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§1. Introduction

The point partition number [4] of a graph G is the minimum number of subsets into which the

point-set of G can be partitioned so that the subgraph induced by each subset has a property

P . Dual to this concept of point partition number of graph is the maximum number of subsets

into which the point-set of G can be partitioned such that the subgraph induced by each subset

does not have the property P . Define the property P such that a graph G has the property P

if G contains no subgraph which is homeomorphic to the complete graph K3. Now the point

partition number and dual point partition number for the property P is referred to as point

arboricity and tulgeity of G respectively. Equivalently the tulgeity is the maximum number of

vertex disjoint subgraphs contained in G so that each subgraph is not acyclic. This number is

called the tulgeity of G denoted by τ(G). Also, τ(G) can be defined as the maximum number
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of disjoint cycles in G. The formula for tulgeity of a complete bipartite graph is given in [5].

The problems of Nordhaus-Gaddum type for the dual point partition number are investigated

in [3].

Let P be a graph property and G be a graph. If there exists a partition of G with a

partition set pair {H,T } such that the subgraph induced by a subset in H has property P ,

but the subgraph induced in T has no property P , then we say G possesses the Smarandache

partition. Particularly, let H = ∅ or T = ∅, we get the conception of point partition or its dual.

All graphs considered in this paper are finite and contains no loops and no multiple edges.

Denote by [x] the greatest integer less than or equal to x, by |S| the cardinality of the set S,

by E(G) the edge set of G and by Kn the complete graph on n vertices. pG and qG denotes

the number of vertices and edges of the graph G. The other notations and terminology used in

this paper can be found in [6].

Line graph L(G) of a graph G is defined with the vertex set E(G), in which two vertices

are adjacent if and only if the corresponding edges are adjacent in G. Since τ(G) ≤
[p
3

]
, it is

obvious that τ(L(G)) ≤
[q
3

]
. However for complete graph Kp, τ(Kp) =

[p
3

]
.

Middle graph M(G) of a graph G is defined with the vertex set V (G)∪E(G), in which two

elements are adjacent if and only if either both are adjacent edges in G or one of the elements is

a vertex and the other one is an edge incident to the vertex in G. Clearly τ(M(G)) ≤
[
p+ q

3

]
.

Total graph T (G) of a graph G defined with the vertex set V (G) ∪ E(G), in which two

elements are adjacent if and only if one of the following holds true (i) both are adjacent edges

or vertices in G (ii) one is a vertex and other is an edge incident to it in G.

§2. Basic Results

We begin by presenting the results concerning the tulgeity of a graph.

Theorem 2.1([5]) For any graph G, τ(G) =
∑
τ(C) ≤ τ(B), where the sums being taken over

all components C and blocks B of G, respectively.

Theorem 2.2([5]) For the complete n-partite graph G = K(p1, p2, ..., pn), 1 ≤ p1 ≤ p2 ≤ ..... ≤

pn and
∑
pi = p, τ(G) = min

([
1

2

n−1∑

0

pi

]
, [p/3]

)
, where p0 = 0.

We have derived [1] the formula to find the tulgeity of the line graph of complete and

complete bigraph.

Theorem 2.3([1]) τ(L(Kn)) =

[
n(n− 1)

6

]
.

Theorem 2.4([1]) τ(L(Km,n) =
[mn

3

]
.

Also, we have derived an upper bound for the tulgeity of line graph of any graph and

characterized the graphs for which the upper bound equal to the tulgeity.
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Theorem 2.5([1]) For any graph G, τ(L(G)) ≤∑
i

[
deg vi

3

]
where deg vi denotes the degree of

the vertex vi and the the summation taken over all the vertices of G.

Theorem 2.6([1]) If G is a tree and for each pair of vertices (vi, vj) with deg vi, deg vj > 2,

if there exist a vertex v of degree 2 on P (vi, vj) then τ(L(G)) ≤∑
i

[
deg vi

3

]
.

We have derived the results to find the tulgeity of Knödel graph, Prism graph and their

line graph in [2].

§3. Wheel Graph

The wheel graph Wn on n + 1 vertices is defined as Wn = Cn + K1 where Cn is a n-cycle.

Let V (Wn) = {vi : 0 ≤ i ≤ n − 1} ∪ {v} and E(Wn) = {ei = vivi+1 : 0 ≤ i ≤ n −
1, subscripts modulo n} ∪ {e′i = vvi : 0 ≤ i ≤ n− 1}.

Wheel graph Wn

Figure 3.1

Theorem 3.1 The Tulgeity of the line graph of Wn,

τ(L(Wn)) =

[
2n

3

]
.

Proof By the definition of line graph, V (L(Wn)) = E(Wn) = {ei : 0 ≤ i ≤ n −
1, subscripts modulo n} ∪ {e′i : 0 ≤ i ≤ n− 1}. Let

C =
{
eie

′
ie

′
i+1 : i = 3(k − 1), 1 ≤ k ≤

[n
3

]}

and

C
′ =

{
eiei+1e

′
i+1 : i = 3k − 2, 1 ≤ k ≤

[n
3

]}
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be a collection of 3-cycles of L(Wn). Clearly the cycles of C and C′ are vertex disjoint and if

V (C) and V (C′) denotes the set of vertices belonging to the cycles of C and C′ respectively

then V (C) ∩ V (C′) = ∅. Hence τ(L(Wn)) ≥ |C| + |C′| = 2
[n
3

]
.

If n ≡ 0 or 1(mod 3), then 2
[n
3

]
=

[
2n

3

]
. Hence τ(L(Wn)) ≥

[
2n

3

]
. If n ≡ 2(mod 3),

then

[
2n

3

]
= 2

[n
3

]
+ 1. In this case e′n−2, e

′
n−1, en−2, en−1 /∈ V (C) ∪ V (C′) and the set

{e′n−2, e
′
n−1, en−2} induces a 3-cycle. Hence if n ≡ 2(mod 3), τ(L(Wn)) ≥ 2

[n
3

]
+ 1 =

[
2n

3

]
.

Therefore in both the cases τ(L(Wn)) ≥
[
2n

3

]
. Also since |V (L(Wn))| = 2n, τ(L(Wn)) ≤

[
2n

3

]
.

Hence τ(L(Wn)) =

[
2n

3

]
. �

L(W8) and its vertex disjoint cycles

Figure 3.2

Theorem 3.2 The Tulgeity of the middle graph of Wn, τ(M(Wn)) = n.

Proof By the definition of middle graph, V (M(Wn)) = V (Wn) ∪ E(Wn), in which for

any two elements x, y ∈ V (M(Wn)), xy ∈ E(M(Wn)) if and only if any one of the following

holds. (i) x, y ∈ E(Wn) such that x and y are adjacent in Wn, (ii) x ∈ V (Wn), y ∈ E(Wn)

or x ∈ E(Wn), y ∈ V (Wn) such that x and y are incident in Wn. Since V (M(Wn)) =

V (Wn) ∪ E(Wn), |V (M(Wn))| = n+ 1 + 2n = 3n+ 1 and hence τ(M(Wn)) ≤
[
3n+ 1

3

]
= n.

Let C = {Ci = vieie
′
i : 0 ≤ i ≤ n− 1} be the collection of cycles of M(Wn). Clearly the cycles

of C are vertex disjoint and |C| = n. Hence τ(M(Wn)) ≥ n which implies τ(M(Wn)) = n. �

By the definition of total graph V (M(Wn)) = V (T (Wn)) and E(M(Wn)) ⊂ E(T (Wn)).

Also since τ(M(Wn)) = n =

[
1

3
pM(Wn)

]
, we conclude the following result.
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M(W9) and its vertex disjoint cycles

Figure 3.3

Theorem 3.3 For any wheel graph Wn, the tulgeity of its total graph,

τ(T (Wn)) = τ(M(Wn)) = n.

§4. Gear Graph

The gear graph is a wheel graph with vertices added between pair of vertices of the outer cycle.

The gear graph Gn has 2n+ 1 vertices and 3n edges.

Gear Graph Gn

Figure 4.1
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Let V (Gn) = {vi : 0 ≤ i ≤ n − 1} ∪ {ui : 0 ≤ i ≤ n − 1} ∪ {v} and E(Gn) = {ei = viui :

0 ≤ i ≤ n−1}∪ {e′i = vvi : 0 ≤ i ≤ n−1}∪{e′′i = uivi+1 : 0 ≤ i ≤ n−1, subscripts modulo n}.

Theorem 4.1 For any gear graph Gn, the tulgeity of its line graph,

τ(L(Gn)) = n.

Proof By the definition of line graph, V (L(Gn)) = E(Gn), in which the set of vertices

of L(Gn), {e′i : 0 ≤ i ≤ n − 1} induces a clique of order n. Also for each i, (0 ≤ i ≤ n − 1),

the set {e′′i e′i+1ei+1 : subscripts modulo n} induces vertex disjoint clique of order 3. Let C =

{e′′i e′i+1ei+1 : 0 ≤ i ≤ n − 1, subscripts modulo n} be the set of cycles of L(Gn). It is clear

that the cycles of C are vertex disjoint and |C| = n therefore τ(L(Gn)) ≥ n. Also, since

pL(Gn) = qGn
= 3n, τ(L(Gn)) ≤

[
3n

3

]
= n. Hence τ(L(Gn)) = n. �

L(G6) and its vertex disjoint cycles

Figure 4.2

Theorem 4.2 For any gear graph Gn, the tulgeity of its middle graph,

τ(M(Gn)) =

[
4n+ 1

3

]
.

Proof Since pM(Gn) = pGn
+ qGn

= (n + 1) + 3n = 4n + 1, τ(M(Gn)) =

[
4n+ 1

3

]
.

By the definition of middle graph V (M(Gn)) = V (Gn) ∪ E(Gn), in which the set of vertices

{e′i : 0 ≤ i ≤ n− 1} ∪ {v} induces a clique Kn+1 of order n+ 1 and for each i, (0 ≤ i ≤ n− 1)

the set {e′′i e′i+1ei+1vi+1 : subscripts modulo n} induces a clique of order 4. From these cliques

we form the set of cycles of M(Gn). Let C={set of vertex disjoint 3-cycles of the clique Kn+1}
and C′ = {e′′i e′i+1ei+1vi+1 : 0 ≤ i ≤ n − 1, subscripts modulo n}. Clearly V (C) ∩ V (C′) = ∅
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and hence the cycles of C and C′ are vertex disjoint. Also |C| =

[
n+ 1

3

]
and |C′| = n. Hence

τ(M(Gn)) ≥ |C| + |C′| =

[
4n+ 1

3

]
. Therefore τ(M(Gn)) =

[
4n+ 1

3

]
. �

M(G5) and its vertex disjoint cycles

Figure 4.3

By the definition of total graph V (M(Gn)) = V (T (Gn)) and E(M(Gn)) ⊂ E(T (Gn)).

Also since τ(M(Gn)) =

[
4n+ 1

3

]
=

[
1

3
pM(Gn)

]
, we conclude the following result.

Theorem 4.3 For any gear graph Gn, the tulgeity of its middle graph,

τ(M(Gn)) = τ(T (Gn)) =

[
4n+ 1

3

]
.

§5. Helm Graph

The helm graph Hn is the graph obtained from an n-wheel graph by adjoining a pendant edge

at each node of the cycle.

Let V (Hn) = {v} ∪ {vi : 0 ≤ i ≤ n− 1} ∪ {ui : 0 ≤ i ≤ n− 1}, E(Hn) = {ei = vivi+1 : 0 ≤
i ≤ n− 1, subscript modulo n} ∪ {e′i = vvi : 0 ≤ i ≤ n− 1} ∪ {e′′i = viui : 0 ≤ i ≤ n− 1}.

Theorem 5.1 For any helm graph Hn, τ(L(Hn)) = n.

Proof By the definition of line graph, V (L(Hn)) = {ei : 0 ≤ i ≤ n − 1} ∪ {e′i : 0 ≤ i ≤
n − 1} ∪ {e′′i : 0 ≤ i ≤ n − 1}. Since ei, e

′
i and e′′i (0 ≤ i ≤ n − 1) are adjacent edges in Hn,

{ei, e
′
i, e

′′
i } induces a 3-cycle in L(Hn) for each i, (0 ≤ i ≤ n−1). Let C = {eie

′
ie

′′
i : 0 ≤ i ≤ n−1}

be the set of these cycles. Clearly C contains vertex disjoint cycles of L(Hn) and |C| = n. Hence

τ(L(Hn)) ≥ n. Also since |V (L(Hn))| = 3n, τ(L(Hn)) ≤ n. Therefore τ(L(Hn)) = n. �
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Helm Graph Hn

Figure 5.1

Theorem 5.2 The Tulgeity of the middle graph of the helm graph Hn, is given by

τ(M(Hn)) =

[
4n+ 1

3

]
.

Proof By the definition of middle graph, V (M(Hn)) = V (Hn)∪E(Hn), in which for each

i, (0 ≤ i ≤ n − 1), the set of vertices {ei, ei+1, e
′
i+1, e

′′
i+1, vi+1 : subscript modulo n} induce a

clique of order 5. Also {e′i : 0 ≤ i ≤ n−1}∪{v} induces a clique of order n+1 (sayKn+1). Since

deg ui = 1 for each i, (0 ≤ i ≤ n− 1) in M(Hn) τ(M(Hn)) = τ(M(Hn)−{ui : 0 ≤ i ≤ n− 1}).
Hence τ(M(Hn)) ≤

[
1

3
(|E(Hn)| + |V (Hn)| − n)

]
=

[
4n+ 1

3

]
. Consider the collection C of

cycles of M(Hn), C = {vieie
′′
i : 0 ≤ i ≤ n − 1}. Each cycle of C are vertex disjoint and

|C| = n. Also the cycles of C are vertex disjoint from the cycles of the clique Kn+1. Hence

τ(M(Hn)) ≥ |C| +
[
n+ 1

3

]
=

[
4n+ 1

3

]
. Therefore τ(M(Hn)) =

[
4n+ 1

3

]
. �

Theorem 5.3 Tulgeity of total graph of helm graph Hn, is given by

τ(T (Hn)) =

[
5n+ 1

3

]
.

Proof By the definition of total graph, V (T (Hn)) = V (Hn) ∪ E(Hn) and E(T (Hn)) =

E(M(Hn)) ∪ {uivi : 0 ≤ i ≤ n − 1} ∪ {vvi : 0 ≤ i ≤ n − 1} ∪ {vivi+1 : 0 ≤ i ≤ n −
1 subscripts modulo n}. For each i, (0 ≤ i ≤ n− 1) the set of vertices {ei, vi+1, ei+1, e

′
i+1, e

′′
i+1}

of T (Hn) induces a clique of order 5. Also the set of vertices {e′i : 0 ≤ i ≤ n− 1} ∪ {v} induces

a clique Kn+1 of order n+ 1. For each i, (0 ≤ i ≤ n− 1) the set of vertices {ui, vi, e
′′
i } induces

a 3-cycle in T (Hn). Hence C1 = {uivie
′′
i : 0 ≤ i ≤ n− 1} is a set of vertex disjoint cycles of the

subgraph of T (Hn) induced by {ui, vi, e
′′
i : 0 ≤ i ≤ n− 1}.
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M(H9) and its vertex disjoint cycles

Figure 5.2

Case 1 n is even.

Let C2 be the collection of vertex disjoint 3-cycles of the subgraph induced by the set of

vertices {ei : 0 ≤ i ≤ n − 1} ∪ {e′j : j = 2k + 1, 0 ≤ k ≤ n

2
− 1}. i.e., C2 = {eiei+1e

′
i+1 : i =

2k, 0 ≤ k ≤ n
2 − 1}. Let C3 be the set of 3-cycles of T (Hn) induced by {e′i : i = 2k, 0 ≤ k ≤

n
2 − 1} ∪ {v}. Since the subgraph induced by {e′i : i = 2k, 0 ≤ k ≤ n

2 − 1} ∪ {v} is a clique of

order
n

2
+ 1, C3 contains

[
1

3

(n
2

+ 1
)]

vertex disjoint 3-cycles. Since V (Ci) ∩ V (Ci) = ∅ for i

6= j, τ(T (Hn)) ≥ |C1| + |C2| + |C3| =

[
5n+ 1

3

]
.

Case 2 n is odd.

Let C2 = {eiei+1e
′
i+1 : i = 2k, 0 ≤ k ≤ n−3

2 } be the collection of vertex disjoint cycles

of the subgraph induced by {ei : 0 ≤ i ≤ n − 2} ∪ {e′i : i = 2k + 1, 0 ≤ k ≤ n−3
2 }. Now

V ′ = V (T (Hn)) − {V (C1) ∪ V (C2)} = {e′2i : 0 ≤ i ≤ n−1
2 } ∪ {en−1, v} has

5n+ 1

3
vertices and

induced subgraph 〈V ′〉 contains a clique of order
n+ 3

2
. If

n+ 3

2
≡ 0 or 1(mod 3) then 〈V ′〉

has

[
1

3

(
n+ 5

2

)]
vertex disjoint 3-cycles disjoint from the cycles of C1 and C2.

If
n+ 3

2
≡ 2(mod 3) then

〈
{e′2i : 1 ≤ i ≤ n−3

2 } ∪ {v}
〉

has
1

3

(
n− 1

2

)
vertex disjoint 3-

cycles and there exists another cycle en−1e
′
n−1e

′
0 disjoint from the cycles of C1,C2 and the

cycles of
〈
{e′2i : 1 ≤ i ≤ n−1

2 } ∪ {v}
〉
. Hence in both the cases τ(T (Hn)) ≥ |C1| + |C2| +[

1

3

(
n+ 5

2

)]
=

[
5n+ 1

3

]
. Since |V (T (Hn))| = 5n+ 1, it is clear that τ(T (Hn)) ≤

[
5n+ 1

3

]
.

Hence τ(T (Hn)) =

[
5n+ 1

3

]
. �
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T (H6) and its vertex disjoint cycles

Figure 5.3
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