
AN INTRODUCTION TO ∞-CATEGORIES

HIRO LEE TANAKA

Abstract. These are notes prepared for David Ben-Zvi’s 2012 workshop on Categor-
ical Representation Theory. I assume no knowledge of simplicial sets, or of categories
enriched in spaces. I do assume people know what a category is, and what limits and
colimits are.

As David wrote me, “I’d really like people to accept it as a shiny black box and
not get too intimidated by the machine, rather to get a feel for what it’s for, how it
functions in the large, what it’s like to use it etc.
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1. Introduction

1.1. Some categories have spaces of morphisms. In algebraic topology, things
become much easier when we treat the set of maps between X and Y as a space of maps
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from X to Y . For instance, given two morphisms f0, f1 : X → Y , it makes sense to ask
whether there’s a path between them – that is, whether the two maps are homotopic.
This makes the fundamental group (and homotopy groups in general) easy to work with,
and gives rise to incredibly useful notions like homotopy equivalence. The notion that
the set of morphisms is a space is useful in other categories, like the category of chain
complexes.1

1.1.1. Finding an appropriate language for such categories. Perusing through Maclane
[Maclane72], you see immediately that there’s a ton of useful category theory for usual
categories. And we know from previous talks that things like the Barr-Beck theorem
help us say great things about categories. (For instance, knowing that some mystery
category C is all of a sudden a category of modules gives you a lot of information!) It
would be wonderful if all the tools from set-enriched categories could transfer over to
space-enriched categories.

But to fully embrace the topological, or homotopical nature of these categories, we
need a new framework. For instance, any contractible space and the one-point space are
homotopy equivalent spaces. But in the language of ordinary category theory, only the
one-point space is a terminal object.

1.2. Definition of ∞-category. I advocate that the correct framework for all this is
the framework of ∞-categories. At first pass it’s not clear that the definition will fit
all our needs, but hopefully by the end of this talk, and the end of this week, you’ll be
convinced it’s a good notion.

I’ll give the definition of an ∞-category now. You won’t know what a simplicial set
is yet, but don’t worry, I’ll get there. I just want to leave this definition on the board so
that, as I go through the talk, you’ll see some of the motivations as we plow forward.

Definition 1.1 (∞-category). Let C be a simplicial set. Let Λn
i be the simplicial set

obtained from the n-simplex ∆n by deleting the ith face and the interior. We say that
C is an ∞-category if any inner horn can always be filled. That is,

Λn
i

//

��

C

∆n

∃

>>~
~

~
~

for 0 < i < n, n ≥ 2. A functor f : C → C′ is just a map of simplicial sets.

If this definition remains cryptic, don’t worry. For now let’s talk about what a simpli-
cial set actually is. I’ll motivate it by observing the structure of categories. Then we’ll
talk about how this actually recovers a notion of a morphism space, how to go from a
topologically enriched category to an ∞-category, and how to define some of the usual
notions from category theory (co/limits).

1For instance, homology is useful because it takes homotopies of maps of spaces to homotopies of
maps of chain complexes. This is a consequence of the fact that the functor taking a space to its complex
of singular chains is in fact a functor which is a continuous map on morphism spaces.
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2. Categories as certain simplicial sets

The first time I was introduced to simplicial sets, the definition seemed a bit arbitrary.
Let me make a few observations about categories to motivate the definition of a simplicial
set.

2.1. The simplices of a category. Let C be a category. What does this mean? Well,
C has a set of objects.2 I’ll denote this set as Ob C = C[0] and I’m going to draw the
objects of C as vertices.

C[0] := Ob C
And of course for every pair of objects X0, X1 ∈ C[0] one also has a set of morphisms
C(X0, X1). We will denote by C[1] the set of all morphisms:

C[1] :=
∐

X0,X1∈C[0]

C(X0, X1)

And there is more structure – any category C has a composition rule, which is a map of
sets

C(X1, X2)× C(X0, X1)→ C(X0, X2).

In terms of pictures, this says that the following picture with edges f01, f12 can be filled
to form a commutative triangle, with third edge f02 = f12 ◦ f01.

The composition rule.

This actually tells us two pieces of information at once – first, it tells us whether a
drawing of a triangle should be considered a commutative triangle. Second, it tells us
that one can obtain a commutative triangle from two successive edges. We now separate
out these two pieces of data. First, since we know what triangles are commutative, we
will set

C[2] = {commutative triangles in C}.
The composition rule is something we’ll ignore for the moment – as it turns out there
will be no such rule in a quasi-category. So we’ll come back to the data of two successive
edges giving rise to a unique triangle in just a moment. Also, for the moment let me
ignore the associativity rule of a category. I’ll get back to that too.

By now you probably see a pattern. I drew C[0] as the set of objects in a category,
which I think of as a collection of 0-simplices. I defined C[1] as the set of morphisms,

2I’ll assume C is small, since most categories we work with are essentially small.
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which we’ve always drawn as arrows. So I’ve drawn elements of C[1] as a directed
1-simplex, and likewise an element of C[2] is a 2-simplex representing a commutative
triangle. So I’m going to define

C[n] = {commutative n-simplices in C}.

Now I claim that some morphisms among the sets C[n], along with a property similar to
the defining property of ∞-categories (Definition 1.1), completely characterize the idea
of a category.

2.2. The simplicial relations. Let’s say you have a commutative n-simplex. I’ll write
it as a string

X0
f01−−→ X1

f12−−→ X2 . . .
f(n−1)n−−−−−→ Xn.

One consequence of the associativity condition is that this string is enough for you to
determine the n-simplex entirely. (As it turns out this will not be true for∞-categories.)

I want to note that there’s a few natural ways to get a commutative (n− 1)-simplex
from this n-simplex. Namely, pick an object, and forget it, composing morphisms if
necessary. For instance, forgetting the 0th object, we get

X1
f12−−→ X2 . . .

f(n−1)n−−−−−→ Xn.

while forgetting the ith object for 0 < i < n, we get

X0
f01−−→ X1

f12−−→ . . . Xi−1

fi(i+1)◦f(i−1)i−−−−−−−−−→ Xi+1 . . .
f(n−1)n−−−−−→ Xn.

Let’s denote by di the map ‘forget the ith object.’

di : C[n]→ C[n− 1].

This exists for any 0 ≤ i ≤ n, so long as n ≥ 1. (There is no set C[−1].) We’ll call it the
ith face map. This is because if you draw the n-simplex, di precisely picks out the face
opposite the ith vertex. We can summarize these maps in the following diagram:

C[0] C[1]kk
ss C[2]kk

ssoo . . .kk
ssxx

ff

Going the other way, given an n-simplex, there’s actually a way to canonically get an
(n+ 1)-simplex. Namely, you insert the identity morphism after the ith object:

X0
f01−−→ X1

f12−−→ . . .
f(i−1)i−−−−→ Xi

idXi−−−→ Xi

fi(i+1)−−−−→ . . .
f(n−1)n−−−−−→ Xn.

We’ll call this map

si : C[n]→ C[n+ 1]

and call it the ith degeneracy map. Note there is a map for 0 ≤ i ≤ n. These maps can
all be drawn as follows:

C[0] // C[1]
++
33 C[2]

**
44// . . .
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Moreover, if you think about what the maps si and di do, you can prove the following
relations. I’ll leave the verification as an exercise; it’s very straightforward.

(1)


didj = dj−1di i ≤ j
sisj = sj+1si i ≤ j
sidj = dj+1si i < j

sidj = djsi+1 i ≥ j

These are called the simplicial relations.

Definition 2.1 (Simplicial set). A collection of sets D[n], n ∈ Z≥0, together with maps

si : D[n]→ D[n+ 1], di : D[n]→ D[n− 1]

for 0 ≤ i ≤ n, satisfying the simplicial relations, is called a simplicial set.

Exercise 2.2 (The category of simplicial sets). Let ∆ be the category whose objects are
finite, non-empty, ordered sets, and whose morphisms are weakly order-preserving maps.

(1) Show that a simplicial set is the same thing as a functor

∆op → Sets.

We let sSet denote the category of simplicial sets, where morphisms are given by
natural transformations.

We denote by ∆n the functor represented by the ordered set [n] = {0 < 1 < . . . < n}.
This means

∆n[m] = {order-preserving maps [m]→ [n]}.

We call this the n-simplex.

(2) Show that there is a natural isomorphism of sets D[n] ∼= sSet(∆n,D).
(3) Write down the simplicial set corresponding to the horn Λn

i .
(4) Let C,D be simplicial sets. We define a collection of sets (C×D)[n] := C[n]×D[n].

Show that (C × D)[•] naturally has the structure of a simplicial set.
(5) Show that sSet is enriched over itself. For instance, show that

sSet(C,D)[n] := sSet(C ×∆n,D)[0]

where sSet(−,−)[0] is the set of natural transformations, defines a simplicial set
sSet(C,D) with the obvious face and degeneracy maps.

Example 2.3 (BG). Let G be a discrete group. Let BG be the simplicial set such that
BG[k] = Gk. The face maps are given by

d0 : (g1, . . . , gn) 7→ (g2, . . . , gn), dn : (g1, . . . , gn) 7→ (g1, . . . , gn−1),

di : (g1, . . . , gn) 7→ (g1, . . . , gigi+1, . . . , gn) (0 < i < n).

The degeneracy maps are given by inserting idG in various places. Note that a functor
BG→ C picks out an object in C together with a group action.
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2.3. Categories as a simplicial set with a horn-filling condition. By design every
category C gives rise to a simplicial set C[•]. This simplicial set in fact satisfies something
very similar to the condition in Definition 1.1. First, let’s let Λ1

2 be the diagram one
obtains by taking a 2-simplex, then deleting the interior and the face opposite the 1st
vertex of the 2-simplex. (This is the same data as two successive edges.) Then if the
simplicial set C[•] arises from a category, we can complete this ‘horn’ into a full-blown
2-simplex: one can fill in the diagram

Λ2
1

//

��

C

∆2

∃!

??�
�

�
�

.

Moreover this filling is unique, as indicated. This is due to the composition law – after
all, given two morphisms f01, f12, there is only one way to compose them.

We can go further. Let Λi
n denote the diagram one obtains by taking an n-simplex,

and deleting the face opposite the ith vertex (we delete the interior of the n-simplex as
well). Then an easy exercise using the associativity law shows that we can fill such a
horn in uniquely too, provided 0 < i < n:

Λn
i

//

��

C

∆n

∃!

>>~
~

~
~

.

Staring at this commutative diagram and the diagram in Definition 1.1, you see that the
only difference is in the uniqueness of this filling.

2.4. What’s it like to work in this setting? I want to take a break at this point.
The only difference between an ordinary/usual category and an ∞-category is – I am
not kidding you – this uniqueness property of how one can fill in horn. That’s it. I’ll go
into the details of what this means for us in a second, but David wanted me to say what
it’s like to work in this setting, so let me comment on that in two ways.

2.4.1. As someone who just uses category theory. As I motivated earlier, we want to
formulate classical theorems, and be able to prove them, for categories which have more
homotopical flavor. There are plenty of ways in which one can encapsulate the notion
of a homotopical category, like model structures, enriching over spaces, or Segal spaces.
But the question is: Can we write a Maclane-type tome of results using those other
frameworks? No doubt we one day will, but we haven’t. The only setting in which all
the useful results from classical category theory have been translated into, and proven
in, a homotopical setting is in the ∞-category setting. What does this mean for you,
practically? In a sense it means you can retain all the algebraic intuitions you had from
classical categories and apply them to the ∞-category setting. Adjunctions are more or
less what you think they are, as are Kan extensions and all that.
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2.4.2. As someone who wants to prove something in category theory. That being said,
what’s it like to work with an∞-category? The point is that simplices are just a nice way
to encode homotopy-commutative diagrams, just as simplices are a nice way to encode
some portion of a topological space. A category is a massive thing, just as a topological
space is, but we can reduce the proof of most categorical statements to proofs about
how the combinatorics of simplices behave.

Moreover, the lack of uniqueness means we often don’t have a composition law. Given
two successive edges X0 → X1, X1 → X2, all we know is that there exists some edges
X0 → X2 which we’d like to call the composition, but there is no ‘the’ composition. This
is the same issue that arises when one tries to define the fundamental group – there is
no canonical way to compose two paths sharing an endpoint. Indeed, the willingness to
depart from a strict composition law is one way in which this whole business becomes
easier to deal with.3

2.5. Kan complexes are∞-groupoids are spaces. So what does this ’lack of unique-
ness’ mean for us? The interpretation I’ll promote is that the simplices of an∞-category
C are not to be interpreted as commutative diagrams anymore – they should be inter-
preted as homotopy commutative diagrams, together with prescribed homotopies between
the various simplices of the diagram. Here’s an example.

Exercise 2.4. Let W be a topological space. Let

Sing(W )[n] = Maps(|∆n|,W )

where |∆n| is the topological space corresponding to the standard n-simplex, and Maps
is the set of continuous maps. Show that Sing(W )[n] defines a simplicial set, where the
face maps di are given by restriction of maps.

I claim that not only is Sing(W ) a simplicial set, it’s also an ∞-category. Here’s an
illustration in the most basic case. It’s easy to see that the map Λ2

1 → Sing(W ) corre-
sponds to a pair of maps a, b : |∆1| ∼= [0, 1] → W such that a(1) = b(0). And to find
a map ∆2 → Sing(W ) extending this is the same thing as finding a map |∆2| → W of
spaces which restricts to a and b on the 0th and 2nd faces, respectively.

Filling the horn Λ2
1.

This is easy to do, and in fact there are many continuous maps |∆2| → W that ful-
fill this condition.

So how do we interpret Sing(W ) as a type of category, and what does the non-
uniqueness mean? The interpretation is that the 0-simplices of Sing(W ) are the objects.

3That being said, many times our ∞-categories will arise from topologically enriched categories that do
have an underlying composition, but as I’ve advocated, forgetting that structure and simply remembering
the simplices of the category is what makes many proofs easier.
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The 1-simplices – paths from one point to another – are the morphisms, and the higher
simplices are homotopies of morphisms (and higher homotopies between these). For
instance, a 2-simplex is a homotopy between two paths – the path obtained by concate-
nating the edges 0→ 1 and 1→ 2, and the path obtained by the edge of ∆2 which goes
from 0 to 2. (Here, the numbers 0, 1, 2 are the vertices of ∆2.) Similarly, a 3-simplex is
a homotopy between various 2-simplices.

This∞-category is very special, in that every morphism is invertible up to homotopy.

Exercise 2.5 (Groupoids). Suppose that C is not only a category, but also a groupoid.
This means that every morphism has an inverse. Show that the associated simplicial set
satisfies the filling condition

Λn
i

//

��

C

∆n

∃!

>>~
~

~
~

.

for any horn – i.e., even when i = 0 or i = n.

Exercise 2.6 (∞-groupoids, Kan complexes). Show that Sing(W ) satisfies the filling
condition

Λn
i

//

��

C

∆n

∃

>>~
~

~
~

.

for any horn – i.e., even when i = 0 or i = n. This is the ∞-analogue of a groupoid. We
call any simplicial set satisfying this filling condition an ∞-groupoid, or a Kan complex.
(Both terms are used in the literature.)

Definition 2.7. Let ∂∆n denote the simplicial set obtained by deleting the interior of
the n-simplex. Let C be a Kan complex. We say that C is contractible if C is non-empty
and one can always fill the following diagram:

∂∆n //

��

C

∆n
∃

==z
z

z
z

.

Exercise 2.8. Show that if W is a contractible space, then Sing(W ) is a contractible
Kan complex.

Exercise 2.9. Let Kan denote the full subcategory of sSet consisting of Kan complexes.
Note that we have a functor

Sing : Spaces→ Kan.

Moreover, given any simplicial set, we have a functor called geometric realization which
produces a topological space. This is done by gluing together the n-simplices of a simpli-
cial set via the face maps di. We denote this functor

| • | : Kan ⊂ sSet→ Spaces.

Convince yourself that there is a natural homotopy equivalence |SingW | 'W .
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Remark 2.10. We don’t have time to go into the details here, but as a philosophy,
“Kan complexes are the same as topological spaces.” More precisely, there is a Quillen
equivalence between a model category of simplicial sets and a model category of topolog-
ical spaces, where the model structure on simplicial sets has Kan complexes as fibrant-
cofibrant objects. From hereon, whenever I come across a Kan complex, I will pretend
that it has the same mathematical worth as a topological space. I really wish I had more
time to go into this, but this will have to do.

Remark 2.11 (Some bearings). By definition we have the inclusions

categories ⊂ ∞-categories ⊂ sSet. groupoids ⊂ Kan ⊂ sSet.

2.6. Identity morphism and equivalences. For every object X ∈ C[0] there is a
canonical edge s0X ∈ C[1]. We call this the identity morphism idX of X. We say that a
morphism f : X0 → X1 is an equivalence if there is a map g : X1 → X0 and 2-simplices
A,B ∈ C[2] such that

d0A = g, d1A = idX0 , d2A = f

and
d0B = f, d1B = idX1 , d2B = g.

All this means is that there’s two homotopy commutative diagrams in C as follows:

X0

X0
f

//

idX0

=={{{{{{{{
X1,

g

OO X1

X1 g
//

idX1

=={{{{{{{{
X0.

f

OO ,

Note that A and B don’t just tell you that this diagram is homotopy commutative, they
actually specify the homotopies f ◦ g ∼ idX1 and g ◦ f ∼ idX0 .

2.7. Morphism spaces. So how does one extract a ‘space’ of morphisms from two
vertices X0, X1 ∈ C[0] in an ∞-category? There are two natural ways:

Definition 2.12 (Morphism spaces). Let X0, X1 ∈ C[0]. Then the right morphism space
CR(X0, X1) is defined to be the simplicial set whose n-simplices are maps u : ∆n+1 → C
satisfying

(1) u|dn+1∆n+1 7→ X0.
(2) u(n+ 1) = X1,

The left morphism space CL(X0, X1) is defined to be the simplicial set whose n-simplices
are maps u : ∆n+1 → C satisfying

(1) u(0) = X0,
(2) u|d0∆n+1 = X1.

Example 2.13. For example, a vertex f ∈ CL(X0, X1) = CR(X0, X1) is an edge in C
with initial vertex X0 and final vertex X1.

A 2-simplex e ∈ CL(X0, X1) is a triangle whose 0th vertex is X0, and whose face
opposite X0 is the degenerate edge s0X1. The triangle has two other edges, d1e and d2e,
and one should interpret the 2-simplex e as a homotopy from the morphism d2e to the
morphism d1e.
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An edge e in CL(X0, X1) represents a triangle in C with a degenerate edge.

If you believe that Kan complexes are like morphism spaces, here’s the reason I call
the above a morphism space:

Proposition 2.14. CL(X0, X1) and CR(X0, X1) are both Kan complexes, provided that
C is an ∞-category. Moreover, their geometric realizations are homotopy equivalent
spaces.

The last bit of the proposition tells us that it doesn’t matter which model we use,
CL or CR. Either safeguards all the homotopical information of the space of morphisms
from X0 to X1.

Exercise 2.15. Let Sing(W )R(X0, X0) be the Kan complex of right morphisms from a
point X0 ∈W to itself. Let ΩW be the based loop space of W based at X0. Construct a
homotopy equivalence Sing(ΩW )→ Sing(W )R(X0, X0).

Now we can define what it means to be an initial or terminal object of C.

Definition 2.16. We say X ∈ C[0] is an initial object if CR(X,Y ) is contractible for all
Y ∈ C[0]. Likewise say X is a terminal object if CR(Y,X) is contractible for all Y ∈ C[0].

Remark 2.17. In general, wherever you see the word ‘unique’ in classical category
theory, in ∞-category jargon, you should see the word ‘contractible.’

Exercise 2.18. Show any two initial objects are equivalent. Show any two terminal
objects are equivalent.

3. Cones, limits/colimits.

I’ve tried to give a brief overview of the landscape of simplicial sets. Kan complexes
are spaces, and ∞-categories are, well, like flimsy versions of categories. At the least
they have a notion of morphism spaces, well-defined up to homotopy equivalence.

It’s absurd how much of math comes down to proving a statement about limits and
colimits. But it’s true. And the first step in converting classical category theory to
∞-category theory is to get a good grasp on what limits and colimits really are. We
embark on this task now. For this, you need to know what a cone is.

3.1. Cones. If W is a topological space, we know what its cone is. It’s most easily
described as the space W × [0, 1]/ ∼, where the equivalence relation collapses everything
every point of the form (w, 0). In the world of simplicial sets, where every simplex has a
direction, or an orientation, there are two kinds of cones one can make from a simplicial
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set K. One can form the right cone KB, which is a simplicial set for which the cone
point ∗ receives a canonical edge from every vertex of K. One can also form the left
cone KC, where the cone point is the source of a canonical edge to any given vertex of
K.

Definition 3.1 (Cones). Let K be a simplicial set. Then the left cone KC over K is
the simplicial set defined by

KC[n] = K[n] tK[n− 1] t . . . tK[0] t {∗}.
(In the above equation we declare K[−1] to be the one-point set.) For any n-simplex
Y C ∈ KC[n] corresponding to an (n− 1)-simplex Y in K, we declare

d0(Y C) = Y, di(Y
C) = (di−1Y )C.

I’ll let you write down the other face maps and the degeneracy maps.

Left cone KC ∼= ∗ ? K.

The right cone KB has the same set of n-simplices as KC. But the simplest degen-
eracy maps are defined by

dn(Y B) = Y, di(Y
B) = (diY )B

following the notation above. Again, it’s an exercise for you to write down the other
face and degeneracy maps.

Right cone KB ∼= K ? ∗.

One can interpret KB as an ∞-category obtained by affixing a terminal object to K,
and likewise, KC as attaching an initial object:

Exercise 3.2. Let K be an ∞-category. Show KB and KC are both ∞-categories.
Moreover, the cone point ∗ ∈ KB[0] is a terminal object, and ∗ ∈ KC[0] is an initial
object.

3.2. Limits and colimits. Let F : D → C be a functor between ordinary categories.
Then one can define a category of objects living under F , and a colimit to F is defined
to be an initial object in this under-category. Similarly we define a limit to be a terminal
object in an over-category. We do the same thing here.

Exercise 3.3. Let F : K → C be a functor of∞-categories. (That is, a map of simplicial
sets between ∞-categories.) Then define the over-category

C/F ⊂ sSet(KC, C)
11



to be the simplicial set of functors KC → C such that the restriction to K ⊂ KC agrees
with F . Show that C/F is an ∞-category.

Definition 3.4. Let F : K → C be a functor. We say that X ∈ C/F [0] is a limit of F if
X is a terminal object.

Similarly, we can define the under-category CF/ of objects under F as functors KB → C
which agree with F on K ⊂ KB. Note we are taking the right cone this time, not the
left cone. A colimit is an initial object in this category. Let’s do some examples.

Example 3.5 (Initial and terminal objects). let K = ∅ be the empty simplicial set, so
K[n] = ∅ for all n. Then KC = KB = ∆0, the constant simplicial set also known as the
0-simplex. Then C∅/ ∼= C ∼= C/∅ so the limit of the empty diagram is a terminal object
of C, and the colimit of the empty diagram is an initial object of C.

Exercise 3.6. Let K = ∆0 and choose a functor F : ∆0 → C of C. Show that the limit
and colimit of this diagram is F (K).

3.3. Relation to model categorical ideas. Let’s let C be a simplicial model category.
Since the fibrant-cofibrant subcategory C ⊂ C is enriched over Kan complexes, it turns
out that there is a way to construct an ∞-category C out of C. This is called the
simplicial nerve of C, and we write

NC := C.
We don’t go into the details of the construction here, but I will say the following:

Theorem 3.7. Let C be the simplicial nerve of a small simplicial model category C.
Then

(1) C[0] ∼= ObC as a set.
(2) For any two objects X0, X1, the morphisms spaces of C are homotopy equivalent

to the morphism spaces of C. That is, CR(X0, X1) ' C(X0, X1).
(3) For any functor of simplicial categories F : K → C, one obtains a functor of

quasi-categories F : K → C. Moreover the homotopy (co)limit of F agrees with
the homotopy (co)limit of F .

Example 3.8. Let C = Spaces∗ be the category of pointed topological spaces. Then the
limit of the diagram

∗

��
∗ // W

is homotopy equivalent to the based loop space ΩW . Note the the diagram

ΩW //

��

∗

��
∗ // W

is not at all a commutative diagram; it is the data of the 1-morphisms as portrayed, and
a specific homotopy from the composition W → ∗ →W to itself.
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3.4. Sheaves. I want to point out now that if we have a sheaf with values in an ∞-
category, the sheaf condition becomes much more homotopical. Namely, we define a
presheaf F on a space W to be a functor

F : Opens(W )op → C.

Here we are treating the poset Opens(W ) as an∞-category, and this functor is a functor
of ∞-categories. In particular the inclusion of open sets U0 → U1 → U2 in Opens(W ) is
now went to a homotopy commutative diagram of restrictions

F(U2) //

$$JJJJJJJJJ
F(U1)

��
F(U0).

We say that F is a sheaf if the cosimplicial diagram defined by an open cover {Ui} → U
has limit equal to F(U). Namely,

F(U) ' lim( ⊕iF(Ui) ⊕i,jF(Ui ∩ Uj)ks ⊕i,j,kF(Ui ∩ Uj ∩ Uk) . . ._jt )

where the limit is taken in the sense of ∞-categories. Note that ‘cosimplicial object’
in the limit is a functor ∆op → C, so is in particular the diagram is not a strictly
commutative one, but is a homotopy coherent one.

4. Adjunctions

Adjunctions make the world go round. Don’t get me started. Once you know a pair of
functors form an adjunction you can take an enormous amount of shortcuts in proving
various identities. Most of us probably know what an adjunction is, but let me review
it real quick before generalizing it.

4.1. Adjunctions for usual categories. First, recall that if D is a usual category (i.e.,
enriched in sets), there’s a canonical functor

Dop ×D → Sets

given by sending D0, D1 7→ D(D0, D1), the hom-set. Now, if you have a functor F : C →
D, we get a functor of the form

Cop ×D → Sets

given by (C,D) 7→ D(F (C), D). Likewise, a functor G : D → C produces another functor
from Cop × D to Sets by taking C(C,G(D)). We say F,G are adjoints, and that F is a
left adjoint, G a right adjoint, if the two functors Cop×D → Sets defined by F and G are
naturally isomorphic. As a consequence of this definition, we have natural isomorphisms

D(F (C), D) ∼= C(C,G(D))

for any pair of objects C ∈ Ob C, D ∈ ObD. Here are some examples:

(1) Hom-Tensor for vector spaces, where F = −⊗B and G = Vect(B,−).

Vect(A⊗B,C) ∼= Vect(A,Vect(B,C)).
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(2) Free and forget, where F = Free(−) and G is the forgetful functor.

Alg(Free(W ), V ) ∼= Vect(W,V ).

(3) Pushing and pulling sheaves. Let f : D → C be a continuous map of topological
spaces. Then

ShvD(f∗F ,G) ∼= ShvC(F , f∗G)

for sheaves G ∈ ShvX and F ∈ ShvY .

4.2. Adjunctions for ∞-categories. The definition in the ∞-setting is almost iden-
tical:

Definition 4.1 (Baby version). Let F : C → D and G : D → C be two functors between
∞-categories. We say F is left adjoint to G, and that G is right adjoint to F if the
functors

D(F−,−) : Cop ×D → Spaces, C(−, G−) : Cop ×D → Spaces

are equivalent.

I say this is the baby version because it’s the formulation most familiar to a classical
category theorist. But the thing I’m sweeping under the carpet is how to rigorously
define a functor

Cop × C → Spaces

of ∞-categories. You probably believe this is do-able, and it goes the way you’d expect,
but I obviously don’t want to prove it here. So let me just list some examples, in parallel
to the examples above.

(1) Hom-Tensor for chain complexes, where F = −⊗k B and G = Chaink(B,−).

Chaink(A⊗k B,C) ∼= Chaink(A,Chaink(B,C)).

Here we’ve passed from the vector space world to the dg world, of chain complexes
over some field k. Note that if take k to be a ring like Z, the above formula will not
be correct at a naive level. The ways around this are not purely ∞-categorical;
we must take the correct model for the ∞-category of ChainZ, and we won’t get
into it here. Alternatively one can take the derived tensor ⊗L, but this also
involves some extra machinery of coherence, so I won’t get into it here.

(2) Free and forget, where F = Free(−) and G is the forgetful functor.

dgAlg(Free(W ), V ) ∼= Chaink(W,V ).

The free functor creates the free dg algebra generated by a chain complex W .
(3) Pushing and pulling sheaves. Let f : D → C be a continuous map of topological

spaces. Then

ShvD(f∗V,W ) ∼= ShvC(V, f∗W )

for sheaves W ∈ ShvD and V ∈ ShvC . Now by Shv we actually mean sheaves of
chain complexes.
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4.3. Optional: The definition in Higher Topos Theory. If you look, you’ll notice
that the above definition is not ‘verbatim’ same as the one in Lurie’s Higher Topos
Theory [Lurie09]. But I promise it’s the same once you pass through some grunt-work.
This section gives a very brief outline as to why.

Definition 4.2 (Definition of adjunction in Lurie [Lurie09]). Let p :M→ ∆1 be a map
of ∞-categories such that p−1(0) =: C and p−1(1) =: D are both ∞-categories. We say
thatM defines an adjunction between C and D if p is both a Cartesian and a coCartesian
fibration.

Wow, what does that even mean, right? The following is a rough drawing of the map
M→ ∆1:

C

��

%%... 55 D

��
0 // 1.

Note there aren’t any morphisms starting at D and ending in C, as there’s no morphism
1→ 0 in ∆1.

Exercise 4.3. Show that two sub-∞-categories M0,M1 ⊂ M define a functor of ∞-
categories

Mop
0 ×M1 → Kan

given on objects by setting
(M0,M1) 7→ M(M0,M1).

As we discussed earlier, this morphism space M(C,D) isn’t well-defined, but fix a
model (say MR), or be content that it’s well-defined up to homotopy equivalence.4

All the remains is to explain the words Cartesian and co-Cartesian. There is definitely
no time to explain these, but this just means that the edge (0 → 1) ∈ ∆1[1] defines a
functor G : D → C, and a functor F : C → D, such that

C(C,G(D)) 'M(C,D) ' D(F (D), D).

You might think this definition is kind of strange, and that it’s sweeping all the difficulties
under the notions of (co)Cartesian fibrations, and you’re right.

5. Barr-Beck-Lurie

A good reference for this is [G]. Any adjoint pair F : C → D, G : D → C defines a
monad A = G ◦ F : C → C. The classical Barr-Beck theorem tells us that if G satisfies
two conditions, then in fact D is equivalent to the category of modules in over A. Dually,
if F satisfies two conditions, then C is equivalent to the category of comodules over the
comonad A∨ = F ◦G.

Proposition 5.1. If G : D → C is conservative and preserves geometric realizations,
then D ' AMod. If F : C → D is conservative and preserves totalizations, then C '
A∨Comod.

4We haven’t talked about opposite ∞-categories. Well, given any simplicial set C, one can define a
simplicial set Cop by setting its degeneracy and face maps to be dC

op

i = dCn−i, s
Cop
i = sCn−i.
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Recall that the A-module structure is given by

A(G(D)) = (G ◦ F ) ◦G(D) ' G(F ◦G(D))→ GD

where the last map is the counit of the adjunction. There are technicalities involved in
defining the correct notion of a monad in the ∞-categorical setting, so let me get away
with saying that unit maps, counit maps, and all the usual structures of adjunctions hold
in an ∞ sense. For details you can see [LuDAG2]. As in the classical category theory
setting, conservative means G(f) is an equivalence in C if and only if f is an equivalence
in D. To preserve geometric realization means that for any functor K : ∆op → D,
we have the canonical equivalence colim(G ◦ K) ' G(colimK). Likewise, preserving
totalizations means lim(F ◦K) ' F (limK).

Example 5.2 (G-modules are comodules over functions on G). Let G be some group
scheme. There’s the usual projection map of stacks

π : Spec k = EG→ BG.

This gives an adjunction

π∗ : QC(BG)
..
QC(Spec k) : π∗.nn

Here QC(BG) is just the category of complexes of modules over k with a G action.

Exercise 5.3 ([BZ-N]). Show there is an equivalence

QC(BG) ' O(G)− Comod.
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