
Appendix A

The Riemann Zeta
Function

We now give the analytic continuation and the functional equation of
the Riemann zeta function, which is based on the functional equation
of the theta series. First we need the gamma function:

For Re(s) > 0 the integral

Γ(s) =
∫ ∞

0
ts−1e−tdt

converges and gives a holomorphic function in that range. We inte-
grate by parts to get for Re(s) > 0,

Γ(s + 1) =
∫ ∞

0
tse−tdt =

∫ ∞

0
sts−1e−tdt = sΓ(s),

i.e.,

Γ(s) =
Γ(s + 1)

s
.

In the last equation the right-hand-side gives a meromorphic func-
tion on Re(s) > −1, and thus Γ(s) extends meromorphically to that
range. But again the very same equation extends Γ(s) to Re(s) > −2,
and so on. We find that Γ(s) extends to a meromorphic function
on the entire plane that is holomorphic except for simple poles at
s = 0,−1,−2, . . . .

Recall from Section 3.6 the theta series

Θ(t) =
∑
k∈Z

e−tπk2
, for t > 0,
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which satisfies

Θ(t) =
1√
t
Θ
(

1
t

)
,

as was shown in Theorem 3.7.1. We now introduce the Riemann zeta
function:

Lemma A.1 For Re(s) > 1 the series

ζ(s) =
∞∑

n=1

1
ns

converges absolutely and defines a holomorphic function there. This
function is called the Riemann zeta function.

Proof: Since the summands 1/ns are entire functions, it needs to be
shown only that the series

∑∞
n=1 |n−s| converges locally uniformly in

Re(s) > 1. In that range we compute

1
Re(s) − 1

=
x−Re(s)+1

1 − Re(s)

∣∣∣∣∣
∞

1

=
∫ ∞

1
x−Re(s)dx

=
∫ ∞

2
(x − 1)−Re(s)dx ≥

∫ ∞

2
[x]−Re(s)dx

=
∞∑

n=2

n−Re(s) =
∞∑

n=2

∣∣∣∣ 1ns

∣∣∣∣ ,
where for x ∈ R the number [x] is the largest integer k that satisfies
k ≤ x. The lemma follows. �

Theorem A.2 (The functional equation of the Riemann zeta func-
tion)

The Riemann zeta function ζ(s) extends to a meromorphic function
on C, holomorphic up to a simple pole at s = 1, and the function

ξ(s) = π−s/2Γ
(s

2

)
ζ(s)

satisfies
ξ(s) = ξ(1 − s)

for every s ∈ C.
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Proof: Note that the expression dt/t is invariant under the substi-
tution t �→ ct for c > 0 and up to sign under t �→ 1/t. Using these
facts, we compute for Re(s) > 1,

ξ(s) = ζ(s)Γ
(s

2

)
π−s/2 =

∞∑
n=1

∫ ∞

0
n−sts/2π−s/2e−t dt

t

=
∞∑

n=1

∫ ∞

0

(
t

n2π

)s/2

e−t dt

t
=

∞∑
n=1

∫ ∞

0
ts/2e−n2πt dt

t

=
∫ ∞

0
ts/2 1

2
(Θ(t) − 1)

dt

t
.

We split this integral into a sum of an integral over (0, 1) and an
integral over (1,∞). The latter one,∫ ∞

1
ts/2 1

2
(Θ(t) − 1)

dt

t
,

is an entire function, since the function t �→ Θ(t) − 1 is rapidly
decreasing at ∞. The other summand is∫ 1

0
ts/2 1

2
(Θ(t) − 1)

dt

t
=
∫ ∞

1
t−s/2 1

2

(
Θ
(

1
t

)
− 1
)

dt

t

=
∫ ∞

1
t−s/2 1

2

(√
tΘ(t) − 1

) dt

t

=
∫ ∞

1
t−s/2 1

2

(√
t(Θ(t) − 1) +

√
t − 1
) dt

t
,

which equals the sum of the entire function∫ ∞

1
t(1−s)/2 1

2
(Θ(t) − 1)

dt

t

and
1
2

∫ ∞

1
t(1−s)/2 dt

t
− 1

2

∫ ∞

1
t−s/2 dt

t
=

1
s − 1

− 1
s
.

Summarizing, we get

ξ(s) =
∫ ∞

1

(
t

s
2 + t

1−s
2

) 1
2
(Θ(t) − 1)

dt

t
− 1

s
− 1

1 − s
.

�

Using the functional equation and knowing the locations of the poles
of the Γ-function, we can see that the Riemann zeta function has
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zeros at the even negative integers −2,−4,−6, . . . , called the trivial
zeros. It can be shown that all other zeros are in the strip 0 <
Re(s) < 1. The up to now unproven Riemann hypothesis states
that all nontrivial zeros should be in the set Re(s) = 1

2 . This would
have deep consequences about the distribution of primes through the
prime number theorem [13].

This technique for constructing the analytic continuation of the zeta
function dates back to Riemann, and can be applied to other Dirichlet
series as well.



Appendix B

Haar Integration

Let G be an LC group. We here give the proof of the existence of a
Haar integral.

Theorem B.1 There exists a non-zero invariant integral I of G. If
I ′ is a second non-zero invariant integral, then there is a number
c > 0 such that I ′ = cI.

For the uniqueness part of the theorem we say that the invariant
integral is unique up to scaling.

The idea of the proof resembles the construction of the Riemann
integral on R. To construct the Riemann integral of a positive func-
tion one finds a step function that dominates the given function and
adds the lengths of the intervals needed multiplied by the values of
the dominating function. Instead of characteristic functions of in-
tervals one could also use translates of a given continuous function
with compact support, and this is exactly what is done in the general
situation.

Proof of the Theorem: For the existence part, let C+
c (G) be the

set of all f ∈ Cc(G) with f ≥ 0. For f, g ∈ Cc(G) with g �= 0 there
are cj > 0 and sj ∈ G such that

f(x) ≤
n∑

j=1

cjg(s−1
j x).
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Let (f : g) denote

inf

⎧⎨⎩
n∑

j=1

cj

∣∣∣∣ c1, . . . , cn > 0 and there are s1, . . . , sn ∈ G
such that f(x) ≤∑n

j=1 cjg(sjx)

⎫⎬⎭ .

Lemma B.2 For f, g, h ∈ C+
c (G) with g �= 0 we have

(a) (Lsf : g) = (f : g) for every s ∈ G,

(b) (f + h : g) ≤ (f : g) + (h : g),

(c) (λf : g) = λ(f, g) for λ ≥ 0,

(d) f ≤ h ⇒ (f : g) ≤ (h : g),

(e) (f : h) ≤ (f : g)(g : h) if h �= 0, and

(f) (f : g) ≥ max f
max g , where max f = max{f(x)|x ∈ G}.

Proof: The items (a) to (d) are trivial. For item (e) let f(x) ≤∑
j cjg(sjx) and g(y) ≤ ∑k dkh(tky); then

f(x) ≤
∑
j,k

cjdkh(tksjx),

so that (f : h) ≤ ∑j cj
∑

k dk.

For (f) choose x ∈ G with max f = f(x); then

max f = f(x) ≤
∑

j

cjg(sjx) ≤
∑

j

cj max g.

�

Fix some f0 ∈ C+
c (G), f0 �= 0. For f, ϕ ∈ C+

c (G) with ϕ �= 0 let

J(f, ϕ) = Jf0(f, ϕ) =
(f : ϕ)
(f0 : ϕ)

.

Lemma B.3 For f, h, ϕ ∈ C+
c (G) with f, ϕ �= 0 we have

(a) 1
(f0:f) ≤ J(f, ϕ) ≤ (f : f0),
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(b) J(Lsf, ϕ) = J(f, ϕ) for every s ∈ G,

(c) J(f + h, ϕ) ≤ J(f, ϕ) + J(h, ϕ), and

(d) J(λf, ϕ) = λJ(f, ϕ) for every λ ≥ 0.

Proof: This follows from the last lemma. �

The function f �→ J(f, ϕ) does not give an integral, since it is not
additive but only subadditive. However, as the support of ϕ shrinks
it will become asymptotically additive, as the next lemma shows.

Lemma B.4 Given f1, f2 ∈ C+
c (G) and ε > 0 there is a neighbor-

hood V of the unit in G such that

J(f1, ϕ) + J(f2, ϕ) ≤ J(f1 + f2, ϕ)(1 + ε)

holds for every ϕ ∈ C+
c (G), ϕ �= 0 with support contained in V .

Proof: Choose f ′ ∈ C+
c (G) such that f ′ is identically equal to 1

on the support of f1 + f2. For the existence of such a function see
Exercise 8.2. Let δ, ε > 0 be arbitrary and set

f = f1 + f2 + δf ′, h1 =
f1

f
, h2 =

f2

f
,

where it is understood that hj = 0 where f = 0. It follows that
hj ∈ C+

c (G).

Choose a neighborhood V of the unit such that |hj(x)−hj(y)| < ε/2
whenever x−1y ∈ V . If supp(ϕ) ⊂ V and f(x) ≤∑k ckϕ(skx), then
ϕ(skx) �= 0 implies

|hj(x) − hj(s−1
k )| <

ε

2
,

and

fj(x) = f(x)hj(x) ≤
∑

k

ckϕ(skx)hj(x)

≤
∑

k

ckϕ(skx)
(
hj(s−1

k ) +
ε

2

)
,

so that
(fj : ϕ) ≤

∑
k

ck

(
hj(s−1

k ) +
ε

2

)
,
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and so
(f1 : ϕ) + (f2 : ϕ) ≤

∑
k

ck(1 + ε).

This implies

J(f1, ϕ) + J(f2, ϕ) ≤ J(f, ϕ)(1 + ε)
≤ (J(f1 + f2, ϕ) + δJ(f ′, ϕ))(1 + ε).

Letting δ tend to zero gives the claim. �

Let F be a countable subset of C+
c (G), and let VF be the complex

vector space spanned by all translates Lsf , where s ∈ G and f ∈ F .
A linear functional I : VF → C is called an invariant integral on VF

if I(Lsf) = I(f) holds for every s ∈ G and every f ∈ VF and

f ∈ F ⇒ I(f) ≥ 0.

An invariant integral IF on VF is called extensible if for every count-
able set F ′ ⊂ C+

c (G) that contains F there is an invariant integral
IF ′ on VF ′ extending IF .

Lemma B.5 For every countable set F ⊂ C+
c (G) there exists an

extensible invariant integral IF that is unique up to scaling.

Proof: Fix a metric on G. For n ∈ N let ϕn ∈ C+
c (G) be nonzero

with support in the open ball of radius 1/n around the unit. Suppose
that ϕn(x) = ϕn(x−1) for every x ∈ G.

Let F = {f1, f2, . . . }. Since the sequence J(f1, ϕn) lies in the com-
pact interval [1/(f0 : f1), (f1 : f0)] there is a subsequence ϕ1

n of ϕn

such that J(f1, ϕ
1
n) converges. Next there is a subsequence ϕ2

n of ϕ1
n

such that J(f2, ϕ
2
n) also converges. Iterating this gives a sequence

(ϕj
n) of subsequences. Let ψn = ϕn

n be the diagonal sequence. Then
for every j ∈ N the sequence (J(fj , ψn)) converges, so that the defi-
nition

If0,(ψn)n∈N
(fj) = lim

n→∞ J(fj , ψn)

makes sense. By Lemma B.4, the map I indeed extends to a linear
functional on VF that clearly is a nonzero invariant integral.

This integral is extensible, since for every countable F ′ ⊃ F in C+
c (G)

one can iterate the process and go over to a subsequence of ψn.
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This does not alter If0,ψn , since every subsequence of a convergent
sequence converges to the same limit.

We shall now establish the uniqueness. Let IF = If0,ψn be the invari-
ant integral just constructed. Let I be another extensible invariant
integral on VF . Let f ∈ F , f �= 0; then we will show that

If0,ψn(f) =
I(f)
I(f0)

.

The assumption of extensibility will enter our proof in that we will
freely enlarge F in the course of the proof. Now let the notation be
as in the lemma. Let ϕ ∈ F and suppose f(x) ≤∑m

j=1 djϕ(sjx) for
some positive constants dj and some elements sj of G. Then

I(f) ≤
m∑

j=1

djI(ϕ),

and therefore
I(f)
I(ϕ)

≤ (f : ϕ).

Let ε > 0. Since f is uniformly continuous, there is a neighborhood V
of the unit such that for x, s ∈ G we have x ∈ sV ⇒ |f(x)−f(s)| <
ε. Let ϕ ∈ C+

c be zero outside V and suppose ϕ(x) = ϕ(x−1). Let
C be a countable dense set in G. The existence of such a set is clear
by Lemma 6.3.1. Now suppose that for every x ∈ C the function
s �→ f(s)ϕ(s−1x) lies in F . For x ∈ C consider∫

G
f(s)ϕ(s−1x)ds = I(f(.)ϕ(.−1x)).

Now, ϕ(s−1x) is zero unless x ∈ sV , so∫
G

f(s)ϕ(s−1x)ds > (f(x) − ε)
∫

G
ϕ(s−1x)ds

= (f(x) − ε)
∫

G
ϕ(x−1s)ds

= (f(x) − ε)I(ϕ).

Therefore,

(f(x) − ε) <
1

I(ϕ)

∫
G

f(s)ϕ(s−1x)ds.

Let η > 0, and let W be a neighborhood of the unit such that

x, y ∈ G, x ∈ Wy ⇒ |ϕ(x) − ϕ(y)| < η.
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There are finitely many sj ∈ G and hj ∈ C+
c (G) such that the

support of hj is contained in sjW and

m∑
j=1

hj ≡ 1 on supp(f).

Such functions can be constructed using the metric (see Exercise 8.2).
We assume that for each j the function s �→ f(s)hj(s)ϕ(s−1x) lies in
F for every x ∈ C. Then it follows that∫

G
f(s)ϕ(s−1x)ds =

m∑
j=1

∫
G

f(s)hj(s)ϕ(s−1x)ds.

Now hj(s) �= 0 implies s ∈ sjW , and this implies

ϕ(s−1x) ≤ ϕ(s−1
j x) + η.

Assuming that the fhj lie in F , we conclude that∫
G

f(s)ϕ(s−1x)ds ≤
m∑

j=1

I(fhj)(ϕ(s−1
j x) + η).

Let cj = I(hjf)/I(ϕ); then
∑

j cj = I(f)/I(ϕ) and

f(x) ≤ ε + η

m∑
j=1

cj +
m∑

j=1

cjϕ(s−1
j x).

Let χ ∈ C+
c (G) be such that χ ≡ 1 on supp(f). Then

f(x) ≤
⎛⎝ε + η

m∑
j=1

cj

⎞⎠χ(x) +
m∑

j=1

cjϕ(s−1
j x).

This result is valid for x ∈ C in the first instance, but the denseness
of C implies it for all x ∈ G. As η → 0 it follows that

(f : ϕ) ≤ ε(χ : ϕ) +
I(f)
I(ϕ)

.

Therefore,

(f : ϕ)
(f0 : ϕ)

≤ ε
(χ : ϕ)
(f0 : ϕ)

+
I(f)

I(ϕ)(f0 : ϕ)
≤ ε

(χ : ϕ)
(f0 : ϕ)

+
I(f)
I(f0)

.
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So, as ε → 0 and as ϕ runs through the ψn, we get

If0,ψn(f) ≤ I(f)
I(f0)

.

Applying the same argument with the roles of f and f0 interchanged
gives

If,ψn(f0) ≤ I(f0)
I(f)

.

Now note that both sides of these inequalities are antisymmetric in
f and f0, so that the second inequality gives

If0,ψn(f) = If,ψn(f0)−1 ≥
(

I(f0)
I(f)

)−1

=
I(f)
I(f0)

.

Thus it follows that If0,ψn(f) = I(f)/I(f0) and the lemma is proven.
�

Finally, the proof of the theorem proceeds as follows. For every
countable set F ⊂ C+

c (C) with f0 ∈ F , let IF be the unique extensi-
ble invariant integral on VF with IF (f0) = 1. We define an invariant
integral on all Cc(G) as follows: For f ∈ C+

c (G) let

I(f) = I{f0,f}(f).

Then I is additive, since for f, g ∈ C+
c (G),

I(f + g) = I{f0,f+g}(f + g) = I{f0,f,g}(f + g)
= I{f0,f,g}(f) + I{f0,f,g}(g) = I{f0,f}(f) + I{f0,g}(g)
= I(f) + I(g).

Thus I extends to an invariant integral on Cc(G), with the invariance
being clear from Lemma B.5. �



Bibliography

[1] Benedetto, J.: Harmonic Analysis and Applications. Boca
Raton: CRC Press 1997.
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