Total Near Equitable Domination in Graphs

Ali Mohammed Sahal and Veena Mathad

(Department of Studies in Mathematics, University of Mysore Manasagangotri, Mysore - 570 006, India)

E-mail: alisahl1980@gmail.com, veena_mathad@rediffmail.com

Abstract: Let G = (V, E) be a graph, $D \subseteq V$ and u be any vertex in D. Then the out degree of u with respect to D denoted by $od_D(u)$, is defined as $od_D(u) = |N(u) \cap (V - D)|$. A subset $D \subseteq V(G)$ is called a near equitable dominating set of G if for every $v \in V - D$ there exists a vertex $u \in D$ such that u is adjacent to v and $|od_D(u) - od_{V-D}(v)| \leq 1$. A near equitable dominating set D is said to be a total near equitable dominating set (tned-set) if every vertex $w \in V$ is adjacent to an element of D. The minimum cardinality of tned-set of G is called the total near equitable domination number of G and is denoted by $\gamma_{tne}(G)$. The maximum order of a partition of V into tned-sets is called the total near equitable domatic number of G and is denoted by $d_{tne}(G)$. In this paper we initiate a study of these parameters.

Key Words: Equitable domination number, near equitable domination number, near equitable domatic number, total near equitable domination Number, total near equitable domatic number, Smarandachely *k*-dominator coloring.

AMS(2010): 05C22

§1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m, respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [2].

Let G = (V, E) be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v) = \{u \in V : uv \in E\}$ and $N[v] = N(v) \cup \{v\}$, respectively. If $S \subseteq V$ then $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$.

Let G be a graph without isolated vertices. For an integer $k \ge 1$, a Smarandachely kdominator coloring of G is a proper coloring of G with the extra property that every vertex in G properly dominates a k-color classes. Particularly, a subset S of V is called a dominating set if N[S] = V, i.e., a Smarandachely 1-dominator set. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)$ ($\Gamma(G)$). An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [5]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [6]. Various types of domination have been defined and

¹Received January 21, 2014, Accepted September 5, 2014.

studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [5]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi [3] introduced the concept of total domination in graphs. A dominating set D of a graph G is a total dominating set if every vertex of V is adjacent to some vertex of D. The cardinality of a smallest total dominating set in a graph G is called the total domination number of G and is denoted by $\gamma_t(G)$.

A double star is the tree obtained from two disjoint stars $K_{1,n}$ and $K_{1,m}$ by connecting their centers.

Equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly.

Let $D \subseteq V(G)$ and u be any vertex in D. The out degree of u with respect to D denoted by $od_D(u)$, is defined as $od_D(u) = |N(u) \cap (V - D)|$. D is called near equitable dominating set of G if for every $v \in V - D$ there exists a vertex $u \in D$ such that u is adjacent to v and $|od_D(u) - od_{V-D}(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_{ne} and is called the near equitable domination number of G. A partition $P = \{V_1, V_2, \dots, V_l\}$ of a vertex set V(G) of a graph is called near equitable domatic partition of G if V_i is near equitable dominating set for every $1 \leq i \leq l$. The near equitable domatic number of G is the maximum cardinality of near equitable domatic partition of G and denoted by $d_{ne}(G)$ [7].

For a near equitable dominating set D of G it is natural to look at how total D behaves. For example, for the cycle $C_6 = (v_1, v_2, v_3, v_4, v_5, v_6, v_1)$, $S_1 = \{v_1, v_4\}$ and $S_2 = \{v_1, v_2, v_3, v_4\}$ are near equitable dominating sets, S_1 is not total and S_2 is total.

In this paper, we introduce the concept of a total near equitable domination to initiate a study of a total near equitable domination number and a total near equitable domatic number.

We need the following to prove main results.

Definition 1.1([7]) Let G = (V, E) be a graph and D be a near equitable dominating set of G. Then $u \in D$ is a near equitable pendant vertex if $od_D(u) = 1$. A set D is called a near equitable pendant set if every vertex in D is an equitable pendant vertex.

Theorem 1.2([7]) Let T be a wounded spider obtained from the star $K_{1,n-1}$, $n \ge 5$ by subdividing m edges exactly once. Then

$$\gamma_{ne}(T) = \begin{cases} n, & \text{if } m = n - 1; \\ n - 1, & \text{if } m = n - 2; \\ n - 2, & \text{if } m \le n - 3. \end{cases}$$

§2. Total Near Equitable Domination in Graphs

A near equitable dominating set D of a graph G is said to be a *total near equitable dominating* set (tned-set) if every vertex $w \in V$ is adjacent to an element of D. The minimum of the cardinality of tned-set of G is called a total near equitable domination number and is denoted by $\gamma_{tne}(G)$. A subset D of V is a minimal tned-set if no proper subset of D is a tned-set. We note that this parameter is only defined for graphs without isolated vertices and, since each total near equitable dominating set is a near equitable dominating set, we have $\gamma_{ne}(G) \leq \gamma_{tne}(G)$. Since each total near equitable dominating set is a total dominating set, we have $\gamma_t(G) \leq \gamma_{tne}(G)$. The bound is sharp for rK_2 , $r \geq 1$. In fact $\gamma_{tne}(G) = \gamma_t(G) = |V|$, for $G = rK_2$, it is easy to see however, that rK_2 , $r \geq 1$ is the only graph with this property. Furthermore, the difference $\gamma_{tne}(G) - \gamma_t(G)$ can be arbitrarily large in a graph G. It can be easily checked that $\gamma_t(K_{1,r}) = 2$, while $\gamma_{tne}(K_{1,r}) = n-2$.

We now proceed to compute $\gamma_{tne}(G)$ for some standard graphs.

1. For any path P_n , $n \ge 4$,

$$\gamma_{tne}(P_n) = \gamma_t(P_n) = \begin{cases} \frac{n}{2} + 1, & \text{if } n \equiv 2 \pmod{4}; \\ \\ \left\lceil \frac{n}{2} \right\rceil, & \text{otherwise.} \end{cases}$$

where $\lceil x \rceil$ is a least integer not less than x.

2. For any cycle C_n , $n \ge 4$,

$$\gamma_{tne}(C_n) = \gamma_t(C_n) = \begin{cases} \frac{n}{2} + 1, & \text{if } n \equiv 2 \pmod{4}; \\ \\ & \left\lceil \frac{n}{2} \right\rceil, & \text{otherwise.} \end{cases}$$

- 3. For the complete graph K_n , $n \ge 4 \gamma_{tne}(K_n) = \gamma_{ne}(K_n) = \lfloor \frac{n}{2} \rfloor$, where $\lfloor x \rfloor$ is a greatest integer not exceeding x.
- 4. For the double star $S_{n,m}$,

$$\gamma_{tne}(S_{n,m}) = \gamma_{ne}(S_{n,m}) = \begin{cases} 2, & \text{if } n, m \le 2 ; \\ n+m-2, & \text{if } n, m \ge 2 \text{ and } n \text{ or } m \ge 3 \end{cases}$$

5. For the complete bipartite graph $K_{n,m}$ with $2 < m \leq n$, we have

$$\gamma_{tne}(K_{n,m}) = \gamma_{ne}(K_{n,m}) = \begin{cases} m-1, & \text{if } n = m \text{ and } m \ge 3; \\ m, & \text{if } n-m = 1; \\ n-1, & \text{if } n-m \ge 2. \end{cases}$$

6. For the wheel W_n on n vertices,

$$\gamma_{tne}(W_n) = \gamma_{ne}(W_n) = \left\lceil \frac{n-1}{3} \right\rceil + 1.$$

Theorem 2.1 Let G be a graph and D be a minimum tned- set of G containing t near equitable pendant vertices. Then $\gamma_{tne}(G) \geq \frac{n+t}{3}$.

Proof Let D be any minimum thed- set of G containing t near equitable pendant vertices . Then $2|D| - t \ge |V - D|$. It follows that, $3|D| - t \ge n$. Hence $\gamma_{tne}(G) \ge \frac{n+t}{3}$. \Box

Theorem 2.2 Let T be a wounded spider obtained from the star $K_{1,n-1}$, $n \ge 5$ by subdividing m edges exactly once. Then

$$\gamma_{tne}(T) = \gamma_{ne}(T) = \begin{cases} n, & \text{if } m = n - 1 ;\\ n - 1, & \text{if } m = n - 2;\\ n - 2, & \text{if } m \le n - 3. \end{cases}$$

Proof Proof follows from Theorem 1.2.

Theorem 2.3 Let T be a tree of order $n, n \ge 4$ in which every non-pendant vertex is either a support or adjacent to a support and every non- pendant vertex which is support is adjacent to at least two pendant vertices. Then $\gamma_{tne}(T) = \gamma_{ne}(T)$.

Proof Let D denote set of all non-pendant vertices and all pendant vertices except two for each support of T. Clearly, D is a γ_{ne} -set. Since any support vertex adjacent to at least two pendant vertices, it follows that $\langle D \rangle$ contains no isolate vertex. Hence D is a tned-set and hence $\gamma_{tne}(T) \leq \gamma_{ne}(T)$. Since $\gamma_{ne}(T) \leq \gamma_{tne}(T)$, it follows that $\gamma_{tne}(T) = \gamma_{ne}(T)$. \Box

Theorem 2.4 Let G be a connected graph of order $n, n \ge 4$. Then,

$$\gamma_{tne}(G) \le n - 2.$$

Proof It is enough to show that for any minimum total near equitable dominating set D of G, $|V - D| \ge 2$. Since G is a connected graph of order $n, n \ge 4$, it follows that $\delta(G) \ge 1$. Suppose $v \in V - D$ and adjacent to $u \in D$. Since $od_{V-D}(v) \ge 1$, then $od_D(u) \ge 2$.

The star graph $G \cong K_{1,n}$ is an example of a connected graph for which $\gamma_{tne}(G) = 2n - (\Delta(G) + 3)$. The following theorem shows that, this is the best possible upper bound for $\gamma_{tne}(G)$.

Theorem 2.5 If G is connected of order $n, n \ge 4$, then,

$$\gamma_{tne}(G) \le 2n - (\Delta(G) + 3).$$

Proof Let G be a connected graph of order $n, n \ge 4$, then by Theorem 2.4, $\gamma_{tne}(G) \le n-2 = 2n - (n-1+3) \le 2n - (\Delta(G)+3)$.

Theorem 2.6 If G is a graph of order $n, n \ge 4$ and $\Delta(G) \le n-2$ such that both G and \overline{G} connected, then

$$\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \le 3n - 6.$$

Proof Let G be a connected graph and $\Delta(G) \leq n-2$. By Theorem 2.4, $\gamma_{tne}(G) \leq 2n - (\Delta(G)+4) \leq 2n - (\delta(G)+4)$. Since \overline{G} is a connected, by Theorem 2.5, $\gamma_{tne}(\overline{G}) \leq 2n - (\Delta(\overline{G})+3)$,

it follows that

$$\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \leq 2n - (\delta(G) + 4) + 2n - (\Delta(\overline{G}) + 3)$$

= $4n - (\delta(G) + \Delta(\overline{G})) - 7$
= $3n - 6.$

The bound is sharp for C_4 .

Theorem 2.7 Let G be a graph such that both G and \overline{G} connected. Then,

$$\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \le 2n - 4$$

Proof Since both G and \overline{G} are a connected, it follows by Theorem 2.4 that, $\gamma_{tne}(G) + \gamma_{tne}(\overline{G}) \leq 2n - 4$.

The bound is sharp for P_4 . We now proceed to obtain a characterization of minimal tned-sets.

Theorem 2.8 A tned- set D of a graph G is a minimal tned- set if and only if one of the following holds:

- (i) D is a minimal near equitable dominating set;
- (ii) There exist $x, y \in D$ such that $N(y) \cap N(D \{x\}) = \phi$.

Proof Suppose that D is a minimal tned-set of G. Then for any $u \in D$, $D - \{u\}$ is not tned-set. If D is a minimal near equitable dominating set, then we are done. If not, then there exists a vertex $x \in D$ such that $D - \{x\}$ is a near equitable dominating set, but not a tned- set. Therefore there exists a vertex $y \in D - \{x\}$ such that y is an isolated vertex in $\langle (D - \{x\}) \rangle$. Hence $N\{y\} \cap N(D - \{x\}) = \phi$.

Conversely, let D be a tned- set and (i) holds. Suppose D is not a minimal tned-set. Then for every $u \in D$, $D - \{u\}$ is a tned- set. So, D is not a minimal near equitable dominating set, a contradiction. Next, suppose that D is a tned- set and (ii) holds. Then there exist $x, y \in D$ such that $N(y) \cap N(D - \{x\}) = \phi$.

Suppose to the contrary, D is not a minimal tned- set. Then for every $u \in D$, $D - \{u\}$ is a tned- set. So, $\langle (D - \{u\}) \rangle$ does not contain any isolated vertex. Therefore for every $x, y \in D$, $N(y) \cap N(D - \{x\}) \neq \phi$, a contradiction.

Theorem 2.9 For any positive integer m, there exists a graph G such that $\gamma_{tne}(G) - \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = m$, where $\lfloor x \rfloor$ denotes the greatest integer not exceeding x.

Proof For m = 1, let $G = K_{3,3}$. Then, $\gamma_{tne}(G) - \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = 2 - 1 = 1$. For m = 2, let $G = K_{2,4}$. Then, $\gamma_{tne}(G) - \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = 3 - 1 = 2$. For $m \ge 3$, let $G = S_{r,s}$, where r + s = m + 3, $s \ge r + 3$, $r \ge 2$, $\gamma_{tne}(G) = r + s - 2 = m + 1$,

$$\left\lfloor \frac{n}{\Delta+1} \right\rfloor = \left\lfloor \frac{r+s+2}{s+2} \right\rfloor = 1$$

and

$$\gamma_{tne}(G) - \lfloor \frac{n}{\Delta + 1} \rfloor = r + s - 3 = m.$$

§3. Total Near Equitable Domatic Number

The maximum order of a partition of the vertex set V of a graph G into dominating sets is called the domatic number of G and is denoted by d(G). For a survey of results on domatic number and their variants we refer to Zelinka [9]. In this section we present few basic results on the total near equitable domatic number of a graph.

Let G be a graph without isolated vertices. A total near equitable domatic partition (tnedomatic partition) of G is a partition $\{V_1, V_2, \dots, V_k\}$ of V(G) in which each V_i is a tned-set of G. The maximum order of a tne-domatic partition of G is called the *total near equitable domatic number* (tne-domatic number) of G and is denoted by $d_{tne}(G)$.

We now proceed to compute $d_{tne}(G)$ for some standard graphs.

- 1. For any complete graph K_n , $n \ge 4$, $d_{tne}(K_n) = d_{ne}(K_n) = 2$.
- 2. For any $n \ge 1$, $d_{tne}(C_{4n}) = 2$.
- 3. For any star $K_{1,n}$, $n \ge 3$, $d_{tne}(K_{1,n}) = d_{ne}(K_{1,n}) = 1$.
- 4. For the wheel W_n on *n* vertices, then $d_{tne}(W_n) = d_{ne}(W_n) = 1$.
- 5. For the complete bipartite graph $K_{n,m}$, with $2 < m \leq n$

$$d_{tne}(K_{n,m}) = d_{ne}(K_{n,m}) = \begin{cases} 2, & \text{if } |n-m| \le 2; \\ 1, & \text{if } |n-m| \ge 3, n, m \ge 2. \end{cases}$$

It is obvious that any total near equitable domatic partition of a graph G is also a total domatic partition and any total domatic partition is also a domatic partition, thus we obtain the obvious bound $d_{tne}(G) \leq d_t(G) \leq d(G)$.

Remark 3.1 Let $v \in V(G)$ and $deg(v) = \delta$. Since any the d-set of G must contain either v or a neighbour of v and $d_{tne}(G) \leq d_t(G)$, it follows that $d_{tne}(G) \leq \delta$.

Definition 3.2 A graph G is called the domatically full if $d_{tne}(G) = \delta$.

For example, a star $K_{1,n}$ is the-domatically full.

Remark 3.3 Since every member of any tne-domatic partition of a graph G on n vertices has at least $\gamma_{tne}(G)$ vertices, it follows that $d_{tne}(G) \leq \frac{n}{\gamma_{tne}(G)}$. This inequality can be strict for $rK_2, r \geq 1$.

Theorem 3.4 Let G be a graph of order $n, n \ge 4$ with $\Delta(G) \le 2$ such that both G and \overline{G} are connected. Then $d_{tne}(\overline{G}) \le 2$.

proof Since $\Delta(G) \leq 2$, it follows that for any $v \in \overline{G}$, $deg(v) \geq n-3$. Hence $\gamma_{tne}(\overline{G}) \leq \lceil \frac{n}{2} \rceil$. Thus by Remark 3.3, $d_{tne}(G) \leq 2$.

The bound is sharp for P_n , $n \ge 6$.

Theorem 3.5 Let G be a graph of order $n, n \ge 4$ with $\Delta(G) \le 2$ such that both G and \overline{G} are connected. Then $\gamma_{tne}(G) + d_{tne}(\overline{G}) \le n$.

Proof Proof follows by Theorem 2.4 and Theorem 3.4.

theorem 3.6 For any graph G, $\gamma_{tne}(G) + d_{tne}(G) \leq 2n - 3$.

proof By Theorem 2.5,

$$\gamma_{tne}(G) \le 2n - (\Delta(G) + 3) \le 2n - (\delta(G) + 3) \le 2n - (d_{tne}(G) + 3).$$

Therefor, $\gamma_{tne}(G) + d_{tne}(G) \leq 2n - 3$.

The bound is sharp for $2K_2$.

theorem 3.7 For any graph G, $\gamma_{tne}(G) + d_{tne}(G) \leq n + \delta - 2$.

Proof Since $d_{tne}(G) \leq d_t(G) \leq \delta(G)$, by Theorem 2.4,

$$\gamma_{tne}(G) + d_{tne}(G) \le n + \delta - 2.$$

The bound is sharp for $K_{1,n}$.

References

- A.Anitha, S.Arumugam and Mustapha Chellali, Equitable domination in graphs, Discrete Mathematics, Algorithms and Applications, 3(2011), 311-321.
- [2] G.Chartrand and L.Lesnaik, *Graphs and Digraphs*, Chapman and Hall. CRC, 4th edition, 2005.
- [3] E.J.Cockayne, R.M.Dawes and S.T.Hedetniemi, Total domination in graphs, *Networks*, 10(1980), 211-219.
- [4] F.Harary and T.W. Haynes, Double domination in graphs, Ars Combin., 55(2000), 201-213.
- [5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [6] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998.
- [7] A.M.Sahal and V.Mathad, On near equitable domination in graphs, Asian Journal of Current Engineering and Maths., Vol.3, 2(2014), 39-46.
- [8] V.Swaminathan and K.Markandan Dharmalingam, Degree equitable domination on graphs, *Kragujevac J. Math.*, 35(2011), 191-197.
- [9] B.Zelinka, Domatic number of graphs and their variants, in A Survey in Domination in Graphs Advanced Topics, Ed. T.W. Haynes, S.T.Hedetniemi and P.J.Slater, Marcel Dekker, 1998.