Total Near Equitable Domination in Graphs

Ali Mohammed Sahal and Veena Mathad

(Department of Studies in Mathematics, University of Mysore Manasagangotri, Mysore - 570 006, India)

E-mail: alisahl1980@gmail.com, veena_mathad@rediffmail.com

Abstract

Let $G=(V, E)$ be a graph, $D \subseteq V$ and u be any vertex in D. Then the out degree of u with respect to D denoted by $\operatorname{od}_{D}(u)$, is defined as $\operatorname{od}_{D}(u)=|N(u) \cap(V-D)|$. A subset $D \subseteq V(G)$ is called a near equitable dominating set of G if for every $v \in V-D$ there exists a vertex $u \in D$ such that u is adjacent to v and $\left|o d_{D}(u)-o d_{V-D}(v)\right| \leq 1$. A near equitable dominating set D is said to be a total near equitable dominating set (tned-set) if every vertex $w \in V$ is adjacent to an element of D. The minimum cardinality of tned-set of G is called the total near equitable domination number of G and is denoted by $\gamma_{\text {tne }}(G)$. The maximum order of a partition of V into tned-sets is called the total near equitable domatic number of G and is denoted by $d_{\text {tne }}(G)$. In this paper we initiate a study of these parameters.

Key Words: Equitable domination number, near equitable domination number, near equitable domatic number, total near equitable domination Number, total near equitable domatic number, Smarandachely k-dominator coloring.

AMS(2010): 05C22

§1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m, respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [2].

Let $G=(V, E)$ be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v)=\{u \in V: u v \in E\}$ and $N[v]=N(v) \cup\{v\}$, respectively. If $S \subseteq V$ then $N(S)=\cup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$.

Let G be a graph without isolated vertices. For an integer $k \geqslant 1$, a Smarandachely k dominator coloring of G is a proper coloring of G with the extra property that every vertex in G properly dominates a k-color classes. Particularly, a subset S of V is called a dominating set if $N[S]=V$, i.e., a Smarandachely 1-dominator set. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)(\Gamma(G))$. An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [5]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [6]. Various types of domination have been defined and

[^0]studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [5]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi [3] introduced the concept of total domination in graphs. A dominating set D of a graph G is a total dominating set if every vertex of V is adjacent to some vertex of D. The cardinality of a smallest total dominating set in a graph G is called the total domination number of G and is denoted by $\gamma_{t}(G)$.

A double star is the tree obtained from two disjoint stars $K_{1, n}$ and $K_{1, m}$ by connecting their centers.

Equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly.

Let $D \subseteq V(G)$ and u be any vertex in D. The out degree of u with respect to D denoted by $o d_{D}(u)$, is defined as $o d_{D}(u)=|N(u) \cap(V-D)|$. D is called near equitable dominating set of G if for every $v \in V-D$ there exists a vertex $u \in D$ such that u is adjacent to v and $\left|o d_{D}(u)-o d_{V-D}(v)\right| \leq 1$. The minimum cardinality of such a dominating set is denoted by $\gamma_{n e}$ and is called the near equitable domination number of G. A partition $P=\left\{V_{1}, V_{2}, \cdots, V_{l}\right\}$ of a vertex set $V(G)$ of a graph is called near equitable domatic partition of G if V_{i} is near equitable dominating set for every $1 \leq i \leq l$. The near equitable domatic number of G is the maximum cardinality of near equitable domatic partition of G and denoted by $d_{n e}(G)$ [7].

For a near equitable dominating set D of G it is natural to look at how total D behaves. For example, for the cycle $C_{6}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}\right), S_{1}=\left\{v_{1}, v_{4}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are near equitable dominating sets, S_{1} is not total and S_{2} is total.

In this paper, we introduce the concept of a total near equitable domination to initiate a study of a total near equitable domination number and a total near equitable domatic number.

We need the following to prove main results.

Definition 1.1([7]) Let $G=(V, E)$ be a graph and D be a near equitable dominating set of G. Then $u \in D$ is a near equitable pendant vertex if $\operatorname{od}_{D}(u)=1$. A set D is called a near equitable pendant set if every vertex in D is an equitable pendant vertex.

Theorem 1.2([7]) Let T be a wounded spider obtained from the star $K_{1, n-1}, n \geq 5$ by subdividing m edges exactly once. Then

$$
\gamma_{n e}(T)= \begin{cases}n, & \text { if } m=n-1 \\ n-1, & \text { if } m=n-2 \\ n-2, & \text { if } m \leq n-3\end{cases}
$$

§2. Total Near Equitable Domination in Graphs

A near equitable dominating set D of a graph G is said to be a total near equitable dominating set (tned-set) if every vertex $w \in V$ is adjacent to an element of D. The minimum of the cardinality of tned-set of G is called a total near equitable domination number and is denoted by $\gamma_{t n e}(G)$. A subset D of V is a minimal tned-set if no proper subset of D is a tned-set.

We note that this parameter is only defined for graphs without isolated vertices and, since each total near equitable dominating set is a near equitable dominating set, we have $\gamma_{n e}(G) \leq \gamma_{t n e}(G)$. Since each total near equitable dominating set is a total dominating set, we have $\gamma_{t}(G) \leq \gamma_{t n e}(G)$. The bound is sharp for $r K_{2}, r \geq 1$. In fact $\gamma_{t n e}(G)=\gamma_{t}(G)=|V|$, for $G=r K_{2}$, it is easy to see however, that $r K_{2}, r \geq 1$ is the only graph with this property. Furthermore, the difference $\gamma_{t n e}(G)-\gamma_{t}(G)$ can be arbitrarily large in a graph G. It can be easily checked that $\gamma_{t}\left(K_{1, r}\right)=2$, while $\gamma_{\text {tne }}\left(K_{1, r}\right)=n-2$.

We now proceed to compute $\gamma_{t n e}(G)$ for some standard graphs.

1. For any path $P_{n}, n \geq 4$,

$$
\gamma_{\text {tne }}\left(P_{n}\right)=\gamma_{t}\left(P_{n}\right)= \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil, & \text { otherwise }\end{cases}
$$

where $\lceil x\rceil$ is a least integer not less than x.
2. For any cycle $C_{n}, n \geq 4$,

$$
\gamma_{t n e}\left(C_{n}\right)=\gamma_{t}\left(C_{n}\right)= \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil, & \text { otherwise }\end{cases}
$$

3. For the complete graph $K_{n}, n \geq 4 \gamma_{t n e}\left(K_{n}\right)=\gamma_{n e}\left(K_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, where $\lfloor x\rfloor$ is a greatest integer not exceeding x.
4. For the double star $S_{n, m}$,

$$
\gamma_{t n e}\left(S_{n, m}\right)=\gamma_{n e}\left(S_{n, m}\right)= \begin{cases}2, & \text { if } n, m \leq 2 \\ n+m-2, & \text { if } n, m \geq 2 \text { and } n \text { or } m \geq 3\end{cases}
$$

5. For the complete bipartite graph $K_{n, m}$ with $2<m \leq n$, we have

$$
\gamma_{t n e}\left(K_{n, m}\right)=\gamma_{n e}\left(K_{n, m}\right)= \begin{cases}m-1, & \text { if } n=m \text { and } m \geq 3 \\ m, & \text { if } n-m=1 \\ n-1, & \text { if } n-m \geq 2\end{cases}
$$

6. For the wheel W_{n} on n vertices,

$$
\gamma_{t n e}\left(W_{n}\right)=\gamma_{n e}\left(W_{n}\right)=\left\lceil\frac{n-1}{3}\right\rceil+1
$$

Theorem 2.1 Let G be a graph and D be a minimum tned- set of G containing t near equitable pendant vertices. Then $\gamma_{\text {tne }}(G) \geq \frac{n+t}{3}$.

Proof Let D be any minimum tned- set of G containing t near equitable pendant vertices . Then $2|D|-t \geq|V-D|$. It follows that, $3|D|-t \geq n$. Hence $\gamma_{\text {tne }}(G) \geq \frac{n+t}{3}$.

Theorem 2.2 Let T be a wounded spider obtained from the star $K_{1, n-1}, n \geq 5$ by subdividing m edges exactly once. Then

$$
\gamma_{t n e}(T)=\gamma_{n e}(T)= \begin{cases}n, & \text { if } m=n-1 \\ n-1, & \text { if } m=n-2 \\ n-2, & \text { if } m \leq n-3\end{cases}
$$

Proof Proof follows from Theorem 1.2.

Theorem 2.3 Let T be a tree of order $n, n \geq 4$ in which every non-pendant vertex is either a support or adjacent to a support and every non- pendant vertex which is support is adjacent to at least two pendant vertices. Then $\gamma_{t n e}(T)=\gamma_{n e}(T)$.

Proof Let D denote set of all non-pendant vertices and all pendant vertices except two for each support of T. Clearly, D is a $\gamma_{n e}$-set. Since any support vertex adjacent to at least two pendant vertices, it follows that $\langle D\rangle$ contains no isolate vertex. Hence D is a tned-set and hence $\gamma_{\text {tne }}(T) \leq \gamma_{n e}(T)$. Since $\gamma_{n e}(T) \leq \gamma_{t n e}(T)$, it follows that $\gamma_{t n e}(T)=\gamma_{n e}(T)$.

Theorem 2.4 Let G be a connected graph of order $n, n \geq 4$. Then,

$$
\gamma_{t n e}(G) \leq n-2
$$

Proof It is enough to show that for any minimum total near equitable dominating set D of $G,|V-D| \geq 2$. Since G is a connected graph of order $n, n \geq 4$, it follows that $\delta(G) \geq 1$. Suppose $v \in V-D$ and adjacent to $u \in D$. Since $o d_{V-D}(v) \geq 1$, then $o d_{D}(u) \geq 2$.

The star graph $G \cong K_{1, n}$ is an example of a connected graph for which $\gamma_{t n e}(G)=2 n-(\Delta(G)+3)$. The following theorem shows that, this is the best possible upper bound for $\gamma_{\text {tne }}(G)$.

Theorem 2.5 If G is connected of order $n, n \geq 4$, then,

$$
\gamma_{t n e}(G) \leq 2 n-(\Delta(G)+3)
$$

Proof Let G be a connected graph of order $n, n \geq 4$, then by Theorem 2.4, $\gamma_{\text {tne }}(G) \leq$ $n-2=2 n-(n-1+3) \leq 2 n-(\Delta(G)+3)$.

Theorem 2.6 If G is a graph of order $n, n \geq 4$ and $\Delta(G) \leq n-2$ such that both G and \bar{G} connected, then

$$
\gamma_{t n e}(G)+\gamma_{t n e}(\bar{G}) \leq 3 n-6
$$

Proof Let G be a connected graph and $\Delta(G) \leq n-2$. By Theorem 2.4, $\gamma_{t n e}(G) \leq 2 n-$ $(\Delta(G)+4) \leq 2 n-(\delta(G)+4)$. Since \bar{G} is a connected, by Theorem 2.5, $\gamma_{t n e}(\bar{G}) \leq 2 n-(\Delta(\bar{G})+3)$,
it follows that

$$
\begin{aligned}
\gamma_{t n e}(G)+\gamma_{t n e}(\bar{G}) & \leq 2 n-(\delta(G)+4)+2 n-(\Delta(\bar{G})+3) \\
& =4 n-(\delta(G)+\Delta(\bar{G}))-7 \\
& =3 n-6
\end{aligned}
$$

The bound is sharp for C_{4}.
Theorem 2.7 Let G be a graph such that both G and \bar{G} connected. Then,

$$
\gamma_{t n e}(G)+\gamma_{t n e}(\bar{G}) \leq 2 n-4
$$

Proof Since both G and \bar{G} are a connected, it follows by Theorem 2.4 that, $\gamma_{t n e}(G)+$ $\gamma_{\text {tne }}(\bar{G}) \leq 2 n-4$.

The bound is sharp for P_{4}. We now proceed to obtain a characterization of minimal tned-sets.

Theorem 2.8 A tned- set D of a graph G is a minimal tned- set if and only if one of the following holds:
(i) D is a minimal near equitable dominating set;
(ii) There exist $x, y \in D$ such that $N(y) \cap N(D-\{x\})=\phi$.

Proof Suppose that D is a minimal tned-set of G. Then for any $u \in D, D-\{u\}$ is not tned-set. If D is a minimal near equitable dominating set, then we are done. If not, then there exists a vertex $x \in D$ such that $D-\{x\}$ is a near equitable dominating set, but not a tned- set. Therefore there exists a vertex $y \in D-\{x\}$ such that y is an isolated vertex in $\langle(D-\{x\})\rangle$. Hence $N\{y\} \cap N(D-\{x\})=\phi$.

Conversely, let D be a tned- set and (i) holds. Suppose D is not a minimal tned-set. Then for every $u \in D, D-\{u\}$ is a tned- set. So, D is not a minimal near equitable dominating set, a contradiction. Next, suppose that D is a tned- set and (ii) holds. Then there exist $x, y \in D$ such that $N(y) \cap N(D-\{x\})=\phi$.
Suppose to the contrary, D is not a minimal tned- set. Then for every $u \in D, D-\{u\}$ is a tned- set. So, $\langle(D-\{u\})\rangle$ does not contain any isolated vertex. Therefore for every $x, y \in D$, $N(y) \cap N(D-\{x\}) \neq \phi$, a contradiction.

Theorem 2.9 For any positive integer m, there exists a graph G such that $\gamma_{t n e}(G)-\left\lfloor\frac{n}{\Delta+1}\right\rfloor=$ m, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding x.

Proof For $m=1$, let $G=K_{3,3}$. Then, $\gamma_{\text {tne }}(G)-\left\lfloor\frac{n}{\Delta+1}\right\rfloor=2-1=1$.
For $m=2$, let $G=K_{2,4}$. Then, $\gamma_{\text {tne }}(G)-\left\lfloor\frac{n}{\Delta+1}\right\rfloor=3-1=2$.
For $m \geq 3$, let $G=S_{r, s}$, where $r+s=m+3, s \geq r+3, r \geq 2, \gamma_{\text {tne }}(G)=r+s-2=m+1$,

$$
\left\lfloor\frac{n}{\Delta+1}\right\rfloor=\left\lfloor\frac{r+s+2}{s+2}\right\rfloor=1
$$

and

$$
\gamma_{t n e}(G)-\left\lfloor\frac{n}{\Delta+1}\right\rfloor=r+s-3=m
$$

§3. Total Near Equitable Domatic Number

The maximum order of a partition of the vertex set V of a graph G into dominating sets is called the domatic number of G and is denoted by $d(G)$. For a survey of results on domatic number and their variants we refer to Zelinka [9]. In this section we present few basic results on the total near equitable domatic number of a graph.

Let G be a graph without isolated vertices. A total near equitable domatic partition (tnedomatic partition) of G is a partition $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ of $V(G)$ in which each V_{i} is a tned-set of G. The maximum order of a tne-domatic partition of G is called the total near equitable domatic number (tne-domatic number) of G and is denoted by $d_{t n e}(G)$.

We now proceed to compute $d_{t n e}(G)$ for some standard graphs.

1. For any complete graph $K_{n}, n \geq 4, d_{\text {tne }}\left(K_{n}\right)=d_{n e}\left(K_{n}\right)=2$.
2. For any $n \geq 1, d_{t n e}\left(C_{4 n}\right)=2$.
3. For any star $K_{1, n}, n \geq 3, d_{\text {tne }}\left(K_{1, n}\right)=d_{n e}\left(K_{1, n}\right)=1$.
4. For the wheel W_{n} on n vertices, then $d_{\text {tne }}\left(W_{n}\right)=d_{n e}\left(W_{n}\right)=1$.
5. For the complete bipartite graph $K_{n, m}$, with $2<m \leq n$

$$
d_{t n e}\left(K_{n, m}\right)=d_{n e}\left(K_{n, m}\right)= \begin{cases}2, & \text { if }|n-m| \leq 2 \\ 1, & \text { if }|n-m| \geq 3, n, m \geq 2\end{cases}
$$

It is obvious that any total near equitable domatic partition of a graph G is also a total domatic partition and any total domatic partition is also a domatic partition, thus we obtain the obvious bound $d_{t n e}(G) \leq d_{t}(G) \leq d(G)$.

Remark 3.1 Let $v \in V(G)$ and $\operatorname{deg}(v)=\delta$. Since any tned-set of G must contain either v or a neighbour of v and $d_{\text {tne }}(G) \leq d_{t}(G)$, it follows that $d_{t n e}(G) \leq \delta$.

Definition 3.2 A graph G is called tne-domatically full if $d_{\text {tne }}(G)=\delta$.
For example, a star $K_{1, n}$ is tne-domatically full.
Remark 3.3 Since every member of any tne-domatic partition of a graph G on n vertices has at least $\gamma_{t n e}(G)$ vertices, it follows that $d_{t n e}(G) \leq \frac{n}{\gamma_{t n e}(G)}$. This inequality can be strict for $r K_{2}, r \geq 1$.

Theorem 3.4 Let G be a graph of order $n, n \geq 4$ with $\Delta(G) \leq 2$ such that both G and \bar{G} are connected. Then $d_{\text {tne }}(\bar{G}) \leq 2$.
proof Since $\Delta(G) \leq 2$, it follows that for any $v \in \bar{G}, \operatorname{deg}(v) \geq n-3$. Hence $\gamma_{t n e}(\bar{G}) \leq\left\lceil\frac{n}{2}\right\rceil$. Thus by Remark $3.3, d_{\text {tne }}(G) \leq 2$.

The bound is sharp for $P_{n}, n \geq 6$.
Theorem 3.5 Let G be a graph of order $n, n \geq 4$ with $\Delta(G) \leq 2$ such that both G and \bar{G} are connected. Then $\gamma_{\text {tne }}(G)+d_{\text {tne }}(\bar{G}) \leq n$.

Proof Proof follows by Theorem 2.4 and Theorem 3.4.
theorem 3.6 For any graph G, $\gamma_{\text {tne }}(G)+d_{\text {tne }}(G) \leq 2 n-3$.
proof By Theorem 2.5,

$$
\gamma_{t n e}(G) \leq 2 n-(\Delta(G)+3) \leq 2 n-(\delta(G)+3) \leq 2 n-\left(d_{t n e}(G)+3\right)
$$

Therefor, $\gamma_{\text {tne }}(G)+d_{\text {tne }}(G) \leq 2 n-3$.
The bound is sharp for $2 K_{2}$.
theorem 3.7 For any graph $G, \gamma_{\text {tne }}(G)+d_{\text {tne }}(G) \leq n+\delta-2$.
Proof Since $d_{t n e}(G) \leq d_{t}(G) \leq \delta(G)$, by Theorem 2.4,

$$
\gamma_{t n e}(G)+d_{t n e}(G) \leq n+\delta-2
$$

The bound is sharp for $K_{1, n}$.

References

[1] A.Anitha, S.Arumugam and Mustapha Chellali, Equitable domination in graphs, Discrete Mathematics, Algorithms and Applications, 3(2011), 311-321.
[2] G.Chartrand and L.Lesnaik, Graphs and Digraphs, Chapman and Hall. CRC, 4th edition, 2005.
[3] E.J.Cockayne, R.M.Dawes and S.T.Hedetniemi, Total domination in graphs, Networks, 10(1980), 211-219.
[4] F.Harary and T.W. Haynes, Double domination in graphs, Ars Combin., 55(2000), 201-213.
[5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998.
[7] A.M.Sahal and V.Mathad, On near equitable domination in graphs, Asian Journal of Current Engineering and Maths., Vol.3, 2(2014), 39-46.
[8] V.Swaminathan and K.Markandan Dharmalingam, Degree equitable domination on graphs, Kragujevac J. Math., 35(2011), 191-197.
[9] B.Zelinka, Domatic number of graphs and their variants, in A Survey in Domination in Graphs Advanced Topics, Ed. T.W. Haynes, S.T.Hedetniemi and P.J.Slater, Marcel Dekker, 1998.

[^0]: ${ }^{1}$ Received January 21, 2014, Accepted September 5, 2014.

