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Diversity and no arbitrage
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A stock market is called diverse if no stock can dominate the market in terms of relative capi-
talization. On one hand, this natural property leads to arbitrage in diffusion models under mild
assumptions. On the other hand, it is also easy to construct diffusion models which are both
diverse and free of arbitrage. Can one tell whether an observed diverse market admits arbitrage?

In the present paper we argue that this may well be impossible by proving that the known
examples of diverse markets in the literature (which do admit arbitrage) can be approximated
uniformly (on the logarithmic scale) by models which are both diverse and arbitrage-free.
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1. Introduction

Stochastic portfolio theory is a relatively new branch of mathematical finance. It was in-
troduced and studied by Fernholz [2, 3], and then further developed by Fernholz, Karatzas
and Kardaras [4]. It provides a framework for analysing portfolio performance under an
angle which is different from the usual one.

One of the most important notions here is diversity of a market. In short, diversity
means that no single stock is ever allowed to dominate the market. Diversity was proposed
based on empirical grounds and is conform with intuition.

Absence of arbitrage (riskless profit) is the cornerstone of modern mathematical fi-
nance. At the technical level, there are various formulations of arbitrage but basic eco-
nomic considerations forbid that such opportunities persist in a liquid market.

If the log-prices follow an Itô process with uniformly non-degenerate voltility matrix,
diversity of a market implies the existence of arbitrage opportunities relative to the
market portfolio (see section 7 of Fernholz and Karatzas [5]), and thus the non-existence
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of equivalent martingale measure also follows (Proposition 6.2 of Fernholz and Karatzas
[5]).

This situation may seem dramatic at first sight: the common sense notion of diversity
contradicting the most fundamental principle of asset pricing. There must be a way
out: indeed, relaxing the hypothesis of uniformly nondegenerate volatility one may easily
construct models where both diversity and absence of arbitrage hold true. However, a
much harder question immediately arises: can we tell whether the price processes seen
in today’s market (which clearly satisfy the diversity assumption) are arbitrage-free or
not?

In this paper we derive the somewhat unsettling conclusion that possibly there is no
way to answer this question based on statistical analysis. Our conclusions parallel those
of [7].

We are looking at the diverse market models of Fernholz, Karatzas and Kardaras [4]
and Osterrieder and Rheinländer [9]. We prove that under an arbitrarily small model
misspecification diversity is retained but relative arbitrage is not. More precisely, we
show that to these diverse market models (admitting relative arbitrage) there are models
arbitrarily close on the logarithmic scale that no longer admit arbitrage (though they are
still diverse).

The rest of the paper is organized as follows. Section 2 introduces the notion of diversity
presenting examples with and without relative arbitrage opportunities. Section 3 contains
the result on consistent price system that is needed in subsection 2.3. Section 4 provides
a new result on conditional full support in higher dimensions, an extension of the work
of Pakkanen [10].

2. Diversity

Let T > 0 be a fixed time horizon.We consider a filtered probability space (Ω, (Ft)t∈[0,T ],P),
where the filtration is assumed to satisfy the usual conditions with F0 being trivial and
all events belong to FT .

Fernholz, Karatzas and Kardaras [4], see also Fernholz and Karatzas [5], call a market
diverse “if no single stock is ever allowed to dominate the entire market in terms of relative
capitalization”. To give a formulation of this requirement let the positive processes Si,
i = 1, . . . , n, denote the capitalization of the ith company. The market weights of the
companies are defined by

µi(t) =
Si(t)

∑n
j=1 Sj(t)

and we let µ(1)(t) = maxj µj(t) the largest market weight.
A market is called diverse on the time-horizon [0, T ] if there exists δ ∈ (0, 1) such that

µ(1)(t) < 1− δ, almost surely for all t ∈ [0, T ].
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Similarly a market is called weakly diverse on the time-horizon [0, T ] if for some δ ∈ (0, 1)

1

T

∫ T

0

µ(1)(t)dt < 1− δ, almost surely.

A portfolio process π′(t) = (π1(t), . . . , πn(t)) describes the proportion of wealth in-
vested in the stocks. It is required that π is progressively measurable and πi(t) ≥ 0 for
t ∈ [0, T ], i = 1, . . . , n and

∑

i πi(t) = 1 for all t ∈ [0, T ]. An example of a portfolio
process is the market portfolio defined by the market weights µ.

Fernholz and Karatzas [5] consider markets where the evolution of the prices are Itô
processes, written on the logarithmic scale as

d logSi(t) = γi(t)dt+

d
∑

ν=1

σiν(t)dWν (t), i = 1, . . . , n, (1)

where W is a d–dimensional Brownian motion in the filtration F and the coefficients γ, σ

are progressively measurable and satisfy the integrability condition
∫ T

0
|γ(t)|+‖σ(t)‖2dt <

∞.
The value V z,π of a portfolio π with initial value z is given by

dV z,π(t)

V z,π(t)
=

n
∑

i=1

πi(t)
dSi(t)

Si(t)
, V z,π(0) = z.

Given two portfolios π and ρ, we say that π represents an arbitrage opportunity relative
to ρ over the time-horizon [0, T ] if we have V π(0) = V ρ(0) > 0 and

P(V π(T ) ≥ V ρ(T )) = 1 and P(V π(T ) > V ρ(T )) > 0.

It is an interesting property of diverse market models that there exists arbitrage rel-
ative to the market portfolio µ provided that there exist ε,M > 0 finite constants such
that

ε|ξ|
2
≤ |σ′(t)ξ|

2
≤ M |ξ|

2
, a.s. for all t ∈ [0, T ] and ξ ∈ R

n. (2)

Roughly speaking, a(t) = σ(t)σ′(t) is bounded and non-degenerate uniformly in (t, ω) ∈
[0, T ]× Ω.

For the proof of this claim, we refer the reader to [4, 5]. Note that the existence of
relative arbitrage oppotunity excludes the possibility of the existence of an equivalent
martingale measure, although equivalent local martingale measure may exist.

2.1. Examples of diverse market

We recall in this subsection two examples of diverse markets. The first one is due to
Fernholz, Karatzas and Kardaras [4, Theorem 6.1]. In this type of example the drift is
positive for all but the largest company. The drift of the largest price has a log-pole-type
singularity that prevents its market weights to reach 1− δ.
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In the simplest such example, that Fernholz, Karatzas and Kardaras [4] present, the
evolution of the price is written as in (1). The volatility matrix σ satisfies (2). The crucial
assumption is about the drift γ. They fix a vector g = (g1, . . . , gn) of positive numbers.
Then γ is expressed as

γi(t) = 1(µ(t)/∈Oi)gi + 1(µ(t)∈Oi)
M

δ(log(µ(1)(t)) − log(1− δ))
, (3)

where Oi = {x ∈ R
n : maxj<i xj < xi, maxj>i xj ≤ xi}. Then γi is gi except when

the i-th company has the largest market weight. In the latter case γi is negative and
decreases to −∞ as µ(1)(t) approchaes 1 − δ. This negative drift is strong enough to
make the market diverse, that is, it keeps the process S(t) in the open set

O = O(δ) =

{

x ∈ (0,∞)n : max
j

xj

x1 + · · ·+ xn
< 1− δ

}

. (4)

Osterrieder and Rheinländer [9] concerns arbitrage possibilities of diverse markets, in
the usual sense, i.e. in the sense of Delbaen and Schachermayer [1]. They give a general
construction of diverse markets by conditioning the price process to stay in O for the
entire time-horizon [0, T ]. They use a condition called ND, staying for non-degeneracy,
that ensures that arbitrage possibilities exist in the diverse market constructed.

To be more precise and concrete, one can start with a pre-model under some probabil-
ity P0. We may assume, as Osterrieder and Rheinländer [9] do, that under the probability
P0 the price processes are positive continuous local martingales, that is,

dSi(t)

Si(t)
= dMi(t), 1 ≤ i ≤ n, t ≥ 0.

where M is a continuous local martingale under P0.
Then P is obtained by conditioning

P(A) = P0(A | ∀t ∈ [0, T ], S(t) ∈ O), for A ∈ FT .

We apply this construction with a special form of M , namely with

dMi(t) =

d
∑

ν=1

σiν (t)dWν(t),

where the volatility matrix σ satisfies (2) under P0. This condition implies that ND

holds on sufficiently small time-horizons so arbitrage in the usual sense exists under P.
Also, there is arbitrage relative to the market portfolio as (2) holds under P.

2.2. Diverse market models without relative arbitrage

The market with two assets

S1(t) = exp{W1(t)} and S2(t) = exp{W1(t) + arctan(W2(t))}
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(driven by the 2-dimensional Brownian motion W ) is clearly diverse and admits an
equivalent martingale measure at the same time. Note, however, that the volatility of
(log S1, logS2)

′ is not uniformly non-degenerate, which was an important hypothesis for
showing the existence of relative arbitrage.

Our goal now is to show that in many cases, especially in the examples recalled in the
previous subsection, even though diverse markets present relative arbitrage opportunities,
small model misspecifications or proportional transaction costs lead to diverse models
that no longer admit arbitrage.

To state the main theorem of the paper we need the following variant of the notion of
conditional full support.

Definition 1. Let O ⊂ R
n be open set and (S(t))t∈[0,T ] be a continuous adapted process

taking values in O. We say that S has conditional full support in O if for all t ∈ [0, T ]
and open set G ⊂ C([0, T ],O)

P(S ∈ G |Ft) > 0, a.s. on the event S|[0,t] ∈
{

g|[0,t] : g ∈ G
}

. (5)

We will also say that S has full support in O, or simply full support when O = R
n, if

(5) holds for t = 0 and for all open subset of C([0, T ],O).
Recall also, the notion of consistent price system.

Definition 2. Let ε > 0. An ε-consistent price system to S is a pair (S̃,Q), where Q

is a probability measure equivalent to P and S̃ is a Q-martingale in the filtration F, such
that

1

1 + ε
≤

S̃i(t)

Si(t)
≤ 1 + ε, almost surely for all t ∈ [0, T ] and i = 1, . . . , n.

Note, that S̃ is a martingale under Q, hence we may assume that it is càdlàg, but it
is not required in the definition that S̃ is continuous.

Theorem 1. Let O ⊂ (0,∞)n be the open set defined by (4) and assume that the price
process takes values and has conditional full support in O.

Then for any ε > 0 there is an ε-consistent price system (S̃,Q) such that S̃ takes
values in O.

The proof of Theorem 1 is given in Section 3. In the rest of this subsection we show
that the examples recalled in subsection 2.1 have conditional full support in O. Then
Theorem 1 applies and we can conclude that for any ε > 0 there is a price process
S̃, uniformly ε-close to S on the logarithmic scale, such that no arbitrage (absolute or
relative to the market portfolio) possibilities exist for the price S̃.

To check the condition of Theorem 1 we apply the next Theorem whose proof is given
in section 4. To compare it with existing results we mention that it seems to be new in the
sense, that we do not assume that our process solves a stochastic differential equation as
it is done in Stroock and Varadhan [12] and it is not only for one dimensional processes
as it is in Pakkanen [10].



6 A. Herczegh, V. Prokaj and M. Rásonyi

Theorem 2. Let X be a n-dimensional Itô process on [0, T ], such that

dXi(t) = µi(t)dt+
n
∑

ν=1

σiν(t)dWν (t)

Assume that |µ| is bounded and σ satisfies (2). Then X has conditional full support.

Consider first the example of diverse market due to Fernholz, Karatzas and Kardaras
[4], see also the review paper [5], recalled in subsection 2.1. So fix a δ ∈ (0, 1) such that
O(δ) is not empty, and take the coefficients γ defined in (3), with M taken from (2).

Then we take the open sets Ok = O(δ+1/k) for k ≥ 1 and note that for any open set
G ⊂ C([0, T ],O) we have

G =
∞
⋃

k=1

Gk,

where Gk = G ∩ C([0, T ],Ok). Hence it is enough to show that for t ∈ [0, T ]

P(S ∈ G |Ft) > 0, on S|[0,t] ∈
{

g|[0,t] : g ∈ Gk

}

. (6)

Let τk = inf{t ∈ [0, T ] : S(t) /∈ Ok}. Then τk = ∞ exactly when S ∈ C([0, T ],Ok) while
τk = 0 when S(0) /∈ Ok.

For k = 1, 2, . . . we define the process S(k) with the equation

dS(k)(t) = γ(k)(t)dt+ σ(t)dW, S(k)(0) = S(0),

where

γ(k)(t) = γ(t ∧ τk)1(S(0)∈Ok).

Note that S(k) satisfies the conditions of Theorem 2, hence S(k) has conditional full
support (in R

n), and S = S(k) on the event τk = ∞.
The conditional full support property of S(k) gives, for the open set Gk = G ∩

C([0, T ],Ok), that for t ∈ [0, T ]

P
(

S(k) ∈ Gk |Ft

)

> 0, a.s. on S(k)|[0,t] ∈
{

g|[0,t] : g ∈ Gk

}

.

To obtain (6) one has to add only that {S(k) ∈ Gk} = {S ∈ Gk} ⊂ {S ∈ G}. This proves
that Theorem 1 applies to the diverse market constructed by Fernholz, Karatzas and
Kardaras [4].

Next we turn to diverse market model attributed to Osterrieder and Rheinländer in
subsection 2.1. By Theorem 2 the process S has conditional full support under P0. For
an open set G ⊂ C([0, T ],O) we have by Bayes formula

P(S ∈ G |Ft) =
E0

(

1(S∈G)
dP
dP0

|Ft

)

E0

(

dP
dP0

|Ft

) =
P0(S ∈ G |Ft)

P0(S ∈ C([0, T ],O) |Ft)
.
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Since S has conditional full support under P0 both the numerator and the denominator
are positive on the event S|[0,t] ∈ {g|[0,t] : g ∈ G}. Then

P(S ∈ G |Ft) > 0, on S|[0,t] ∈
{

g|[0,t] : g ∈ G
}

.

So S has conditional full support in O under the measure P and Theorem 1 applies to
this type of examples as well.

3. Consistent Price System and Conditional Full

support

The aim of this section is to prove Theorem 1. It will follow from the following reinforce-
ment of a result due to Guasoni, Rásonyi and Schachermayer [6].

Theorem 3. Let O ⊂ R
n be an open set and (S(t))t∈[0,T ] be an O–valued, continuous

adapted process having conditional full support in O.
Besides, let (εt)t∈[0,T ] be a continuous positive process, that satisfies

|εt − εs| ≤ Ls sup
s≤u≤t

|S(u)− S(s)|, for all 0 ≤ s ≤ t ≤ T (7)

with some progressively measurable finite valued (Ls)s∈[0,T ].
Then S admits an ε-consistent price system in the sense that, there is an equivalent

probability Q on FT , a process (S̃(t))t∈[0,T ] taking values in O, such that S̃ is a Q

martingale, bounded in L2(Q) and finally |S(t)−S̃(t)| ≤ εt almost surely for all t ∈ [0, T ].

The main theorem of [6], covers the case when O = (0,∞)n and −ηSi(t)/(1 + η) ≤
S̃i(t)−Si(t) ≤ ηSi(t) for i = 1, . . . , n, with some positive constant η > 0. That is, we get
their result by the choice

εt =
η

1 + η
min
i

Si(t) (8)

and (7) holds with Ls = η. So Theorem 3 contains the result of Guasoni, Rásonyi and
Schachermayer [6] as a special case. We also have to mention the recent paper of Maris
and Sayit [8]. They prove a similar statement with εt = ε constant.

Our Theorem 1 also follows easily from Theorem 3; the choice of εt given in (8) yields
an η-consistent price system evolving in O.

Proof of Theorem 3. To keep the process S̃ inside O we decrease εt, if neccesary, such
that

0 < εt < inf{|St − x| : x /∈ O}, holds for all t ∈ [0, T ]. (9)

Indeed, taking ε̄t = εt ∧
1
2 inf{|St − x| : x /∈ O} the process ε̄ is positive and fulfills (7)

with L̄ = L ∨ (1/2). So in what follows we assume that (9) holds also.
The proof is based on two steps. First, similarly to the proof in [6], a random walk

with retirement is constructed. The properties of this random walk are collected in the
next Lemma.
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Lemma 4. Under the assumption of Theorem 3 there is a sequence of stopping times
(τk)k≥1, a sequence of random variables (Xk)k≥0 and an equivalent probability Q such
that

(i) τ0 = 0, (τk) is increasing and ∪k{τk = T } has full probability,

(ii) (Xk)k≥0 is a Q martingale in the discrete time filtration (Gk = Fτk)k≥0, bounded
in L2(Q),

(iii) if τk ≤ t ≤ τk+1 then |St −Xk+1| ≤ εt.

The second step of the argument is to take S̃t = EQ(X |Ft), where X = limk→∞ Xk.

Then S̃ is a martingale under Q bounded in L2(Q) since the variable X is in L2(Q).
It remains to show that |S̃t − St| ≤ εt for t ∈ [0, T ]. By (9) this ensures also that

S̃t ∈ O. By the right continuity of S̃ and S it is enough to deal with t > 0. For t ∈ (0, T ]
introduce the random index ν = ν(t) = inf{k : τk ≥ t}. Note that ν is almost surely
finite by (i) of Lemma 4. Clearly ν is a G stopping time, and τν is a stopping time in the
filtration F. For the stopped σ-fields we have Gν = Fτν .

Then τν−1 ≤ t ≤ τν by the definition of ν. As (Xk)k≥0 is a martingale, by property
(ii), in the filtration G we have Xν = EQ(X |Gν) = EQ(X |Fτν ). By property (iii)
|St −Xν | ≤ εt. Putting all these together, we get

|St − S̃t| = |St −EQ(X |Ft)| =
∣

∣St −EQ

(

Xν(t) |Ft

)∣

∣ ≤ EQ

(∣

∣Xν(t) − St

∣

∣ |Ft

)

≤ εt.

We use the next corollary of the conditional full support property, which also justifies
the name. It is related to the strong conditional full support in the terminology of [6].
We give at the end of this section a direct proof instead of referring to the indirect proof
using measurable selection of [6].

Corollary 5. Assume that the continuous adapted process S evolving in O has condi-
tional full support in O. Let τ be a stopping time and denote by QS|Fτ

the regular version
of the conditional distribution of S given Fτ .

Then the support of the random measure QS|Fτ
is

suppQS|Fτ
=

{

g ∈ C([0, T ],O) : g|[0,τ ] = S|[0,τ ]
}

, almost surely.

Proof of Lemma 4. Without loss of generality we may assume that ε is decreasing.
Indeed, by taking ε̄t = mins≤t εs, we have 0 < ε̄t ≤ εt and for s ≤ t

|ε̄t − ε̄s| ≤ sup
s≤u≤t

|εu − εs| ≤ Ls sup
s≤u≤t

|Su − Ss|

So the condition (7) holds for ε̄ as well.
So in what follows we assume that (εt)t∈[0,T ] is decreasing and (9) holds.
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The definition of (τk, Xk)n≥0 is then straightforward. We take τ0 = 0 and X0 = S0. If
(τk, Xk) are already defined then we take

τk+1 = T ∧ inf{t > τk : |St − Sτk | > εt/2},

Xk+1 = Xk1(τk+1=T ) + Sτk+1
1(τk+1<T ).

Now, it is easily seen from the definition that |Xk+1 − Sτk | ≤ ετk+1
/2. Indeed, there are

three cases

(1) τk+1 < T , then Xτk+1
= Sτk+1

and the estimation follows by the choice of τk+1.
(2) τk < T = τk+1, then Xk+1 = Xk = Sτk and the estimation is obvious.
(3) τk = τk+1 = T . Then there is k0 < k such that τk0

< τk0+1 = T , and Xk+1 = Xk =
· · · = Xk0

= Sτk0
and Sτk = ST = Sτk0+1

. By the choice of τk0+1 we have that
|Xk+1 − Sτk | = |Sτk0+1

− Sτk0
| ≤ εT /2 = ετk+1

/2.

Then for τk ≤ t ≤ τk+1

|Xk+1 − St| ≤ |Xk+1 − Sτk |+ |St − Sτk | ≤
1

2
(ετk+1

+ εt) ≤ εt

as ε is decreasing. Hence Property (iii) holds.
Property (i) follows easily from the continuity of the sample path of S on [0, T ]. Indeed,

assume that for a given ω, we have τk(ω) < T for all k. Then at τ(ω) = supk τk(ω) the
sample path S(ω) could not be continuous, as |Sτk+1

(ω)− Sτk(ω)| ≥ εT (ω)/2.
To construct the probability measureQ and prove Property (ii) we apply the argument

of Guasoni, Rásonyi and Schachermayer [6]. With the notation ∆k+1 = Xk+1 −Xk they
showed that if

0 ∈ int conv suppQ∆k+1|Fτ
k

, almost surely on τk+1 < T (10)

P(τk+1 = T |Fτk) > 0. (11)

then there exists an equivalent probabilityQ satifying the requirements of the statement.
Roughly speaking, (10) implies the existence of Zk such that E

(

Zk∆k |Fτk−1

)

= 0

and E
(

Zk |Fτk−1

)

= 1. One can define Zk in such a way that it charges most of the mass
to the events {τk = T }. With this it is possible to achieve that

E
(

Zk|∆k|
2
∣

∣

∣
Fτk−1

)

≤ 2−k, (12)

and that the partial products Lk =
∏k

ℓ=1Zℓ are convergent in L1. Then with L =
∏

Zk

and dQ = LdP, using (12) one can show that X ∈ L2(Q). For details we refer the reader
to the proof of Theorem 1.2 in [6, pages 508-510].

So to finish the proof we have to show (10) and (11). Note, that it is enough to
elaborate the proof for k = 0 and F0 being trivial, as by conditioning on Fτk and linearly
relabelling the time interval [τk, T ] into [0, T ] we can reduce the general case to this
special case. Indeed all our arguments are based on full support of the conditional law of
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S given Fτk , the properties of (S, ε) given in (7), (9) and the non-increase of ε. Each of
these hold under the regular version of the conditional law of (S, ε) given Fτk and they
are not sensitive to a continuous time-change. Even though the time-change is random
it depends only on τk, which is measurable with respect to Fτk .

For (11) it is enough to show that P(τ1 = T ) > 0. Given L0, ε0 we define η =
ε0/(3(L0 ∨ 1)). Then

P(∀t ∈ [0, T ], |St − S0| < η) > 0, (13)

by Corollary 5. Using condition (7) we have

εt ≥ ε0 − L0η ≥
2

3
ε0 ≥ 2η > 2|St − S0|, for all t ∈ [0, T ] when sup

t∈[0,T ]

|St − S0| < η .

That is
{

sup
t∈[0,T ]

|St − S0| < η

}

⊂ {τ1 = T }.

Hence (11) follows by (13) in the special case k = 0 and Fτ0 being trivial, and also in the
general case as we have already remarked in the previous paragraph.

Next we turn to (10). For the special case k = 0 and Fτ0 trivial, it simplifies to (by a
slight abuse of notation)

0 ∈ int conv supp(X1 −X0). (14)

So we prove (14), from this the general case follows.
Let us denote by πr the projection onto the ball with center 0 and radius r, that is

πr(y) =

{

r
|y|y |y| ≥ r,

y otherwise.

We show below that there is a positive δ such that πδ(supp(X1−X0)) contains the entire
sphere {y : |y| = δ}. This clearly implies (14).

Let v be a unit vector in R
n and η > 0. Define

Gη = {g ∈ C([0, T ],O) : |g(t)− (S0 + vε0t/T )| < η, t ∈ [0, T ]}.

By (9) ε0 is smaller than the distance of S0 from the complement of O, hence Gη is a
non-empty open subset of C([0, T ],O). By the full support property P(S ∈ Gη) > 0 for
all η > 0.

When S ∈ Gη and η is smaller than ε0/2, then S exits the ball with center S0 and
radius ε0/2 hence τ1 < T . At τ1 we have that |X1 −X0| = |Sτ1 − S0| = ετ1/2 and by (7)

ετ1 ≥ ε0 − L0 sup
0≤u≤τ1

|Su − S0|
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Define f(t) = S0 + vε0t/T . Since S ∈ Gη

sup
0≤u≤τ1

|Su − S0| ≤ η + sup
0≤u≤τ1

|f(u)− S0|

= η + |f(τ1)− S0| ≤ 2η + |Sτ1 − S0|

= 2η +
1

2
ετ1 ,

that is

ετ1 ≥ ε0 − L0(2η +
1

2
ετ1), ετ1 ≥

ε0 − L02η

1 + L0/2

and

|X1 −X0| =
ετ1
2

≥
ε0 − L02η

2 + L0
.

Now, taking η so small that 2L0η < ε0/2 and δ = ε0/(4+2L0) we obtain that the closed
set πδ(supp(X1 −X0)) intersects the set {y : |y| = δ, |y − δv| ≤ η}. Since this is true
for all η small enough and unit vector v (14) follows and the proof is complete.

Proof of Corollary 5. For a fixed openG ⊂ C([0, T ],O) the processMt = P(S ∈ G |Ft)
is a non-negative martingale. We may take the càdlàg version of this martingale. Let
A = {Mτ = 0}. Then by the martingale property (Mt −Mt∧τ )1A =

∫ t

0
1A1(τ<s)dMs is

a non-negative martingale starting from zero, hence

P(∀t ∈ [0, T ], (Mt −Mt∧τ )1A = 0) = 1. (15)

We use the notation Gt = {g|[0,t] : g ∈ G} and note that as S has conditional full
support in the sense of Definition 1 we have that Mt > 0 on the event S|[0,t] ∈ Gt.

Next we approximate τ by stopping times τk = 2−k([2kτ ] + 1) and note that by (15)

A ∩ {τk = ℓ2−k} ⊂ {Mℓ2−k = 0},

holds up to a null set. Thus

Ac ∩ {τk = ℓ2−k} ⊃ {Mℓ2−k > 0} ∩ {τk = ℓ2−k} ⊃ {S|[0,ℓ2−k] ∈ Gℓ2−k} ∩ {τk = ℓ2−k}

Taking union we obtain
Ac ⊃ {S|[0,τk] ∈ Gτk},

and

Ac ⊃
∞
⋃

k=1

{S|[0,τk] ∈ Gτk} = {S|[0,τ ] ∈ Gτ},

where in the last step we used that τk approaches τ from the right and G is open. On
the other hand {S|[0,τ ] /∈ Gτ} ⊂ A is obvious so we can conclude that the events

Ac = {Mτ = P(S ∈ G |Fτ ) > 0}, and {S|[0,τ ] ∈ Gτ}



12 A. Herczegh, V. Prokaj and M. Rásonyi

are equal up to a negligible event.
Since the space C([0, T ],O) is second countable, its topology has a countable base

and we may conclude that there is Ω′ of full probability such that on Ω′ for all open
G ⊂ C([0, T ],O)

QS|Fτ
(G) > 0, exactly when S|[0,τ ] ∈ Gτ .

But then for ω ∈ Ω′ the support of the random Borel measure QS|Fτ
(., ω) on C([0, T ],O)

is the (random) closed set {g : g|[0,τ(ω)] = S(ω)|[0,τ(ω)]} as stated.

4. Conditional full support; extension of a result of

Pakkanen

In this section we prove Theorem 2. That is, we give a sufficient condition for a multidi-
mensional continuous semimartingale to have full support. It also gives the conditional
full support of the process. As we already remarked it seems to be new in the sense, that
we do not assume that our process solves a stochastic differential equation as it is done
in [12] and it is not only for one dimensional processes as it is in [10]. We use comparison
with a squared Bessel process of suitably chosen dimension.

Theorem 6. Let X be a d-dimensional Itô process, such that

dXt = µtdt+ σtdWt

Assume that |µ|, ‖a‖ and ‖a−1‖ are bounded processes, where at = σtσ
′
t. Then X has

full support.

The conditional full support of X , that is Theorem 2, follows from the observation
that (Xu)u∈[s,T ] under the regular version of its conditional law given Fs is an Itô process
on the time interval [s, T ] satisfying the assumptions of Theorem 6.

As it is observed in [10], under the assumption of Theorem 6, it is enough to consider
the case when µ = 0, X0 = 0 and G is an open ball around the identically zero function.
This is the content of Proposition 7 below. When µ = 0 and X0 = 0 the process X is a
martingale starting from zero, whose quadratic variation process 〈X〉t =

∫ t

0 atdt satisfies

cId ≤ at =
d〈X〉t
dt

≤ CId, for all t ≥ 0. (16)

Here Id is the identity matrix of dimension d.
We can also assume that X is defined on [0,∞) although in Theorem 6 it is defined

only on [0, T ]. We can simply extend it using an independent d dimensional Brownian
motion B, by the formula

X̃t =

{

Xt if t ≤ T ,

c′Bt−T +XT if t > T

where c′ ∈ [c, C] is arbitrary.
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Proposition 7. Assume that for the d–dimensional continuous martingale (Xt,Ft)t≥0

with X0 = 0 (16) holds. Then for all T > 0 and ε > 0

P

(

sup
t≤T

|Xt| ≤ ε

)

> 0.

Proof. Let Rt = |Xt|
2
=

∑d
i=1(X

(i)
t )2. Then

Rt = 2

∫ t

0

√

Rs
XT

s dXs

|Xs|
+Tr(〈X〉t)

By (16)

Nt =

∫ t

0

XT
s dXs

|Xs|

is a one dimensional martingale with c ≤
d〈N〉

t

dt ≤ C. Let (η(t))t≥0 be the time change
making N a one-dimensional Brownian motion βt = Nη(t). For the time changed process

R̃t = Rη(t) we have Rt = R̃〈N〉
t
and

R̃t = Rη(t) = 2

∫ t

0

√

R̃sdβs +

∫ t

0

b(s)ds

Here b(s) = Tr(aη(s))
dη(s)
ds and 0 ≤ b(s) ≤ Cd/c.

Now we compare R̃ to the solution of

dZt = 2
√

Ztdβt + δdt, Z0 = 0.

where δ ≥ dC/c. Note that the drift of Z is bigger than that of R̃.
Then by a standard comparison result of the solutions of SDEs, R̃t ≤ Zt for all t ≥ 0,

see [11, chapter IX, (3.7) Theorem on page 394.]. This argument is based on two simple
observation. First, R̃−Z can not accumulate local time at level zero, and then by Tanaka
formula |R̃−Z|+ is a non-negative continuous semimartingale starting from zero having

non-positive drift. This is only possible if |R̃− Z|+ is identically zero.
Now, Z is a squared Bessel process of dimension δ, so it stays below ε2 on [0, s] with

positive probability for any ε > 0 and s ≥ 0. Since, Rt = R̃〈N〉
t
and 〈N〉t ≤ CT for t ≤ T

we have that

P

(

sup
s≤T

|Xs| < ε

)

= P

(

sup
s≤T

Rs < ε2
)

≥ P

(

sup
s≤CT

R̃s < ε2
)

≥ P

(

sup
s≤CT

Zs < ε2
)

> 0.
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