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Abstract (150 words) 

Learning trigonometry poses a challenge to many high school students, impeding their access to 

careers in science, technology, engineering, and mathematics.  We argue that a particular 

visuospatial model called the unit circle acts as an integrated conceptual structure that supports 

solving problems encountered during learning and transfers to a broader range of problems in the 

same domain.  We have found that individuals who reported visualizing trigonometric 

expressions on the unit circle framework performed better than those who did not report using 

this visualization. Further, a brief lesson in use of the unit circle produced post-lesson benefits 

relative to no lesson or a rule-based lesson, but only for participants who exhibited some partial 

understanding of the relevant concepts in a pretest.  The difficulties encountered by students 

without sufficient prior knowledge of the unit circle underscores the challenge we face in helping 

them build grounded conceptual structures that support acquiring mathematical abilities. 
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The United States remains behind other nations in mathematics and science education. 

According to results from the 2012 assessment by the Program on International Student 

Assessment (PISA; Kelly et al., 2013), only 25% of U.S. 15-year-olds reached the level where 

they could understand and complete higher order tasks such as “solv[ing] problems that involve 

visual or spatial reasoning…in unfamiliar contexts” (OECD, 2004, p. 55), less than the average 

level (31%) of students across the 34 participating OECD-member countries.  Like the National 

Mathematics Advisory Panel (2008), we believe that our nation must find ways to enhance the 

training of its high-school students in mathematics and science, so they can have the opportunity 

to compete for positions in highly STEM-dependent technology fields in industry, government, 

research, and education.   

Our research explores the role of a visuospatial representation that grounds the 

mathematical concepts covered in pre-calculus trigonometry.  A difficult subject for many, 

trigonometry sits at the gateway to entry into university-level science, mathematics, and 

technology coursework and ultimately into careers in STEM disciplines.  Our research explores 

whether it may be possible to enhance reliance on a spatially grounded conceptual model, which 

we refer to as the unit circle, and thereby increase high school students’ success in this difficult 

subject.  In preliminary studies reviewed below, we found that individuals who report visualizing 

trigonometric quantities as measurements within the unit circle perform better than those who do 

not report using this model.  We have also found that a brief lesson in the use of the unit circle 

produces post-lesson benefits relative to no lesson or a rule-based lesson for some participants, 
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further supporting the view that the unit circle provides a grounded conceptual framework that 

supports acquiring an understanding of trigonometry. 

These promising results are limited, however, in that the participants were Stanford 

undergraduates who had prior exposure to trigonometry, and those who performed poorly in the 

pre-test showed little or no benefit.  Our proposed research seeks to adapt and extend the lesson 

to make it more suitable for high school and community college students who are just learning 

trigonometry for the first time, and to examine whether such a lesson might help promote 

mastery of essential trigonometry concepts among such students.  At the end of this chapter we 

consider several specific challenges we face in addressing this goal.  These include the 

possibility that students may lack relevant knowledge of mathematical ideas that could be 

considered to be prerequisites for understanding the unit circle; the possibility that their 

knowledge of these elements may not be strong enough to allow them to manipulate the elements 

of the representation internally (mentally) rather than relying on external supports; and finally, 

the possibility that many students may hold beliefs about the nature of mathematics and/or their 

own abilities that make it difficult for them to treat trigonometry as a coherent conceptual system 

to be learned. 

GROUNDED CONCEPTUAL STRUCTURES IN MATHEMATICAL COGNITION 

Historically, multiple points of view have emerged regarding the nature of mathematical 

reasoning and of factors that allow mathematical reasoning to be successful (Dantzig, 2007).   

On the one hand, it is common to view mathematics as an essentially formal system, in which 
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structured arrangements of abstract symbols are manipulated according to structure sensitive 

rules (Marcus, 2003; Newell & Simon, 1961; Russell, 1903).  On the other hand, many have 

suggested that mathematical and scientific reasoning often operates on idealized objects humans 

can manipulate in their minds, mirroring external manipulations of real objects (Barwise & 

Etchemendy, 1996; Harnad, 1990; Lakoff & Núñez, 2000).  As one example, Shepard (2008, see 

Figure 1) described an ancient proof of the Pythagorean theorem that is carried out through the 

mental manipulation of four congruent right triangles with sides of lengths a and b and 

hypotenuse of length c, within a bounding square with sides of length a + b.  In panel C, the 

region within the bounding square not covered by the four triangles has area a2 + b2.  In D, which 

can be constructed by translating three of the triangles in C (without changing their shape), the 

region not covered by the four triangles has area c2.  To individuals who have an intuitive 

appreciation for conservation of area under translation and who appreciate how area depends on 

the lengths of sides of right-angled figures, the proof seems intuitively compelling, though care is 

required to make the proof rigorous. 

Shepard’s (2008) article makes bold claims about the role of spatial reasoning in 

mathematics and even in scientific discovery, and there is now a body of evidence to support 

these claims.   Wai, Lubinski and Benbow (2009) present evidence supporting the claim that 

spatial ability represents a third psychological attribute over and above verbal and mathematical 

ability, and is strongly associated with success in the physical sciences, mathematics, and 

engineering.   Adolescents with greater spatial ability are more likely to major in a STEM field, 

to enter a STEM occupation, and to produce STEM publications and patents (Kell, Lubinski, 
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Benbow and Steiger, 2013).  A broad range of other work, reviewed in a meta-analysis by Uttal 

et al. (2013), supports the view that spatial ability can be taught.  This work suggests that 

individuals across the spectrum of spatial ability can benefit to a comparable extent, and that the 

typical extent of benefit from the interventions considered was equal to a shift of nearly half of 

one standard deviation of spatial ability scores in the whole population.   

The work just described has been construed as supporting a perspective in which there is 

some generalized visuospatial faculty, perhaps malleable but quite general – or, if not fully 

general, its partitioning is still based on a broad distinction, such as a distinction between within-

object and between-object processes (Uttal et al., 2013).  An alternative perspective draws on 

insights from seminal work in cognitive science, developmental psychology, and the learning 

sciences on the role of an acquired understanding of a set of integrated conceptual relationships 

that, in many domains of mathematics, can be represented by externalized visual depictions like 

those in Shephard’s proof.  This perspective contrasts with the symbolic perspective (i.e., that we 

manipulate expressions using structure sensitive rules) and with the visuospatial faculty idea.  

We emphasize this third perspective, and focus on helping students acquire an integrated 

understanding, while acknowledging that both mastery of the rules of symbol manipulation and 

generalized visuospatial ability may also have roles to play in mathematical cognition. 

For us, the essential idea in what we will call the grounded conceptual structure 

perspective is that symbolic expressions – be they sentences or equations – need not be 

manipulated simply as such.  Instead, we argue that they can (and should) be used to construct 
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internal representations in which tokens standing for objects referred to in the expressions are 

placed in particular relationships with each other (Bransford, Barklay, & Franks, 1972; Glenberg 

et al., 2004), within a conceptual framework that the comprehender understands (Bartlett, 1932; 

Bransford & Johnson, 1972).  Consider the passage ‘Ben needs to feed the animals.  He pushes 

the hay down the hole.  The goat eats the hay.” (from Glenberg et al., 2004).  Comprehension of 

this vignette is thought to involve mentally acting out Ben’s and the goat’s activities.  This 

process can be supported by manipulation of toy objects corresponding to those mentioned in a 

play farm set, or it can occur entirely in the imagination.  Either way, implied relationships (Ben 

is above the goat) may be captured in the constructed result.  A similar visuospatial construction 

can occur when a person understands the expression a2 + b2 = c2.  The symbol manipulation 

approach to conceptualizing mathematical ability fails to make contact with these ideas, and 

leaves the student performing calculations according to arbitrary memorized rules rather than 

constructing representations of meaningful quantities that can be connected to the properties of 

referenced or imagined objects in the world (Thompson et al., 1994).  

When it comes to mathematical expressions, they may in some instances be constructed 

with reference to very specific situations.  Thus we may convert ‘Together Ann and Ben have 7 

apples.  If Ben has 3 apples, how many apples does Ann have?’ into expressions such as 

a + b = 7 and b = 3.  Purely symbolic actions could then be carried out, but mathematics 

educators have argued persuasively that such actions are highly error prone.  Instead, 

maintaining contact with the referenced context deepens engagement with the underlying 

relationships (Thompson et al., 1994), helps prevent errors (Mayer & Hegarty, 1996), and 
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facilitates transfer (Lewis, 1989) by providing a specific conceptual grounding from which a 

more generalizable representation of the meanings of the mathematical expressions may 

ultimately emerge, or at least, to which a more generalizable representation may be linked, as 

discussed more fully below. 

In the framework just described, a visuospatially grounded representation might provide a 

coherent conceptual framework within which statements in a particular mathematical domain 

“make sense”.  In this view, articulated by Case (1996), the visuospatial representation 

participates (along with other elements) in providing an abstract, generalizable, framework that 

can be applied to a wide range of specific instantiations – constituting what he calls a core 

conceptual structure.  Case (1996) builds up these ideas for natural number (his ‘mental number 

line’) and extends this to encompass fractions (Moss & Case, 1999).  The representation is 

abstract and generalizable, because (in the case of the number line) it can be applied to sets of 

enumerable items of any kind, be they coins, toy frogs, or even items of a less tangible nature 

(days of the week, even ideas).   

The visuospatially grounded conceptual representations we propose are related in some 

ways to other proposals in the psychological literature that are posed as alternatives to symbol 

manipulation, but are different is some important ways.  Shepard (2008; Shepard & Chipman, 

1970) and Dehaene (1992) discuss visuospatial representations in mathematics but do not 

emphasize the role of learning or of culturally-defined conventions in structuring such 

representations.  The mental structures we describe may also be like Johnson-Laird’s (1983) 
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mental models in some ways, in that they involve internal representations that capture features of 

and relations among entities that can have external referents.  One difference is that in our case 

we are specifically interested in representations with visuospatial structure, whereas Johnson-

Laird focuses primarily on representations that do not have an explicitly spatial character. Also, 

we emphasize the role of extensive exposure to a culturally constructed system that may adhere 

to a set of partially arbitrary conventions, usually acquired in a formal educational setting.   

These different perspectives may be mutually compatible, but the emphasis is certainly different. 

Several issues for learning and learners arise in our framework. One of these is gradual 

integration and elaboration. Acquisition of a fully elaborated core conceptual structure is a 

process that occurs gradually over time, in part because of a gradual associative process that 

interlinks relevant parts and in part because the full structure may depend on previous 

consolidation of constituent structures.  For example, an initial simple conceptual structure for 

numbers from 1-10 may be elaborated to provide the basis for a more complex conceptual 

structure for the numbers from 1-100 by using one copy of the structure for the ten decades and 

embedding ten additional copies to represent the numbers within each decade.  The ability to 

create the linkages is thought to depend on the gradual consolidation and integration of the 

representation of the constituent structures, groups of 10 in this case.  Furthermore, a range of 

factors may play a role in fostering the acquisition and construction of a particular conceptual 

structure or the engagement of relevant background knowledge that could contribute to 

supporting performance while the structure is developing. 
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One such issue that we will consider is externalization then internalization. Based on the 

findings of Glenberg et al. (2004) in their research described above, requiring learners to engage 

in the actual manipulation of a set of physical toys to act out the content of a symbolic expression 

(‘Ben needs to feed the animals.  He pushes the hay down the hole’), then gradually removing 

this requirement while instructing the learner to imagine the externalized representation while 

reading other similar texts could help establish the practice of mapping symbolic expressions to 

their meaning in the conceptual system represented by the diagram, rather than relying on 

surface representations. 

Another potentially important issue is generic vs. specific content. The unit circle 

representation that we introduce below is generic in that it can be applied to a wide range of 

specific contexts; relations that hold in this generic model also hold in a range of specific 

instantiations to which the model can then be applied.  As Kaminski et al. (2008) have argued, 

this may have advantages over models of specific systems that can bring additional irrelevant 

content that may obscure the relationships that the model is intended to convey. While there may 

be benefits of starting with a specific familiar instance of a content domain and then shifting to 

the more abstract/generic unit circle (Goldstone & Son, 2005), this could complicate our effort to 

compare lessons based on the unit circle to rule-based lessons. We have, therefore, chosen to stay 

with the abstract unit-circle framework in our initial investigations. 

The Unit Circle as a Grounded Conceptual Structure for Trigonometry 
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The above ideas provide the setting for our exploration of the role of a particular 

visuospatial representation in trigonometry. Specifically, we hypothesize that a particular 

visuospatial representation – the unit circle – links trigonometric expressions to measureable 

properties of a physically realizable visuospatial model that learners can internalize and then use 

as a basis for reasoning about relationships between trigonometric expressions that they 

encounter in pre-calculus trigonometry.  The topics and ideas encompassed under this heading 

build on prior exposure to the concepts of sine, cosine, and tangent as these are encountered in 

right triangles (sometimes called ‘right-triangle trigonometry’), extending their definitions and 

introducing additional trigonometric functions.  The topics include relationships among these 

functions, graphs of these functions, rules for converting among expressions for such functions, 

and applications of such functions to problems throughout the physical sciences and engineering.    

A reader might be forgiven for thinking that the domain of trigonometry would be one in 

which, if any, spatial thinking and visualization would be emphasized.  Trigonometry appears at 

first glance to be predominantly visuospatial in nature:  Standard definitions of the three 

elementary trigonometric functions are usually given in terms of ratios of lengths of sides of 

right triangles, which can be drawn on paper or even constructed out of wood.  Yet, an 

examination of textbooks currently in use in pre-calculus trigonometry courses and of the articles 

we have found on the understanding and teaching of trigonometry presents a fragmentary and in 

some ways inconsistent picture.  Many texts (e.g., Foerester, 1990; Hornsby et al., 2011, 

recently-used texts at Palo Alto High School and Foothill College, respectively) emphasize 
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graphing and the use of the unit circle as a starting place for generalizing the sine and cosine 

functions beyond the right triangle, but move quickly away from this representation.  

To illustrate this inconsistent treatment, consider the initial definition of the sine and 

cosine functions.  The presentation of these concepts may begin with the unit circle (as shown in 

Figure 2). The diagram treats angles as arising by rotating a radial line of length 1, emanating 

from the center of a circle centered at (0,0) on a (x,y) coordinate plane.  Angles are measured in 

degrees or radians, with 360 degrees or 2π radians corresponding to a full rotation.  The rotation 

is either counter-clockwise (for positive angles) or clockwise (for negative angles) from the 

starting position (where the radial line points horizontally from the origin to the right and 

corresponds to the line from (0,0) to (1,0)). The cosine of the angle is defined as the x-coordinate 

of the endpoint of the line, and the sine as corresponding to the y-coordinate.  From this clearly 

visuospatial starting place, it is possible to shift almost entirely into algebra.  For example, a 

fundamental trigonometric identity can be derived by applying the formula for the distance 

between two points (here 0,0 and the x,y coordinates of the endpoint of the radial line) and noting 

that, by the definition of the unit circle, this distance (the radius of the circle) is equal to 1.  

Applying the Pythagorian theorem, x2 + y2 = 1. Replacing x and y with cos and sin 

respectively, we obtain the identity cos2 + sin2 =1.  Furthermore, all of the other trigonometric 

functions can be defined algebraically (for example, tan = sin/cos; sec = 1/cos).  

Additional key identities, such as 1 + tan2 = sec2 may then be derived purely by algebraic 

manipulation or simply stated as rules to be learned, and the wave graphs of such functions (that 

is, graphs of the form y = cos or y = sec) may then be introduced, with little or no engagement 
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with the underlying construct that gives rise to the values of these functions.   Thereby some of 

the features of these graphs (e.g. the fact that cos(0) = 1 and sin(0) = 0) are stripped of their 

relation to the underlying meaning of the functions and become arbitrary facts to be memorized 

by the student.  Our experience with teachers in four pre-calculus classrooms at two high schools 

suggests considerable variability among teachers in their tendency to engage students with this or 

other visuospatial representations.  While in some classrooms, whole 2-hour time blocks may be 

dedicated to teaching the unit circle, in others there is a tendency to rely on the teaching of rules 

or procedures that, if mastered, would allow students to calculate answers to particular problems 

without any comprehension of the expressions whatsoever.  

What, indeed, are the best practices here? One can find passionately written articles such 

as the one by Shear (1985), a dedicated teacher of trigonometry, decrying the algebraic approach.  

Shear quotes Poincaré (1968) and Einstein (1979) for proclaiming their understanding of 

mathematical relationships in visuospatial terms, lays out a visuospatial framework in which the 

identities mentioned above are explicitly made visually apparent (or so he claims), and then 

asserts that use of his framework may allow students to gain “some sense of that elegance of 

thought and expression which, in the words of Poincaré, ‘all true mathematicians know’”.   

Unfortunately, Shear presents no evidence other than his own intuition and personal observations 

of his own students, and many textbook writers and classroom teachers continue to rely very 

heavily on the algebraic approach, especially when producing derivations.  It is true that there is 

a textbook by Gelfand and Saul (1999) that develops a visuospatially grounded approach, but it 

is only one among many.  It is also true that all teachers and all textbooks make use of some 
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visuospatial examples (often, based on wave functions), but these uses vary widely in their extent 

and stated purpose and are not based on a scientific foundation. 

Our effort to find scientific evidence has unearthed rather little beyond the above.  We 

found one study based on a master’s thesis (Kendal & Stacey, 1996) comparing two alternative 

visuospatial approaches to teaching right-triangle trigonometry problems of the kind covered in 

9th or 10th grade geometry, as well as some more recent studies by Ninness and colleagues 

(Ninness et al., 2006; 2009) studying methods for teaching formula-to-graph relationships 

involving trigonometric functions and the ability to distinguish different types of relationships 

between formulas.  These studies point to the difficulties many students have mastering the 

relationships between trigonometric functions and their graphs, and show that training using 

interactive graphing software can be effective, but the small sample size and lack of comparison 

conditions makes it difficult to draw inferences about the relative advantage of the approach.  We 

also found a recent study by Moore (2013) applying the conceptual approach favored by 

Thompson et al. (1994) to helping students construct a cogent representation of the meanings of 

angular and radian measure in terms of arc length relative to the radius of a circle.  Again only a 

small sample was used and there was no comparison of different approaches, but the approach is 

consistent with our perspective and informs our own studies. 

PRELIMINARY INVESTIGATIONS 

In accordance with the ideas that the use of a conceptual model within which symbolic 

expressions have meaning can contribute to success in mathematics and that reliance on such 
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skills and models can be enhanced, we have undertaken a series of preliminary studies using 

undergraduate students at Stanford University.  Our focus has been on a specific topic nearly all 

of these students were exposed to in high school, namely identities among trigonometric 

expressions involving the sine and cosine functions.   We focused on a subset of such identities, 

involving the sine and cosine functions with positive or negative arguments between 10 and 80 

degrees and subject to offsets of [–180, –90, 0, +90 or +180] degrees.  While Stanford is a highly 

selective institution, not all Stanford undergraduates are especially strong in mathematics, 

allowing us to sample a range of prior experience and ability levels with respect to knowledge of 

these relationships.  We asked three questions in our studies: (a) To what extent do students rely 

on visuospatial representations, as compared with rules or mnemonics, and among visuospatial 

representations, which do they use in solving the identity problems we used? (b) To what extent 

is the use of a particular representation associated with success in solving the class of problems 

we posed to our students? (c) For selected representations, how much can a student’s 

performance be improved by a brief lesson based on a particular representation? 

An example of the type of problem we used is shown in Figure 3.  These problems all 

involved a probe expression, created by choosing either the sine or cosine function, followed by 

an expression in parentheses consisting of a signed two-digit base value and an offset 

(participants were told these values corresponded to degrees). There were 20 probe types, 

defined by all combinations of the function (sin or cos), the sign of the base value (positive or 

negative), and the value of the offset {–180, –90, 0, 90, 180}.  Specific problems within each 

type further varied in the magnitude of the base value (equal to 20 in the example shown in the 
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figure; always a multiple of 10 in the range [10, 80]), and order (base value first or offset first; 

when the first element was positive, its sign was omitted, as in this example).  The four choice 

alternatives were always sin(), –sin (), cos() and –cos(), where  stands for the base value.  

One and only one alternative is correct for each problem.  The participants were instructed to 

respond ‘quickly but still accurately’ and were asked not to use paper and pen/pencil or a 

calculator and not to refer to any outside sources. 

How might problems of the kind described be solved?  One approach would be to rely on 

rules and formulas. Indeed a very small number of rules, together with a few very general rules 

of algebra, are sufficient to solve all of these problems.  For example the rule cos(+180) = –

cos() yields the correct answer in this case. A set of rules sufficient to answer all of the 

problems is given in Figure 4 (where func appears in this figure, it can be replaced with sin or 

cos; opp refers to sin if func refers to cos and vice versa). 

In line with our hypotheses, we considered three visuospatial representations: (1) The 

unit circle; (2) the wave representation of the sine and cosine functions; and (3) the right triangle.  

These representations are all shown in Figure 4. As previously discussed, the unit circle treats 

angles as arising by rotating a radial line emanating from the center of a circle of radius 1 

centered at (0,0) on a (x,y) coordinate system.  Compound angles can be viewed as a sequence of 

rotations (e.g., 20 + 180 corresponds to rotating counterclockwise by 20 degrees and then 

continuing for another 180 degrees).  The cosine of the overall angle can be visualized as a line 

segment extending either to the right (positive) or the left (negative) of the origin of the 
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coordinate system.  The sine can be visualized as a line segment extending either upward 

(positive) or downward (negative) from the origin.  With this representation, the problems can be 

solved by comparing the directions and lengths of the line segments corresponding to the value 

of the probe and each of the choice alternatives.  As shown on the unit circle diagram in Figure 

4, for cos(–), the line segment corresponding to its value is the same as the line segment 

corresponding to the value of cos(), indicating that cos(–) = cos(). 

In the wave representation, sine and cosine are represented as waves, each with a period 

of 360 degrees, with sin (lighter curve in Figure 4) shifted 90 degrees to the right relative to cos. 

The arguments of these functions in this representation specify positions along the x axis and 

compound arguments can be viewed as a sequence of translations from the 0 position; the value 

of the function can then be read off by examining the height of the wave at the appropriate point 

on the x axis (again, it can be seen that cos(–) = cos()). 

We also considered a third visuospatial representation, the right triangle.  In such a 

triangle, the two acute angles must equal 90 degrees, the cosine of an angle is defined as the 

length of the adjacent side over the length of the hypotenuse, and the sine of an angle is defined 

as the length of the opposite side over the hypotenuse.  Although this representation is not useful 

for all of our problems, it is useful for the cos(90–) or sin(90–) problems.  For example, in the 

right triangle shown in Figure 4, the side adjacent to the angle  is the side opposite the angle 

(90–) so that cos() and sin(90–) both refer to the ratio of the length of the same leg of the 

right triangle (the horizontal leg) to the hypotenuse; in other words, sin(90–) = cos().  In 
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addition, we explored the possibility that participants might rely on mnemonics, such as 

SOHCAHTOA (“sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, 

tangent equals opposite over adjacent”) and All Students Take Calculus.  These mnemonics 

combine rules and visual representations as illustrated for All Students Take Calculus in the 

lower right of Figure 4. 

Preliminary Study: Observing Use and Success of the Unit Circle 

In our preliminary study, students encountered two examples of each of the 20 problem 

types in each of two blocks of trials.  At the end of the experiment, we asked participants to rate 

how frequently they used each of the five possible representations on a scale from 1-5 (1=Never, 

5=Always; a sixth ‘other representation’ category was included but rarely used).  Ratings were 

given first for block 1 and then for block 2 of the experiment. We then asked them to report the 

number and recency of courses in which they had used trigonometry.  One group of participants 

(n = 12) had a brief break between blocks, while the remaining two groups had a brief lesson, 

either involving rules (n = 12) or waves (n = 13). Only ratings of block 1 were used in analyses. 

Overall performance varied widely, with the median score falling at 66.3% correct and 

several participants performing at near-chance levels (all participants appeared to be trying to 

respond correctly and nearly all did well on the very easy problems of the form cos(+0) and 

sin(+0)). Order of arguments in parentheses (base or offset first) did not affect responding.  



18 

 
Neither the rule lesson nor the wave lesson led to greater improvement in the second block 

compared to the no-lesson control condition.   

The unit circle representation was generally favored by our participants.  Overall, 

participants reported using the unit circle more frequently (Mean 3.5) than any other 

representation (largest other Mean, 2.4). Furthermore, we found a positive correlation between 

extent of reported unit circle use and performance score (proportion of problems correct) that 

remained a significant independent predictor of performance after taking into account both 

number of courses and recency.   

Exploratory analysis revealed a striking pattern on one subset of problems (see Figure 5), 

namely problems involving the sine or cosine of a negative argument and an offset of 0, i.e. sin(–

+0) and cos(–+0).   Most participants answered sin(–+0) problems correctly (choosing  –

sin()), regardless of use of the unit circle.  For cos(–+0), however, the correct answer is not –

cos() but simply cos() (As noted above, Figure 4 shows this on the unit circle).  In this case, 

participants who reported ‘Always’ using the unit circle  (n = 15) answered this class of 

problems correctly 83% of the time, whereas other participants (n = 22) chose the correct answer 

only 36% of the time. The predominant error for these participants was –cos(), a response these 

participants made more frequently than the correct response.  

These results provide promising evidence for a positive role of visualizing the unit circle 

in solving trigonometric identity problems of the kinds that we used, but are limited in several 
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ways.  The ratings were global and retrospective, and the presence of a lesson may have altered 

the representations participants used or their recollections of these representations (though this 

should, if anything, have reduced reports of unit circle use relative to rules or waves). More 

importantly, the groups were too small to meaningfully assess the effect of the lessons, and the 

lessons did not include a circle lesson, preventing a causal inference about its usefulness. 

 

Study 2: Comparing a Unit Circle Lesson to a Rules Lesson and Baseline Knowledge 

Two further studies addressed these limitations. The first (Study 2.1) followed up on the 

relationship between unit circle use and performance in a larger group of participants (N = 50) 

without any lesson.  The experiment followed the same protocol as in the no-lesson condition of 

the preliminary study, avoiding influence of a lesson on retrospective ratings (we did not solicit 

ratings during performance of either of the two main blocks of trials to avoid suggesting 

strategies to participants).  To supplement the retrospective ratings, an additional block of 20 

problems was added.  After selecting a response for each of these problems, the participants 

rated their use of each representation on that problem on a three point scale (1 = not at all, 2 = a 

little, 3 = a lot). Participants then answered further questions about the extent of their prior 

exposure to and use of each of the five representations, and finally participated in a short 

videotaped session in which the experimenter interviewed each participant on their strategy in 

solving one problem of each of the three types illustrated in Figure 4.  In the second further study 
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(2.2), participants also completed the same protocol, with the modification that they received 

either a lesson on the unit circle (n = 35) or in the use of rules and formulas (n = 35) between the 

first and second block.  Lessons covered the inputs (signed argument plus offset) and outputs 

(resulting values) of the sine and cosine functions, and specifically described how either the unit 

circle or a simple rule could be used to correctly solve problems of the forms cos(+180), 

sin(+180), cos(–+0), sin–+0), sin(+90), cos(+90). 

Study 2.1 replicated and extended all of the findings from the preliminary study.  

Average retrospective ratings of representations used in both the first and second block once 

again showed greater rated use of the unit circle compared to any of the other representations, 

and once again circle use rating strongly covaried with overall performance, even after 

controlling not only for number of courses and recency, but also for prior unit circle exposure 

and prior unit circle use.  That is, controlling for prior unit circle exposure and use, higher 

reported use in our experiment predicted higher overall performance. 

In a now-planned comparison, we replicated the pattern of findings on the relation 

between average retrospective rated circle use and performance on cos(–+0) during blocks 1 

and 2.   The pattern was largely the same as before, except that among those who said they 

always used the unit circle in their retrospective ratings, there were fewer correct responses than 

in the preliminary study, and the predominant error was –cos(), suggesting that some 

participants who stated that they relied on the unit circle either lacked sufficient mastery or 

imagery of the unit circle construct, or perhaps did not use the unit circle on these specific 
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problems.   Our problem-specific ratings allowed us to follow up on this pattern.  Here we found 

that those who reported using the unit circle ‘a lot’ on problems of this type averaged 75% 

correct and did not tend to make the –cos() error on such problems during blocks 1 and 2. 

In summary, Study 2.1 supports the conclusion that unit circle use is generally associated 

with more accurate performance, but requires more time than some other strategies.   Some who 

say they always use the unit circle in retrospective ratings do less well than others, but both 

response times and problem-specific circle ratings suggest that most of these participants do not 

rely on the unit circle for cos(–+0) problems.  Instead, we hypothesize that these and many 

other participants may rely on a faulty rule or heuristic corresponding to ‘pulling out the minus 

sign’ from both the sin and cos functions. This error reflects a lack of engagement with the 

underlying meaning of these functions.  It takes less time than visualizing the functions on the 

circle, and gives the correct answer for sin(–+0), but fails for cos(–+0).   A small number of 

relatively expert users may know and understand correct rules that allow them to by-pass 

constructing a visuospatial representation at least for certain problems.  Others may attempt to 

construct a visuospatial representation but fail to do so with sufficient reliability. 

The results of our follow-up training Study 2.2 provide further support for the value of 

the unit circle.  The unit circle lesson led to more improvement from block 1 to block 2 than the 

rule lesson.  Since the participants in both Study 2.1 and 2.2 were drawn from the same pool and 

since their experiences were identical through the end of the second block except for the 

presence of a lesson, we used the participants in Study 2.1 as a no-lesson control, comparing the 
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improvement from block 1 to block 2 shown by these participants to the improvement exhibited 

by each of the two lesson groups from Study 2.2.  We also compared problem types directly 

taught in the lessons with problems that were not directly taught, hereafter called transfer 

problems.  (The trivial cos(+0) and sin(+0) problems were excluded from this analysis).  This 

analysis revealed that both lessons helped participants with problems that were directly taught, 

but participants who received the unit circle lesson benefitted on transfer problems (16% gain) 

compared to controls (6% gain), while participants who received the rule lesson did not show a 

benefit on transfer problems (3% gain) compared to controls. 

A further analysis considered whether the improvement in performance shown by 

participants who received the circle or rule lesson was moderated by their pre-test performance.  

We examined the overall improvement (combined over taught and transfer items) by those 

whose pretest performance was ‘near chance’ (within the 95% confidence interval of 25% 

correct on non-trivial problems), vs. those whose pre-test performance was above the near 

chance level but below a 95% correct ceiling level.   Among participants receiving the unit circle 

lesson, those in the above chance group benefited more overall than those in the near chance 

group; for those in the rule lesson condition, both groups showed a similar, small overall benefit 

compared to corresponding controls.   (Also, after controlling for pre-test performance, there was 

no significant sex difference in gains after either lesson.)  Caution is required in interpreting this 

pattern since it is based on an unplanned analysis.  That said, the pattern strongly resonates with 

a large body of other work in which improvement based on experience depends on the 

participant having a foundation (perhaps implicit) on which the experience can build, spanning 
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fields as diverse as development of an intuitive understanding of balance (Siegler, 1976) and the 

spatial memory formation in rodents (Tse et al., 2007, 2011), as well as our own modeling work 

addressing these phenomena (McClelland, 1995; McClelland, 2013). 

In summary, we found that participants exhibit a generalizable performance gain after a 

brief lesson based on the unit circle, relative to those receiving no lesson or those receiving a 

lesson based on rules. Importantly, we also found that the ability to benefit from the lesson may 

depend on the participants’ being in a state of readiness to learn (Siegler, 1976) or what 

Vygotsky (1978) called the ‘zone of proximal development’ (Chaiklin, 2003).  In the context of 

the grounded conceptual structures framework described in the introduction, one can potentially 

understand what readiness means in terms of the availability of sufficient degree of prior 

establishment of the relevant structures and their constituents, a point to which we will return.  

Given this issue and other limitations of these studies, it will be important to examine these 

issues further. 

CHALLENGES IN LEARNING THE UNIT CIRCLE 

The research we have begun to undertake resonates with calls over many years to 

enhance the reliance on use of spatial representations that instantiate the meanings of 

mathematical expressions in visualizable form rather than rote memorization of rules (Polya, 

1945; Shear, 1985, Thompson et al., 1994; Wertheimer, 1959).   While all trigonometry teachers 

and texts connect with visuospatial representations to some degree, they do so to strikingly 

varying extents, and in different, apparently ad hoc ways.  By conducting studies aimed to 
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provide evidence about which types of representations are most useful for solving problems of 

different types by students of varying ability levels, our work may pave the way to establishing 

the evidence needed to begin to construct evidence-based teaching programs. 

Our principal goal is to further assess, and potentially establish a broader basis of support 

for, the proposition that grounding pre-calculus trigonometry instruction on a meaningful 

visuospatial representation can contribute substantially to student learning of this material.  This 

entails further assessing the relative merits of teaching students to rely on such a representation 

relative to a rule-based lesson.  In order to do this, we intend to correct two limitations of Study 

2.2: (1) the fact that the study was undertaken with a group of students at an elite university, 

almost all of whom reported having prior experience or exposure to the relevant ideas and 

concepts and (2) the relatively small size of the effect of the lessons, especially among students 

who performed relatively poorly in the pre-test.  In an informal replication of the unit circle 

lesson condition from Study 2.2, administered to 17 pre-calculus students at Palo Alto High 

school, all but one of these students fell into the ‘near chance’ range of our previous study, even 

though they were just coming to the end of an eight-week instructional block that covered the 

relevant material.  Like our Stanford students, these students systematically erred on the cos(–

+0) problem, with 70% incorrectly choosing –cos(). Furthermore, the gain in performance 

from pre-test to post-test was even more modest (6%) than it was for the near-chance pretest 

subgroup of the Stanford group.  It should be noted that there are several faster-paced ‘lanes’ at 

Palo Alto High School, and those who participated largely came from the middle or bottom 

thirds of their classroom cohorts; thus, their performance relative to Stanford students should not 
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necessarily be surprising.  Nevertheless, these results underscore the need to find ways of 

improving mastery of pre-calculus concepts for middle-of-the-road students, to enhance their 

ability to move into STEM careers.  These results also point to the challenge we face in 

developing a lesson that can address the needs of these students. 

As we work toward the eventual goal of addressing this challenge, our work will use 

community college and high-school students who have not already taken mathematics courses 

beyond Geometry and Algebra 2.  Work of other researchers suggests that college students 

encountering pre-calculus relevant mathematical content for the first time experience similar 

difficulties as high-school students (Moore & Carlson, 2012; see also Carlson, Oehrtman, & 

Engelke, 2010), and ready access to a large population of such students makes this an attractive 

next step for our efforts. 

Unit circle instruction for students without prior pre-calculus trigonometry 

The lesson used in the studies discussed above was designed with Stanford 

undergraduates in mind, and in order to be more effective for students with less prior experience, 

we hypothesize that it must be adapted in several ways.  In keeping with the idea that the 

emergence of a coherent, grounded conceptual structure is a gradual process, the new versions of 

our lessons will be longer, allowing for repetition and practice using the material covered in each 

lesson.  We will incorporate active visuospatial responding with the mouse or trackpad 

(constructing angles and projections in the unit circle lesson) or manipulating symbolic 
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expressions at the keyboard (in the rule-based lesson); this is likely to increase the mental 

engagement during learning (compared with the requirement to simply read the material as in the 

existing lesson) and therefore enhance learning (Ninness et al. 2009; Schmidt & Bjork, 1992). 

Rather than needing more repetition or enhancement, perhaps some students do not have 

the appropriate prerequisite knowledge or experience in order to be ready to learn the unit circle. 

The unit circle provides a conceptual structure that integrates two component structures (the x,y 

plane and the circle) into one, and those components that are assumed to be familiar already may 

not be readily accessible to a student. In order to use the unit circle, one must first comprehend 

an angle and be able to mark the endpoint of a radius representing one side of that angle on a 

circle. Then, one must be able to add or subtract positive and negative angles, or mentally 

visualize a compound angle as the appropriate sequence of rotations.  Then, to relate the 

resulting endpoint of a radial line to its sine or cosine, a student must project the endpoint onto 

the appropriate axis of the coordinate plane to find a number between –1 and 1.  These skills 

should have been acquired with relevant experience in previous mathematical settings, but may 

not be fully mastered by all students.  Students must have a high fluency with these steps as they 

are embedded in the context of problems that are presented as symbolic expressions such that 

any reliance on visuospatial representation would require participants to form and manipulate the 

visuospatial representation in their minds. We also note that this sequence of procedures may 

recruit general visuospatial abilities that may be malleable (Uttal et al., 2013) like those used in 

mentally rotating block shapes (Shepard & Metzler, 1971; Vandenberg & Kuse, 1978) or in 
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finding simple shapes or parts in more complex figures (Ekstrom, French, Harman, & Derman, 

1976). 

We presented a new and considerably extended set of materials intended to address the 

points above to a small pilot group of eleventh graders near the beginning of their exposure to 

pre-calculus trigonometry, and found that, although some students had initial misconceptions, 

they progressed easily through the lesson sessions focused on knowledge prerequisites for the 

unit circle: the number line, the coordinate plane, and angles rotations of a radial line around the 

circle.  They showed (and self-reported) greater difficulty in fully gaining an understanding of 

how the sine and cosine functions linked the position of the endpoint of a radial line 

corresponding to an angle to the endpoints’ x and y coordinates, and they encountered additional 

difficulty when required to compare values of expressions involving the sine and cosine 

functions when these were presented symbolically without the availability of an external unit 

circle.  These difficulties suggest that our lesson may need to be adapted to allow more practice 

internalizing a representation of the meaning of the sine and cosine functions and also allowing 

the transition from reliance on an external representation of the unit circle to an internalized 

representation of it to occur more gradually.  We also suspect the materials may need to be 

adapted to address counterproductive epistemic beliefs and mindsets some students may bring to 

trigonometry learning.  We consider these issues in turn in the next two sections. 

Internalizing the Unit Circle 



28 

 
To facilitate the development of a sufficiently internalized and integrated understanding 

of the unit circle, we will adapt the Externalization then Internalization approach of Glenberg et 

al. (2004). In our unit circle lesson, students will initially be taught their way around the basic 

conceptual structure of the unit circle by constructing angles initially under carefully guided 

instruction and with external supports that will gradually be removed.  For example, students will 

be introduced to positive and negative angles, and given opportunities to construct such angles 

by rotating lines around a unit circle; they will initially have critical landmark angles labeled, but 

these labels will then be gradually removed. Students will then be introduced to compound 

angles, and will be given opportunities to construct compound angles by successive rotations 

corresponding to each of the compound angle’s parts.  They will be given the opportunity to 

construct equivalent resulting angles by carrying out the corresponding rotations in different 

orders, and observing the end result. 

Once the concepts of sin and cos are introduced, students will at first be asked to position 

a radial line to correspond to a specific example angle and then to construct the projection of the 

endpoint of the radial line onto the appropriate axis to represent the angle’s sine or cosine value.  

We will gradually eliminate reliance on the externalization, replacing it with the instruction to 

carry out the corresponding operations mentally, since this instruction was found necessary to 

produce robust comprehension gains in Glenberg et al. (2004).  Rather than eliminating external 

support all at once, we plan to do so in stages.  For example, one intermediate step might be to 

ask students to construct an approximate representation of the sine or cosine of a particular angle 

(as points or segments on the x-y coordinate plane) without externally positioning the radial line 
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corresponding to the angle. After repeated practice along this progression, students will be better 

prepared to transition to comparison of the values of two trigonometric expressions.  Here again, 

we will first allow them to explicitly construct the value of each expression externally, one on 

each of a pair of side-by-side copies of the unit circle, before gradually removing these external 

aids and asking the students to perform approximations of these comparisons completely ‘in their 

heads’.  One intriguing possibility that we are exploring is that the ability to make these 

comparisons mentally may rely on internalization of schematic representations that do not 

represent specific angles exactly but do represent relationships between (for example) the 

projection onto the x axis of the endpoint of a radial line corresponding to positive and negative 

rotations of the same amount. One may not be able to visualize a particular given angle correctly, 

but one may be able to ‘see’ that the endpoints of both the positive and negative rotations of the 

same amount project to the same point on the x axis through the unit circle. 

The role of epistemic belief in acquiring an integrated conceptual representation 

 We are also exploring the roles of what others have called students’ epistemic beliefs and 

mindsets in enabling their ability to acquire the unit circle framework as an integrated conceptual 

structure.  If students believe the goal of our lesson is to gain an understanding of trigonometry, 

what do they believe is the nature of such an understanding? The unit circle provides a 

conceptual framework that supports an integrated problem solving procedure that can be applied 

across a range of problem types, whereas rules are narrower, with each one applying only to a 

limited set of problem types.  If students think that understanding mathematics is a matter of 
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learning a set of unrelated rules, they may struggle when confronted with new types of problems 

not covered by existing rules (like the transfer problems in our task).  In a study on learning 

statistics, students who believed mathematics consisted of a set of simple facts tended to show 

worse comprehension than those who saw mathematics as an integrated system of relationships 

(Schommer, Crouse, & Rhodes, 1992).  These are examples of what the authors called epistemic 

beliefs. 

Other beliefs they call epistemic include beliefs about one’s innate ability to learn, the 

quickness of learning, and the source and nature of knowledge (Schommer, 1990).  Such beliefs 

may be malleable: students who were encouraged to believe that intelligence is a malleable 

quality (displaying a “growth mindset”) showed greater motivation as well as stronger grades in 

their mathematics classes (Blackwell, Trzesniewski and Dweck, 2007).  Students with a growth 

mindset also more strongly endorsed the idea that effort is necessary to learn, which may play a 

role in expectations about the quickness of learning and thus the ability of students to be patient 

and take the necessary time to learn, rather than rushing through materials for the sake of getting 

through them.  Because these factors seem likely to us to have important influences on a 

student’s ability to master the unit circle as an integrated conceptual structure underlying 

trigonometry, the next version of our materials will explicitly encourage viewing trigonometry as 

in integrated system of knowledge that requires time and engagement to learn.  The materials 

will be introduced as an integrated framework as the students start into the program of lessons, 

and each block of the lesson will described as playing a specific role within an integrative 
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approach to understanding the meaning of trigonometric expressions within the unit circle 

framework. 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this chapter, we have argued that a particular visuospatial model called the unit circle 

acts as a grounded conceptual structure in trigonometry.  In preliminary studies, we found that 

students who reported using the unit circle performed better at solving trigonometry identities 

than those who did not report visualizing this representation. We also found that a brief lesson in 

the use of the unit circle produced post-lesson benefits relative to no lesson or a rule-based 

lesson.  These benefits were seen in participants who exhibited some partial understanding of the 

relevant concepts in a pretest, whereas high school students who lacked facility with components 

of the unit circle had more difficulty learning in a unit circle lesson. The difficulty students 

without sufficient prior knowledge experienced illustrates the challenges we face in helping 

students learn this conceptual structure. 

We have described some of the steps we are taking to address the challenges we have 

identified.  First, we hope to strengthen student’s command of the components that are integrated 

in the unit circle.  Second, we hope to foster their gradual internalization, so that when students 

confront expressions in trigonometry, they can visualize the component elements and their 

relationship to each other mentally, rather than relying on an external visuospatial representation.  

In addition, we plan to measure learners’ initial epistemic beliefs and mindsets and to provide 
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explicit encouragement of beliefs that will, we hope, encourage the learner to understand that the 

goal is to build an integrated conceptual structure and that to do so may require patience and 

practice.  Finally, our future work will also explore how individual differences in visuospatial or 

other aspects of cognitive abilities affect students’ acquisition and use of the unit circle 

representation. As educators and policymakers examine the structure and content of the 

trigonometry curriculum, we hope our work will eventually lead to the development of effective 

practices for allowing learners to acquire an integrated conceptual framework for understanding 

trigonometry.   
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Figure 1. A proof of the Pythagorean theorem.  Figure 1 from “The Step to Rationality: The 

Efficacy of Thought Experiments in Science, Ethics, and Free Will” by R. N. Shepard (2008), 

Cognitive Science, 32 (1), p. 6.  Copyright 2008 Cognitive Science Society, Inc. Reprinted with 

permission pending. 
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Figure 2. The unit circle.  
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Figure 3. An example problem.  Participants saw a probe expression at the top of an on-screen 

display and were instructed to choose the equivalent expression from the alternatives below it. 
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Figure 4. Some representations used in the domain of trigonometry.  In the rules shown, func 

could be sin or cos; when func refers to one of these, opp refers to the other. 
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Figure 5. The distribution of responses to func(–+0), split by function and by general rating of 

unit circle use. 


