
Node4J

Running Node.js in a Java
World

Dr. R. Ian Bull
EclipseSource

@irbull

Java and JavaScript

❖ Java a successful server side language

❖ JavaScript is a client side language

❖ SWT brought performant Java UIs to the desktop

❖ Node.js brought JavaScript to the server

❖ Java and JavaScript are two of the most popular
programming languages

Polyglot Systems

❖ Single language systems are rarely an option

❖ Legacy code

❖ New frameworks and technologies

❖ Evolving enterprises

❖ JEE will be here for another 20, 30, 50 (?) years

Bridging Java and JavaScript
❖ Three common Java technologies enable JS embedding

❖ Rhino

❖ Available since JDK 6

❖ Nashorn

❖ Replacing Rhino since JDK 8

❖ More performant

❖ V8 as a separate process, String based messages

Performance

❖ 30 Runs of the Esprima parser and tokenizer

❖ Nashorn compiles to bytecode

❖ V8 compiles to native assembly

❖ Best choice for raw JavaScript execution

J2V8

❖ A set of bindings that bring V8 to Java

❖ Inspired by SWT

❖ Create a thin JNI layer

❖ Expose (some) V8 API in Java

❖ Complicated logic lives in Java

J2V8 Goals

❖ Efficient JavaScript on Android

❖ Make JavaScript shine in an enterprise Java World

❖ Standard Java APIs

❖ Efficient Java / JavaScript bindings

J2V8 — History

❖ 1.0 Released in November 2014

❖ 2.0 Released in February 2015

❖ First presented at EclipseCon 2015

❖ 3.0 Released at EnterJS — Summer 2015

J2V8 Design

❖ Each V8 Object can be referenced using a Handle

❖ Each Object is stored in a V8 Persistent Object Store

❖ Objects must be explicitly freed

❖ Primitives where possible (no wrappers)

❖ Single Thread per isolate

Two-way binding

❖ JS functions and scripts can be invoked from Java

❖ Java methods can be called from JavaScript

❖ Data can be passed back and forth using V8Objects

J2V8 In Action — Tabris.js

❖ Mobile framework

❖ Apps written in JavaScript

❖ Native iOS and Android Apps

❖ Bindings to native UI components

Shameless Plug

Example

 public String someJavaMethod(final String firstName, final String lastName) {
 return firstName + ", " + lastName;
 }

 public void start() {
 V8 v8 = V8.createV8Runtime();
 v8.registerJavaMethod(this,
 "someJavaMethod",
 "someJavaMethod",
 new Class[] { String.class, String.class });

 v8.executeScript("var result = someJavaMethod('Ian', ‘Bull');");

 String result = v8.getString("result");
 System.out.println(result);
 }

J2V8 —What’s New

❖ Typed Arrays

❖ Threads & Workers

❖ ES 6

❖ ChromeDev Tools

❖ NodeJS Support

Typed Arrays

 V8Array result = (V8Array) v8.executeScript(""
 + "var buf = new ArrayBuffer(100);"
 + "var ints = new Int32Array(buf); "
 + "for(var i = 0; i < 25; i++) {"
 + " ints[i] = i;"
 + "}; "
 + “ints");

 int[] ints = result.getIntegers(0, 25);

❖ Native support for JS Typed Arrays

❖ Access the values efficiently from Java

Threads
❖ Every thread can have it’s own Isolate (Isolated V8

Instance)

❖ V8Thread is a Java Thread with an associated Isolate

❖ Provide an easy way to execute JavaScript

Thread t = new V8Thread(new V8Runnable() {
public void run(V8 v8) {

int result = v8.executeIntegerScript("1+2");
}

});
t.start();

Executors

❖ Long running V8Thread with a message queue and
event loop

❖ Threads can communicate via message passing

❖ Useful for implementing Web Workers / Service
Workers

ES 6
❖ Snapshot builds of J2V8 support V8 4.10 & ES 6

❖ Arrows

❖ Classes

❖ Let / Const

❖ Interators + For..Of

❖ Generators

❖ …

Debug Support

❖ V8 (and now J2V8) no longer supports the Debug Agent

❖ JavaScript based Debug API is available instead

❖ J2V8 exposes this API in Java

❖ Integrated with the Stetho tool & Chrome Dev Tools

Debug Support Demo

Node.js

❖ JavaScript Virtual Machine (V8)

❖ Modules

❖ Native

❖ JavaScript

❖ Event Loop

Node.js® is a JavaScript runtime built on Chrome's V8
 JavaScript engine. Node.js uses an event-driven,

non-blocking I/O model that makes it
lightweight and efficient.

Bridging to Node.js

❖ Out of process Node & REST Services

❖ Vert.x

❖ Node engine on Nashorn / Rhino?

Node4J

❖ Dynamically link Node.js to the JVM

❖ Access Node.js context via JNI

❖ Execute Node.js modules (require)

❖ Callbacks to Java

❖ Process Node.js message queue

Node4J Demo

 public static void main(final String[] args) throws Exception {
 final V8 v8 = V8.createV8Runtime("global");
 v8.registerJavaMethod(…);

 NodeJS node = V8.createNodeJS(v8);
 V8Object exports = node.requireScript(nodeCode, "http");
 exports.release();

 boolean running = true;
 while (running) {
 running = node.pumpMessageLoop();
 }
 }

Performance Considerations

❖ Minimize callbacks from JavaScript to Java

❖ ~4000 Per Second on my MBP

❖ Use bulk array copy to move primitives from JS to Java

❖ 60fps in our animation demo

Resources

❖ Getting started with J2V8

❖ Registering Java Callbacks with J2V8

❖ Implementing WebWorkers with J2V8

❖ Multithreaded JavaScript with J2V8

❖ Using J2V8 with Heroku

❖ All linked from our GitHub Page

http://eclipsesource.com/blogs/getting-started-with-j2v8/
http://eclipsesource.com/blogs/2015/06/06/registering-java-callbacks-with-j2v8/
http://eclipsesource.com/blogs/2015/05/28/implementing-webworkers-with-j2v8/
http://eclipsesource.com/blogs/2015/05/12/multithreaded-javascript-with-j2v8/
http://eclipsesource.com/blogs/2015/06/04/using-j2v8-with-heroku/
https://github.com/eclipsesource/j2v8

Future Work

❖ Advanced exception handling between Java and JS

❖ Improved debug support

❖ Typed array access in Java

❖ You tell me?

Using J2V8

❖ J2V8 is available in Maven Central

❖ Currently 5 variants are available:
com.eclipsesource.j2v8.j2v8_win32_x86:3.1.6  
com.eclipsesource.j2v8.j2v8_macosx_x86_64:3.1.6  
com.eclipsesource.j2v8.j2v8:3.1.6 (aar)  
com.eclipsesource.j2v8.j2v8_android_armv7l:3.1.6  
com.eclipsesource.j2v8.j2v8_android_x86:3.1.6

❖ j2v8:3.1.6 (aar) contains both x86 and armv7l

4.0!

Thank-you

❖ Open Source Java bindings for V8

❖ Node4J extensions bring Node.js to Java

❖ Licensed under the EPL

❖ For J2V8 news, follow me on Twitter @irbull

https://github.com/eclipsesource/j2v8

https://github.com/eclipsesource/j2v8

