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Overview of talk

• Why might we use multiple imputation?

• How does the imputation process work?

• How can the results be interpreted?

• How does this work in practice? An 

example from the Cancer Trends project.



The missing data problem

• Data is often missing in quantitative 

research, especially in retrospective 

studies or in large scale surveys.

• The simplest solution has always been to 

just analyse the “complete” dataset, and 

ignore cases who were missing data.



Pitfalls of analysing “complete” data 

only

• Inefficient analysis;

• In a complex statistical model: adding 

extra risk factors will mean more cases will 

be excluded from the analysis;

• If there is systematic bias as to WHY 

some people have missing data, then the 

results of the analysis may be biased.



How missing is missing?

• There are several types of 
“missing” data described in the 
literature:

− Missing completely at random 
[MCAR]

• (no pattern as to why data are 
missing)

− Missing not at random [MNAR]

• (data are missing based on a 
unknown factor)

− Missing at random [MAR]

• (data are missing in a 
systematic fashion, related to 
values of other variables in 
dataset)

• The labels are confusing. What 
does this actually mean for 
analysis?

− MCAR: “complete” data are in 
effect a random subsample of 
all the people in the study.

− MNAR: we cannot infer any 
information about the missing 
data values from the rest of a 
case’s data.

− MAR: we can make some 
assumptions about the 
missing data, conditional on 
the intact information.



Imputation

• So...what does imputation do?

• Very simply, we replace the missing data with 
new, derived values.

• These derived values are based on what is 
happening elsewhere in the dataset.

• Then we can analyse this imputed dataset using 
standard statistical methods.

(n.b. – this would be a single imputation process)



Multiple imputation

• Single imputation produces a single dataset. We 

can analyse this to produce estimates of odds 

ratios (OR) or rate ratios (RR) etc.

• However, interpreting these results assumes 

that the imputation process is “accurate”.

• Performing this multiple times allows the data to 

reflect the inaccuracy of the process.



Imputation: how it works

A purposefully vague overview



Imputation: filling in the blanks

• How do we fill in the blanks? There are 

several methods available:

1) mean or mode substitution;

2) hot deck procedures;

3) regression based procedures.



Mean or mode substitution

• For continuous numeric data (e.g. weight):

− calculate the mean value over the complete dataset 
and substitute this for the missing data;

• For categorical data (e.g., ethnicity): 

− Calculate the modal value (most common) over the 
complete dataset and substitute this for missing data.

• Highly likely to introduce bias to results.

• Therefore not recommended.



Hot deck imputation

• Step 1: identify cases with missing data:

• Step 2: Find cases who match on non-missing elements:

• Choose one of these records at random, and “borrow”
the NZDep value for person #342678...

[missing]NZ Euro25-44F1342678

NZDepEthnicityAge grpSexDiseaseID #

2NZ Euro25-44F1795134

5NZ Euro25-44F1146845

4NZ Euro25-44F1986458

NZDepEthnicityAge grpSexDiseaseID #



Hot deck imputation

• Imputed data are from “real” observations, and 
therefore reflect plausible values.

• However, procedure is difficult to implement...

• ...especially when data are missing on more 
than one variable...

• ...or if the analysis model is so complex that 
few/no matches exist between those missing 
data and those with complete data.



Regression based imputation

• [As used for Cancer Trends]

• For those people who have complete data, run 

(e.g.) a cumulative logistic regression model to 

predict NZDep values – given predictor variables 

age, sex, ethnicity, & personal income.

• Apply this regression model to the person 

missing NZDep information: what value of 

NZDep is most likely for someone with that age, 

sex, ethnicity, & personal income?
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Regression based imputation: a 

simple example

• Based on the complete data we have observed: 
W = 10.5 + 0.33 x H

We can use this 

regression line for 

these data to predict 

what the weight would 

be for someone who 

was 172 cm tall.

W = 10.5 + 0.32 x 172

W = 65.54 kg
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This predicted weight of 65.54 kg would then be used as the 

imputed weight value for this person.



Complications

• If we just take the imputed value from the regression 
line, we run into problems.

1) the predicted value presumes the imputation model 
used was “accurate”... 

2) we would get the same imputed value of 67.26 kg for 
each of our multiple imputation datasets;

3) When it comes time to calculate a confidence interval 
from our analyses, using the “best fit” prediction value 
will underestimate the width of our confidence interval 
(i.e. our analysis will look more accurate than it truly is)
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Regression based imputation: a 

simple example

Our regression of 

weight on height has 

some residual error.

(the space between 

the individual data 

points and the line)

When we calculated 

the predictive 

regression equation, 

we got error terms 

associated with both 

the intercept and slope 

parameters.



Dealing with estimation accuracy

• Results of regression analysis:

• We use random draws from the confidence 
intervals of both intercept & slope to allow the 
data to reflect the model’s accuracy.

e.g., slope to use  =  coefficient  +    random standard   x   std. error 
normal deviate          of slope

Coefficients
a

10.518 17.262 .609 .545

.320 .100 .430 3.198 .003

(Constant)

height

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: weighta. 



Moving from single to multiple 

imputations

• So far we have just created one dataset.

• We can analyse this dataset just like any 

other 
(e.g. Poisson regression to identify rate ratios associated 

with several risk factors for a disease.)

RR (Female to male) = 1.84, 95% CI (1.64, 2.06)



single to multiple...

• We could repeat the imputation 
procedure multiple times...

• Because of the random elements in the 
imputation procedure, across these 
datasets there will be:

1) identical values across datasets for 
originally “intact” data points;

2) different values across datasets for 
originally “missing” data points. 



How many times?

• Rubin (1987) shows that the efficiency of imputation 
depends on both the proportion of missing data, and the 
number of imputed datasets.

• For Cancer Trends, chose 3 imputations.

[Formula for table from Rubin, 1987]



Analysis of multiply imputed data

• Simply perform analysis on each dataset 
as per standard analysis 

(e.g. Poisson regression; logistic regression).

• We then end up with estimates for each 
parameter in each set of results:

Dataset 1: RR (Female to male) = 1.84, 95% CI (1.64, 2.06)

Dataset 2: RR (Female to male) = 1.77, 95% CI (1.58, 1.97)

Dataset 3: RR (Female to male) = 1.93, 95% CI (1.73, 2.16)

• How do we combine results across these?



Variability between imputed 

datasets

• We can now see how our estimates vary over 

the multiple imputations we have run.

• The consistency of the results across datasets 

should be reflected in the confidence interval 

around our combined result.

• The calculation of this confidence interval has to 

take into account both this variability between 

datasets, and also the estimation accuracy 

within each dataset.



Dataset 1: RR (Female to male) = 1.84, 95% CI (1.64, 2.06)

Dataset 2: RR (Female to male) = 1.77, 95% CI (1.58, 1.97)

Dataset 3: RR (Female to male) = 1.93, 95% CI (1.73, 2.16)

(n.b. if estimates are RR/OR calculated on log scale, perform calculations in this log scale 

before converting back to RR/OR)

• Calculate average pooled estimate across the three analyses

• Calculate the mean variance for the three estimates;

• Combine this with the variability across datasets;

• Gives pooled variance estimate:

mean variance weighted between-imputations 

variance
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A real example: linear regression of 

left ventricular mass (in g)

Arnold & Kronmal, 2003.



A real example: linear regression of 

left ventricular mass (in g)

• The effect of sex was relatively constant over all 

three imputed datasets.

• Current smoking status appeared to have a 

different impact on left ventricular mass in the 

different imputed datasets.

Arnold & Kronmal, 2003.



A real example: linear regression of 

left ventricular mass (in g)

Arnold & Kronmal, 2003.



Practicalities

The multiple imputation procedure 

for Cancer Trends



Background

• The Cancer Trends project: 

“aims to determine trends in cancer incidence and survival in 

New Zealand from 1981 onwards, by ethnic group and socio-

economic status. CancerTrends uses anonymously and 

probabilistically linked cancer registrations and census records

of all people who developed cancer from 1981 to 2004 in New 

Zealand.”

http://www.otago.ac.nz/wsmhs/academic/dph/research/HIRP/cancertrends/CancerIndex.html



Census data and cancer trends

• There are a total of 5 census datasets being 

used in the CT study (from 1981 to 2001).

• Total number of records in 2001 in excess of 

4,000,000.

• Of these, approx. 2.8m were NZ resident adults.



2001 Census and missing data

• 2.8 million NZ adults.

• Variables of interest: 

− age, sex, qualifications, personal income*

78.8% had data for all these variables.

15.1% were missing data on 1 variable only.

6.1% were missing data on 2+ variables.

*used to derive total equivalised household income



Imputing values

• Step 1: deciding on models to predict the 

to-be-imputed variables.

e.g. for personal income:

cumulative logistic regression model 

(14 income categories)

Predictors:

sex, age group, ethnicity, school quals, 

tertiary quals, NZDep, TA [nb. all categorical]



Imputing values in SAS

• Step 2: imputing values

• ...is simple, if imputing continuous (e.g., weight) 

or ordered categorical variable (e.g. income).

• Can use PROC MI – surprisingly straightforward.

• If you have a non-ordered categorical variable 

(e.g. ethnicity) – then welcome to the (exciting) world 

of writing macros...



Multiple values to impute

78.8% had data for all these variables.

15.1% were missing data on 1 variable only.

6.1% were missing data on 2+ variables.

• What about people missing data on multiple variables?

• In these cases, our imputation model might need to 
predict a variable (e.g. income) on the basis of other 
variables which might have missing values...

• How do we deal with this?

• Answer: chained equations...



Pre-chain setup: starting values

Replace 

missing 

personal 
income with 

modal value 

Replace 
missing 

NZDep with 

modal value

Replace 
missing 

Working 

status with 
modal value

Replace 

missing 
tertiary qual 

with modal 
value

Replace 

missing 

school qual 
with modal 

value

Replace 
missing 

ethnicity 
with modal 

value

Missing any 
data?



The chain

Impute 

value for 

school  
quals

Impute 

value for 

tertiary 
quals

Impute 

value for 
working 

status

Impute 

value for 
NZDep

Impute 

values for 

personal 
income

Impute 
values for 

ethnicity

Pre-chain 
values



Rinse and repeat

• For a single census year, creating three 
imputed datasets (variables prev. noted) 
takes about 42 hrs. This was with ten 
iterations (10 loops around the chain). 

[Now using just five iterations: 21 hours].

• Bulk of time is in the logistic regression 
modelling for predicting ethnicity (complex 
model, even when restricted to five 
possible ethnicity groups).



Analysing the data

• Step 3: Performing analyses & combining 
results across imputed datasets.

• Working on this now!

• Again, SAS has developed procedures to 
combine these analyses. Relatively simple 
to do by macro as well...

[and someone in the Cancer Trends team can tell you the results later]
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