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Abstract. In 2000, Goda, Scharlemann, and Thompson described a general
construction of all tunnels of tunnel number 1 knots using “tunnel moves”.
The theory of tunnels introduced by Cho and McCullough provides a com-
binatorial approach to understanding tunnel moves. We use it to calculate
the number of distinct minimal sequences of such moves that can produce a
given tunnel. As a consequence, we see that for a sparse infinite set of tunnels,

the minimal sequence is unique, but generically a tunnel will have many such
constructions. Finally, we give a characterization of the tunnels with a unique
minimal sequence.

Introduction

In previous work [3], we introduced a theory of tunnels of tunnel number 1 knots
based on the disk complex of the genus-2 handlebody. It provides a simplicial
complex D(H)/G whose vertices correspond to the (equivalence classes of) tunnels
of all tunnel number 1 knots. As we will explain below, two tunnels span a 1-
simplex of D(H)/G exactly when each is obtained from the other by a construction
given by H. Goda, M. Scharlemann, and A. Thompson in [6]. For reasons that will
become apparent, we call these constructions “giant steps”. The connectivity of
D(H)/G shows that every tunnel can be obtained from the unique tunnel π0 of the
trivial knot by some sequence of giant steps, a fact already proved in [6].

In this work, we will use the combinatorial structure of D(H)/G to examine
minimal length sequences of giant steps that start from π0 and produce a given
tunnel τ . Our main result is an algorithm to calculate the number of distinct
such sequences. In fact, this is just the number of shortest paths between two
vertices of the Farey graph. Although the algorithm is quite elementary, we have
been unable to find it in the literature. It is effective and we have implemented
it computationally [5]. We will use it here to see that for a sparse infinite set of
tunnels, the minimal construction sequence is unique, but generically a tunnel will
have many such sequences. In Proposition 4.4, we give a characterization of the
tunnels with unique minimal construction sequence.

The length of a minimal sequence of giant steps producing a given tunnel is equal
to the invariant called the depth of the tunnel, defined below. This invariant is used
extensively in our work on bridge numbers of tunnel number 1 knots in [4].
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Figure 1. A portion of the nonseparating disk complex D(H) and

the tree T̃ . Countably many 2-simplices meet along each edge.

Only a minimal amount of the theory from [3] is needed for the present applica-
tion. We review it briefly in Sections 1 and 2. Section 3 defines giant steps precisely,
and Section 4 presents the algorithm and some of its uses.

We thank the referee for a careful reading of the manuscript and for suggesting
that we prove a characterization such as Proposition 4.4.

1. The tree of knot tunnels

Let H be a genus-2 orientable handlebody, regarded as the standard unknotted
handlebody in S3. For us, a disk in H means a properly imbedded disk in H,
which is assumed to be nonseparating unless otherwise stated. The disk complex
D(H) is a 2-dimensional, contractible simplicial complex, whose vertices are the
isotopy classes of disks in H, such that a collection of k + 1 vertices spans a k-
simplex if and only if they admit a set of pairwise-disjoint representatives. Each
1-simplex of D(H) is contained in countably many 2-simplices. As suggested by
Figure 1, D(H) grows outward from any of its 2-simplices in a treelike way. In fact,

it deformation retracts to the tree T̃ seen in Figure 1, which is the subcomplex of
the first barycentric subdivision D′(H) spanned by the barycenters of 1-simplices
and 2-simplices of D(H). We refer the reader to [3] for details on these objects.

A tunnel of a tunnel number 1 knot produces a disk in H as follows. The tunnel
is a 1-handle attached to a regular neighborhood of the knot to form an unknotted
genus-2 handlebody. An isotopy moving this handlebody to H carries a cocore 2-
disk of that 1-handle to a nonseparating disk in H and carries the tunnel number 1
knot to a core circle of the solid torus obtained by cutting H along that disk.

The indeterminacy in the choice of the isotopy is the group of isotopy classes
of orientation-preserving homeomorphisms of S3 that preserve H. This group is
called the Goeritz group G. Work of M. Scharlemann [7] and E. Akbas [1] proves
that G is finitely presented and even provides a simple presentation of it.

Since two disks in H determine equivalent tunnels exactly when they differ by an
isotopy moving H through S3, the collection of all (equivalence classes of) tunnels
of all tunnel number 1 knots corresponds to the set of orbits of vertices of D(H)
under G. So it is natural to examine the quotient complex D(H)/G, which is
illustrated in Figure 2.

Through work of the first author [2], the action of G on D(H) is well-understood.

A primitive disk in H is a disk D such that there is a disk E in S3 −H for which ∂D
and ∂E intersect transversely in one point in ∂H. The primitive disks (regarded
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Figure 2. A portion of D(H)/G and T near the primitive orbits.

as vertices) span a contractible subcomplex P(H) of D(H), called the primitive
subcomplex. The action of G on P(H) is as transitive as possible; indeed, the
quotient P(H)/G is a single 2-simplex Π which is the image of any 2-simplex of the
first barycentric subdivision of P(H). Its vertices are π0, the orbit of all primitive
disks, µ0, the orbit of all pairs of disjoint primitive disks, and θ0, the orbit of all
triples of disjoint primitive disks. Regarded as a tunnel, π0 is the unique tunnel of
the trivial knot.

On the remainder of D(H), the stabilizers of the action are as small as possible.
A 2-simplex which has two primitive vertices and one nonprimitive is identified
with some other such simplices, then folded in half and attached to Π along the
edge 〈µ0, π0〉. The nonprimitive vertices of such 2-simplices are exactly the disks
in D(H) that are disjoint from some primitive pair, and these are called simple
disks. As tunnels, they are the upper and lower tunnels of 2-bridge knots, and
we call them the simple tunnels. The remaining 2-simplices of D(H) receive no
self-identifications, and they descend to portions of D(H)/G that are treelike and
are attached to one of the edges 〈π0, τ0〉 where τ0 is simple.

The tree T̃ shown in Figure 1 is constructed as follows. Let D′(H) be the

first barycentric subdivision of D(H). Denote by T̃ the subcomplex of D′(H)
obtained by removing the open stars of the vertices of D(H). It is a bipartite
graph, with “white” vertices of valence 3 represented by triples and “black” vertices
of (countably) infinite valence represented by pairs. The valences reflect the fact
that moving along an edge from a triple to a pair corresponds to removing one of
its three disks, while moving from a pair to a triple corresponds to adding one of
infinitely many possible third disks to a pair.

The image T̃ /G of T̃ in D′(H)/G is a tree T . The vertices of D′(H)/G that
are images of vertices of D(H) are not in T , but their links in D′(H)/G are sub-
complexes of T . These links are infinite trees. For each such vertex τ of D′(H)/G,
i.e. each tunnel, there is a unique shortest path in T from θ0 to the vertex in the
link of τ that is closest to θ0. This path is called the principal path of τ , and this
closest vertex is a triple, called the principal vertex of τ . The two disks in the
principal vertex, other than τ , are called the principal pair of τ . They are exactly
the disks called µ+ and µ− that play a key role in [8]. Figure 3 shows the principal
path of a certain tunnel.
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Figure 3. The principal path of a tunnel τ having binary
invariants 0011100011100 or, equivalently, with step sequence
“DRRRDRDLLLDLDRR”.

2. The binary invariants

Moving through the tree T /G corresponds to a useful construction of tunnels,
called the cabling construction, but we will not need it here. What is important
for us is the combinatorial structure near the principal path of τ . This structure is
determined by a sequence of “binary” invariants s2, s3, . . . , sn, defined in [3]. We
do not need their formal definition, which involves the cabling construction, for we
can think of them in a very simple way, from the viewpoint of a traveler along the
path. A step of the principal path is a portion between successive white vertices.
At Step 0, a traveler goes from θ0 to the principal vertex of some simple tunnel.
At Step 1, the traveler (whom we are viewing from above) must make a left turn.
Starting with Step 2, the traveler must make a choice of turning left or turning
right out of the white vertex. The invariant s2 is 0 if this is a left turn and 1 if it is
a right turn. In general, si is 0 if the direction of the turn at Step i is the same as
the direction of the turn at Step i − 1, and 1 if it is different. Figure 3 shows the
principal path of a tunnel with binary invariants 0011100011100.

It is sometimes useful to describe the principal path from the reader’s viewpoint.
The initial step is always down (“D”) and the second step, due to the standard way
that we draw the picture, is to the reader’s right (“R”). Each subsequent step is
either left (“L”), down, or right. An “L” can only be followed by another “L” or
a “D”, according as the corresponding binary invariant s is 0 or 1, and similarly
an “R” is followed by another “R” or a “D”, according as s is 0 or 1. When the
previous step is “D”, then the effect of s depends on the step before the “D”. If the
two previous steps were “LD”, then the next step is “R” or “L” according as s is 0
or 1, while if they were “RD”, then the next step is “L” or “R” according as s is 0
or 1. For the example of Figure 3, the step sequence is “DRRRDRDLLLDLDRR”.
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CONSTRUCTING KNOT TUNNELS USING GIANT STEPS 379

There are simple algorithms for translating between these two descriptions, and
functions that do this are included in the software at [5].

3. Giant steps

Definition 3.1. Let τ and τ ′ be tunnels. We say that τ ′ is obtained from τ by a
giant step if τ and τ ′ are the endpoints of a 1-simplex of D(H)/G. Equivalently, τ
and τ ′ can be represented by disjoint disks in H.

In [6], Goda, Scharlemann, and Thompson gave a geometric definition of giant
steps, which they called tunnel moves, as follows. Let τ be a nonseparating disk in
H, and let K be a simple closed curve in ∂H that intersects τ transversely in one
point. Let N be a regular neighborhood in H of K ∪ τ . Then the frontier of N
separates H into two solid tori, one a regular neighborhood of K, so K is a tunnel
number 1 knot.

In the previous construction, the meridian disk τ ′ of the solid torus that does not
contain K ∪ τ is the unique nonseparating disk τ ′ in H that is disjoint from K ∪ τ ,
and τ ′ is a tunnel of K. That is, the construction produces a specific tunnel of the
resulting knot K. A giant step as we have defined it simply amounts to choosing
the τ ′ first; K is then determined up to isotopy in H and in S3, although not up
to isotopy in ∂H.

Since the complex D(H)/G is connected, we have the following, which is part of
Proposition 1.11 of [6].

Proposition 3.2. Let τ be a tunnel of a tunnel number 1 knot. Then there is
a sequence of giant steps that starts with the tunnel of the trivial knot and ends
with τ .

The depth of a tunnel τ is defined to be the distance in the 1-skeleton of D(H)/G
from π0 to τ . That is, the depth is exactly the length of a minimal sequence of
giant steps from π0 to τ .

4. Minimal sequences of giant steps

In this section we give the algorithm to calculate the number of minimal length
sequences of giant steps that start from π0, the tunnel of the trivial knot, and
end with a given tunnel τ . This is an elementary combinatorial problem, and
Lemma 4.2 will show that it is essentially the problem of computing the number of
distinct geodesics between two points in the Farey graph. We will use the algorithm
to see that for a sparse infinite set of tunnels, the minimal giant step sequence
construction is unique, but generically a tunnel will have many such constructions.
In Proposition 4.4, we will characterize the tunnels having a unique minimal giant
step sequence.

By a path (between two vertices) in D(H)/G, we mean a simplicial path in the
1-skeleton of D(H)/G passing through a sequence of vertices that are images of
vertices of D(H) (i.e., vertices that represent tunnels). We describe such a path
simply by listing the vertices through which it passes. From Section 3, we know
that the minimal sequences of giant steps from π0 to a given tunnel τ correspond
exactly to the minimal-length paths in D(H)/G from π0 to τ . We will be interested
only in minimal-length paths.
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Figure 4. The principal path and corridor C(τn) of a tunnel τn.
The ∇-edges are emphasized. In the picture of C(τn) on the right,
the depths of the tunnels are labeled.

Definition 4.1. Let τ be a nontrivial tunnel. Define the corridor of τ , C(τ ),
as follows. Write the vertices of the principal path of τ as θ0, µ0, µ0 ∪ τ0, µ1 ,
µ1∪ τ1, . . . , µn∪ τn, where τ = τn. Then C(τ ) is the union of the 2-simplices whose
barycenters are the µi∪τi for 0 ≤ i ≤ n (where µ0∪τ0 is regarded as the barycenter
of the 2-simplex spanned by π0, µ0, and τ0).

When τ is a simple tunnel, C(τ ) is the triangle 〈π0, µ0, τ0〉. Otherwise, it can
be viewed as a rectangular or trapezoidal strip with top and bottom edges 〈µ0, π0〉
and 〈τn−1, τn〉, as in the drawing on the right in Figure 4.

Lemma 4.2. Let τ be a tunnel, and let σ0, σ1, . . . , σn be a path in D(H)/G of
minimal length among the paths connecting the vertices σ0 to σn. If σ0 and σn lie
in C(τ ), then each σi lies in C(τ ).

Proof. If the lemma is false, then there exist i and j with 0 ≤ i < i+1 < j ≤ n for
which σi and σj lie in C(τ ), but σk does not lie in C(τ ) for any k with i < k < j.

The barycenter {σi, σi+1} of the edge 〈σi, σi+1〉 lies in the link L(σi) of σi in
D′(H)/G. This link is a tree, so there exists a vertex σ′

i in C(τ ) such that {σi, σ
′
i}

is connected to {σi, σi+1} by a path in L(σi) meeting C(τ ) only in {σi, σ
′
i}. The

1-simplex in D(H)/G spanned by σi and σ′
i separates D(H)/G, with C(τ ) and σi+1

lying in different components. Therefore σj must equal either σi or σ′
i. In either

case we obtain a shorter path from σ0 to σn. �

In the special case that τ is of depth 1, τ lies in the link in D(H)/G of π0, and
there is a unique path of length 1 from π0 to τ . From now on, we assume that τ
has depth at least 2.
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Now, regard C(τ ) as in the diagram on the right in Figure 4, with the edge
〈µ0, π0〉 on top, and with τ as one of the endpoints of the bottom edge. In the
triangulation of C(τ ), a ∇-edge of depth i is an edge whose endpoints have depth i
and lie on different sides of C(τ ), and for which all vertices lying below its endpoints
on either side have depth greater than i. In Figure 4, the ∇-edges are highlighted.

Since the endpoints of any edge of C(τ ) can have depths that differ by at most
1, there exists a unique ∇-edge ∇(i) in C(τ ) of depth i for each i with 1 ≤ i <
depth(τ ). There is also a ∇-edge for i = depth(τ ) unless τ and the endpoints of
∇(depth(τ )− 1) span a 2-simplex.

The name ∇-edge arises from the fact that (except for ∇(depth(τ ))) the ∇-edges
are the tops of 2-simplices of the corridor that appear as ∇’s (as opposed to ∆’s)
when the corridor is drawn with depth corresponding to the vertical coordinate, as
in the diagram on the left in Figure 4. Every nonprimitive 2-simplex of D(H)/G
has two vertices of the same depth and a third of depth either larger by 1 or smaller
by 1 than that common depth; for a “∇” 2-simplex, that depth is larger by 1, while
it is smaller by 1 for a “∆” 2-simplex.

Denote the left and right endpoints of ∇(i) by ∂L∇(i) and ∂R∇(i) respectively.

Lemma 4.3. Let ∇(i − 1) and ∇(i) be successive ∇-edges. Then at least one of
the pairs {∂L∇(i − 1), ∂L∇(i)} and {∂R∇(i − 1), ∂R∇(i)} are the endpoints of an
edge that lies in a side of C(τ ).

Proof. For each endpoint of ∇(i), select a path of length i from the endpoint to
π0. By Lemma 4.2, these paths lie in C(τ ). In particular, each of their first edges
connects an endpoint of ∇(i) to an endpoint of ∇(i− 1). At most one of these first
edges can be diagonal, so at least one lies in a side. �

Lemma 4.3 shows that the triangulation of the portion of C between ∇(i−1) and
∇(i) must have one of the four configurations L1, R1, L2, or R2 shown in Figure 5.
The portion of C(τ ) above ∇(1) must be as in the leftmost diagram in Figure 5,
perhaps with only one 2-simplex above the diagonal.

Now we are ready to calculate the number of minimal paths from π0 to τ . Denote
by λi the number of paths in C(τ ) of length i from π0 to ∂L∇(i), and by ρi the

number of paths to ∂R∇(i). Clearly

(
λ1

ρ1

)
=

(
1
1

)
.

Let k be the maximum i for which ∇(i) is defined. For each 2 ≤ i ≤ k, let
Ci be L1, R1, L2, or R2 according to which of the four configurations in Figure 5
describes the triangulation of C(τ ) between ∇(i − 1) and ∇(i). For 2 ≤ i ≤ k, let
Mi be the matrix given in the following table, according to the value of Ci:

Ci L1 R1 L2 R2

Mi

(
1 0
1 1

) (
1 1
0 1

) (
1 0
1 0

) (
0 1
0 1

)

Observe that

Mi

(
λi−1

ρi−1

)
=

(
λi

ρi

)
.

Therefore we have (
λk

ρk

)
= MkMk−1 · · ·M2

(
1
1

)
.
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Figure 5. The configuration above ∇(1), and the four possible
configurations between two ∇-edges. In R1 and L1 there is only
one 2-simplex above the diagonal edge, while in R2 and L2 there
are two or more. In the configuration above ∇(1), there may be
only one 2-simplex above the diagonal. The shaded 2-simplices
are ∇ 2-simplices. The letter L (respectively, R) signifies that the
portion below the ∇-simplex contains “L” steps (respectively, “R”
steps) of the principal path.

If τ and the endpoints of ∇(k) span a 2-simplex, as in the case of the tunnel
τn−2 in Figure 4, then the number of minimal-length paths from π0 to τ is λk + ρk.
Otherwise, τ is the left or right endpoint of ∇(k), and the number of minimal-length
paths equals λk or ρk respectively.

The algorithm just described is not difficult to implement computationally [5].
For the example in Figure 4, the output of the program is:

Depth> gst( ’0011100011100’, verbose = True )

The block configurations are R1, L2, L1, R2, and

M 5 * ... * M 2 = [ [ 2, 2 ], [ 2, 2 ] ].

This tunnel has 4 minimal giant step constructions.

while if we add one downward step at the end:
Depth> gst( ’00111000111001’, verbose = True )

The block configurations are R1, L2, L1, R2, and

M 5 * ... * M 2 = [ [ 2, 2 ], [ 2, 2 ] ].

The final block is a nabla.

This tunnel has 8 minimal giant step constructions.

Some examples are the tunnels whose parameter sequences are the following:

(1) s2s3 · · · sn = 100100 · · · 100, or DRDLLDRRDLL · · ·DRR (or · · ·DLL)
as a step sequence. The configuration sequence alternates as L2, R2, L2,
R2 . . . , and there is a unique minimal giant step sequence.

(2) s2s3 · · · s2n+1 = 1010 · · · 10, or DRDLDRDLD · · ·DR (or · · ·DL). The
configuration sequence alternates as L1, R1, L1, R1 . . . , and the number
of minimal giant step sequences is the term Fn of the Fibonacci sequence
(F0, F1, F2, . . .) = (1, 1, 2, 3, 5, . . .).

(3) s2s3 · · · s2n+1 = 111 · · · 1, an even number of 1’s, or DRDRDR · · ·DR. The
configuration sequence is R1, R1, . . . , R1, τ is the right-hand endpoint of
∇(n), and there is a unique minimal giant step sequence.
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(4) s2s3 · · · s2n = 111 · · · 1, an odd number of 1’s, or DRDRDR · · ·D. The
configuration sequence is again R1, R1, . . . , R1, but τ lies in a ∇ 2-simplex
below ∇(n), and there are n+ 1 minimal giant step sequences.

Examples of the last two types are obtained from each other by a single additional
cabling construction, even though the numbers of minimal giant step constructions
differ by arbitrarily large amounts.

We can characterize the tunnels that have a unique minimal giant step sequence.
In part (c) of the next proposition, Ci denotes the configuration between ∇(i− 1)
and ∇(i) in the corridor C(τ ) as shown in Figure 4.

Proposition 4.4. Let τ be a tunnel of a nontrivial tunnel number 1 knot, with
τ not simple. Then τ has a unique minimal giant step sequence if and only if it
satisfies one of the following three equivalent conditions:

(a) Its step sequence does not end in “D” and does not contain as a block either
“DLDR” or a noninitial “DRDL”.

(b) Its binary sequence, broken into blocks of 0’s and blocks of 1’s, does not
end in a block of 1’s of odd length and does not contain a block of either
of the forms [1 · · · 1]1110 or [1 · · · 1]1010, where [1 · · · 1] denotes a block of
even (possibly zero) length.

(c) It is an endpoint of the edge ∇(k), where k is the depth of τ , and in the de-
scending sequence of configurations C1C2 · · ·Ck of the corridor, no CiCi−1

is in {L1R1, L2R1, R1L1, R2L1} for 3 ≤ i ≤ k.

Proof. We begin with part (c). When k = 1, there is a unique edge connecting τ
to π0, and the condition in (c) is true. Suppose that k = 2. If τ is not an endpoint
of ∇(2), then τ and the endpoints of ∇(1) bound a ∇ 2-simplex, there are two
minimal-length paths, and the condition in (c) is false. If τ is an endpoint of ∇(2),
then there is a unique edge from τ to a depth-1 tunnel, and consequently a unique
path of length 2 from τ to π0. Condition (c) is true, its latter part vacuously, so
again it gives the correct characterization.

Suppose now that k ≥ 3. As before, λi will denote the number of paths in C(τ )
of length i from π0 to the left endpoint ∂L∇(i), and ρi will denote the number of
paths to ∂R∇(i). We may assume that τ is an endpoint of ∇(k), since otherwise τ
is connected by edges to both endpoints of ∇(k − 1), in which case the number of
minimal sequences is λk−1 + ρk−1 > 1 and (c) is false. In the sequence of tunnels
τj in Definition 4.1, let σi be the last one at depth i, in particular, τ = σk. Let
Ni be the number of distinct minimal length paths from σi to π0, in particular,
N1 = N2 = 1.

We will induct on k, showing in the process that Ni = min{λi, ρi}, that Ni−1 ≤
Ni, and that Ni−1 < Ni only when CiCi−1 is one of the four combinations listed
in (c). Examining the configuration Ck−1, we have four cases:

(L1) Ck−1 = L1, σk−1 = ∂L∇(k − 1), so Nk−1 = λk−1, and λk−1 < ρk−1,
(R1) Ck−1 = R1, σk−1 = ∂R∇(k − 1), so Nk−1 = ρk−1, and ρk−1 < λk−1,
(L2) Ck−1 = L2, σk−1 = ∂L∇(k − 1), so Nk−1 = λk−1, and λk−1 = ρk−1, or
(R2) Ck−1 = R2, σk−1 = ∂R∇(k − 1), so Nk−1 = ρk−1, and λk−1 = ρk−1.

For the inductive step, suppose first that Ck = L1. Examining the configuration
L1, we see that τ = ∂L∇(k) and Nk = λk = λk−1. Also, λk < λk−1+ρk−1 = ρk, so
Nk = min{λk, ρk}. In cases (L1) and (L2), Nk−1 = λk−1 = Nk, and in case (R2),
Nk−1 = ρk−1 = λk−1 = Nk. In case (R1), which produces CkCk−1 = L1R1 and
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makes (c) false, we have Nk−1 = ρk−1 < λk−1, so Nk−1 < Nk and τ does not have a
unique minimal giant step sequence. This completes the induction when Ck = L1.
If Ck = R1, the argument is analogous.

Suppose that Ck = L2. Then again, τ = ∂L∇(k − 1) and Nk = λk = λk−1, but
this time ρk = λk−1 = λk. Again, Nk = min{λk, ρk}. Case (R1) gives Nk−1 < Nk,
and the other cases give Nk−1 = Nk, and again Ck = R2 is analogous. This
completes the induction and the proof of part (c).

Part (a) now follows, since the sequences “DLDR” and a noninitial “DRDL” are
exactly those which produce the four pairs listed in (c) for CiCi−1. For part (b),
observe that in a block of 1’s, the first, third, and so on correspond to downward
steps, and the others to horizontal steps. The four pairs in part (c) correspond
exactly to blocks of the form 1(0 or 1)10 with the initial 1 a downward step, and
this gives (b). �

Proposition 4.4 shows that tunnels having more than one minimal giant step
sequence are generic in any reasonable sense.
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