
Abstract— This paper proposes a method for augmenting the 
information of a monocular camera and a range finder. This 
method is a valuable step towards solving the SLAM problem 
in unstructured environments free from problems of using 
encoders’ data. Proposed algorithm causes the robot to benefit 
from a feature-based map for filtering purposes, while it 
exploits an accurate motion model, based on point-wise raw 
range scan matching rather than unreliable feature-based 
range scan matching, in unstructured environments. Moreover, 
robust loop closure detection procedure is the other 
consequence of this method. Experiments with a low-cost IEEE 
1394 webcam and a range finder illustrate the effectiveness of 
the proposed method in drift-free SLAM at loop closing 
motions in unstructured environments. 

I. INTRODUCTION

The ability to construct a map of an environment and 
simultaneously using this map to estimate the location of the 
robot within this map (in the absolute coordinate) is an 
important prerequisite for fulfilling various functions of an 
autonomous mobile robot. Solving this problem, which is 
commonly known as Simultaneous Localization and 
Mapping (SLAM), has received immense attention from 
mobile robotics research community ([1],[2],[3]), in the last 
20 years. One of the main objectives of solving this problem 
is to make it possible for a mobile robot to operate 
autonomously for a long period of time in an unknown 
unstructured environment.  

Encoder data can be used to establish the motion model of 
a mobile robot [4], but traditional encoder-based dynamic 
modeling has its own well-known drawbacks. Therefore, 
Laser Range Finder (LRF) proposed to be used instead of 
the encoder to establish the motion model. There are two 
major approaches in the range scan matching: feature-based
[5] and point-wise scan matching [6]. Extracting robust and 
reliable features in an unstructured environment is a knotty, 
if possible, task and due to that it is inevitable to adopt a 
point-wise range scan matching to provide acceptable 
motion estimation. 

We believe that Kalman Filtering-based (KF-based) 
methods are efficient frameworks to tackle the SLAM 
problem and it is mainly because of their power in 

computing, storing, and representing the accurate 
correlations between the elements of the system's state 
vector. For exploiting this framework, there is a need to a 
feature-based method for environment representation as it 
enables us to augment robot's state vectors with features’ 
state vectors and use the augmented state vector later in the 
KF-based framework. 

As mentioned before, extracting reliable features from a 
range scan, in unstructured environments, is an intricate 
task. Various sensors can be mounted on a mobile robot to 
gather environmental data. However, especially in an 
unstructured environment and from feature extraction and 
data association point of view camera provides the most 
informative data. Many of data association algorithms use 
the traditional gating criterion to distinguish one feature 
from another, solely based on the innovation gate distance 
metric. Exclusive use of this criterion does not exploit other 
landmark attributes that may be useful for disambiguation. 
Particularly, in visual features, there exist many attributes 
for each feature, which makes them more distinctive and 
makes the association process very robust. For example, 
SIFT descriptors [7] or image patches [8] around the 
extracted features are of such attributes for each feature, 
which can be used as the additional data association metrics 
for making the association process more robust. 

In the proposed method a sparse and persistent map of 
visual features is constructed and it is fused with the 
information, obtained from the point-wise range scan 
matching, for attaining the drift-free solution for SLAM 
problem in loop-closing motions of a mobile robot in 
unstructured environments. This fusion allows the robot to 
benefit from both an accurate motion model and an 
informative feature-based map, to efficiently solve the 
SLAM problem and correct the drifts, when confronts with 
the existing features in the map. 

Since monocular camera is a bearing-only sensor, 
features’ depths are initially unknown. There exist another 
fusion process between the LRF and camera's data in feature 
initialization level, in which the depth initialization process 
of some of features is carried out through LRF data. The 
schematic, shown in figure 1, depicts the data flow in the 
proposed method, whose components will be described in 
the following sections. 
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II. PROBABILISTIC FRAMEWORK

The main map, used here for SLAM, is a feature-based 
map, updated dynamically by the Extended Kalman Filter. 
The probabilistic state estimates of the robot and features are 
updated during robot motion and feature observation. When 
new features are observed the map is enlarged with new 
states.

Mathematically, the map at time step k is represented by a 
system's state vector xk and its covariance matrix 
cov(xk).Here, system is the indication of collection of the 
robot and the environment. Thus, system's state vector is 
composed of the stacked state estimates of the robot and the 
environment's features.  
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F is a vector, composed of the state vectors of existing 
features in the map, and r consists of robot’s position, p, and 
quaternion-based attitude, q. Quaternion-based attitude 
representation leads to a singularity-free, non-redundant, and 
efficient attitude computation.  
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r describes the robot-fixed coordinate frame’s pose 
(position and orientation) with respect to global coordinate 
frame {G}. Indeed, robot-fixed coordinate frame, {R}, is the 
same as camera-fixed coordinate frame {C}. Also, we have

an LRF-fixed coordinate frame {L}, whose relationship to 
the camera frame {C} is known and constant. Thus, global 
coordinate frame is defined as the camera-fixed frame at the 
initial location of the robot.

Monocular camera is a bearing-only sensor, and for 
estimating the depth of a feature, camera has to move and 
observe it from different locations. The variations of the 
azimuth and elevation of the feature, in camera-fixed 
coordinate frame, allow the feature’s depth to be estimated. 
On the ground of this fact, we have placed the camera on the 
robot so that it can observe the scene, at the left side of the 
robot, rather than the robot’s forward scene. Proposed 
situation for the camera leads to a high amount of variations 
in the azimuth and elevation of the features during the 
robot’s motion. Range finder is placed on the robot so that 
the origin of scans locates in the nearest possible point to the 
camera’s optic center; this placement not only allows the 
LRF to accomplish the motion model, but also allows it to 
provide valuable information regarding the depth of visual 
features, located on the scanned slice of the scene by the 
LRF.

In the outdoor environments, most of the features are 
distant with respect to the robot, while also nearby features 
can be observed in the robot’s field of view. Therefore, the 
initial uncertainty region for a feature has to cover the huge 
range depth. Huge uncertainties can considerably decrease 
the performance of the EKF through the nonlinearity effects  
of the measurement equation in this framework. Inverse 
depth parameterization [9] for coding features can handle 
this problem by providing high degree of linearity in the 
measurement equation.  

Thus, all the extracted features are coded using the inverse 
depth parameterization, in which each individual feature is 
defined by the state vector with 6 elements: 

( )
ii c i i if r 1

i
id (3)

i, i, and di are the i’th feature’s azimuth, elevation, and 
depth, coded in absolute frame, and rc is the 3D location of 

Figure 1: Data flow schematic of the proposed method.

Figure 2: camera-fixed coordinate, {C}, is shown in black and LRF-
fixed coordinate frame, {L}, is shown in red. 

1038

Authorized licensed use limited to: McGill University. Downloaded on November 2, 2008 at 23:18 from IEEE Xplore.  Restrictions apply.



the camera, which is inferred at the time instant, at which the 
feature comes into the robot’s field of view for the first time.  

As a result, the directional vector along connecting line 
between camera optical center and 3D location of the 
feature, at feature’s first observation step, can be calculated 
as follows: 

[cos( )sin( ) sin( ) cos( ) cos( )]t
i i i i i im (4)

Thus, 3D position of i'th feature can be computed 
through: 

1
i

w
i c i

i
f r m (5)

III. MOTION PREDICTION 

There exist many methods to provide an estimate of the 
robot’s displacement. Traditional encoder-based dead 
reckoning methods have well-known disadvantages and we 
try to circumvent them by the information obtained from 
other sensors. [8] has proposed a constant-velocity motion 
model to address the SLAM problem using single 
monocular camera. This model certainly appears appropriate 
for a pure-vision SLAM with a hand-held camera with 
smooth motion; however, a significant limitation of this 
model is that the large uncertainties are needed to make the 
model able to cope with velocity variations, and actually it 
needs many accurate observations to bound the uncertainty 
and to provide precise estimates. Nevertheless, a range 
finder can solve this problem by providing accurate 
displacement estimation. As previously mentioned, in 
unstructured environments, it is inevitable to adopt the 
point-wise scan matching methods for motion prediction, 
which compare raw scan data. Here, popular ICP [6] method 
is adopted for addressing the motion prediction. The 
covariance of matching scans is calculated as follows [10]: 
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in which ei=(ei1 ei2)t is the residual related to i’th pair, 
matched during current iteration of the ICP. If gi and g´i are 
two points from two consecutive scans, which are 
successfully matched with each other, the residual resulted 
from their matching is as follows: 
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m is the number of points, have been matched with each 
other. 

Let pk denotes the camera’s position and L
G kq  denotes the 

quaternion, represents the orientation of camera-fixed 
coordinate frame, {C}, with respect to global frame, {G}, at 
time step k. If D and  represent the computed 2D 
displacement and rotation of the LRF, respectively, through 
the range scan matching, between time step k and k+1,
robot’s, i.e. camera’s, next 3D position and orientation can 
be computed through the below equations: 

1ˆ ˆ ˆ( )L
k k G kqp p C A D (9)

1ˆ ˆ ; ( , )L L L
G k G kq q q q quat z (10)

In which, A transforms the 2D displacement in LRF-fixed 
frame to the 3D displacement in camera-fixed coordinate. 
C(.) provides the equivalent rotation-matrix with its input 
quaternion vector, and quat( , Lz) returns the equivalent 
quaternion, in the camera-fixed coordinate, with  rotation 
angle around Lz, z axis of LRF-fixed coordinate frame. 

represents the quaternion product operator. 
In order to propagate the uncertainty of the range scan 

matching on the uncertainty of the pose prediction, the 
derivatives of the predicted state to the stochastic parameters 
in the right-hand side of equations 9 and 10 are required  
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Taking into account the statistical independency between 
robot pose at time step k, and, the predicted displacement 
between time steps k and k+1, the covariance matrix for the 
predicted pose can be calculated as follows: 

1 1 1 2 2cov( ) ( ) cov( )t t
k p k p p pJ cov J J X Jr r (12)

where X = (D )t is the displacement vector. 
In view of the fact that robot's displacement does not 

affect features' state, prediction of the system’s state vector 
and its covariance takes the below form: 
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IV. MEASUREMENT MODEL 

The main map, constructed in this method, is a sparse but 
persistent map of visual features, which can be simply 
referenced in the state-based representation of the 
environment and permits the method to correct long-term 
drifts in loop closures. Visual signal is rich in information 

1039

Authorized licensed use limited to: McGill University. Downloaded on November 2, 2008 at 23:18 from IEEE Xplore.  Restrictions apply.



content, and comparing with LRF data, it is more likely to 
extract salient features from visual signal. Therefore, setting 
up the measurement model based on the visual features is 
beneficial and could considerably improve the robustness of 
the data association procedure and therefore enhance the 
accuracy of the EKF-SLAM. 

The method, adopted for the feature extraction, is the 
Harris Corner Detector. We have made slight changes in the 
algorithm of Harris corner detector, so that the algorithm 
tends to choose the features as near as possible to horizontal 
center of the image. In other words, algorithm chooses the 
features based on their saliency and their distance to the 
horizontal center of the image. Figure 3 shows the features, 
extracted from a frame by this modified method. 

Camera and range finder are calibrated offline [11], so 
that the slice of the environment, scanned by the LRF, 
coincides with the horizontal center of the image. Therefore, 
the depth of the features, lie on the horizontal center of the 
image, can be accurately inferred from the range scan data. 
Depth of the other features cannot be inferred from a single 
frame recorded by a monocular camera. Therefore, in 
initialization stage, depth of such features is initialized 
heuristically, and thus the initial uncertainty region of their 
depth, covers a huge range.  
The problem, here, is that if such uncertainties are modeled 
by a standard Gaussian distributions in the Euclidean space, 
linearization error of the measurement equation in the EKF 
framework decreases the performance of the EKF 
estimation. The observation model based on the inverse 
depth parameterization can considerably decrease the 
resulted error from the nonlinearity of the observation 
equation in the EKF framework.  

Actually, distorted pixel coordinates of features in 
recorded frame are the real observation of features, which 
have to be compared with predicted pixel coordinate of that 
feature. This prediction is accomplished through observation 
equation. Assuming that hc=(hx hy hz) is the connecting line 
between camera and an observed feature, in camera-fixed 
frame, undistorted pixel coordinates of the observed feature 
can be derived based on the pinhole camera model. Actually, 
the real camera lens distorts the image, and thus the radial 
distortion model, is adopted to remove this distortion. 

hc is the connecting vector between the camera and the 
observed feature, in the camera-fixed coordinate frame. So, 
for each of features, it can be easily predicted as follows: 

ˆˆ ˆc c w
w ih C f p (15)

p̂ is the prediction of the current position of the camera and 
c
wC  is the rotation matrix describes the relation of camera-
fixed and global coordinate frames. As a result, i'th feature’s
prediction can be written as a function of system’s state 
prediction. 

( )
1 1ˆ ˆ( )i i

k khz x (16)

Total observation model, h and its covariance are obtained 
by considering all features in a single vector.
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The important attribute of this method is that, while the 
uncertainty of the depth of some features are huge, and 
while the algorithm cannot exploit them for estimating the 
translation of the camera, method can utilize them for 
estimating the camera’s orientation. Moreover, due to the 
accurate motion model, presence of the features with known 
depths (through LRF initialization), and the manner of 
camera placement on the robot, the depth of other features 
are accurately estimated much faster than previous methods, 
which tried to estimate the depth of the features through the 
information of a monocular camera. Thus, most of such 
features can also effectively contribute in translation 
computing, usually few steps after their initialization. 

V. DATA ASSOCIATION AND FILTERING 

After predicting the existing features in the map relative to 
the robot, data association procedure has to associate the 
extracted features from the current frame with the predicted 
ones. SIFT [7] is a robust and accurate method with respect 
to feature extracting and matching but its prohibitive 
computational cost in extracting features restricts its 
applicability in the on-line applications. Thus, we only use 
the SIFT descriptor for matching and Harris corner detector 
is adopted for extracting features as the measurements of the 
EKF framework. 

At the initialization stage of each feature, its associated 
descriptor is stored. At the data association stage, the 
descriptor of each predicted feature, whose prediction 
remains within the image limits, is compared with the 
descriptors of other extracted features, from the observed 
image. Finally, the pairs resulted from the SIFT matching, 
which can pass the gating test, are considered as the matched 
pairs. The gating test for each pair is performed as follows: 

Figure 3: points, shown by the red +, have been extracted using Harris 
method. Extracted landmarks, enclosed by green circles, are considered 
as observed features. Blue dashed line is the horizontal center of image.
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Every pairs, resulted from the SIFT matching defines a 
residual. Residual for the i'th pair at time step k+1 is: 

1 1 1ˆi i i
k k kres z z (18)

Based on these residuals, the Mahalanobis distance is 
computed to perform a gating test and reject spurious 
associations.

1 1

1 1ˆcov( ) cov( )

i i t
k res k

i i
res k k

res res

z z (19)

where  is the 95-percentile of the 2
2  (Chi-square) 

distribution.
Exploiting obtained observation model, state estimate can 

be updated using the Extended Kalman Filter equations as 
follows [12]: 
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VI. RESULTS

Proposed method has been implemented on the Melon, a 
mobile robot, which is equipped with a low-cost IEEE 1394 
webcam with a wide angle lens, which can be seen in figure 
1, and a Hokuyo URG_X002 range scanner  

In the experiments, the robot was programmed to move 
along a 240 centimeter loop, along a square with 60 cm side 
length, in an unstructured environment. In this exploratory 
motion robot explores new areas before closing the loop, at 
the end of the motion. All of the features are distant and 
their depths, relative to robot, are more than 2 meters. The 
path, traveled by the robot, has been divided into 8 parts: 
Four 60 cm forward motions and four 90 degree rotations, 
alternately.

For the sake of studying the algorithm’s behavior in loop-
closing motions, robot is operated to exactly return and stop 
at its start location, at the end of the motion; due to that, 8th

part has became longer than the other parts. First of all, the 
results of a localization using the ICP method, only based on 
the range scans’ data, is shown in figure 4. Actually, 
subplots show the estimated location of the robot along x 
and y axes and its rotation about z axis of the LRF-fixed 
coordinate frame. Aforementioned parts are depicted by red 
double-head arrows, at the top of subplots, which are 
separated by red dashed vertical lines. Parts, specified by the 
odd numbers, relate to forward motions and those specified 
by the even numbers relate to 90 degree rotations. 5 and 10 
centimeter drifts in robot pose estimation along x and y 
directions, respectively, and a 3 degree drift in its attitude, 
are observed at the end of the motion, using ICP method. 
Upper subplot in figure 7 shows the variances of one of the 
elements of robot's state (position along y axis) in this 
algorithm, which grows unbounded during robot's motion. 

Furthermore, we have implemented the MonoSLAM 
algorithm, based on the information of a monocular camera 
as the only data source, for localizing the robot using the 
recorded frames during robot’s motion. Figure 5 shows the 
same elements of robot’s state during its motion. Although 
this method has shown excellent results in localizing a hand-
held camera with smooth motion, it is not a good choice for 
localizing a mobile robot with sudden breaks and with 
frequent variations in velocity. While the method generates a 
persistent feature-based map, which is the valuable 
information for correcting the accumulated drift in 
confronting with previously seen features, in this experiment 
it can not utilize this map for correcting drifts; because the 
method only relies on a single camera and thus constant-
velocity model is used for motion prediction, which causes 
the estimation to deviate from the true path of the robot and 
thus the observation of previously seen features cannot pass 
the gating test of data association process. Therefore, the 
method could not correct the drift, produced during robot's 
motion, at the end of the motion. 

Fig. 4.  Estimated location of the robot along x and y axes and its 
rotation about z axis of a laser-fixed coordinate frame, produced  using 
ICP method. 

0 50 100 150 200 250 300
-300

-200

-100

0

100
Position in x direction

0 50 100 150 200 250 300
-600

-400

-200

0

200

P
os

iti
on

s 
(c

m
)

Position in y direction

0 50 100 150 200 250 300
-400

-200

0

200

Scan/frame number

Y
aw

 (d
eg

re
e) Yaw

1

(Y)

(X)

2 3 4 5 6 7 8

Fig. 5.  Estimated location of the robot along x and y axes and its 
rotation about z axis of a laser-fixed coordinate frame, produced  using 
MonoSLAM method.
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TABLE I
DRIFT COMPARISION AT THE END STEP OF THE MOTION

 ICP Mono 
SLAM

Proposed 
Method 

Drift along x axis (cm) 4.08 82.22 0.63 
Drift along y axis (cm) 8.57 420.13 0.52
Drift about z axis (degree) 2.86 22.84 1.49 
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Figure 6 shows the same elements of the robot’s state, 
estimated as a result of fusing the information of a 
monocular camera and an LRF. The first parts of the 
estimated path have been slightly ruined, compared with the 
one in the pure ICP-based localization, as a result of the 
contribution of the features with unknown depths in 
estimation process. However, the method comes to its own 
when re-observes existing features in the map. Proposed 
method is able to recognize the previously seen areas after 
periods of neglect and correct the accumulated drifts in loop 
closures, exploiting the map, constructed by the visual 
features. If robot continues to re-observe other features and 
travel the path for the second time, depth of most of features 
will be estimated more accurately and their contribution in 
the SLAM process leads to a more accurate localization than 
previous two cases, and also such accurate observations 
prevent the unbounded growth of the uncertainty. Lower 
subplot in figures 7 shows the variance of the estimation of 
one of the elements (position along y axis) of robot’s state. 
As it is seen in this figure loop-closing effect bounds this 
variance, as well as other elements’ variances, in re- 
observing the existing features in the map, through the 
established correlations among all elements of the system's 
state vector in the covariance matrix of system's state. The 
robot confronts with the existing features in the map at the 
218th step, for the first time and it returns to its initial 
location (origin of the global-fixed coordinate frame) at the 
251st step.
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Table 1 demonstrates a comparison of the drifts, resulted 
from these methods, at the end of robot's motion, when robot 
returns and stops at the origin of global coordinate.  

VII. CONCLUSION

In this paper, a method has been proposed to augment the 
information of a monocular camera and a range finder. 
Point-wise scan matching methods are adopted as the best 
choice, in terms of accuracy, for constructing a motion 
model to localize a mobile robot in an unstructured 
environment, without using the encoder data. Augmenting 
the visual information, obtained from a monocular camera, 
with this motion model allows the method to construct a 
feature-based representation of the environment, which 
makes it possible to exploit the great benefits of the EKF, in 
terms of highly efficient representation of correlated 
uncertainty. Therefore, not only this method causes the robot 
to benefit from an accurate motion model but also makes it 
capable to recognize previously seen areas after periods of 
neglect and thus correct the accumulated drift in loop 
closing motions. This method could be a valuable step 
towards SLAM in unstructured environments, free from 
using encoders. 

REFERENCES

[1] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M. 
Csorba, A solution to the simultaneous localization and map building 
(SLAM) problem, IEEE Transactions on Robotics and Automation, 2001. 
[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM: A 
Factored Solution to the Simultaneous Localization and Mapping Problem, 
Proc. AAAI Nat’l Conf. Artificial Intelligence, 2002. 
[3] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, Simultaneous localization and mapping with sparse extended 
information filters International Journal of Robotics Research, 2004. 
[4] R. Smith, M. Self, and P. Cheeseman, Estimating uncertain spatial 
relationships in robotics, In I.J. Cox and G.T. Wilfon, editors, Autonomous 
Robot Vehicles, pages 167-193. Springer-Verlag, 1990. 
[5] A. A. Aghamohammadi, H. D. Taghirad, A. H. Tamjidi, and E. 
Mihankhah, Feature-Based Range Scan Matching For Accurate and High 
Speed Mobile Robot Localization, ECMR, 2007. 
[6] F. Lu, E. Milios, Robot pose estimation in unknown environments by 
matching 2D range scans, Journal of Intelligent and Robotic Systems, 1997. 
[7] S. Se, D. Lowe, J. Little, Mobile robot localization and mapping with 
uncertainty using scale-invariant visual landmarks, Int. J. Robot, 2002. 
[8] A. J. Davison. Real-time simultaneous localisation and mapping with a 
single camera, Proc. ICCV, 2003. 
[9] J.M.M. Montiel, J. Civera, and A.J. Davison, “Unified Inverse Depth 
Parametrization for Monocular SLAM,” Proc. RSS, 2006. 
[10] F. Lu and E. Milios. Globally consistent range scan alignment for 
environment mapping. Autonomous Robots, 1997. 
[11] Q. Zhang, R. Pless, Extrinsic calibration of a camera and laser range 
finder (improves camera calibration), IROS, 2004. 
[12] Gelb, A. 1984. Applied Optimal Estimation. M.I.T. Press 

Fig. 6.  Estimated location of the robot along x and y axes and its 
rotation about z axis of a laser-fixed coordinate frame, resulted from 
the fusion of the information of a monocular camera and an LRF. 

Fig. 7.  Variance of the estimation of robot’s position along y axis. 
Upper figure, has been resulted from the ICP method and lower one 
has been resulted from the proposed method.  
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