated uplink and

downlink frequencies, to determine the new channels to use. The mobile then

sends a ConnectReq to the target cell, which ends the handoff from the mobile’s

perspective. The backbone network then must tear down the old connection, and

once this is complete the system returns to a state that is similar to where we

picked up, but with the mobile connected to Cell1 instead of Cell0.

7.7 Formal description and verification o f the system

The message sequence charts presented so far indicate only a very small portion of

the link management protocol – specifically, those paths through the state space

where errors and exception conditions are not considered.

The absence of conditional branching MSC processes serves to keep the

interactions simple and relatively straightforward because it is impossible to define

an “if-then” behavior —  each conditional branch requires a new MSC. While this is

useful in the case-by-case specification, for large designs it becomes difficult to

propagate changes to and from corresponding SDL descriptions as the design

begins to take shape.

With the goal of using formal verification to check for logical inconsistencies and for

safety and liveness, we move to formal language description. The link management

protocol has been analyzed and described in two different formal languages: SDL

and Promela, both of which were described in Chapter 3. During the actual design
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of the protocol (1993), tools for formal analysis had not progressed to a state where

they would substantially contribute to the implementation of the protocol, so it was

felt that designing directly in an implementation language such as C or VHDL was

the only practical solution.

Since then, formal languages and supporting tools have matured, and to evaluate

the usefulness of these formal methods, the implementation was translated into the

both SDL and Promela. In Appendix B, a Promela model is provided, and the SDL

models can be obtained via anonymous FTP. In the following section, we present a

qualitative discussion about the relative strengths and weaknesses of both of these

languages – both with regard to suitability for design and specification as well as

for formal verification.

7.7.1 Message Sequence Chart specifications

As described previously, MSCs a language with informal semantics – that is, there

is no formal model of state transition, time advancement, or inter-process

communication. Thus it is not possible to formally prove temporal properties about

an MSC specification directly. In fact, since there are no execution semantics, it is

impossible to execute or even simulate an MSC.

However, message sequence charts can be used as a form of language containment

(in the automata-theoretic sense). Given an implementation or a specification in a

formal language such as SDL, it is possible to check that an execution of some

portion of the system generates a message sequence that is contained by an MSC

or a set of MSCs.
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The informality and lack of structure in MSCs that are assets early on in the design

become a limitation as the design is fleshed out. Each conditional branch in the

transition system generates a separate MSC, and explicitly and individually

covering all of the possible executions of the system becomes impossible for

systems of reasonable complexity. Our experience has been that it is most useful to

choose a small subset of key interactions use MSCs as a starting point for

understanding, documenting, and visualizing the interaction between

communicating concurrent processes.

7.7.2 SDL specifications

As the design process continues, SDL becomes a more suitable choice for formally

specifying the interactions, tasks, and data types1. As explained in the preceding

chapter, SDL is best suited for detailed message-passing interaction between

processes that execute asynchronously. When particular algorithms are chosen

and a structural view of the system is required, SDL provides the necessary

mechanisms to capture these aspects of the design.

The richness of SDL as a specification language becomes its greatest liability as a

front-end language for formal verification. It is possible, for example, to define

systems with an infinite state space (e.g., unbounded recursion). However, the most

common tendency is to specify a finite-state system that is simply far too large to

be formally verified using model checking.

                                                  
1 SDL does support an informal text construct
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For example, the SDL model of the InfoPad link management protocols includes 6

processes: a single mobile device, two basestations, two Cell Servers, and one Pad

Server. If each of these processes has only 4 bits of state, there are 224 states in the

system, and depending on the number of transitions, this may already be out of

reach for automated verification tools.

7.7.3 Promela

As a final look at the relationship between specification languages, system design,

and formal verification tools, we consider the Spin [Hol89] model checking system

and its front-end language, Promela (PROtocol MEta LAnguage).

Since Promela is intended for use as a verification language, it is optimized for

specifying possible behaviors, rather than probable behaviors. For example,

Promela is an untimed language that supports an abstract notion of a timeout: if all

processes are waiting on an input (i.e., no processes can be scheduled) and one of

the timers has a reachable timeout statement, then the timeout event occurs. If two

or more timeout events are executable, then one is chose randomly.

While this is suitable for completely random execution and verifying the system

under no timing assumptions, it can significantly complicate the description. For

example, in the link management protocol each cell sends a beacon every second or

so to provide an opportunity for the mobiles in the cell to resynchronize with the

base and sample the received signal strength. Thus, one way of modeling this

behavior in Promela is to specify a timeout that, when it executes, generates an

Announce packet.
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However, a reliable data transfer protocol has a timeout mechanism to account for

lost or corrupted packets. The timeout duration for the data transfer protocol is on

the order of 1-2 milliseconds, approximately 1000 times as infrequent as an

announce packet.

If time granularity is considered, it is possible to abstract the above system to say

that given the choice between an Announce timeout and a “retransmit packet”

timeout, the retransmission should always occur. Completely removing the

assumption of time results in a system in which any number of Announce packets

can be generated between a retransmission, and results in a significantly more

complex specification.

One solution to the above problem would be to have a priority structure among

timeouts, or perhaps equivalence classes of timers. What one would like to say is

that any time a high-priority (i.e., fast-expiration) timer is enabled, it is impossible

for a low-priority (or longer-expiration) timeout to occur.

Along with the intricacies of modeling the interactions between processes, Promela

does nothing to address the abstraction/refinement problem described in Chapter

5. Our experience is that in order reduce the system to a point where verification is

possible, it is almost necessary to construct a different model for each property that

one wishes to check. Otherwise, the state space is simply too large -- for example,

the simple system of one mobile, two cells, two basestations, and one pad server

listed in Appendix B has a state space of 2138 states.

Ideally, one would like to apply the same ideas of compositionality and refinement

that have recently been applied to synchronous hardware verification. The goal

would be to break the larger system into a series of smaller verification problems
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that can be individually verified and formally combined. However, further research

applying the ideas of compositional refinement verification to processes with

asynchronous execution is needed.
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Chapter  8

Conc lus i ons  and
Fu tu re  Work

This dissertation has focused on the problem of jointly designing and implementing

data link and media access protocols. The challenge is that of integrating the

informal system requirements into a formal specification that can be used to prove

safety and liveness properties about the protocol – we want to know that the

protocol is logically consistent and that it is free from deadlock and “livelock.”

Simultaneously, we wish to be able to determine the performance of the protocol

under different statistical models of the environment. The models that are used in

the design, exploration, verification, and performance estimation phases should be

viewed as being complementary views of the same system. Ultimately, they must be

mapped onto an implementation, and it is at this point where the work in this

dissertation extends the science and art of protocol design.

The technical challenges are primarily one of satisfying competing objectives in the

modeling process. Early in the design phase, one wishes to have very little

structure and would like to capture the essence of the interactions between

processes in a distributed system without specifying in detail the semantics of the
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interactions. The freedom in exploration that an informal language provides early

on must be balanced against the need for a formal description with well-defined

semantics as the design progresses to a more detailed level. Thus, in a design flow,

an informal notation such as message sequence charts provides an excellent entry

point, but is an incomplete specification language.

Formal verification and performance estimation are also complementary

“correctness” checks that each favor radically different specification languages.

Formal verification is seeks to find corner cases, asking questions of possibility;

performance estimation, on the other hand, focuses on common-case behavior and

uses relative probabilities of events. Due to the state space explosion problem,

formal verification models must be highly abstract, and non-determinism is

commonly used to capture possible execution traces without specifying relative

probabilities of events. Performance estimation models, on the other hand, typically

discard rare events in favor of obtaining a quick estimate of common case behavior.

Both views are useful; both questions must be addressed in the design of the

protocol.

Finally, implementations of these finite-state systems are typically mapped onto

systems that contain a mix of hardware and software. Hardware “processes” are

usually synchronous and concurrent; software processes are usually implemented

in asynchronous-concurrent threads with interleaved scheduling on a single

processor. Automated mapping from asynchronous to synchronous systems is in

general not possible, yet if we start with a high-level system specification in an

asynchronous-execution language such as SDL we must be able to map to a

hardware implementation. Again we have conflicting objectives and incompatible

views of the same system.
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This dissertation explored the relationships between informal and formal

specification languages, with a focus on where they each can contribute most

effectively to the design process.

Looking forward to work that would contribute a great deal to the protocol design

process, there are several areas that promise to be rich in both theoretical and

practical interest. The mapping between SDL and a system architectural template

presented in Chapter 6 was manually performed. Given the strategies presented in

that chapter, a useful area of research is the automation of this mapping. The

ability to map an SDL system – even for a limited subset of the language – onto an

implementation template could serve as both a rapid prototyping aide as well as an

implementation strategy for low-complexity systems.

Another area of interest is in using SDL for performance estimation. Currently, the

language does not support probabilistic modeling or timed execution of tasks1.

Some commercial tools provide the capability to define a “transition execution time”

that is uniformly applied to all transitions – there is no way to specify that one

transition executes more slowly or more quickly than another. Initial discussion on

the next-generation SDL standard, “SDL 2000”, acknowledges these limitations and

the need for integrated performance modeling capabilities.

 Overall, the protocol design problems considered in this dissertation are just a

subset of a much larger body of work on hardware/software co-design, co-

simulation, and co-verification, and although there have been some recent

advances, the field is yet immature. As the trend toward higher levels of integration

                                                  
1 Recall that in SDL a transition occurs instantaneously, implying that all tasks occurs
instantaneously as well.
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continues, there is an ever-increasing interest in working at higher levels of

abstraction, and the problem of integrating specification, formal verification,

performance estimation together with the implementation is one that promises to

provide continuing challenges for these mixed-implementation domains.
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Append i x  A

M e a s u r e m e n t - b a s e d
c h a r a c t e r i z a t i o n  o f  a n

 i n d o o r  w i r e l e s s  c h a n n e l

A.1  Introduction

The current interest in providing wireless multimedia services to mobile users

requires the network infrastructure to support quality-of-service (QoS)

management, since the wireless communications channel, and hence the

information rate available to each user, is time-varying. Effective error control

strategies, as well as optimal traffic scheduling and resource allocation policies,

must dynamically adapt to this dynamic variation in channel capacity. The focus of

this paper is on characterizing the timescale at which, in the context of an indoor

office environment, this adaptation must take place.

Schemes to combat the time-varying nature of the wireless link have been proposed

at several levels of the protocol stack. At the physical layer, within the context of

direct-sequence CDMA, Yun [Yun95] introduces power-constrained routing and
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scheduling within an integrated framework for evaluating the trade-off between

reliability, delay, and throughput; power control was the dynamic control knob

used to provide variable reliability. Alternatively, within a frequency-hopping

context, adapting the hopping pattern itself so that the bad channels are

dynamically eliminated is proposed for use in a single-transmitter/single-receiver

environment [Zan95]. At the data link level, the schemes in [RW94a,b] and [Shi92]

propose adaptively modifying forward error correction coding for both type-I and

type-II hybrid ARQ protocols. Adaptive forwarding and routing protocols (network

layer) for frequency-hopped packet radio have been proposed by Pursley ([PR94],

and the references cited therein), where measurements taken at the mobile receiver

are fed back to the network for use in choosing the most reliable paths to the

mobile. The work in [BBKT96] describes a dynamic scheduling algorithm that

adaptively refines the scheduling policy based on the current state of the channel.

In the above schemes, the mobile is required to provide the backbone network with

information about the channel quality often enough to accurately reflect the true

state of the wireless channel, without introducing unnecessary overhead into the

system. Further, the adaptive schemes must execute within a specified time to

avoid violating delay requirements of the traffic which the protocol is designed to

support. In the indoor environment, where users are moving on foot or are

relatively stationary while seated, it is reasonable to hope that adaptive schemes

would increase the efficiency of the communications link. To this end, the system

designer must have an idea of how the channel quality varies as a function of time,

so that guidelines for the design of adaptive protocols that can cope with the

variation in the channel quality can be formulated.
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A key factor in characterizing the behavior of the wireless channel as seen by the

mobile is the recognition that variations in the channel are due to (i) changes in the

static environment, (ii) moving interferers the mobile, and (iii) motion by the user.

Although the effect of the motion of the end user has in previous work been

acknowledged as having the greatest impact on the channel dynamics, no study to

date has focused on this aspect in an indoor setting with a mobile user and a por-

table device. The predominant emphasis in the measurements reported to date is

the characterization of the static environment (see [DFD96], [SW95], [Has93], and

[RST91]). In several of these papers, it was the environment around the mobile was

closely controlled to eliminate the effects of moving people. A few studies ([Has94],

[HK92], [GP91] and [BMS89]) have included the effect of motion around the

transmit or receive antennas (or both), with the qualitative result that motion

around the mobile has a much higher impact on the randomness in the channel

behavior than does movement around the basestation.

The focus of this work is to gather in-vivo, time-varying frequency-response

measurements using a lightweight, battery-powered, portable multimedia terminal

[TPD96] as a spectrum analyzer, and to gather these measurements in an indoor

office setting with a moving user.  This data can then be used to develop statistical

models or for trace-based simullation.

What is different about this approach is that it focuses on measuring and

characterizing the time scale at which the channel can be approximated as

stationary. Another fundamental difference is that these measurements are gath-

ered in an end-user environment using a notebook-sized device to perform the

measurements, with the goal of gaining insight about how the behavior of the end-

user impacts the system. Previous measurement campaigns relied on equipment
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and antennas that are much larger than the portable devices targeted for use in

personal communication systems. Given that the target devices may be notebook-

or hand-held- sized, one would intuitively expect a user’s body to have the greatest

shadowing effect, an artifact which is obscured by the use of large measurement

equipment.

This chapter is organized as follows. Section A.2 presents a review of the existing

characterizations of the indoor wireless channel, and explains why these

approaches fail to assist the network-system designer. Also in Section A.2, the

measurement procedure and equipment is described, with a presentation and

analysis of results in Sections A.3 and A.4, respectively. The chapter is concluded

with an interpretation of the results.

A.2  Measurement Setup

The statistical characteristics of burst errors varies with transmission environment,

modulation scheme, and the implementation of the RF circuitry used in the

wireless modem. Thus, the applicability of any experimental study of error

characteristics is limited to similar environments, modulation schemes, and radio

architectures.  In this paper we consider indoor office and conference room

transmission environments using commercially-available wireless PCS modems

operating in the 2.4 GHz ISM band.  Since the modulation scheme and radio

architecture of these devices are typical of those designed for use in this band, in

particular those specified in the IEEE 802.11 wireless LAN draft standard, the

authors believe that the results of this study will provide insight into the protocol

design requirements for providing multimedia-based services using similar devices.
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Both mobile and basestation are equipped with two commercially-available RF

modems, one for base-to-mobile communications (downlink), and one for mobile-to-

base communications (uplink), providing a full-duplex link between the two nodes.

(Specific operating parameters for both radios are listed in Table  A— 1). A custom

hardware interface, described in [TPD97], provides control of the physical-layer

signals, allowing direct access and capture of the low-level signals.

Table  A— 1 Operating Parameters for experimental link

Downlink Uplink

Modem Proxim Rangelan RDA-
300

GEC Plessey DE6003

Carrier
Frequency

920 MHz 2400-2500 MHz

Spectral
shaping

Direct sequence Slow frequency hop

Modulation Binary FSK Binary FSK

Transmit Power 500 Milliwatts 100 Milliwatts (0 dBm)

Data Rate 242 Kbps 625 Kbps (720 Max)

Antenna Type ¼ -wave omni-directional ¼ -wave omni-directional

The measurements entailed using a frequency-hopping wireless modem to perform

a fast sweep of the 2400-2500 MHz band. The mobile transmits a 2-byte1 packet to

the basestation, and as soon as the basestation has achieved frame

synchronization, an A/D conversion of the analog value of the received signal

strength (RSSI), an output on the radio modem, is read by an on-board 12-bit A/D

converter, with a resolution of 0 25. dBm/bit over the - 35 to - 80 dBm dynamic

                                                  
The packet also includes a 64-bit clock recovery and frame synchronization preamble
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range of the receiver. The RSSI value is then time-stamped and logged to a

workstation via a high-speed wired connection. The frequency is advanced to the

next sequential channel, modulo 100, and the measurement is repeated. In this

fashion, a time-frequency trace file is logged over the desired interval. A single

measurement and frequency change requires approximately 500 m -seconds.

Three measurements were conducted within a 15-meter by 10-meter space, with a

3.5-meter ceiling, and basestation antenna suspended from ceiling in at one end of

the room. As shown in Fig. A— 1, clothed partitions (1.5 meters high) divide the

room, so that, depending on the mobile’s position, the line-of-sight path between

basestation and mobile is blocked. In this work, the goal was to capture time

dynamics that would be typical of an actual user —  one who would be giving little

thought to position relative to the basestation, or how body orientation would

impact signal quality. For this reason, we gathered the measurements as the device

was in actual use: the pen-based, notebook-sized portable device is typically

cradled in the forearm of the users non-writing hand. Hence, the device is held

close to the body, about waist level, so that in addition to external shadowing

objects (e.g., partitions), the users body is a significant factor in shadowing the line-

of-sight path between transmitter and receiver.
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basestation

clothed
partitions
(exterior
partitions
mounted 
on  walls)

A

B

C

doorway

Fig. A— 1. Measurement Environment – Path of user moves continuously through the
points A-B-C

Two considerations arise in this measurement setup. First, with the overhead of the

software handshake, the current system requires approximately 50 ms to sweep

the entire band. This means that transitions in the frequency response that occur

on a faster timescale are sub-sampled. A second consideration is that the mea-

surement captures only the magnitude response of the channel, and ignores the

phase response. However, for the purposes of predicting signal quality, the informa-

tion we are seeking is when the channel is slowly varying (e.g., when the user is

seated and working, as opposed to walking and using the device), and for how long

it typically remains stationary, rather than trying to capture the precise impulse

response at each instant in time.  Further, for practical systems using software-

based control algorithms, 50 milliseconds is a reasonable round-trip update rate

for a measurement-based protocol.
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A.3  Results of Measurements

Intuitively, one would expect periods of activity followed by periods of stationarity,

corresponding to users’ actual movement patterns. So, with this intuitive under-

standing of what was expected, the first step was to get a feel for how fast the

frequency response changed with time, and what the shape of the frequency

response looked like during times of motion, compared to times when neither the

user or interferers were noticeably moving. To this end, measurements were taken

under the following two conditions:

A.3.1  Stationary Environment

To establish a baseline, this data set was collected with the transmitter and

receiver separated by approximately 3 meters, with a direct line-of-sight path

between the two antennas., with no moving interferers and a stationary user (point

A in Fig. A— 1).The measurements were logged for approximately 20 minutes, where

the position of the portable was shifted by about 1 meter during the measurements

(at approximately 3.5 minutes). This repositioning served as a reference point for

visually characterizing the impact of locally repositioning the mobile, and can be

seen as the peak in Figure A— 2.
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Figure A— 2. Attenuation (negative of RSSI in dB) over a 5-minute interval (stationary)

Figure A— 3. Attenuation (negative of RSSI in dB) over a 5-minute interval (non-
stationary)
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A.3.2  Non-stationary Environment

This data set was collected over a 15-minute interval, during which the portable

was carried around the lab room (during a tour of the lab facilities), where the

range of transmit-receive antenna separation was 4-12 meters.  The path of motion

continuously passed through the points A-B-C in Fig. A— 1.

The plots in Figure A— 2 and Figure A— 3 show the resulting frequency response

plots over a 6-7 minute time interval for each environment. On the right, the

frequency response is seen to remain approximately constant over the first 260-

second interval, after which the mobile was relocated; the horizontal discontinuity

at 260 seconds —  lasting only a few seconds —  represents this motion From 265

seconds through the end of the sweep (420 seconds), the channel response is once

again stationary. In the non-stationary environment (left), the frequency response

can be seen to alternate between periods of high and low activity, corresponding to

the movement pattern of the user. Even with its apparent changes, a bird’s-eye

view (top-down) of the frequency response indicates strong correlation in both time

and frequency —  lasting on the order of 20-40 seconds.
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no motion with motion

Figure A— 4. Empirical probability density plot of derivative of signal strength as a
function of time, for stationary (left) and non-stationary (right) environments

A.4 Analysis

A.4.1  Rate of change of signal strength

Insight about the dynamic behavior of the frequency response is gained by looking

at the derivative of received signal strength, as a function of time, for each

frequency in the band. This provides one with the rate of change as a function of

time, and is useful for determining the rate of feedback update necessary to track

changes in the channel response seen by the mobile. Figure A— 4 shows a plot of

the empirical probability mass function of this derivative, i.e.,

Pr[ ( , ) ]
∂
∂ =
t

Rssi f t x
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Several features of this graph provide intuition about the dynamic behavior of the

channel. First, it is evident that most of the probability is located within the  ±3dB

range, indicating that for this environment, a scheme which can compensate for 3

dB changes every 50 milliseconds (the sweep time of these measurements) would

be suitable.

A second interesting feature is the approximate symmetry about the origin (0 dB

change). This is explained by the fact that the measurements were conducted while

moving with the same local area, hence the local mean of the signal strength is

constant. Similar analysis on data sets in which the mobile was moving away from

the transmitter shows a negative bias in the derivative, corresponding to a long-

term decrease in signal strength.

A third interesting feature is the frequency-dependent correlation of the density

function. The broadband response reveals a 10 MHz dependence on the rate of

change (corresponding to a typical indoor delay spread of 100 nanoseconds),

verifying that frequencies within a coherence bandwidth of each other behave

similarly. The last observation verifies the standard assumption that frequencies

within a coherence bandwidth exhibit correlated fading.

A.4.2  Frequency dependence of time-variation

Further intuition about the dynamic behavior of the channel is gained by

examining the frequency dependence of temporal variations in each narrowband

channel. Figure A— 4 plots the variance (i.e., the mean-square fluctuation about the

average value) over a 10-sweep sliding window for each frequency, i.e., for each fre-

quency f ii , ...Œ1 100 ,
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CV k W Var f f fi i k i k i k W( ; ) ( , ,..., ), , ,= + +1

where fi k,  is the RSSI value of the ith frequency channel during the k th sweep, and

W is the number of sweeps of interest in the current window.  Since each sweep

requires approximately 500 microseconds, a window of length W spans

approximately 5W milliseconds.

Figure A— 5. Variance over a 5-second sliding window for stationary-user
configuration
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Figure A— 6. Variance over 5-second sliding window for non-stationary user
configuration

Examining Figure A— 6, it is apparent that the variance in each narrow band

channel is strongly correlated to neighboring channels. While this is expected, what

is surprising is the broadband correlation that is visible: during a given time

window, if the variance is large within a coherence bandwidth, it is likely that it is

large in other parts of the band as well. This is intuitively appealing, since

movements by the user result in wide-band fluctuation duration of the move, but in

between these periods of motion there are long periods (several seconds) during

which the spectral response is essentially constant.
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This information can be used to determine when an adaptive algorithm should

cease to adapt, since if the signal strength is wildly fluctuating in one part of the

band, it is likely that much of the band is affected. For the purposes of an adaptive

protocol, such as the frequency hopping schemes described in [PR94] and [Yun95],

it would be difficult to converge during these periods, but during the periods of

stationarity one expect that an adaptive algorithm would converge and enhance

performance. Depending on the ability of the network to exchange parameters with

the mobile (such as hopping patterns) it is possible that during these periods of

non-stationarity the adaptation should be either temporarily suspended, or the

channel response should be averaged.

This raises the question: what time scale is adequate for updating the feedback

algorithm? An interesting quantity to evaluate is the maximum difference in the

signal strength over a specified time interval. That is, for a signal strength

measurement fi k,  at the ith  frequency during sweep k , the quantity

D Max f f f Min f f fi k i k i k i k W i k i k i k W, , , , , , ,[ ( , , , ) ( , , , )]= -+ + + +1 1K K

is evaluated.



256

0 %

1 0 %
2 0 %

3 0 %

4 0 %

5 0 %
6 0 %

7 0 %

8 0 %
9 0 %

1 0 0 %

0 6 1 2 1 8 2 4

M a x  D e via t io n  o ve r  W in d o w  (d B )

C
um

ul
at

iv
e 

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e

5 0  m s

5 0 0  m s

5 0 0 0  m s

Figure A— 7. Empirical complimentary distribution for maximum deviation over
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Figure A— 8. Zoomed view of Figure A— 7
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The cumulative frequency histogram of Di k,  is shown in Figure A— 7 and Figure

A— 8 for 50, 500, and 5000 millisecond windows (W = 10, 100, 1000). This plot

shows the likelihood of that the maximum change in signal strength over a given

time window is below the value on the x-axis. From the zoomed-area plot (right),

the following is observed: for the 50-millisecond window, corresponding to an

update frequency of 20 Hz, only 5% of the deviations exceed 3-4 dB, and almost all

deviations are less than 12 dB. As the time window is widened to 5 seconds, only

30% of the observed deviations are below 3 dB —  approximately 5% exceed 20 dB.

For the 500 millisecond window (update frequency of 2 Hz), only 5% of the

deviations exceed 9 dB. From these figures, it appears that an update frequency on

the order of 2 Hz is adequate to track typical changes in the channel response to

within 9 dB.

A.4.3  Time-dependence of channel quality

If the channel is modeled as a wide-sense stationary random process, a quantity of

interest is the autocovariance between channel samples spaced by some time Dt . If

C f t( , )  is the time-varying frequency response of the channel, then the

autocovariance is defined to be

fC t E C f t t C f t E C f t( ) [ ( , ) ( , )] [| ( , )|]*= + -D 2 .

In words, this describes the time interval over which the channel response at a

particular frequency is correlated. Since this time is dependent upon the motion of

the user, it is also a quantity that varies as the user’s movement patterns change. A

time-invariant channel, for example, would have fC t( )D equal to a constant.
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Using the signal strength measurements to determine the attenuation at each

frequency, we estimate the spaced-time correlation function by

$( ) , ,
*f n

N
E f f E fi k n i k ii

N= -+=Â1 2
1e j

where fi k,  is the frequency response in the ith narrow band channel during

the k th sweep, E fi is the average received signal strength in the in the ith  narrow

band during the entire measurement period. The estimate is an average over all

N =100 narrow band channels.

A u t o c o va r i ance  o f S igna l  S t reng th  (dB )

-45
-39
-33
-27
-21
-15

-9
-3

0 3 8 7 6 1 1 3 1 5 1 1 8 9 2 2 7 2 6 4

Tim e  L a g  (s )

Figure A— 9. Autocovariance of received signal strength, averaged over frequency
band
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Figure A— 9 plots the resulting values for increasing time lag. The plot shows that

the correlation drops of almost linearly (in dB) until approximately 60 seconds of

lag, then remains essentially constant until 200 seconds before dropping off again.

After 300 seconds, the correlation is essentially zero.

A.5  Conclusion

In order to provide variable quality of service to mobile users in an integrated

services network that utilizes a wireless link, the service disciplines on the

backbone network must be able to adapt to handle time-variations in the capacity

of the wireless link. Without an understanding of how fast the channel response

varies with time, it is difficult to design a feedback-based adaptation scheme that is

both effective and efficient: too much feedback wastes bandwidth, while too little

feedback inadequately tracks changes in the channel. The measurements and

analysis presented indicate that for typical changes in signal strength to within 9

dB, a rate of 2 Hz is adequate for the feedback loop. Increasing the sampling rate to

20 Hz allows the changes to be tracked within 3 dB.
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Append i x  B

F i n i t e - s t a t e  m o d e l  f o r
m o b i l i t y  p r o t o c o l s  i n

In f oPad

B.1 State transition diagrams for InfoNet/InfoPad protocols
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B.1.1 Pad Server

RX  ConnectReq

set  pendingCS  = source CS
TX  JoinReq to pending CS

RX  JoinAck = yes
TX  ConnectStart to Pad

RX  ConnectReq
from CS<> pendingCS

set  PendingCS  = source  CS
TX  JoinReq to pendingCS

After TX 100 RStatusReq
& not  RX  RStatusAck

close  pendingCS Port

close  all GW and CS  ports

if RSSI value from a neighbor CS > 
RSSI value from primaryCS &

TX ChangeReq to primary CS

RX ChangeAck = no

set  pendingCS = source CS
TX  JoinReq to  pendingCS

set pendingCS = next  CS in list
TX  JoinReq to pendingCS

for next neiighbor CS in list 

RX  ConnectReq
from CS<> primaryCS

set  PendingCS  = source  CS
TX  JoinReq to pendingCS

pollHysterisis > threshold

RX  ConnectRdy from Pad

set  primaryCS  = pendingCS

RX  JoinAck = yes

TX Move to Pad

RX ConnectReq

TX RStatusReq
periodically

to Pad

RX JoinAck = no

RX  ConnectReq
f rom CS<> primaryCS

set  pendingCS  = source  CS
TX  JoinReq to pendingCS

from CS <> pendingCS
and CS <> primaryCS

set  pendingCS  = source  CS
TX  JoinReq to pendingCS

close primaryCS port
close primaryCS port
close pendingCS port

RX ChangeAck = yes
no action

RX  JoinAck = no
close all GW and CS ports

RX  ConnectRdy from Pad

set  primaryCS  = pendingCS
close primaryCS

or
no more cells in neighbor list

STATES 1, 5, and 7:

STATES 1, 5, and 7:

IDLE  (0)

PENDING  (2)

STABLE  (1)

CHANGE  (5) MOVE  (7)

Fig. B— 1. State-machine view of the Pad Server mobility protocol
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B.1.2 Basestation

INIT (0)
TX  Channel_Req

IDLE (1)

CONNECT_REQ

CONNECT_START
TX  Connect_Start CONNECT_RDY

Packets to Pad are italic

MOVE
TX  Move_Req

CONNECT_DONE

TX   Announce

JOIN_ACK
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ChannelAck

exec

ChannelAck
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dnch = startFreqIndx + offset

JoinAck and upch = 0

ConnectReq
and JoinAck

dnch = startFreqIndx + offset
upch = 0

ConnectReq

ConnectStart

ConnectStart

channels set by JoinAck

connectRdy
timeout

ConnectRdy

channels set  by ConnectStart

ConnectRdy

ConnectRdy

RStatusReq Move

Move

TX Announce

and rStatusReq
timeoutconnectRdy

timeout

to IDLE

start connectRdy timer

connectRdy timer active

stop connectRdy timer

start connectRdy timer

stop connectRdy timer

connectRdy timer active

stop connectRdy timer

stop  rStatusAck timer

restart rStatusReq timer

stop  rStatusReq  timer

BARM
Mobility  FSM

start  connectStart  timer

stop connectStart timer

connectStart timer active

connectStart
timeout

stop connectStart timer

rStatusReq
timeout

stop rStatusReq timer

to IDLE

start rStatusReq timer
RStatusReq

restart  rStatusReq timer

ConnectRdy
stop connectRdy timer
start rStatusReq timer

rStatusReq  timer active  rStatusReq timer  active
(4)

(5)

(6)

(7)

(2)

(3)

DisconnectReq in any state
causes transition to idle.

to IDLE

ConnectReq
and JoinAck
and upch != 0

and upch != 0

or (ConnectStart
and upch = 0)

and RStatusReq

Move

or Move timeout
DisconnectReq

TX RStatusReq

TX RStatusReq

All timers are stopped.

start Move timer

stop  Move timer

Move timer active

Figure B— 2. Basestation Mobility Finite State Machine
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B.1.3 Mobile Client

INIT (0)

IDLE (1)

CONNECT_RDY

SCAN_RSSI

MOVE (5)

TX  Connect_Req

RSTATUS_ACK

upch = 0

exec

dnch = scan, upch = 0
ConnectStart

channels from ConnStart

RStatusReq
rStatusReq

ConnectStart

upch/dnch = primary channels

upch = primary upch

channels from Move pkt

start rStatusReq  timer

rStatusReq timer  active

start heartbeat timer

heartbeat timer active

timeout

TX Connect_Rdy

RStatusReq

Move
and RStatusReq

Move

or Move pkt

dnch = next scan

stop heartbeat timer

stop  rStatusReq timer

rStatusReq timer active
stop  rStatusReq timer

rStatusReq timer active

restart  rStatusReq timer

rStatusReq timer active

stop loopRSSI timer

start heartbeat timerMove

(2)

(3)

(4)

TX RStatusAck

and rStatusReq
timeout TX RStatusAck

and RStatusReq

start heartbeat timer

restart rStatusReq timer
start loopRSSI timer

channel scan finished

restart loopRSSI  timer
sw itch downlink channel

last channel scanned

loopRSSI timer active

Figure B— 3. Mobility state machine for mobile client
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B.2 Promela Code

/* promela model of Infoctl
*/

/* The comments at the end of the define's don't get stripped out
 * by m4. Thus our line numbers will match the preprocessors line numbers
 */

define(TRANS,`atomic') /**/
define(ATOMIC,`atomic') /**/
define(NDTRANS,`atomic') /**/
define(`NUMCELLS',2) /**/
define(NUMPADS,1) /**/
define(BASES_PER_CELL,1) /**/
define(NUMBASES,eval(NUMCELLS*BASES_PER_CELL)) /**/
define(`CELLID',(($1)/BASES_PER_CELL)) /**/
define(PadIDType,bit) /**/
define(ChannelIDType,bit) /**/
define(BaseIDType,bit) /**/
define(CellIDType,bit) /**/
define(NUM_DN_CHANNELS,eval(NUMBASES)) /**/
define(DEFAULT_RSSISCAN_CHAN,0) /**/
define(NEIGHBOR_RSSISCAN_CHAN,1) /**/
define(BCASTUPCHAN,0) /**/
define(DONTCARE,0) /**/
define(QSZ,2) /**/
define(TIMEOUT,`skip') /**/
define(PADZERO,0) /**/
define(BASEZERO,0)  /**/
define(CELLZERO,0)  /**/

typedef ChannelPairType {
bool bcast;
ChannelIDType ChanUp;
ChannelIDType ChanDn;

};

ChannelPairType baseChans[NUMBASES];
ChannelPairType padChans[NUMPADS];

define(BroadcastListen,`baseChans[$1].bcast = $2') /**/
define(NextDownChan,`($1 + 1) % NUM_DN_CHANNELS') /**/

/*********************
 * Use: LookupBase(cell,pad)
 */
define(LookupBaseid,$1)

/**/

/*********************
 * Use: LookupBase(cell,pad)
 */
define(StoreBaseid,skip)

/**/

/******************
 * Use: GetPadServer(padid)
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 */
define(GetPadServer,$1)

/**/

/*********************
 * Use:GetBestNeighborCell(primaryCS,myPadID)
 */
define(GetBestNeighborCell,(($1 + 1) % NUMCELLS)) /**/

mtype {ConnectReq,BCJoinAck,DisconnectReq,ConnectStart,ConnectResume,
RStatusReq, RStatusAck,MovePkt,ConnectReady,Announce,
ChangeReq,ChangeAck,JoinReq,PSDirected JoinReq,JoinAck,
BC_IDLE,BC_CONNECT_REQ,BC_CONNECT_START,
BC_CONNECT_RDY,BC_CONNECT_DONE,
BC_MOVE,BC_JOIN_ACK,
PC_IDLE,PC_CONNECT_RDY,PC_RSTATUS_ACK,PC_SCAN_RSSI,
PS_IDLE,PS_PENDING,PS_STABLE,PS_MOVE,PS_CHANGE};

show chan cellSrvToPadSrv[NUMPADS] = [3] of 
{mtype,CellIDType,bit};

show chan baseToPadSrv[NUMBASES] = [1] of  {mtype,PadIDType,bit};
show chan cellSrvToBase[NUMBASES] = [0] of {mtype,PadIDType};
show chan padSrvToBase[NUMBASES] = [0] of 

{mtype,PadIDType,BaseIDType /* only used in  move */};
show chan padSrvToCellSrv[NUMCELLS] = [0] of 

{mtype,PadIDType};
show chan baseToCellSrv[NUMBASES] = [0] of {mtype,PadIDType,bit};

show chan uplinkChan[NUMBASES] = [1] of {mtype,PadIDType};
show chan dnlinkChan[NUMBASES] = [1] of {mtype,PadIDType,bit};

define(UplinkWaiting,`(nempty(uplinkChan[0]) || nempty(uplinkChan[1]))')
/**/
define(DnlinkWaiting,`(nempty(dnlinkChan[0]) || nempty(dnlinkChan[1]))')
/**/
define(WaitTxFinish,`do :: skip od unless { empty(`$1') }')

/**/

/*
 * Messages:
 * to cellServer - ConnectReq(baseid,padid)
 */

proctype BaseControl(BaseIDType baseid;
  chan radioUp,radioDn,cellSrvIn,cellSrvOut,
  padSrvIn,padSrvOut)

{
show mtype state = BC_IDLE;
PadIDType padID,tmpid;
BaseIDType moveID;
bool rxJoinAck;
show bool statusReqSent;
PadIDType ConnectStartPending[NUMPADS];
PadIDType ConnectReadySent[NUMPADS];
xs radioDn;

define(DO_BC_RESET,`rxJoinAck = false; state = BC_IDLE;
BroadcastListen(baseid,true);') /**/
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define(PadListening,`(baseChans[baseid].ChanDn ==
padChans[PADZERO].ChanDn)') /**/
define(PadNotListening,`(baseChans[baseid].ChanDn !=
padChans[PADZERO].ChanDn)') /**/
define(BC_SendPktDn,`if :: PadListening() -> radioDn!`$1'; ::
PadNotListening() -> skip; fi;') /**/

reset:
atomic {

DO_BC_RESET();
statusReqSent = false;
tmpid = 0;
do
:: tmpid < NUMPADS ->

ConnectStartPending[tmpid] = false;
ConnectReadySent[tmpid] = false;
tmpid++

:: else -> break;
od

   }

end:
do
/******************/
/* IDLE           */
/******************/
:: (state == BC_IDLE) ->

if
  :: radioUp?ConnectReq(padID) ->

if
::(!ConnectStartPending[padID]) ->

ConnectStartPending[padID] = true;
   cellSrvOut!ConnectReq(baseid,padID);

   state = BC_CONNECT_REQ;
:: else -> skip;
fi

:: cellSrvIn?DisconnectReq(_) ->
goto reset;

   :: cellSrvIn?BCJoinAck(padID) ->
TRANS {
rxJoinAck = false;
BroadcastListen(baseid,false);

    state = BC_JOIN_ACK;
       }

:: (rxJoinAck == true) -> /* got a BCJoinAc k in some other state */
TRANS {
rxJoinAck = false;
BroadcastListen(baseid,false);
state = BC_JOIN_ACK;
}

   :: timeout ->
{{ BC_SendPktDn(Announce(DONTCARE,baseid)) } unless

{nempty(radioDn)} };
   fi

/******************/
/* CONNECT_REQ    */
/******************/

   :: (state == BC_CONNECT_REQ) ->
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if
:: cellSrvIn?DisconnectReq(_) ->

atomic{
goto reset;

}
:: timeout /* T_connectStart */ ->

/* XXX HACK removed this from the original --
 * want the base to wait indefinitely for the connect start
 *
atomic { if :: empty(radioDn) -> goto reset; fi; }
*/

/* XXX added this to eat packets we don't want while
 * we spin
 */
if :: nempty(radioUp) ->  radioUp?_,_; fi;

/* end hack */

:: padSrvIn?ConnectStart(padID,_) ->
atomic {
ConnectStartPending[padID] = false;
BroadcastListen(baseid,false);
state = BC_CONNECT_START;
BC_SendPktDn(ConnectStart(padID,baseid));
}

:: cellSrvIn?BCJoinAck(padID) ->
rxJoinAck = true;
state = BC_JOIN_ACK;

:: radioUp?ConnectReq(_) -> skip;
fi

/******************/
/*   JOIN_ACK     */
/******************/
:: (state == BC_JOIN_ACK) ->

if
:: cellSrvIn?DisconnectReq(_) ->

atomic{
goto reset;

}
:: timeout /* T_connectReady */ ->

atomic{
if :: empty(radioDn) -> goto reset; fi;

}
::radioUp?ConnectReady(padID) ->

padSrvOut!ConnectReady(padID,CELLID(baseid));
state = BC_CONNECT_RDY;

:: cellSrvIn?BCJoinAck(padID) ->
rxJoinAck = true;

fi
/******************/
/* CONNECT_START  */
/******************/
:: (state == BC_CONNECT_START) ->

if
:: cellSrvIn?DisconnectReq(_) ->
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atomic{
goto reset;

}

:: cellSrvIn?BCJoinAck(padID) ->
rxJoinAck = true;

:: radioUp?ConnectReady(padID) ->
padSrvOut!ConnectReady(padID,CELLID(baseid));
state = BC_CONNECT_RDY;

:: timeout /* T_connectReady */ ->
atomic{

if :: empty(radioDn) -> goto reset; fi;
}

:: timeout /* T_loop */ ->
if :: empty(radioDn) ->

BC_SendPktDn(ConnectStart(padID,baseid));
fi;

/* XXX -- this isn't in the original, because the ConnectReady
timeout would

 * take several iterations of the loop, and several connect start's
would be
  * sent.

 */
:: radioUp?ConnectReq(tmpid) ->

if
:: (tmpid == padID) -> BC_SendPktDn(ConnectStart(padID,baseid));

printf("Sent connect start\n");
:: (tmpid != padID) ->  skip;

printf("Skipped connect start\n");
fi

fi

/******************/
/* CONNECT_RDY  */
/******************/
:: (state == BC_CONNECT_RDY) ->

if
:: cellSrvIn?DisconnectReq(_) ->

atomic{
goto reset;

}

::  timeout /* T_rStatusReq */ ->
atomic{

if :: empty(radioDn) -> goto reset; fi;
}

:: padSrvIn?RStatusReq(padID,_) ->
statusReqSent = true;
BC_SendPktDn(RStatusReq(padID,DONTCARE));
state = BC_CONNECT_DONE;

:: cellSrvIn?BCJoinAck(padID) ->
rxJoinAck = true;

fi
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/******************/
/* CONNECT_DONE   */
/******************/
:: (state == BC_CONNECT_DONE) ->

if
:: cellSrvIn?DisconnectReq(_) ->

atomic{
goto reset;

}

:: padSrvIn?MovePkt(padID,moveID) ->
state = BC_MOVE;

:: padSrvIn?RStatusReq(padID,_) ->
statusReqSent = true;
BC_SendPktDn(RStatusReq(padID,DONTCARE));

/* XXX BUG -- skipped this case in the orig */
:: radioUp?ConnectReq(tmpid) ->

if
:: tmpid == padID ->

BC_SendPktDn(ConnectResume(padID,baseid));
:: else -> skip
fi

:: radioUp?RStatusAck(padID) ->
statusReqSent = false;
padSrvOut!RStatusAck(padID,DONTCARE);

:: statusReqSent && timeout /* T_rStatusReq */ ->
atomic{

if
:: empty(radioDn) -> goto reset;
fi;

}

:: timeout /* T_loop */ ->
if
:: empty(radioDn) -> BC_SendPktDn(Announce(DONTCARE,baseid));
fi;

fi

/******************/
/* MOVE           */
/******************/
:: (state == BC_MOVE) ->

if
:: cellSrvIn?DisconnectReq(_) ->

atomic{
goto reset;

}
:: timeout /* T_move */ ->

atomic{
if :: empty(radioDn) ->

goto reset;
fi;
}

:: timeout /* T_loop */ ->
if
:: empty(radioDn) ->
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BC_SendPktDn(MovePkt(padID,moveID));
fi;

:: cellSrvIn?BCJoinAck(padID) ->
rxJoinAck = true;

fi
od

}

proctype PadSrv(PadIDType myPadID; chan fromCellSrv)
{

show mtype state = PS_IDLE;
mtype msg;
PadIDType tmpPadID;
show CellIDType pendingCS,tmpCS,primaryCS;
bool bOk;
bit val;

end:
do
:: (state == PS_IDLE) ->

if
:: fromCellSrv?msg(pendingCS,val) ->
ATOMIC {

if
:: (msg == ConnectReq) ->

padSrvToCellSrv[pendingCS]!JoinReq(myPadID);
state = PS_PENDING;
bOk = false;

:: else -> skip;
fi

}
fi

:: (state == PS_PENDING) ->
if
:: timeout ->

/* XXX this is changed from the original
*/
padSrvToCellSrv[pendingCS]!DisconnectReq(myPadID);
state = PS_IDLE;

:: fromCellSrv?JoinAck(tmpCS,bOk) ->
ATOMIC {
assert(tmpCS == pendingCS);
if
:: (tmpCS == pendingCS) && (bOk == true) ->

padSrvToBase[LookupBaseid(pendingCS,myPadID)]!ConnectStart(myPadID,DONTC
ARE);

state = PS_PENDING;

:: (tmpCS == pendingCS) && (bOk == false) ->
state = PS_IDLE;

fi
}

::
baseToPadSrv[LookupBaseid(pendingCS,myPadID)]?ConnectReady(tmpPadID,tmpCS)
->
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atomic {
if
:: myPadID == tmpPadID ->

primaryCS = pendingCS;
state = PS_STABLE;

padSrvToBase[LookupBaseid(primaryCS,myPadID)]!RStatusReq(myPadID,DONTCAR
E);

fi;
}

fi

:: (state == PS_STABLE) ->
if
:: timeout /* T_rStatusReq */ ->

padSrvToBase[LookupBaseid(primaryCS,myPadID)]!RStatusReq(myPadID,DONTCAR
E);

::
baseToPadSrv[LookupBaseid(primaryCS,myPadID)]?RStatusAck(tmpPadID,_) ->

ATOMIC {
if
:: true /* don't change power level */ ->

skip;
:: true /* do change power level */ ->

padSrvToCellSrv[primaryCS]!ChangeReq(myPadID);
state = PS_CHANGE;

fi
}

:: fromCellSrv?ConnectReq(tmpCS,_) ->
ATOMIC {
TRANS {

if
:: (tmpCS == primaryCS) ->

pendingCS = tmpCS;
state = PS_PENDING;

:: else -> skip;
fi

}
}

fi
:: (state == PS_CHANGE) ->

if
:: fromCellSrv?ConnectReq(tmpCS,_) ->

ATOMIC {
if
:: (pendingCS == tmpCS) ->

padSrvToCellSrv[pendingCS]!JoinReq(myPadID);
:: else -> skip;
fi
}

:: fromCellSrv?ChangeAck(tmpCS,bOk) ->
ATOMIC {
if
:: (bOk == true) ->

state = PS_STABLE;
:: else ->

pendingCS = GetBestNeighborCell(primaryCS,myPadID);
state = PS_MOVE;
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padSrvToCellSrv[pendingCS]!PSDirectedJoinReq(myPadID);
fi
}

fi
:: (state == PS_MOVE) ->

if
:: baseToPadSrv[LookupBaseid(pendingCS,myPadID) ]?ConnectReady,tmpCS -

>
ATOMIC {
assert(tmpCS == pendingCS);
padSrvToCellSrv[primaryCS]!DisconnectReq(myPadID);
primaryCS = pendingCS;
state = PS_STABLE;
}

:: fromCellSrv?JoinAck(tmpCS,bOk) ->
ATOMIC {
TRANS{

assert(bOk == true);
assert(tmpCS == pendingCS);

}
/* send a move packet via our current base */

padSrvToBase[LookupBaseid(primaryCS,myPadID)]!MovePkt(myPadID,LookupBase
id(pendingCS,myPadID));

}

:: fromCellSrv?ConnectReq(tmpCS,_) ->
ATOMIC {
if
:: (tmpCS != pendingCS && tmpCS != primaryCS) ->

padSrvToCellSrv[primaryCS]!DisconnectReq(myPadID);
padSrvToCellSrv[pendingCS]!DisconnectReq(myPadID);
pendingCS = tmpCS;
padSrvToCellSrv[pendingCS]!PSDirectedJoinReq(myPadID);
state = PS_PENDING;

:: else ->
skip;

fi
}

fi
od

}

proctype Cell(CellIDType cellID; chan fromPadSrv,fromBS,toBS)
{

PadIDType padID;
BaseIDType baseid;

end:
do
:: fromPadSrv?ChangeReq(padID) ->

if
::true ->

cellSrvToPadSrv[padID]!ChangeAck(cellID,true);
::true ->

cellSrvToPadSrv[padID]!ChangeAck(cellID,false);
fi

:: fromBS?ConnectReq(baseid,padID) ->
ATOMIC {
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StoreBaseid(cellID,baseid,padID);
cellSrvToPadSrv[padID]!ConnectReq(cellID,DONTCARE);
}

:: fromPadSrv?DisconnectReq(padID) ->
cellSrvToBase[LookupBaseid(cellID,padID)]!DisconnectReq(padID);

:: fromPadSrv?JoinReq(padID) ->
goto allowJoin;

:: fromPadSrv?PSDirectedJoinReq(padID) ->
ATOMIC {
/* non-deterministically decide if we can allocate this */
if
:: true ->

/* accept the join request and notify padsrv and base */
allowJoin:

cellSrvToPadSrv[padID]!JoinAck(cellID,true);
/*** BUG

cellSrvToBase[LookupBaseid(cellID,padID)]!BCJoinAck(padID);
*/

:: true ->
/* deny the join request */
cellSrvToPadSrv[padID]!JoinAck(cellID,false);

fi
}

od
}

/*
 * Model for the pad.
 *
 * Because the model is too complex to verify in spin using a separate
media process,
 * I rewrote the original model (which had a single uplink and downlink) to
 * explicitly handle two radio channels.
 *
 * Modeling hacks:
 * 1) Make the pad wait if the network is processing a request -- Promela
has no
 *   way to distinguish extremely fast events from slow events.
 */
proctype Pad(PadIDType myid)
{

show mtype state = PC_IDLE;
ChannelIDType scanend;
show BaseIDType baseid;
BaseIDType tmpbaseid;
PadIDType id;
chan uplink0 = uplinkChan[0];
chan uplink1 = uplinkChan[1];

/**
 * Definitions and local macros
 */

define(BroadcastUse,`padChans[$1].bcast = $2') /**/
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define(PC_LOOK_FOR_HEARTBEAT,`BroadcastUse(myid,true);padChans[myid].ChanDn
=$1;state=PC_IDLE') /**/
define(PC_Downch,padChans[myid].ChanDn) /**/
define(PC_Upch,padChans[myid].ChanUp) /**/
define(PC_Bcast,padChans[myid].bcast) /**/
define(ChangeChans,`BroadcastUse(myid,false);padChans[myid].ChanUp=$1;
padChans[myid].ChanDn = $1;') /**/
define(BaseListening,`((baseChans[$1].ChanUp == PC_Upch) ||
(baseChans[$1].bcast && PC_Bcast))') /**/
define(PC_OkToTx,`(BaseListening($1))') /**/
define(PC_NDSend,`if :: true -> uplink$1!$2; :: false -> skip; /* lost pkt
*/ fi') /**/
define(PC_WaitTx,`{do :: skip od} unless {(empty(uplink0) &&
empty(uplink1))}') /**/

TRANS { PC_LOOK_FOR_HEARTBEAT(PC_Downch()); }
do
/******************/
/* PC_IDLE        */
/******************/
:: (state == PC_IDLE) ->

if
:: dnlinkChan[PC_Downch]?ConnectStart(id,baseid) ->

d_step{ ChangeChans(baseid); }
PC_WaitTx();
atomic {

if
:: (BaseListening(baseid))->

uplinkChan[baseid]!ConnectReady(myid);
:: else -> skip;
fi;
state = PC_CONNECT_RDY;

}

:: dnlinkChan[PC_Downch]?ConnectResume(id,tmpbaseid) ->
if
:: (id == myid) -> state = PC_RSTATUS_ACK;
:: else -> skip;
fi;

:: dnlinkChan[PC_Downch]?Announce(_,baseid) ->
txConnReq:

{
d_step { ChangeChans(baseid) };
PC_WaitTx();
if
:: (BaseListening(baseid)) ->

uplinkChan[baseid]!ConnectReq(myid);
:: else -> skip;
fi;

}

:: dnlinkChan[PC_Downch]?RStatusReq(id,_) -> skip;

:: timeout /* T_heartbeat */ ->
atomic {
if(nempty(uplink0) || nempty(uplink1) ->

PC_LOOK_FOR_HEARTBEAT((PC_Downch() + 1) % NUM_DN_CHANNELS);
goto txConnReq;
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fi;
}

:: timeout /* T_loop */ ->
atomic {
if :: nempty(uplink0) || nempty(uplink1) -> goto t xConnReq; fi;
}

:: dnlinkChan[1 - PC_Downch]?_(_,_) ->
/* drop packets that aren't on our channel */
skip;

fi

/******************/
/* CONNECT_RDY    */
/******************/
:: (state == PC_CONNECT_RDY) ->

if
:: dnlinkChan[PC_Downch]?ConnectStart(id,tmpbaseid) ->

{
PC_WaitTx();
if
:: BaseListening(baseid) ->

uplinkChan[baseid]!ConnectReady(myid);
:: else -> skip;
fi;

}
unless { nempty(uplink0) || nempty(uplink1) || (id != myid) ||

(tmpbaseid != baseid) }

:: dnlinkChan[PC_Downch]?RStatusReq(id,_) ->
if
:: id == myid ->

uplinkChan[baseid]!RStatusAck(myid);
state = PC_RSTATUS_ACK;

fi;

/* XXX added explicit */
:: dnlinkChan[PC_Downch]?Announce(_,_) -> skip;

:: timeout /* T_rStatusReq */ ->
if
::empty(uplink0)  && empty(uplink1) -> skip
::nempty(uplink0) || nempty(uplink1) ->

d_step { PC_LOOK_FOR_HEARTBEAT(PC_Downch());}
fi;

:: timeout /* T_loop */ ->
if nempty(uplink0) || nempty(uplink1) ->

PC_WaitTx();
if
:: BaseListening(baseid) ->

uplinkChan[baseid]!ConnectReady(myid);
:: else -> skip;
fi;

fi;

:: dnlinkChan[1 - PC_Downch]?_(_,_) ->
/* drop packets that aren't on our channel */
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skip;
fi

/******************/
/* RSTATUS_ACK    */
/******************/
:: (state == PC_RSTATUS_ACK) ->

progress_RStatusAck:
if
/* XXX added explicit */
:: dnlinkChan[PC_Downch]?Announce(_,_) -> skip;

:: dnlinkChan[PC_Downch]?MovePkt(id,tmpbaseid) ->
if
:: (id == myid) ->

if
:: true -> /* we change */

d_step{
baseid = tmpbaseid;
ChangeChans(baseid);
}
{

PC_WaitTx();
if
:: BaseListening(baseid) ->

uplinkChan[baseid]!ConnectReady(myid);
:: else -> skip;
fi;

} unless { nempty(dnlinkChan[PC_Downch]) };
:: true -> /* we stay, waiting for move threshold */

skip;
fi

:: else ->  /* packet not for me */
skip;

fi

:: dnlinkChan[PC_Downch]?RStatusReq(id,_) ->
if
:: (id == myid) ->

PC_WaitTx();
if
:: BaseListening(baseid) ->

uplinkChan[baseid]!RStatusAck(myid);
:: else -> skip;
fi;
skip; /* needed for the d_step -- the break above in the

PC_Send macro causes grief */
TRANS {
scanend = PC_Downch();
PC_Downch = NextDownChan(PC_Downch());
state = PC_SCAN_RSSI;
}

:: else -> /* packet not for me */
skip;

fi
:: timeout /* T_rStatusReq */ ->

TRANS {
PC_LOOK_FOR_HEARTBEAT(PC_Downch());
}
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:: dnlinkChan[1 - PC_Downch]?_(_,_) ->
/* drop packets that aren't on our channel */
skip;

fi
/******************/
/* SCAN_RSSI      */
/******************/
:: (state == PC_SCAN_RSSI) ->

if
:: dnlinkChan[PC_Downch]?RStatusReq(_,_) ->

skip;

/* XXX added explicit */
:: dnlinkChan[PC_Downch]?Announce(_,_) -> skip;

:: true -> /* RSSI_Samples <= 0 */
ATOMIC {
if
:: (PC_Downch != scanend) ->

/* Switch to a neighbor channel and take a reading */
PC_Downch = NextDownChan(PC_Downch());
state = PC_SCAN_RSSI;

:: (PC_Downch == scanend) ->
state = PC_RSTATUS_ACK;
fi
}

:: dnlinkChan[1 - PC_Downch]?_(_,_) ->
/* drop packets that aren't on our channel */
skip;

fi
od

}

init
{
 byte i = 0;
 PadIDType j = 0;

d_step {
do
:: (i < NUMBASES) ->

BroadcastListen(i,true);
baseChans[i].ChanUp = i;
baseChans[i].ChanDn = i;
i = i + 1;

:: (j < NUMPADS) ->
BroadcastUse(j,true);
padChans[j].ChanUp = j;
padChans[j].ChanDn = j;
j = j+1;

:: else ->
break;

od
}

atomic {
run Pad(PADZERO) ;
run BaseControl(BASEZERO,uplinkChan[0],dnlinkChan[0],

cellSrvToBase[BASEZERO],baseToCellSrv[CELLZERO],
padSrvToBase[BASEZERO],baseToPadSrv[PADZERO]);
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run
Cell(0,padSrvToCellSrv[CELLZERO],baseToCellSrv[BASEZERO],cellSrvToBase[BASE
ZERO]) ;

run PadSrv(PADZERO,cellSrvToPadSrv[PADZERO]);
run BaseControl(1,uplinkChan[1],dnlinkChan[1],

cellSrvToBase[1],baseToCellSrv[1],
padSrvToBase[1],baseToPadSrv[PADZERO]);

run Cell(1,padSrvToCellSrv[1],baseToCellSrv[1],cellSrvToBase[1]) ;
}

}

/*
Local Variables: ***
mode:Fundamental ***
tab-width:4 ***
End: ***
*/
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Append i x  C

G lossa ry  o f  no ta t i on
and  SDL  l egend

C.1 Notation

The following symbols appear in the text (all in Chapter 5) and are standard in

formal languages and automata theory.

Q P¥ Cartesian product of the sets Q and P, that is, the set formed from all
tuples ( , )q pi j

x yŸ Logical conjunction of x and y (“x and y”)

x y⁄ Logical disjunction of x and y (“x or y”)

ÿ x Logical complement of x

A
B

C

Conditional inference, as in “If A and B hold, then C holds”

Q p|= “Property p holds in the model Q”
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C.2  SDL graphical legend

The diagrams on the next two pages show most of the symbols of the SDL graphical

language used in the text and in the accompanying files. These diagrams are

intended only to serve as a partial reference to assist in the reading. The fragments

below do not describe a complete SDL system, nor do they describe any meaningful

behavior.
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Block Interaction_Legend 1(1)

This is a text symbol, used
to hold textual definitions of
data types, operators, etc.

operator

Block_A

This is a block reference symbol.
Blocks are the fundamental unit of lexical
scope and structural hierarcy. They contain
other blocks and/or processes, procedures, and
data declarations

A process reference symbol. Processes specify
dynamic behavior using extended finite state machines.
They execute concurrently, communicating by means of
signals and remote variables

Process_A(1) Process_C

The number of process
instances follows the
process name. If process 
instances can be dynamically
created, then the first number
indicates the initial instances,
and the second number indicates
the maximum number of instances

Process_B(0,N)

Dynamically created process
can have zero instances at
startup. The dashed arrow shows
the parent/child relationship

OperatorName
ProcedureName

These are operator and procedure
reference symbols. Operators can be defined
axiomatically or algorithmically

Bidirectional_SignalRoute

Signal6,
Signal7

Signal4,
Signal5

Unidirectional_SignalRoute
Signal1,
(Signallist2),
Signal3

Fig. C— 1. SDL Block interaction diagram
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Process StateMachine_Legend 1(1)

* in a state symbol refers to
"any state"

State_Symbol *

signal_A
Input symbol, 
indicating signals
that cause a
 transittion

Spontaneous transitions
non-deterministically
execute

none

State_2 Non-deterministic
choice any

signal_A,
signal_B

signal_C,
signal_D signal_E task1 task2 task3

'task symbol for
algorithmic
processing'

conditional_
expression

output_signal1(
params)

'start timer'
set(end_time,
timer_name)

'stop timer'
reset(timer_name) - -

'procedure call'
produreName(

params)
decision_criterion

State_3 Label StopProcess

signal_A
signal_X,
signal_Y,

(signallist_Z)

The '-' in a state symbol
refers to the state in
which the transition 
originated (in this case,
state_2)

'macro call'
macroName(

params)

Signals at the head of the
process input queue that
are not named in the input
list for a given state are
implicitly consumed unless
lspecified in a signal "save"
listState_2

result_A

result_B

Fig. C— 2. SDL state machine legend
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Mobile Base PadServer Cell Server

IdleIdleIdleIdle

ConnectReq(padID)

ConnectReq

CONNECT_REQ
ConnectReq

JoinReq

PENDING
JoinAck

ConnectStart

ConnectStart

CONNECT_START

ConnectReady

CONNECT_RDY
ConnectReady

CONNECT_RDY
RStatusReq

RStatusReq

CONNECT_DONERSTATUS_ACK STABLE

T_rStatusReq

RStatusReq RStatusReq

RStatusAckRStatusAck

Scan Results T_rStatusReq

Scan Adjacent
Channels

RStatusReqRStatusReq

RStatusAck

Scan Results

RStatusAckContinue
scanning and
responding
with RStatusAck
for each 
RStatusReq

process

states

Timer set

Timer expires

Message
parameters

Advance
of

time

Initial 
state 

Fig. C— 3. Message Sequence Chart graphical legend


