
REVIEW OF COMPLEX ANALYSIS

KEITH CONRAD

We discuss here some basic results in complex analysis concerning series and products
(Section 1) as well as logarithms of analytic functions and the Gamma function (Section 2).

It is assumed that the reader has already had a first course in complex analysis, so is
familiar with terms like analytic, meromorphic, pole, and residue.

1. Infinite Series and Products

Given a sequence {z1, z2, . . . } in C, the series
∑
zn =

∑
n≥1 zn is defined to be the limit

of the partial sums
∑N

n=1 zn, as N → ∞. For a permutation π of the positive integers, we
can consider the rearranged series

∑
zπ(n). Is there a difference between the series

∑
zn

and
∑
zπ(n) when both converge? Perhaps.

Consider the series∑
n≥1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · = log 2 = .693147 . . . .

Write the nth term as zn, so zn = (−1)n−1/n. Let’s rearrange the terms, computing the
sum in the following order:

z1 + z2 + z4 + z3 + z6 + z8 + z5 + z10 + z12 + z7 + . . .

So we place two even-indexed terms after an odd-indexed term. This sum looks like

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
+ · · · ≤ .452

The general term tends to 0 and from the sign changes the sum converges to a value less
than log 2. Combining z1 and z2, z3 and z6, z5 and z10, etc., this sum equals

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

7
+ · · · = 1

2
log 2 = .346573 . . . .

We’ve rearranged the terms from a series for log 2 and obtained half the original value.
Until the early 19th century, the evaluation of infinite series was not troubled by re-

arrangement issues as above, since there wasn’t a clear distinction between two issues:
defining convergence of a series and computing a series. An infinite series needs a precise
defining algorithm, such as taking a limit of partial sums via an enumeration of the addends,
upon which other summation methods may or may not be comparable.

This aspect of infinite series is at least historically tied up with zeta and L-functions,
because it was resolved by Dirichlet in his (first) paper on infinitude of primes in arithmetic
progressions, where he introduced the notion of absolutely convergent series to tame the
rearrangement problem. Recall that a series

∑
zn of complex numbers is called absolutely

convergent if the series
∑
|zn| of absolute values of the terms converges. This condition
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is usually first seen in a calculus course, as a “convergence test.” Indeed, the partial sum
differences satisfy ∣∣∣∣∣

N∑
n=M

zn

∣∣∣∣∣ ≤
N∑

n=M

|zn|

and the right side tends to 0 as M,N → ∞ if
∑
|zn| converges, so the left side tends to 0

and therefore
∑
zn converges.

Absolutely convergent series are ubiquitous. For example, a power series
∑
cnz

n centered
at the origin that converges at z0 6= 0 converges absolutely at every z with |z| < |z0|. (Proof:
Let r = |z/z0| < 1 and |cnzn0 | ≤ B for some bound B. Then

∑
|cnzn| is bounded by the

geometric series
∑
Brn < ∞.) An analogous result applies to series centered at points

other than the origin.
The behavior of absolutely convergent series is related to convergent series of nonnegative

real numbers, and such series have very convenient properties, outlined in the following
lemmas.

Lemma 1.1. Let {an} be a sequence of nonnegative real numbers. If the partial sums∑N
n=1 an are bounded, then the series

∑
n≥1 an converges. Otherwise it diverges to ∞.

Proof. The partial sums are an increasing sequence (perhaps not strictly increasing, since
some an may equal 0), so if they have an upper bound they converge, and if there is no
upper bound they diverge to ∞. �

Lemma 1.2 (Generalized Commutativity). Let an ≥ 0 and assume the series
∑

n≥1 an
converges, say to S. For every permutation π of the index set, the series

∑
aπ(n) also

converges to S.

Proof. Choose ε > 0. For all large N , say N ≥M (where M depends on ε),

S − ε ≤
N∑
n=1

an ≤ S + ε.

The permutation π takes on all values 1, 2, . . . ,M among some initial segment of the positive
integers, say

{1, 2, . . . ,M} ⊂ {π(1), π(2), . . . , π(K)}
for some K. For N ≥ K, the set {aπ(1), . . . , aπ(N)} contains {a1, . . . , aM}. Let J be the
maximal value of π(n) for n ≤ N . So for N ≥ K,

S − ε ≤ a1 + a2 + · · ·+ aM ≤
N∑
n=1

aπ(n) ≤ a1 + a2 + · · ·+ aJ ≤ S + ε.

So for every ε,
∑N

n=1 aπ(n) is within ε of S for all large N . Therefore
∑
aπ(n) = S. �

Because of Lemma 1.2, we can associate to a sequence {ai} of nonnegative real numbers
indexed by a countable index set I the series

∑
i∈I ai, by which we mean the limit of partial

sums for any enumeration of the terms. If it converges in one enumeration it converges in
all others, to the same value.

We apply the idea of a series running over a general countable index set right away in
the next lemma.
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Lemma 1.3 (Generalized Associativity). Let {ai} be a sequence of nonnegative real numbers
with countable index set I. Let

I = I1 ∪ I2 ∪ I3 ∪ · · ·

be a partition of the index set. If the series
∑

i∈I ai converges, then so does each series

sj =
∑
i∈Ij

ai,

and ∑
i∈I

ai =
∑
j≥1

sj =
∑
j≥1

∑
i∈Ij

ai

 .

Conversely, if each sj converges and the series
∑

j≥1 sj converges, then the series
∑

i∈I ai
converges to

∑
j≥1 sj.

Proof. Exercise. �

The importance of absolutely convergent series is that they satisfy the above convenient
properties of series of nonnegative numbers.

Theorem 1.4. Let ai be a sequence of complex numbers. Assume
∑
|ai| converges, i.e.,∑

ai is absolutely convergent. Then Lemmas 1.2 and 1.3 apply to
∑
ai.

Proof. Exercise. �

The definition of an absolutely convergent series of complex numbers makes sense with
any countable indexing set, not only index set Z+. Allowing index sets other than Z+ is
technically convenient in number theory. One might want to sum over numbers indexed by
the ideals in a ring, for instance.

Theorem 1.4 justifies interchanging the order of a double summation
∑

m

∑
n amn, if it

is absolutely convergent, i.e., if
∑

m

∑
n |amn| converges. The theorem is applied to zeta

and L-functions to justify the rearrangements of certain double sums
∑

p

∑
k≥1 cpk over

primes p and positive integers k into a single sum
∑
cpk over prime powers pk in their usual

linear ordering:
∑
cpk := limx→∞

∑
pk≤x cpk . (Note: Since k ≥ 1 here, there is no term

corresponding to the prime power 1.)
Series that are not absolutely convergent are nevertheless important. We just need to be

careful in analytic manipulations with them. Examples of such series are values of a power
series on the boundary of the disc of convergence. The following important theorem shows
these boundary values, if they exist, are linked by continuity to the values inside the disc
of convergence.

Theorem 1.5 (Abel, 1826). If f(z) =
∑
cnz

n converges at the point z0, then f(z0) is the
limit of f(z) as z → z0 along a radial path from the origin.

In particular, if
∑
cn converges, then

lim
x→1−

∑
n≥0

cnx
n =

∑
n≥0

cn.

Proof. The case of a series at z0 is easily reduced to the case z0 = 1 by a scaling and a
rotation. So we now assume z0 = 1.
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Since
∑
cnz

n converges at z = 1, the series converges on the open unit disc. Let bn =
c0 + · · ·+ cn, b = limn→∞ bn, 0 < x < 1. Then (by partial summation)

N∑
n=0

cnx
n =

N∑
n=0

bnx
n − x

N−1∑
n=0

bnx
n = (1− x)

N−1∑
n=0

bnx
n + bNx

N .

Let N →∞. Since bN → b and xN → 0, we get∑
n≥0

cnx
n = (1− x)

∑
n≥0

bnx
n.

Since
∑
cnx

n − b = (1− x)
∑

(bn − b)xn, we choose ε > 0 and then M so that |bn − b| ≤ ε
for n > M . Then∣∣∣∣∣∣

∑
n≥0

cnx
n − b

∣∣∣∣∣∣ ≤ (1− x)
M∑
n=0

|bn − b|xn + ε ≤ (1− x)
M∑
n=0

|bn − b|+ ε.

For |x− 1| small enough, the first term on the right side can be made ≤ ε. �

The converse of Abel’s theorem is not true without extra conditions, e.g.,
∑

n≥0(−1)nxn =

1/(1 + x) has a limit as x→ 1− but the series itself doesn’t converge at x = 1.
The following convergence theorem was used by Dirichlet in his work on analytic number

theory in lieu of a standard convergence theorem for Dirichlet series that was not available
until much later.

Theorem 1.6 (Dirichlet’s test). If the partial sums
∑

n≤N wn are bounded and c1 ≥ c2 ≥
· · · ≥ 0 with cn → 0, then

∑
cnwn converges.

Proof. Let SN =
∑N

n=1 cnwn. We want to show {SN} is a Cauchy sequence.

Let TN =
∑N

n=1wn, so for some B > 0, |TN | ≤ B for all N . For M < N , by partial
summation

SN − SM =
N∑

n=M+1

cnwn

=
N∑

n=M+1

cn(Tn − Tn−1)

= cNTN − cM−1TM−1 −
N∑

n=M

Tn−1(cn − cn−1),

and the absolute value of the final expression is at most

BcN +BcM−1 +

N∑
n=M

B(cn − cn−1) = 2BcN ,

which → 0 as M →∞. �

Setting wn = (−1)n, this theorem is the alternating series test. Setting wn = zn where
|z| = 1, we see that a power series whose coefficients tend monotonically to 0 converges on
the unit circle except possibly at z = 1. Setting cn = 1/ log n, we see that if the partial sums∑

n≤xwn are bounded then
∑
wn/ log n converges (omit the n = 1 term). The converse is

not true.
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We will want to work not only with series, but with infinite products. We generally work
with infinite products only in cases where techniques related to absolutely convergent series
play a role.

Theorem 1.7. Let
∑
am,

∑
bn be two absolutely convergent series. The product of the

sums of these two series is the sum of the absolutely convergent series
∑
ambn over the

index set Z+×Z+. More generally, a finite product of sums of absolutely convergent series
is again the sum of an absolutely convergent series, whose terms are all the possible products
of terms taken one from each of the original series.

Proof. It suffices to treat the case of a product of two series.
Let S =

∑
am, T =

∑
bn. Then

ST =
∑
n

Sbn =
∑
n

(∑
m

ambn

)
.

The terms ambn give an absolutely convergent series if we think of them as being indexed
by the countable index set I = Z+ × Z+. Partitioning this index set into its rows or its
columns and using generalized associativity equates the double series

∑
n(
∑

m ambn) and∑
m(
∑

n ambn) with
∑

(m,n)∈Z+×Z+ ambn. �

The following theorem contains most of what we shall need concerning relations between
infinite products and infinite series. Although we will review complex logarithms in the
following section, for now we take for granted the basic property that the series log(1−z) :=∑

m≥1 z
m/m for |z| < 1 is a right inverse to the exponential function: exp(log(1−z)) = 1−z

if |z| < 1.

Theorem 1.8. Let {zn} be complex numbers with |zn| ≤ 1 − ε for some positive ε (which
is independent of n) and

∑
|zn| convergent.

a) The infinite product
∏
n≥1

1
1−zn = limN→∞

∏N
n=1

1
1−zn converges to a nonzero number.

b) This infinite product satisfies generalized commutativity (i.e., every rearrangement of
factors gives the same product) and generalized associativity for products.

c) The product
∏
n≥1

1
1−zn =

∏
n≥1(1 + zn+ z2n+ . . . ) has a series expansion by collecting

terms in the expected manner:∏
n≥1

1

1− zn
= 1 +

∑
r≥1

∑
k1,...,kr≥1
1<i1<···<ir

zk1i1 · · · z
kr
ir
,

and this series is absolutely convergent.

Proof. We consider the naive logarithm of the infinite product, which is, by definition,

−
∑
n≥1

log(1− zn) :=
∑
n≥1

∑
m≥1

zmn
m
.

(This equation is a definition of the left side; there is no claim that log(zw) = log z+logw.)
Since ∑

n≥1

∑
m≥1

|zn|m

m
≤
∑
n≥1

∑
m≥1
|zn|m =

∑
n≥1

|zn|
1− |zn|

≤ 1

ε

∑
n≥1
|zn| <∞,
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the doubly indexed sequence {zmn /m} is absolutely convergent, so it satisfies generalized
commutativity and associativity for series. By continuity of the exponential,

exp

∑
n≥1

∑
m≥1

zmn
m

 =
∏
n≥1

exp

∑
m≥1

zmn
m

 =
∏
n≥1

1

1− zn
,

so the product converges to a nonzero number (since it’s a value of the exponential) and
this product satisfies generalized commutativity and associativity since the double sum in
the exponential does. We have taken care of a) and b).

For c), by absolute convergence of each
∑

j≥1 z
j
n the product PN :=

∏N
n=1

∑
j≥0 z

j
n can

be written as ∑
j1,...,jN≥0

zj11 · · · z
jN
N = 1 +

N∑
r=1

∑
k1,...,kr≥1

1≤i1<···<ir≤N

zk1i1 · · · z
kr
ir
.

This equation follows from generalized associativity. Now let N → ∞ to get convergence
of the series in part c).

Replace each zn with its absolute value |zn|:∏
n≥1

1

1− |zn|
≥

N∏
n=1

1

1− |zn|

= 1 +
N∑
r=1

∑
k1,...,kr≥1

1≤i1<···<ir≤N

|zi1 |k1 · · · |zir |kr .

Let N →∞ to see the series formed by {zk1i1 · · · z
kr
ir
} is absolutely convergent. �

2. Integration, Logarithms, and the Gamma function

In thie section we will review some facts about analytic functions and analytic singular-
ities, and then focus specifically on logarithms and the Gamma function. The two most
important theorems are: a limit of analytic functions converging uniformly on compact sub-
sets is analytic (Theorem 2.3) and a nonvanishing analytic function on a simply connected
domain has a logarithm (Theorem 2.16).

When we integrate along a contour γ, we assume γ is “nice,” say a union of piecewise
differentiable curves. If the endpoints of γ coincide, we call γ a loop, and if γ does not cross
itself (except perhaps at the endpoints) we call γ simple.

Let Ω be an open set in C and f : Ω→ C be a continuous function. The first miracle of
complex analysis is that the property of f being analytic (we will also use the equivalent term
holomorphic) can be described in several different ways: complex differentiability of f at
each point in Ω, local power series expansions for f at each point in Ω, or that

∫
γ f(z) dz = 0

for any (or any sufficiently small) contractible loop γ in Ω. That the real and imaginary
parts of f satisfy the Cauchy–Riemann equations is another formulation of analyticity,
important for links between complex analysis and partial differential equations. Notice in
particular that the notion of analyticity is a local one, such as in the characterization by
local power series expansions. Through the Cauchy integral formula these local conditions
lead to global consequences, like the following.
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Theorem 2.1. Let f be an analytic function on D(a, r), the open disc around a point a
with radius r. Then the power series for f at the center a converges on D(a, r).

Proof. Let r′ < r, and let γr′(t) = a + r′eit for t ∈ [0, 2π] be the circular path around a of
radius r′, traversed once counterclockwise. For z ∈ D(a, r′),

f(z) =
1

2πi

∫
γr′

f(w)

w − z
dw.

For w lying on γr′ (i.e., |w − a| = r′) we have |z − a| < |w − a| and so

1

w − z
=

1

w − a
· 1

1− (z − a)/(w − a)
=
∑
n≥0

(z − a)n

(w − a)n+1
,

with the series converging uniformly in w. Multiplying both sides by f(w) and integrating
along γr′ we may interchange the sum and integral (by uniform convergence) and get

(2.1) f(z) =
∑
n≥0

cn(z − a)n,

where

cn =
1

2πi

∫
γr′

f(w)

(w − a)n+1
dw.

So (2.1) is a power series expansion for f around a that converges on the open disc D(a, r′).

Thus cn = f (n)(a)/n!, so it is independent of r′. Now let r′ → r−. The series (2.1) doesn’t
change, so it applies for all z ∈ D(a, r). �

The analogue of this theorem in real analysis is false: 1/(1+x2) as a real-valued function
has local power series expansions at all points of R but its power series at the origin does
not have an infinite radius of convergence. (As a complex-valued function, 1/(1 + z2) has a
pole at z = ±i, so it is not analytic on C.)

Corollary 2.2. Let Ω be an open set in the plane and f be an analytic function on Ω.
If a disc D with radius r is in Ω, the power series of f at the center of D has radius of
convergence at least r.

Proof. Clear. �

Theorem 2.3. Let Ω be open in the plane, fn a sequence of analytic functions on Ω that
converges uniformly to f on each compact subset of Ω. Then f is analytic and f ′n converges
uniformly to f ′ on each compact subset.

Proof. Choose a ∈ Ω. Let D ⊂ Ω be a closed disc of radius R > 0 containing a in its
interior. So

1

2πi

∫
γ

fn(z)

z − a
dz = fn(a),

where γ traverses the boundary of D once counterclockwise. Since fn → f uniformly on D,
f is continuous on D, so f(z)/(z − a) is integrable along γ. Letting the maximum value of
a function g on D be written ||g||D,∣∣∣∣ 1

2πi

∫
γ

fn(z)

z − a
dz − 1

2πi

∫
γ

f(z)

z − a
dz

∣∣∣∣ ≤ 1

2π
||fn − f ||D

∣∣∣∣∫
γ

dz

z − a

∣∣∣∣
= ||fn − f ||D
→ 0.
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So 1
2πi

∫
γ(f(z)/(z − a)) dz = limn→∞ fn(a) = f(a). Since a was arbitrary, f is analytic. To

show f ′n → f ′ uniformly on compact subsets of Ω, it suffices to work with closed discs. Let
D be a closed disc in Ω with radius R > 0. Choose a in the interior of D. Then

f ′n(a) =
1

2πi

∫
γ

fn(z)

(z − a)2
dz, f ′(a) =

1

2πi

∫
γ

f(z)

(z − a)2
dz.

So |f ′n(a)− f ′(a)| ≤ ||fn − f ||D/R→ 0. �

While all analytic functions are (locally) expressible as series, some analytic functions are
convenient to introduce in other ways, such as by an integral depending on a parameter.
Here is a basic theorem in this direction.

Theorem 2.4. Let f(x, s) be a continuous function, where the real variable x runs over
an interval from a to b and s varies over an open set U in the plane. Suppose, for each

x, that f(x, s) is analytic in s. Then F (s) :=
∫ b
a f(x, s) dx is analytic in s and F may be

differentiated under the integral sign: F ′(s) =
∫ b
a (∂2f)(x, s) dx.

Proof. See [1, Chap. XV, Lemma 1.1]. �

Theorem 2.5. Let f : Ω→ C be analytic on a region Ω, with Ω = {s : s ∈ Ω} the conjugate

region. Then f∗(s) := f(s) is analytic on Ω, with derivative f ′(s).

In practice this will be applied to self-conjugate regions, such as right half-planes.

Proof. Using local series expansions, the operation f 7→ f∗ transforms a power series∑
cn(s − a)n into

∑
cn(s − a)n. So analyticity of f∗ and the formula for its derivative

are obvious. �

Although analyticity is defined as a property of functions on open sets, it is convenient
to have the notion available for functions on any set (especially closed sets). A function
defined on any set A in the plane is called analytic if it has a local power series expansion
around each point of A, or equivalently if it is the restriction to A of an analytic function
defined on an open set containing A.

For example, an analytic function at a point is simply an analytic function on some open
ball around the point. Since any open set containing a closed ball B := {z : |z| ≤ r}
will contain some open ball {z : |z| < r + ε} (this is because B is compact), an analytic
function on a closed ball is the restriction of an analytic function on some larger open ball
(not merely larger open set). In contrast, half-planes are not compact, so an open set Ω
containing a closed half-plane H := {z : Re(z) ≥ σ0} does not have to contain any open
half-plane {z : Re(z) > σ0−ε}. Indeed, the complement of H in Ω could become arbitrarily
thin as we move far away from the real axis. So a function that is analytic on a closed
half-plane is not guaranteed to be the restriction of an analytic function on a larger open
half-plane. This causes quite a few technical difficulties with zeta and L-functions,

The reader should already be familiar with the two standard types of singularities for
an analytic function f : poles and essential singularities. These concepts apply to isolated
points, namely points a such that f is analytic on a punctured disc 0 < |z−a| < r. Whether
a is a pole or an essential singularity of f can be characterized by either the behavior of
|f(z)| as z → a or by the Laurent series expansion for f at a. In both cases |f | is necessarily
unbounded near a, by the following result of Riemann.
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Theorem 2.6 (Riemann’s Removable Singularity Theorem). Let f be holomorphic on an
open set around the point a, except possibly at a. If f is bounded near a, then f extends to
an analytic function at a.

The converse of the theorem is trivial.

Proof. If f(z) is bounded near a, then the function

g(z) =

{
(z − a)2f(z), if z 6= a,

0, if z = a,

is certainly analytic in a punctured disc around a and is continuous at a, with g(a) = 0. It
is also differentiable at a: for z 6= a,

g(z)− g(a)

z − a
=

g(z)

z − a
= (z − a)f(z)→ 0

as z → a. Therefore g is analytic in a neighborhood of a with g(a) = 0 and g′(a) = 0. The
power series expansion of g around a therefore begins

g(z) = c2(z − a)2 + c3(z − a)3 + c4(z − a)4 + . . . ,

which shows f(z) extends to an analytic function at a, with power series c2 + c3(z − a) +
c4(z − a)2 + . . . . �

It is crucial that we assume analyticity on a punctured neighborhood of a in the theorem.
If a is not isolated in this way, the theorem is false. Of course, to make sense of this we
need to have a notion of singularity that does not apply only to isolated points.

Definition 2.7. Let f : Ω → C be analytic on an open set Ω, a ∈ ∂Ω a point on the
boundary of Ω. We call a an analytic singularity of f if there is no extension of f to an
analytic function at a.

In other words, a is an analytic singularity of f if there is no power series centered at
a that on the overlap of its disc of convergence and Ω coincides with f . (That is, f does
not admit an analytic continuation to a neighborhood of a.) This is singular behavior from
the viewpoint of complex analysis, but it does not mean f has to behave pathologically
near a from the viewpoint of topology or real analysis. For instance, there are analytic
functions on the open unit disc that extend continuously (even smoothly in the sense of
infinite real-differentiability) to the unit circle, but at none of these boundary points is there
a local power series expansion in a complex variable for the extended function. See [2, pp.
252–253] for an example.

Next we discuss some special functions: complex exponentials, logarithms, square roots,
and the Gamma function.

The complex exponential is defined as es :=
∑

n≥0 s
n/n! for all s ∈ C.

Definition 2.8. For u > 0 and s ∈ C, us := es log u, where log u is the usual real logarithm
of u.

Note that uit = eit log u = cos(t log u) + i sin(t log u), so |uit| = 1. Clearly |us| = uRe(s), so
us = 1⇔ s ∈ (2πi/ log u)Z. If Re(s) ≥ 0, then limu→0+ u

s = 0.
Since the exponential function is not injective on C, some care is needed to define log-

arithms. The usual remedy in a first course in complex analysis is to consider the slit
plane

{z ∈ C : z 6∈ (−∞, 0]}
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obtained by removing the negative real axis and 0. We can uniquely write each element of
this slit plane in the form z = reiθ with −π < θ < π and we define

(2.2) Log z := log r + iθ.

Here log r is the usual real logarithm. This function Log z is called the principal value
logarithm, and specializes to the usual logarithm on the positive reals. The justification for
calling Log z a logarithm is that it is a right inverse to the exponential function:

eLog z = elog r+iθ = reiθ = z.

Notice that Log(z1z2) 6= Log(z1) + Log(z2) in general. For instance, if z1 = z2 = i, then

Log(z1z2) is not even defined. If z1 = z2 = e3πi/4, then

z1z2 = e3πi/2 = −i = e−πi/2,

so Log(z1z2) = −πi/2 6= Log(z1) + Log(z2) = 3πi/2. However, on the slit plane we do have

Log(z) = Log(z), Log(1/z) = −Log(z), and Log(z1z2) = Log(z1) + Log(z2) if z1, z2 have
positive real part (but perhaps Log(z1z2z3) 6=

∑
Log(zi) even if all zi have positive real

part).
We will need to use not only logarithms of numbers, but logarithms of analytic functions

(for instance, logarithms of Dirichlet L-functions).

Definition 2.9. Let Ω be an open set in the complex plane and let f be an analytic function
on Ω. A logarithm of f is an analytic function g on Ω whose exponential is f , i.e., g satisfies
eg(z) = f(z) for all z ∈ Ω.

We could write g = log f , but due to the multi-valued nature of logarithms such notation
should be used with care. (The ambiguity is in the imaginary part, so the notation Re log f
is well-defined, being just log |f |.)

Example 2.10. The principal value logarithm Log z defined in (2.2) is a logarithm of the
identity function z on the slit plane.

Example 2.11. For an angle α, omit the ray {reiα : r ≥ 0} from the plane. Write each
number not on this ray uniquely in the form reiθ where α < θ < α+ 2π, and define

log z := log r + iθ,

where log r is the usual real logarithm. This logarithm differs from the principal value
logarithm by an integral multiple of 2π on their common domain of definition. We will call
any logarithm of this type, on a plane slit by a ray from the origin, a “slit logarithm.”

Example 2.12. If g is a logarithm of f , so is g + 2πik for each k ∈ Z. There is never a
unique logarithm of an analytic function.

Example 2.13. Let g1 and g2 be logarithms of the analytic functions f1 and f2. Then g1+g2
is a logarithm of f1f2. Indeed, g1+g2 is analytic, and eg1(z)+g2(z) = eg1(z)eg2(z) = f1(z)f2(z).

Theorem 2.14. Let f : Ω→ C be analytic on the open set Ω. If g is a logarithm of f , then
g′ = f ′/f .

Proof. Informally, we can write g = log f and apply the chain rule.
More rigorously, differentiate the equation f = eg to get f ′ = egg′ = fg′, so g′ = f ′/f . �
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The expression f ′/f is called the logarithmic derivative of f , but note that one does not
need f to have a logarithm in order to construct this ratio. Any meromorphic function has
a logarithmic derivative. Writing the product rule as

(f1f2)
′

f1f2
=
f ′1
f1

+
f ′2
f2

shows that the logarithmic derivative of a product is the sum of the logarithmic derivatives.
The construction of logarithmic derivatives will be useful to us, because of the following

calculation:

(2.3) f(s) = cm(s− a)m + cm+1(s− a)m+1 + · · · =⇒ f ′(s)

f(s)
=

m

s− a
+ . . . ,

where cm 6= 0, so the logarithmic derivative of f is holomorphic except at zeros and poles
of f , where it has a simple pole with residue equal to the order of vanishing:

Ress=a
f ′(s)

f(s)
= ords=a f(s).

This suggests an analytic way of proving f is holomorphic at a and f(a) 6= 0: show
Ress=a(f

′/f) = 0. A meromorphic function on an open set is both holomorphic and nonva-
nishing if and only if its logarithmic derivative is holomorphic. In particular, a holomorphic
function on an open set is nonvanishing if and only if its logarithmic derivative is holomor-
phic.

Because the multiplicity of a zero or pole is a residue of the logarithmic derivative, we
can count zeros and poles inside a region by integration.

Theorem 2.15 (Argument Principle). Let f be meromorphic on a simple loop γ and its
interior, and be holomorphic and nonvanishing on γ. Then

1

2πi

∫
γ

f ′(s)

f(s)
ds = N − P,

where N is the number of zeros of f(s) inside of γ and P is the number of poles. Each zero
and pole is counted with its multiplicity.

In practice, γ will be a circle or rectangle, so we don’t have to deal with subtle definitions
of what the “inside” of γ means.

Proof. Apply the residue theorem. �

Since the integral is a real number, we only have to compute the imaginary part of the
integral:

1

2π
Im

∫
γ

f ′(s)

f(s)
ds = N − P,

Theorem 2.16. Let f : Ω→ C be an analytic function on an open set Ω ⊂ C that is simply
connected. If f vanishes nowhere on Ω, then it has a logarithm.

Proof. Intuitively, whatever “log f” may turn out to be, its derivative ought to be

f ′(z)

f(z)
.

Since f is nonvanishing, this ratio always makes sense. Since we know what the derivative of
the putative logarithm of f ought to be, we should obtain the logarithm itself by integrating
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f ′/f . That’s the main point, and the proof amounts to a technical verification that this
intuitive idea works.

By passing to a connected component of Ω, we can assume Ω is connected and open.
Pick z0 ∈ Ω. For z ∈ Ω, let γz be a continuous piecewise differentiable path from z0 to z.

(Connected open sets in the plane are path-connected, so there is such a path. In practice,
when Ω is a disc or half-plane, this is geometrically obvious.) Choose w0 ∈ C such that
ew0 = f(z0). We set

Lf (γz, z) := w0 +

∫
γz

f ′(w)

f(w)
dw.

This will turn out to be a logarithm for f .
Since Ω is simply connected, this definition does not depend on the path γz selected from

z0 to z, so we may write the function as Lf (z). (It does depend on z0, but that will remain
fixed throughout the proof.) Note Lf (z0) = w0.

To show L′f (z) = f ′(z)/f(z), we have for small h

Lf (z + h)− Lf (z) =

∫
[z,z+h]

R(z) dw +

∫
[z,z+h]

(R(w)−R(z)) dw

= R(z)h+

∫
[z,z+h]

(R(w)−R(z)) dw,

where R(z) = f ′(z)/f(z) and [z, z + h] denotes the straightline path between z and z + h.
Now divide by h and let h→ 0.

To show Lf is a logarithm of f , i.e., eLf (z) = f(z), we show the ratio is constant:

d

dz
e−Lf (z)f(z) = e−Lf (z)f ′(z)− f(z)L′f (z)e−Lf (z) = e−Lf (z)f ′(z)− f ′(z)e−Lf (z),

which is 0. We’re on a connected set, so it follows that f(z) = ceLf (z) for some constant c.
We want to show the constant c is 1. It suffices to check the equation at one point in Ω. At
z0 we have f(z0) = ceLf (z0). Is c = 1? By our construction, Lf (z0) = w0 and ew0 = f(z0),
so c = 1. �

Example 2.17. Let D be an open disc in the plane that does not contain 0. The function
z is nonvanishing on D, so there is a logarithm function `(z) on D, i.e., ` is analytic on D

and e`(z) = z. A construction of a logarithm is `(z) = w0 +
∫
rz
dw/w, where rz is the radial

path from the center of D to z and w0 is a constant chosen so ew0 is the center of D.

Example 2.18. Let ∆+ = {a+ bi : a2 + b2 < 1, b > 0} be the upper part of the unit disc
and f(z) = z8, which is nonvanishing on ∆+. Since f ′(z)/f(z) = 8/z, a logarithm of f on
∆+ is Lf (z) = w0 + 8

∫
γz
dw/w where γz is a path in ∆+ from (say) i/2 to z and w0 is

chosen so ew0 = i/2, e.g.,w0 = log(1/2) + iπ/2.
Notice that although ∆+ is simply connected, the image of ∆+ under f is the punctured

unit disc {w : 0 < |w| < 1}, which has a hole. The principal value logarithm Logw is not
defined on the whole punctured unit disc, so it is false that Lf (z) equals the composite
Log(f(z)), as the latter is not always defined. It is true by our choice of w0 that Lf (z) =
8 Log z.

The lesson from Example 2.18 is that a logarithm of the function f is not typically a
composite of the slit logarithm and the function f on the whole domain. If we are only
concerned with an analytic function locally, then the situation is simpler:
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Theorem 2.19. Let f : Ω → C be an analytic function on the open set Ω. If f(z0) 6= 0,
then f has a local logarithm near z0. That is, there is an analytic function g on some
neighborhood of z0 in Ω such that eg = f on this neighborhood.

Proof. Since f(z0) 6= 0, select a small disc D around f(z0) that doesn’t contain the origin.
There is a corresponding small disc D0 ⊂ Ω around z0 such that f(D0) ⊂ D. There is a
logarithm function defined on D, since D lies in some plane slit by a ray from the origin and
we can easily write down logarithms on such domains. The composite of such a logarithm
with f is clearly a logarithm of f , i.e., it is analytic and its exponential is f . �

This proof is simple because we can just compose f and some slit logarithm function. To
globalize the result from small discs to general Ω, as in Theorem 2.16, is technical precisely
because the ordinary logarithm function is not a well-defined analytic function on C×.
Still, in almost all situations where we may want to apply Theorem 2.16, Theorem 2.19 will
suffice.

Theorem 2.20. Let f : Ω→ C be an analytic function on a connected open set. Any two
logarithms of f differ by an integral multiple of 2πi.

The theorem is vacuous if f doesn’t admit a logarithm.

Proof. The difference of two logarithms of f is a function whose exponential is identically
1, so the difference takes values in the discrete set 2πiZ. By continuity of logarithms and
connectedness of Ω, the difference is constant. �

In practice, we will only be discussing logarithms of analytic functions defined on regions,
i.e., connected open sets.

By Theorem 2.20, a logarithm of f(z) is determined by its value at one point, or by its
limit as z tends to ∞ in some fixed direction, if the function settles down to a constant
value in that direction.

A consequence of the previous few theorems is that a continuous logarithm of an analytic
function must be analytic.

Corollary 2.21. Let f : Ω→ C be an analytic function on a simply connected region (such
as a disc or half-plane). Every continuous logarithm of f is an analytic logarithm. That is,

every continuous function `f on Ω such that e`f (z) = f(z) on Ω is analytic.

Proof. Since f(z) = e`f (z), f is nonvanishing, so f admits an analytic logarithm, say Lf .
(Recall that this logarithm was constructed in Theorem 2.16, via path integrals of f ′/f . Or,
since analyticity is a local property, we may suppose Ω is a suitably small disc and appeal
to the simpler Theorem 2.19.) The proof of Theorem 2.20 only used continuity of the two
logarithms, not their analyticity. So that proof shows `f − Lf is a constant. Since Lf is
analytic, `f must be analytic. �

Square roots should be expressible as
√
z = e(1/2) log z, so we can construct square roots

of analytic functions if we can construct analytic logarithms.

Definition 2.22. Let f : Ω → C be analytic. A square root of f is an analytic function g
on Ω such that g2 = f .

For example, ez/2 is a square root of ez and z is a square root of z2. Unlike logarithms of
analytic functions, square roots of analytic functions can vanish. (The constant function 0
is a square root of itself; in no other case will a square root vanish except at isolated points.)
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In practice we will be considering only nonvanishing functions (at least in the region where
we may construct logarithms or square roots), so part i) of the following theorem covers the
cases that will matter.

Theorem 2.23. i) If `f is a logarithm of the analytic function f , then g(z) = e(1/2)`f (z) is a
square root of f . In particular, every nonvanishing analytic function on a simply connected
region has a square root.

ii) If g1 and g2 are square roots of f , then g1 = g2 or g1 = −g2.
iii) If f : Ω→ C is an analytic function on an open set, every continuous square root is

an analytic square root.

Proof. Exercise. �

Example 2.24. On the upper half-plane H = {a + bi : b > 0}, with variable element
τ , the function f(τ) = τ/i is nonvanishing, so it has an analytic square root, in fact

exactly two of them. Writing τ = reiθ where 0 < θ < π, we have τ/i = rei(θ−π/2). Set√
τ/i =

√
rei(θ/2−π/4). This is certainly a continuous square root function. It must be

analytic by part iii) of Theorem 2.23. Notice this particular analytic square root is positive

on the imaginary axis, namely if τ = bi for b > 0 then
√
τ/i is the real positive square root

of b.

The next complex analytic topic is the Gamma function. This is an important function in
both pure and applied mathematics. In number theory it arises in the functional equations
of zeta and L-functions. It is not naturally defined by a power series expansion, but by an
integral formula.

We begin with the equation

(2.4) n! =

∫ ∞
0

xne−x dx.

This is clear when n = 0, since
∫∞
0 e−x dx = 1. Integrating by parts (u = xn, dv = e−xdx)

gives (2.4) for larger n by induction. (Euler discovered this formula, but wrote it as n! =∫ 1
0 log(1/y)n dy.) The right side of (2.4) makes sense for nonintegral values of n.

Definition 2.25. For complex numbers s with Re(s) > 0, set

Γ(s) :=

∫ ∞
0

xs−1e−x dx =

∫ ∞
0

xse−x
dx

x
.

We’ll check below that this integral does converge. In addition to checking the behavior
of the integrand xs−1e−x near x = ∞, when 0 < Re(s) < 1 we have to pay attention to
behavior near x = 0. This definition does not make sense if Re(s) ≤ 0. But we will see that
Γ(s) can be continued to a meromorphic function on C.

For a positive integer n, Γ(n) = (n − 1)!. It may seem more reasonable to work with
Π(s) :=

∫∞
0 xse−x dx, since Π(n) = n!, and this is the factorial generalization used by

Riemann in his paper on the zeta-function. The function Γ(s) = Π(s − 1) was introduced
by Legendre.

The Gamma function is an example of an integral of the form

(2.5)

∫ ∞
0

f(x)
dx

x
.
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Such integrals are invariant under multiplicative translations: for every c > 0,∫ ∞
0

f(cx)
dx

x
=

∫ ∞
0

f(x)
dx

x
.

Similarly, for c > 0 ∫ ∞
−∞

f(cx)
dx

|x|
=

∫ ∞
−∞

f(x)
dx

|x|
.

(The additive analogue is the more familiar
∫∞
−∞ g(x+ c) dx =

∫∞
−∞ g(x) dx.)

To check the integral defining Γ(s) makes sense, we take absolute values and reduce to
the case of real s > 0. Behavior at 0 and ∞ are isolated by splitting up the integral into
two pieces, from 0 to 1 and from 1 to ∞:∫ 1

0
xs−1e−x dx+

∫ ∞
1

xs−1e−x dx.

For x > 0, xs−1e−x ≤ xs−1 and xs−1 is integrable on [0, 1] if s > 0, so the first integral
converges. For the second integral, remember that exponentials grow much faster than
powers. We write e−x = e−x/2e−x/2 and then have

xs−1e−x ≤ Cse−x/2

on [1,∞) for some constant Cs, so the second integral converges. Actually, the second
integral converges for every s ∈ C, not just when Re(s) > 0.

One important special value of Γ at a noninteger is at s = 1/2:

Γ

(
1

2

)
=

∫ ∞
0

e−xx−1/2 dx = 2

∫ ∞
0

e−u
2
du =

∫ ∞
−∞

e−u
2
du.

A common method of calculating
∫∞
−∞ e

−u2 du is by squaring and then passing to polar

coordinates. For I =
∫∞
−∞ e

−u2 du,

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2) dx dy

=

∫ ∞
0

∫ 2π

0
e−r

2
r dr dθ

=

∫ ∞
0

re−r
2
dr ·

∫ 2π

0
dθ

=
1

2
· 2π

= π,

so (since I > 0) I =
√
π. Therefore

Γ

(
1

2

)
=
√
π.
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There is a method of computing I2 without polar coordinates. The idea goes back to
Laplace:

I2 =

∫ ∞
−∞

(∫ ∞
−∞

e−(x
2+y2) dx

)
dy

=

∫ ∞
−∞

(∫ ∞
−∞

sign(y)e−(y
2t2+y2)y dt

)
dy where x = ty

=

∫ ∞
−∞

(∫ ∞
−∞
|y|e−(t2+1)y2 dy

)
dt.

Since
∫∞
−∞ |y|e

−ay2 dy = 1/a for a > 0, we have

I2 =

∫ ∞
−∞

dt

t2 + 1
= π,

so I =
√
π.

By Theorem 2.4, Γ(s) is analytic on Re(s) > 0. Now we extend Γ meromorphically to
the entire complex plane.

For complex s with positive real part, an integration by parts (u = xs, dv = e−xdx) yields
the functional equation

(2.6) Γ(s+ 1) = sΓ(s).

This generalizes n! = n(n− 1)!.

Theorem 2.26. The function Γ extends to a meromorphic function on C whose only poles
are at the integers 0,−1,−2, . . . , where the poles are simple with residue at −k equal to
(−1)k/k!.

Proof. Use (2.6) to extend Γ step-by-step to a meromorphic function on C. The residue
calculation follows from the functional equation and induction. �

There are a few important relations that Γ satisfies besides (2.6). For example, since
Γ(s) has simple poles at 0,−1,−2, . . . , Γ(1− s) has simple poles at 1, 2, 3, . . . . The product
Γ(s)Γ(1−s) therefore has simple poles precisely at the integers, just like 1/ sin(πs). What is
the relation between these functions? Also, Γ(s/2) has simple poles at 0,−2,−4,−6, . . . and
Γ((s + 1)/2) has simple poles at −1,−3,−5, . . . . Therefore Γ(s/2)Γ((s + 1)/2) has simple
poles at 0,−1,−2, . . . , just like Γ(s). What is the relation between Γ(s) and the product
Γ(s/2)Γ((s+ 1)/2)? In general, knowing where a functions has its poles (and zeros) is not
enough to characterize it. One can always introduce an arbitrary multiplicative constant.
That is the only purely algebraic modification, but we can also introduce a factor of an
arbitrary nonvanishing entire function, say eg(z) where g(z) is entire. For g(z) linear, this
factor looks like aebz. This is the type of factor we’ll need to introduce to relate the above
Gamma functions with each other.

To work with factorization questions, it is more convenient to use a different formula for
Γ(s) than the integral definition. The integral is an additive formula for Γ(s). We now
turn to two multiplicative formulas, valid in the whole complex plane. They are usually
attributed to Gauss and Weierstrass, respectively, although neither one was the first to
discover these formulas.
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Lemma 2.27. For every s ∈ C,

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
=
eγs

s

∏
n≥1

(
1 +

s

n

)−1
es/n,

where γ = limn→∞ 1 + 1/2 + · · ·+ 1/n− log n ≈ .5772156649015 . . . is Euler’s constant.

Proof. See [1, Chap. XV] or [2, Chap. 2]. For s = 0,±1,±2, . . . the products are set equal
to ∞. �

The Weierstrass product can also be written as

Γ(s+ 1) = eγs
∏
n≥1

(
1 +

s

n

)−1
es/n.

The exponent γ in the Weierstrass product has the characterizing role of guaranteeing
that Γ(s+ 1)/Γ(s) equals s rather than some other constant multiple of s.

Theorem 2.28. For all complex numbers s,

Γ(s)Γ(1− s) =
π

sin(πs)
, Γ

(s
2

)
Γ

(
s+ 1

2

)
=

√
π

2s−1
Γ(s).

The first equation is called the reflection formula, and the second is the duplication
formula.

Proof. To get the first identity, write it as Γ(s)Γ(−s) = −π/(s sin(πs)). Compute the left
side using the product in Lemma 2.27 and the right side using the product for the sine
function,

(2.7) sin s = s
∏
n≥1

(
1− s2

n2π2

)
,

replacing s with πs.
To prove the second identity, use Gauss’ limit formula in Lemma 2.27 to compute

Γ(s/2)Γ((s+ 1)/2). The result is cΓ(s)/2s, and setting s = 1 shows c = 2
√
π. �

Corollary 2.29. The function Γ(s) does not vanish.

Proof. The poles of Γ(s) are at the integers ≤ 0. Since Γ(s)Γ(1 − s) = π/ sin(πs), we see
that Γ(s) 6= 0 for s 6∈ Z. We already know the values of Γ(s) at the integers, where it is not
zero. �

In particular, while Γ(s) is meromorphic, 1/Γ(s) is entire. So if f(s)Γ(s) is an entire
function, so is f(s).

We conclude with a basic asymptotic formula for the Gamma function.

Theorem 2.30 (Stirling’s Formula). Fix positive ε < π. As |s| → ∞ in a sector {s :
|Arg(s)| ≤ π − ε},

Γ(s) =
√

2πss−1/2e−seµ(s) =
√

2πe(s−1/2) Log s−s+µ(s),

where the error term in the exponent satisfies µ(s) = O(1/|s|) as |s| → ∞, the constant in

the O-symbol depending on the sector. In particular, Γ(s) ∼
√

2πss−1/2e−s as s → ∞ in
such a sector.
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Proof. See [1, Chap XV] or [2, Chap 2]. The proof involves producing an exact error
estimate for log Γ(s), and leads to the additional formula

Γ′(s)

Γ(s)
= Log s− 1

2s
+O(1/|s|2) = Log s+O(1/|s|)

by differentiation of the exact error estimate. �

An important application of the complex Stirling’s formula is to the growth of the Gamma
function on vertical lines. (We call this vertical growth.) For σ > 0, the integral formula for
the Gamma function shows |Γ(σ+ it)| ≤ |Γ(σ)| for any real t, so vertical growth is bounded.
But in fact it is exponentially decaying, as follows.

Corollary 2.31. For fixed σ, |Γ(σ+it)| ∼
√

2πe−(π/2)|t||t|σ−1/2 as |t| → ∞. More generally,
this estimate applies in any vertical strip of the complex plane, and is uniform with respect
to σ in that strip.

Proof. By iterating the functional equation Γ(s+ 1) = sΓ(s), we can reduce to the case of a
closed vertical strip in the half-plane Re(s) > 0. We leave this reduction step to the reader,
and for simplicity we only treat the case of a single vertical line rather than a strip.

Since |Γ(σ + it)| = |Γ(σ − it)|, we only need to consider t > 0, t→∞.
For σ > 0 fixed and t→∞, Stirling’s formula (in the form of Theorem 2.30) gives

|Γ(σ + it)| ∼
√

2πeRe((σ−1/2+it) Log(σ+it))e−σ

=
√

2πe(σ−1/2)(1/2) log(σ
2+t2)−t arctan(t/σ)−σ

∼
√

2πe(σ−1/2) log t−(π/2)t

since t(π/2− arctan(t/σ))→ σ as t→∞. �

As a particular example, note that for real a, b, and c with a 6= 0, the exponential factors
in the Stirling estimates for |Γ(as+b)| and |Γ(−as+c)| (when t = Im(s)→∞) are identical,
so

(2.8)
Γ(as+ b)

Γ(−as+ c)
= O(tM )

as t→∞, where M depends on the parameters a, b, and c. This polynomial upper bound
on growth is convenient when estimating the growth of zeta and L-functions in vertical
strips.
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