




Material Constants A

Element Lattice a c Tm E ν ̺ D0 Q

[Å] [Å] [K] [GPa] [gcm−3] [cm2s−1] [eV ]

Ag fcc 4.09 1234 83 0.37 10.5 0.400 1.92
Al fcc 4.05 933 70 0.34 2.70 1.300 1.55
Au fcc 4.08 1336 78 0.44 19.32 0.090 1.81
Be hex 2.27 3.59 1560 305 0.05 1.85 1.370 1.13
Cd hex 2.98 5.62 594 50 0.44 8.64 0.050 0.79
Cr bcc 2.88 2163 279 0.21 7.14 0.200 3.19
Co hcp 2.51 4.07 1765 206 0.31 8.89 0.830 2.95
Cu fcc 3.62 1356 130 0.34 8.93 0.200 2.05
Fe bcc 2.87 1809 211 0.29 7.87 5.800 2.92
K bcc 5.32 337 4 0.35 0.86 0.310 0.42
Mg hcp 3.21 5.21 923 44 0.29 1.74 1.300 1.40
Mo bcc 3.15 2888 325 0.30 10.28 0.100 4.01
Na bcc 4.29 371 9 0.32 0.97 0.240 0.46
Nb bcc 3.30 2740 104 0.38 8.58 12.000 4.57
Ni fcc 3.52 1728 202 0.31 8.91 1.300 2.91
Pb fcc 4.95 600 16 0.44 11.34 0.280 1.05
Pt fcc 3.92 2062 170 0.39 21.45 0.330 2.95
Sn tet 5.83 505 54 0.33 7.29 0.780 1.13
Ta bcc 3.30 3269 185 0.35 16.67 0.120 4.29
Ti hex 2.95 4.68 1948 116 0.32 4.51 6 · 10−8 1.27
U orth 5.88 1403 120 0.23 18.70 0.002 4.97
V bcc 3.03 2175 127 0.36 6.09 0.011 2.64
W bcc 3.17 3683 411 0.28 19.26 5.600 5.92
Zn hex 2.66 4.95 693 105 0.29 7.14 0.130 0.95
Zr hex 3.23 5.15 2125 96 0.33 6.51 0.002 1.65

a lattice constant hex hexagonal
bcc body-centered cubic Lattice lattice structure (300 K)
c lattice constant normal to basal plane ort orthorhombic
D0 factor of self diffusion Q activation energy of self diffusion
eV electron volt Tm melting point
E elastic bulk modulus (300 K) tet tetragonal
fcc face-centered cubic ν Poisson’s ratio (300 K)
hcp ≈ hexagonal close packed ̺ density (300 K)



Material Constants B

Element cp σ P Tb M TD ES N

[cal (g K)−1] [(µΩm)−1] [K] [K] [1022cm−3]

Ag 0.056 62.5 1.9 2483 107.87 225 4d10 5s 5.85
Al 0.215 36.2 1.5 2723 26.98 428 3s2 3p 6.02
Au 0.031 45.0 2.4 3243 196.97 165 5d10 6s 5.90
Be 0.450 15.2 1.5 3043 9.01 1440 2s2 12.10
Cd 0.055 13.1 1.7 1038 112.40 209 4d10 5s2 4.64
Cr 0.110 6.7 1.6 2938 51.97 630 3d5 4s 8.33
Co 0.099 11.1 1.8 3173 58.93 445 3d7 2s2 8.97
Cu 0.092 56.0 1.9 2868 63.54 343 3d10 4s 8.45
Fe 0.110 10.0 1.8 3273 55.85 470 3d6 4s2 8.50
K 0.177 13.3 0.8 1033 39.10 91 4s 1.40
Mg 0.250 21.7 1.2 1380 24.31 400 3s2 4.30
Mo 0.061 21.0 1.8 5833 95.94 450 4d5 5s 6.42
Na 0.295 20.0 0.9 1165 22.99 158 3s 2.65
Nb 0.065 6.3 1.6 3573 92.91 275 4d4 5s 5.56
Ni 0.105 11.5 1.8 3003 58.71 450 3d8 4s2 9.14
Pb 0.031 4.8 1.8 1998 207.19 105 6s2 6p2 3.30
Pt 0.032 9.0 2.2 4803 195.09 240 5d9 6s 6.62
Sn 0.054 8.3 1.8 2543 118.69 200 5s2 5p2 3.62
Ta 0.036 6.5 1.5 5698 180.95 240 5d3 6s2 5.55
Ti 0.126 3.5 1.5 3533 47.90 420 3d2 4s2 5.66
U 0.028 1.6 1.7 4091 238.03 207 5f3 6d 7s2 4.80
V 0.120 5.3 1.6 3723 50.94 380 3d3 4s2 7.22
W 0.032 18.0 1.7 6203 183.85 400 5d4 6s2 6.30
Zn 0.092 16.5 1.6 1179 65.37 327 3d10 4s2 6.55
Zr 0.066 2.5 1.4 3853 91.22 291 4d2 5s2 4.29

cp specific heat (300 K – 400 K) σ electrical conductivity (300 K)
ES electronic structure Tb boiling point (760 Torr)
N atomic concentration (300 K) TD Debye temperature
M atomic weight P Pauling’s electronegativity
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Author’s Preface

The recent advance of numerical prediction methods in nearly all domains of materials
science and engineering has established a new, exciting, interdisciplinary approach which
is often referred to as “computational materials science”. It brings together elements from
materials science, physics, computer science, mathematics, chemistry, and mechanical en-
gineering. For instance, simulations in the field of materials physics concentrate on the
investigation of lattice and defect dynamics at the atomic scale using molecular dynamics
and Monte Carlo methods. Materials-related simulations in the field of mechanical en-
gineering focus on large-scale construction problems, using finite element methods where
the microstructure is incorporated by using averaging constitutive laws. In contrast to
these examples, the classical domain of materials science can be seen in the investiga-
tion of lattice defects and their interactions at the mesoscale. Performing simulations
on this particular scale is a great challenge, in that it must bridge enormous space and
time scales and provide concepts to describe adequately complex many-body interaction
phenomena. For this purpose a variety of new concepts has been developed which en-
ables one to handle the interaction of many individual lattice defects in a more or less
discrete manner at dimensions above the atomic scale and below the macroscopic scale.
These so-called mesoscale simulation methods include deterministic and probabilistic cel-
lular automata with global and local transformation rules, Ginzburg–Landau-type phase
field kinetic methods, dislocation dynamics, polycrystal and non-linear crystal plasticity
finite element models, geometrical and component models, topological network or vertex
models, and multistate kinetic Potts-type Monte Carlo approaches. However, classical
techniques such as molecular dynamics, Metropolis Monte Carlo, and conventional finite
element simulations are also used extensively.

Although an increasing body of excellent conference proceedings, monographs, and
journals are available covering particular aspects of computational materials science, no
comprehensive overview of that field exists (see General Reading). This contribution aims
to fill that gap. It gives a review of modern approaches to the space- and time-discretized
simulation of materials microstructures, together with the respective theoretical back-
grounds, that currently prevail in materials science. Particular emphasis is placed on the
fundamentals of space- and time-discretized simulations of materials microstructures at
the mesoscale.

The book comprises five Parts. Part I is entitled Introduction and Fundamentals.
After the Introduction it concentrates on aspects which are scale-independent, namely,
definitions and notions used in modeling and simulation, and fundamentals of solving
differential equations. The sequence of the ensuing Parts reflects the spatial and temporal
hierarchy of microstructure, i.e., it presents simulation methods at the nanoscopic–micro-
scopic (Part II), microscopic–mesoscopic (Part III), and mesoscopic–macroscopic levels
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(Part IV). The last chapter provides a review of integrated, i.e., of scale-bridging, mo-
deling and simulation (Part V). Part II (on the nano–micro level) focuses on the various
Metropolis Monte Carlo and molecular dynamics approaches. Part III (on the micro–
meso level) concentrates on dislocation dynamics, Ginzburg–Landau-type diffuse phase
field kinetic methods, cellular automata, multistate and kinetic Potts models, geometrical
and component models, and topological network and vertex models. Part IV (on the
meso–macro level) presents large-scale finite element and finite difference and polycrystal
models. The chapters are complemented by a discussion of typical applications in the
field of materials science and representative examples.

Due to the fact that it is particularly those simulations that predict microstructure
evolution and microstructure–property relations at the micro–mesoscale, the theoretical
concepts and methods in Part III are discussed in greater detail and furnished with elemen-
tary examples from plasticity, recrystallization and grain growth phenomena, solid-state
diffusion, and phase transformation.

The Appendices present a list of suggested general reading, some basic aspects of
computer science, advanced empirical techniques such as fuzzy logic and artificial neuronal
networks, and a brief introduction to percolation theory.

The book addresses students at the graduate and undergraduate levels, lecturers,
materials scientists and engineers, as well as materials-oriented physicists, chemists, ma-
thematicians, and mechanical engineers. Any offer of criticism, advice, or example that
might help to improve this text will be highly appreciated.

This book was written during my time at the Institut für Metallkunde und Metall-
physik at Rheinisch-Westfälische Technische Hochschule Aachen and at the Department
of Materials Science and Engineering at Carnegie Mellon University in Pittsburgh. My
warmest thanks are due to my mentors Prof. Dr. G. Gottstein and Prof. Dr. Dr. h.c. K.
Lücke, who have steadily promoted and profoundly stimulated my work. I am particu-
larly indebted to Prof. Dr. H. Mughrabi, Prof. Dr. D. J. Srolovitz, Dr. U. F. Kocks, and
Prof. Dr. A. D. Rollett for discussions and a number of helpful comments. Furthermore, I
am grateful to Prof. Dr. D. M. Barnett, Prof. Dr. M. Berveiller, Prof. Dr. W. Blum,
Prof. Dr. Y. Bréchet, Prof. Dr. U. Glatzel, Dr. P. Gumbsch, Prof. Dr. J. P. Hirth,
Prof. Dr. P. Neumann, Prof. Dr. W. Mao, Prof. Dr. H. Mecking, Dr. D. Rönnpagel, the
late Prof. Dr. J. Schlipf, Prof. Dr. S. Schmauder, Prof. Dr. L. Shvindlerman, Prof. Dr. Z.
Sun, Prof. Dr. L. Tóth, and Prof. Dr. P. van Houtte for stimulating discussions and fruitful
comments.

I am deeply grateful to my friends and colleagues at the Institut für Metallkunde
und Metallphysik, especially to the computer simulation group. Moreover, I would like
to express my warmest thanks to the computer maintenance and programming group,
especially to M. Loeck. The generous financial support of the Deutsche Forschungsge-
meinschaft, particularly through the Sonderforschungsbereich 370 “Integrative Werkstoff-
modellierung” (Collaborative Research Center on Integrated Modeling of Materials) and
through the Heisenberg stipend, has to mentioned here with gratitude. The kind support
and the hospitality of the Department of Materials Science and Engineering at Carnegie
Mellon University is gratefully acknowledged. Finally, I would like to thank Dr. J. Rit-
terbusch and M. Petersen of Wiley-VCH for their kind and valuable advise.

Dierk Raabe, Berlin, February 1998
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Abbreviations Used Frequently In Computational Materials Science

Abbreviation Translation

bcc body-centered cubic
BWG Bragg–Williams–Gorsky model
CA cellular automata
CCA classical cellular automata
CH Cahn–Hilliard theory
CRSS critical resolved shear stress
CVM cluster variation method
DFT discrete Fourier transform
DOF degree of freedom
EAM embedded atom method
fcc face-centered cubic
FC full-constraints Taylor model
FD/FDM finite difference method
FE/FEM finite element method
FFT fast Fourier transform
FHP Frisch–Hasslacher–Pomeau
GCA generalized cellular automata
GL Ginzburg–Landau form
HF Hartree–Fock approach
IMS integrated modeling and simulation
LAP Los Alamos Plasticity code
LCAO linear combination of atomic orbitals
LD lattice dynamics
LDF local electron density functional theory
LIM linear iteration method
LJ Lennard–Jones potential
MC Monte Carlo method
MD molecular dynamics
MFA molecular field approximation
MRT2 Metropolis–Rosenbluth–Rosenbluth–Teller–Teller

method
NIM natural iteration method
NN nearest neighbor
NNN next nearest neighbor
ODF orientation distribution function
PC Portevin–Le Chatelier (dynamic strain aging)
RX recrystallization
RC relaxed-constraints Taylor model
RVE representative volume element
SC self-consistent model



Abbreviations Used Frequently In Computer Science

Abbreviation Translation

ANN artificial neural networks
AP array processor

ASCII American standard code of information interchange
ASIC application-specific integrated circuit
bit binary digit
BLAS basic linear algebra subroutines
byte smallest adressable memory unit, 8 bit + 1 test bit

CISC complex instruction set computer
CM connection machine
CMOS complementary metal oxide semiconductor
CMOSFET complementary metal oxide field-effect transistor
CPI cycles per instruction

CPU central processor unit
ECL emitter-coupled logic
FLOP/s floating point operations per second
Gbyte 109 (Giga) byte
GFLOP/s 109 (Giga) floating point operations per second

GSI Giga-scale integration
HPF high-performance FORTRAN
IC integrated circuit
LSI large-scale integration
MESFET semiconductor field-effect transistor

MFLOP/s 106 (Mega) floating point operations per second
MIMD multiple instruction stream–multiple data stream
MIPS million instructions per second
MISD multiple instruction stream–single data stream
MLP multilayer perceptron (neural network)

MOSFET metal oxide field-effect transistor
MPP massively parallel programed
MSI mid-scale integration
RISC reduced instruction set computer
SISD single instruction stream–single data stream

SIMD single instruction stream–multiple data stream
SOM self-organizing map (neural network)
SSI small-scale integration
TFLOP/s 1012 (Tera) floating point operations per second
ULSI ultra large-scale integration

VLIW very long instruction word
VLSI very large-scale integration



Symbols

Symbol Meaning

a chemical activity
A unit area
A, Aijkl fourth-rank accommodation tensor in self-consistent

models
Å Ångstrøm, 10−10 m
AMP interface area between matrix and precipitation
Az Zener’s anistropy ratio
b, bi Burgers vector
B magnetic field
Bel elastic bulk modulus
C60 Buckminster fullerene, containing 60 C atoms
c velocity of sound
c, cp, cV heat capacity (isobaric, isochoric)
cvac equilibrium concentration of vacancies
cM(R) matrix concentration near the surface of a precipitation

with radius R
C , Cijkl fourth-rank stiffness tensor
C ′, C′

ijkl Hashin–Shtrikman stiffness tensor variable

C̃ , C̃′
ijkl Hashin–Shtrikman stiffness tensor

p pressure

D̃i chemical diffusion coefficient of component i

Dgb grain boundary diffusion constant
D diffusion constant; subgrain size
E error of approximate FEM solutions
E elastic modulus
Ed energy of the dislocation core
Ekin kinetic energy
Epot potential energy

EG Green–Lagrange strain tensor
F , Fi force vector
F , ri,j = ∂ri/∂xj deformation gradient tensor

Ḟ , ṙi,j = ∂ṙi/∂xj deformation gradient rate tensor
F Helmholtz free energy

F̃ Helmholtz free energy functional
f(c) Helmholtz free energy density
g = g(ϕ1, φ, ϕ2) orientation, rotation matrix
∆g = ∆g(ϕ1, φ, ϕ2) misorientation
G Gibbs free enthalpy
g Gibbs free enthalpy density
G0 surface-dependent part of Gibbs free enthalpy
GA surface-independent part of Gibbs free enthalpy
Gij(x,x

′) = Gij(x − x′) time-independent Green’s tensor function
~ = h/(2π) Planck’s constant divided by 2π
H enthalpy
H f enthalpy of formation
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Hm enthalpy of migration
H Hamilton energy operator
HIsing Hamiltonian in Ising models
HPotts Hamiltonian in Potts models
H , ui,j = ∂ui/∂xj displacement gradient tensor

Ḣ , u̇i,j = ∂u̇i/∂xj velocity gradient tensor
{hkl}〈uvw〉 Miller indices (slip systems, crystal orientation)
I1, I2, I3 invariants of the stress tensor
I diffusion flux through precipitate surface
I unit tensor
J1, J2, J3 invariants of the stress deviator
J exchange interaction energy
j particle flux, net number of particles which pass through

a plane of unit area in time
jα
B flux of particle type B in phase α

Kelem element stiffness matrix (FEM)
kB Boltzmann constant
L∗ interaction tensor in self-consistent models

L̂ij symmetric matrix of kinetic operators
L Lagrange–Euler function
M s

ij matrix of the geometry coefficients which relates the
resolved shear stress to the stress tensor

m mass, strain rate sensitivity, mobility
M magnetization, Taylor factor
M , Mij matrix of mobility coefficients; symmetric part of the

generalized Schmid factor

M̂ij symmetric Onsager kinetic operator matrix
n, ni unit normal vector
n0 equilibrium value of the electron density
N particle number in a canonical ensemble
N V T macrocanonical ensemble
N V E microcanonical ensemble
N , P , T isobaric-isothermal ensemble
Ni ith particle or atom
NL Loschmidt number, 6.02 1023 /mol, Avogadro’s constant
N , V , ξ grandcanonical ensemble
p1, ..., pN set of momentum vectors of all N particles in a

canonical ensemble
r1, ..., rN set of position vectors of all N particles in a

canonical ensemble
P (〈si〉) probability of a configuration 〈si〉
Pi(+), Pi(−) single-site probabilities for “spin up” (+) and

“spin down” (-)
Pnc(k, i) cluster-type correlated probability
P , Pi body force vector
pi momentum vector of the ith particles in a canonical ensemble
ps pico second, 10−12 s
qTF reciprocal of the Thomas-Fermi screening length
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qD radius of a Debye sphere
qexp experimentally observed quantity q
〈q (Γ(t))〉time time average
〈q〉ens ensemble average of a quantity q
Q activation energy
Qm activation energy of grain boundary mobility
q, qi Rodrigues vector
R, Rij rigid-body rotation
R particle radius in the Gibbs–Thomson equation
1/R crystal curvature
ri position vector of the ith particle in a canonical ensemble
1/Rc cell wall curvature
Si microstructure parameter
S, Sijkl fourth-rank compliance tensor
S′, S′

ijkl Hashin–Shtrikman compliance tensor variable

S̃, S̃′
ijkl Hashin–Shtrikman compliance tensor

tw waiting time in front of obstacles
tg gliding time between obstacles
T temperature
T , V , µ grandcanonical ensemble
Tc Curie temperature
T , Ti traction vector
U internal energy
U(Ω) cohesive energy contribution in a pair potential
V volume
vF Fermi velocity of electrons
v interface velocity
W elastic energy density
w (Γ) probability function
(zz)ij symmetric Christoffel stiffness matrix
(zz)−1

ij inverse of the Christoffel stiffness matrix

Z zustandsintegral, canonical partition function

Greek Symbols

β 1/ (kB T )
χ coupling factor in self-consistent models
∆ Laplace operator; increment
δij Kronecker symbol
η(r, t) structure variable in kinetic field models
ε, εij strain tensor
εii dilatation, trace of the strain tensor
ε̇, ε̇ij strain rate tensor
ǫijk totally antisymmetric Levi–Civita permutation operator
Γ (t) vector in phase space
γc specific energy of subgrain walls
γ activity coefficient



ix

γt shear on slip system t
γ̇t shear rate on slip system t
κ positive constant related to interfacial constants
Λ second Piola–Kirchhoff tensor
Λ interface mobility
λ Lamé’s constant, obstacle spacing
µ modulus of rigidity, shear modulus; chemical

potential
µγ

A chemical potential of atom type A in phase γ
∇ nabla operator
ν Poisson’s ratio
ϕ1, φ, ϕ2 Euler angles
ωD Debye frequency
Ω average atomic volume
Ω plastic spin
ω, ωij rigid-body rotation, antisymmetric part of the

displacement gradient tensor
ω̇, ω̇ij rigid-body rotation rate
̺ dislocation density; mass density
̺i dislocation density in the cell interior
̺w dislocation density in the cell walls
ρ(Γ) phase space density, probability density
σAM specific interface energy between matrix

and particle
σ, σij stress tensor
σii trace of the stress tensor
σh hydrostatic stress
σc, σc

ij microscopic or local stress tensor (crystal)
σe, σe

ij macroscopic stress tensor (external, matrix)
Θ Debye temperature
τt resolved shear stress on slip system t
τ crit

t critical resolved shear stress on slip system t
φ Airy stress function
ψij(rij) pair potential
ξ(x, t) Langevin noise term
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Chapter 1

Introduction

Modern materials science is based on the fundamental experience that the properties of
materials are not unalterably determined by their average chemical composition but they
are to a large extent influenced by their microstructure. This applies particularly for their
mechanical and electromagnetic properties. Thus, modern “materials research” is often
used as a synonym for “microstructure research”.

While the evolutionary direction of microstructure is prescribed by thermodynamics,
its actual evolution path is selected by kinetics. It is this strong influence of thermo-
dynamic non-equilibrium mechanisms that entails the large variety and complexity of
microstructures typically encountered in engineering materials. It is an essential obser-
vation that it is not those microstructures that are close to equilibrium, but often those
that are in a highly non-equilibrium state that provide particularly advantageous material
property profiles.

Microstructure can be defined as the totality of all thermodynamic non-equilibrium
lattice defects on a space scale that ranges from Ångstrøms (e.g. non-equilibrium foreign
atoms)1 to meters (e.g. sample surface) (Haasen 1984). Its temporal evolution ranges
from picoseconds (dynamics of atoms) to years (corrosion, creep, fatigue). It is one major
aim of materials science to quantitatively relate macroscopic sample behavior to micro-
structure. This goal imposes the task of identifying and describing those lattice defects,
including their collective static and dynamic behavior, that are responsible for specific
macroscopic properties. Figures 1.1 and 1.2 show that the characteristic scales which are
associated with the various lattice defects establish a certain hierarchy of microstructure.

This sequence, however, merely reflects a spatial rather than a crisp physical classifica-
tion2. Following this length scale hierarchy, the various levels of microstructure modeling
can be roughly grouped into the nanoscopic, microscopic, mesoscopic, and macroscopic
regimes. In this context the term nanoscopic refers to the atomic level, microscopic to
lattice defects ensembles below the grain scale, mesoscopic to lattice defect ensembles at
the grain scale, and macroscopic to the sample geometry. Of course, this subdivision is
to a certain extent arbitrary. As will be discussed later, various alternative subdivisions
are conceivable.

1In pure metals, only vacancies or certain foreign atoms provide sufficient entropy to compensate
their enthalpy of formation or solution, respectively cvac(T / Tmelt) ≈ 10−4.

2For instance, small defects, such as dopants, can have a larger influence on strength or conductivity
than large defects such as preciptates.
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Figure 1.1: Some characteristic space and time scales, (a) number of atoms in a cube, (b)
characteristic times of typical simulation problems.

Due to the large spatial and temporal spread of microstructural ingredients and the
complexity of possible interaction phenomena among the various lattice defects, a quan-
titative physical prediction of microstructure evolution and of relevant microstructure–
property relations increasingly requires the employment of modeling and simulation (Fig-
ures 1.1, 1.2; Tables 1.1, 1.2, and 1.3). This applies particularly when closed analytical
expressions cannot be formulated, and when the investigated problem is not easily acces-
sible to experiments. Furthermore, as far as practical engineering aspects are concerned,
the use of numerical approaches with predictive power reduces the huge number of exper-
iments typically required in optimizing materials and designing new processes. Progress
in the simulation of materials and corresponding manufacturing processes thus facilitates
and accelerates the development and optimization of new products.

By using a concept which could be referred to as the “generalized state variable
approach”, the method of modeling and simulation can be defined in terms of a small
number of characteristic steps (see also Section 2.3).

First one defines a set of independent variables and a set of dependent variables.
In advanced discrete microstructure models the independent variables typically quantify
time and space. The dependent variables are referred to as state variables (Kocks et al.
1975). These must be chosen in a way to allow a sufficiently precise quantification of the
material properties under investigation. Subsequently, the mathematical model is formu-
lated. It typically consists of a set of state equations which express certain properties of
the material in terms of a given set of state variables, and a set of evolution equations
which describe the changes of the values of the state variables as functions of the indepen-
dent variables. In materials mechanics the state equations typically cover the statics of
microstructures, while the evolution equations describe their kinetics. These sets of equa-
tions are often accompanied by expressions that reflect the kinematics of the material
under the constraints imposed by the manufacturing process or experiment considered.

The selection of adequate state variables, state equations, and evolution equations
can be made heuristically, on the basis of theoretical ab-initio concepts, or on the basis
of phenomenological observations. This selection represents the most important steps in
modeling and reflects the particular physical approach that is made by the researcher to
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Figure 1.2: Typical space and time scales and simulation methods in computational ma-
terials science.
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Figure 1.3: Alternative approaches to simulate crystal plasticity at various scales: (a)
two-dimensional finite element simulation; (b) statistical constitutive simulations based
on the original kinematical one-parameter model (Kocks, Mecking) and their extensions to
more-parameter descriptions (Mughrabi, Estrin, Argon); (c) two-dimensional dislocation
dynamics; (d) three-dimensional dislocation dynamics; (e) molecular dynamics.
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Table 1.1: Space scales and methods in materials simulation, nano–micro level.

Scale [m] Simulation method Typical applications

10−10 – 10−6 Metropolis Monte Carlo thermodynamics, diffusion, ordering

10−10 – 10−6 cluster variation method thermodynamics

10−10 – 10−6 Ising model magnetism

10−10 – 10−6 Bragg-Williams-Gorsky model thermodynamics

10−10 – 10−6 molecular field approximation thermodynamics

10−10 – 10−6 molecular dynamics (embedded structure and dynamics of lattice
atom, shell, empirical pair, bond defects
order, effective medium, and
second moment potentials)

10−12 – 10−8 ab-initio molecular dynamics materials constants, structure and
(tight-binding potentials, local dynamics of simple lattice defects
density functional theory)

approximate the problem being addressed. After setting up this framework of variables
and equations, which are usually in the form of differential equations, adequate boundary-
and initial-value conditions must be formulated which are in accord with the problem
under investigation and which turn the initial model into a well-defined mathematical
formulation. The final numerical (or analytical) solution of such a well-posed problem
can be referred to as simulation or numerical (or analytical) experimentation.

The employment of numerical methods in materials science is promoted by the ever-
increasing capability of computer systems in terms of speed and information storage,
and by the growing demands for quantitative predictions in industry and research. The
scientific branch that has matured within this interdisciplinary field, bringing together
approaches from materials science, physics, computer science, mathematics, chemistry,
and mechanical engineering, is often referred to as “computational materials science”.

Computer simulation nowadays complements most if not all fields of materials sci-
ence and engineering. For instance, simulations in materials physics aim at predicting
microstructural phenomena at the atomic scale using ab-initio molecular dynamics and
Monte Carlo methods. Simulations in materials science pertaining to mechanical engineer-
ing typically focus on large-scale construction problems using finite element approaches
where the microstructure is reduced to the incorporation of averaging constitutive laws.

In contrast to these examples, the original domain of materials science is the investiga-
tion of lattice defect ensembles at the mesoscale. The use of simulations in this particular
field represents a great challenge, in that it must bridge enormous space and time scales
and provide concepts to adequately describe complex many-body interaction phenomena.
For this purpose a number of new concepts have been developed which enable one to
handle the interaction of many individual lattice defects in a more or less discrete fashion.
The latter aspect is of special interest, since most microstructural evolution phenomena
are highly nonlinear and entail self-organization on a microstructural scale (Haken 1978;
Khachaturyan 1983; Kubin 1988; Martin and Kubin 1992).

In contrast to atomic-scale molecular dynamics and Monte Carlo simulations, most
mesoscale approaches are formulated as continuum models, but often with a discrete con-
sideration of lattice defects. The methods include deterministic and probabilistic cellular
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Table 1.2: Space scales and methods in materials simulation, micro–meso level.

Scale [m] Simulation method Typical applications

10−10 − 100 cellular automata recrystallization, grain growth, and phase

transformation phenomena, fluid dynamics,
crystallograhpic texture, crystal plasticity

10−7 – 10−2 spring models fracture mechanics

10−7 – 10−2 vertex models, network subgrain coarsening, recrystallization,
models, grain boundary secondary recrystallization, nucleation,
dynamics recovery, grain growth, fatigue

10−7 – 10−2 geometrical, topological, recrystallization, grain growth, secondary
and component models recrystallization, crystallographic textures,

solidification, crystal topology

10−9 – 10−4 dislocation dynamics crystal plasticity, recovery, microtexture,
dislocation patterning, thermal activation

10−9 – 10−5 kinetic Ginzburg–Landau- diffusion, interface motion, precipitation
type phase field models formation and coarsening, polycrystal and

polyphase grain coarsening phenomena,
isostructural and non-isostructural phase
transformation, type II superconductivity

10−9 – 10−5 multistate kinetic Potts recrystallization, grain growth, phase
models transformation, crystallographic textures

Table 1.3: Space scales and methods in materials simulation, meso–macro level.

Scale [m] Simulation method Typical applications

10−5 – 100 large-scale finite element, averaged solution of differential

finite difference, linear equations at the macroscopic scale
iteration, and boundary (mechanics, electromagnetic fields,
element methods hydrodynamics, temperature fields)

10−6 – 100 crystal plasticity finite element microstructure mechanics of complex
models, finite elements with alloys, fracture mechanics, textures,
advanced constitutive laws crystal slip, solidification
considering microstructure

10−6 – 100 Taylor–Bishop–Hill, relaxed polyphase and polycrystal elasticity
constraints, Sachs, Voigt, and plasticity, microstructure
and Reuss models, Hashin– homogenization, crystallographic
Shtrikman model, Eshelby textures, Taylor factors, crystal slip
and Kröner-type self-
consistent models

10−8 – 100 cluster models polycrystal elasticity

10−10 – 100 percolation models nucleation, fracture mechanics, phase
transformation, current transport,
plasticity, superconductivity
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automata which may account for both short-range (local) and long-range (global) inter-
actions, Ginzburg–Landau-, Cahn–Hilliard-, and Allen–Cahn-type phase field methods,
dislocation dynamics, polycrystal and nonlinear crystal plasticity finite element models,
topological network and vertex models, boundary dynamics, and multistate kinetic Potts
methods. However, classical techniques such as molecular dynamics, Metropolis Monte
Carlo, and conventional finite element simulations are also used extensively.

Advanced microstructure simulations should meet three major requirements. First,
they should enable one to use, or even derive, advanced path-independent microstructure–
property relations with quantitative validity. Second, they should provide insight into the
underlying thermodynamic and path-dependent physical principles that govern the com-
plex nature of microstructure evolution at the various space and time scales. Third, they
should allow one, at least in certain cases, to replace and complement experimentation
by simulation.

In engineering terms microstructure simulations should thus provide a convenient
means of predicting and understanding material properties and microstructure evolution
for technical applications under conditions that have not yet been studied or that are
not amenable to experiments. To fulfill these requirements and at the same time to
optimize the predictive power of models, the various numerical methods are increasingly
complemented by the concept of integrated modeling and simulation (Gottstein 1996).
This term characterizes the coupling of computer codes with the aim of bridging the
scale discrepancies between different simulation levels. This can be achieved by either
simultaneous integration (direct integration) or sequential integration (Raabe 1997). The
first notion means that various interacting simulation codes, which may use different
numerical techniques, are employed simultaneously in one computer experiment. The
second term describes the alternative method of an adequate parameter-transfer between
simulations that are used sequentially.

Since microstructure evolution is path-dependent, concepts of integrated modeling and
simulation should include as many of the microstructurally relevant processing steps and
parameters as possible. However, such a procedure requires the incorporation of various
space and time scales which can differ by some orders of magnitude. One reasonable
approach for combining various scales consists in the incorporation of constitutive laws
that have been derived from non-averaged, i.e. space- and time-discretized, simulations
on the appropriate smaller scale. In such a concept, the results obtained from simulations
on a certain scale are averaged and condensed before being considered at the next scale.
This means that the phenomenological character of the model equations used in each step
increases with increasing scale.

However, there is also a more direct way of bridging scale discrepancies. Some of the
simulation techniques mentioned above were originally confined to particular space and
time scales. This applies especially to methods which reveal intrinsic physical scaling
parameters, e.g. molecular dynamics and some Monte Carlo methods. In contrast, most
mesoscale models are continuum approaches, i.e. they are not intrinsically calibrated and
have thus a larger potential for spanning time and length scales. In this context especially
the various crystal plasticity finite element, cellular automaton, dislocation dynamics,
boundary dynamics, and multistate Potts3 models are of importance.

For instance, the finite element technique is designed to provide approximate solu-
tions to coupled sets of partial differential equations subject to appropriate boundary-
and initial-value conditions. Its application in computational materials science was orig-

3Monte Carlo method with a delta-type Hamiltonian for the identification of interfaces.
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inally confined to solving elastic and simple plastic problems at the macroscopic level
using averaging constitutive laws and the conditions for equilibrium and compatibility.
However, through the introduction of improved constitutive laws, i.e. elements of crystal
plasticity, finite element methods are nowadays increasingly capable of considering mate-
rial heterogeneity also at the mesoscopic level. This trend in finite element simulations
points from the macroscopic to the mesoscopic scale. For the Potts model, which has its
roots in the stochastic Metropolis Monte Carlo method, the reverse applies. By mapping
generalized spin numbers to discrete domains which comprise cells with identical spin, it
enables one to extend the use of the Monte Carlo algorithm to the description of interfaces.
This approach points from the microscopic to the mesoscopic scale.

The material in this book should assist the reader in selecting appropriate simulation
methods and critically estimating the plausibility of the predictions. Both aspects are
important, since one often encounters different concepts for simulating the same problem.
For instance, in the field of plasticity, one can use finite element methods, statistical kine-
matical simulations, discrete dislocation dynamics, molecular dynamics, or combinations
of these (Figure 1.3).

Besides the numerous technical details that will be reviewed in the following chapters,
the selection of appropriate simulation techniques should be accompanied by the following
more general considerations:
Scales: What are the physical time and length scales of the phenomenon?
Microstructure: Is it necessary to incorporate microstructure?

Analytical solution: Is it possible to solve the problem analytically?
Experimental data: Are experimental data available to check the predictions?
Independent variables: Which variables should serve as independent variables?
Dependent variables: Which variables should serve as dependent variables?

Model approach: Should a first-principles, phenomenological, or empirical model ap-
proach be used?

Model parameters: Do the required parameters have any physical meaning and are
corresponding experimental or theoretical data available?

Boundary conditions: Which boundary- and initial-value conditions are adequate?
Realistic conditions: Are particular boundary- and initial-value conditions known?
Discretization: What degree of spatial and temporal discretization is required?
Simulation scale: Which simulation method is suited for the scale addressed?

Error tolerance What degree of precision is required? Which error can be tolerated?
Deterministic/stochastic: Is the phenomenon deterministic or stochastic?
Atomistic/continuum: Should an atomistic or continuum model be used?
Combination of scales: Is it required to combine various space and/or time scales?

Integrated simulation: What is the appropriate integrated simulation method to bridge
the various space and/or time scales?

Simulation code: Are existing simulation codes available?
Comparison: Were the chosen simulation methods quantitatively compared with expe-

riments, analytical solutions, and/or competitive numerical approaches?
Programing language: Which programing language, compiler, commercially available

solver, etc. should be used?

Speed: Which is the fastest simulation method?
Price: Which is the cheapest simulation method?
Computer power: How much computer power is available for the simulation?
Data analysis: What methods must be used to analyze and present the data?



Chapter 2

Modeling and Simulation in

Materials Science

2.1 Some Notions

The words “modeling” and “simulation” are often distinguished by somewhat arbitrary
arguments or they are simply used synonymously. This lack of clarity reflects that the-
oretical concepts and technical facilities encountered in computational materials science
develop faster than semantics. For elaborating a common language in this field, a less
ambiguous definition of both concepts might be helpful.

In current scientific understanding the word “modeling” (model (Latin, Italian): copy,
replica, exemplar) often covers two quite different meanings, namely, model formulation
and numerical modeling. The latter term is frequently used as a synonym for numerical
simulation (simulare (Latin): fake, duplicate, mimic, imitate). Thus, apart from the
possibility of using these notions synonymously, this chapter addresses some definitions
which appear reasonable, at least in the context of microstructure simulation.

2.2 The Basic Idea behind Modeling

The general intention of a scientific inquiry is to obtain an understanding and a control
of some parts of the universe (Rosenblueth and Wiener 1945). However, most parts of
the real world are neither sufficiently obvious nor simple that they could be grasped and
controlled without abstraction.

Scientific abstraction consists in replacing the part of the real world under investigation
by a model. This process of designing models can be regarded as the most general and
original principle of modeling. It describes the classical scientific method of formulating a
simplified imitation of a real situation with preservation of its essential features. In other
words, a model describes a part of a real system by using a similar but simpler structure.
Abstract models can thus be regarded as the basic starting point of theory. However, it
must be underlined that there exists no such thing as a unified exact method of deriving
models. This applies particularly for the materials sciences, where one deals with a large
variety of scales and mechanisms.
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The ensuing sections present some general ideas about modeling concepts. Special
emphasis is placed on the presentation of the generalized state variable concept. This
approach, which is well established in the field of constitutive plasticity modeling (Argon
1975; Kocks et al. 1975), builds models in terms of well-defined sets of state variables and
corresponding state and evolution equations. State equation concepts can serve as a tool
in designing the basic structure of models at various scales.

Although a large number of articles and monographs exist on modeling and simulation,
only a few authors have reflected on the nature and the fundamental concepts of modeling.
Interesting contributions in that context were made by Rosenblueth and Wiener (1945),
who contemplated the philosophical side of modeling, by Koonin (1986), and by Bellomo
and Preziosi (1995), who gave a concise mathematical definition of modeling.

2.3 The Generalized State Variable Concept

2.3.1 Concepts for Models beyond the Atomic Scale

The rather broad definition of the very nature of modeling given above seems to be
a compelling scientific concept for the general case and is presumably in good accord
with the reader’s own experience. Unfortunately, this crisp concept becomes somewhat
vague when used in materials science, due to the large spread of scales. Possibly the
best approach to model the evolution of microstructures consists in discretely solving the
equations of motion of all atoms in the material portion of interest (Chapter 7). Such an
approach provides the coordinates and velocities of all atoms at any instant, i.e. it predicts
the temporal evolution of the entire microstructure. The more detailed the description of
the interatomic forces in such simulations, the smaller is the need for additional empirical
model ingredients. In contrast, models beyond that scale have to incorporate averaging
continuum approximations which are often much more phenomenological in nature than
the more ab-initio assumptions made at the atomic scale.

While atomistic methods thus indeed prevail in microstructure simulations at the
nanoscale, they are not tractable at the meso- and macroscale where at least 1023 atoms
are involved. Even when using simple radially symmetric interatomic pair potentials,
atomistic simulations are at present confined to not much more than 108 atoms. Thus,
for modeling microstructural phenomena beyond the nanoscopic scale, one must drop the
idea of predicting the motions of single atoms and switch to continuum models. Since real
microstructures tend to be highly complex, it can be a non-trivial and at the same time
crucial task to extract those state variables out of the many observables that properly
characterize microstructural phenomena at a continuum scale.

For obtaining a reasonable simplification of the microstructure to be modeled it is
often first necessary to investigate the real system by experimental observation, to for-
mulate logical heuristic assumptions, or to conduct theoretical ab-initio arguments. From
the physical picture so obtained, one has to derive a phenomenological constitutive de-
scription, including the main physical mechanisms, that allows one to characterize the
system behavior at a level beyond the atomic scale.

The phenomenological picture must then be translated into a mathematical model.
Using an approach which can be referred to as the “generalized state variable concept”,
this procedure requires the definition or appropriate selection of independent variables,
state variables (which are sometimes termed “dependent variables”), kinematic equations,
equations of state, evolution equations, physical parameters, boundary- and initial-value
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Table 2.1: Ingredients required in formulating mathematical models in materials science.

Step Ingredient

1. Independent variables, e.g. time and space.

2. State variables, i.e. intensive and extensive or implicit and explicit dependent
variables, e.g. temperature, dislocation density, displacement, or concentration.

3. Kinematic equations, i.e. functions that describe the coordinate changes of mass
points without considering the actual forces, e.g. equations for computing strain
and rotation from displacement gradients under consideration of constraints.

4. State equations, i.e. path-independent functions that describe the actual state of
the material in terms of the values of the dependent variables.

5. Evolution equations, i.e. path-dependent functions that describe the evolution of
microstructure in terms of the change in the values of the dependent variables.

6. Physical parameters.

7. Boundary- and initial-value conditions.

8. Numerical algorithms or analytical methods to solve the framework set up by 1–7.

conditions, and appropriate algorithms (Table 2.1). Such a basic phenomenological frame-
work of variables and equations forms the backbone of many microstructure models.

2.3.2 Independent Variables

The independent variables can, by definition, be freely chosen. In advanced microstruc-
ture models, time t and space x = (x1, x2, x3) typically serve as independent variables.
For instance, molecular dynamics simulations predict the deterministic trajectory of the
system in phase space by calculating the positions xi and velocities ẋi of all i atoms in
the system at each moment. Discrete dislocation dynamics simulations, which average
out the atomistic nature of the material by reducing the direct atomic interactions to
linear continuum elasticity, calculate the exact positions xj and velocities ẋj of all j dis-
locations (in two dimensions; 2D) or dislocation segments (in three dimensions; 3D) at
each instant. Advanced crystal plasticity finite element simulations track the stress and
strain state in each material portion as a function of crystal orientation and constitutive
behavior, discretely in time and space.

2.3.3 State Variables or Dependent Variables

The state variables are functions of the independent variables. Their value determines the
state of a system at any instant, irrespective of their history. In classical thermodynamics
they usually occur as extensive, i.e. mass-dependent, or intensive, i.e. mass-independent,
quantities.

In microstructure mechanics one often encounters a further distinction, namely, that
between explicit and implicit state variables (Swaerengen and Holbrook 1985). While ex-
plicit state variables define local microstructural features of the material such as particle or
grain size, implicit state variables are defined as mesoscopic or macroscopic averages. The
latter type of state variable has gained particular relevance in considering microstructural
properties in finite element calculations.
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State variables in material models are often tensor-valued variables which depend on
space and time, such as the displacement u = (u1, u2, u3) = u(x, t) which is a tensor of
first rank, or strain ε = ε(x, t) which is a tensor of second rank. However, scalar state
quantities, such as the dislocation density in statistical Kocks–Mecking-type plasticity
models, the concentrations of the chemical constituents in Cahn–Hilliard-type simulations,
or the density of bosons in Ginzburg–Landau calculations, are admissible as well.

Phenomenological models for predicting the behavior of complex commercial alloys,
polymers, or composites often require a considerable number of state variables. For in-
stance, a description of the flow stress of a metal-matrix composite or of a superalloy
could consider the solute concentrations of the ingredients, the dislocation density in all
phases, the interface spacing, and the particle size and distribution. The disadvantage
associated with such detailed phenomenological descriptions involving many variables is
that they spoil the original idea of finding a transparent physical model. In other words,
using too many state variables can turn a physical into an empirical polynomial model,
where the state variables serve as mere fitting quantities. An increasing number of state
variables thus often reduces the physical significance of each of these variables. Although
multivariable approaches can be helpful in the field of industrial modeling, where the ma-
terials and the manufacturing processes are often too complicated to allow a transparent
description, they are less desirable in physically oriented microstructure simulations. The
art of constitutive modeling can thus be demonstrated in finding a balance between ad-
justable parameters (Section 2.3.7) and state variables with a crisp physical significance.

2.3.4 Kinematic Equations

Kinematic equations for solids are used to calculate quantities such as strain, strain rate,
rigid-body spin, or rate of crystal reorientation under consideration of externally or in-
ternally imposed constraints1. The kinematic constraints are usually defined by the ma-
nufacturing or experimental process being investigated. For instance, during rolling it is
not admissible for any material portion near the surface to undergo displacements per-
pendicular to the rolling plane.

2.3.5 Equations of State

Equations of state relate a property of interest, such as the electrical resistivity, the flow
stress, or the free enthalpy, to the actual values of the state variables (Table 2.1). Since the
state variables are usually functions of the independent variables, the values of the state
equations depend on them as well. In discrete material simulations the state of a material
can thus be described with the resolution of the independent variables. Equations of
state generally represent path-independent functions. That means they provide a general
means of calculating materials properties from adequate state variable values irrespective
of their origin and history. Hence, data input to state equations can be derived both by
simulation and by experiment. Microstructural equations of state usually quantify the
material response to external or internal changes in the values of the dependent variables.
This means that state equations characterize the material. For instance, the dependence

1The rigid-body rotation of the continuum (skew symmetric part of the displacement gradient tensor)
is not necessarily identical to the crystal rotation. This discrepancy is due to kinematic subtleties arising
from the crystallographic nature of slip and from what is defined as the reference set of axes (van Houtte
and Aernoudt 1975; Kocks and Chandra 1982; Argon 1986; Leffers and Lebensohn 1996).
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Table 2.2: Some typical state equations in computational materials science.

State
quantity

State variable(s) State equation

stress strain or displacement Hooke’s law

flow stress uniform dislocation density, Taylor equation in Kocks–Mecking-
Taylor factor type models

flow stress dislocation density in the cell advanced statistical two- and three-
walls and cell interiors parameter plasticity models

interatomic interatomic spacing radially symmetric interatomic pair
potential potentials

interatomic interatomic spacing and angular tight-binding potentials
potential position

free energy concentration of atoms or free energy Landau form in Ginzburg–
bosons Landau-type models

of flow stress on displacement is entirely different for a liquid, an elastic-rigid-plastic body,
a viscoplastic material, or a creeping solid. Typical examples of state equations are the
interatomic potential and force functions in molecular dynamics, Hooke’s law of elasticity
in dislocation dynamics, nonlinear elasticity laws in polymer mechanics, the relations
between flow stress and dislocation density in constitutive plasticity laws, and the free
energy functional in the Ginzburg–Landau and related microstructural phase field models.

2.3.6 Structure Evolution Equations

The next step consists in predicting the evolution of the microstructure as a function of the
independent variables. For this purpose one must either measure the values of the state
variables consecutively for each set of independent variables, or incorporate additional
model equations which allow one to calculate the changes of the state variables. Such
expressions are referred to as “evolution equations”, or “structure evolution equations”.
These are equations that steadily update the values of the state variables as a function
of the independent variables. It is a fundamental feature of microstructure that it is
in thermodynamic non-equilibrium, i.e. the governing evolution equations are generally
path-dependent and thus not equations of state. This means they may usually not be
written as total differentials. Typical structure evolution equations are Newton’s law of
motion in molecular and dislocation dynamics, or classical rate equations such as the heat
and diffusion equation.

2.3.7 Parameters

The state variables in the state equations are weighted, based on parameters. These
should have a physical meaning and be amenable to experiment and/or theory.

Identifying appropriate parameters and incorporating their correct values are among
the most crucial tasks in any simulation. This applies particularly in the field of mesoscale
materials simulations, where the values of parameters can depend considerably on other
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Figure 2.1: Schematic illustration of the relations between analytical models, simulation,
and experiment according to Binder (1991a).

parameters and on the state variables themselves. This means that the underlying state
equations contain nonlinearities and/or are coupled with other state equations. Further-
more, many material parameters have a very strong direct influence, such as in the field
of thermal activation where they occur in the argument of exponential functions. For in-
stance, the activation energy of grain boundary motion occurs in an exponential term and
can depend strongly on the misorientation of the neighboring crystals, on the inclination
of the boundary plane, and on the concentration of foreign atoms in the boundary.

Depending on the desired precision, parameters can be incorporated in a more or
less detailed fashion. For instance, the elastic constants can be considered either by
simply employing the scalar Lamé constants (isotropy) or by including the components of
the fourth-rank elasticity tensor (anisotropy) together with their respective temperature
coefficients. Diffusion coefficients can be used as scalar bulk quantities or in tensorial
form with different values parallel to different crystal axes.

2.3.8 Examples of Phenomenological Modeling Concepts

The aforementioned sets of kinematic, state, and evolution equations in the form of alge-
braic, differential, and/or integral expressions establish, together with appropriate state
and independent variables, a mathematical state variable model (Andersen and de Hoog
1976; Avula et al. 1983; Williams 1985; Smith 1987; Neelamkavil 1987; Szekely and
Wahnsiedler 1988; Bellomo and Preziosi 1995). The totality of the equations and para-
meters that altogether characterize the particular response of a material is often referred
to as the set of constitutive equations or constitutive laws (Argon 1975; Krawietz 1986;
Kocks 1987; Andersen et al. 1987; Krausz and Krausz 1996).

Figures 2.1, 2.2, 2.3, and 2.4 show flowcharts which present some more or less over-
lapping approaches to define modeling and simulation. The generalized state variable
approach to the definition of both terms, as outlined above, is presented in Figure 2.5.

2.3.9 Analytical Model and Numerical Counterpart

The above considerations concerning modeling concepts do not imply any technical details
of the way in which the resulting set of governing equations can be solved. A number
of the simpler statistical models can be employed without using numerical methods (Ta-
ble 2.1). In contrast, most modern discrete models of microstructure dynamics consist of
large numbers of coupled differential equations so that their application requires numerical
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Figure 2.2: Flowchart illustrating stages in the process of modeling according to Ashby
(1992).
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Figure 2.3: Flowchart illustrating stages in the process of modeling according to Bellomo
and Preziosi (1995).

tools. In this context it should be recalled that the original, mostly analytical, mathe-
matical model is not exactly identical to its numerical counterpart. Depending on the
underlying analytical expressions, the exactness of the corresponding numerical solution
can depend on a number of parameters such as truncation, series expansion, discretization
(integration, differentiation), statistical, ergodic, or programing errors. However, even in
complex models it is sometimes possible to derive analytical solutions to simple cases and
use them for scrutinizing corresponding numerical predictions.

2.4 Numerical Modeling and Simulation

The considerations discussed above fall into the domain of model formulation or model
design. The second often-encountered meaning of modeling is the numerical solution
of the governing equations associated with models. This procedure can be referred to
as “numerical modeling” or “simulation”. Both terms paraphrase the solution of a set
of mathematical expressions, i.e., of a number of path-dependent and path-independent
functions, which quantify the underlying model formulation using appropriate boundary-
and initial-value conditions. Although both numerical modeling and simulation basically
address the same activity, they are often used in a somewhat different fashion.

One common approach is to use the notion “numerical modeling” for the entire pro-
cedure of model formulation and program code generation, while the term “simulation”
is often used in the sense of numerical experimentation. In this picture, modeling com-
prises the entire phenomenological, theoretical, and conceptual work including progam-
ming, while simulation describes the mere application of the program under conditions
that map essential parameters of real processes, i.e. under different boundary- and initial-
value conditions. This definition is in line with a suggestion of Ashby (1992) who described
“simulation” as the “... study of the dynamic response of a modeled system by subjecting
the model to inputs which simulate real events...”; see Figure 2.2.

An additional approach to distinguish between the two terms is to consider the scale
addressed. It is a frequent (although not logical) observation that the term “numerical
modeling” is primarily used to describe the numerical solution of macroscopic or meso-
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Figure 2.4: Flowchart illustrating stages in the process of modeling according to Bunge
(1997).



22 2 Modeling and Simulation in Materials Science

Figure 2.5: Flowchart illustrating stages in the process of modeling and simulation ac-
cording to the generalized state variable approach.

scopic, rather than microscopic models. Model calculations in the microscopic regime are
often referred to as “simulation”. For instance, one is inclined to say that the atomic
positions and velocities as described by molecular dynamics are obtained by simulation
rather than by modeling (microscopic regime, single atoms). On the other hand, if say the
kinematical Kocks–Mecking approach is used for the calculation of flow curves, it is com-
mon to speak of modeling (macroscopic regime, global dislocation densities). However, if
the same flow curves are described using space- and time-discretized calculations involv-
ing single dislocations or even dislocation segments, one is prone to speak of simulation
(microscopic–mesoscopic regime, discrete dislocations).

This somewhat inconsistent and arbitrary use of the terms “modeling” and “simula-
tion” can serve as a starting point to elaborate arguments that permit a more commen-
surate distinction between the two notions, as follows.

An obvious dissimilarity between modeling and simulation lies in the fact that many
classical models do not require the employment of computers but can be rendered into a
closed form to be solved analytically. However, models that can be solved by means of
analytical techniques are often not discrete in space. For instance, a number of plasticity
models that can predict dislocation densities and stresses do not incorporate the exact
positions of the individual dislocation segments.

The reverse often applies for simulation, where the governing analytical expressions
are typically known for one individual defect or particle but not for the global ensemble.
For instance, there are no expressions with a closed analytical solution which allow one to
predict the exact actual positions and velocities of all atoms in a moving high-angle grain
boundary. This problem can only be tackled by solving Newton’s equation of motion
for a larger number of atoms. This means that simulations typically provide numerical
solutions to problems that can be dismantled into a large number of individual microscopic
events. Therefore, the notion of “simulation” frequently appears in conjunction with the
space-discretized solution of many-body problems (e.g. many atoms, vacancies, molecules,
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dislocations, dislocation segments, or finite elements) (Raabe 1997). As the quintessence
of these considerations, the following definitions are suggested to distinguish simulation
from numerical modeling.

Microstructure simulations provide numerical results to models which are formulated
as microscopic or mesoscopic many-body problems by solving the algebraic, differential, or
integral expressions that reflect the behavior of the considered elementary lattice defects
(real physical defects) or quasi-defects (artificial microscopic system elements) with a
high degree of spatial and temporal discretization. Microstructure simulation can thus
be interpreted as a tool for the numerical prediction of microstructure evolution at the
lattice-defect or quasi-lattice-defect level.

Numerical (analytical) modeling of microstructure provides numerical (analytical) so-
lutions to macroscopic models by solving the algebraic, differential, or integral expressions
that govern the behavior of global lattice defect ensembles with a high degree of temporal,
but low degree of spatial, discretization.

The above considerations imply that numerical modeling is typically faster than si-
mulation when applied to identical physical problems at the same level, i.e. numerical
modeling can cover larger space and time scales. Such an advantage can be crucial,
especially in industrial applications. However, numerical modeling is often less discrete
in space and thus provides less predictive power on the local scale.

2.5 Categories of Models

2.5.1 Spatial Scale

Various more or less precise approaches are conceivable to classify microstructure models
(Table 2.3). Often they are simply grouped according to their underlying characteristic
scale. A coarse spatial subdivision would suggest four classes of models, namely, macro-
scopic, mesoscopic, microscopic, and nanoscopic models. The term macroscopic refers to
the sample geometry, mesoscopic to lattice defect ensembles at the grain scale, microscopic
to lattice defects ensembles below the grain scale, and nanoscopic to the atomic level. Of
course, such spatial categories and their definitions are rather arbitrary. For instance,
one can just as well choose three instead of four classes, using one for the macroscopic
scale, one for the mesoscopic scale, and one for the atomistic scale. A similar classifi-
cation approach was used to organize this book into chapters (nano–micro, micro–meso,
meso–macro). Details of such spatial categories are apparent from Figures 1.1 and 1.2,
and Tables 1.1–1.3.

2.5.2 Spatial Dimension

A second possible approach to identifying model categories accounts for the spatial di-
mension of a model (one-, two-, and three-dimensional). In computational materials
science two- and three-dimensional models prevail. The difference between them can be
of substantial relevance for an appropriate interpretation of the results. For instance, a
correct incorporation of slip system geometry and of dislocation interactions cannot be
made in two-dimensional simulations but requires a three-dimensional treatment. This
is important in Taylor-type simulations or the more complex crystal plasticity finite ele-
ment codes. Even in conventional finite element simulations the discrepancies between
the predictions obtained in two and three dimensions can be significant. For instance, in
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Table 2.3: Characteristic features of simulations.

Classification aspect Type of model

spatial scale macroscopic, mesoscopic, microscopic, nanoscopic

spatial dimension one-, two-, three-dimensional

spatial discretization continuum, atomistic

predictive character deterministic, stochastic/probabilistic, statistical

descriptive character first-principles, phenomenological, empirical

path-dependence kinetic, static

two-dimensional finite element simulations of rolling processes the transverse broadening
of the sheet is typically neglected. An extension of dislocation dynamics from two to three
dimensions allows one to correctly describe dislocation multiplication, i.e. the activation
of a Frank–Read source or of a pole mechanism. This is not possible in two-dimensional
simulations. Similar arguments occur in the discussion of grain topologies arising from
mesoscale and atomistic simulations involving interfaces.

2.5.3 Spatial Discretization

Concerning the degree of spatial discretization, two basic classes can be identified, namely,
continuum and atomistic models (Table 2.3). Continuum models average out the nature of
single atoms by using differential equations that describe the material response in a mean
macroscopic fashion under consideration of phenomenological or empirical constitutive
equations and the constraints imposed by equilibrium, compatibility, and conservation
laws. Typical examples of continuum models are classical finite element (Courant 1943;
Zienkiewicz and Morgan 1983; Livesley 1983; Rao 1989), polycrystal (Taylor 1938; Bishop
and Hill 1951), self-consistent (Eshelby 1961; Kröner 1961), certain deterministic cellular
automata2 (von Neumann 1963), dislocation dynamics (Devincre 1996), topological vertex
(Humphreys 1992a), and phase field models (Cahn and Hilliard 1958).

In recent years various refinements were introduced to particularly enrich large-scale
continuum models with microstructural ingredients. Typical examples of such advanced
methods are anisotropic finite element models which consider crystal plasticity, crystal-
lographic texture, and the topology and morphology of the microstructure (Becker 1991;
Karhausen and Kopp 1992; Wulf et al. 1993; McHugh et al. 1993a; Schmauder 1994;
Wang et al. 1994; Dawson et al. 1994; Beaudoin et al. 1996; Sarma and Dawson 1996;
Schmauder and Raabe 1996; Schmauder and Weichert 1996; Wulf et al. 1996)3.

Typical examples of advanced polycrystal models are relaxed-constraints Taylor-type
approaches which consider statistical (Schmitter 1991b) or local grain interactions (Wag-
ner 1995), deformation banding, and grain fragmentation (Lee and Duggan 1993; Leffers
1994). According to van Houtte (1996a) these models have in common that they quantify

2Since cellular automata are not intrinsically calibrated, they cannot be generally classified as
continuum-type approaches. Depending on the underlying physical model, they can also occur as
atomistic models.

3The field of advanced finite element models is often referred to as computational micromechanics
(McHugh et al. 1993a) or computational microstructure mechanics (Schmauder 1995). The latter notion
seems somewhat more appropriate, since the former one is already reserved for the field of mechanical
engineering at the microscopic level.
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the degree of strain relaxation and local interaction between crystals statistically in terms
of certain penalty terms. These can be derived on the basis of geometrically necessary
dislocations or more continuum-type considerations. Advanced self-consistent schemes
take into account grain shape (Thiem et al. 1986) and dislocation cell structures (Muller
et al. 1994a).

Advanced continuum plasticity models are capable of discretely simulating the dynam-
ics of individual dislocations considering both time and the actual position of each defect
as independent variables. The literature in this field can be classified into simulations in
two dimensions (2D) and three dimensions (3D). 2D calculations can be carried out either
with flexible dislocations which are constrained to lie in their glide plane (Foreman and
Makin 1966; Bacon et al. 1973; Scattergood and Bacon 1975; Altintas 1978; Rönnpagel
1987; Rönnpagel et al. 1993; Mohles and Rönnpagel 1996), or with non-flexible infinite
straight dislocations which can leave their glide plane (Neumann 1971; Lépinoux and
Kubin 1987; Ghoniem and Amodeo 1989; Gulluoglu et al. 1989; Amodeo 1990; Gullu-
oglu et al. 1990; Gulluoglu and Hartley 1992; Lubarda et al. 1993; van der Giessen and
Needleman 1995; Raabe and Roters 1995; Wang and LeSar 1995; Roters and Raabe 1996;
Raabe et al. 1996; Roters and Raabe 1997; Zacharopoulos et al. 1997). While the first
type of 2D simulation provides a top view into the glide plane, the second one provides
a lateral perspective parallel to the dislocation tangent. 3D simulations are independent
of such geometrical constraints (Demir et al. 1992; Devincre and Condat 1992; Kubin
et al. 1992; Kubin 1993a; Devincre and Kubin 1994; Rhee et al. 1994; Raabe 1995a;
Raabe 1995b; Devincre 1996; Fivel et al. 1996; Hirth 1996; Raabe 1996a; Raabe 1996b;
Rönnpagel 1996; Raabe 1998a).

Topological network, vertex, or boundary dynamics models which are based on in-
corporating the kinetic properties of subgrain walls and large-angle grain boundaries as
underlying defects are increasingly used to mimic the incipient stages of recrystallization
(Humphreys 1992a), low-cycle fatigue (Draheim and Gottstein 1996a), and grain growth
(Adams et al. 1997).

Sophisticated approaches to the simulation of diffusional phase transformations and
competitive particle ripening processes are based on the Ginzburg–Landau-type kinetic
phase field models (Cahn and Hilliard 1965; Khachaturyan 1968; Allen and Cahn 1979;
Chen 1995). Substantial progress in the continuum description of recrystallization phe-
nomena was attained through the introduction of modified deterministic cellular automata
(Hesselbarth and Göbel 1991; Pezzee and Dunand 1994; Marx and Raabe 1995; Raabe
et al. 1996; Sheldon and Dunand 1996; Marx et al. 1996; Marx 1998; Reher 1998).

If a more detailed prediction of microstructural features is addressed, continuum-type
models must be replaced by atomistic models which provide a better spatial resolution
and usually incorporate fewer phenomenological assumptions when compared with their
continuum counterparts.

Typical examples of atomistic models are classical molecular dynamics and Monte
Carlo methods. In contrast to classical molecular dynamics (Alder and Wainwright 1959;
Verlet 1967; Daw and Baskes 1984), modern atomistic approaches have increasingly gained
momentum through the use of more realistic potential functions and substantially en-
hanced computer power (Finnis et al. 1988; Sutton and Balluffi 1995). First-principles
ab-initio models even aim at approximate solutions of the Schrödinger equation for a
limited number of atoms. Variants of the ab-initio approach are provided by molecular
dynamics in conjunction with tight-binding or local density functional theory (Hohenberg
and Kohn 1964; Kohn and Sham 1965; Car and Parinello 1985; Ballone et al. 1988),
and by variational quantum Monte Carlo methods (Ballone 1989). The numerical perfor-
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mance of most first-principles models is still too slow for the computation of microstructure
evolution. However, they are of increasing importance in predicting elementary physical
materials properties and the basic structure and behavior of simple lattice defects (Sutton
1996; Voter 1996).

2.5.4 Predictive Character

Another possible method of classifying models is by their predictive character.

Deterministic models are based on such algebraic or differential equations as state and
evolution equations that describe microstructure evolution in an unambiguous and strictly
reproducible fashion. Stochastic models incorporate probabilistic steps particularly in the
description of structure evolution. Statistical models are usually not discrete in space and
are therefore addressed only briefly in this book.

Stochastic models were originally designed to mimic canonical ensembles by perform-
ing a large number of computer experiments using random numbers. Their extension
to space-discretized simulations of microstructure was especially promoted by rendering
the Ising model for the calculation of magnetic domains into the multistate Potts model
which allows one to simulate interfaces by mapping domains of identical generalized spin.
Typical examples of conventional stochastic models are the Potts model (1952)4, the
Metropolis (1953) Monte Carlo method, and probabilistic cellular automata (Grassberger
et al. 1984; Kinzel 1985).

In recent years various improvements were suggested which allow one to extend mi-
croscopical stochastic concepts to space-discretized microstructure simulations. Typical
examples of space-discretized stochastic approaches are Monte Carlo models for the in-
vestigation of diffusion and short-range ordering (Binder 1991a), kinetic Potts models for
simulating microstructural non-equilibrium transformation phenomena (Anderson et al.
1984; Srolovitz et al. 1986; Rollett et al. 1989; Doherty et al. 1990; Glazier et al. 1990;
Tavernier and Szpunar 1991a; Rollett et al. 1992; Peczak 1995; Holm et al. 1996), im-
proved probabilistic cellular automata (Wolfram 1986), stochastic percolation models for
studying normal and superconducting current paths, microplasticity, diffusion, fracture
mechanics, and properties of porous media (Stauffer 1991; Stauffer and Aharony 1992;
Sahimi 1994; Kuo and Gupta 1995), and advanced simulations of dislocation dynamics
which consider thermal activation in terms of a Langevin force (Rönnpagel et al. 1993;
Mohles and Rönnpagel 1996).

Statistical models are typically not discrete in space. Thus, they are not so much
within the scope of this book and only briefly discussed. Famous statistical kinematical
models of plasticity were published by Argon (1975) and Kocks, Argon, and Ashby (1975).
Typical examples of advanced microstructural constitutive models are modern approaches
to the kinematical theory which incorporate a variety of relevant microstructural param-
eters in the kinetic equation of state and more elaborate structural evolution principles
(Mughrabi 1980; Mecking and Kocks 1981; Mughrabi 1983; Estrin and Mecking 1984;
Prinz and Argon 1984; Mughrabi et al. 1986; Gottstein and Argon 1987; Kuhlmann-
Wilsdorf and Hansen 1991; Blum 1993). Corresponding efforts were made to extend the
classical kinematical theory to the description of stage IV and stage V strain hardening
(Anongba et al. 1993; Argon and Haasen 1993; Zehetbauer and Seumer 1993).

4The notions of q-state and multistate Potts model are used synonymously. They both describe
(kinetic) Monte Carlo models which use a delta-type Hamiltonian and a number of q generalized spin
states.
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Furthermore, a new group of nonlinear and stochastic structural evolution theories
was suggested to render earlier models more physically plausible and at the same time in
better accord with experiments that show plastic instabilities (Kocks 1985; Schlipf 1992;
Kubin 1993b; Kubin 1996).

Classical metallurgical kinetic concepts are those that describe discontinuous trans-
formations such as recrystallization with statistical treatment of topology (Kolmogorov
1937; Avrami 1939; Johnson and Mehl 1939). In the domain of non-equilibrium trans-
formation kinetics these classical statistical approaches were extended to more general
microstructural path models (Juul Jensen et al. 1985; Marthinsen et al. 1989; Vander-
meer and Rath 1989; Furu and Nes 1990; Marthinsen et al. 1990; Vandermeer and Rath
1990; Vandermeer et al. 1991).

2.5.5 Descriptive Character

Another classification scheme can be introduced by distinguishing between first-principles,
phenomenological, and empirical concepts.

First-principles models aim to capture the underlying mechanism or feature of a sys-
tem with a minimum set of assumptions and phenomenological laws. Typical examples are
furnished by simulations based on local density functional theory (Hohenberg and Kohn
1964; Kohn and Sham 1965; Car and Parinello 1985; Ercolessi et al. 1986; Ballone et al.
1988). It is clear that even first-principles models must incorporate some assumptions
without deriving them or proving their validity in detail. For instance, even atomic scale
simulations based on local density functional theory implicitly use the adiabatic Born–
Oppenheimer approximation (Chapter 4). However, the number of such phenomenological
ingredients is limited as much as possible.

Most simulations in computational materials science are phenomenological, i.e. they
use state and evolution equations in accord with certian physical phenomena. In such
approaches most atomic details such as the electronic structure are typically averaged out
without neglecting the relevant properties of the underlying lattice defects.

Empirical approaches provide a more or less precise mathematical fit to a set of ex-
perimental observations. Thus they typically do not incorporate the properties of the
underlying lattice defects. While the process of phenomenologically formulating models
can be regarded as an essential step in that it must be decided which state variables are
of strong and which of little influence on the system behavior, empirical models do not
distinguish between important and unimportant contributions.

While phenomenological models thus have a certain predictive capability, empirical
methods do not have real power to predict (Ashby 1992). Consequently, there is no
obvious reason to classify purely empirical approaches as models5. Improvements in the
systematic application of empirical approaches were achieved through the advent of fuzzy
set theory and artificial neuronal network methods (see Appendix).

2.5.6 Path-Dependence

Models can focus on static or kinetic aspects (or on both). The main purpose of static
simulations is the calculation of path-independent material properties as a function of
certain extensive and intensive state variables. Purely static calculations can only give a

5In this context it should be underlined that nearly all microstructure models, except for ab-
initio simulations, use certain empirical input data, such as elastic constants, electrical conductivity,
etc. (Ashby 1992; Bunge 1997).
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shapshot of the material behavior for a given microstructure. However, they can neither
predict any path-dependent behavior nor provide a temporal update of the values of the
state variables. This restriction implies that static simulations are generally concerned
with equations of state rather than with structure evolution equations. For instance,
the simulation of thermodynamic quantities or the prediction of improved mechanical
equations of state in dislocation theory can be achieved by static simulations which do
not show any temporal scaling and thus no evolution of microstructure. In contrast,
kinetic simulations can predict both the path-dependent evolution of microstructure and
the material properties at any time.

2.6 Round-Robin Tests

Apart from the numerous technical and physical aspects of modeling and simulation,
there exists an important non-scientific problem associated with this field, namely, the
psychological barrier to accepting the validity of models that have been suggested by
competitive authors (Bunge 1997). It is indeed a typical observation in computational
materials science that an increasing number of models is gradually introduced to tackle
identical metallurgical phenomena, often without careful comparison with other existing
approaches. The notion of “comparison” in this context does not mean merely to list some
common or distinguishing features of competitive models, but to compare quantitatively
the predictions on the basis of identical input data. Such quantitative procedures are
well established in comparing data that are obtained by experimentation, but are rarely
performed in computational materials science (Royer et al. 1991; Wagner et al. 1991;
Tóth et al. 1997). Although an approach to introduce a certain standardization of
simulation codes under consideration of different methods was made by the Los Alamos
group through the free distribution of the Los Alamos Plasticity (LAP) code (Kocks et al.
1987), the use of quantitative round-robin tests might be a reasonable complementation
of current simulation activities. For instance, a round-robin test for the comparison of
polycrystal plasticity models should cover the following aspects:

1. The simulations should address a standard material with properly defined metal-
lurgical characteristics, such as chemistry, grain size, grain shape, strength, pre-
cipitation size, and distribution, etc.

2. If the models require an input from a tensile, compression, or multiaxial mechanical
test, they should use the same data.

3. All predictions should be compared with one set of experimental results, that were
obtained under properly defined conditions.

4. The input data should contain an identical set of discretized orientations.
5. The orientation distribution functions that are derived from the output data should

be computed by using the same method (Gauss or Lorentz functions, spherical
harmonics, etc.).

6. The data should be presented in the same way.
7. The comparison should be discussed and published.



Chapter 3

Fundamentals and Solution

of Differential Equations

3.1 Introduction to Differential Equations

Many of the laws encountered in materials science are most conveniently formulated in
terms of differential equations. Deriving and solving differential equations are thus among
the most common tasks in modeling material systems.

Differential equations are equations involving one or more scalar or tensorial dependent
variables, independent variables, unknown functions of these variables, and their corre-
sponding derivatives. Equations which involve unknown functions that depend on only
one independent variable are referred to as ordinary differential equations (Abramovitz
and Segun 1964; Hartman 1964; Arrowsmith and Place 1982; Bronstein and Semendja-
jev 1987). If the equations involve unknown functions that depend on more than one
independent variable they are referred to as partial differential equations (Farlow 1982;
Haberman 1983). The “order” of a differential equation is the highest order of any of
the derivatives of the unknown functions in the equation. Equations involving only the
first derivatives are referred to as first-order differential equations. Equations involving
the second derivatives are referred to as second-order differential equations. Second- and
higher-order differential equations such as

d2u(t)

dt2
= f(u, t) (3.1)

can be transformed into a coupled set of lower-order equations by substitution:

dv(t)

dt
= f(u, t) v =

du(t)

dt
(3.2)

In these equations u is the state variable which is a function of the independent time
variable t, v is the first time derivative of u, and f a function of u and v, respectively.
For instance, the frequently occurring problem of (one-dimensional) motion of a particle
or dislocation segment of effective mass m under a force field f(x, t) in the x-direction is
described by the second-order differential equation

m
d2x(t)

dt2
= f(x, t) (3.3)
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If one defines the particle momentum

p(x, t) = m
dx(t)

dt
(3.4)

equation (3.3) becomes the two coupled first-order equations (Hamilton’s equations)

dx(t)

dt
=

p

m

dp(x, t)

dt
= f(x, t) (3.5)

Differential equations which contain only linear functions of the independent variables are
called “linear differential equations”. For these equations the superposition principle ap-
plies. That means linear combinations of solutions which satisfy the boundary conditions
are also solutions to the differential equation satisfying the same boundary conditions.
Differential equations which involve nonlinear functions of the independent variables are
denoted as “nonlinear differential equations” (Struble 1962; Andronov et al. 1973; Jordan
and Smith 1987). For such equations the superposition principle does not apply.

Most problems in computational materials science lead in their mathematical formula-
tion to “partial differential equations” which involve both space and time as independent
variables. Usually, one is interested in particular solutions of partial differential equa-
tions which are defined within a certain range of the independent variables and which
are in accord with certain initial-value and boundary-value conditions. In this context it
is important to emphasize that a problem which is in the form of a differential equation
and boundary conditions must be well posed. That means only particular initial and
boundary conditions transform a partial differential equation into a solvable problem.

Partial differential equations can be grouped according to the type of additional con-
ditions which are required in formulating a well-posed problem. This classification scheme
will be outlined in the following for the important group of linear second-order partial
differential equations with two independent variables, say x1 and x2. The general form of
this equation is

A
∂2u

∂2x1
+B

∂2u

∂x1∂x2
+C

∂2u

∂2x2
+D

∂u

∂x1
+ E

∂u

∂x2
+ F u+G = 0 (3.6)

where A = A(x1, x2), B = B(x1, x2), C = C(x1, x2), D = D(x1, x2), E = E(x1, x2),
F = F (x1, x2), and G = G(x1, x2) are given functions of the independent variables x1

and x2. It is stipulated that the functions A(x1, x2), B(x1, x2), and C(x1, x2) never be
equal to zero at the same point (x1, x2). In analogy to the classification of higher-order
curves in analytical geometry which are described by

a x1
2 + b x1x2 + c x2

2 + d x1 + e x2 + f = 0 , a2 + b2 + c2 6= 0 (3.7)

equation (3.6) can for given values x̂1, x̂2, of the variables x1 and x2 assume hyperbolic,
parabolic, or elliptic character. Roughly speaking, hyperbolic differential equations in-
volve second-order derivatives of opposite sign when all terms are grouped on one side,
parabolic differential equations involve only a first-order derivative in one variable, but
have second-order derivatives in the remaining variables, and elliptic differential equa-
tions involve second order derivatives in each of the independent variables, each of the
derivatives having equal sign when grouped on the same side of the equation.

hyperbolic partial differential equation 4A (x̂1, x̂2) C (x̂1, x̂2) < B2 (x̂1, x̂2)

parabolic partial differential equation 4A (x̂1, x̂2) C (x̂1, x̂2) = B2 (x̂1, x̂2)

elliptic partial differential equation 4A (x̂1, x̂2) C (x̂1, x̂2) > B2 (x̂1, x̂2)
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In that context it must be considered that, since A(x1, x2), B(x1, x2), and C(x1, x2)
depend on independent variables, the character of the differential equation may vary from
point to point. The approach to group differential equations according to the character of
their discriminant (4AC−B2) is due to its importance in substituting mixed derivatives
by new independent variables. The fundamental classification scheme outlined here for
second-order partial differential equations can be extended to coupled sets of nonlinear
higher-order partial differential equations with more than two independent variables.

Classical examples of the three types of differential equations are the wave equation for
the hyperbolic class, the heat or diffusion equation and the time-dependent Schrödinger
equation for the parabolic class, and the Laplace and time-independent Schrödinger equa-
tion for the elliptic class. In three dimensions and rectangular coordinates they can be
written:

wave equation
∂2u

∂t2
− c2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
= 0

diffusion equation
∂u

∂t
−D

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
= 0

Laplace equation
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

= 0

where x1, x2, and x3 are the spatial variables, t the temporal variable, u the state vari-
able, D the diffusion coefficient1 which is assumed to be positive and independent of the
concentration, and c the propagation velocity of the wave. It is worth mentioning that
for stationary processes where ∂u/∂t = 0, the diffusion (heat) equation changes into the
Laplace equation. In cases where under stationary conditions sinks or sources appear in
the volume being considered, the diffusion equation changes into the Poisson equation:

Poisson equation
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

− f(x1, x2, x3) = 0

which in two dimensions is identical to the differential equation for the description of the
transverse displacement of a membrane. An important differential equation similar to the
Poisson equation is the Helmholtz equation, which contains both the dependent function
itself and its second spatial derivative:

Helmholtz equation
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+ αu = 0 α = const.

Using the more general Laplace operator ∆ = ∇2 instead of rectangular coordinates
and u̇ and ü for the first- and second-order time derivatives, respectively, the above

1The assumption that the diffusion coefficient is independent of the concentration applies only for
certain systems and very small concentrations. In real materials the value of the diffusion coefficient is,
first, a tensor quantity and, second, highly sensitive to the concentration. A more detailed discussion
of solid-state diffusion with consideration of the concentration dependence of the diffusion coefficient
as well as sinks and sources is given in Chapter 10.
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equations can be rewritten in a more compact notation:

ü− c2 ∆u = 0

u̇−D ∆u = 0

∆u = 0

∆u− f = 0

∆u+ αu = 0

Hyperbolic and parabolic partial differential equations typically describe non-statio-
nary, i.e. time-dependent problems. This is indicated by the use of the independent
variable t in the corresponding equations. For solving non-stationary problems one must
define initial conditions. These are values of the state variable and its derivative which
the solution should assume at a given starting time t0. These initial conditions could
amount to u(x1, x2, x3, t0) and u̇(x1, x2, x3, t0) for the wave equation and u(x1, x2, x3, t0)
for the diffusion or heat equation. If no constraints are given to confine the solutions to
particular spatial coordinates, i.e. −∞ < x1, x2, x3 < +∞, the situation represents a pure
initial-boundary problem.

In cases where additional spatial conditions are required, such as u(x10, x20, x30, t)
for the wave equation, and u(x10, x20, x30, t) or (∂u/∂x1) (x10, x20, x30, t), (∂u/∂x2)
(x10, x20, x30, t), and (∂u/∂x3) (x10, x20, x30, t) for the diffusion equation, or a combi-
nation of both, one speaks of a “boundary-initial-value problem”.

Models that are mathematically described in terms of elliptic partial differential equa-
tions are typically independent of time, thus describing stationary situations. The solu-
tions of such equations depend only on the boundary conditions, i.e. they represent pure
boundary-value problems. Appropriate boundary conditions for the Laplace or stationary
heat and diffusion equation, respectively, ∆u = 0, can be formulated as Dirichlet bounda-
ry conditions or as Neumann boundary conditions. Dirichlet boundary conditions mean
that solutions for the state variable u are given along the spatial boundary of the system.
Neumann boundary conditions mean that solutions for the first derivative ∂u/∂xn are
given normal to the spatial boundary of the system. If both the function and its normal
derivative on the boundary are known, the border conditions are referred to as Cauchy
boundary conditions.

3.2 Solution of Partial Differential Equations

The solution of partial differential equations by use of analytical methods is only possible
in a limited number of cases. Thus, one usually has to resort to numerical methods
(Cohen 1962; Abramovitz and Segun 1964; Botha and Pinder 1983; Engeln-Müllges 1988).
In the following sections a number of techniques are presented that allow one to obtain
approximate numerical solutions to initial- and boundary-value problems.

Numerical methods to solve complicated initial-value and boundary-value problems
have in common the discretization of the independent variables (typically time and space)
and the transformation of the continuous derivative into its discontinuous counterpart,
i.e., its finite difference quotient. Using these discretization steps amounts to recasting
the continuous problem expressed by differential equations with an infinite number of
unknowns, i.e., function values, into an discrete algebraic one with a finite number of
unknown parameters which can be calculated in an approximate fashion.
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Numerical methods to solve differential equations which are essentially defined through
initial rather than boundary values, i.e. which are concerned with time derivatives, are
often referred to as finite difference techniques. Most of the finite difference simulations
addressed in this book are discrete not only in time but also in space. Finite difference
methods approximate the derivatives that appear in differential equations by a transition
to their finite difference counterparts. This applies for the time and the space derivatives.
Finite difference methods do not use polynomial expressions to approximate functions.

Classical textbooks suggest a substantial variety of finite difference methods (Cohen
1962; Abramovitz and Segun 1964; Botha and Pinder 1983; Engeln-Müllges 1988). Since
any simulation must balance optimum calculation speed and numerical precision, it is
not reasonable generally to favor one out of the many possible finite difference solution
techniques for applications in computational materials science. For instance, parabolic
large scale bulk diffusion or heat transport problems can be solved by using a simple
central difference Euler method (Section 3.3.3), while the solution of the equations of
particle motion in molecular dynamics is usually achieved by using the Verlet (Section
7.4) or the Gear predictor–corrector method (Section 3.3.5). In most cases, it is useful to
select a discretization method with respect to the properties of the underlying differential
equations, particularly to the highest occurring order of derivative.

A second group of numerical means of solving differential equations comprises the
various finite element methods. These methods are designed to solve numerically both
complex boundary-value and initial-value problems. They have in common the spatial
discretization of the area under consideration into a number of finite elements, the tem-
poral discretization in cases where time-dependent problems are encountered, and the
approximation of the true spatial solutions in the elements by polynomial trial functions.
These features explain why they are referred to as finite element techniques.

Although both the finite difference and the finite element techniques can handle space
and time derivatives, the latter approach is more sophisticated in that it uses trial func-
tions and a minimization routine. Thus, the finite difference techniques can be regarded
as a subset of the various more general finite element approximations (Zienkiewicz and
Morgan 1983; Zienkiewicz and Taylor 1989).

Many finite difference and particularly most finite element methods are sometimes
intuitively associated with the solution of large-scale problems. Although this association
is often true for finite element methods which prevail at solving meso- and macroscale
boundary-value problems in computational materials science, it must be underlined that
such general associations are inadequate. Finite difference and finite element methods
represent mathematical approximation techniques. They are generally not intrinsically
calibrated to any physical length or time scale. Scaling parameters are introduced by the
physics of the problem addressed but not by the numerical scheme employed to solve a
differential equation. Owing to this fact, the fundamentals of the various finite difference
and finite element techniques are not presented together with the macro-, meso-, micro-,
or nanoscale simulation methods discussed in the ensuing chapters, but treated separately
in this chapter.

A subsequent part of the book provides a more detailed discussion of typical applica-
tions of the finite difference and the finite element method for materials simulations at the
macro- and mesoscale (Chapter 16). Detailed monographs on partial differential equa-
tions and their numerical solution have been published by Forsythe and Wasow (1960),
Richtmyer and Morton (1967), Dettman (1969), Marsal (1976), and Boas (1983).
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3.3 Fundamentals of the Finite Difference Method

3.3.1 Discretization of Time

The finite element and the finite difference methods are related in that they both allow one
to discretize partial differential equations and solve them under appropriate initial- and
boundary-value conditions. However, since the finite difference methods do not require the
use of polynomial trial functions and a minimization procedure, they are presented here
at the beginning in order to provide an introductory overview of numerical approaches
to solving differential equations. Since finite difference methods were originally designed
to solve initial-value problems, the present section concentrates on the numerical ap-
proximation of functions that are described by differential equations which contain time
derivatives.

When numerically solving initial-value problems one encounters two fundamental
problems that the computer cannot handle: first, the mapping of the independent variable
time, which is continuous rather than discrete, and second, the evaluation of derivatives
which are defined through a limit process. Consequently, each finite difference technique
is based on two main numerical approximations, namely, the discretization of time from
a continuous measure into tiny intervals of length h = ∆t, and the replacement of the
differential equation by the corresponding difference equation.

The first derivative du/dt of a function u(t) is at t0 defined through the limit of a
difference quotient:

du

dt

∣∣∣∣
t=t0

= lim
h→0

u(t0 + h) − u(t0)

h
(3.8)

The transformation of this continuous derivative into its finite difference quotient

∆u

h
= lim

∆t→h6=0

u(t0 + h) − u(t0)

h
(3.9)

is a discrete method since its objective is restricted to satisfying the governing equation
discretely rather than continuously. The given example belongs to the category of linear
one-step finite difference discretizations because it involves only two consecutive stations.

3.3.2 Numerical Errors of Finite Difference Methods

The two simplifications generally inherent in any finite difference method, viz., the dis-
cretization of time and the replacement of the differential quotient by its difference quo-
tient, can entail various types of numerical errors2.

The “truncation error” is the amount by which the exact solution of the continuous
differential equation fails to satisfy the approximate equation. It is calculated as the
norm of the difference between the solution to the continuous differential equation and
the solution to the discretized difference equation divided by the time interval used in the
numerical algorithm.

2Most finite difference simulations addressed in this book are discrete not only in time but also
in space. Such space-discretized finite difference simulations show additional errors that arise from
the discretization of space and the replacement of the spatial differential quotients by their discretized
spatial counterparts. In practice, these errors can exceed those arising from the discretization of time,
for instance in Ginzburg–Landau or Cahn–Hilliard-type phase field simulations which contain strong
concentration or structure gradients across diffuse interfaces.
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It is clear that the deviation between the analytical solution obtained for the contin-
uous differential equation and that obtained numerically from the approximate equation
should degrade by gradually refining the time step of the calculation. This property is
referred to as the “consistency” of an approximate method. A finite difference approxi-
mation is called consistent with the differential equation if the truncation error goes to
zero as the time interval goes to zero. If all approximate solutions to a given differential
equation are consistent, the numerical scheme is called a “convergent” method.

In this context it should be added that in the case of space-discretized finite difference
simulations, such as are encountered in the fields of dislocation dynamics (Section 9.4),
diffusional phase transformations (Section 10.2), and recrystallization (Section 11.9), there
can be considerable residual errors due to the discretization of space, irrespective of the
decrease in the time intervals.

Because of the limited precision of computers another numerically introduced error
must be considered, namely, the “round-off error”. This error is not identical to the
truncation error. While the latter stems from the limitation in transforming the difference
quotient into a differential quotient (equations (3.8) and 3.9)), the former is due to the
discretization of time. In contrast to truncation errors which are generally reduced with a
decreasing time interval, round-off errors can even increase with decreasing time intervals.
This becomes clear in a simple example where the time steps are physically given by real
numbers in units of seconds such as 1.3, 1.6, 1.9, 2.2, and so on, but numerically for some
reason these are reduced to integers, i.e. to 1, 1, 1, 2, and so on. For very small time
steps it is clear that such round-off errors can entail substantial accumulated deviations
from the analytical result. In order to keep this error as small as possible, finite difference
computer codes should generally work with double precision.

A further important criterion in evaluating the quality of a finite difference scheme
is its stability. The investigation of the stability of the solution quantifies whether the
errors discussed above will accumulate and amplify without limit during the computation
or not.

Thorough reviews on the numerical aspects and the errors associated with finite dif-
ference techniques have been published by Forsythe and Wasow (1960), Richtmyer and
Morton (1967), and Bellomo and Preziosi (1995).

3.3.3 Euler Methods

As a starting point for explaining the various finite difference schemes it is useful to recall
a simple initial-value problem:

du

dt
= f(u, t) (3.10)

where the state variable u depends only on the independent time variable t. When the
initial condition is given by u(t0) = u0, the above equation can be written in integral
form,

u(t) = u0 +

∫ tn

t0

f (s, u(s)) ds (3.11)

The general strategy to solve this integral consists in dividing the interval [t0, tn] into a
large number, n, of equally spaced subintervals of length h = (tn − t0)/n. Partitioning
the time in the above integral into such discrete intervals

[t0, tn] = [t0, t1] ∪ [t1, t2] ∪ ... ∪ [tn−1, tn] (3.12)
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Figure 3.1: Explicit or forward Euler method.

leads to a discretized equivalent of equation (3.11):

u(t) = u0 +
n−1∑

j=0

∫ tj+1

tj

f (s, u(s)) ds (3.13)

The simplest method to approximate the time derivative du/dt at the time ti is to
identify the local tangent at point ti with the slope calculated from the two subsequent
values of the state variables ui = u(ti) and ui+1 = u(ti+1), and the time interval h =
ti+1 − ti (Figure 3.1).

du

dt
(ti) ≈ ui+1 − ui

h
(3.14)

Quantifying the truncation error3 shows that it is linearly proportional to the chosen time
interval h. This means that equation (3.14) can be rewritten

du

dt
(ti) =

ui+1 − ui

h
+O(h) (3.15)

Combining equation (3.14) with equation (3.10) rewritten for the time ti

du

dt
(ti) = f(ui, ti) (3.16)

leads to
ui+1 = ui + h f(ui, ti) (3.17)

This method is referred to as “forward” or “explicit” Euler method since the value ui+1

is given directly in terms of some previously computed value of the state variable ui.

3A quantification of the round-off error is not possible here, since it depends on the relation between
the chosen time intervals and the precision of the computer being used.
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Figure 3.2: Implicit or backward Euler method.

The “backward” or “implicit” Euler method differs from the explicit method in the
evaluation of f in (ti+1, ui+1) rather than in (ui, ti) (Figure 3.2). The value of the state
variable u after (i+ 1) steps then amounts to

ui+1 = ui + h f(ui+1, ti+1) (3.18)

The implicit Euler method generally leads to a similar truncation error as the explicit
approach, i.e.

du

dt
(ti) =

ui − ui−1

h
+O(h) (3.19)

Although the implicit Euler algorithm looks at first very similar to the explicit method, it
is computationally less efficient. This is evident from equation (3.18), where the unknown
ui+1 appears on both sides of the equation, i.e., the expression must be transformed
before its solution. This is not the case for the explicit Euler method, equation (3.17),
which can be solved directly since the value of ui is already known. However, the implicit
Euler method is more stable than the explicit one and is thus preferred in certain cases
irrespective of its lower efficiency.

The various Euler methods can also be derived by using the Taylor (1715) formula
which allows one to express the change in the state variable u(t0 + h) − u(t0) in terms of
a series expansion

u(t0 + h) − u(t0) =

n−1∑

j=1

hj

j!

dju(t0)

dtj
+ Hn (3.20)

where Hn is the residual error of the expansion in the case of n < ∞. Conducting the
Taylor expansion for three subsequent equidistant points ti−1 = ti−h, ti, and ti+1 = ti+h
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leads to three equations:

ui−1 − ui = −h dui

dt
+
h2

2!

d2ui

dt2
− h3

3!

d3ui

dt3
+
h4

4!

d4ui

dt4
− ...

ui − ui = 0

ui+1 − ui = h
dui

dt
+
h2

2!

d2ui

dt2
+
h3

3!

d3ui

dt3
+
h4

4!

d4ui

dt4
+ ...

(3.21)

For instance, dividing the last of these equations by h leads to an expression similar to
that obtained for the forward Euler method, equation (3.15).

dui

dt
=
ui+1 − ui

h
− h

2

d2ui

dt2
− h2

6

d3ui

dt3
− h3

12

d4ui

dt4
− ... (3.22)

The truncation error in this expansion is characterized by the lowest-order term in h.
Equivalent Taylor-type derivations can be made for the backward and the central differ-
ence quotients (see below).

3.3.4 Leap-Frog Method

A general reduction of the truncation error as compared with the first-order explicit and
implicit Euler methods can be achieved by using the more symmetric second-order “central
difference” or “leap-frog” method:

du

dt
(ti) =

ui+1 − ui−1

2h
+O(h2) (3.23)

In this finite difference method the value of the variable u at time ti+1 is calculated by

ui+1 = ui−1 + 2h f(ui, ti) (3.24)

Depending on the required accuracy higher-order central difference algorithms can also
be formulated.

3.3.5 Predictor–Corrector Methods

The predictor–corrector method is a finite difference method that in its simplest form
includes a forward Euler method which is referred to as the “predictor”, and a subsequent
correction of the predicted result which is named the “corrector”. The procedure can be
used in an iterative manner. Together with the Verlet algorithm, it represents the most
common method of integrating the equations of motion in molecular dynamics.

The predictor–corrector method proceeds by first estimating the value of the state
variable u at time ti+1 using an explicit Euler step (Section 3.3.3).

uE

i+1 = ui + h f(ui, ti) (3.25)

This step is referred to as the predictor, since it provides a first prediction of the value of
u at ti+1 which is here denoted by uE

i+1. In a second step this value is modified by using
the implicit algorithm

ui+1 = ui + h f(uE

i+1, ti+1) (3.26)

This step is named the corrector, since it changes the initial explicit prediction of ui+1.
Using the second step, equation (3.26), more than once turns the predictor–corrector
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Figure 3.3: Crank–Nicholson method.

method into an iterative technique. This process, which does not affect the order of the
finite difference method, is called correcting to convergence:

uE

i+1 = ui + h f(ui, ti)

n times

{
ui+1 = ui + h f(uE

i+1, ti+1)

uE

i+1 = ui+1
(3.27)

Iterative predictor–corrector methods prevail as finite difference algorithms in molecular
dynamics, fluid dynamics, and simulations of diffusion.

3.3.6 Crank–Nicholson Method

The Crank–Nicholson method is a second-order finite difference method. It consists in
averaging the values of f in ti and ti+1. The value of the state variable u at time ti+1

amounts to

ui+1 = ui +
h

2
[f(ui, ti) + f(ui+1, ti+1)] (3.28)

This method corresponds to proceeding for half the time interval along the derivative
determined at time ti and for the remaining part along the derivative at ti+1. Mathe-
matically, this technique is identical to the trapezoidal rule. The truncation error shows
a decay which is proportional to h2 (Figure 3.3). The Crank–Nicholson method can
also be transformed into a predictor–corrector formulation where the first evaluation of
uE

i+1 is achieved by a forward Euler method and the second one by using the averaging
Crank–Nicholson step.

uE

i+1 = ui + h f(ui, ti)



40 3 Fundamentals and Solution of Differential Equations

n times

{
ui+1 = ui + h

2

[
f(ui, ti) + f(uE

i+1, ti+1)
]

uE

i+1 = ui+1
(3.29)

The iterative (n = 1...) predictor–corrector combination of the explicit Euler method
and the Crank–Nicholson step can also be referred to as the second-order Runge–Kutta
method.

3.3.7 Runge–Kutta Methods

The Crank–Nicholson method introduced above, which is essentially based on a modified
Euler algorithm, can be regarded as a special second-order case of the more general
Runge–Kutta method. In fact, all the previously discussed methods have in common that
they express the solution in terms of the derivative which is calculated for different times.
Thus, all Euler-based methods are often classified as generalized Runge–Kutta algorithms.
The Runge–Kutta formulation of the Crank–Nicholson method, equation (3.29), can be
written

ui+1 = ui +
h

2
[F1 + F2]

F1 = f(ui, ti)

F2 = f(ui + hF1, ti + h)

(3.30)

In their most general form the functions at different stations amount to

Fn = f [ui + h (An1 F1 +An2 F2 + ...+ An n−1 Fn−1) , ti + an h]

n = 1, ..., o (3.31)

where an and Anm are coefficients and o the order of the Runge–Kutta approximation.
Equation (3.31) reveals a certain similarity to the Taylor formula, which allows one

to express the change of the dependent variable u(t0 + h) − u(t0) as a series expansion,
equation (3.20). While the Taylor expansion is carried out on one point, the Runge–Kutta
method uses derivatives on various points. However, the coefficients an and Anm in equa-
tion (3.31) can indeed be derived by replacing the functions by Taylor series expansions.
Comparing the coefficients of both forms leads to a system of linear equations which can
then be solved. Thus, the term with the highest order in the Taylor expansions determines
the order of the Runge–Kutta algorithm. Following this procedure the coefficients of the
fourth-order Runge–Kutta formula amount to

ui+1 = ui +
h

6
[F1 + 2F2 + 2F3 + F4]

F1 = f(ui, ti)

F2 = f(ui +
h

2
F1, ti +

h

2
)

F3 = f(ui +
h

2
F2, ti +

h

2
)

F4 = f(ui + hF3, ti + h) .

(3.32)
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3.4 Fundamentals of the Finite Element Method

3.4.1 Discretization and Basic Procedure

The finite element method is a general numerical means for obtaining approximate so-
lutions in space to boundary- and initial-value problems. It is based on generating the
governing differential equations and their discretized algebraic counterparts of the problem
under investigation using a variational formulation with the course of the state variable
being approximated by appropriate interpolation functions (Figure 3.4).

While conventional analytical variational methods aim to find a solution by using
a single polynomial expression which is valid throughout the whole domain considered
(sample), finite element methods, which are used in cases where the sample shape is com-
plicated, aim to find a solution by constructing approximations within each of a number
of subdomains which are called “finite elements”. Finite element methods thus spatialy
discretize the entire domain of interest, which may have nearly arbitrary geometry, into an
assembly of relatively simply shaped elements which fill the entire domain without gaps
and without overlap. The subdomains are interconnected at joints which are referred to
as nodes. The form, size, and orientation of the finite elements depends on a number of
parameters, for instance on the sample shape.

The interpolation functions are defined in a piecewise manner. This can be done
by employing different coefficients or even different functions (mostly linear functions or
simple polynomials) in the various elements from which the total domain is developed.
This amounts to assuming a piecewise linear or polynomial solution over the entire domain
under consideration. The interpolation functions, which are also called “trial” or “ansatz”
functions, usually describe the course of the state variable in an element in terms of its
node values. Most finite element methods use these functions to map both the state
variable and the topology of the element which, by definition, is then referred to as
an isoparametric element. Trial functions for isoparametric elements are therefore also
referred to as “shape” or “form functions” (see Chapter 16).

Since the finite element method approximates the real course of the considered state
variables in each element by polynomials, the elements must be smaller the simpler these
functions are. The use of higher-order polynomials usually allows one the employment
of larger subdomains. Thus the element size depends also on the chosen polynomial in-
terpolation functions. Depending on the domain to be investigated, linear or polynomial
functions of second or third order are typically used. Finally, the element size must be
reduced in regions where strong gradients of the state variable are expected. Less critical
areas allow a courser mesh in order to reduce computation time. Aspects such as the
initial discretization procedure or the mesh updating depend on the programmer’s expe-
rience and are biased by their phenomenological knowledge of the simulated process. For
instance, the coordinate transformation associated with the updating of a finite element
mesh during a simulated large-strain plastic deformation process is often referred to as
the most important component of a successful finite element solution.

In two dimensions a simple quadratic interpolation function could amount to

u = a00 + a10 x1 + a01 x2 + a11 x1
2 + a12 x1x2 + a22 x2

2 . (3.33)

In the general case the coefficients a00, a10, a01, a11, a12, and a22 differ from element
to element, which means the approximate solution is defined piecewise. For obtaining a
steady course of the approximation, the values of u at a particular point on the element
boundary x̂1, x̂2 which belongs to two neighboring finite elements i and j must be identical,
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Figure 3.4: Important steps in the finite element method.

i.e., ui(x̂1, x̂2) = uj(x̂1, x̂2). A steady course of the first derivative of u on the element
boundaries is not generally required. For obtaining a better approximation one must use
higher-order polynomials or reduce the element size.

In the next step one defines a number of nodes in terms of their coordinates in each
individual element. A node that is positioned on an element boundary belongs to at least
two elements. The number of nodes defined in each finite element equals the number of
coefficients in the chosen interpolation function. Using the quadratic ansatz polynomial
defined by equation (3.33) thus requires the definition of six nodes in each subdomain.

In the ensuing step the unknown coefficients of the ansatz function a00, a10, a01, a11,
a12, and a22 are expressed in terms of the respective values of the state variable u at the
six nodes u1, u2, u3, u4, u5, and u6,

u = f1(u1, u2, u3, u4, u5, u6) + f2(u1, u2, u3, u4, u5, u6) x1+

f3(u1, u2, u3, u4, u5, u6) x2 + f4(u1, u2, u3, u4, u5, u6) x1
2+

f5(u1, u2, u3, u4, u5, u6) x1 x2 + f5(u1, u2, u3, u4, u5, u6)x2
2 (3.34)

where uα = ui
α(x1, x2), i.e. α = 1, 2, ..., 6 is the number of the node with the position

(x1, x2) in the element i. Thus, u1 = ui
1(x1, x2), u2 = ui

2(x1, x2), u3 = ui
3(x1, x2), u4 =

ui
4(x1, x2), u5 = ui

5(x1, x2), and u6 = ui
6(x1, x2).

The next step consists in the transformation of the original differential equation, which
usually describes the problem addressed, into an equivalent integral formulation by use
of a variational principle. This task is referred to as the “inverse” problem of the calculus
of variation. While the original variational problem consists in identifying a function, say
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Figure 3.5: Some examples of general variational principles.

u(x), which minimizes or maximizes a given functional, i.e.,

I(u) =

∫ x1

x0

f (x, u, du/dx) dx
!
= extr (3.35)

the inverse problem is to construct such a functional for a given differential equation, the
Euler–Lagrange function of which is u(x).

For obtaining approximate solutions, the polynomial trial functions for the unknown
state variables are then substituted into these integrals. Since the approximate solutions
obtained by using ansatz polynomials are typically not equal to the correct analytical
solutions, one requires certain criteria to minimize the deviation. For solving large-scale
material problems the basis for obtaining approximate solutions is mostly provided by
minimizing certain energy functionals (see details in Chapter 16). The incorporation of
the ansatz functions into these functionals results in a system of equations which represents
a discretized counterpart of the underlying continuous partial differential equations and
whose solution is the discrete solution at the nodes.

In the domain of solid mechanics two energy criteria prevail, namely, the variational
virtual work or virtual displacement principle which is often used for nonlinear material
response, and the minimum potential energy principle which is often employed for linear
material response (Figure 3.5).

The latter method is often referred to as the Dirichlet variational principle4. For a first
introduction simpler minimization procedures such as a least-squares fit method are also
conceivable. However, in either case it is first required to transform the differential equa-
tion into its corresponding integral form, equation (3.35), and to substitute the unknown
function by a trial or interpolation function. For instance, solving the one-dimensional
boundary-value problem expressed by the differential equation

d2u

dx2
= u (3.36)

with given boundary values u(x = a) = ua and u(x = b) = ub is equivalent to finding a
function u(x) for the definite integral which fits the boundary conditions and at the same
time minimizes the value ∫ b

a

[
u2 +

(
du

dx

)2
]

dx (3.37)

4It can be shown that the variational potential energy principle of Dirichlet is equivalent to the
virtual displacement principle (Curnier 1994), see Chapter 16.
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Such problems, which are referred to as “variational” problems, have already been ad-
dressed by Euler and Lagrange. Ritz tackled this task by expressing u in terms of a series
of unknown coefficients c0, c1, c2,...,cn and a set of given functions Φ1(x), Φ2(x),...,Φn(x)
in the form

u = c0 + c1 Φ1(x) + c2 Φ2(x) + ...+ cn Φn(x) (3.38)

By transforming the original differential equation into the integral expression (equations
(3.36) and (3.37)), one obtains the value of the integral as a function of the coefficients.
These can then determined so as to minimize the value of the integral.

The original approach was introduced by Ritz in order to minimize the deviation
between the correct and the approximate solutions over the entire domain addressed.
Thus, the original Ritz method focuses on achieving the best possible correspondence
between the correct and the approximate solutions over the entire system directly in one
step. However, this technique entails the disadvantage that in two- and three-dimensional
domains where Φi(x1, x2) or Φi(x1, x2, x3) are used instead of Φi(x1), the consideration
of irregular boundary conditions is less tractable.

Thus, the initial Ritz method was modified so to approximate the solution piecewise
rather than over the entire domain. This amounts to transforming the integral in equation
(3.37) into a sum of integrals over subdomains:

∫ b

a

[
u2 +

(
du

dx

)2
]

dx =

∫ a1

a=a0

[
u2 +

(
du

dx

)2
]

dx+

∫ a2

a1

[
u2 +

(
du

dx

)2
]

dx+ ...+

∫ b=an

an−1

[
u2 +

(
du

dx

)2
]

dx

where a = a0 < a1 < a2 < ... < an = b (3.39)

Each interval ai−1 < x < ai can then be understood to be the ith finite element and
the polynomial interpolation functions for the unknown state variables can be substituted
into the corresponding integrals. This technique leads to a minimization of the error in
a piecewise fashion at particular nodes rather than to a minimization of the total, i.e., of
the integral deviation over the entire domain in one step.

The Ritz method in its finite element version originally worked with a relatively
simple minimization routine. This approach can be improved by minimizing the de-
viation between the correct and the approximate solutions after multiplication with a
so-called weighting function. Further details on the application of variational methods
in the finite element method are presented in the monographs of Courant (1943), Lives-
ley (1983), Zienkiewicz and Morgan (1983), Rao (1989), Zienkiewicz and Taylor (1989),
Rowe, Sturgess, Hartley, and Pillinger (1991), and Zienkiewicz and Taylor (1991).

3.4.2 The Ritz Variational Method

In the preceding section the basic ideas of the variational calculus and the finite element
method were outlined. However, before addressing applications of finite element simula-
tions at the meso- and macroscale in Chapter 16, it is helpful first to present the basic
ingredients of the technique by using a simple analytical example that allows clarification
of the underlying principles. This makes the method more transparent and prepares for
the ensuing chapters.

The task to be solved is the analytical approximation of the solution to a simple
boundary-value problem using the classical Ritz method considering only one element.
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The starting point of the calculation is a one-dimensional ordinary second-order differ-
ential equation which was formulated to describe adequately the material problem being
addressed. It is assumed that the analytical solution of this differential equation is not
known:

d2u

dx2
= 12K x2 (3.40)

In this equation the function u, which can be referred to as state or dependent variable,
depends on the independent variable x. K is a parameter, for instance a material constant.
The differential equation is complemented by two boundary conditions, say

u(x=0) = 0

u(x=1) = K
(3.41)

The next step is to select a simple polynomial trial function a(x). Although there exists
no general rule for the selection of suitable ansatz functions, one can often yield a good
estimate by using functions that reflect the material behavior, at least on a phenomeno-
logical basis. In order to keep the approximation as simple as possible, one can use a
quadratic form such as

a(x) = Ax2 +B x+ C (3.42)

where A, B, and C are constants. In the next step one has to consider the boundary
conditions given by equation (3.41).

a(x=0) = Ax2 +B x+ C = 0 =⇒ C = 0

a(x=1) = Ax2 +B x = K =⇒ B = K −A
(3.43)

Thus, by combining equations (3.41) and (3.42), one obtains

a(x) = Ax2 + (K − A)x (3.44)

Now one has to use the ansatz function for an approximate solution of the original differ-
ential equation, i.e.

d2u

dx2
− 12K x2 = 0 (3.45)

is transformed into
d2a

dx2
− 12K x2 = 2A− 12K x2 6= 0 . (3.46)

Obviously, the solution is not correct since the right-hand side of equation (3.46) is not
equal to zero. The deviation 2A− 12Kx2, which is referred to as the error of the approx-
imation, is indicated by E(x).

According to Ritz, the next step in the improvement of the approximate solution now
consists in the procedure of minimization of the error given by E(x). Since we do not have
any detailed information of the material behavior or of the type of process addressed,
except that given by equations (3.40) and (3.41), the minimization of the integrated
quadratic error E(x) with respect to A represents the simplest possible approach. This
can be put formally by writing

Q =

∫ 1

0

E(x)2dx (3.47)

The minimization within the interval described by the boundary conditions can be written

∂Q

∂A
= 2

∫ 1

0

E(x)
∂E(x)

∂A
dx = 2

∫ 1

0

(
2A− 12Kx2) 2 dx = 0 (3.48)
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By integration of equation (3.48) one obtains A = 2K. Thus, the originial polynomial
ansatz function (equation (3.42)), amounts after optimization with respect to minimizing
the quadratic error in the range x = 0 to x = 1 to

a(x) = 2Kx2 −K x (3.49)

As is evident from this example, the approximation could be improved by either using
higher-order polynomial ansatz functions or by subdividing the original element into a
number of smaller elements. A further modification can be introduced by changing the
minimization procedure. Instead of using the minimization of the quadratic error, one
could introduce some weighting function w(x) to transform equation (3.48) into

∫ x1

x0

E(x)w(x) dx = 0 (3.50)

The use of special weighting functions leads to the so-called Galerkin method. Further
examples of variational approaches are given in the works of Forsythe and Wasow (1960),
Richtmyer and Morton (1967), Dettman (1969), Marsal (1976), Boas (1983), DeVries
(1994), and Bellomo and Preziosi (1995).
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Chapter 4

Fundamentals

The prediction of microstructures at the atomic scale requires the solution of a Schrödin-
ger wave equation for about 1023 nuclei and their electronic shells1. Such a differential
equation must be equipped with a Hamiltonian describing all particle interactions occur-
ring. For a single particle in a potential U(r) with mass m and coordinates r whose wave
function is Ψ(r, t) the time-dependent Schrödinger equation assumes the form

− ~
2

2m
∇2Ψ(r, t) + U(r) Ψ(r, t) = i~

∂Ψ(r, t)

∂t
(4.1)

where ~ = h/(2π) and h is Planck’s constant. Ψ(r, t) has the interpretation that |Ψ(r, t) |2
drx dry drz is the probability that the particle may be observed in the volume element
drx dry drz at any particular time.

For a bound particle in an eigenstate of energy Ek, equation (4.1) may be separated
into a time-dependent and a time-independent part

Ψ(r, t) = ψk(r) exp

(
−i

Ekt

~

)
(4.2)

The time-independent Schrödinger equation is, by substitution,

− ~
2

2m
∇2ψ(r)k + U(r)ψ(r)k = Ek ψ(r)k (4.3)

In analogy to the classical energy equation, this time-independent expression can be re-
garded as an operator equation, with i~∇ replacing the classical momentum p in the
expression p2/(2m) for the kinetic energy

Hψ(r)k = Ek ψ(r)k (4.4)

where H is the Hamilton operator. The analogy to the classical description may be used
to generalize equation (4.3) to cases with N particles, including their mutual interactions:

− ~
2

2

(∑

i

1

mi
∇2

i

)
ψ(r1, r2, ..., rN )k + U(r1, r2, ..., rN )kψ(r1, r2, ..., rN )k =

Ek ψ(r1, r2, ..., rN )k (4.5)

1neglecting relativistic effects and energy contributions arising from spin magnetic moments.
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For instance, a material consisting of i electrons of mass me with a negative unit
charge qe = −e and the spatial coordinates rei

, and j nuclei of mass mn with a positive
charge qn = zn e and the spatial coordinates rnj

, can be described by the eigenvalue wave
equation

− ~
2

2me

∑

i

∇2
i ψ(re1 , re2 , ..., rei

, rn1 , rn2 , ..., rnj
)k

− ~
2

2

∑

j

1

mnj
∇2

j ψ(re1 , re2 , ......, rei
, rn1 , rn2 , ..., rnj

)k

+



∑

i1,i2
i16=i2

e2

|rei1
− rei2

| +
∑

i,j

zj e
2

|rei
− rnj

| +
∑

j1,j2
j16=j2

zj1 zj1 e
2

|rnj1
− rnj2

|


ψ(re1 , re2 , ...,

rei
, rn1 , rn2 , ..., rnj

)k = Ek ψ(re1 , re2 , ..., rei
, rn1 , rn2 , ..., rnj

)k (4.6)

The terms that appear in this Hamilton operator suggest a distinction between those
material properties that are determined by the lattice dynamics (rnj

, ~
2/(2mnj), e.g.,

propagation of acoustic waves, thermal expansion, the non-electronic part of the specific
heat, thermal conductivity of semiconductors and ceramics, and structural defects, and
those that are determined by the electronic system (rei

, ~
2/(2mei), e.g. electrical conduc-

tivity, thermal conductivity of metals, and superconductivity. At first view such a concept
seems somewhat inaccurate, because it is the wave functions of the electrons and thus the
electronic charge density that determine the position of the atomic nuclei. However, de-
coupling the motions of the light electrons from those of the heavy nuclei can be justified
by the fact that the relaxation time of the electrons is typically three orders of magnitude
below that of the atomic nuclei. This amounts to a situation where the electronic system
practically remains in its ground-state irrespective of the positions of the nuclei. This
concept is referred to as the adiabatic or Born–Oppenheimer approximation.

Its employment in the present case allows one to approximate the exact wave function
ψ in equation (4.6) as a product of two separate wave functions, where one portion
describes the dynamics of the electrons ϕ and a second portion describes the dynamics
of the nuclei φ, ψ(re1 , re2 , ..., rei

, rn1 , rn2 , ..., rnj
) = ϕ(re1 , re2 , ..., rei

) φ(rn1 , rn2 , ..., rnj
).

This approach amounts to separating the dynamics of the heavy constituents (nuclei)
from that of the light ones (electrons). The corresponding Schrödinger equation is


− ~

2

2me

∑

i

∇2
i +

∑

i1,i2
i16=i2

e2

|rei1
− rei2

| +
∑

i,j

zj e
2

|rei
− rnj

|


 ϕ(re1 , re2 , ..., rei

)ke

= Ee
ke
ϕ(re1 , re2 , ..., rei

)ke (4.7)

for the electronic system with the eigenvalues Eke and
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for the nuclei with the eigenvalues Ekn .
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Approximate solutions of equation (4.7) using Hartee–Fock or local electron density
functional theory form the basis of electronic ground state calculations with fixed coordi-
nates for the nuclei. Since the exact ground state wave function will have a lower energy
than any other admissible wave function, it is straightforward to express these theories
in a variational form. Equation (4.8) is the starting point for the prediction of atomic
configurations with instantaneously equilibrated electrons (Chapter 7).

This part of the book deals mainly with atomic-scale structure and distribution func-
tion simulations, i.e., with approximations to equation (4.8) and their discrete or statistical
numerical solution. The solution methods can be principally grouped into probabilistic
and deterministic approaches. While the first class is usually referred to as Monte Carlo
methods, the second one is referred to as molecular dynamics. Energy band calculations
for many-electron systems with fixed nuclei will only briefly be discussed in Section 7.2.7.
In computational materials science, Monte Carlo methods are most widely used to deter-
mine stochastically equilibrium states for known distribution functions or to solve directly
integral formulations of the equation of motion (Metropolis et al. 1953; Hammersley and
Handscomb 1964; Binder 1984; Kalos and Whitlock 1986; Suzuki 1987).

When used in a statistical fashion the Monte Carlo technique mimics a canonical
ensemble by performing a large number of successive stochastic computer experiments
using uncorrelated random numbers which form a Markov chain. This allows one to
explore within reasonable computation time a large number of states in phase space.
Most Monte Carlo methods use weighted schemes, i.e, the transition probabilities between
configurations are visited according to their proper statistical relevance. By assuming
ergodic system behavior, averages can be obtained as pseudo-time averages along the
trajectory in phase space. Monte Carlo techniques are particularly useful in calculating
state function values and correlation functions on the basis of adequate Hamiltonians.

Statistical Monte Carlo integrations represent classical methods for the prediction of
equilibrium configurations, i.e. of path-independent properties of canonical ensembles.
Howver, they also gain momentum as approximation methods for the simulation of path-
dependent behavior such as is often investigated in the field of microstructure dynamics.
It must be clearly underlined that Monte Carlo methods are not principally confined to
equilibrium predictions but can be used to solve any differential equation which can be
turned into an integral form. The original idea of the various Monte Carlo approaches is
to provide a probabilistic means for numerical integration. In general, they are thus not
intrinsically scaled to the atomistic regime but can be used at any scale, provided they
are applied to an appropriate probabilistic model.

Typical examples of non-atomistic Monte Carlo applications lie in the field of trans-
port and phase transformation phenomena. The extension of Monte Carlo predictions to
applications in the field of microstructure simulation was particularly promoted by the
modification of the Ising lattice model for the simulation of magnetic domains to the mul-
tistate Potts model for the simulation of generalized domains (Potts 1952; Wu 1982). This
approach, which is often referred to as the q-state Potts model, uses generalized instead
of binary spin numbers. This allows one to map discretely various types of domains by
regions of identical spin. In microstructure simulation these domains can be interpreted
as areas of similarly oriented material with negligible interaction energy between identical
neighbors and a non-negligible interaction between dissimilar neighbors. The latter case
can be used to identify internal interfaces. In the Potts lattice model, each simulation
step is carried out using the conventional Metropolis Monte Carlo algorithm, but with an
underlying delta-type Hamiltonian which accounts for dissimilar lattice neighbors. Struc-
ture evolution is reflected by the transient behaviour of the system, i.e., by the mesoscopic
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evolution of the domain size and shape. While original Monte Carlo approaches were con-
fined to simulating the values of path-independent state functions, they are now through
the q-state Potts model a convenient means in simulating path-dependent microstructure
evolution. When using an internal kinetic measure such as the number of Monte Carlo
steps, counted in units of lattice sites, Ising- and Potts-type Monte Carlo models are
sometimes referred to as kinetic Monte Carlo models (Anderson et al. 1984; Srolovitz
et al. 1984; Grest et al. 1988; Srolovitz et al. 1988; Rollett et al. 1989; Glazier et al.
1990; Anderson and Rollett 1990; Holm et al. 1996). Kinetic Potts-type simulations of
domain growth and shrinkage are often employed to predict microstructure evolution at
the mesoscale. They are therefore discussed in Chapter 12, which deals with mesoscale
simulations. The various Monte Carlo methods are described with special regard to their
application at the atomic scale in the first major chapter of this part (Chapter 6).

Most of the molecular dynamics methods are based on turning equation (4.8) into a
classical form by replacing the quantum mechanical expression for the kinetic energy by
the classical momentum term

1

2

∑

j

p2

mj
+ U =

∑

j

mjv
2
j + U = E (4.9)

and solving it for a nucleus in the potential U using Newton’s law of motion:

m
∂v

∂t
= −∇U (4.10)

A number of typical more or less empirical potentials will be discussed in Section 7.2.
While Monte Carlo techniques prevail in simulations of equilibrium properties, molecular
dynamics approaches are mainly used to solve discretely the equation of motion. They are
hence of particular importance in the prediction of the dynamics of lattice defects (Alder
and Wainwright 1959; Verlet 1967; Catlow and Mackroth 1982; Hoover 1986; Allen and
Tildesley 1989; Tersoff et al. 1989; Mark et al. 1992; Broughton et al. 1993; Sutton and
Balluffi 1995). In contrast to the probabilistic nature of the Monte Carlo technique, the
molecular dynamics method is deterministic.

Under the assumption of ergodic system behavior (Halmos 1955; Farquhar 1964; Bed-
ford et al. 1991), thermodynamic quantities can be calculated as time averages of the
simulation. Thus the molecular dynamics technique allows one to mimic both thermody-
namics and path-dependent dynamics of many-body interaction phenomena at the atomic
scale (Alder and Wainwright 1960; Rahman 1964; Verlet 1968). At first sight the deter-
ministic character of molecular dynamics simulations therefore seems to be superior to
the stochastic Monte Carlo technique. However, molecular dynamics has its limitations
in statistics: both Monte Carlo and molecular dynamics compute averages along their
respective trajectories in configuration space. However, in multidimensional systems with
up to 6N degrees of freedom Monte Carlo integrations allow one to visit a larger number
of states along their stochastic trajectory than molecular dynamics simulations along their
deterministic trajectory. This means that with molecular dynamics much less of the phase
state is actually accessible as compared with Monte Carlo. Furthermore, the assumption
of ergodic system behavior which justifies time integration for obtaining averages has
never been unambiguously proven (Farquhar 1964).

However, the great value of molecular dynamics lies in its capability to predict mi-
crostructure dynamics at a scale that is not, or only with great effort, amenable to exper-
imentation. It is the only deterministic simulation method that provides insight into the
path-dependence of microstructure evolution at an atomistic level.



Chapter 5

Statistical Mechanics in

Atomic-Scale Simulations

Atomic-scale simulations can be used to predict equilibrium and transient thermodynamic
states, correlation functions, and the dynamics of atoms. This is achieved through the
discrete or statistical numerical calculation of many-body1 interaction phenomena. The
mutual interaction of the particles being considered is usually quantified in terms of
appropriate Hamiltonians.

Often, it is desirable to extract data of macroscopic relevance from such atomic-scale
simulations. This requires the use of adequate statistical methods. This chapter deals
with the conversion of detailed microscopic information, such as is obtained from atomic-
scale simulations, into macroscopic information. The quantitative tools for this procedure
are provided by statistical mechanics.

The field of statistical mechanics can be devided into two main branches, namely
equilibrium statistical mechanics, which deals with the derivation of the laws of thermo-
dynamics and calculation of the values of thermodynamic state functions and other equi-
librium properties of systems in terms of their atomistic properties, and non-equilibrium
statistical mechanics, which deals with the approach of systems to thermodynamic equilib-
rium, the derivation of macroscopic transport equations and their coefficients, and other
non-equilibrium properties of systems in terms of their atomistic properties. While the
first area can be referred to as “statistical thermodynamics”, the second can be termed
“statistical kinetics”.

In this chapter the fundamentals of equilibrium statistical mechanics as required in
formulating and analyzing atomic-scale simulations will be briefly reviewed, based on the
work of Maxwell, Boltzmann, and Gibbs. Some aspects of non-equilibrium statistical
mechanics will be touched upon as well. More detailed contributions about statistical
mechanics have been published by Boltzmann (1905), Hill (1956), Reif (1965), Wannier
(1966), Pointon (1967), Kestin and Dorfman (1971), Münster (1974), Ludwig (1979),
Landau and Lifshitz (1980), Reichl (1980), Binder (1984), Binder and Heermann (1988),
Atkins (1986), Allen and Tildesley (1989), and Honerkamp and Römer (1993).

1A body, in this context, is any material portion below the continuum scale and above the electronic
scale, i.e. body ≡ atom or molecule.
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Figure 5.1: Motion of a point in a two-dimensional phase space. The diagram only maps
the temporal evolution of two coordinates, rx1 (t) and px1 (t), out of the 6N coordinates,
rx1 (t), rx2 (t), ..., rxN

(t), px1 (t), px2 (t), ..., pxN
(t). The arrows indicate the continuous

increase of time.

The microscopic thermodynamic state of a classical, i.e., of a nonquantum atomic
gas consisting of N particles in translational motion is given by the three components
of the particle position vectors r1, ..., rN and by the three components of the particle
velocity or respective momentum vectors p1, ...,pN . The number of atoms encountered
in real systems is of the order of 1023. From an atomistic point of view one thus deals
with a huge microscopic data set of at least 6 × 1023 numbers required to determine
fully the macroscopic state of a system. These 6N components, or degrees of freedom
(DOF), of the position and momentum vectors can be thought of as coordinates in a
multidimensional space which is referred to as phase space. Depending on the prescribed
macroscopic system parameters, i.e., on the underlying state function, one usually deals
with a Gibbs phase space or a Helmholtz phase space. At any instant in its temporal
evolution the system can be characterized by a specific set of data points, say particle
velocities and positions, in phase space (Figure 5.1). This vector set can be put together
to form the 6N dimensional quantity Γ (t):

Γ(t) = { r1(t) , ..., rN (t) ,p1(t) , ..., pN(t) } (5.1)

Each point in phase space represents a typical system at any particular instant of time.
Due to the 6N possible coordinates, the phase space for classical particles is sometimes
denoted as Γ6N (t) or simply Γ. Of course, further microscopic degrees of freedom that
appear in nonclassical Hamiltonians, such as the particle spin, can be considered as well.
Writing Γ (t) in differential form leads to the expression

dΓ (t) = drx1(t) · dry1(t) · drz1(t) · drx2(t) · dry2(t) · drz2(t) · ...
... · drxN

(t) · dryN
(t) · drzN

(t) · dpx1(t) · dpy1(t) · dpz1(t) · dpx2(t) · dpy2(t) · dpz2(t) · ...
... · dpxN

(t) · dpyN
(t) · dpzN

(t) · (5.2)

where rx1 (t) represents the x component of the position vector r of particle 1 as a function
of time t, and px1 (t) is the x component of the momentum vector p of particle 1 as a
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Table 5.1: Ensemble types in Monte Carlo and molecular dynamics.

Ensemble Prescribed parameters

macrocanonical particle number, volume, temperature

microcanonical particle number, volume, energy

grandcanonical volume, temperature, chemical potential

isobaric–isothermal particle number, pressure, temperature

function of time t. This can be rewritten more compactly as

dΓ (t) = dr3N(t) dp3N(t) (5.3)

The quantitiy dΓ (t) can be regarded as a volume element about the point Γ (t) in phase
space. The temporal evolution of a system can be characterized by the time trajec-
tory of Γ (t) in phase space. While kinetic Monte Carlo simulations provide states along
a stochastic trajectory which is usually calculated by importance sampling, i.e. by a
weighted sampling scheme, molecular dynamics simulations provide states along a deter-
ministic trajectory which is calculated by solving the classical equations of motion of all
particles involved.

For obtaining a more macroscopic picture of a system consisting of 1023 particles, a
detailed microscopic analysis including the individual coordinates, velocities, orientations,
and angular velocities of the molecules is often neither tractable nor required. The cen-
tral idea of statistical mechanics thus consists in the replacement of the 6N microscopic
parameters for the characterization of the thermodynamic state by a few macroscopic pa-
rameters, such as the particle number N , volume V , temperature T , energy E, chemical
potential µ, heat capacity c, or pressure P . In cases where certain macroscopic system pa-
rameters are prescribed, this can be achieved by calculating averages from the fluctuating
microscopic parameters of the individual particles.

Calculating averages makes sense because the number of possible microstates consid-
erably exceeds the number of macrostates. In other words, one macrostate can be realized
by a multiplicity of microstates, i.e. the particles must satisfy the same prescribed macro-
scopic constraints but may differ in their microscopic states. Using averages thus follows
the belief that the macroscopic properties of a system consisting of a large number of
interacting particles is not sensitive to the details in its microscopic, i.e. atomistic, states.

Furthermore, the calculation of average data which are in the following text denoted by
〈q〉 reflects the essential experimental experience of identifying particles with an average
behavior with a larger probability than those with non-average properties. This means
that macroscopically observed quantities qexp can be set equal to the system averages 〈q〉.

The analysis of averages in addition to the fine details of atomistic simulations allows
one to correctly consider externally imposed macroscopic constraints, such as pressure or
volume, and check the consistency of the resulting predictions with respect to the values of
these state variables. This means that in the field of microstructure simulation, statistical
mechanics complements and controls the prediction of individual positions and velocities.

The set of all points in phase space together with their respective probabilities estab-
lishes an ensemble (Table 5.1). In other words, an ensemble characterizes the probabilities
of all microscopic states that are allowed within certain macroscopic constraints, which
are represented by a set of externally imposed macroscopic parameters. In the area of
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equilibrium statistical mechanics one deals with stationary ensembles. Depending on the
prescribed set of macroscopic conditions, one speaks of a “macrocanonical” or simply
a “canonical” stationary ensemble (N , V , T prescribed), a “microcanonical” stationary
ensemble (N , V , E prescribed), a “grandcanonical” stationary ensemble (V , T , µ pre-
scribed), or an “isobaric–isothermal” stationary ensemble (N , P , T prescribed). While in
the canonical, microcanonical, and isobaric–isothermal ensembles the concentration of the
elementary constituents is fixed, in grandcanonical systems it depends on the prescribed
chemical potential.

The macrocanonical or canonical ensemble is typically prescribed in Monte Carlo sim-
ulations where N particles are in a box with volume V which is embedded in a heat bath
with constant temperature T . The total energy and the system pressure may fluctuate
around some average value. The characteristic function of the canonical ensemble is the
Helmholtz free energy F (N,V, T ).

The microcanonical ensemble with N particles in a box with volume V and a fixed
total energy E prevails in molecular dynamics simulations. The system temperature and
pressure may fluctuate around some average value. The characteristic function of the
microcanonical ensemble is the entropy S(N,V, E).

The grandcanonical ensemble with a prescribed temperature T , a given chemical po-
tential µ, and a fixed volume V is typically implemented in Monte Carlo simulations. The
system energy, the pressure, and the number of individual particles may fluctuate around
some average value. The characteristic function of the grandcanonical ensemble is the
Massieu function J(µ, V, T ).

The isobaric–isothermal ensemble with a given temperature T , pressure D, and num-
ber of particles N is typically realized in Monte Carlo simulations. The total energy and
the system volume may fluctuate. The characteristic function of the isobaric–isothermal
ensemble is the Gibbs free energy G(N,P, T ) (Figure 5.2).

Statistical data can be obtained from a microscopic set of particles by calculating either
time averages or ensemble averages. The equivalence of these averages is the subject
of the ergoden theory. The use of time averages 〈q〉time follows the assumption that
a macroscopically observed quantity qexp is insensitive to temporal fluctuations of the
microstates.

〈q〉time = qexp = 〈q (Γ(t))〉time = lim
texp→∞

1

texp

∫ t0+texp

t0

q (Γ(t)) dt (5.4)

Correspondingly, the validity of ensemble averages 〈q〉ens is based on the assumption that
a macroscopically observed quantity qexp is insensitive to phase space fluctuations of the
microstates. In other words, the ensemble average can be determined by replacing the
time average 〈q〉time, given by equation (5.4), by an average taken over all members of
the ensemble, 〈q〉ens, frozen at a particular time t = tfix.

〈q〉ens = qexp = 〈 q (Γ(t= tfix)) 〉ens =

∫

Γ

q (Γ) ρ (Γ) dΓ (5.5)

where ρ (Γ) = ρ(r1, ..., rN ,p1, ...,pN ) is the probability distribution function. It is some-
times also referred to as the phase space distribution function or simply as the distribution
function. ρ (Γ) is proprtional to the probability that, for a given macrostate, the system
is at t = t0 in a microstate the phase space point of which lies within a volume element
of the phase space, dΓ, about the point Γ. Since the microstate must definitely exist
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Figure 5.2: Typical ensembles in atomic-scale Monte Carlo and molecular dynamics sim-
ulations: (a) canonical or macrocanonical ensemble (N , V , T prescribed, Helmholtz free
energy F (N,V, T ) as characteristic function); (b) microcanonical ensemble (N , V , E pre-
scribed, entropy S(N, V,E) as characteristic function); (c) grandcanonical ensemble (V ,
T , µ prescribed, Massieu function J(µ, V, T ) as characteristic function); (d) isobaric–
isothermal ensemble (N , P , T prescribed, Gibbs free energy G(N, P, T ) as characteristic
function).

somewhere in phase space, the integral of the distribution function over the phase space
amounts to 1: ∫

Γ

ρ (Γ) dΓ = 1 (5.6)

From the classical formulation of the Liouville equation it follows that, if ρ (Γ) repre-
sents an equilibrium ensemble, then its time-dependence completely vanishes, i.e., it is a
function only of the conserved quantities of motion.

∂ρ (Γ)

∂t
= 0 (5.7)

The Liouville theorem can be regarded as a conservation law for probability density. This
means that any equilibrium ensemble characterized in terms of a constant ρ (Γ) represents
a stationary ensemble.

The phase space density function depends on the system Hamiltonian,

ρ (Γ) = f (H (Γ)) (5.8)

with
H (Γ) = Epot(r1, ..., rN ) + Ekin(p1, ...,pN ) (5.9)

where Epot(r1, ..., rN ) is the potential energy and Ekin(p1, ...,pN ) the kinetic energy.
The phase space density function for a canonical system ρNVT (Γ) is conveniently

described in terms of the probability w (Γ) to observe a particle with energy H (Γ) and
the canonical zustandsintegral or canonical partition function2 ZNVT.

2Planck referred to it as the zustandsintegral, i.e. sum over states; this is where the symbol Z comes
from.



58 5 Statistical Mechanics in Atomic-Scale Simulations

The basic assumption of statistical mechanics is that all microstates of a system that
have the same energy are equally probable. In the classical canonical description the
probability can be expressed in terms of the Boltzmann factor. The probability density
wNVT (Γ), which describes the non-normalized statistical weight with which the canonical
phase space configuration Γ occurs in thermal equilibrium, can be written

wNVT (Γ) =
1

N !h3N
exp (−β H (Γ)) (5.10)

where β is 1/(kB T ) with kB the Boltzmann constant and 1/(N !) the normalization factor
which takes into account that for N identical particles a permutation of particle indices
does not lead to a change in the quantum state. The factor 1/(h3N ) accounts for the
Heisenberg uncertainty, where h3N can be regarded as the volume of tiny cells in phase
space below which the position and momentum vectors can no longer be determined at
the same time.

The canonical partition function ZNVT, which integrates the weights over all states in
phase space, plays the role of a normalizing factor,

ZNVT =

∫

Γ

wNVT (Γ) dΓ =
1

N !h3N

∫

Γ

exp (−β H (Γ)) dΓ (5.11)

The canonical phase space density function ρNVT (Γ) can then be written as a nomalized
weight distribution function, namely

ρNVT (Γ) =
w (Γ)

ZNVT
=

exp (−β H (Γ))∫
Γ

exp (−β H (Γ)) dΓ
(5.12)

In the case of discrete energies H (Γ) and distinguishable non-quantum particles which
show a behavior in accord with the Maxwell–Boltzmann distribution, it is convenient to
write the canonical partition function as a sum rather than an integral:

ZNVT =
∑

Γ

exp (−β H (Γ)) (5.13)

The canonical ensemble average 〈q〉NVT for a property q can then be written

〈q〉NVT = 〈 q (Γ(t= tfix)) 〉NVT =
∑

Γ

ρNVT (Γ) q (Γ) =

∑
Γ
w (Γ) q (Γ)∑
Γ
w (Γ)

(5.14)

The microcanonical probability density wNVE (Γ), which describes the non-normalized
statistical weight with which the microcanonical phase space configuration Γ occurs in
thermal equilibrium, can be written

wNVE (Γ) =
1

N ! h3N
δ (H (Γ) − E ) (5.15)

where E is the system energy and δ the Dirac delta function. The microcanonical partition
function ZNVE amounts to

ZNVE =

∫

Γ

wNVE (Γ) dΓ =
1

N !h3N

∫

Γ

δ (H (Γ) −E ) dΓ (5.16)

In the case of discrete energies the microcanonical partition function can be written as a
sum:

ZNVE =
∑

Γ

δ (H (Γ) − E ) (5.17)
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The probability density of the grandcanonical ensemble wµVT (Γ) is

wµVT (Γ) =
1

N !h3N
exp (−β (H (Γ) − µN) ) (5.18)

where µ is the specified chemical potential and N the number of particles. The grand-
canonical partition function ZµVT amounts to

ZµVT =

∫

Γ

wµVT (Γ) dΓ =
1

N ! h3N

∫

Γ

exp (−β (H (Γ) − µN) ) dΓ (5.19)

For discrete energies the grandcanonical partition function can be written as a sum:

ZµVT =
∑

r

∑

N

exp (−β (H (Γ) − µN) ) =
∑

N

exp (β µN) ZNVT (5.20)

The probability density of the isobaric-isothermal ensemble wNPT (Γ) is

wNPT (Γ) =
1

N ! h3N Ω0
exp (−β (H (Γ) + P V ) ) (5.21)

where Ω0 is a volume constant, P the pressure, and V the volume. The isobaric-isothermal
partition function ZNPT amounts to

ZNPT =

∫

V

∫

Γ

wNPT (Γ) dΓ dV =
1

N !h3N Ω0

∫

V

∫

Γ

exp (−β (H (Γ) + P V ) ) dΓ dV

(5.22)
In the case of discrete energies the isobaric-isothermal partition function can be written
as a sum:

ZNPT =
∑

r

∑

V

exp (−β (H (Γ) + P V ) ) =
∑

V

exp (−β P V ) ZNVT (5.23)

The partition function is a fundamental quantity which allows one to calculate var-
ious thermodynamic state functions in thermodynamic equilibrium. For instance, the
Helmholtz free energy F is proportional to the logarithm of the canonical partition func-
tion, i.e.

F = −kBT lnZNVT = −kBT ln
∑

Γ

exp (−βH (Γ)) (5.24)

The Gibbs free energy G is proportional to the logarithm of the isobaric-isothermal parti-
tion function, i.e.

G = −kBT lnZNPT = −kBT ln
∑

r

∑

V

exp (−β (H (Γ) + P V ) ) (5.25)

From these two main state functions some further useful thermodynamic relations can be
derived. For instance, the internal energy U can be written as derivative of the canonical
partition function,

U = − ∂ lnZNVT

∂β
(5.26)
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and the entropy S and pressure P as derivatives of the free energy,

S = −
(
∂ lnF

∂T

)

V

P = −
(
∂ lnF

∂V

)

T

(5.27)

where V is the volume.
An important theorem that relates the average of the canonical or macrocanonical

ensemble (N , V , T ) to the average of the microcanonical ensemble (N , V , E) is denoted
as the “thermodynamic limit”. It states that, if apart from phase transition in the two
ensembles, when both the number of particles N and the volume V are increased to
infinity, the averages of both ensembles are equal. However, computer simulations can
only be are performed for finite-sized systems. The deviation between averages of infinite
and finite-sized systems decays with 1/N , where N is the number of particles being
considered.



Chapter 6

Monte Carlo Simulation and

Integration

6.1 Introduction and Fundamentals

The various techniques commonly referred to as Monte Carlo methods comprise direct
approaches to mimic stochastic events which can be decomposed into isolated processes
and statistical approaches to integrate multidimensional definite integrals numerically.
Monte Carlo simulations are generally concerned with large series of computer experiments
using uncorrelated random numbers (Hammersley and Handscomb 1964; Shreider 1966;
Binder 1984; Kalos and Whitlock 1986; Koonin 1986; Binder and Heermann 1988; Allen
and Tildesley 1989; Binder 1991a; Yeomans 1992; Pang 1997).

Usually, Monte Carlo models can be dismantled into three characteristic steps (Figure
6.1). In the first step, the physical problem under investigation is translated into an
analogous probabilistic or statistical model1. In the second step, the probabilistic model
is solved by a numerical stochastic sampling experiment including a large number of
arithmetical and logical operations. In the third step, the data obtained are analyzed
using statistical methods.

Due to the extensive employment of stochastic sampling, the development of the
Monte Carlo method was closely connected with the progress in computer technology. The
stochastic character of this method requires huge series of uncorrelated random numbers.
The validity of this approach is covered by the central limit theorem of probability theory.

Depending on the distribution from which the random numbers are selected for a
numerical integration experiment, one can distinguish simple (naive) sampling from im-
portance sampling Monte Carlo methods. The former method (simple sampling) uses an
equal distribution of the random numbers. The latter (importance sampling) employs

1Probabilistic processes describe situations where the spatial and/or temporal evolution of a system
is not unequivocally described by a set of equations transforming one state into another (which would
be referred to as a deterministic process) but determined by random or quasi-random processes. Under
such conditions the state of a system can only be predicted with a certain probability. It must be
noted in this context that the term “random process” does not literally mean that the underlying
physical mechanisms are truly random. It only means that it is in models often much more efficient
to incorporate certain deterministic processes via a pseudo-stochastic process than to solve exactly the
equations of motion of all particles in the system.
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Figure 6.1: Important steps in Monte Carlo modeling.

Figure 6.2: Schematic illustration of a nonweighted (a) and a weighted (b) random sam-
pling method. For numerical integration purposes the weighted sampling scheme is much
more effective than the nonweighted approach. The columns indicate the weighted fre-
quency of chosen x-values (not the values of the integrand) for which the integrand values
are calculated.
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Figure 6.3: Some criteria to classify Monte Carlo simulation methods.

a distribution which is accommodated to the problem being investigated. Importance
sampling thus means that a large weight is used in those regions where the integrand has
large values, and a small weight in those regions where it assumes small values.

For instance, in order to integrate effectively a Gauss type decaying symmetric function
by stochastic sampling, it is useful to sample integrand values with a large weight around
its symmetry center rather than in regions where the function assumes negligible values.
Figure 6.2 clearly shows that the nonweighted integration by random sampling requires a
much larger number of trials to approximate the true integral than the weighted scheme.

In the field of computational materials science, the simple sampling technique is often
employed in percolation models as a nonweighted stochastic integration method. Im-
portance sampling is the underlying principle of the Metropolis Monte Carlo algorithm
(Metropolis et al. 1953), which is in the form of the q-state Potts model also widely used
in microstructure simulation (Srolovitz 1986; Rollett et al. 1989; Holm et al. 1996).

Monte Carlo simulation methods can be roughly grouped according to the sampling
technique employed, the spatial lattice, the spin model, and, connected with that, the
quantities that enter the energy operator (Figure 6.3). Of course, other classification
schemes are conceivable as well (Potts 1952; Metropolis et al. 1953; Hammersley and
Handscomb 1964; Shreider 1966; Wu 1982; Binder 1984; Kalos and Whitlock 1986; Koonin
1986; Allen and Tildesley 1989; Binder and Stauffer 1987; Suzuki 1987; Binder 1991a;
Binder 1991b; Heermann and Burkitt 1991; Yeomans 1992).

This chapter addresses the main sampling algorithms (simple sampling and impor-
tance sampling), some lattice types (cubic, Bethe, Kagomé, etc.), the main spin or local
interaction models and their Hamiltonians (Ising, Potts, lattice gas, Heisenberg), and
finally some typical applications and examples in the field of materials science.

6.2 Some Historical Remarks

The first substantial contribution to what one would today denote as the Monte Carlo
approach was published by Lord Kelvin (1901), who used this method for a discussion of
the Boltzmann equation. The systematic development of the Monte Carlo technique as a
simulation tool dates from 1944. During their work on the Manhattan project2 S. Ulam
and J. von Neumann introduced Monte Carlo simulations to mimic the uncorrelated
spatial diffusion of neutrons in fissile materials (random walk problem). Independently,

2Development and assemblage of the first atomic bombs from 1943 at Los Alamos National Labo-
ratory, New Mexico, USA, under the direction of J. Robert Oppenheimer.
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J.E. Mayer suggested a similar numerical method to calculate integrals by use of a non-
weighted random sampling procedure. It was especially the novel contribution of these
reserachers to realize that determinate problems can be tackled by finding an adequate
probabilistic analogue which may then be solved by random walk-type many-particle
simulations or by random sampling of adequate integral formulations.

The main idea of solving state function integrals by randomly sampling from a non-
uniform distribution of numbers was introduced in the 1950s by N. Metropolis, A.W. Rosen-
bluth, M.N. Rosenbluth, A.T. Teller, and E. Teller (1953). A similar method was indepen-
dently suggested by B. Alder, J. Kirkwood, S. Frankel, and V. Lewinson (see comments
in the article by Metropolis et al.).

The fact that these techniques are based on the use of random numbers rather than
deterministic algorithms possibly led to the name Monte Carlo, indicating the stochastic
character of the method. Other sources, however, say that S. Ulam’s uncle went each year
to Monte Carlo for gambling and so gave the method its name.

6.3 Random Numbers

Monte Carlo methods can be used both to simulate stochastic many-body phenomena and
integrate functions by random sampling using large series of uncorrelated random numbers
which form a Markov chain. It is clear that the reliability of Monte Carlo predictions is
dependent on the randomness of the numbers employed.

In digital computers one can generate random numbers by producing an integer num-
ber which exceeds a reserved portion of computer memory and by omitting the leading
bits or extracting the middle bits of this integer number. In fact, according to the origi-
nal idea of Metropolis and von Neumann, all pseudo-random number generators exploit
a fixed word length in a digital computer. Following a suggestion of Lehmer (1951), a
pseudo-random sequence can be generated through a modulo operation that cuts off the
leading bits of a large integer number that requires memory in excess of its reserved word
length. This method of generating random numbers is referred to as the congruential
method. Mathematically it can be described in terms of the recursive algorithm

(aR + c) modulon 7−→ R (6.1)

where R is the random number, n a large integer number, a a multiplier the digits of
which should not show a regular pattern, and c a number that should have no nontrivial
factor in common with n.

The algorithm is started with a so-called “seed” number R0 the value of which can be
chosen arbitrarily. If the program is run more than once and a different source of random
numbers is required each time, it is sensible to set the seed number to the last value
attained by R on the preceding program execution or to set it to the current machine time.
If one plans to rerun a simulation program with the same random number sequence, one
must simply start with the same seed number each time. In the next step R is multiplied
by a. The value of a should be chosen in accord with three rules: First, if n is a power of
2, i.e., if a binary computer is used, one should pick a so that a modulo 8 = 5. Second, a
should preferably be chosen between 0.01n and 0.99 n. Third, the digits of a should not
display a simple, regular pattern. In the next step one adds a number c to the product
of R and a. c should have no factor in common with n. For instance, one may choose
c = 1 or c = a. The number m should be of the order of the word length of the computer,
e.g. 230.
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Figure 6.4: Two-dimensional random walk problem.

Random number generators are usually provided by mathematical program libraries.
These algorithms, which are mostly based on the method described above, typically pro-
vide random numbers that are uniformly distributed in the interval [0, 1]. Such a sequence
of numbers is referred to as being uniformly distributed in [0, 1] if no subset of the interval
contains more than its share of the numbers. This means that the number of elements that
fall inside a certain subinterval of [0, 1] should depend only on the size of the subinterval
and not on where it is located.

Random numbers provided by digital computer cannot be truly random because the
manner in which they are generated is completely deterministic. Stochastic elements are
simply simulated by algorithms providing sequences with a large periodicity. For this
reason, random numbers produced by computer algorithms are usually referred to as
pseudo-random numbers. The periodicity in most pseudo-random sequences generated
on machines with a 32-bit word length is of the order of n, i.e. of 230. This is sufficient
for many applications, since the error of Monte Carlo simulations decays in proportion to
n−1/2, where n is the number of random trials. Another concern is that coordinates in an
n-dimensional space, generated by pseudo-random algorithms, often fall onto a relatively
small number of hyperplanes. Furthermore, it often observed that certain pairs of two
subsequent digits occur more often than expected for a truly random sequence. Improved
results can be achieved by combining different random number generators.

More detailed overviews on the generation, use, and portability of pseudo-random
numbers where published by Lehmer (1951), Hammersley and Handscomb (1964), Kin-
derman and Monahan (1977), Schrage (1979), Binder and Stauffer (1987), Binder (1991b),
Leva (1992), Press and Teukolsky (1992), Chen and Yang (1994), and Knuth (1997).

6.4 Random Walk Simulation

The earliest computational utilization of Monte Carlo methods was not the numerical
approximation of multidimensional integrals but the imitation of stochastic diffusion-
type processes which can be decomposed into a number of successive and uncorrelated
processes (Figure 6.4). The first example of such topological numerical experiments was
the simulation of random walk problems in the field of neutron diffusion by Ulam and von
Neumann. Using a Monte Carlo method they simulated the spatial net diffusion of thermal
neutrons through the radiation shield around fissile materials by randomly changing their
flight direction after each collison event. Cases where such changes in direction can be
idealized as mutually uncorrelated events are referred to as “random walk” problems.
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Figure 6.5: Hit-or-miss technique to determine the integral of a circle.

Pure random walk simulations are based on the assumption that the diffusion proceeeds
by the succession of purely stochastical single events, i.e. no external or internal fields that
may bias the diffusion towards any particular direction, are considered. For instance,
the uncorrelated diffusion of an intrinsic vacancy can be described by a random walk.
However, advanced spatial Monte Carlo simulations can also describe diffusion processes
and percolation problems where the successive events are not uncorrelated and/or where
the changes in direction are linked to certain barriers in energy or chemical concentration.

6.5 Hit-or-Miss Random Sampling Integration

The hit-or-miss technique is the oldest and simplest Monte Carlo method for the ap-
proximation of definite integrals. Within certain limits, it even works without the use
of digital computers. Instead of directly calculating and averaging a large number of in-
tegrand values at randomly chosen function arguments (see Section 6.6), the hit-or-miss
method proceeds by randomly generating coordinates of arbitrary dimension and investi-
gating whether the corresponding points lie beyond or below a given integrand function.
For a large number of shots, the number of hits divided by the sum of all the trial shots
approximates the relative value of the integral.

The simple sampling Monte Carlo hit-or-miss procedure can be demonstrated by es-
timating the relative value of the integral of a circle (Figure 6.5). In a first step, a circle
of radius |r| = 1 is embedded in a square that extends to −1 < x < +1 and −1 < y < +1
in such a manner that both areas overlap entirely, i.e. their center coordinates (0, 0) are
identical. In a second step, a number of trial shots is generated by choosing pairs of
random numbers which are interpreted as coordinates in the field described above. In
order to confine the trial shots to the area prescribed by the square, both the x- and the
y-coordinates are chosen from a uniform distribution within the range (−1,+1). Third,
it is investigated whether the randomly chosen point lies within the circle or not. The
relative value of the integral is then calculated by dividing the number of hits, nhit, by
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Figure 6.6: Hit-or-miss technique to determine the integral of a delta-type function (a)
and of a Boltzmann-type function (b). In both examples the simple sampling hit-or-miss
integration method is clearly inefficient.

the number of all trial shots, nall:

area of the circle

area of the square
=
nhit

nall
(6.2)

One can reduce the integration time by exploiting the symmetry of the numerical exper-
iment. For instance, in the above example it suffices to select the random x and y trial
values only from a quarter of the total area using the uniform interval (0, 1). The relative
value of the integral then amounts to

area of the circle

area of the square
=
n′

hit

n′
all

(6.3)

where n′
hit and n′

all are the number of hits and the number of all trial shots in the reduced
area. It is clear that the precision of this numerical approximation depends on the number
of trials. Using only two trial shots the relative estimate would amount to 0%, 50%, or
100%, respectively, which is far from the value of π/4 ≈ 78.5%.

When integrating a more complicated function, the simple sampling hit-and-miss
method is evidently impractical (Figure 6.6). For instance, the approximate integration
of a delta-type (a) or Boltzmann function (b) is inefficient because one selects random
coordinates over the entire region (outer integral) instead of choosing them from the rel-
atively small domain which is of interest (inner integral). In such cases only a very small
fraction of the trial shots lies within regions where the function substantially contributes
to the integral.

The efficiency of stochastic sampling can thus be improved by choosing random num-
bers from a domain which has a similar altough not necessarily equal shape to the function
to be integrated. This is the basic idea of the importance sampling integration method
and will be addressed in Section 6.7.
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6.6 Simple or Naive Sampling — Nonweighted

Monte Carlo Integration

Provided that a sufficiently large quantity of pseudo-random numbers is involved, the
Monte Carlo approach can be efficiently used for the approximation of the values of higher-
dimensional definite integrals (Hammersley and Handscomb 1964; Allen and Tildesley
1989). The simple or naive sampling Monte Carlo techniques comprise all integration
methods which choose the random numbers from a uniform distribution (Gardiner 1985;
Binder and Stauffer 1987).

To start with a simple example let us consider the following one-dimensional definite
integration problem

I =

∫ b

a

h(x) dx (6.4)

A numerical value of this integral can be found by dividing the interval [a, b] evenly into
a number of n slices or subintervals with x0 = a and xn = b and summing over the
corresponding discrete function values. The mean value Ĩ of the true integral I is then

I ≈ Ĩ = (b− a)
1

n

n∑

i=1

h (xi) (6.5)

As will be shown later (Section 6.11), the statistical error in this numerical approximation
of the integral decreases in proportion to 1/

√
n, i.e. the deviation between the approximate

and the true integral vanishes as n increases to infinity. This means that the value of the
integral

∫ b

a
h(x)dx can be approximated by the average of the n function values h(x1),

h(x2),...,h(xn), provided that n is a very large number. This method is equivalent to
approximating the integral by sampling integrand values from a discrete set of n evenly
distributed coordinates x1, x2, ..., xn in the region [a, b] with an equal weight at each of
these points. This integration method can be referred to as “deterministic sampling”.

On the other hand, instead of choosing regular subintervals in the region [a, b], one
can sample and average integrand values at m randomly chosen coordinates x1, x2, ..., xm,
which are selected from a uniform distribution in the interval [a, b], to achieve an equally
valid approximation of the integral (Figure 6.7). This method requires a large chain of
m uncorrelated random numbers (Markov chain) in the interval being investigated. The
corresponding integrand values at these points can be regarded as a set of statistical
samples,

I ≈ ĨMC ,= (b− a)
1

m

m∑

j=1

h (xj) (6.6)

where I is the true value of the integral and ĨMC its approximation by statistical sampling.
In order to achieve a high efficiency of this method it is desirable that m ≪ n. The
validity of this approach, which can be referred to as “random sampling”, is covered by
the central limit theorem of probability theory. The statistical error in the numerical
approximation of the integral by random sampling decays in proportion to 1/

√
m. Monte

Carlo methods which select the arguments at which the integrand values are calculated
from a uniform distribution in the region being investigated are called simple, naive, or
nonweighted random sampling methods. The random numerical sampling method is, for
the approxiation of low-dimensional integrals, much less effective compared with classical
deterministic methods. For instance the trapezoid rule yields, for a number of m steps, an
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Figure 6.7: Nonweighted numerical integration methods; (a) integration using equally
sized subintervals (deterministic sampling); (b) integration using randomly sized subin-
tervals (random or stochastic sampling).

error of 1/m2 which is much better than the error of 1/
√
m which is associated with the

Monte Carlo approximation. However, the real advantage of random sampling methods
lies in the approximation of higher-dimensional integrals, such as encountered in the field
of many-body dynamics and statistical mechanics (see Chapter 5). While the integration
error of the Monte Carlo method in higher-dimensional systems will still scale with 1/

√
m,

the error that is associated with the trapezoid rule yields a magnitude of 1/m2/D, where
D is the dimension.

The concept of integration by random sampling can be easily extended to k-dimensional
integrands, e.g.

∫ b1=1

a1=0

∫ b2=1

a2=0

...

∫ bk=1

ak=0

h (x1, x2, ..., xk) dx1dx2...dxk ≈ 1

s

s∑

i=1

h (x1i
, x2i

, ..., xki
) (6.7)

where (x1i
, x2i

, ..., xki
) = xi is the ith out of a set of s uncorrelated sampling vectors,

each consisting of k randomly selected and equally weighted components. The vectors
represent sample points in the multidimensional body described by the integral.

If the integral is not of length 1 in each dimension but, say, bounded by [a1, b1],
[a2, b2],..., [ak, bk], where ai and bi can assume any values, then the average of h(x1i

, x2i
,

..., xki
) over s randomly distributed vectors with components in the intervals [a1, b1],

[a2, b2],...,[ak , bk] is not simply an approximation for the integral but rather for its value
divided by the multidimensional region that it fills, i.e.

1

s

s∑

i=1

h (x1i
, x2i

, ..., xki
) ≈

1

(b1 − a1) (b2 − a2) ... (bk − ak)

∫ b1

a1

∫ b2

a2

...

∫ bk

ak

h (x1, x2, ..., xk) dx1dx2...dxk . (6.8)

A typical application of high-dimensional Monte Carlo integration methods lies in the
field of atomic-scale many-body simulations, where data of macroscopic relevance must
be extracted from a large set of microscopic data by use of statistical mechanics. For
instance, in the case of discrete energies the canonical ensemble average 〈q〉NVT for a
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Figure 6.8: Integration of the discretized ensemble probability density function wens (Γi)
using a nonweighted, i.e. simple sampling method. Averages calculated from the marked
integrand values will yield a poor approximation of the true integral.

property q can be written

〈q〉NVT =
∑

Γ

ρNVT (Γ) q (Γ) (6.9)

where Γ = r1, ..., rN ,p1, ..., pN is the phase space configuration or point in phase space
and the operator ρNVT (Γ) the canonical probability or phase space distribution function
(Chapter 5). This equation can be rewritten in terms of the canonical probability density
wNVT (Γ),

〈q〉NVT =

∑
Γ
w (Γ) q (Γ)∑
Γ
w (Γ)

(6.10)

Reformulating this equation for a Monte Carlo integration using a number of s discrete
sampling vectors Γi leads to

〈q〉NVT ≈ 〈q〉MC =

∑s
i=1 w (Γi) q (Γi)∑s

i=1 w (Γi)
=

∑s
i=1 exp (−β H (Γi)) q (Γi)∑s

i=1 exp (−β H (Γi))
(6.11)

where β = 1/kBT , H the system Hamiltonian, and 〈q〉MC the Monte Carlo approximation
for the true value of 〈q〉NVT.

Figure 6.8 shows that the random sampling method can be inefficient in cases where
the integrand is not a smooth function in phase space. The integrand, which is in this
example the discretized probability density function wNVT (Γi), has some peaks, which
are in part not detected by the random sampling procedure (marked slices). Generalizing
this example means that the simple or naive sampling method will be inefficient in cases
where certain local values of the ensemble weight factor wens (Γj) /

∑s
i wens (Γi) taken

at coordinates Γj , substantially deviate from the average value. This is particularly the
case in statistical mechanics, where the canonical Boltzmann density function wens (Γ) =
exp (−β H (Γ)) is very small in most regions of the configuration space. The elimination
of this shortcoming through the introduction of the weighted random sampling method
is the topic of the next section.
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6.7 Importance Sampling — Weighted Monte

Carlo Integration

Most average quantities that describe the state of many-body systems can be expressed
in integral form (Chapter 5). For choosing adequate integration methods some properties
of such averages should be considered. First, the averages are multidimensional integrals
since they depend on the independent coordinates and momentum vectors of N particles
(6N variables for an atomic gas). Second, the integrands can vary by several orders
of magnitude, as is evident from the Boltzmann term in the partition function. This
means that some configurations make large contributions to the integrals while other
configurations are of negligible importance. Third, the chosen method should generally
allow one to integrate steep, e.g. delta-type, functions, as encountered for instance in the
phase space density of the microcanonical ensemble.

Conventional numerical integration methods under such conditions are often neither
sufficiently fast nor precise. Even the simple sampling Monte Carlo integration method
discussed above, which uses a limited number of uniformly distributed integrand values,
is not sufficient in such cases since it has difficulties in correctly integrating the phase
density function with its extreme variations. On the other hand, one should consider that
the integration by sampling is very efficient at integrating smooth functions. For instance,
if the integrand is a constant, one only needs one single point to have the exact value of
the integral from the simple sampling integration. Similar considerations apply if the
function to be integrated is smooth and close to a constant, so that a good approximation
can be found with only a small number of sampled integrand values.

This idea of turning an arbitrarily steep integrand function into a very smooth function
and adjusting the integration interval is the main background of the importance sampling
approach. In other words, the extension of the simple or naive sampling to the importance
sampling method introduces the main improvement of using weighted integrands. This
means that the selected pseudo-random numbers are chosen from a non-uniform distribu-
tion. This procedure allows one to concentrate the function evaluation in regions of space
that make relevant contributions to the integral (Metropolis et al. 1953).

The introduction of a weighting function g(x) for the estimation of an integral I can
be written

I =

∫ b

a

h(x) dx =

∫ b

a

[
h(x)

w(x)

]
w(x) dx (6.12)

If one now changes variables from x to, say, y(x)

y(x) =

∫ x

0

g(x′) dx′ (6.13)

the integral turns into

I =

∫ y(x=b)

y(x=a)

h (y(x))

g (y(x))
dy (6.14)

The Monte Carlo approximation of this integral then proceeds as above, namely by aver-
aging the discrete values of h (y(x))/g (y(x)) at a random sampling of n points uniformly
distributed in y over the interval [a, b]

Ĩ ≈ (y (x = b) − y (x = a))
1

n

n∑

i=1

h (y(x)i)

g (y(x)i)
(6.15)
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The introduction of a weighting function into the Monte Carlo method can be clarified
in terms of a simple analytical example: The integral I of a function h(x) between a and
b can be written

I =

∫ b

a

h(x) dx (6.16)

Assuming h(x) = exp(−x/2), equation (6.16) amounts to

I =

∫ b

a

exp
(
−x

2

)
dx (6.17)

At first, a second function g(x) must be found that has a similar course to the original
function h(x) in the region considered, i.e. h(x) ≈ g(x). In the example the exponential
function exp(−x/2) can be approximated by a series expansion of the form 1−x/2+x2/2−
x3/6 + ... ≈ 1 − x/2. Considering the interval [a = 0, b = 1] and using the substitutional
function g(x) = 1 − x/2 the original integral can be rewritten

I =

∫ b

a

h(x)

g(x)
g(x) dx =

∫ y(x=b)

y(x=a)

h(y)

w(y)
dy =

∫ y(x=b)

y(x=a)

exp
(
−x

2

)

1 − x
2

dy (6.18)

Using

y(x) =

∫ x

0

g(x′) dx′ =

∫ x

0

(
1 − x′

2

)
dx′ = x− x2

4
(6.19)

and

x = 2
(
1 +

√
1 − y

)
(6.20)

The original integral can can then be rewritten

I =

∫ x=1

x=0

exp
(
−x

2

)
dx =

∫ y=3/4

y=0

exp
(
−
(
1 +

√
1 − y

))
√

1 − y
dy (6.21)

This example shows that the substitution of the variables modifies the integration
boundaries and also the form of the integrand. Thus, instead of selecting random values
for x that are equally distributed between a and b and using them for the simple sampling
Monte Carlo integration of the original function h(x), one selects equally distributed
random numbers for y and integrates the weighted function h(x)/g(x). In cases where
these values of y are well distributed one thus encounters the relatively simple task of
integrating a function h(x)/g(x) which is close to one.

In the following sections the Metropolis Monte Carlo method which is based on using
weighting functions for state function will be explained for canonical ensembles with
constant chemical composition and for grandcanonical ensembles with variable chemical
composition. The weighting function in these classical cases usually assumes a Boltzmann-
type form. This reflects the fact that the probability distribution of non-quantum particles
is exponentially dependent on their energy. Furthermore, various applications of the
Metropolis algorithm will be discussed. In recent years various advanced Metropolis-type
methods have been proposed. Among these, especially the Monte Carlo algorithm in
conjunction with atomic potentials (Bacher et al. 1992) and the so-called inverse Monte
Carlo method (Livet 1987; Desplat et al. 1996) are increasingly gaining momentum.



6.8 The Metropolis Monte Carlo Method 73

6.8 The Metropolis Monte Carlo Method

6.8.1 Fundamentals of the Algorithm

The Metropolis Monte Carlo algorithm is a weighted, i.e. an importance random sampling
method for generating states of a system in a particular statistical ensemble which is
characterized by its limiting probability distribution in thermal equilibrium ρens (Γ) (see
Chapter 5). In systems with constant chemical composition (canonical, microcanonical,
and isothermal-isobaric ensembles) the probability distribution is a function of the system
Hamiltonian. In systems with variable chemical composition (grandcanonical ensembles)
it is a function of the chemical potential.

The thermodynamic state of a system of N classical particles can be characterized
in terms of the three components of the position vectors r1, ..., rN and by the three
components of the particle momentum vectors p1, ...,pN . These 6N components can be
regarded as the components of a vector Γ in a 6N-dimensional phase space.

Two ensemble states Γi and Γj are linked by a transition probability πij which quan-
tifies the probability that the system will move from state i to state j. The value of the
probability density function for the ith state of a system is given by ρens (Γi) and that of
the jth state by ρens (Γj). The Metropolis Monte Carlo solution for the components of
this transition matrix π is

πij =





αij if ρens (Γj) ≥ ρens (Γi) i 6= j

αij (ρens (Γj) /ρens (Γi)) if ρens (Γj) < ρens (Γi) i 6= j

1 −∑i6=j πij if ρens (Γj) = ρens (Γi) i = j

(6.22)

where α is the symmetrical and stochastic matrix of the Markov chain. The rule for
calculating the components of π for cases where ρens (Γj) < ρens (Γi) shows that the
Metropolis algorithm only requires the knowledge of the ratio ρens (Γj) / ρens (Γi) and
does not require the knowledge of ensemble partition function ZNVT (see Chapter 5).
Using the symmetry properties of the matrix α one can show that

∑

j

πij = 1 (6.23)

and
ρens (Γi)πij = ρens (Γj)πji (6.24)

Equation (6.23) essentially reflects that each state Γi must exist somewhere in phase
space. Equation (6.24) represents the principle of microscopic reversibility. It can be
used to demonstrate that the limiting distribution of the Markov chain is the probability
density distribution function ρens (Γ).

The Metropolis algorithm proceeds by randomly or systematically choosing a new
trial state Γj , sampling the stochastic matrix according to

α =
1

N (6.25)

where N is the number of possible particle positions, and evaluating the configurational
energy change according to the ratio ρens (Γj) / ρens (Γi) of the probability densities
ρens (Γj) and ρens (Γi). The next two sections demonstrate how the Metropolis solution to
the transition matrix is usually identified for ensembles with constant or variable chemical
composition.
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6.8.2 The Metropolis Method for Canonical and

Microcanonical Ensembles

In the Metropolis Monte Carlo approach each of the N ensemble atoms is assigned an
initial position. Subsequently, the Hamiltonian for this configuration is calculated. The
reconfiguration of this starting system depends on the prescribed macroscopical values.
In canonical and microcanonical systems the number of the elementary constituents is
prescribed.

In Monte Carlo models with variable particle positions one hypothesizes a new config-
uration by arbitrarily or systematically choosing one atom located at, i say, and proposing
that it be moved to a temporary trial position, j say. The move is indicated by i→ j. It
brings the system from point Γi to point Γj in phase space. Depending on the particular
particle interaction being considered the displacement will change the system energy from
H (Γi) to H (Γj). However, such an arbitrary displacement of an atom does not affect
the composition of the system.

The move is accepted with a certain probability. In canonical and microcanonical en-
sembles one computes the change in the system Hamiltonian ∆H (Γi→j) that is associated
with the new configuration3,

∆H (Γi→j) = H (Γj) −H (Γi) (6.26)

where H (Γj) is the Hamiltonian associated with the trial state and H (Γi) the Hamilto-
nian associated with the originial state. This new atomic arrangement is then evaluated
according to the following rules.

If the new energy value is smaller than the preceding one, the move would bring the
system to a state of lower energy. Hence, the move is immediately accepted and the
displaced particle remains in its new position.

However, if the new energy value exceeds the preceding one, the move is accepted only
with a certain probability (ρens (Γj) /ρens (Γi)) which is in canonical systems described by
a Boltzmann factor (Chapter 5).

(ρens (Γj) /ρens (Γi)) = exp (−β ∆H (Γi→j)) (6.27)

where β is 1/(kB T ). The probability of accepting the configurational change for a positive
value of ∆H (Γi→j) is then proportional to

pi→j ∝ exp (−β ∆H (Γi→j)) (6.28)

According to Metropolis et al. (1953) one now generates a random number ξ between 0
and 1 and determines the new configuration according to the following rule:

ξ

{
≤ exp (−β ∆H (Γi→j)) : the move is accepted

> exp (−β ∆H (Γi→j)) : the move is not accepted
(6.29)

If the new configuration is rejected one counts the original position as a new one and
repeats the process by using some other arbitrarily chosen atom.

3In an alloy it is not required to calculate the entire internal energy of the new configuration but
only the new value of the mixing energy.
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6.8.3 The Metropolis Method for Grandcanonical

Ensembles

In grandcanonical ensembles the concentration of the elementary constituents is not pre-
scribed. One hypothesizes a new configuration j by arbitrarily choosing one atom and
proposing that it be exchanged by an atom of a different kind. This procedure affects the
chemical composition of the system.

Again, the move is accepted with a certain probability. In a grandcanonical ensemble
one computes the energy change ∆U (Γi→j) that is associated with the change in compo-
sition. The new configuration is evaluated according to the following criteria: If the new
energy value is smaller than the preceding one, the move is accepted. However, if the new
energy value exceeds the preceding one, the move is accepted with a certain probability.

The probability of accepting the compositional change in a grandcanonical ensemble
is for a positive value of ∆U (Γi→j) proportional to

pi→j ∝ exp (−β ∆U (Γi→j)) (6.30)

where ∆U is the change in the sum of the mixing energy and the chemical potential of
the mixture. The decision about which configuration is accepted is then made according
to equation (6.22). If the new configuration is rejected one counts the original position
as a new one and repeats the process by using some other arbitrarily or systematically
chosen atom.

6.9 Spin Monte Carlo Models

6.9.1 Introduction

Models in which the degrees of freedom reside on a discrete spatial lattice and interact
locally arise in several areas of solid-state physics and materials science. The energy
variation in such approaches typically occurs by the flip of particle spins rather than by
the displacment and/or exchange of particles. They are of great value in predicting the
cooperative behavior of many-body systems by assigning particles with specific properties
to the lattice sites (Figure 6.9).

The simplest of these models is the 1
2

spin Ising model, which can be regarded as a
crude approximation of a magnetic material or a binary alloy. The q-state Potts model
represents a generalized or multispin version of the original Ising model where the spins
can represent more or less arbitrary properties. Simulation on the basis of the Potts spin
model are of particular relevance in the field of mesoscale computational materials science
(Chapter 12). Further models that are important are the lattice gas and the Heisenberg
approach. Related approaches which are of particular relevance in computational mate-
rials science are the molecular field approximation (MFA), the cluster variation method
(CVM), and the Bragg–Williams–Gorsky (BWG) models.

The evolution and the thermodynamic properties of these spin lattice models are
usually calculated by randomly flipping the spins of particles that reside at arbitrary
lattice sites and weighting the resulting energy changes using a Metropolis Monte Carlo
sampling approach.
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Figure 6.9: Flowchart illustrating the basic steps in a Monte Carlo simulation for simple
spin models. The energy variation in such approaches typically occurs by the flip of
particle spins rather than by the displacment and/or exchange of particles. The system
takes n0 steps to reach equilibrium. The total number of steps is nmax.

6.9.2 1

2
Spin Ising Model

In an 1
2

spin Ising lattice model the internal system energy is calculated as the sum of
pair-interaction energies between the atoms or molecules that are attached to the nodes of
a regular lattice (Huang 1963; Binder 1984; Koonin 1986; Binder 1991a; Yeomans 1992).
If one translates that into magnetic language, the Ising model consists of a discrete set of
spin degrees of freedom interacting with each other and with an external magnetic field.

The original Ising model was confined to the consideration of nearest-neighbor interac-
tions. However, the extension of this concept to including additional interactions with the
next-nearest neighbors is straightforward (see Figure 11.2). Ising models which consider
such long-range interactions are sometimes referred to as extended Ising models.

The original Ising model is a pertinent means of studying ferromagnetic ordering of the
elementary magnetic moments in solids. The spin variable Si defined at each lattice point
i may assume two different states, namely “spin up”, Si = +1, or “spin down”, Si = −1.
This mimics the spin 1

2
situation, although the spins are taken to be classical degrees of

freedom and do not impose the angular momentum commutation rules characteristic of
a quantum description. The extension of the Ising model to a true quantum approach
is realized in the Heisenberg model (Section 6.9.3). Since the spin on each lattice site
can assume only two values, the Ising model lends itself very well to studying atomic
configurations of a binary alloy in a periodic structure. The spin is then a representation
of the occupation of a particular lattice site (Trohidou and Blackman 1990; Ferrenberg
and Landau 1991; Wansleben and Landau 1991; Zhang and Yang 1993; Wang and Young
1993; Heuer 1993; Hasenbusch and Pinn 1994; Andersson et al. 1994; Wingert and
Stauffer 1995; Gu et al. 1996; Scholten and Kaufman 1997; Schur and Blote 1997)
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For a classical Ising ensemble for ferromagnetic ordering, the Hamiltonian derived
from the interaction energies between nearest neighbors can be written

HIsing = −J
∑

〈i,j〉

Si Sj −B
∑

i

Si , Si = ±1 (6.31)

where J is the effective interaction energy, B some intensive4 thermodynamic field vari-
able, e.g. the magnetic field, 〈i, j〉 the sum over nearest-neighbor pairs, and Si the spin
variable that points in the direction of the local magnetic moment at lattice site i.

For a ternary metallurgical Ising system with the constituents A, B, and C the Hamil-
tonian HABC can be written

HABC =
∑

n

1

2
{Nk

AB

(
2V k

AB − V k
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BB

)
+
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∑
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zk

2

)
(6.32)

where Nk
AB is the number of AB pairs in the sphere k (e.g. NN or NNN), and Vij the

respective interaction energy between two constituents i and j. The total number of
atoms of one type, say A, amounts to

NA =
1

zk

(
2NAA +Nk

AB +Nk
AC

)
(6.33)

where zk is the coordination number of sphere k. From equation (6.32) the mixing energy
of a ternary alloy can be calculated.

6.9.3 Heisenberg Spin Model

The Ising model is restricted to applications where the spin vector can only lie parallel or
antiparallel to the direction of quantization introduced by the magnetic field. This implies
that the Hamiltonian of an Ising model can only prove useful in describing a magnet which
is highly anisotropic in spin space.

However, in real systems, fluctuation of the spin away from the axis of quantization
must inevitably occur to some degree. An appropriate Hamiltonian suggested by Heisen-
berg amounts to

HHeis = −J‖
∑

〈i,j〉

Sx3
i Sx3

j − J⊥
∑

〈i,j〉

(
Sx1

i Sx1
j + Sx2

i Sx2
j

)
−B

∑

i

Sx3
i , Si = ±1 (6.34)

where x1, x2, and x3 are Cartesian axes in spin space, Ji the anisotropic interaction energy,
and B the external field. For J⊥ = 0 one regains the classical Ising model, equation (6.31).
The most fundamental difference between the Heisenberg model and the Ising model is
that for the former the spin operators do not commute. Thus, the Heisenberg model can
be regarded as a quantum mechanical rather than a classical spin model.

4Independent of the volume.
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6.9.4 Lattice Gas Spin Model

The original lattice gas spin approach is a model where the sites of a regular lattice can
be vacant or occupied by an atom or molecule.

A variable, say ti = 1, 0, is used to indicate whether the site is occupied or unoccupied.
The Hamiltonian can then be written

Hgas = −Jint

∑

〈i,j〉

ti tj − µint

∑

i

ti , ti = 0, 1 (6.35)

where Jint is the nearest-neighbor interaction energy, which favors neighboring sites being
occupied, and µint the chemical potential which controls the number of atoms at each
site. Since the lattice gas Hamiltonian represents an ordinary two-state operator, it can
be transformed into a conventional Ising model.

6.9.5 q-State Potts Spin Model

The q-state Potts spin model is of particular relevance in the field of mesoscale prediction
of transformation phenomena. A more detailed discussion is therefore given in Part III
on micro–mesoscale simulation techniques (Chapter 12).

The basic idea of the Potts model consists in replacing the binary spin variable as used
in the Ising model by a generalized variable Si which can assume one out of q possible
states, and by accounting only for the interaction between dissimilar neighbors. The
Hamiltonian can thus be written

HPotts = −Jint

∑

〈i,j〉

(
δ

SiSj
− 1

)
, Si = 1, 2, ..., q (6.36)

The delta-type Hamiltonian has a vanishing exchange interaction energy between neigh-
boring sites with identical spins and nonvanishing exchange interaction between sites with
unlike spins.

6.9.6 Ising-Related Spin Models — the MFA, CVM, and

BWG Models

The numerical prediction of basic metallurgical thermodynamics, i.e. of phase diagrams,
increasingly concentrates on the use of microscopical methods. Among these, the Ising
and Potts spin models, discussed above, are especially of relevance. They are usually
solved using Monte Carlo algorithms.

In addition to these classical methods some related models have more recently been
suggested, viz. the Bragg–Williams–Gorsky (BWG) model, the molecular field approxima-
tion (MFA), and the cluster variation method (CVM). In contrast to the Ising and Potts
models they are typically solved by linear iteration methods or by using the Newton–
Raphson algorithm.

Both the MFA and the CVM5 are based on Ising- or Potts-type arrangements con-
sidering first or first and next-nearest neighbors (Brout 1965; Smart 1966; Bennett 1986;
Inden 1974; Kikuchi 1974; Ceder et al. 1989; Schön and Inden 1996). The solution of
MFA and CVM models is not usually obtained by using the importance sampling tech-
nique but by the so-called natural iteration method (NIM) (Inden 1974; Kikuchi 1974).

5The BWG model is a point approximation in a hierarchy of the CVM (Ackermann et al. 1989).
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For an Ising ferromagnet, equation (6.31), the free energy can be found from the minimum
of the functional

F = U − TSc =
∑

Si=±1

HIsing (〈Si〉) P (〈Si〉) + kB T
∑

Si=±1

P (〈Si〉) lnP (〈Si〉) (6.37)

where U is the internal energy, Sc the configurational entropy, and P (〈Si〉) the probability
that a particular configuration 〈Si〉 occurs. Minimizing equation (6.37) with respect to P
leads to the canonical distribution

Pe (〈Si〉) ∝ exp

(
− HIsing (〈Si〉)

kB T

)
(6.38)

The MFA method is now defined by factorizing the probability P (〈Si〉) of a spin configu-
ration of the entire lattice into a product containing single-site probabilities Pi. In a ferro-
magnetic Ising-type system these can assume only two states, namely, Pi(+) = (1+M)/2,
or Pi(−) = (1 −M)/2. Pi(+) is the probability that at site i the spin is up and Pi(−)
that it is down. The magnetization is calculated by M = P (+) − P (−). Summing the
contributions to the Ising Hamiltonian, equation (6.31), over all possible values of Pi(+)
and Pi(−), i.e. JijSiSjPiPj , yields JijM

2 which reduces the expression for the Helmholtz
free energy, equation (6.37), to a quadratic function of the magnetization. A minimiza-
tion of this free energy function leads to an expression describing a second-order phase
transition at the Curie temperature Tc.

The factorization of the configuration probability P (〈Si〉) into single-site probabilities
Pi(+) and Pi(−) does not consider the possible correlation in the probabilities of different
sites. The cluster variation method (CVM) improves the uncorrelated MFA concept by
approximating the configuration probability P (〈Si〉) by cluster rather than single-site
probabilities (Khachaturyan 1983; Binder and Stauffer 1987).

Cluster-type correlated probabilities Pnc(k, i) describe the probability that at a lattice
site i a particular spin configuration k occurs that includes n spins in a cluster of geo-
metric configuration c. The cluster geometry c may simply include one particular nearest
neighbor, a triangle, or a tetrahedron, etc. The spin configuration variable k amounts to
kIsing = 1, ..., 2n in the case of the Ising ferromagnet kPott = 1, ..., Qn for the q-state Potts
model. It is worth noting that the CVM, when based on the Potts model, is similar to the
probabilistic cellular automaton technique. On the basis of the correlated probabilities
Pnc(k, i) a Helmholtz free energy expression similar to equation (6.37) is derived which
can be used to simulate phase transition phenomena (Inden 1974; Khachaturyan 1983;
Ackermann et al. 1986; Ackermann et al. 1989; Binder 1991c) and the magnetic specific
heat capacity (Schön and Inden 1996).

6.10 Lattice Types

Figure 6.10 shows some typical spatial lattices that are frequently used in Monte Carlo,
cellular automaton (Chapter 11), and percolation simulations (Appendix). Particularly
in simulations which account for local interactions among neighbors, the type of lattice
employed can have a substantial influence on the predictions.
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Figure 6.10: Some regular spatial lattices used in Monte Carlo, cellular automaton, and
percolation simulations. (a) Bethe/Cayley lattice (coordination number k = 3) (lattice
without closed circuits; all sites except those on the perimeter have the same number of
neighbors); (b) honeycomb lattice (k = 3); (c) square lattice (k = 4); (d) Kagomé lattice
(k = 4); (e) triangular lattice (k = 6).

6.11 Errors of Monte Carlo Methods

The main errors that can occur in Monte Carlo approximations may arise from the random
number generator and from statistics. Random numbers that are provided by digital
computers are not truly uncorrelated but can show periodic behavior. It is therefore
useful to check the periodicity of such sequences before employing them massively.

The statistical uncertainty associated with numerical Monte Carlo experiments can
be discussed in terms of the central limit theorem for large numbers. Considering the
original integral I in the interval [0, 1]

I =

∫ 1

0

h(x) dx (6.39)

and its stochastic quadrature approximation

Ĩ ≈ 1

n

n∑

i=1

h (xi) (6.40)

one obtains by conventional statistics

σ2
I ≈ 1

n
σ2

h =
1

n

[
1

n

n∑

i=1

h(xi)
2 −

(
1

n

n∑

i=1

h(xi)

)2]
(6.41)

where σ2
h is the variance in h, i.e. a measure of the extent to which h deviates from its

average value over the region of integration. This formula reveals two very important
statistical aspects of Monte Carlo approximations. First, the error decreases as n−1/2.
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Second, the precision of the approximation increases with decreasing σ2
h. This means that

the best stochastic quadrature is achieved when the function is as smooth as possible.
Monte Carlo integration methods are for the approxiation of low-dimensional integrals

much less effective when compared with classical deterministic methods. For example, the
trapezoid quadrature yields for n steps an error of 1/n2. This result is better than the error
of n−1/2 which is associated with the Monte Carlo approximation. However, the main
advantage of the Monte Carlo integration method lies in the approximation of higher-
dimensional integrals (see Chapter 5). While the integration error of the Monte Carlo
method in higher-dimensional systems will still scale with n−1/2, the error associated with
the trapezoid method yields an error of 1/n2/D , where D is the dimension.

6.12 Application of the Monte Carlo Method in

Materials Science

This section gives a number of classical or recently published references on applications
of Monte Carlo simulations related to various domains of materials science. Of course,
the list can by no means be complete but it may serve as a bibliography for getting more
acquainted with some examples of the recent original literature in this field. The examples
listed are mainly about surface and interface phenomena, diffusion, phase transformation,
polymers, epitaxial growth and structure, heterophase interfaces, crystal growth, fracture,
and materials thermodynamics. The full citations are given in the References at the end
of the book.

Field of application Reference

classics Potts (1952)
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)
Hammersley and Handscomb (1964)
Shreider (1966)
Wu (1982)
Kalos and Whitlock (1986)
Koonin (1986)
Binder and Stauffer (1987)
Suzuki (1987)
Binder (1991a)
Allen and Tildesley (1989)
Heermann and Burkitt (1991)
Yeomans (1992)

surface structure de Miguel, Ferron, and Cebollada (1988)
and diffusion Jiang and Ebner (1989a)

Cheng and Yeung (1991)
Smilauer, Wilby, and Vvedensky (1993)
Zhang, Detch, and Metiu (1993)

polymers Bruns, Motoc, and O’Driscol (1981)
Baumgärtner (1984a)
Milik and Orszagh (1989)
Reiter, Zifferer, and Olaj (1990)
Cifra, Karasz, and MacKnight (1992)
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Toral and Chakrabarti (1993)
Kamide, Iijima, and Shirataki (1994)
Haas, Hilfer, and Binder (1995)
Smith, Russell, and Kaiser (1996)
Peng, Sommer, and Blumen (1996)
Wang, Wang, and Wu (1997)

epitaxial growth Kew, Wilby, and Vvedensky (1993)
and structure Plotz, Hingerl, and Sitter (1994)

Tagwerker, Plotz, and Sitter (1995)
heterophase interfaces Schmid and Binder (1992)

Frontera, Vives, and Planes (1995)
Li and Ming (1997)

Potts model see references in Chapter 12
Ising model Trohidou and Blackman (1990)

Ferrenberg and Landau (1991)
Wansleben and Landau (1991)
Zhang and Yang (1993)
Wang and Young (1993)
Heuer (1993)
Andersson, Mattsson, and Svedlindh (1994)
Hasenbusch and Pinn (1994)
Wingert and Stauffer (1995)
Gu, Chakraborty, and Lebowitz (1996)
Scholten and Kaufman (1997)
Schur and Blote (1997)

crystal growth, Saito and Ueta (1989)
morphology, Jiang and Ebner (1989b)
and texture Cheng, Tang, and Tang (1989)

Liu, Jin, and Ming (1989)
Li, Jun, and Ming (1991)
Zhu and Smith (1992a)
Zhu and Smith (1992b)
Cheng and Coller (1992)
Cheng (1993)
Kotrla and Levi (1994)
Li, Peng, and Ming (1995)
Morhacova (1995)
Papajova, Nemeth, and Vesely (1995)
Grandjean, Massies, and Leroux (1996)
Smith (1997)

grain boundaries Seki, Seidman, Oh, and Foiles (1991a)
Seki, Seidman, Oh, and Foiles (1991b)
Alba and Whaley (1992)
Udler and Seidman (1993)
Radhakrishnan and Zacharia (1995)
Tabet and Ledra (1996)
Saito (1997)

fracture Cox (1989)
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Shimamura, Kuriyama, and Kashiwagi (1990)
Ochiai, Peters, and Schulte (1991)
Fernandez, Chao, and Amo (1992)
Pieracci (1997)

diffusion Limoge and Bocquet (1988)
Rupsky, Iordanova, and Apostolov (1990)
Salomons and de Fontaine (1990)
Gladyszewski and Gladyszewski (1991)

Übing and Gomer (1991a)

Übing and Gomer (1991b)

Übing and Gomer (1991c)
Kutner and Bogusz (1992)
Frontera, Vives, and Planes (1993)
Mattsson, Engberg, and Wahnstrom (1993)
Sommer, Schulz, and Trautenberg (1993)
Qin and Murch (1993)
Guo, Zhong, and Peng (1994)
Cao (1994)
Gongalez-Miranda, Labarta, and Puma (1994)
Pekalski and Ausloos (1994)
Ausloos and Pekalski (1995)
Chen, Gomez, and Freeman (1996)
Wang, Rickman, and Chou (1996)
Kosztin, Faber, and Schulten (1996)

phase diagrams Bichara and Inden (1991)
Tetot, Finel, and Ducastelle (1991)
Dunweg and Landau (1993)
Fiig, Anderson, and Lingard (1993)
Farooq and Khwaja (1993)
Khanna, Welberry, and Withers (1993)
Silverman, Zunger, and Adler (1995a)
Silverman, Zunger, and Adler (1995b)

phase transformation Castan and Lindgard (1989)
Reynolds, Kaletta, and Ertl (1989)
Roland and Grant (1989)
Quade, Hupper, and Scholl (1994a)
Saul, Treglia, and Legrand (1994a)
Zamkova and Zinenko (1994)
Guenin, Clapp, and Rifkin (1996)
Schön and Inden (1996)
Tadaki, Kinoshita, and Hirotsu (1997)

BWG, MFA, CVM Brout (1965)
Smart (1966)
Inden (1974)
Kikuchi (1974)
Bennett (1986)
Ceder, De Graef, and Delaey (1989)
Schön and Inden (1996)
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Figure 6.11: Distribution of Au atoms in a Pt-1at.% Au alloy in the (002) lattice plane
which is adjacent to a 5◦ [100] twist boundary (Seki et al. 1991).

6.13 Examples of the Monte Carlo Method in

Materials Science

6.13.1 Simulation of Surface Segregation

The Monte Carlo method has been widely used to predict chemical segregation effects
in interfaces and on surfaces. Figure 6.11 shows the distribution of Au atoms in a Pt-
1at.% Au alloy in the (002) lattice plane which is immediately adjacent to the interface
generated by a 5◦ [100] twist boundary (Seki et al. 1991). The Monte Carlo simulation
was conducted using an embedded atom potential. The plot shows the density of the
Au atoms in units of [number of Au atoms Å

−2
]. The simulation considers the periodical

presence of primary grain boundary dislocations in the interface. The distribution of the
Au atoms show a hill-and-valley topology which can be attributed to these dislocations.

6.13.2 Simulation of Phase Transition in Polymers

Numerous applications of the Monte Carlo method deal with phase transition phenom-
ena in polymers (Bruns et al. 1981; Baumgärtner 1984a; Baumgärtner 1984b). Relevant
questions in this context are the kinetics and the topology associated with chain interac-
tions. Figure 6.12 shows schematically some typical situations where chain interactions
in polymers play an important role in microstructure formation. The progress and the
topology of polymerization in such materials can be simulated using a non-overlapping
Monte Carlo random walk type algorithm which describes the evolution of the polymer
chain orientation. Figure 6.13 as an exemple shows the phase transition of a polymer
from the isotropic to the nematic phase.

6.13.3 Simulation of Thin Film Deposition

Kinetic variants of the Monte Carlo method have been used to simulate the formation
of fiber textures during thin film deposition (Smith 1997). Figures 6.14 and 6.15 show
simulated textures and microstructures with different ratios of the binding energy to the
surface atoms belonging to different crystallographic orientations.
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Figure 6.12: Schematic representation of some typical situations where chain interactions
in polymers play a role in the formation of microstructures.

Figure 6.13: Phase transition of a polymer from the isotropic to the nematic phase
(Baumgärtner 1984).
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Figure 6.14: Simulated thin film microstructure obtained from film grown onto a five-grain
substrate at 600 K at a deposition rate of 1 monolayer every 100 s. The local surface
binding energies for these grains are given in eV in the picture (Smith 1997).

Figure 6.15: Simulated kinetics of texture formation (fractional coverage of component
A) during thin film growth as a function of surface binding energy and temperature; (a)
600 K, 1 monolayer every 100 s; (b) 600 K, 1 monolayer every 10 s; (c) 0.525 eV / 0.5 eV,
1 monolayer every 100 s; (d) 0.525 eV / 0.5 eV, 1 monolayer every 10 s (Smith 1997).



Chapter 7

Molecular Dynamics

7.1 Introduction

Besides the various Monte Carlo algorithms (Metropolis et al. 1953), the molecular dy-
namics method represents the second main simulation technique for the solution of many-
body interaction phenomena at the atomistic level (Alder and Wainwright 1959; Rahman
1964; Verlet 1967; Parinello and Rahman 1981; Hoover 1986; Lutsko et al. 1988a; Sankey
and Niklewski 1989; Allen and Tildesley 1989).

While the Metropolis Monte Carlo method is a statistical probabilistic approach that
penetrates the phase space along a Markov chain in a stochastic manner, molecular dy-
namics represents a deterministic technique and tracks the individual motion of each
of the particles. The original path-independent Monte Carlo algorithm is confined to
the computation of equilibrium thermodynamic quantities. It does not predict material
dynamics at the nanoscale1. Conversely, the validity of ensemble average predictions ob-
tained by molecular dynamics is limited by statistics and based on the assumption of
system ergodicity.

Molecular dynamics simulations mimic elementary atomistic path-dependent pro-
cesses by solving the equations of motion of all particles. An exact treatment of this
many-body problem would require the formulation and solution of a Schrödinger wave
equation for all atoms considered, accounting for the interactions among the charged
constituents (nuclei, electrons) and their kinetic energies (see Chapter 4). However, it
can be shown that a quasi-classical treatment of the atomic interactions and the result-
ing dynamics in terms of potentials and the classical equation of motion, as realized in
most molecular dynamics aproaches, is consistent, within certain limits, with the solution
of the Schrödinger equation. The analogy can essentially be derived by separating the
time-dependent from the time-independent part of the Schrödinger equation, by using the
adiabatic Born–Oppenheimer approximation for splitting the wave function into one part
to describe the dynamics of the light electrons and another part to describe the dynamics
of the heavy nuclei, and by replacing the quantum mechanical expression for the kinetic
energy by the classical momentum term.

1It is possible to introduce a kinetic quantity into Monte Carlo simulations by tracking the number
of Monte Carlo steps and dividing it by the number of lattice sites. Corresponding approaches are
referred to as kinetic Monte Carlo models.
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This means that the simulation of atomic configurations with instantaneously equili-
brated electrons in their ground state merely requires an adequate incorporation of the
forces among the atoms, expressed as derivatives of more or less empirical interatomic po-
tential functions. The time evolution of the ensemble is then computed by integrating the
equations of motion in a discrete fashion using time steps of ≈ 10−14–10−15 s. The method
involves the calculation of the present position and velocity of each individual atom, and
its position and velocity a small time later. Typical scaling parameters of molecular dy-
namics simulations are Ångstrøms – nanometers for the atomic spacing, 10−5–10−3 ps for
the elementary oscillation period, and 103–109 for the number of particles involved (Allen
and Tildesley 1989; Catlow et al. 1990; Allen and Tildesley 1992; Kirchner et al. 1996;
Voter 1996). It is worth noting that most molecular dynamics simulations cover a real
time below 1 nanosecond. The maximum number of atoms or molecules that can be dealt
with is determined by the complexity of the interatomic forces being considered.

The underlying potentials reflect the interaction among the atoms and are usually
quantified in terms of the relative position of two or more atoms (Verlet 1967). They can
include a variety of parameters such as the charges, the polarizabilities of the ions, or
the local atomic density (Finnis and Sinclair 1984; Vitek and Srolovitz 1989; Finnis and
Rühle 1993; Haberlandt et al. 1995; Sutton and Balluffi 1995; Sutton 1996). The forces
are computed in each elementary calculation step as the derivatives of the interaction
potentials arising from the presence of the other atoms which lie within a certain cut-off
radius around the atom considered.

While in simple pair potentials (Morse, Lennard–Jones, Buckingham) only the direct
interaction between two atoms is considered and added up for a certain sphere with a
radius of about four atoms, in modern many-body potentials the influence of the density
of the neighboring atoms is also quantified in terms of an additional attractive force.
Depending on the number of particles and potential employed, optimized computer codes
for molecular dynamics can be used on personal computers, workstations, and mainframes
dealing with as many as 108–109 particles.

The plan of this chapter is as follows. First, a brief survey is given on some typical
potential functions used in molecular dynamics. Second, the equations of motion are
discussed with respect to their application in atomic systems. Third, some aspects of
finite difference methods are addressed, as required in the integration of the equations of
motion. Fifth, some comments are made about the use of boundary conditions. Finally,
some typical applications and examples are reviewed.

7.2 Models of Interatomic Potentials

7.2.1 Introduction and Fundamentals

The binding forces among atoms determine the material structure and its intrinsic me-
chanic and electromagnetic properties. In solid-state physics and bonding chemistry, four
different types of interatomic bonds are usually recognized, namely metallic, ionic, cova-
lent, and van der Waals2. Except for some special cases such as the cohesion between
neighboring {0002} planes in graphite, the van der Waals force is very weak and can often
be neglected in materials simulations. Its contribution to cohesion is usually more than

2Sometimes the interatomic cohesion that is transmitted through a hydrogen atom is referred to
as an additional binding type. It is very important in organic chemistry (DNA helix, water) but less
relevant in physical metallurgy.
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one order of magnitude smaller as compared with the other binding types. The remaining
three types can be classified into bonding with electron delocalization into itinerant states
forming large molecular orbitals (metallic, covalent), and bonding with electron transfer
from one ion to another (ionic).

These three main bonding classes represent phenomenological idealizations of real
systems, where mixed bonding conditions prevail. For instance, in most transition metals
directional covalent terms complement the pure metallic bond. Since the pioneering work
of Hume-Rothery and Cottrell it has been the aim of materials scientists to quantitatively
predict the bonding and thus the structure of real materials on the basis of the interatomic
forces (Cottrell 1988; Pettifor and Cottrell 1992; Pettifor 1993). With the advent of
quantum mechanics it became clear that any quantitative bonding theory must involve
the nonclassical behavior of the valence electrons which bind the atoms together. Thus,
for predicting the bond between atoms one has to solve Schrödinger’s equation for a
many-body problem (≈1023 particles) (Chapter 4). It is obvious that such a procedure is
not tractable because of the large number of atoms involved. For this reason a variety of
approximations of interatomic potentials has been developed to describe the interactions
among the atoms more or less phenomenologically (equations (4.1)–(4.8).

The analogy between the full quantum mechanical treatment and the classical method
of using empirical potentials and the equation of motion is justified on the basis of some
assumptions. These are the separation of the time-dependent from the time-independent
solution of the complete Schrödinger equation, the Born–Oppenheimer approximation,
and the replacment of the quantum mechanical momentum by the classical momentum.
These approximations enable one to transfer the potentials used from one atomic environ-
ment to another. The latter aspect is not necessarily straightforward from an electronic
point of view (Sutton and Balluffi 1995). Especially in the simulation of real materials
containing lattice defects such as solute foreign atoms, dislocations, and interfaces, con-
siderable fluctuations in the electronic structure can appear, due to changes in the local
atomic configuration.

However, it is commonly accepted that, in order to understand some basic physical
concepts that occur in classical atomic ensembles, including structural defects such as
dislocation cores or internal interfaces, the fine details of the potentials might not be
crucial. For instance, the fundamental relationship between the core structure of screw
dislocations in body-centered cubic metals and their mobility was elucidated by molecular
dynamics simulations using pair potentials (Vitek 1968; Vitek 1976). Although these
relatively simple functions provided only approximate information about the bonding of
the real material, the simulations were of significant value in later interpretations of the
plasticity of body-centered cubic metals (Sesták and Seeger 1978; Christian 1983).

The potential concept enables the researcher to carry out nanoscale molecular dy-
namics simulations with as many as 106–108 atoms, provided sufficient computational
resources are available. Of course, such quantities do not yet allow a full mesoscale treat-
ment of materials, which would involve as many as 1023 atoms, but it represents the best
possible approach to reveal atomistic mechanisms and intrinsic structural properties. This
information can then be incorporated at a larger scale to formulate and solve continuum
mesoscale models.

A large variety of interatomic potentials is currently being used in simulating lattice
defects. They range from generic radially symmetric empirical pair interactions (Lennard-
Jones 1924; Morse 1929; Torrens 1972; Tersoff et al. 1989), to non radially symmetric
bonds, which are helpful in simulating lattice defects in the technically relevant transi-
tion metals, to more fundamental approaches such as the semi-empirical tight-binding
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potentials which display the same angular momentum as real atomic orbitals (Sutton and
Balluffi 1995; Voter 1996), to local density functional theory (Hohenberg and Kohn 1964;
Kohn and Sham 1965). It should be emphasized that the formulation of adequate po-
tentials is not only required in molecular dynamics, but increasingly gains momentum in
conjunction with Metropolis Monte Carlo and cluster variation types of simulations. This
chapter reviews these concepts particularly with respect to their relevance in the field of
microstructure simulation and discusses their respective properties and predictive poten-
tial. Thorough reviews on the various potentials and their theoretical backgrounds and
limitations have been published by Torrens (1972), Hoover (1986), Finnis et al. (1988),
Vitek and Srolovitz (1989), Sutton and Balluffi (1995), and Voter (1996).

7.2.2 Empirical Pair Potentials and Weak Pseudopotentials

Most molecular dynamics simulations between the 1950s and the 1980s used empirical
radially symmetric pair potentials to describe the interactions of atoms (Erginsoy et al.
1964; Rahman 1964). In these early classical potential functions the interaction energy
and force between an atom and its neighbors is given by the sum of each of the pair-
wise contributions, but no additional cohesive pseudopotential contributions are involved.
The parameters occurring in such expressions are obtained by fitting empirical potential
functions to intrinsic material parameters such as the elastic constants, crystal structure,
cohesive energy, stacking fault energy, or lattice parameter, to bulk properties. The
underlying potential functions are usually of a more or less arbitrary exponential or higher-
order polynomial form.

These classical potentials are mostly used to simulate basic structural aspects, for
instance single lattice defects and their dynamics. Due to their simple mathematical
structure they are particularly preferred when a large number of atoms must be considered.
Owing to the physical meaning of the empirical terms involved (Pauli repulsion, dipole–
dipole attraction) classical pair potentials represent a good characterization of mono-
atomic closed-shell gases such as argon or helium.

One can distinguish between two types of pair potentials. The first group, which
is referred to as classical pair potentials, describes the total energy of the system, but
involves no further cohesive term. The second group, which is referred to as isotropic
weak pseudopotentials, describes energy changes of the system associated with structural
changes and includes a further cohesive term.

Classical pair potentials fully determine the total energy of a system without con-
sidering any further cohesive terms that arise from the interaction with atoms far away
from the particle considered (Vitek 1996). The atoms are regarded as mass points which
have a central interaction with their nearest neighbors (Lennard-Jones 1924; Morse 1929;
Torrens 1972). The interaction of any pair of atoms depends only on their spacing. This
implies that such potentials are principally radially symmetric and independent of the
angular position of other atoms in the vicinity. The required constants are obtained by
fitting material properties that are accessible in experiments. The classical pair potential
can be written

Etot =
1

2

N∑

i=16=j

N∑

j=16=i

ψij (rij) (7.1)

where rij = | rij | is the spacing between two atoms i and j and ψij the pair potential.
The simplest classical pair potential without any cohesive interaction is the hard sphere
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model which can be written

ψij (rij) =

{
= ∞ for rij ≤ r0

= 0 for rij > r0
(7.2)

where r0 is the inner cut-off radius which can be interpreted as the radius of the hard
sphere. A smoother potential with both repulsive and attractive components is the
Lennard–Jones potential, which was developed for inert gases. It contains an empiri-
cal attractive term, which mimics a van der Waals type of bond dominating at large
distances, and an empirical repulsive term, which mimics the Coloumb interaction of
the nuclei and the Pauli repulsion arising from the quantum exclusion of the electrons
dominating at short distances.

ψij (rij) =
CLJ1

rn
ij

− CLJ2

rm
ij

(7.3)

This potential is mostly used in the so-called 12–6 form (Vitek 1996) where n = 12 and
m = 6. The constants amount to CLJ1 = 4 ǫσn and CLJ2 = 4 ǫσm where ǫ and σ are
adjustable parameters (Broughton et al. 1993). A similar description is given by the
Morse potential,

ψij (rij) = CM1 { exp (−2α (rij − r0)) − 2 exp (−α (rij − r0))} (7.4)

where α, CM1, and r0 are adjustable parameters. The classical pair potentials are par-
ticularly pertinent in simulating ionic systems, fullerenes (C60), and cases where van der
Waals bonding prevails, such as molecule crystals (Morse 1929; Lennard-Jones 1924; Tor-
rens 1972; Vitek and Srolovitz 1989). Some details of pair potentials are discussed in the
overview article of Vitek (1996).

The second type of pair potential addressed in this section describes energy changes
associated with configurational variation at constant average atom density, rather than
the total energy of the system. It can be described by the more general equation

Etot =
1

2

N∑

i=16=j

N∑

j=16=i

ψij (rij) + U(Ω) (7.5)

where U(Ω) is the cohesive contribution to the total energy and Ω the average density
of the material (Torrens 1972; Vitek 1996). This view corresponds to the picture of a
pseudopotential representing the ion cores in simple s–p bonded metals, such as lithium,
sodium, potassium, magnesium, and aluminum. The total energy is then assumed to
be composed of a large density-dependent but structure-independent part U(Ω), and
a structure-dependent part that is represented by the pair interactions ψij (rij) (Voter
1996). One should note that the pseudopotential approach is not identical to the various
many-body potentials such as the embedded atom method. The latter methods consider
the local rather than the average density of the material (Daw and Baskes 1984).

Although allowing us fast computations of atomistic problems with consideration of
as many as 108 particles, the classical pair potentials have some major drawbacks. For
instance, if the cohesive energy per atom is correctly described, the vacancy formation
energy is not, and vice versa (Finnis and Rühle 1993). Furthermore, the inadequate
prediction of the Cauchy discrepancy represents a major shortcoming of the classical pair
potentials when used for metals. For describing the linear anisotropic elastic behavior of
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cubic metals, one requires three constants, e.g. C1111 (C11), C1122 (C12), and C2323 (C44).
These elastic constants are the second spatial derivatives of the potential (Honerkamp and
Römer 1993). Using the corresponding analytical expressions shows that the value C1122 −
C2323 amounts to 2 dU/dΩ + Ω d2U/dΩ2 (Finnis and Rühle 1993). It follows hence that
for the first type of pair potentials, equation (7.1), the Cauchy relation C1122 = C2323

applies. However, for the second type of pair potentials, equation (7.5), the Cauchy
relation does not usually hold. While the Cauchy relation is often satisfied for van der
Waals solids and ionic crystals, it is generally wrong for cubic metals. This is evident
from a simple estimation. For numerous metals Poisson’s ratio amounts to ν ≈ 1/3
and the Zener ratio to A ≈ 1 (isotropic limit, observed only for tungsten). For cubic
metals the former constant is given by ν = C1122/(C1111 + C1122) and the latter one by
A = 2C2323/(C1111 − C1122). By using both equations in the isotropic limit, one obtains
C1122 − C2323 = C2323/2 6= 0. For hexagonal and trigonal metals, where the Cauchy
relations amount to C1133 = C2323 and 3C1122 = C1111, similar deviations to those for
cubic materials occur. The observed discrepancy among the elastic constants of metal
crystals can only be fitted if the model is constrained by the boundary condition to a
lattice parameter that is smaller than its equilibrium value (Sutton 1996). The second
type of classical empirical interatomic force description, using pseudopotentials, contains
a large average density-dependent contribution. However, for simulating lattice defects
the assumption of a homogeneous density is mostly incorrect.

Finally, it must be emphasized that classical pair potentials are radially symmetric.
Therefore, they cannot reflect the directional nature of the bonding. However, direction-
ality of the bonding can be essential for simulating lattice defect dynamics of transition
metals. The presence of d-electrons near the Fermi level spoils this simple model of a
radial symmetry (Finnis et al. 1988; Pettifor 1993; Finnis and Rühle 1993). However,
for metals in which cohesion is provided by the outermost s and p electrons forming free
electron bands with small gaps at the Brillouin zone boundaries due to weak ionic pseu-
dopotentials, the isotropic limit works better than in the case of transition metals (Sutton
and Balluffi 1995).

7.2.3 Isotropic Many-Body Pair-Functional Potentials

The various isotropic many-body or simply pair-functional potentials represent a refined
class of empirical or semi-empirical potentials. Most of these models share the principal
view that the cohesion energy of an atom is largely determined by the local electron
density at the site into which that atom is placed (Friedel 1952). The contribution to the
electron density at that site is due to the neighboring atoms. The decohesion energy is in
most of these approaches represented by a pair potential type of contribution that largely
reflects the electrostatic repulsion. Isotropic many-body potentials are valuable both to
study complex systems that are intractable with more rigorous methods, and to study
generic properties that do not depend so much on the details of the energetics (Raeker
and DePristo 1991; Daw et al. 1993; Foiles 1996).

Important versions of these approaches are the second moment (Cyrot-Lackmann
1967), the effective medium (Norskov and Lang 1980), the embedded atom (Daw and
Baskes 1983), the glue (Ercolessi et al. 1986), and the Finnis–Sinclair (Finnis and Sinclair
1984) models. This class of models is sometimes also referred to as pair-functional methods
(Foiles 1996). According to the above-mentioned physical concept, these models all have
the following functional form for the total energy Etot at zero temperature (Finnis and
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Rühle 1993; Sutton and Balluffi 1995; Foiles 1996):

Etot =

N∑

i

F (̺i) +
1

2

N∑

i=16=j

N∑

j=16=i

V (rij) (7.6)

where F (̺i), which is sometimes referred to as the embedding or glue function, models the
attractive interaction as a function of the local electron density into which the considered
atom is placed. The term V (rij) describes a pairwise isotropic interatomic potential
function which is essentially repulsive and depends only on the atomic spacing rij . V (rij)
is usually fitted from experimental data (Finnis et al. 1988; Vitek and Srolovitz 1989).
The embedding function F is a square root in the second moment and in Finnis–Sinclair
potentials. The square-root behavior is derived from a simplified tight-binding model of
electronic densities of states. In the embedded atom method and similar approaches, the
embedding function is derived from the energy of an atom embedded in a homogeneous
free-electron gas of the local density ̺i at the atomic site (Daw and Baskes 1984). In
either case the embedding function is a negative concave function of ̺i.

̺i =
N∑

j=16=i

φ(rij) (7.7)

This function can be interpreted as the charge at the ith nucleus due to the spherical
symmetric electronic charge densities φ of the neighboring atoms. The equivalence of
the embedded atom and Finnis–Sinclair approximations in the tight-binding theory of
metallic cohesion has been discussed by Ackland, Finnis, and Vitek (1988).

As pointed out by various authors (Finnis and Rühle 1993; Sutton and Balluffi 1995),
the isotropic many-body potentials are very similar in behavior and almost as straight-
forward to compute as classical pair potentials (involving an increase by a factor of two
in computation time as compared with pair potentials). The main limitation of the early
radially symmetric many-body potentials is that they do not account for the directional
nature of the bond. Thus, the covalent contributions (d orbitals) of the transition metal
bonds cannot be adequately described. The same applies for silicon with its half-filled sp
bands, which form covalent bonds with an angular character. Consequently, neither the
negative Cauchy pressure nor the stability of non-closely packed lattice structures can be
adequately predicted (Foiles 1996).

However, the main advantage of the various isotropic many-body potentials is the
incorporation of the approximate variation of the bond strengths with the atomic co-
ordination. Increasing the coordination decreases the strength of each of the individual
bonds that the atom forms and increases the bond length (Foiles 1996). Stimulated by the
requirement to include binding anisotropy, but to avoid the computational efforts associ-
ated with tight-binding approaches (which consider bond directionality), angle-dependent
many-body potentials are increasingly in use (Baskes 1992; Moriarty 1994; Voter 1996).

7.2.4 Shell Model

The shell model provides a potential form that is mainly used for atomistic simulations
of materials with dominant ionic or covalent binding contributions. For instance, it is
employed for molecular dynamics simulations of purely ionic solids, oxides, silicates, and
purely covalent materials.
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The shell model can be regarded as a derivative of the pair-functional models, but
based on a more ionic picture. The total energy Etot is expressed as a sum of the one-body
Ei(r), two-body V (rij), and higher-order U (rij , rjk, rki) interactions.

Etot =
N∑

i

Ei(r) +
N∑

i<j

V (rij) +
N∑

i<j<k

U (rij , rjk, rki) (7.8)

where r is the lattice spacing and rij the spacing between the atoms i and j (Stoneham
et al. 1996).

The first term in equation (7.8) is interpreted as a rearrangement energy, which is
required to convert a free-space ion into a crystal ion. It can be expressed as a function
of the ion’s distance to the nearest neighbor:

Erearr(r) = E0 + exp

(
− r

Rrearr

)
(7.9)

where the value of Rrearr can be determined empirically from Born–Mayer potentials. The
pair interaction term is usually provided by a Born–Mayer form.

7.2.5 Bond Order Potentials

The main idea of the bond order formalism is the derivation of a general potential function
that can describe the atomic interaction for materials with different chemical bonding
and different structure (Abell 1985; Tersoff 1986; Brenner 1990; Brenner 1993; Brenner
1996). Starting from chemical pseudopotential theory and a localized-orbital basis set,
Abell (1985) gave an analytical expression for the binding energy Ei of each atom in a
translational periodic structure as a function of the nearest-neighbor distance r.

Ei =
1

2

Z∑

j=1

(q Vrep (r) + b Vatt (r)) (7.10)

where Z is the number of nearest neighbors, q the number of valence electrons per atom,
b the bond order, Vrep (r) a function that describes the near-neighbor two-center repulsive
interatomic force, and Vatt (r) its attractive counterpart (Brenner 1996).

The bond order b is independent of the bond length. It can be calculated as the sum
of the squares of the molecular coefficients on neighboring atoms. The magnitude of the
bond order characterizes the strength of the chemical bond. It depends on the inverse
square root of the coordination number, i.e.

b ∝ 1√
Z

(7.11)

According to Abell (1985) the repulsive and attractive terms are best approximated by
exponential functions, so that equation (7.10) can be written

Ei =
1

2

Z∑

j=1

(
Cbo1 exp (−σ r) − 1√

Z
Cbo2 exp (−λ r)

)
(7.12)

where Cbo1, Cbo2, σ, and λ must be fitted from experiment.
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7.2.6 Tight-Binding Potentials

Tight-binding potentials are approaches that lie between the more ab-initio local den-
sity functional theory (Section 7.2.7) and the more empirical isotropic many-body pair-
functional potentials (Section 7.2.3). The tight-binding method represents the simplest
possible approach to incorporating quantum mechanical principles into the calculation
of the potential (Sutton and Balluffi 1995; Kohan and Ceder 1996). In contrast to the
free-electron model it is based on using non- or weakly-overlapping atomic basis functions.
Consequently, tight-binding solutions are based on formulating wave functions as linear
combinations of atomic orbitals (LCAO) or plane wave basis sets. The atomic-like orbitals
which serve as basis functions in the LCAO method display the same angular momentum
as true atomic orbitals but with radial dependencies (Sutton and Balluffi 1995). As will
be shown below, combination of the atomic functions enables one to describe delocalized
states and hence to reproduce the band structure.

In contrast to most of the empirical and semi-empirical potentials discussed in the
previous sections, tight-binding potentials account for the directional nature of the bond
(particularly under the influence of p- and d-atomic orbitals), for the consideration of the
bonding and antibonding states, and for energy changes as a result of atomic displace-
ments.

Using linear combinations of atomic orbitals the wave function of the nth eigenstate
of a system Ψ(n) can be written

ψ(n) =
N∑

i

c
(n)
i φi (7.13)

where N is the number of atomic basis functions and φi the ith basis function. For
instance, in a molecule consisting of two atoms 1 and 2, φ1 would be the wave function
of a valence electron for the Hamiltonian H1 associated with atom 1,

H1 φ1 = E φ1 (7.14)

and φ2 the wave function of a valence electron for the Hamiltonian H2 associated with
atom 2,

H2 φ2 = E φ2 (7.15)

with

H =

(
~

2

2m
∇2 + v(r)

)
(7.16)

where ~ is h/(2π), ∇ the nabla operator, m the effective mass of the electron, and v(r) a
electrostatic pseudopotential experienced by an electron with the energy E.

The series expansion coefficients c
(n)
i in equation (7.13) are determined by substituting

the combined wave function ψ(n) into the Schrödinger equation:

H
N∑

i

c
(n)
i φi = E(n)

N∑

i

c
(n)
i φi (7.17)

where H is the Hamiltonian of the total system and E(n) the expected energy of the nth
eigenstate. By assuming orthogonality and normalization of the N basis functions

∫

vol

φ̃i Hφi dV = 1 (7.18)
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one obtains N secular equations of the form

N∑

j

Hij c
(n)
j = E(n) c

(n)
i (7.19)

with Hij being the Hamiltonian matrix component which is defined in terms of the volume
integral

Hij =

∫

vol

φ̃i Hφj dV (7.20)

The N secular equations represent an eigenvalue problem which is solved by matrix di-
agonalization. As a result one obtains the eigenvalues and the eigenvectors which are the
coefficients of the linear combination ansatz. Since the eigenvectors can have non-zero
values throughout the solid, the technique of linearly combined atomic orbitals allows one
to describe delocalized states and thus to reproduce the band structure.

Because of Pauli’s principle each eigenstate can hold two electrons with opposite spin.
If the system contains 2 z electrons, only the z lowest eigenvalues will be occupied at
T = 0 K. All other states are unoccupied. The band energy then amounts to

Eband = 2

z∑

n=1

E(n) (7.21)

Combining this expression with the secular equations, equation (7.19) leads to

Eband =
∑

ij

2
z∑

n=1

c
(n)
i c̃

(n)
j Hji =

∑

ij

ρij Hji (7.22)

where ρij is the ij component of the density matrix:

ρij = 2
z∑

n=1

c
(n)
i c̃

(n)
j (7.23)

The significance of these matrix elements lies in the fact that they are the coefficients of
the charge density function, which can be expressed in terms of a sum of atomic charge
densities and bond charge densities. The off-diagonal matrix elements, which are referred
to as bond orders, enable one to calculate the number of electrons in the bonding and
antibonding states.

ρij + ρji = mbond − nantibond = 2

z∑

n=1

(
c
(n)
j c̃

(n)
i + c

(n)
i c̃

(n)
j

)
(7.24)

In the simplest variant the resulting force on an atom can then be calculated assuming
the Hellmann–Feynman theorem

δEband

δxk
=
∑

ij

(
ρij

∂Hji

∂xk
+ ρji

∂Hij

∂xk

)
(7.25)

where δxk is an infinitesimal shift of atom k in the x direction (Esterling 1986; Sankey
and Niklewski 1989). For a more detailed description of the tight-binding approach the
reader is referred to the book by Sutton and Balluffi (1995).
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7.2.7 Local Electron Density Functional Theory

The treatment of the local electron density functional theory does not belong, strictly
speaking, in a chapter which deals with potentials to mimic the interactions and dynamics
of atoms. Its main difference from classical molecular dynamics methods lies in the fact
that it treats the dynamics of the electrons rather than that of the atoms. Of course, both
are closely connected (equation (4.6)), but the employment of the adiabatic Born–Oppen-
heimer approximation artificially separates the complete Schrödinger wave equation into
a portion which describes the dynamics of the electrons and a portion which describes
the dynamics of the nuclei.

While classical molecular dynamics methods deal with approximate solutions to the
simplified Schrödinger equation which only accounts for the dynamics of the heavy nuclei
and leaves the electrons generally in their ground state, electron dynamics simulations
deal with approximate solutions to a simplified Schrödinger equation which accounts only
for the dynamics of the light electrons, but with the nuclei positions remaining unchanged.

The starting point of the local electron density functional theory is the fundamental
theorem of Hohenberg and Kohn (1964) and Kohn and Sham (1965) stating that the total
ground state energy of an electronic many-body system is a functional of the electronic
charge density. This concept, by concentrating on the electron density rather than on
the many-body wave function, allows one to formulate an effective Schrödinger equation.
This effective wave equation is similar to the Hartree–Fock approach except that each
electron now experiences an additional attractive potential. In principle this approach of
Hohenberg and Kohn (1964) and Kohn and Sham (1965) gives a late physical justification
to treating each electron quasi-independently of the other particles. This is done by re-
placing the electron–electron Coulomb interaction by an effective single-particle potential.
This charge density functional method accounts for all correlations between the electrons
so that any given electron is surrounded by a hole or exclusion zone which forbids any
other electron to enter. Since the exact shape of this exclusion region is unknown, one
replaces the exact hole by an approximate hole which an electron would have in a homo-
geneous electron gas of equal density to that experienced by the considered electron at
any particular instant (Hohenberg and Kohn 1964; Kohn and Sham 1965; Miyazaki et al.
1991). This procedure of approximating the exclusion zone is the basis of the local elec-
tron density functional method (Lundquist and March 1983; Callaway and March 1984;
Moriarty 1988; Jones and Gunnarsson 1989; Parr and Yang 1989; Pettifor and Cottrell
1992). The effective Schrödinger equation can then be written

(
~

2

2m
∇2 + vH(r) + vhole(r)

)
ψi(r) = Ei ψi(r) (7.26)

where r is the position vector of the electron (the potentials are not necessarily radi-
ally symmetric), vH(r) the Hartree–Fock potential arising from the electrostatic Coulomb
interaction imposed by the ions and electrons, and vhole(r) the additional attractive po-
tential arising from the exclusion zone.

The total energy can be written

U =
∑

i

Ei − 1

2

∫ ∫
e2 ρ(r) ρ(r′)

4πε0 | r − r′ | dr dr
′−

∫
ρ(r) (vhole (ρ(r)) − ǫhole (ρ(r))) dr + Uion−ion (7.27)
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where ǫhole (ρ(r)) is the exchange and correlation energy per electron of a homogeneous
electron gas of density ρ(r), and e the elementary charge. Various applications using
the local electron density functional method have been published by Miyazaki, Ishii, and
Terakura (1991), Sommers, Doniach, and Fu (1991), Tanatar (1992), Khein and Singh
(1995), Duffy, Chong, and Dupuis (1995), Guan, Casida, and Salahub (1995), Cordero
and Alonso (1997), Trautwein, Antony, and Grodzicki (1997), and Valderrama, Ludena,
and Hinze (1997).

7.3 Equations of Motion for Atomic Systems

7.3.1 Fundamentals

This section is devoted to the formulation of the classical equations of motion for a system
of N atoms or molecules that interact through a well-defined potential model function
(Alder and Wainwright 1959; Verlet 1967)

The most fundamental form in which to write the equations of motion for conservative
systems3 with holonomic constraints4 is given by the Lagrangian formulation in conjunc-
tion with Hamilton’s principle of least action (Hoover 1986; Allen and Tildesley 1989).
The Lagrange–Euler function L is defined in terms of the kinetic and potential energy
and is considered to be a function of generalized coordinates x and their time derivatives
ẋ. The generalized coordinates can be complicated functions of the space coordinates.

Denoting the kinetic energy by Ekin and the potential energy by Epot, the Lagrange–
Euler function can be written

L = Ekin − Epot (7.28)

While the potential energy depends on x, the kinetic energy depends on ẋ.
The Lagrangian formulation of the equation of motion can be derived by using Hamil-

ton’s least action principle, which states that in conservative systems the motion of a mass
element between any two fixed space–time points is that which minimizes the integral of
L relative to slightly different, varied motions.

∫
Ldt→ min. or equivalently

∫
δLdt = 0 (7.29)

Since L depends explicitly upon both the generalized coordinates x and their time deriva-
tive ẋ, the variation has the form

∫
δLdt = 0 =

∫ [(
∂L

∂x

)
δx +

(
∂L

∂ẋ

) (
dδx

dt

)]
dt (7.30)

where the derivative (dδx/dt) can be integrated by parts with respect to time, because the
integral δx is known to vanish at the two endpoints. Then, since the form of the variation
that results, namely

∫
[(∂L/∂x) − (d/dt) (∂L/∂ẋ) ] δx dt, contains the arbitrary variation

δx, the coefficient of δx must vanish at all times in the interval. This leads then to the
Lagrangian form of the equation of motion,

d

dt

(
∂L

∂ẋ i

)
−
(
∂L

∂xi

)
= 0 (7.31)

3Conservative systems are systems with constant energy.
4In mechanics, holonomic constraints mean geometric rather than kinetic constraints.
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The equations of motion can be formulated equivalently using the Hamiltonian instead
of the Lagrangian form. Hamilton’s mechanics are also suitable to describe the time-
reversible motion of mass elements in conservative systems under holonomic constraints.
However, in the Hamilton form the conjugate momenta p appear instead of the velocities
ẋ in the equations of motion. It can be constructed from the Lagrange form through

p =
∂L(x, ẋ)

∂ẋ
and H(x,p) = (ẋ ṗ) − L (7.32)

Assuming a simple isotropic pair potential (Section 7.2.2), the total potential energy Epot

is given by

Epot =
1

2

N∑

i=16=j

N∑

j=16=i

Ψ (| xi − xj |) (7.33)

where Ψ is the interatomic potential, which depends only on the magnitude of the spacing
xi −xj between neighboring atoms. In this expression the suffix i = 1, 2, ..., N represents
the ith atom5 and not the ith component of the vector x. The kinetic energy is given by

Ekin =
N∑

i=1

mi ẋ
T
i ẋi (7.34)

where mi is the mass of the ith atom and ẋT
i the transpose of ẋi.

Applying the Lagrange formalism to the simplest possible case yields Newton’s equa-
tion of motion for a particle at ri (in Cartesian coordinates)

mi r̈i = −1

2

N∑

i=16=j

dΨ (| ri − rj |)
dri

(7.35)

It is an important issue to compare atomic scale simulation results with experimen-
tal observations. For this purpose molecular dynamics simulations can be equipped with
Lagrangians for the consideration of environmental constraints, such as constant pres-
sure, constant temperature, or constant bond length. The consideration of constant pres-
sure was addressed by Andersen (1980), of variable box shape at constant pressure by
Parinello and Rahman (1981), of constant temperature by Nosé (1984b), and of constant
bond length by Ryckaert, Ciccotti, and Berendsen (1977). The constant-pressure and the
constant-temperature schemes will be introduced below.

7.3.2 Constant Pressure

According to Andersen (1980) a constant-pressure environment can be realized by intro-
ducing the instantaneous volume of the system Ω. The effective Euler–Lagrange function
in the hydrostatic pressure case with constant cell shape can then be written

L =
N∑

i=1

mi

2
D2

q̇
2
i −

N∑

i=1

N∑

j>i

Ψ
(
| D qij |

)
+
MW

2
Ω̇2 − Ω p0 (7.36)

5The vector notation xj must not be confused with the notation xj . The former expression denotes
the position vector x of the jth atom. The latter term gives merely the jth component of a position
vector x.
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where MW the effective mass of the cell wall which is associated with the expansion and
contraction of the volume Ω of the simulation box and p0 the external pressure. The last
two terms in this equation deal with the constant pressure being imposed. The coordinates
of the atoms qi are rescaled with the dimension of the simulation cell, D = Ω1/3, since
the spacing between any two atoms changes with D and the coordinates independent of
the volume can then be given by qi = ri/D.

An important generalization of the constant-pressure scheme which allows one to deal
with a variable shape of the simulation cell was introduced by Parinello and Rahman
(1981). According to their approach the Euler–Lagrange function in the hydrostatic
pressure case can be written

L =
1

2

N∑

i=1

miq̇
T
i Gq̇i −

N∑

i=1

N∑

j>i

Ψ
(
| qij |

)
+

1

2
MW Tr

(
Ḣ

T
Ḣ

)
− Ω p0 (7.37)

where H is the matrix formed by the vectors of the simulation cell, MW the effective mass

of the cell wall, Tr the trace of the matrix product
(
Ḣ

T
Ḣ

)
, and p0 the external pressure.

The cell matrix is calculated according to

H = [a, b, c] (7.38)

Consequently, the matrix
(
Ḣ

T
Ḣ

)
amounts to

(
Ḣ

T
Ḣ

)
=




ȧ · ȧ ȧ · ḃ ȧ · ċ
ḃ · ȧ ḃ · ḃ ḃ · ċ
ċ · ȧ ċ · ḃ ċ · ċ


 (7.39)

The position of the ith atom in real space expressed through the cell vectors a, b, and c

can then be written
qi = H ri (7.40)

The interatomic spacing that enters the potential can then be expressed as

qij = H (ri − rj) (7.41)

The matrix G can be written
G = H

T
H (7.42)

where T indicates the transposed matrix form. The volume of the simulation cell Ω is
given by

Ω = det H (7.43)

and its orientation by

Σ = Ω
(
H

T
)−1

(7.44)

7.3.3 Constant Temperature

Constant-pressure molecular dynamics simulations are usually performed with a constant-
temperature environment as additional constraint. The constant-temperature method
proceeds by rescaling the velocities of the atoms during the simulation to ensure the
relation between the total kinetic energy and the temperature of the canonical system. It
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can be shown that this rescaling is equivalent to a force constraint up to the first order in
the time step. The force is equivalent to an artificial frictional force, which is proportional
to the velocity of the atom. According to Nosé (1984b) the corresponding Lagrangian can
be written

L =
N∑

i=1

mi

2
s
2
q̇

2
i −

N∑

i=1

N∑

j>i

Ψ
(
| qij |

)
+
ms

2
ṡ
2 − F kBT ln |s| (7.45)

where s, ṡ, and ms are the coordinate, velocity, and effective mass of an introduced
fictitious variable that calibrates the kinetic energy and the time step in order to have
the constraint of the canonical ensemble satisfied and F is the total number of degrees of
freedom of the system.

Combining the constant-pressure with the constant-temperature scheme results in an
effective Langrangian of the form

L =
N∑

i=1

mi

2
s
2D2

q̇
2
i −

N∑

i=1

N∑

j>i

Ψ
(
| D qij |

)
+
ms

2
ṡ
2−F kBT ln |s|+MW

2
Ω̇2−Ω p0 (7.46)

7.4 Integration of the Equations of Motion

For a given potential the N equations of motion can be solved by using a finite differ-
ence algorithm. The fundamentals of finite difference methods were discussed in Chapter
3. The Gear predictor–corrector and the time-reversible Verlet algorithms are the meth-
ods that are frequently used in molecular dynamics. The first method was presented in
Chapter 3. The latter approach will be discussed briefly below (Verlet 1967).

The Verlet technique allows one to calculate the actual position ri and velocity ṙi of
the ith atom at time t in Cartesian coordinates (in the general Lagrange formalism the
Cartesian coordinates r must be distinguished from the generalized coordinates x). The
displacement in the vicinity of t can be described by a Taylor expansion:

ri(t+ δt) = ri(t) + ṙi(t)δt+
1

2
r̈i(t)(δt)

2 +
1

3!

...
r i(t)(δt)

3 +
1

4!

....
r i(t)(δt)

4 + ... (7.47)

ri(t− δt) = ri(t) − ṙi(t)δt+
1

2
r̈i(t)(δt)

2 − 1

3!

...
r i(t)(δt)

3 +
1

4!

....
r i(t)(δt)

4 ∓ ... (7.48)

By adding equations (7.47) and (7.48) one obtains an expression for the position of the
ith atom as a function of its acceleration,

ri(t+ δt) = 2ri(t) − ri(t− δt) + r̈i(t)(δt)
2 +

2

4!

....
r i(t)(δt)

4 + ...

≈ 2ri(t) − ri(t− ∆t) + r̈i(t)(∆t)
2

(7.49)

The required acceleration of the ith atom is calculated from the conservative force F i,
the atomic mass mi, and, if T 6= 0, a thermodynamic friction coefficient ξ(t). The force is
obtained as a derivative of the respective potential. The velocity of the atom is calculated
by subtracting equation (7.47) from equation (7.48).

ṙi(t) ≈ ri(t+ ∆t) − ri(t− ∆t)

2∆t
(7.50)
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According to these equations the Verlet algorithm can be started if the first two positions
of the atoms are known. However, in typical molecular dynamics simulations, only the
initial positions and initial velocities are given. Therefore, one first needs a method to
calculate the second set of atomic positions before one can start the recursive Verlet
algorithm. A common practice to overcome this problem is to treat the force during the
first two simulated time steps as a constant and to apply conventional kinematics, i.e.

ri(t+ ∆t) ≈ ri(t) + ∆t ṙi(t) +
(∆t)2

2
r̈i(t) (7.51)

7.5 Boundary Conditions

The formulation of adequate boundary conditions for molecular dynamics simulations
should consider two main aspects (Wolf and Yip 1992). First, to reduce the efforts for
computation (computation time, coding convenience, required random access memory),
the size of the simulation box should be as small as possible. On the other hand, the sim-
ulation cell should be large enough to exclude the possibility that any kinetic disturbance
can re-enter the block leading to an artificial perturbation of the lattice defects being in-
vestigated. Furthermore, the box must be large enough to provide reliable statistics. An
adequate compromise between both requirements must be found and carefully checked.
Second, a physically realistic coupling accounting for volume expansion, strain compati-
bility, and stress equilibrium between the surrounding and the simulation cell should be
considered.

In cases where bulk properties of the material or simple lattice defects without intrinsic
periodicity and without long-range interactions are studied one tyically uses simple peri-
odic, i.e. cyclic boundary conditions. Periodic boundary conditions reduce the influence
of surface effects on the simulation results.

To use periodic boundary conditions in a simulation of N particles confined to a
volume Ω, one can assume that this volume is only a small portion of the sample. The
volume Ω is referred to as the “primary cell”. It is representative of the bulk material. The
bulk sample is assumed to be composed of the primary cell surrounded by exact replicas
of itself. These replica cells are referred to as the “image cells” (Figure 7.1). Each cell
in the array which consists of the primary cell and the image cells can be identified by
a translation vector t. The length of the cell L and the translation vectors allow one to
describe the positions and velocities of all image particles outside the primary cell as a
function of the positions and velocities of the particles inside the primary cell.

r
im j
i = r

pr
i + L t

j

ṙ
im j
i = ṙ

pr
i

(7.52)

where L is the length of the cell, tj the cell translation vector of cell j, r
im j
i the position

vector of the ith image particle in image cell j, r
pr
i the position vector of the ith particle

in the primary cell, ṙ
im j
i the velocity vector of the ith image particle in image cell j, and

ṙ
pr
i the velocity vector of the ith particle in the primary cell.

In the domain of grain boundary and dislocation simulations physical periodicity
can occur naturally, e.g. in large-angle grain boundaries containing a high density of
coincidence site lattice points or in low angle grain boundaries consisting of regular arrays
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Figure 7.1: Cell array and translation vectors for periodic boundary conditions in two
dimensions.

of dislocations. Especially in such cases, the superimposition of artificial periodicity makes
simulations senseless, irrespective of the quality of the potential employed.

For simulating the dynamics of lattice defects and acoustic waves in materials, the
Born–van Kármán, the antiperiodic Möbius, or the generalized helical periodic border
conditions are typically used (Sutton 1996). For investigating dislocation emission from
crack tips, Kohlhoff, Gumbsch, and Fischmeister (1991) and Gumbsch (1996a) have intro-
duced an integrated method of combining a finite element frame with molecular dynamics
simulations. In a similar line, Tadmore, Phillips, and Ortiz (1996) have suggested a mixed
atomistic and continuum model for treating the deformation of solids.

Although molecular dynamics is deterministic, it contains a stochastic element, viz. the
starting configuration. It should be assured in each molecular dynamics simulation, there-
fore, before the filtering of relevant data, that the system has passed its relaxation time.
The relaxation period can be considerably shortened by choosing a reasonable starting
configuration. This can be achieved by prescribing a minimum spacing between the atoms
and by using an initial velocity field in accord with the Maxwell distribution.

Various possible boundary conditions in molecular dynamics simulations of lattice de-
fects have been discussed for first-order phase transitions (Binder 1991c), dislocation cores
(Vitek 1976), cascade formation and irradiation damage (Bacon 1996), grain boundaries
(Wolf and Yip 1992; Finnis and Rühle 1993; Sutton and Balluffi 1995; Sutton 1996), and
crack tips (Gumbsch 1996a).

7.6 Application of Molecular Dynamics in

Materials Science

A large number of researchers have used molecular dynamics to simulate materials at an
atomic scale. In the field of materials science, structural investigations of lattice defects
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and phase transformations prevail. In this context special attention was devoted to both
homophase and heterophase interfaces, dislocations, cracks, interfacial segregation, misfit
dislocations, secondary grain boundary dislocations, and structural domains in polymers.
Furthermore, substantial contributions were published on the atomic scale synthesis or
design of materials. In this context stress was placed particularly on metals, polymers,
and ceramics. A number of relevant contributions which were published during recent
years are listed in the following table. Of course, the list can by no means be complete
but it may serve as a bibliography for getting better acquainted with some examples of
the classical and recent original literature in this field. The full citations are given in the
bibliography at the end of the book.

Field of application Reference

classics and fundamentals Alder and Wainwright (1959)
Rahman (1964)
Verlet (1967)
Verlet (1968)
Parinello and Rahman (1981)
Hoover (1986)
Lutsko, Wolf, and Yip (1988a)
Sankey and Niklewski (1989)
Allen and Tildesley (1989)
Catlow, Parker, and Allen (1990)
Heermann and Burkitt (1991)
Allen and Tildesley (1992)
Daw, Foiles, and Baskes (1993)
Kirchner, Kubin, and Pontikis (1996)
Voter (1996)

Environment conditions Ryckaert, Ciccotti, and Berendsen (1977)
Andersen (1980)
Parinello and Rahman (1981)
Nosé (1984b)
Nosé (1984a)

structure of misfit dislocations Wolf, Foiles, and Fischmeister (1991)
Vitek, Gutekunst, and Rühle (1995)

structure and mobility of interfaces Lutsko, Wolf, and Yip (1988a)
Chen, Srolovitz, and Voter (1989)
Foiles (1989)
Paxton and Sutton (1989)
Phillpot, Lutsko, and Wolf (1989b)
Phillpot, Lutsko, and Wolf (1989a)
de Hosson and Vitek (1990)
Jhan and Bristowe (1990)
Campbell, Gumbsch, and King (1992)
Weinberg, Shamsuzzoha, and Deymier (1992)
Wolf and Yip (1992)
Hofmann and Finnis (1994)
Majid, Counterman, and Balluffi (1994)
Vitek, Wang, and Bassani (1994)
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Liu and Plimpton (1995a)
Liu and Plimpton (1995b)
Schmidt, Ernst, and Vitek (1995)
Sutton and Balluffi (1995)
Dawson, Bristowe, and White (1996)
Yan, Ernst, and Chen (1996)

structure and energy of lattice Vitek (1974)
dislocations Pestman, de Hosson, and Vitek (1989)

Huang, Meyer, and Pontikis (1990)
Duesbery and Richardson (1991)
Huang, Meyer, and Pontikis (1991)
Pestman, de Hosson, and Vitek (1991)
Vitek and Igarashi (1991)
Bigger, McInnes, and Sutton (1992)
Khantha, Vitek, and Pope (1992)
Vitek (1992)
Joos, Ren, and Duesbery (1994)
Bulatov, Yip, and Argon (1995)
Hamilton, Daw, and Foiles (1995)
Hamilton and Foiles (1995)
Zhang, Wang, and Tang (1995)
Chen and Ding (1996)
von Boehm and Nieminen (1996)
Justo, Bulatov, and Yip (1997)
Xu and Moriarty (1997)

segregation effects Kelires and Tersoff (1989)
Srolovitz, Wang, and Najafabadi (1993)
Wang, Najafabadi, and Srolovitz (1993)
Menyhard, Yan, and Vitek (1994)
Rittner, Foiles, and Seidman (1994)

structure of microcracks Jokl, Vitek, and McMahon (1989)
Hoagland, Daw, and Foiles (1990)
Kohlhoff, Gumbsch, and Fischmeister (1991)
Zhang and Wang (1996)
Gumbsch, Zhou, and Holian (1997)

thin films and surfaces Salik (1985)
Müller (1985)
Gilmer, Grabow, and Bakker (1990)
Loisel, Lapujoulade, and Pontikis (1991)
Harrison, Colton, and Brenner (1993)
Sinnott, Colton, and Brenner (1994)
Finnis, Kaschner, and Scheffler (1995)
Goringe and Sutton (1996)
Pinches and Tildesley (1996)
Smith and Srolovitz (1996)
Goringe, Clark, and Sutton (1997)

heterophase interfaces Lutsko, Wolf, and Yip (1988b)
Gumbsch, Daw, and Foiles (1991)
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Holzman, Adams, and Foiles (1991)
Duffy, Harding, and Stoneham (1992)
Hong, Smith, and Srolovitz (1992)
Duffy, Harding, and Stoneham (1993)
Stoneham, Ramos, and Sutton (1993)
Duffy, Harding, and Stoneham (1994)
Floro, Thompson, and Bristowe (1994)
Hong, Smith, and Srolovitz (1994)
Majid, Counterman, and Bristowe (1994)
Duffy, Harding, and Stoneham (1995)
Finnis, Kruse, and Schönberger (1995)
Duffy, Harding, and Stoneham (1996)
Finnis (1996)
Kruse, Finnis, and Gillan (1996)

materials design Chen, Voter, and Albers (1990)
Pettifor (1990)
Pettifor (1992)
Hammonds, McDonald, and Tildesley (1993)
Robertson, Brenner, and White (1995)
Godwin, Horsfield, and Sutton (1996)

atomistics and finite elements Kohlhoff, Gumbsch, and Fischmeister (1991)
Gumbsch (1996b)
Gumbsch (1996a)
Tadmore, Phillips, and Ortiz (1996)
Tadmore, Ortiz, and Phillips (1996)

7.7 Examples of Molecular Dynamics Simulations

in Materials Science

7.7.1 Simulation of Chain Dynamics in Polymers

The atomic-scale dynamics of monomers and polymers has been widely investigated using
molecular dynamics and Monte Carlo methods. Particular attention has been drawn to
the simulation of the motion and reaction of single chains. While considerable progress
in the understanding of chain dynamics and polymerization was obtained by using the so
called force bias Monte Carlo method, this section presents a simple molecular dynamics
simulation.

The simulation uses a modified Lennard–Jones potential and the finite extendable
nonlinear elastic attractive potential (FENE potential) to mimic the interaction among
the monomers. Figure 7.2, as an example, shows a number of successive positions for a
polymer chain.

7.7.2 Simulation of Brittle Fracture

Gumbsch (1996b) has introduced a finite element – atomistic method to simulate crack
tips in brittle materials. The main difficulties in dealing with the structure and the
dynamic properties of crack tips arise both from the singularity of the elastic stress field,
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Figure 7.2: Molecular dynamics simulation showing a number of successive positions of a
polymer chain (Müller-Krumbhaar 1989).

which scales inversely with the square root of the distance in the immediate vicinity of the
crack tip, and from the fact that the crack tip morphology might reveal relaxations at the
atomic scale. Figure 7.3 shows the basic setup of the finite element – atomistic method
for the simulation of crack tips in NiAl. While the outer region is modeled using the finite
element method, the crack tip is described using the relaxation of single atoms (Figure
7.4). The atomic interaction is described in terms of an embedded atom potential. The
coupling between both regimes is provided by a transition layer. Similar simulations,
coupling finite element and atomistic simulations, have been carried out by Tadmore,
Phillips, and Ortiz (1996).

7.7.3 Simulation of Wafer Bonded Silicon Interfaces

Scheerschmidt, Conrad, and Gösele (1996) have carried out a molecular dynamics sim-
ulation of bonded wafer interfaces in silicon. The bonding of silicon wafers becomes of
increasing importance for silicon applications and micromechanics.

The molecular dynamics simulation has been performed using a modified Stilling–
Weber potential. The bonding has been described between cube-oriented silicon surfaces.
Figure 7.5 demonstrates the gradual simulated generation of a twist boundary during a
computed annealing experiment, starting from two misoriented single crystals.

7.7.4 Simulation of Void Formation during Thin Film

Deposition

Smith and Srolovitz (1996) have performed two-dimensional non-equilibrium molecular
dynamics simulations of void formation during thin film deposition. The simulations
have been made using single crystalline substrates with a Lennard–Jones potential. The
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Figure 7.3: Basic setup of the finite element – atomistic method for the simulation of
crack tips in NiAl (Gumbsch 1996b).

Figure 7.4: Atomic structure of a moving crack tip in NiAl (Gumbsch 1996b).
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Figure 7.5: Gradual generation of a twist boundary during a simulated molecular dynam-
ics annealing experiment, starting from two misoriented single crystals (Scheerschmidt et
al. 1996).

integration of the equations of motion was performed in a step-wise manner using a fifth-
order predictor–corrector method.

Figure 7.6 presents some typical simulated microstructures for thin films grown at
various substrate temperatures under a constant deposition kinetic energy. The main
microstructural features to develop within these films are single vacancies and small voids.
The voids tend to be slightly elongated and to be aligned in the growth direction of the
film. Voids are generated as a consequence of both surface roughness and shadowing
effects. The authors observed that both the void volume and the mean surface roughness
of the films were decreasing functions of substrate temperature and deposition kinetic
energy.

7.7.5 Simulation of Interaction of Dislocations with Grain

Boundaries

Zhang and Wang (1996) have carried out two-dimensional molecular dynamics simulations
of the interaction of a dislocation array from a crack tip with grain boundaries. The
dislocation array was emitted from a moving crack tip under mode II loading conditions.
The dislocations interacted with asymmetric tilt grain boundaries.

The boundaries revealed planar and linear matching zones and unmatching zones. All
grain boundaries were observed to emit dislocations and to migrate as a result of the
interaction.

The simulations have been made using a Finnis–Sinclair type second moment poten-
tial. Figure 7.7 shows a representative simulated microstructure with grain boundary
segments, dislocations, and a newly formed grain.
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Figure 7.6: Simulated microstructures for thin films grown at various substrate tempera-
tures under a constant deposition kinetic energy; (a) T=0.0 ǫ/kB; (b) T=0.0625 ǫ/kB; (c)
T=0.125 ǫ/kB; ǫ= 0.74 eV; (Smith and Srolovitz 1996).

Figure 7.7: Simulated microstructure with grain boundary segments, dislocations, and a
newly formed grain (Zhang and Wang 1996).
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Chapter 8

Introduction

The quantitative investigation and prediction of microstructure evolution, and the deriva-
tion of corresponding microstructure-property relations at the micro- and mesoscale, con-
stitute possibly the broadest and most characteristic discipline of computational materials
science. Structure evolution at the microscopic–mesoscopic level is typically a thermody-
namically non-equilibrium process, and thus mainly governed by kinetics. In other words,
thermodynamics prescribes the principal direction of microstructure evolution while kinet-
ics selects one out of many possible microstructural paths. This non-equilibrium character
of structure evolution leads to a large variety of lattice defect structures and interactions.

Optimizing microstructure evolution at the mesoscopic scale is of fundamental impor-
tance, since it is particularly these non-equilibrium ingredients that can lead to beneficial
materials properties. A thorough understanding of microstructural mechanisms thus en-
ables one to tailor materials with certain property profiles for specific applications.

Investigating microstructural phenomena at realistic time and space scales, for pre-
dicting macroscopic properties, requires the consideration of relatively large portions of
material (Table 8.1). However, due to the huge number of atoms involved (≈ 1023 in
a cubic centimeter), mesoscale simulations of microstructures can be performed neither
by exactly solving the Schrödinger equation nor by using phenomenological atomistic
approaches, such as molecular dynamics in conjunction with empirical potentials. This
means that appropriate mesoscale simulations must be formulated which are capable of
spanning a wider range of scales allowing predictions far beyond the atomic scale.

In most cases, this requires the introduction of continuum models in which averaging
constitutive relations and phenomenological rate equations replace the exact or approxi-
mate solution of the equations of motion of all atoms. However, due to the large variety
of mesoscale mechanisms and possible constitutive laws, there exists no unique method
of formulating mesoscale models.

It is not the aim of this chapter to provide an exhaustive review of the large num-
ber of statistical, phenomenological, and more or less empirical models that dominate
the field of mesoscopic non-space-discretized materials modeling, but to concentrate on
those simulations that are discrete in both space and time, and explicitly incorporate the
properties of individual lattice defects in a continuum formulation. The philosophy be-
hind this is twofold. First, the various classical phenomenological mesoscopical modeling
approaches, which are discrete in time but not in space, have already been the subject
of numerous thorough studies in the past, particularly in the fields of crystal plasticity,
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Table 8.1: Typical scales in microstructures.

Scale [m] Characteristic phenomenon or defect

10−10–10−7 point defects, atomic clusters, short-range order, structural units in
glasses and interfaces, dislocation cores, crack tips, nuclei

10−9–10−5 spinodal decomposition, coatings, thin films, surface corrosion

10−9–10−4 diblock-, triblock-, and starblock-copolymers, massive and athermal
transformations, interface facets, dislocation sources, pile-ups

10−9–10−3 particles, precipitations, dendrites, eutectics, eutectoids

10−8–10−5 microcracks, cracks, powder, magnetic domains, internal stresses

10−8–10−4 stacking faults, microbands, microtwins, dislocation channels

10−8–10−3 spherolites in polymers, structure domains/crystal clusters (crys-
talline, amorphous) in metals, ceramics, glass, and polymers

10−8–10−2 clusters of conformative defects in polymers

10−8–10−1 dislocations, dislocation walls, disclinations, magnetic walls, subgrains,
high-angle grain boundaries, interfaces

10−7–10−1 grains, shear bands, second phases in composites

10−7–100 diffusion, convection, heat transport, current transport

10−7–100 microstructural percolation paths (fracture, recrystallization, interface
wetting, diffusion, corrosion, current, Bloch walls)

10−6–101 surfaces, sample necking, fracture surfaces

recrystallization phenomena, and phase transformation (Kocks 1966; Argon 1975; Kocks
et al. 1975; Mughrabi 1980; Mecking and Kocks 1981; Mughrabi 1983; Estrin and Mecking
1984; Prinz and Argon 1984; Estrin and Kubin 1986; Gottstein and Argon 1987; Kocks
1987; Rösler and Arzt 1988a; Rösler and Arzt 1988b; Marthinsen et al. 1989; Rösler
and Arzt 1990; Estrin and McCormick 1991; Kubin 1993b; Gil Sevilliano 1993; Reppich
1993). These models usually provide statistical rather than discrete solutions and can
often be solved without employing time-consuming numerical methods. This is why they
often serve as a physical basis for deriving phenomenological constitutive equations that
can be incorporated in advanced larger-scale finite element, self-consistent, or Taylor-
type simulations (Argon 1975; Gittus and Zarka 1986; Andersen et al. 1987; Kocks 1987;
Nemat-Nasser and Hori 1993; Krausz and Krausz 1996). However, since such constitutive
descripions only provide an averaged picture of the material response to changes in the
external constraints, they are confined to statistical predictions and do not mimic any
details of the microstructural evolution. Hence, they are beyond the scope of this book.
Second, physically sound micro- and mesoscale material models that are discrete in both
space and time must incorporate the statics and kinetics of individual lattice defects. This
makes them superior to the more descriptive statistical models in that they allow simula-
tions that are more precise in their microscopical predictions due to the smaller number
of phenomenological assumptions involved.

The concept of discretizing materials-related models on the basis of the discrete prop-
erties of each individual lattice defect involved confronts one, as in molecular dynamics,
with the task of formulating and solving many-body interaction phenomena1. The gov-

1“Many-body” means “many lattice defects”, i.e. dislocation segments, interface segments, etc.
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Figure 8.1: Main mesoscale simulation methods with typical fields of application.

erning equations in such approaches are usually partial differential equations that reflect
the behavior of individual rather than averaged populations of lattice defects. These ex-
pressions, particularly when coupled, are typically of a nonlinear character and thus can
entail self-organization on a microstructural scale (Haken 1978; Kubin 1988).

Extracting quantitative predictions from such models typically requires numerical
computation. The discussion of highly discretized microstructure simulations at the meso-
and microscale thus fits exactly the purpose of this book.

This chapter deals with six major groups of techniques that occur in the field of
mesoscale materials simulations, namely, space-discretized dislocation dynamics (Chapter
9), kinetic phase field or generalized Ginzburg–Landau models (Chapter 10), deterministic
and stochastic cellular automata (Chapter 11), multistate kinetic Potts models (Chapter
12), geometrical and component models (Chapter 13), and topological network or vertex
models (Chapter 14) (Figure 8.1).

These simulation methods have in common that they do not explicitly incorporate
atomic-scale dynamics, but they idealize the material as a continuum. This means that
the lattice defects share a common homogeneous matrix medium through which their
interaction is coupled. Consequently, the corresponding governing equations do not usu-
ally introduce an explicit intrinsic space or time scale. Classifying these approaches as
simulation techniques at the micro–meso level is thus to a certain extent arbitrary and
depends strictly on the underlying physical model. Continuum-type mesoscale models
involving individual lattice defects are typically formulated in terms of phenomenological
sets of partial differential rate and constitutive equations. The character of these differ-
ential equations and their coefficients and variables usually provide means of identifying
appropriate temporal and spatial scaling parameters and a correct level of discretization
for the finite difference, finite element, or Monte Carlo methods which are used to solve
them. The state variables, e.g. atomic concentration, dislocation density, structure pa-
rameters, displacement, or lattice orientation, are in these models often assigned to the
coordinates of a spatial grid and the governing differential equations are applied to them
in a local or global fashion, depending on the character of the interaction (long-range,
short-range). Using continuum approaches for yielding mesoscale predictions makes sense,
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since phenomenological state equations and structural evolution laws are often well inves-
tigated at the mesoscale, where experimental data can be obtained more easily than at
the microscale, and more detailed than at the macroscale.

Chapter 9 is concerned with the simulation of plasticity at the microscopic and meso-
scopic levels using space- and time-discretized dislocation dynamics. While Potts models,
cellular automata, and the various topological approaches are particularly suited for simu-
lating interface phenomena with short-range interactions, discrete dislocation models are
designed to deal with line defects problems that involve long-range interactions.

Space-discretized dislocation simulations idealize dislocations outside their cores as lin-
ear defects which are embedded within an otherwise homogeneous, isotropic or anisotropic,
linear elastic medium. This applies for both straight infinite dislocations and dislocation
segments. They are based on discretely simulating the dynamics of individual dislocations
considering both time and the actual position of each defect as independent variables. The
previous work in this field can be grouped into simulations in two dimensions (2D) and
three dimensions (3D). 2D calculations are conducted either with taut dislocations that
cannot leave their actual glide plane (Foreman and Makin 1966; Bacon et al. 1973; Scat-
tergood and Bacon 1975; Altintas 1978; Rönnpagel 1987; Rönnpagel et al. 1993; Mohles
and Rönnpagel 1996; Mohles 1996), or with nonflexible infinite straight dislocations which
may leave their glide plane but cannot bow out (Neumann 1971; Lépinoux and Kubin
1987; Ghoniem and Amodeo 1989; Gulluoglu et al. 1989; Amodeo 1990; Gulluoglu et al.
1990; Gulluoglu and Hartley 1992; Lubarda et al. 1993; Raabe and Roters 1995; Wang
and LeSar 1995; Raabe et al. 1996; Roters and Raabe 1997; Zacharopoulos et al. 1997).

3D simulations which decompose each dislocation into a sequence of piecewise straight
segments with a scaling length much below the length of the complete dislocation line are
independent of such geometrical constraints (Kubin et al. 1992; Demir et al. 1992;
Devincre and Condat 1992; Devincre and Kubin 1994; Kubin 1993a; Rhee et al. 1994;
Raabe 1995a; Raabe 1996a; Raabe 1996b; Devincre 1996; Rönnpagel 1996; Fivel et al.
1996; Raabe 1998a). The dynamics of the dislocations are usually described by assuming
phenomenological viscous or viscoplastic flow laws2 or by solving Newton’s second law
for each dislocation or dislocation segment, respectively. The solution of the temporal
evolution of the dislocation positions is as a rule obtained by finite difference algorithms.

Chapter 9 reviews the fundamentals required for formulating and solving field equa-
tions describing two-dimensional infinite dislocations and interconnected three-dimensional
dislocation segments. The displacement and stress fields for the isotropic limit are derived
according to the theory of Yoffe (1960), Li (1965), de Wit (1967), Hirth and Lothe (1982),
Devincre (1995), and Rönnpagel (1996) and for the general anisotropic case according to
Kröner (1958), Brown (1967), Indenbom and Orlov (1968), Bacon et al. (1979), Hirth and
Lothe (1982), and Raabe (1996). This framework of dislocation statics in general dyadic
presentation forms the backbone of time- and space-discretized plasticity simulations. It
allows one to describe the long-range elastic Peach–Koehler interaction among dislocations
in arbitrary ensembles with a high spatial resolution in two and three dimensions.

Chapter 10 deals with Ginzburg–Landau and Cahn–Hilliard-type kinetic phase field
models. These represent a group of very general and flexible phenomenological contin-
uum field approaches which are capable of describing continuous and quasi-discontinuous
phase separation phenomena in coherent and incoherent systems at the nanoscopic and
mesoscopic level (Cahn and Hilliard 1958; Cahn 1961; Cahn 1962; Cahn and Hilliard 1965;

2“Viscous flow” means that the dislocation is in an overdamped state of motion so that its velocity
is linearly proportional to the local net line force. Viscoplastic dynamics phenomenologically describe
strain rate sensitive flow.
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Khachaturyan 1968; Landau and Lifshitz 1980; Landau and Lifshitz 1981). While original
versions of the Ginzburg–Landau approach addressed electromagnetic problems with non-
conserved field variables, such as phase separation phenomena in Shubnikov phases, i.e. the
concentration distribution of Cooper pairs, advanced metallurgical variants are capable of
addressing the distribution of conserved continuous atomic concentration parameters and
nonconserved quasi-discontinuous structural and/or orientational parameters in coherent
and non-coherent systems3 (Wang et al. 1996). Phase field models can be regarded as a
set of Onsager kinetic equations furnished with an appropriate free energy functional that
may depend on such quantities as atomic or boson concentration and long-range order.
For transcribing this approach into a form that is discrete in space, these state parameters
are used as field variables. The dependence of the variables on the spatial coordinates
enables one to prescribe heterogeneous composition and structure fields, and allows one to
simulate both the kinetics and the resulting morphology of phase separation phenomena.

Phase field approaches are generally based on the assumption that the material is
homogeneous and that the chemical portion of the total free energy density functional
can be expressed in a Landau form.

In those versions where only the conservative concentration field is considered (original
Cahn–Hilliard theory), the phase field method is confined to describing isostructural phase
transformations. The phases may then differ from each other only in concentration, but
not in long-range order or crystal structure. For incorporating the latter parameters, the
theory can be extended by introducing additional, nonconservative field variables (Allen–
Cahn theory) and by complementing the energy density functional with corresponding
terms (Khachaturyan 1983; Chen and Khachaturyan 1991a; Wang et al. 1991; Chen
et al. 1992; Wang et al. 1993; Chan and Rey 1995; Johnson et al. 1994; Dreyer 1995;
Chen and Wang 1996; Löchte and Gottstein 1996; Löchte et al. 1998).

Chapter 11 is concerned with cellular automata, the use of which ranges from diffusion
simulations at the atomic level to the description of population evolution and traffic
systems at the macroscale. In computational materials science, they are increasingly used
for phase transformation simulations at the mesoscale.

The chapter addresses both deterministic and stochastic cellular automata with local
transformation rules, such as are used for recrystallization simulations. While determinis-
tic cellular automata discretely solve differential equations locally with a finite difference
or finite element method, stochastic automata use random sampling techniques. The par-
ticular strength of cellular automata lies in the local or global application of practically
arbitrary transformation rules which determine the value of a state variable at a site as
a function of the neighboring sites (local) or of all sites (global) (Wolfram 1983). This
property makes the cellular automaton approach a highly effective technique for simulat-
ing microstructur evolutions on the basis of short- and long-range interactions. Cellular
automata must not be confused with ordinary finite difference or finite element meth-
ods. Their definition is much more general and flexible. For instance, cellular automata
may not only use differential equations as local transformation rules and functional for-
mulations as global transformation rules, but they may define any additional arbitrary
deterministic, probabilistic, or even fuzzy-type rule to be applied to the state variables.
Cellular automata have some similarity to the Potts Monte Carlo method. Both work
in a discrete spatial lattice whose sites can switch according to the status of neighboring

3The term “quasi-discontinuous” means that the structural and chemical field variables used in
Ginzburg–Landau-type approaches are generally defined as continuous spatial functions. This means
that interfaces are described in terms of a more or less smooth gradient term with a non-zero spatial
extension rather in terms of a sharp change in the corresponding field variable.
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sites through certain transformation rules. However, except for this similarity in the spa-
tial discretization, cellular automata are fundamentally different from the Monte Carlo
method since they perform a simultaneous rather than a sequential state variable update,
and can involve a huge variety of possible transformation rules.

Chapter 12 deals with kinetic Monte Carlo simulations. The original Potts Monte
Carlo model (Chapter 6) was introduced to simulate ensemble averages on the basis of
nearest-neighbor interactions, but with a Hamiltonian which only accounts for interactions
among dissimilar neighbors (equation (6.36)). Its application in the field of mesoscale
microstructure simulation was made possible through the introduction of generalized spins
and kinetic measures (Potts 1952; Wu 1982; Fernandez 1989; Hu and Hsiao 1992; Bassler
and Zia 1994; Chen and Hu 1994; Chen et al. 1995; Janke and Villanova 1995).

For predicting ripening phenomena, particularly grain growth, the Potts models used
in computational materials science take a quasi-microscopic metallurgical view where the
crystal interior consists of a number of lattice portions of equal size with a specific energy
content and/or orientation. While regions with identical values of their state variables
form homogeneous crystals, the grain boundaries are identified as the interfaces between
different types of such regions. According to the interaction term that occurs in the delta-
type Hamiltonian each interface segment has a finite energy. Interface curvature leads to
increased wall energy on the convex side and thus to wall migration (Anderson et al.
1984; Srolovitz et al. 1984; Srolovitz et al. 1986; Grest et al. 1988; Srolovitz et al. 1988;
Müller-Krumbhaar 1989; Rollett et al. 1989; Rollett et al. 1989; Doherty et al. 1990;
Glazier et al. 1990; Tavernier and Szpunar 1991b; Tavernier and Szpunar 1991a; Rollett
et al. 1992; Peczak 1995; Murch and Zhang 1995; Desplat et al. 1996; Holm et al. 1996;
Mehnert and Klimanek 1998).

Chapter 13 is concerned with geometrical and component models of materials topol-
ogy. These are mainly used to mimic recrystallization and grain growth phenomena.
They typically construct Wigner–Seitz-type topologies for a given distribution of starting
points in a spatial lattice. The starting points can be defined as nucleation sites. Geo-
metrical models of growth topology do not include the true dynamics of lattice defects.
However, they allow a fast prediction of simple recrystallization and growth textures and
microstructures. For site-saturated and spatially random nucleation conditions, geomet-
rical models predict Voronoi structures (Frost and Thompson 1987a; Frost et al. 1990;
Juul Jensen 1992; Juul Jensen 1997a).

Chapter 14 deals with topological network or vertex models. These methods provide
the main tools for simulating boundary dynamics, i.e. they predict the structural evo-
lution of dislocation networks as well as subgrain and large-angle grain structures. The
boundaries are approximated as straight or curved line defects. They can rearrange them-
selves according to the influence of external loads, interface curvature, and gradients in the
stored internal energy across the interface, giving rise to forces that act perpendicularly
on each portion of interface.

The resulting boundary movements are usually performed according to the resulting
net force and the boundary mobility. The underlying law of motion usually consists
in viscous flow rules amounting to using a linearized rate equation. The solutions are
obtained by using finite difference schemes. The network models usually consider line
tension equilibrium at the triple points and the preservation of line connectivity (Weaire
and Kermode 1983; Scavuzzo et al. 1990; Humphreys 1992a; Humphreys 1992b; Draheim
and Gottstein 1996b; Svoboda 1996a; Svoboda 1996b; Adams et al. 1997).



Chapter 9

Discrete Dislocation Statics

and Dynamics

9.1 Introduction

The numerical simulation of three-dimensional internal stress fields arising from discrete
dislocation arrangements is a pertinent tool in formulating advanced flow stress theory.
Together with the kinetic parameters of plastic deformation and additional external and
internal stress sources arising from the presence of lattice defects other than dislocations,
the internal stress fields enter the kinetic law of crystal plasticity which relates the strain
rate to the stress state and to microstructure (Kocks 1970; Kocks et al. 1975):

γ̇ = f (σ, σ̇, T, S1, S2, ..., Sn) (9.1)

In this scalar presentation γ̇ is the strain rate accomplished by a single slip system being
controlled by a single stress component σ, the rate of stress change σ̇, the temperature
T , and the microstructure parameters S1, S2, ..., Sn which define the actual state of
the material. This kinetic part of the constitutive laws of crystal plasticity represents a
scalar, path-independent, mechanical equation of state, i.e. its result is determined by the
values of state variables. Summarizing the motion of the individual dislocations it can be
expressed as a tensorial rate equation (Kocks et al. 1975; Mecking and Kocks 1981):

ε̇ij = f (σij , σ̇ij , T, S1, S2, ..., Sn) (9.2)

In these kinematic approaches the time acts as an independent variable and the disloca-
tion density as a state variable. Most approximations using equation (9.2) incorporate
microstructure via the Taylor state equation, which relates stress to the square root of
the global dislocation density. However, the general application of this equation can lead
to inaccurate stress predictions if the dislocation arrangements are neglected. For con-
sideration of dislocation structures especially numerical simulations of dislocation stress
fields using three-dimensional dislocation statics represent a helpful diagnostic means of
testing, complementing, and improving analytical approaches to the kinetic law of crystal
plasticity.
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In addition to these applications in the field of dislocation statics, the internal stresses
are required for calculating dislocation structure evolution during plastic deformation.
This subject falls into the domain of dislocation dynamics. It represents an essential
ingredient in formulating the structural evolution law. The structural evolution law de-
pends on the microstructural path. It is in the classical phenomenological models usually
statistically described by a work-hardening term which scales with the square root of
the dislocation density, and a dynamic recovery term which is proportional to the global
dislocation density.

In differential form the structure change equations constitute, together with the kinetic
equation of state, a set of coupled differential equations (Kocks 1966; Kocks et al. 1975;
Argon 1975; Mecking and Kocks 1981; Estrin and Mecking 1984; Estrin and Kubin 1986;
Kocks 1987; Blum 1993).

dS1 = f1 (σij , σ̇ij , ε, T, S1, S2, ..., Sn) dt

dS2 = f2 (σij , σ̇ij , ε, T, S1, S2, ..., Sn) dt

...

dSn = fn (σij , σ̇ij , ε, T, S1, S2, ..., Sn) dt

(9.3)

While the kinematic approaches have matured to a group of models which allow one
to predict the stress–strain behavior of pure and commercial polycrystalline metals on an
average statistical basis by using a small number of phenomenological parameters which
can be fitted from experiment, discrete dislocation simulations focus on such aspects of
plasticity where the spatial arrangement of the dislocations is of particular relevance. For
this reason discrete simulations of crystal plasticity consider both time and the actual
position of each dislocation as independent variables.

This section reviews the basic techniques required for conducting time- and space-
discretized simulations of dislocation dynamics in two and three dimensions.

The state equation in these approaches usually amounts to expressing the local stress
and strain fields in terms of the local displacement gradients generated by the dislocations
according to Hooke’s law. Consequently, this section starts with a general introduction
to isotropic and anisotropic linear elasticity theory. On this basis the field equations for
infinite dislocations (two dimensions) and dislocation segments (three dimensions) will be
derived.

Structure evolution, i.e. the dynamics of defect motion, is typically incorporated by
using a phenomenological viscous law, strain-rate sensitive (viscoplastic) law, or Newton’s
law of motion for each portion of dislocation. Simulating the motion of dislocations by
using a viscous law where the velocity is linearly proportional to the force reflects the
belief that the dislocations are in an overdamped state of glide without inertia. Thus,
the use of viscous flow laws confines corresponding dislocation simulations to regimes of
high forces (Friedel 1956; Rosenfield et al. 1968; Simmons et al. 1970; Kocks et al. 1975;
Weertman and Weertman 1980; Aifantis and Hirth 1983; Nadgornyi 1988; Suzuki 1991).

In contrast, the description of dislocation motion by using Newtonian dynamics, where
dislocation inertia is incorporated via its effective mass, provides a more rigorous treat-
ment of the dislocation movement (Granato and Lücke 1956; Granato et al. 1964; Gillis
and Kratochvil 1970; Rönnpagel et al. 1993; Raabe 1998a).

The studies in this field can be classified into two-dimensional and three-dimensional
calculations. Two-dimensional simulations can be carried out either with flexible disloca-
tions which are constrained to lie in their glide plane (Foreman and Makin 1966; Bacon
et al. 1973; Scattergood and Bacon 1975; Arsenault 1986; Rönnpagel 1987; Rönnpagel
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et al. 1993; Mohles and Rönnpagel 1996; Mohles 1996), or with infinite straight dis-
locations which can leave their glide plane (Neumann 1971; Lépinoux and Kubin 1987;
Ghoniem and Amodeo 1989; Gulluoglu et al. 1989; Amodeo 1990; Gulluoglu et al. 1990;
Gulluoglu and Hartley 1992; Gulluoglu and Hartley 1993; Lubarda et al. 1993; Raabe
and Roters 1995; van der Giessen and Needleman 1995; Wang and LeSar 1995; Roters
and Raabe 1996; Roters et al. 1996; Raabe et al. 1996; Zacharopoulos et al. 1997).
While the first approach provides a top view into the glide plane, the second one provides
a lateral perspective parallel to the dislocation tangent. Three-dimensional simulations
are independent of such geometrical constraints (Demir et al. 1992; Devincre and Condat
1992; Kubin et al. 1992; Kubin 1993a; Devincre and Kubin 1994; Rhee et al. 1994; Raabe
1995a; Raabe 1995b; Devincre 1996; Fivel et al. 1996; Hirth 1996; Raabe 1996a; Raabe
1996b; Rönnpagel 1996; Raabe 1998a).

9.2 Linear Elasticity Theory for Crystal Plasticity

9.2.1 Introduction

This section reviews the theoretical backbone of linear continuum elasticity theory as
required in formulating dislocation field approaches. The interaction between the dis-
locations is transmitted by the constituent parts of the material. In this approach the
material is described as an isotropic or anisotropic linear elastic unbounded homogeneous
continuum in which the dislocations are embedded as elementary carriers of displacement
and stress. This statement already implies some essentials associated with the math-
ematical treatment of dislocations, namely, that they are outside their cores simulated
as line defects in the framework of linear elasticity. Large strains occurring close to the
dislocation cores are naturally excluded from the elastic treatment. For this purpose an
inner cut-off radius in the order of the magnitude of the Burgers vector is used.

The dislocations are generally treated as stationary defects, i.e. their displacement
field does not depend on time. This implies that for all derivations the time-independent
Green’s function may be used.

While in the pioneering studies (Devincre and Condat 1992; Kubin 1993b; Raabe
1996a) the field equations for the isotropic elastic case were used for three-dimensional
simulations, this chapter presents the general anisotropic field approach (Raabe 1996b;
Raabe 1998a). For this reason the following sections recapitulate the elementary concepts
of isotropic and anisotropic linear elastic theory. On this basis the field equations for both
infinite dislocations (two-dimensional) and finite dislocation segments (three-dimensional)
will be developed in Section 9.3.

In what follows the notation x1, x2, x3 will be used in place of x, y, z for the Cartesian
coordinate system. This notation has the particular advantage that in combination with
Einstein’s summation convention it permits general results to be expressed and manipu-
lated in a concise manner. The summation convention states that any term in which the
same Latin suffix occurs twice stands for the sum of all the terms obtained by giving
this suffix each of its possible values. For instance, the trace of the strain tensor can be
written as εii and interpreted as

εii ≡
3∑

i=1

εii = ε11 + ε22 + ε33 (9.4)
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For the trace of the displacement gradient tensor the same applies:

∂ui

∂xi
≡

3∑

i=1

∂ui

∂xi
=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
(9.5)

On the other hand, certain results are more conveniently expressed in vector notation
(bold symbols, e.g. u) or as components (suffices 1, 2, 3, e.g. u1, u2, u3). In lengthy terms,
partial spatial derivatives will be expressed by the abbreviation v1,2 instead of ∂v1/∂x2.

9.2.2 General Concepts of Elasticity Theory

9.2.2.1 The Displacement Field

In a solid unstrained body the position of each infinitesimal volume element1 can be de-
scribed by three Cartesian coordinates x1, x2 and x3. In a strained condition the position
of the volume element considered will shift to a new site described by x1 + u1, x2 + u2,
x3 + u3, where the triple u1, u2, u3 is referred to as displacement parallel to the x1, x2,
and x3 axis, respectively.

The displacement field corresponds to the values of u1, u2 and u3 at every coordinate
x1, x2, x3 within the material. In general, the displacement is a vector field which depends
on all three spatial variables. It maps every point of the body from its position in the
undeformed to its position in the deformed state. For instance, translations represent
trivial examples of displacement, namely, that of a rigid-body motion where u1, u2, and
u3 are constants (Love 1892; Volterra 1907; Sokolnikoff 1956; Kröner 1958b; Kröner 1965;
Eschenauer and Schnell 1993).

9.2.2.2 The Strain Field

Let the corners of a volume element which is much larger than the atomic volume be given
by the coordinates (x1, x2, x3), (x1 + ∆x1, x2, x3), (x1, x2 + ∆x2, x3) and so on. During
straining, the displacement of the corner with the coordinates (x1, x2, x3) will amount
to (u1, u2, u3). Since the displacement is a function of space it can be different for each
corner. Using a Taylor expansion the displacements can be described by




u1 + ∂u1

∂x1
δx1 + ∂u1

∂x2
δx2 + ∂u1

∂x3
δx3

u2 + ∂u2

∂x1
δx1 + ∂u2

∂x2
δx2 + ∂u2

∂x3
δx3

u3 + ∂u3

∂x1
δx1 + ∂u3

∂x2
δx2 + ∂u3

∂x3
δx3


 (9.6)

Using concise suffix notation equation (9.6) can be rewritten

(u1 + u1,j δxj , u2 + u2,j δxj , u3 + u3,j δxj ) (9.7)

where the summation convention is implied. The abbreviation u1,2 refers to the spatial
derivative ∂u1/∂x2. These partial derivatives represent the components of the displace-
ment gradient tensor ∂ui/∂xj = ui,j . In linear elasticity theory only situations in which

1Since for small displacements the elastic bulk modulus is proportional to the spatial derivative of
the interatomic forces, any cluster of lattice atoms can be chosen as an infinitesimal volume element.
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the derivatives ∂ui/∂xj are small compared with 1 are treated. If the extension of the con-
sidered volume element ∆x1, ∆x2, ∆x3 is sufficiently small, the displacement described
by equation (9.6) can be written




u1 + ∂u1

∂x1
∆x1 + ∂u1

∂x2
∆x2 + ∂u1

∂x3
∆x3

u2 + ∂u2

∂x1
∆x1 + ∂u2

∂x2
∆x2 + ∂u2

∂x3
∆x3

u3 + ∂u3

∂x1
∆x1 + ∂u3

∂x2
∆x2 + ∂u3

∂x3
∆x3


 (9.8)

Using suffix notation equation (9.8) is found to be

(u1 + u1,j ∆xj , u2 + u2,j ∆xj , u3 + u3,j ∆xj ) (9.9)

For the corner of the volume element with the coordinates (x1, x2 + ∆x2, x3 + ∆x3)
equation (9.8) reduces to

(
u1 +

∂u1

∂x2
∆x2 +

∂u1

∂x3
∆x3 , u2 +

∂u2

∂x2
∆x2 +

∂u2

∂x3
∆x3 ,

u3 +
∂u3

∂x2
∆x2 +

∂u3

∂x3
∆x3

)
(9.10)

Similar displacement expressions can be obtained for the other corners of the volume
element being considered.

For situations where all of the derivatives except those denoted by ∂u1/∂x1, ∂u2/∂x2,
and ∂u3/∂x3 are equal to zero it is straightforward to see that a rectangular volume
element preserves its shape. In such a case the considered portion of material merely
undergoes positive or negative elongation parallel to its edges. For the x1 direction the
elongation amounts to (∂u1/∂x1) ∆x1. Hence, the elongation per unit length amounts
to (∂u1/∂x1) · (∆x1)/(∆x1) = ∂u1/∂x1. This expression is referred to as strain in the
x1 direction and is indicated by ε11. Positive values are defined as tensile strains and
negative ones as compressive strains. The sum of these strains parallel to x1, x2, and
x3 defines the dilatation, which equals the change in volume per unit volume associated
with a given strain field, i.e. εii = ε11 + ε22 + ε33 = div u, where div is the operator
∂/∂x1 + ∂/∂x2 + ∂/∂x3. In case of a nonzero dilatation the strain components describe
the change in both shape and size. The situation is different when each of the derivatives
denoted by ∂u1/∂x1, ∂u2/∂x2, ∂u3/∂x3 is zero, but the others are not. In such cases the
considered initial rectangular volume element is no longer preserved but can both rotate
and assume a rhombic shape. A single component of the displacement gradient tensor, for
instance ∂u2/∂x1, denotes the angle by which a line originally in the x1 direction rotates
towards the x2 axis during deformation. However, the rotation of an arbitrary boundary
line of a small volume element does not necessarily imply that the material is deformed.
One could rotate the boundary line simply by rotating the other boundaries accordingly.
Such an operation would leave the body undeformed and is therefore referred to as rigid-
body rotation. However, if different boundary lines rotate by different angles the volume
element undergoes both deformation and rigid-body rotation. By subtracting the rotation
components from the displacement gradients one obtains the elements which describe the
shape changes. These components are denoted as shear strains 1

2
(∂u1/∂x2 + ∂u2/∂x1),

1
2

(∂u1/∂x3 + ∂u3/∂x1), and 1
2

(∂u2/∂x3 + ∂u3/∂x2). They describe half the angular
change between mutually orthogonal lines which were initially parallel to each other. In
engineering terms one often encounters the so-called technical strain γij which is defined
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by γij = 2 εij . However, this quantity does not represent a tensor component and will
not be used in what follows.

From the above, it becomes clear that a deformation state is entirely characterized by
the displacement vector field ui. However, this quantity is an inconvenient representation
of deformation since it does not naturally separate shape changes from rigid-body rota-
tions or volume changes. For this purpose the displacement gradient tensor ui,j , which in
the general case still contains the strain tensor εij (tensile/compressive and shear compo-
nents) and the rigid-body rotation ωij , seems more appropriate if adequately dismantled.
Simple geometrical considerations show that the former portion corresponds to the sym-
metric part of the displacement gradient tensor and the latter one to its antisymmetric
(skew symmetric) part:



u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3


 =

1

2




2u1,1 u1,2 + u2,1 u1,3 + u3,1

u2,1 + u1,2 2u2,2 u2,3 + u3,2

u3,1 + u1,3 u3,2 + u2,3 2u3,3




+
1

2




0 u1,2 − u2,1 u1,3 − u3,1

u2,1 − u1,2 0 u2,3 − u3,2

u3,1 − u1,3 u3,2 − u2,3 0
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Using suffix notation this can be concisely rewritten as

ui,j = εij + ωij =
1

2

(
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∂xj
+
∂uj

∂xi

)
+

1

2

(
∂ui

∂xj
− ∂uj
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)
(9.12)

From the linear decomposition of the displacement gradient tensor it is evident that the
equivalences εij = εji and ωij = −ωji apply.

Since the trace elements of the antisymmetric part of the displacement gradient ten-
sor are by definition equal to zero, only three independent components remain. These
represent small positive rotations about the axes perpendicular to the displacements from
which they are derived, i.e. ω23 = ωx1 denotes a rotation about the x1 axis, ω13 = ωx2

about the x2 axis, and ω12 = ωx3 about the x3 axis. By using the totally antisymmetric
Levi–Civita operator ǫijk, the components of which are defined to be 1 if the suffices are
in cyclic order, −1 if they are in reverse cyclic order and 0 if any two suffices are the same,
the three rotations can be compactly written as

ωxk
=

1

2

(
ǫijk

∂ui

∂xj

)
(9.13)

Summarizing the three rotation components as a vector one obtains

ω =
1

2
curl u =

1

2
∇ × u (9.14)

where ∇ denotes the operator ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) and × the vector product.

9.2.2.3 The Stress Field

The introduction of the traction vector serves as a starting point for deriving the stress
tensor. The traction is defined by

T = lim
∆A→0

(
∆F

∆A

)
=

dF

dA
(9.15)
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where T denotes the traction vector, A the area, and F the externally imposed force
vector. In suffix notation the traction can be written

Ti = lim
∆A→0

(
∆Fi

∆A

)
=

dFi

dA
(9.16)

Since the traction vector depends on the inclination of the area element considered, it is
pertinent to look for a more general form to describe the effect of external forces on the
material. Such a description can be found by considering the traction vectors of three
orthogonal sections, the unit normal vectors of which are denoted by n1, n2, n3:

Tj = σij ni (9.17)

Thus, by definition of equation (9.17), the stress σij is a tensor field which connects T to
n at any point within the material. Equation (9.17) is referred to as the Cauchy stress
formula.

The components σij with i = j give the respective force component along the positive
xj axis acting through the area element having its normal along the same direction. They
are referred to as normal stresses. The components σij with i 6= j give the corresponding
two orthogonal force components acting in the same area element along the two respec-
tive positive xj axes, where i 6= j. They are referred to as shear stresses. Considering
momentum equilibrium under static conditions one obtains σij = σji. By solving the
eigenvalue problem

| σij − δijσ |= σ3 − I1 σ
2 + I2 σ − I3 = 0 (9.18)

where δij is the Kronecker symbol, and I1, I2, I3 the invariants of the stress state, one
obtains the principal stresses σ = σ1, σ2, σ3. The principal axes are the eigenvectors
associated with this stress tensor. The invariants amount to

I1 = σii = σ11 + σ22 + σ33

= σ1 + σ2 + σ3

I2 =
1

2
(σiiσjj − σijσij) = σ11σ22 − σ2

12 + σ22σ33 − σ2
23 + σ11σ33 − σ2

13

= σ1 σ2 + σ1 σ3 + σ2 σ3 =

∣∣∣∣
σ11 σ12

σ12 σ22

∣∣∣∣ +
∣∣∣∣
σ22 σ23

σ23 σ33

∣∣∣∣ +
∣∣∣∣
σ11 σ13

σ13 σ33

∣∣∣∣

I3 = det (σij) = σ11σ22σ33 + 2σ12σ13σ23 − σ11σ
2
23 − σ22σ

2
13 − σ33σ

2
12

= σ1 σ2 σ3 =

∣∣∣∣∣∣

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

∣∣∣∣∣∣

(9.19)

Since conservative dislocation motion is practically unaffected by the hydrostatic stress, it
is pertinent to dismantle a given static stress state into its deviatoric and its hydrostatic
portions. The latter contribution is given by

σh =
1

3
σii =

1

3
(σ11 + σ22 + σ33 ) =

1

3
I1 (9.20)
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The deviatoric stress tensor can then be written

σd
ij = σij − δij σ

h =



σ11 − σh σ12 σ13

σ21 σ22 − σh σ23

σ31 σ32 σ33 − σh


 = Sij

=



S11 S12 S13

S21 S22 S23

S31 S32 S33


 =



S11 σ12 σ13

σ21 S22 σ23

σ31 σ32 S33


 (9.21)

The operation of adding or subtracting hydrostatic contributions to or from the deviator
corresponds to a shift of the Mohr circle parallel to the abscissa or to the generation of
a closed stress surface which is a hypersurface in stress space. Since the first invariant of
the stress deviator is equal to zero, the characteristic polynom reduces to

| σij − σh − δij σ |= σ3 + J2 σd − J3 = 0 (9.22)

where J2 and J3 are the remaining two invariants of the deviator and σ= S1, S2, S3 the
corresponding principal stresses (von Mises 1913; Westergaard 1920; von Mises 1928;
Reuss 1930; Sokolnikoff 1956). The invariants of the stress deviator are

J1 = Sii = 0

J2 =
1

2
(Sij Sij) =

1

2

(
S2

11 + S2
22 + S2

33

)
+ σ2

12 + σ2
23 + σ2

13

=
1

2

(
S2

1 S
2
2 S

2
3

)
=

1

6

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2]+ σ2
12 + σ2

23 + σ2
13

J3 = det (Sij) =
1

3
Sij Sjk Ski = S1 + S2 + S3 =

∣∣∣∣∣∣

S11 S12 S13

S12 S22 S23

S13 S23 S33

∣∣∣∣∣∣
=

∣∣∣∣∣∣

S11 σ12 σ13

σ12 S22 σ23

σ13 σ23 S33

∣∣∣∣∣∣
(9.23)

where Sij are the components and S1, S1, and S3 the principal stresses of the deviator.

9.2.3 Equilibrium Equations

For deriving the differential equations of equilibrium one has to apply Newton’s second
law to a small rectangular volume element, δx1δx2δx3, under externally imposed forces
F and body forces P acting on it2. It is assumed that the external forces may vary with
position so that they can be dissimilar on opposite faces of the volume element. Using a
Taylor expansion for the variation of stress as a function of position and Newton’s second
law gives the dynamic equations of equilibrium

m
∂2u1

∂t2
=

(
σ11 +

∂σ11

∂x1
δx1 − σ11

)
δx2δx3 +

(
σ12 +

∂σ12

∂x2
δx2 − σ12

)
δx1δx3

+

(
σ13 +

∂σ13

∂x3
δx3 − σ13

)
δx1δx2 + P1 δx1δx2δx3

2A body force is one that acts directly on every particle of the body, rather than being applied by
tractions at its boundaries and transmitted through the various particles by means of internal stresses.
Common examples of body forces are forces due to gravity and centrifugal forces.
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m
∂2u2

∂t2
=

(
σ22 +

∂σ22

∂x2
δx2 − σ22

)
δx1δx3 +

(
σ21 +

∂σ21

∂x1
δx1 − σ21

)
δx2δx3

+

(
σ23 +

∂σ23

∂x3
δx3 − σ23

)
δx2δx1 + P2 δx1δx2δx3

m
∂2u3

∂t2
=

(
σ33 +

∂σ33

∂x3
δx3 − σ33

)
δx1δx2 +

(
σ31 +

∂σ31

∂x1
δx1 − σ31

)
δx3δx2

+

(
σ32 +

∂σ32

∂x2
δx2 − σ32

)
δx3δx1 + P3 δx1δx2δx3 (9.24)

where u is the displacement vector, t the time, P the body force vector, ∂2u/∂t2 the
acceleration, and m the mass. Hence, dividing by (δx1δx2δx3) and proceeding to the
limit where these infinitesimals tend to zero, one obtains for the static equilibrium

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
+ P1 = 0

∂σ22

∂x2
+
∂σ21

∂x1
+
∂σ23

∂x3
+ P2 = 0

∂σ33

∂x3
+
∂σ31

∂x1
+
∂σ32

∂x2
+ P1 = 0

(9.25)

Using the Einstein convention, equation (9.25) can be written

∂σij

∂xj
+ Pi = σij,j + Pi = 0 (9.26)

Equation (9.26) represents the basic field equation to be satisfied for any stress field in a
volume element in static equilibrium. In other words the divergence of the stress tensor
div(σij) must vanish in the absence of body forces. This equation is sometimes referred
to as the condition for translational equilibrium whilst the expression σij = σji denotes
rotational equilibrium.

9.2.4 Compatibility Equations

Strict compatibility is achieved when the strains can be expressed in terms of a single-
valued, continuously differentiable displacement. This condition implies that any integra-
tion of strain (displacement gradient) around an infinitesimal closed loop is equal to zero
and independent of the path so that gaps and overlaps are avoided. To put the matter
formally, one may write ∮

∂u

∂S
dS = 0 (9.27)

It should be mentioned that this condition is not fulfilled in the case of dislocated elastic
media (see Section 9.2.7).

The definition of strain as expressed by equation (9.12) can be regarded as a set of six
independent differential equations for the displacement components ui. Although there
exist only three independent displacement components, an arbitrary choice of the strains
does not, in general, allow the strain–displacement relations expressed by equation (9.12)
to be integrated. A single-valued, continuously differentiable displacement vector is only
obtained when the strains satisfy the six independent compatibility conditions,

ǫpmk ǫqnj εkj,nm = 0 (9.28)
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9.2.5 Hooke’s Law — the Linear Relationship between Stress

and Strain

For small imposed forces the time-independent reversible response of the material which
is quantified by the displacement field can be linearly related to the force. The strains
expressed by the symmetric part of the displacement gradient tensor then describe a linear
elastic shape change which is proportional to the stress (equation (9.29)). This relation
is referred to as Hooke’s law. Experience substantiates its validity for a broad class of
materials and stress–strain regimes of practical relevance:

εij = Sijkl σkl σij = Cijkl εkl (9.29)

These expressions hold for the general anisotropic elastic case, where a component of
the strain tensor (stress tensor) can depend on each of the stress components (strain
components). The proportionality or elastic constants then consist of the four-rank tensors
Sijkl, or Cijkl. The former quantities are referred to as elastic compliances and the latter
ones as elastic stiffnesses. For uniaxial tensile deformation the stiffness represents the
stress that is required to yield an elastic elongation of 100%, which of course is not
realistic because of plastic deformation or material failure. The general form of Hooke’s
law accounts for the anisotropy imposed by the interatomic bond and the crystalline
nature of matter. Although the values of Sijkl and Cijkl can depend slightly on the
experimental conditions (adiabatic or isothermal), they are used as constants throughout
this study3. The stiffnesses and compliances are related by

Cijmn Smnpq =
1

2
(δipδjq + δiqδjp) (9.30)

Exploiting the symmetries εij = εji and σij = σji allows one to reduce the number of
independent elastic constants from 81 to 36.

Cijkl = Cijlk Cijkl = Cjikl

Sijkl = Sijlk Sijkl = Sjikl

(9.31)

Since classical elasticity is based on the assumption of reversible displacements, the only
work done is due to elastic deformation. This fact defines additional thermodynamic
constraints on the elastic constants:

σij = Cijkl εkl =
∂W

∂εij
(9.32)

which implies

Cijkl =
∂2W

∂εij ∂εkl
(9.33)

where W is the Helmholtz free energy density, which is a path-independent state function.
From this condition it follows that

Cijkl = Cklij (9.34)

3However, the temperature dependence of the elastic constants is considered in the dislocation
simulations.
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These additional relations make it possible to reduce the number of independent elastic
constants from 36 to 21. For materials obeying Hooke’s law these symmetry conditions
allow one to express equations (9.24)–(9.26) for the dynamic case more conveniently as

Cijkl uk,lj + Pi = ρ
∂2ui

∂t2
(9.35)

where ρ is the mass density, and for the static case as

Cijkl uk,lj + Pi = 0 (9.36)

Accordingly, the stresses are given by

σij = Cijkl uk,l (9.37)

For simplifying the complicated tensor notation, which requires up to four indices, Voigt
(1910) suggested the so-called matrix notation. This notation is a transformation rule by
which index pairs ij are mapped into a single index m according to the following scheme:

ij 11 22 33 23 32 13 31 12 21
m 1 2 3 4 4 5 5 6 6

(9.38)

By employing this transformation convention one can define the symmetric 6 × 6 matrices
C′

mn and S′
mn. However, the following rules must be considered.

C′
mn = Cijkl for 1 ≤ m,n ≤ 6

S′
mn =





Sijkl : if both m and n = 1, 2, 3

2Sijkl : if either m or n but not both = 1, 2, 3

4Sijkl : if both m and n = 4, 5, 6

(9.39)

When using the matrix notation Cmn and Smn it must be considered that for coordinate
transformation or invariant determination it is more useful to use the stiffnesses and
compliances in their original tensorial form Cijkl and Sijkl. However, for conducting
matrix inversions it is easier to use the notation suggested as equation (9.38) (Steeds
1973; Bacon et al. 1979a). For cubic crystal symmetry the reference coordinate system is
chosen to coincide with the crystal cube axes [100], [010], [001]. The stiffness tensor then
reduces to the simplest possible form:

Ccub
ijkl =




C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0

0 0 0 C2323 0 0
0 0 0 0 C2323 0
0 0 0 0 0 C2323




(9.40)

In matrix notation this can be rewritten

Ccub
mn =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




(9.41)
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For hexagonal materials the stiffness tensor is referred to two axes in the basal plane and
a third one normal to it. Hexagonal metals are isotropic in their basal plane, so that the
stiffness tensor is invariant with respect to the orientation of the coordinate basis vectors
in the basal plane (Steeds 1973):

Chex
ijkl =




C1111 C1122 C1133 0 0 0
C1122 C1111 C1133 0 0 0
C1133 C1133 C3333 0 0 0

0 0 0 C2323 0 0
0 0 0 0 C2323 0
0 0 0 0 0 1

2
(C1111 −C1122)




(9.42)

In matrix notation it can be rewritten

Chex
mn =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)




(9.43)

Whilst in cubic crystals hence only three independent elastic constants remain, i.e. C11, C12,
and C44, in the hexagonal lattice five constants C11, C12, C13, C33, and C44 must be con-
sidered. A more detailed overview on the elastic constants required for the various crystal
symmetries was given by Steeds (1973) and Bacon et al. (1979). In the case of cubic
symmetry, the inversion of the stiffnesses to the compliances and vice versa leads to the
relations

C11 =
(S11 + S12)

(S11 − S12) (S11 + 2S12)

C12 =
−S12

(S11 − S12) (S11 + 2S12)

C44 =
1

S44

(9.44)

S11 =
(C11 + C12)

(C11 − C12) (C11 + 2C12)

S12 =
−C12

(C11 − C12) (C11 + 2C12)

S44 =
1

C44

(9.45)

Before using general anisotropic elastic field equations in three-dimensional numerical
simulations of plasticity, it is useful to test the predictions in the isotropic limit. A material
is defined as elastically isotropic if the elastic properties are completely independent of
direction. In the case of cubic crystal symmetry this is realized when C44 = (C11−C12) / 2.
The deviation from isotropy can in the cubic lattice be quantified by the so-called Zener
anisotropy ratio Az (Hirth and Lothe 1968):

Az =
2C44

C11 − C12
(9.46)
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Table 9.1: Elastic stiffness constants for some cubic metals.

Element Structure C1111 [GPa] C1122 [GPa] C2323 [GPa] Az ν

Ag fcc 12.40 9.34 4.61 3.013 0.43
Al fcc 10.82 6.13 2.85 1.215 0.36
Au fcc 18.60 15.70 4.20 2.987 0.46
Cr bcc 35.00 5.78 10.10 0.691 0.14
Cu fcc 16.84 12.14 7.54 3.209 0.42
Fe bcc 24.20 14.65 11.20 2.346 0.38
Li bcc 1.48 1.25 1.08 9.391 0.46

Indeed, most metals deviate considerably from the isotropic limit. Tungsten has the
smallest deviation with a Zener ratio of Az = 1 and lithium the largest one with a ratio of
Az = 9.39 (Table 9.1). Detailed values of the elastic constants and Zener ratios of many
materials were given by Steeds (1973) and Bacon et al. (1979). The two elastic constants
of isotropic materials are often expressed in terms of µ and ν, which are defined by

µ = C44 = C2323 =
1

2
(C11 − C12) (9.47)

and

ν =
C12

C11 + C12
=

C1122

C1111 + C1122
= − S12

S11
= − S1122

S1111
(9.48)

where µ is often referred to as the shear modulus or modulus of rigidity and ν as Poisson’s
ratio. The elastic modulus E, which relates elastic stress and strain in the case of tensile
deformation, can be expressed in terms of µ and ν:

E = 2µ (1 + ν) . (9.49)

For relating the mean hydrostatic stress to dilatation one additionally defines the bulk
modulus Bel (Hirth and Lothe 1968).

Bel =

(
1

3

)
σkk

εii
= λ+

2

3
µ =

E

3(1 − 2 ν)
(9.50)

In addition to these constants the Lamé constants µ (see definition above) and λ are
common as well:

λ =
2µ ν

1 − 2 ν
(9.51)

In terms of Lamé’s constants the elastic modulus is given by

E =
µ (3λ+ 2µ)

µ+ λ
(9.52)

The use of Lamé’s constants allows one to give a compact tensorial expression of the
elastic constants and thus of Hooke’s law in the isotropic limit:

Cijkl = λ δijδkl + µ (δikδjl + δilδjk) (9.53)

σij = λ εkk δij + 2µ εij (9.54)
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The inverse form can be written

εij =
1

2µ
σij − λ

2µ (3λ+ 2µ)
σkk δij (9.55)

For presenting strains and stresses associated with dislocations in the isotropic limit, the
constant ν is often used instead of λ. The elastic constants are then given by

Cijkl = µ

(
δikδjl +

2 ν

1 − 2 ν
δijδkl

)
(9.56)

Accordingly the compliances can be written

Slnpq =
1

2µ

(
δlpδnq − ν

1 + ν
δlnδpq

)
(9.57)

Using equations (9.56) and (9.57) Hooke’s law can be written

σij = 2µ

(
εij +

ν

1 − 2 ν
δij εkk

)
(9.58)

or in its inverse form

εij =
1

2µ

(
σij − ν

1 + ν
δij σkk

)
(9.59)

The equations of equilibrium can also be expressed in a compact form by using µ and ν:

ǫikp ǫjmq σpq,km − ν

1 + ν
(δij σpp,kk − σpp,ij) = 0 (9.60)

Some general restrictions for the values of the elastic constants are imposed by the positive
definiteness of the strain energy density function W , namely,

C44 > 0 C11 > | C12 | C11 + 2C12 > 0 (9.61)

From these conditions it follows that

λ > 0 and − 1 < ν <
1

2
(9.62)

9.2.6 Elastic Energy

Tractions and body forces that act on the surface and interior of a small volume element
can give rise to an incremental displacement δu. Under the assumption of quasi-static
conditions, which allows equilibrium of the acting forces, the work done on the considered
volume element is given by

δW = ⊂
∫∫

S

⊃ σij δuj dSi + ⊂
∫∫∫

V

⊃ Pj δuj dV (9.63)

where P is the body force and S the surface enclosing the volume element V (Steeds
1973; Bacon et al. 1979a; Mura 1987). By employing Gauss’ divergence theorem one can
convert surface integrals into volume integrals

⊂
∫∫∫

V

⊃ Aij,k dV = ⊂
∫∫

S

⊃Aij dSk (9.64)
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where Aij is a tensor field of arbitrary rank (here of rank 2). Equation (9.63) can then
be rewritten

δW = ⊂
∫∫∫

V

⊃ (Pj δuj + σij,i δuj + σij δ uj,i ) dV (9.65)

By exploiting the conditions for static equilibrium, equation (9.26), one obtains

δW = ⊂
∫∫∫

V

⊃ σij δuj,i dV (9.66)

This equation substantiates the fact that rigid-body rotations do not contribute to the
elastic work. Owing to the symmetry of the stress tensor, σij = σji, and the antisymme-
try of the components of the displacement gradient tensor which describe the rigid-body
rotation, ωij = −ωji, the corresponding sum of these products will always balance. Con-
sidering an infinitesimal volume element, the work per volume can be written

δW = σij δεij (9.67)

With the relation between stress and strain restricted to a linear one, the elastic potential,
i.e. the elastic strain energy per volume, can be derived by inserting Hooke’s law:

W =
1

2
σij εij =

1

2
Cijkl εij εkl (9.68)

9.2.7 Green’s Tensor Function in Elasticity Theory

Green’s functions represent a group of useful tools in solving partial differential equations.
However, they can also be employed in solving ordinary differential equations. This can
be briefly demonstrated by the following example. The differential equation

d2x

dt2
+ ω2x = f(t) with x0 = x′

0 = 0 (9.69)

describes the oscillation of a point mass suspended by a spring which is characterized
by some given force function f(t). This force function can be dismantled into a whole
sequence of single impulses.

f(t) =

∫ ∞

0

f(t′) δ
(
t′ − t

)
dt′ (9.70)

where δ(t′ − t) is the Dirac delta function describing an infinitesimally narrow function
localized at t′, the integral of which is 1. In the next step, one solves equation (9.69), but
with the original force function f(t) replaced by the delta function δ(t′ − t); that is, one
obtains the response G(t, t′) of the system to a unit impulse at t′. Equation (9.69) can
then be rewritten

d2G(t, t′)

dt2
+ ω2G(t, t′) = δ

(
t′ − t

)
(9.71)

Finally, one obtains a solution of the original differential equation by adding up the
responses of many such small unit impulses.

x(t) =

∫ ∞

0

G(t, t′) f(t′) dt′ (9.72)
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This example demonstrates that the use of the Green’s function often makes it possible
to find a solution of a nonhomogeneous differential equation by solving the system for a
delta function on the right-hand side.

In dislocation theory the time-independent Green’s tensor function Gij(x,x
′) is used

for the integration of the differential equations of elasticity, equation (9.35). The tensor
field Gij(x,x

′) gives the displacement along the x ei axis at x in response to a delta-type
unit point force exerted parallel to the x ej axis at x′. This approach is valid for an infinite
body with homogeneous elastic properties in static equilibrium. In the present case the
Green’s tensor satisfies the conditions of translational invariance, centrosymmetry, and
reciprocity (Bacon et al. 1979).

Gij(x,x
′) = Gij(x − x

′) = Gji(x − x
′) = Gij(x

′ − x) (9.73)

For the derivatives similar relations follow:

Gij,s(x − x
′) = −Gji,s′(x − x

′) = Gij,s(x
′ − x) (9.74)

where primed subscripts denote derivatives with respect to x′ and unprimed subscripts
those to x. The same notation is used for the second derivatives,

Gij,sk(x − x
′) = −Gji,s′k′(x − x

′) = Gij,sk(x′ − x) (9.75)

Provided that the dislocation motion is uniform, the time-independent Green’s tensor
may be used for dislocation dynamics as well. In the case of non-uniform motion the
time-dependent Green’s tensor must be employed (Barnett 1996).

The Green’s tensor field and its derivatives required in dislocation theory must, for the
general anisotropic case, be evaluated by numerical techniques. However, in the isotropic
limit it can be derived analytically (de Wit 1960; Hirth and Lothe 1982; Indenbom and
Lothe 1992; Rönnpagel 1996):

Gij(x − x
′) =

1

16 π µ (1 − ν)

1

| x − x′ |

[
(3 − 4 ν) δij +

(xi − x′
i) (xj − x′

j)

(x − x′)2

]
(9.76)

As will be shown below not the Green’s tensor function itself but its spatial derivatives
are required to solve dislocation field equations. For the general anisotropic case the Nth
derivative of equation (9.76) is given by

Gij,s1,s2,...,sN
(x − x

′) =
1

8π2

∮

|z|=1

(zz)−1
ij δs1,s2,...,sN

[z(x − x
′)] dS

=
1

8π2| x − x′ |N+1

∮

|z|=1

(z)−1
ij zs1zs1 ... zsN

× δ(N)(z T ) dS (9.77)

where T is defined by x − x′ = T | x − x′ |. z is the integration variable lying in the
plane T z = 0. The second-rank symmetric matrix integrand (zz)−1

ij is the inverse of the
Christoffel stiffness matrix (zz)ij (Barnett et al. 1972). This operator with the general
form (ab)jk is defined by

(ab)jk = ai Cijkl bl (9.78)

The inverse of the symmetric stiffness matrix with the general form (aa)−1
ij is given by

(aa)−1
ij =

ǫism ǫjrw (nn)mw (nn)sr

2 ǫpgn (nn)1p (nn)2g (nn)3n
(9.79)
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Figure 9.1: A closed dislocation loop L and integration circuit C used for the Burgers vec-
tor determination, equation (9.85). S is an arbitrary surface bounded by the dislocation
line L (Volterra 1907; Mura 1963; Bacon et al. 1979).

Details of the derivation of the Green’s tensor function will be outlined in more detail in
Sections 9.3.4 and 9.3.5 when deriving the three-dimensional field equations for dislocation
segments on the basis of Brown’s theorem.

Using the above relations and the definition for Gij(x − x′), the displacement due to
a point force F can be expressed by

ui(x) = Gij(x − x
′)Fj (9.80)

The first derivative can then be written

ui,m(x) = Gij,m(x − x
′)Fj (9.81)

Following Hooke’s law and the symmetry relations, equations (9.31) and (9.34), the re-
sulting stress can then be written

σkp = Ckpim ui,m = Ckpim Gij,m(x − x
′)Fj (9.82)

Using the static equilibrium condition the governing equation for the Green’s tensor can
be derived:

CkpimGij,mp(x − x
′) + δkj δ(x − x

′) = 0 (9.83)

The general solution for the displacements expressed in terms of the Green’s function is

uj(x) = ⊂
∫∫∫

V

⊃ Gjk(x − x
′)fk(x′) dV ′ + ⊂

∫∫

S

⊃Ckpimui,m′(x′)Gkj(x − x
′) dS′

p

−⊂
∫∫

S

⊃Ckpimuk(x′)Gij,m′ (x − x
′) dS′

p (9.84)

where fk(x′) is the body force density. Equations (9.80)–(9.84) are generally valid in
anisotropic linear elastic media and are not confined to dislocation problems.

A special solution for the displacement due to a dislocation is obtained by considering
the appropriate displacement boundary conditions. By definition, L is a dislocation if for
any closed circuit C the following equation applies (see Figure 9.1):

∮

C

uj,k(x) dxk =

{
bj if C irreducibly enclosesL

0 otherwise
(9.85)
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Since the dislocation is defined by displacement boundary conditions one may set the
body force density equal to zero, so that equation (9.84) simplifies to

uj(x) = −Ckpim bk ⊂
∫∫

S

⊃Gij,m′ (x − x
′) dS′

p (9.86)

This equation is referred to as Volterra’s displacement formula (1907). The surface S
can be any surface bounded by L. The distortion field can be derived by differentiating
equation (9.86) with respect to x:

uj,s(x) = −Ckpim bk ⊂
∫∫

S

⊃Gij,m′s′(x − x
′) dS′

p (9.87)

After the application of Stokes theorem, by which a surface integral can be rendered into
a line integral, equation (9.87) reads:

uj,s(x) = −Ckpim bk ǫqps

∮

L

Gij,m(x − x
′) dx′

q (9.88)

This expression is commonly referred to as Mura’s equation (Mura 1963).

9.2.8 Airy’s Scalar Stress Function in Elasticity Theory

In field theories it can be pertinent to express vector quantities in terms of gradients of
a scalar potential (Love 1892; Sokolnikoff 1956; Schmutzer 1988; Eschenauer and Schnell
1993; Honerkamp and Römer 1993). In some theories these scalar potentials have an
obvious physical significance, for instance in gravitation theory. In elasticity theory an
equivalent method can be used, although endowed with less physical significance. This
approach allows one to express stress and displacement fields in terms of spatial deriva-
tives of scalar potentials. The latter are referred to as stress or displacement functions
(Eschenauer and Schnell 1993). In two-dimensional problems of elasticity the following
form of expressing stresses as derivatives of a potential was suggested by G.B. Airy in
1862 and is therefore referred to as the Airy stress function:

σ11 =
∂2φ

∂x2
2

σ22 =
∂2φ

∂x2
1

σ12 = − ∂2φ

∂x2 ∂x1
(9.89)

For tackling three-dimensional problems a different notation is often used, namely

σ11 =
∂2ψ

∂x2
1

σ22 =
∂2ψ

∂x2
2

σ12 =
∂2ψ

∂x1 ∂x2
. (9.90)

Equation (9.89) transforms as a Cartesian tensor. As was outlined in the preceding sec-
tions, stress and strain fields must satisfy the equations of equilibrium and compatibility
if they are to describe permissible states of elastic bodies. This condition imposes certain
constraints on the selection of stress functions. In general these constraints are expressed
by requiring that the stress functions are solutions of certain partial differential equa-
tions. This stipulation is readily demonstrated by substituting equation (9.89) into the
equilibrium equations (9.26), assuming plane strain conditions and the absence of body
forces:

σ11,1 + σ12,2 =
∂3φ

∂x2
2 ∂x1

+
∂3φ

∂x1 ∂x2
2

= 0

σ21,1 + σ22,2 =
∂3φ

∂x2
1 ∂x2

+
∂3φ

∂x2 ∂x2
1

= 0

(9.91)
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Thus, the Airy stress function automatically satisfies the equilibrium equations, provided
the body forces are equal to zero. If the body forces are not zero, they must be expressed
as conservative forces, i.e. as negative gradients of a scalar potential, so that equation
(9.89) can be cast into a generalized form. However, the constraints imposed by compat-
ibility must be included as well. By using Hooke’s law, equation (9.54), the compatibility
equations (9.28), and the Airy stress function, equation (9.89), one obtains the biharmonic
equation for plane strain conditions:

∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1 ∂x

2
2

+
∂4φ

∂x4
2

=

(
∂2

∂x2
1

+
∂2

∂x2
2

)2

φ = 0 (9.92)

Except for some well-investigated cases, the analytical solution of the biharmonic equation
is an intricate task. Thus, most modern approaches to solving it are based on representing
the underlying stress function in terms of analytic functions of the complex variable and
subsequent numerical solution.

9.3 Dislocation Statics

9.3.1 Introduction

In the preceding sections the fundamentals of linear isotropic and anisotropic elasticity
theory that are required in dislocation theory have been reviewed. In this section the basic
field equations for displacement, strain, and stress associated with infinite dislocations and
finite dislocation segments will be derived. These equations form the basis for conducting
space- and time-discretized numerical simulations of dislocation dynamics.

Two stages of dislocation field equations will be discussed. First, the field descrip-
tion of infinite dislocations in two dimensions will be derived exploiting anti-plane strain
conditions for the screw dislocation and plane strain conditions for the edge dislocation.
Second, compact tensorial three-dimensional field equations will be derived for arbitrary
finite dislocation segments.

The latter field equations make it possible to dismantle three-dimensional dislocations
into sequentially arranged, piecewise straight, dislocation segments. This approach en-
ables one to calculate the statics and dynamics associated with arbitrary three-dimensional
dislocation arrangements which are not amenable to closed analytical approaches.

For solving the various dislocation field problems one can use the equilibrium equations
(9.26), combined with the compatibility equations (9.28), or the Green’s function method,
equation (9.84). While the first two equation systems are used in the sextic approach
(Stroh 1958), the latter method is commonly referred to as the integral formalism (Bacon
et al. 1979a). Which of these methods will be used in the following depends on the
required field quantities and on existing symmetries. All field quantities are given for
both the isotropic and the general anisotropic case.

9.3.2 2D Field Equations for Infinite Dislocations in an

Isotropic Linear Elastic Medium

9.3.2.1 Edge Dislocation

The two-dimensional field equation for edge dislocations with an infinite extension of
their dislocation line can be derived by solving the compatibility equations (9.28) for
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plane strain conditions under consideration of the equilibrium equations (9.26). The
plane strain state describes a situation where all particles of a body are displaced parallel
to an arbitrary plane, and the displacements are independent of their coordinate parallel
to the plane normal. For an infinite edge dislocation with its Burgers vector parallel to
say x1 and tangent vector parallel to say x3, only one displacement component, namely
that parallel to the dislocation line, u3, is equal to zero. The two remaining displacements
are not equal to zero. However, they are independent of x3 (Hirth and Lothe 1968). To
express this matter formally, one can write

u1 = f(x1, x2) u2 = g(x1, x2) u3 = 0
∂u1

∂x3
= 0

∂u2

∂x3
= 0 (9.93)

As opposed to the derivation in Section 9.3.2.2, where the stresses of the screw dislocation
are immediately expressed in terms of its quite simple displacement field, this method is
less tractable in the case of the edge dislocation. Since the direct determination of the
displacement field of the latter defect is too complicated, the prescribed plane strain
state advocates the use of the Airy stress function, equations (9.89)–(9.91). By using the
substitution

(σ11 + σ22) = ∇φ (9.94)

the biharmonic equation (9.91) can be transformed into the harmonic Laplace equation.
A detailed description of the solution of the harmonic equation is given by Hirth and
Lothe (1968). The result for the stress function φ amounts to

φ = − µ b x2

4π (1 − ν)
ln
(
x2

1 + x2
2

)
(9.95)

The stress field of the infinite edge dislocation parallel to x3 is then obtained by employing
equation (9.89):

σ11 = − µ b

2π(1 − ν)

x2(3x
2
1 + x2

2)

(x2
1 + x2

2)
2

σ22 =
µ b

2π(1 − ν)

x2(x
2
1 − x2

2)

(x2
1 + x2

2)
2

σ12 =
µ b

2π(1 − ν)

x1(x
2
1 − x2

2)

(x2
1 + x2

2)
2

σ33 = ν(σ11 + σ22) = − µ b ν

π(1 − ν)

x2

x2
1 + x2

2

(9.96)

The strain field is readily obtained by using Hooke’s law, equation (9.54).

9.3.2.2 Screw Dislocation

The two-dimensional field equation for screw dislocations with an infinite extension of
their dislocation line can be derived by solving the equilibrium equations (9.26) under
anti-plane strain conditions. The anti-plane strain state describes a situation where all
particles of a body are displaced in a direction normal to an arbitrary plane, and the
displacements are independent of this direction. For an infinite screw dislocation with its
Burgers vector and tangent vector parallel to say x3, only one component, i.e. u3, which
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is parallel to the Burgers vector and independent of x3, appears in the displacement field
(Hirth and Lothe 1968):

u1 = 0 u2 = 0 u3 = f(x1, x2)
∂u3

∂x3
= 0 (9.97)

For the infinite homogeneous linear elastic body, Hooke’s law in the isotropic limit is given
by the expression

σij = λ εkk δij + 2µ εij (9.98)

Since all displacements except u3 are zero and u3 is independent of x3, the dilatation of
bodies in an anti-plane strain state must always be equal to zero, i.e. εkk = 0. Hooke’s
law then reduces to

σij = 2µ εij (9.99)

Inserting the above equation into the equilibrium equation in the absence of body forces,
σij,j = 0, leads to

εij,j =
1

2

∂

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
= 0 (9.100)

For the infinite screw dislocation this expression reduces to the harmonic equation

∂2u3

∂x2
1

+
∂2u3

∂x2
2

= 0 (9.101)

The solution of this expression is readily obtained by considering that the displacement u3

increases from zero to b by traversing a closed circuit about the dislocation line vector. As
a reasonable approach for expressing u3 as a function of the angle θ about the dislocation
line one can use

u3 = b

(
θ

2π

)
with θ = arctan

(
x2

x1

)
(9.102)

which is indeed a solution of the harmonic equation. By differentiating u3 with respect to
x1 and x2 one obtains the strain field and by inserting the result into equation (9.99) one
obtains the stress field of an infinite screw dislocation with its line vector being tangent
to x3:

σ13 = σ31 = −µb
2π

x2

x2
1 + x2

2

σ23 = σ32 =
µ b

2π

x1

x2
1 + x2

2

(9.103)

9.3.3 2D Field Equations for Infinite Dislocations in an

Anisotropic Linear Elastic Medium

9.3.3.1 Introduction

Explicit analytical expressions for the stress field equations in the anisotropic case can
be obtained by using the sextic approach. A detailed description of this mathematical
procedure, which is based on solving the equilibrium equations (9.26) combined with the
compatibility equations (9.28), was given by Stroh (1958), Steeds (1973), Bacon, Barnett,
and Scattergood (1979a), Mura (1987), and Indenbom and Lothe (1992).

The basic task in this eigenvalue problem is to find the roots of a sextic equation.
Relatively simple analytical solutions are available for certain cases of high symmetry,
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namely, when the dislocation line is either parallel or perpendicular to a twofold or sixfold
axis. A large number of possible solutions for real crystals were derived and thoroughly
discussed by Steeds (1973). This section presents the general field solution for the simplest
possible case, viz., for twofold symmetry.

9.3.3.2 Edge Dislocation

The coordinate system is defined in such a manner that the dislocation line points in the
negative x3 direction. Assuming that one of the axes perpendicular to the dislocation
line (−x3) is parallel to a twofold axis, and using the matrix notation given in equation
(9.38), the stiffness tensor can be written in the dislocation coordinate system:

C =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




(9.104)

For further calculations it is pertinent to introduce some abbreviations, namely,

C̄ = (C11 C22)
1/2 λ =

(
C11

C22

)1/4

φ =
1

2
arccos

(
C2

12 + 2C12 C66 − C̄2
11

2 C̄11C66

)

(9.105)
Furthermore, the solutions are confined to the case

2C66 +C12 − C̄11 > 0 (9.106)

so that φ gives a real value. Finally, it is useful to define

q2 = x2
1 + 2 x1 x2 λ cosφ+ x2

2λ
2 t2 = x2

1 − 2x1 x2 λ cosφ+ x2
2λ

2 (9.107)

Using these constraints, the equations for the displacement and stress field can then be
compactly written

u1 = − b1
4π

[
arctan

(
2x1 x2 λ sinφ

x2
1 − (λx2)2

)
+

C̄2
11 − C2

12

2 C̄2
11 sin(2φ)

ln
( q
t

) ]

− b2

4π λ C̄11 sin(2φ)

[
(C̄11 − C12) cosφ ln(qt)

− (C̄11 + C12) sinφ arctan

(
x2

1 sin(2φ)

(λ x2)2 − x2
1 cos(2φ)

) ]
(9.108)

u2 =
λ b1

4πC̄11 sin(2φ)

[
(C̄11 − C12) cosφ ln(qt)

− (C̄11 +C12) sinφ arctan

(
(λx2)

2 sin(2φ)

x2
1 − (λx2)2 cos(2φ)

) ]

− b2
4π

[
arctan

(
2 x1 x2 λ sinφ

x2
1 − (λx2)2

)
− C̄2

11 − C2
12

2 C̄2
11 sin(2φ)

ln
( q
t

) ]
(9.109)
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Switching partly to the fourth-rank tensorial form of the stiffness tensor, the stress field
associated with the infinite edge dislocation can compactly be written in tensorial notation

σij = − b1 λ (C12 − C̄11)

4π(q t)2 C̄11 C66 sinφ
·

{
Cij11

[
(C̄11 + C12 + C66) x1

2x2 + λ2C66x2
3
]
− Cij12(C12 + C̄11) x1(x

2
1 − (λx2)

2)

− Cij22

C22

[
(C2

12 + C̄11 C12 + 2C12 C66 + C̄11 C66) x
2
1x2 − C̄11 C66 λ

2 x3
2

]}

+
b2 λ (C12 − C̄11)

4π(q t)2 C̄11 C66 sinφ
·

{
Cij22

[
(C̄11 + C12 + C66)(λx2)

2 x1 +C66 x
3
1

]
− Cij12(C12 + C̄11) x2(x

2
1 − (λx2)

2)

− Cij11

C11

[
(C2

12 + C̄11 C12 + 2C12 C66 + C̄11 C66) (λx2)
2 x1 − C̄11 C66 x

3
1

]}
(9.110)

9.3.3.3 Screw Dislocation

For infinite screw dislocations the corresponding expressions are, for the displacement
field,

u3 = − b3
2π

arctan

[
(C44 C55 − C2

45)
1/2 x2

C44 x1 −C2
45 x2

]
(9.111)

and for the stress field,

σ13 = − b3
2π

(
C44 C55 − C2

45

)1/2
(

C45 x1 − C55 x2

C44 x2
1 − 2C45 x1 x2 + C55 x2

2

)

σ23 = − b3
2π

(
C44 C55 − C2

45

)1/2
(

C44 x1 − C45 x2

C44 x2
1 − 2C45 x1 x2 + C55 x2

2

) (9.112)

9.3.4 3D Field Equations for Dislocation Segments in an

Isotropic Linear Elastic Medium

Analytical calculations of displacement, strain, and stress fields associated with dislocation
arrays of low symmetry lead to very complicated expressions. For complex dislocation
structures a closed analytical treatment is thus no longer possible.

For nonetheless calculating arbitrary dislocation arrays, it is hence straightforward to
approximate real dislocation arrangements by sequences of piecewise straight segments
which are much shorter as compared with the entire dislocation.

The local field quantities can then be computed by a summation of the contributions
of all individual segments assembled in the array. The summation is possible since the
line integrals that occur in Mura’s expression for the calculation of the displacement
field, equation (9.88), transform like vectors for each dislocation line segment (Hirth and
Lothe 1982; Mura 1987). Consequently, all tensor quantities obtained for the individual
segments can be transformed to a common coordinate system.

Owing to the fact that dislocation lines must not end within an otherwise perfect
region of crystal, it is clear that the segmentation of dislocation lines is only allowed if the
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Figure 9.2: Approximation of a curved dislocation line by combining dislocation loops
with identical Burgers vectors but alternating line vectors (arrows).

segments are interconnected or terminate at free surfaces under consideration of image
forces.

However, the fundamental problem remains, of how the occurrence of connected iso-
lated segments can be physically interpreted. An elegant justification is given in Figure
9.2, which shows how a curved dislocation line can be approximated by combining dislo-
cation loops with identical Burgers vectors but alternating line vectors. While the parallel
portions of these loops align to form a continuous dislocation line, the anti-parallel por-
tions can be arranged in a manner to allow mutual annihilation. This construction also
substantiates the fact that a segmented dislocation cannot terminate within an otherwise
perfect crystal region. At the end points of the dislocation which consists of the parallel
segments, the underlying loops do not simply vanish but continue in the crystal. This
shows that the introduction of a geometrical cut-off at these end points would entail an
error which amounts to the stresses contributed by the remaining semi-infinite loop por-
tions. This error vanishes if the segmented loop approximation is closed. A more detailed
discussion of such constructions has been published by Brown (1967) and Bacon, Barnett,
and Scattergood (1979a).

Pioneering contributions on the discretization of three-dimensional dislocation lines
into sequences of piecewise straight segments and the subsequent calculation of field quan-
tities arising from all these segments were published by de Wit (1960), Brown (1967),
Indenbom and Orlov (1967), Asaro and Barnett (1974), Bacon, Barnett, and Scatter-
good (1979a), Hirth and Lothe (1982), Mura (1987), Devincre (1995), and Mohles and
Rönnpagel (1996). For the derivation of the corresponding strain and stress tensors the
authors employed either the sextic theory of Stroh or the integral theory using Green’s
tensor function method.

As a starting point for presenting three-dimensional field expressions for piecewise
straight dislocation segments it is convenient to follow the derivation of Hirth and Lothe
(1982). The stresses are first derived in rectangular coordinates x1, x2, x3. The vector R

indicates the spacing between the coordinates that are fixed on the dislocation line, r′T

= (x′
1, x

′
2, x

′
3), and the field coordinates under inspection, rT = (x1, x2, x3), so that

R = r − r
′

R =

√
(x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 − x′

3)
2

(9.113)

applies. It is assumed that the dislocation line vector is parallel to x3. For simplicity,
the dislocation line passes through the origin, so that x′

1 = 0 and x′
2 = 0. The above
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expression then reduces to

R =

√
(x1)

2 + (x2)
2 + (x3 − x′

3)
2 (9.114)

By combining the expressions for the stress, equations (9.29) or (9.37), rendered into the
isotropic limit, equation (9.58), with the Green’s function for the isotropic case, equation
(9.76), and the formula for the displacement gradient after applying Stokes’ theorem,
equation (9.76), one obtains a convenient line integral expression for the stress,

σ11 =
µ

4π(1 − ν)

∫
bmǫimz

(
∂3R

∂xi∂x2
1

− ∂

∂xi
∇2R

)
dx′

3

=
µ

4π(1 − ν)

∫ [
b1

(
− ∂3R

∂x2∂x2
1

+
∂

∂x2
∇2R

)
+ b2

(
∂3R

∂x3
1

+
∂

∂x1
∇2R

)]
dx′

3

(9.115)

where µ is the bulk shear modulus, ν Poisson’s ratio, bT = (b1, b2, b3) the Burgers vector,
and ǫijk the totally antisymmetric Levi–Civita operator, the components of which are
defined to be 1 if the suffixes are in cyclic order, −1 if they are in reverse cyclic order and
0 if any two suffixes are the same. The spatial variables x′

1 = 0 and x′
2 = 0 were set equal

to zero. It must be noted that the partial derivatives ∂/∂xi are equal to −∂/∂x′
i. A more

detailed derivation of this expression is given by Hirth and Lothe (1982).
Dropping the terms that are independent of x′

3 the line integrals in equation (9.115)
can be solved according to
∫

∂

∂x2
∇2R dx′

3 =

∫
∂

∂x2

2

R
dx′

3 = −
∫

2x2

R3
dx′

3 =

− 2x2 (x′
3 − x3)

(x2
1 + x2

2)R
= − 2x2 (x′

3 − x3)

R
[
R2 − (x′

3 − x3)
2
] . (9.116)

Proceeding in this manner for all the stress components (x′
1 = 0, x′

2 = 0) leads to

σ′
11 = b1

x2

R (R+ λ)

[
1 +

x2
1

R2
+

x2
1

R (R+ λ)

]
+

b2
x1

R (R+ λ)

[
1 − x2

1

R2
− x2

1

R (R+ λ)

]
(9.117)

σ′
22 = −b1 x2

R (R+ λ)

[
1 − x2

2

R2
− x2

2

R (R+ λ)

]
−

b2
x1

R (R+ λ)

[
1 +

x2
2

R2
+

x2
2

R (R+ λ)

]
(9.118)

σ′
33 = b1

[
2 ν x2

(R+ λ)
+
x2 λ

R3

]
+ b2

[
− 2 ν x1

(R+ λ)
− x1 λ

R3

]
(9.119)

σ′
12 = −b1 x1

R (R+ λ)

[
1 − x2

2

R2
− x2

2

R (R+ λ)

]
+

b2
x2

R (R+ λ)

[
1 − x2

1

R2
− x2

1

R (R+ λ)

]
(9.120)
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σ′
13 = −b1 x1x2

R3
+ b2

(
− ν

R
+
x2

1

R3

)
+ b3

x2 (1 − ν)

R (R+ λ)
(9.121)

σ′
23 = b1

(
ν

R
− x2

2

R3

)
+ b2

x1x2

R3
− b3

x1 (1 − ν)

R (R+ λ)
(9.122)

where σ′
ij = σij4π(1 − ν)/µ and λ = x′

3 − x3. The stress at r from a straight segment
which lies between x′

3(A) and x′
3(B) then amounts to

σA→B

ij (r) = [σij(r)]
r

′=B
− [σij(r)]

r
′=A

(9.123)

The above sets of equations are limited in their applicability in that they depend on
the coordinate system employed. Furthermore, they are only formulated for situations
where straight segments cut through the origin. Therefore, in the following text they are
transformed into a dyadic form which is more convenient for numerical purposes.

Following de Wit (1960) and Devincre (1995), the starting point of the derivation is
the expression for the stress field associated with an infinite straight dislocation line at a
point r in an unbounded, isotropic, linear, homogeneous, elastic medium:

σij(r) =
µ bn
8π

[
q,mqq

(
ǫjmn ti + ǫimn tj

)
+

2

(1 − ν)
ǫkmn

(
q,mij − q,mqqδij

)
tk
]

(9.124)

where t is the unit vector tangent to the dislocation line, b the Burgers vector, and q
the indefinite line integral along the dislocation line (de Wit 1967). Symbols following
the commas refer to spatial derivatives4. After deriving the spatial derivatives of q and
introducing the tensor operator

[ a b c ]ij =
1

2
[(a × b)i cj + (a × b)j ci] (9.125)

one obtains for the stress field (Devincre 1995)

σij(r) =
µ

πY 2

{
[ b Y t ]ij − 1

(1 − ν)
[ b t Y ]ij

− (b,Y , t)

2(1 − ν)

[
δij + ti tj +

2

Y 2

(
ρiYj + ρjYi +

L

| R |Yi Yj

)]}
(9.126)

where (b,Y , t) is the mixed product of the vectors involved. The vectors and scalars that
enter the above field equation are

R = r − r
′ L = R · t ρ = R − Lt

Y = R + |R|t = (L+ |R|) t + ρ
(9.127)

where R is the spacing between the point in the middle of the segment, r′ , and the
considered field point, r, and ρ is the portion of R normal to the dislocation line t. These
various vectors and scalars are shown in Figure 9.3. The stress of the segment between
A and B is then computed by

σA→B

ij (r) = [σij(r)]
r

′=B
− [σij(r)]

r
′=A

(9.128)

4The tedious calculation of the derivatives q,ijk was reviewed by de Wit (1967) and Devincre (1995).
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Figure 9.3: Schematic diagram of the vector geometry used for deriving the field equations
(9.126) for infinite straight dislocations.

Figure 9.4: Geometry for the definition of the stress field at the field point P due to an
arbitrary planar dislocation.

9.3.5 3D Field Equations for Dislocation Segments in an

Anisotropic Linear Elastic Medium

In the present approach the dislocation segments are outside their cores (inner cut-off at
≈ |b| where b is the Burgers vector) described as linear defects which are embedded within
an otherwise homogeneous, linear elastic, anisotropic medium in static equilibrium having
an arbitrary direction in a three-dimensional space. As in the case of linear elasticity, each
dislocation consists of piecewise straight segments with a scaling length much smaller
than the length of the original dislocation line to be described (scaling length of the
segments ≈ |b|). The stress field associated with a polygonal dislocation loop is obtained
by summing over the stress contributions of all segments (Bacon et al. 1979a). The
mathematical problem of describing stress fields of arbitrarily shaped three-dimensional
dislocations is thus reduced to the determination of the three-dimensional stress field of
a single dislocation segment.

The fundamental theorem, from which to start, relates the field of an arbitrary planar
dislocation to that of an infinite straight dislocation line. Figure 9.4 shows a planar dislo-
cation loop L containing a field point P . The angles α and θ are measured anticlockwise
from a fixed co-planar reference datum to the unit vector t which is tangential to an
elemental arc ds on the dislocation loop L and to the vector x which points from the arc
to the field point P , respectively (Brown 1967; Bacon et al. 1979b). The stress field at P
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Figure 9.5: Definition of a straight dislocation segment A → B.

is given by

σij =
1

2

∮

L

1

r2

[
Σij +

d2Σij

dθ2

]
sin(θ − α)ds (9.129)

where Σij is the angular stress factor and r the distance between the arc segment and the
field point. This tensor expresses the angular dependence in the field which is associated
with an infinite, straight dislocation line with the same Burgers vector as the loop L. It
must be emphasized that, according to Brown (1967), its dislocation line points from the
considered arc to the field point, i.e. it is tangent to x rather than to the loop portion
ds. Equation (9.129), which is referred to as Brown’s theorem, holds for the displacement
field as well. Its use reduces the solution for a finite dislocation arc ds to the calculation
of the field of an infinite straight dislocation which is characterized by Σij .

Integration of equation (9.129) between points A and B gives the stress field contri-
bution of a straight dislocation segment as a function of its Euclidean distance d from the
field point (equation (9.130); Figure 9.5). The angular stress factors and their angular
derivatives in equation (9.130) then refer to the two infinite straight dislocations which
point from the start and the end of the segment towards the field coordinate (Figure 9.5).

σij =
1

2d

[
−Σij cos(θ − α) +

dΣij

dθ
sin(θ − α)

]θ2

θ1

(9.130)

Since the two auxiliary dislocation lines which limit the segment are infinite and
intersect at the field point, they construct two segments rather than one, the second
being generated from the first through a point-mirror operation.

Using equation (9.130) as a starting point, Asaro and Barnett (1974) have proposed a
method to transform the three-dimensional calculation of the segment field contributions
to a set of piecewise planar problems. Each planar field calculation can then be carried
out by applying the integral formalism (Mura 1963; Barnett 1972; Bacon et al. 1979a;
Indenbom and Lothe 1992) or the sextic approach (Eshelby et al. 1953; Stroh 1958). The
former method involves the integration of the Green’s function of anisotropic elasticity.
The latter approach is based on solving the equilibrium equations under appropriate
boundary conditions, which leads to a six-dimensional characteristic equation of which
the eigenvalues are complex and occur in conjugate pairs.
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Figure 9.6: (a) Dislocation coordinate system. (b) Integration variables and their relation
to the dislocation coordinate system (Asaro and Barnett 1974).

In this study the stress fields of the infinite dislocations are derived by integration of
the time-independent Green’s tensor field Gij(x,x

′) which gives the displacement along
the xi axis at x in response to a delta-type unit point force exerted parallel to the xj axis
at x′. This approach is valid for an infinite body with homogeneous elastic properties
in static equilibrium. In the present case the Green’s tensor satisfies the conditions of
translational invariance, centrosymmetry, and reciprocity (Bacon et al. 1979a), equation
(9.73). Provided that the dislocation motion is uniform, the time-independent Green’s
tensor may be used for dislocation dynamics as well. In the case of non-uniform motion
the time-dependent Green’s tensor must be employed. The integral approach provides two
advantages as compared with the sextic method. First, it is directly applicable to crystal
defects other than dislocations. Second, the integral solutions pass into the isotropic limit
where the Zener ratio is equal to 1, i.e. C2323 = 1

2
(C1111 − C1122) for arbitrary values

of Poisson’s ratio, C1122/(C1111 + C1122). The main shortcoming of this method is the
required numerical integration of the Green’s tensor, which is more time-consuming than
the solution of the eigenvalue problem in the sextic approach (Barnett 1996)5. Following
Asaro and Barnett (1974), one first has to define the local coordinate system of the
infinite dislocations, Figure 9.6. The normal n to the plane which contains the infinite
dislocations, the segment line, and the field point can be expressed as the outer product
of any pair of the vectors involved. The unit vector parallel to the infinite dislocation line
t is described by two unit vectors e and a normal to n. The unit vector m is the angular
derivative of t (Asaro et al. 1973; Asaro and Barnett 1974).

t = e cos(θ) + a sin(θ) m =
dt

dθ
= −e sin(θ) + a cos(θ) (9.131)

Since m is a unit vector and located in the same plane as the infinite dislocation line, it
can be computed as the vector product of n and t. Employing the Radon transform for
the development of the single line integral solution for Gij(x − x′) leads to the compact

5Numerical integrations that appear in large vector loops, especially, degrade the speed of dislocation
calculations considerably.
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tensorial expression:

Gij(x − x
′) =

1

8π2 | x − x′ |

∮

|z|=1

(zz)−1
ij ds (9.132)

The variable z is a unit vector normal to t, Figure 9.6, defined by

z = n cos(φ) − m sin(φ) (9.133)

The normal to the plane described by the unit integration contour, | z |= 1, equation
(9.132), is thus parallel to t. The second-rank symmetric matrix integrand (zz)−1

ij is
the inverse of the Christoffel stiffness matrix (zz)ij (Barnett et al. 1972). The latter
operator is for the general nonsymmetric case, (ab)jk, defined by equation (9.78). The
inverse of the symmetric stiffness matrix with the form (aa)−1

ij is given by equation
(9.79). The Einstein summation convention is used throughout the calculations. For
skipping redundant integrations the symmetries of equations (9.78) and (9.79) should be
exploited. For media with cubic lattice symmetry one can use simplified expressions for
the inverse stiffness matrix (Barnett et al. 1972) :

(aa)−1
11 =

e (e+ f) − e f a2
1 + (f2 − 1)(a2a3)

2

(C1122 +C2323) ∆
(9.134)

(aa)−1
12 = − (a1a2)

[
(f − 1)a2

3 + e
]

(C1122 + C2323) ∆
(9.135)

∆ = e2(e+ f) + e(f2 − 1)
[
(a1a2)

2 + (a1a3)
2 + (a2a3)

2]

+ (f − 1)2(f + 2)(a1a2a3)
2 (9.136)

e =
C2323

C1122 + C2323
f =

C1111 − C2323

C1122 + C2323
(9.137)

The remaining elements (aa)−1
ij are derived by cyclic permutation of the indices of a.

The two matrices, equations (9.78) and (9.79), are related through

(aa)−1
ij (aa)jk = δik (9.138)

where δik is the Kronecker symbol. The elements of the fourth-ranked tensor of the
elastic constants Cijkl are throughout expressed in crystal coordinates. The orientation-
dependent part of the Green’s tensor, equation (9.132), is given by Qij ,

Qij = − 1

2π

∫ 2π

0

(zz)−1
ij dφ (9.139)

Equation (9.132) can then be written

Gij(x − x
′) = − 1

4π | x − x′ | Qij (9.140)

Additionally, one requires the nonsymmetric transposed matrix ST
ij , which is defined by

ST
ij =

1

2π

∫ 2π

0

[
(ζz) (zz)−1]

ij
dφ (9.141)
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The integration variable ζ is the angular derivative of z (Figure 9.6).

ζ =
dz

dθ
= −n sin(φ) − m cos(φ) (9.142)

The Christoffel stiffness matrix associated with the unit vectors ζ and z can be derived
as shown in equation (9.78).

However, the integrals Qij and ST
ij are not independent of each other. Instead of using

equation (9.141) the matrix ST
ij can be computed algebraically if Qij is known also, and

vice versa. Kirchner and Lothe (1986) showed that

Vs Xst = dt (9.143)

with
Xst = ǫilt[ǫijs Q

−1
jk (nn)−1

kl + (nn)−1
ij Q−1

jk ǫijs] (9.144)

and
dt = [(nn)−1 · (nm) · Q − Q · (mn) · (nn)−1]il ǫilt (9.145)

After solving equation (9.143) the matrix S and its transposed ST are obtained by using

(SQ)ij = ǫijsVs and S = (SQ) Q
−1 (9.146)

In the examples given later in this Chapter, Qij is mostly computed by integration,
equation (9.139), and ST

ij algebraically by equations (9.143)–(9.146) because it has a
more complicated integrand than Qij . Finally, the angular stress factor of the infinite
dislocation can be calculated according to

Σgh = r Cghip ui,p (9.147)

where ui,p is the displacement gradient tensor.

Σgh = − 1

2π
ǫpjwCghipCmwrsbmtj

(
msQir + ns

{
− (nn)−1

il S
T
lr−

[
(nn)−1(nm)

]
il
Qlr

})
(9.148)

The angular derivative of the stress factor is given by

dΣgh

dθ
= − 1

2π
ǫpjw Cghip Cmwrs bm

(
mjFsir + tj

dFsir

dθ

)
(9.149)

where
Fsir = msQir − ns(nn)−1

il S
T
lr − ns

[
(nn)−1(nm)

]
il
Qlr (9.150)

dFsir

dθ
= ms

dQir

dθ
− tsQir − ns(nn)−1

il

dST
lr

dθ
+ ns

{ [
(nn)−1(nt)

]
il
Qlr−

ns

[
(nn)−1(nm)

]
il

dQlr

dθ

}
(9.151)

The angular derivatives of Qij and ST
ij are given by

dQij

dθ
= − 1

2π

∫ 2π

0

(zz)is [(ηz) + (zη)]sr (zz)−1
rj dφ (9.152)



150 9 Discrete Dislocation Statics and Dynamics

dST
ij

dθ
=

1

2π

∫ 2π

0

{
[(βz) + (ζη)]is (zz)−1

sj +
[
(ζz)(zz)−1

]
is

[(ηz) + (zη)]sr (zz)−1
rj

}
dφ (9.153)

The integrands contain the unit vectors η and β which are defined by

η = t sin(φ) =
dz

dθ
β = t cos(φ) =

dζ

dθ
(9.154)

For closed-loop or infinite-line dislocation configurations the contribution of the first an-
gular derivative dΣij/dθ to the stress field may be dropped (Bacon et al. 1979b) so that
equation (9.130) can be reduced to

σij =
1

2d
[−Σij cos(θ − α) ]θ2

θ1
(9.155)

For computing dislocation fields in cubic media, the following relations among the elastic
constants (equations (9.31) and (9.34)) apply,

C2222 = C3333 = C1111 C1212 = C1313 = C2323 C1122 = C1133 = C2233

Cijkl = Cjikl = Cijlk = Cklij (9.156)

with all remaining elements being equal to zero.

9.4 Dislocation Dynamics

9.4.1 Introduction

The earliest phenomenological models to describe the dynamics of dislocations in crystals
date back to the pioneering work of Orowan (1934), Polanyi (1934), and Taylor (1934) in
which the motion of dislocations was already understood as an intrinsic defect property.
Orowan (1934) stated that dislocation glide consists in the movement of dislocations
across their respective glide planes. Polanyi (1934) complemented this view by adding
that dislocation glide across glide planes should take place at stresses much below the value
predicted by the theoretical strength which is required to slide one lattice plane rigidly
across the other. Taylor (1934) studied the atomic positions in the core of what is today
referred to as edge dislocation, and the respective positions change during dislocation
motion. Common to all these early contributions was the belief that dislocations should
have a high mobility, at least in closely packed crystal structures.

The next generation of researchers elaborated these concepts in more detail by iden-
tifying two relevant scaling quantities of plasticity, namely, the maximum intrinsic lattice
resistance to dislocation motion which is referred to as Peierls6 stress σP (Peierls 1940;
Nabarro 1947a) and the “relativistic” increase in the dislocation energy in the vicinity of
the speed of sound (Eshelby 1949a; Frank 1949).

In the next step a number of contributions addressed the highly dissipative character
of dislocation motion by identifying various drag forces which act proportionally to the
dislocation velocity (Eshelby 1949b; Leibfried 1950; Nabarro 1951; Rosenfield et al. 1968).

6In all that follows, σ is used as the symbol for stresses instead of τ . The introduction of τ to
indicate shear stresses is not necessary since this can be expressed through σij where i 6= j.
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At the same time, the theory of dislocation motion was complemented by considering
inertia effects (Granato and Lücke 1956; Granato et al. 1964; Gillis and Kratochvil
1970) and by the advent of the concept of thermal activation (Seeger 1954; Friedel 1956;
Leibfried 1957; Seeger et al. 1957; Seeger 1957; Kröner 1965).

Detailed contributions to these various fundamental aspects associated with the ki-
netics and thermodynamics of crystal dislocations and to the historical background were
published by Friedel (1956), Cottrell (1964), Hirth and Lothe (1968), Rosenfield, Hahn,
Bement, and Jaffee (1968), Kocks, Argon, and Ashby (1975), Ashby, Bullough, Hartley,
and Hirth (1980), Schöck (1980), Nadgornyi (1988), Suzuki (1991), and Mughrabi (1993).

Following the large body of fundamental studies on dislocations it may be assumed
that the most general approach to the prediction of the dynamics of lattice dislocations
consists in solving Newton’s equation of motion discretely in time and space for each
dislocation portion, with consideration of all internal and external forces. This concept
can be realized either through the use of molecular dynamics at the atomic scale or space-
discretized continuum dislocation dynamics at the micro- and mesoscale.

This section is concerned with an introduction to the latter technique, i.e. to con-
tinuum dislocation dynamics. It presents the basic conceptual ingredients required in
describing the dynamics associated with two- and three-dimensional dislocation arrays
in a space- and time-discretized fashion. The section is organized in such a way that
it presents at first a general three-dimensional Newtonian concept for the description
of dislocation dynamics and subsequently simpler, more phenomenological viscous and
viscoplastic two- and three-dimensional derivatives of that concept.

9.4.2 Newtonian Dislocation Dynamics

9.4.2.1 Introduction

The general approach outlined in this section idealizes the crystal as a canonical ensemble
in the quasi-harmonic approximation (Kramers 1940; Schöck 1980; Rönnpagel et al. 1993).
This allows one to consider anharmonic effects such as the temperature and pressure
dependence of the elastic constants and at the same time to treat the crystal in the
continuum approach using a linear relation between stress and strain. The dislocations,
outside their cores, can then be approximated as line defects which are embedded in a
homogeneous, unbounded, linear, anisotropic, elastic medium (Volterra 1907; Eshelby
et al. 1953; Mura 1963; Steeds 1973; Bacon et al. 1979a; Hirth and Lothe 1982; Teodosiu
1982; Mura 1987).

The dislocations are regarded as the elementary carriers of velocity fields from the
gradients of which both the strain rate and the spin can be calculated. Each dislocation is
described as a line defect which consists of a sequence of piecewise straight segments. The
displacement and stress fields associated with these segments can be generally formulated
to consider elastic anisotropy and arbitrary crystal symmetry using Brown’s theorem and
the integral formalism in the version of Asaro and Barnett (Section 9.3.5). The stress
field of each dislocation line is computed through a linear superposition of the stress
contributions of all segments.

Time t and space xi are independent variables. The atomic concentration of the va-
cancies c and the displacement field ui from which the displacement gradient tensor ui, j

can be calculated are used as space- and time-dependent state variables 7. Hooke’s law

7Tensor quantities of all orders are indicated by bold symbols or indices. Partial derivatives are
abbreviated using a comma, e.g. ui, j = ∂ui/∂xj .
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of anisotropic elasticity and the chemical potential of the vacancies act as equations of
state. Newton’s law of motion and Fick’s modified second law of diffusion are used as
structural evolution equations assuming local mechanical equilibrium at each segment.
The differential equations of motion of the individual portions belonging to the same dis-
location are coupled through the line tension which is considered discretely by calculating
the self-interaction force among the segments according to the concept of Brown (1967).
The chemical back-driving force associated with nonconservative dislocation motion is
introduced by considering the osmotic pressure that arises from emitting or adsorbing
point defects in the climbing segment.

The temperature acts as a state variable which is dependent on time but independent
of space, i.e. it remains constant throughout the simulation box during each strain incre-
ment. This approach reflects the fact that the crystal is regarded as a canonical ensemble
where each dislocation segment is embedded in an infinite heat reservoir (Rönnpagel et al.
1993). The dissipation of heat due to friction is assumed to be much faster than the glide
velocity of the dislocation. This postulation is justified because the dissipation rate of
heat is determined by the velocity of the electrons at the Fermi level while the glide
velocity can only assume values below the speed of sound. In the equation of motion
the temperature is included through a stochastic Langevin force as proposed by Leibfried
(1957) and Rönnpagel, Streit, and Pretorius (1993).

Further forces such as phonon drag, electron drag, and the elastic Peach–Koehler
interaction among dislocations are considered following earlier classical work (Rosenfield
et al. 1968; Simmons et al. 1970; Nadgornyi 1988; Nabarro 1989; Suzuki 1991).

This discrete approach can be referred to as a hybrid model, since it considers both
the dynamics of the dislocations and the kinetics of the point defects that are generated
by nonconservative dislocation motion. Simulations in this framework involve the solution
of a set of coupled stochastic, nonlinear, second-order, partial differential equations for
each single dislocation line discretely in space and time by using finite difference or finite
element algorithms.

9.4.2.2 Segmentation of Dislocations

Fundamentals Each dislocation line can be approximated by a sequence of intercon-
nected piecewise straight dislocation segments in three dimensions (Yoffe 1960; Hokanson
1963; Li 1965). Owing to the fact that dislocation lines must not end within an otherwise
perfect region of crystal, their segmentation is only allowed if the segments stick together
to form closed loops, are semi-infinite, or terminate at a free surface with consideration
of image forces, a reaction product, a grain boundary, or some other lattice defect, where
stress equilibrium is preserved. This means in the general three-dimensional case each
dislocation line consists of j sequentially arranged segments defined by j + 1 vectors.

Bacon, Barnett, and Scattergood (1979a) elegantly justified the concept of decompos-
ing dislocations into segments. They showed that a curvilinear dislocation line can be
approximated through a seamless combination of angular dislocation loops with identical
Burgers vectors and piecewise alternating tangential vectors. While the non-antiparallel
portions of these loops align to form a continuous dislocation line, the antiparallel portions
can be arranged in a manner to mutually annihilate each other (Figure 9.2).

This construction shows that a segmented dislocation cannot terminate within a per-
fect crystal portion because the underlying loops, the non-antiparallel parts of which
generate the dislocation under consideration, continue in the crystal. It is thus obvious
that the introduction of a geometrical cut-off at the end points of a dislocation entails
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an error which amounts to the stress field imposed by the remaining semi-infinite loop
portions. This error vanishes if the loop approximation is closed or if image forces are
considered (Yoffe 1960; Hokanson 1963; Li 1965; Brown 1967; Indenbom and Lothe 1992).

Orientation of Segments Two approaches are conceivable to arranging the seg-
ment tangential vector with respect to the crystal lattice. In the method suggested by
Kubin, Canova, Condat, Devincre, Pontikis, and Bréchet (1992), the individual disloca-
tion portions are aligned parallel to potential valleys with a low crystal index so as to
either assume pure edge- or pure screw-type character. This technique maps the abrupt-
or hard-kink model, where the influence of the Peierls force on the dislocation shape ex-
ceeds that of the self-interaction force. In the method suggested by Bacon, Kocks, and
Scattergood (1973), Hirth (1996), Mohles and Rönnpagel (1996), and Raabe (1998a), the
dislocation portions can have arbitrary orientation and mixed character. This approach
reflects the smooth-kink model, which implies that the Peierls force is of less influence on
the dislocation shape than the self-interaction force. While the abrupt-kink model is in
accord with experimental observations and theoretical predictions for crystals with cova-
lent or ionic bonding, the smooth-kink approximation applies for crystals with metallic
bonding (Nadgornyi 1988; Suzuki 1991).

Length of Segments Discrete dislocation dynamics simulations which are based on
the linear elastic line approximation are at first sight not intrinsically scaled as, for in-
stance, is apparent in molecular dynamics. However, some physical arguments can be
identified, resulting essentially from dynamic aspects, which allow one to define an ad-
equate length scale for such simulations. These are the reaction/interaction, the stress
fluctuation, the bow-out, the linear elastic-limit, and the cutting criteria.

The reaction/interaction criterion means that the time that elapses during one sim-
ulation step is confined to a value prescribed by the condition that dislocation segments
must not pass each other without being given a possibility to interact or react. For a given
law of motion, say viscous glide, v ∝ τ , the half-minimum segment spacing ∆λseg

min and
the local stress τ dynamically determine the real time that is mapped by one calculation
step according to ∆tstep ∝ ∆λseg

min/2 τ . Choosing this approach for the determination of
the real time increment ensures that neighboring dislocation segments cannot pass each
other within one time step without an interaction or reaction. After the determination of
the time increment, all dislocations are moved according to their respective local velocity.

The stress fluctuation criterion considers that changes in the local force acting on a
given straight segment should not exceed a critical value that would entail significantly
different velocities of neighboring segment portions. Fulfilling this condition seems diffi-
cult, at least from a continuous point of view. It is obvious that it is nearly impossible
to avoid a velocity gradient on one segment within a complex dislocation array, once the
friction force is reached. Thus, it is necessary to transform this continuum problem into
a discrete one. This can be attained by conducting the simulation in such a way that the
stress fluctuations on single segments do not lead to different velocities within a chosen
discrete velocity or respectively stress spectrum.

The bow-out criterion means that the discretization of space should permit simulation
of the activation of a Frank–Read source or of the Orowan mechanism on a realistic scale.
Typical data are available from the literature (Mughrabi 1993).

The linear elastic-limit principle means that the elastic distortions should be suffi-
ciently low to justify solutions in the framework of Hooke’s law. For instance, scaling
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values below the magnitude of the Burgers vector would spoil the validity of approximate
solutions derived in the framework of linear elasticity.

The cutting criterion means that intersecting segments mutually increase their total
dislocation length by exactly one Burgers vector. In simulations where cutting represents
a prevailing mechanism, the scaling parameter should thus amount to one Burgers vector.

Further physical scaling limits can be found from experimental data about kink pair
width, double-kink pair extension, jog height, and single-kink width. Owing to these con-
straints three-dimensional simulations involving dislocation segments are usually scaled
by values of one to ten Burgers vectors or lattice parameters, respectively. In order to
avoid scaling parameters that are too small, the introduction of a dynamical segment
length is conceivable.

9.4.2.3 The Mechanical Equation of State

The basic problem encountered in space-discretized dislocation statics consists in calcu-
lating the local displacement gradient tensor ui, j(x) for a given spatial distribution of
dislocations. Discretizing such arrays into sequentially arranged segments reduces the
problem to the determination of the displacement gradient field associated with an in-
dividual straight portion of dislocation. From this quantity the local stress field can be
derived using Hooke’s law.

Calculating the stresses in dyadic form allows one to rotate the contributions of all
segments to a common reference lattice and to derive the net field quantity through a
linear superposition (Li 1965). The derivation of the required field equations was outlined
previously for the isotropic (Section 9.3.4) and for the anisotropic case (Section 9.3.5).

9.4.2.4 The Chemical Equation of State

Besides the purely mechanical state equation which allows one to calculate the stress dis-
tribution from a given displacement field, one requires a second path-independent equation
which quantifies any departure from chemical equilibrium. Neglecting the influence of for-
eign atoms, this chemical state equation amounts to the chemical potential of intrinsic
point defects.

Any nonconservative motion of edge dislocation segments leads to the emission or
adsorption of point defects. If not instantly equilibrated by local short-circuit diffusion
processes, such a defect production term entails a local change in the chemical potential
of the respective type of point defect. This local deviation from the thermal equilibrium
leads to a chemical back-driving force which is referred to as osmotic force (Nabarro 1947b;
Herring 1950; Weertman 1965; Lothe and Hirth 1967; Balluffi and Granato 1979; Hirth
and Lothe 1982).

The chemical potential µ can be described as a change in the Gibbs free enthalpy
G of the system on modifying the atomic concentration of intrinsic point defects from a
reference concentration c0 to an actual local concentration c(r).

µ(c) =

(
∂G

∂n

)

p, T

= kBT ln

(
c(r)

c0

)
(9.157)

where kB is the Boltzmann constant and T the temperature. The reference concentration
c0 is the concentration of the respective type of point defect in local equilibrium with
the surface and the local hydrostatic pressure (Burke and Nix 1978; Rauh and Simon
1978; Hirth and Lothe 1982). As will be addressed in Section 9.4.2.6 the calculation of
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a local concentration of point defects c under consideration of climb requires the space-
and time-discretized solution of the modified continuity equation and Fick’s first law of
diffusion, turning the model into a hybrid approach.

Following the concept of Hirth and Lothe (1982) for the case of a crystal exposed to
both external and internal stress, the reference concentration amounts to

c0 = exp

(
− G0 + (σh + p)∆V

kB T

)
(9.158)

where G0 is the Gibbs free enthalpy of formation of the considered point defect in a
stress-free crystal, σh the external hydrostatic stress component, p the space-dependent
internal hydrostatic stress component, and ∆V the externally measured volume change.

Concerning the magnitude and sign of the internal stress, two aspects are worth
emphasizing. First, it must be noted that in dislocation simulations the magnitude of
the internal hydrostatic stress component can considerably exceed that of the externally
imposed stress field. This applies particularly for the stresses close to the segment core.
Second, the sign of the hydrostatic stress component changes in the glide plane, with a
compression field above it and a dilatation field below it.

If the reference state is given by consideration of thermal equilibrium with the free
crystal surface c′0, an additional term We must be introduced, namely,

c′0 = c0 exp

(
− We

kB T

)
= exp

(
− G0 + (σh + p)∆V ± σh Ω

kB T

)
(9.159)

where +σh Ω applies for the formation of vacancies and −σh Ω for the formation of in-
terstitials. This work has to be done on the crystal for removing or adding the atomic
volume Ω from or to the surface, respectively (Schöck 1980; Hirth and Lothe 1982).

9.4.2.5 The Mechanical Structure Evolution Equation

The Equation of Motion A general concept for the dynamics of dislocations can
be formulated by assuming dynamic equilibrium of the forces at each time and portion
along the dislocation line and by solving a modified form of Newton’s equation of motion
for each such dislocation segment. This approach, which was introduced by Rönnpagel
(1987) for the two-dimensional case, can in principle be extended to three-dimensional
problems (Raabe 1998a). ∑

i

F
i (t,x, ẋ, ẍ) = 0 (9.160)

where x and t are the independent variables, ẋ the velocity, ẍ the acceleration, and F i

the various line forces that act on each portion of dislocation. The forces that enter
equation (9.160) can be described as a function of the independent variables and their
partial derivatives. The most important contributions in three-dimensional simulations
are the Peierls force, F P, the dislocation–dislocation force, F disl, the self force, F self , the
external force, F ext, the obstacle force, F obs, the image force, F ima, the osmotic force,
F osm, the phonon drag force, F Pdrag, the electron drag force, F Edrag, the inertia force,
F iner, the cross-slip drag force, F cross, and the thermal force, F therm.

The Peierls Force The Peierls force F P is a constant for the slip system being con-
sidered and represents the maximum intrinsic resistance to dislocation motion at 0 K.



156 9 Discrete Dislocation Statics and Dynamics

While the Peierls potential is very small in face-centered cubic metals, it can be of sub-
stantial relevance in body-centered metals, semiconductors, covalent, and ionic materials.
The use of the Peierls concept in the case of three-dimensional dislocation dynamics is
somewhat diffuse because it originally denotes the force to bring an infinite rather than
a finite dislocation from one potential valley to the next.

The Dislocation–Dislocation Force The dislocation–dislocation term F disl rep-
resents the sum of all Peach–Koehler forces between the segment considered and all other
dislocation portions in the ensemble. However, it must be underlined that this term does
thus not include any interactions with dislocation segments that belong to the same dis-
location. The spacing between the inspected portion of dislocation and the segments that
belong to other dislocations usually exceeds the inner cut-off radius by one order of mag-
nitude, except for dislocation reactions. Thus, this value enters the differential equation
of motion at each time step as a constant. Since the character of the interactions is long-
range in nature, the predictions obtained by dislocation dynamics simulations are highly
sensitive to the introduction of an outer cut-off radius. A recent paper substantiated
the fact that the use of an insufficiently small outer cut-off radius can entail incorrect
predictions of the internal stress fields (Raabe 1996a). For obtaining reliable results it is
thus necessary to impose periodic boundary conditions or to account for all dislocation
segments in the array under consideration of the respective image forces imposed by the
free surface. It is clear that the latter method leads to substantial difficulties in terms
of data storage. Recent efforts therefore aim at the introduction of multipole techniques
and parallel codes (Wang and LeSar 1995; Hirth 1996; Zacharopoulos et al. 1997).

The Self Force The self force F self comprises those contributions to the total force
that arise from the elastic Peach–Koehler interaction between the inspected line segment
and all other dislocation portions that belong to the same dislocation. Although the
physical nature of this line force is exactly identical to the aforementioned dislocation–
dislocation force, their main difference lies in the fact that the self force directly enters
the differential equation of motion as a variable rather than as a constant. The self
force vanishes for infinite straight dislocations. However, for curved dislocation lines its
contribution has substantial influence on the dynamics.

For sufficiently small dislocation curvatures, the self force can be expressed in terms
of the curvature-dependent portion of the line tension. In this concept the dislocation is
regarded as a taut elastic string (Cottrell 1953; Stroh 1954; de Wit and Koehler 1959).
The line tension mimics the back-driving force of the dislocation in reducing the core
and elastic energy that arises from any increase in dislocation length in the bowed-out
state as compared with the straight state. An analytical treatment of the line tension
predicts a back driving force that depends on the increase in the core energy and on the
local curvature. However, this classical concept neglects the dependence of the dislocation
energy on the dislocation arrangement (Hirth and Lothe 1982). For large curvatures this
simple analytical approximation of the line tension is no longer valid and must be replaced
by more detailed energy calculations which account for the overlap of the displacement
fields of neighboring portions of the same dislocation. In a thorough analysis Brown (1967)
showed the consistency between the generalized line tension and the self force, which
can be computed through the Peach–Koehler interaction among sequentially arranged
segments belonging to the same defect.

The introduction of the self force turns equation (9.160) into a nonlinear differential
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Figure 9.7: Construction for the calculation of the image force in two dimensions in a sim-
ple case where the infinite dislocation line is parallel and the Burgers vector perpendicular
to the interface.

equation. Furthermore, the hyperbolic long-range force acts as a coupling term between
the partial differential equations that describe the motion of the individual segments.

The External and the Obstacle Force The externally imposed force F ext enters
the solution of the differential equation as a constant Peach–Koehler force on each por-
tion of all dislocations in the array. Further Peach–Koehler-type contributions can arise
from lattice defects other than dislocations. Among these, particularly the contributions
from obstacles F obs are relevant. Obstacles give rise to elastic interactions, such as are
imposed by coherent precipitations or foreign atoms with a parelastic and dielastic matrix
coupling (Eshelby 1957; Mura 1987). Details of the incorporation of obstacles in time- and
space-discretized dislocation simulations have been thoroughly investigated by Rönnpagel
(1987), Mohles (1996), and Mohles and Rönnpagel (1996).

The Image Force Another term arises from stress relaxation in the vicinity of a
free surface or internal interface. Such contributions are referred to as surface or image
forces F ima. They result from the necessity that a free surface must be in the stress-free
state. Image effects are modeled by including surface stresses that exactly compensate
the stresses imposed by lattice defects in the interface. Thus, they generate surface forces
that act attractively on each portion of dislocation (Hirth and Lothe 1968).

The incorporation of image forces is straightforward in two-dimensional systems, in-
volving only screw dislocations or simple edge dislocation arrangements. In these cases a
surface stress compensation is achieved by appropriate mirror operations carried out on
each infinite dislocation line with the surface acting as a mirror plane (Figure 9.7). In
three dimensions geometrical difficulties in treating these forces arise from the fact that
the individual dislocation portions are in most cases no longer straight, infinite, or parallel
to the free surface.

According to van der Giessen and Needleman (1995) this three-dimensional boundary-
value problem can be solved by using a finite element approach. On the other hand,
Gosling and Willis (1994) have suggested an analytical method to compensate surface
stresses. Recently, Fivel, Gosling, and Canova (1996) compared the approach of Gosling
and Willis (1994) with that of Boussinesq (1985) and found a good accord between both
techniques.

The Osmotic Force Dislocation dynamics shows a fundamental difference from
molecular dynamics. While in the latter approach one deals with a conservative system



158 9 Discrete Dislocation Statics and Dynamics

and can thus describe the local force as a negative gradient of the potential, dislocation
motion is highly dissipative and reveals a strong anisotropy in its kinetic modes, i.e. the ex-
istence of glide and climb. In contrast to two-dimensional simulations, which are confined
to one slip plane, the extension of discrete dislocation simulations to three dimensions
implies the occurrence of climb (Raabe 1998a). However, nonconservative motion of edge
dislocation segments generally occurs by the generation of intrinsic point defects. This
leads to an under- or oversaturation of such defects, i.e. to a deviation from chemical
equilibrium. The force that results from the tendency of the system to return to thermal
equilibrium is quantified in terms of an osmotic force F osm (Section 9.4.2.6). Following
the original concept of Nabarro (1947b), Herring (1950), Bardeen and Herring (1952),
Weertman (1965), Lothe and Hirth (1967), Wiedersich and Herschbach (1972), and Bal-
luffi and Granato (1979), this contribution can enter the equation of motion through an
expression of the form

F
osm = − µ

Ω

(b × t)

|b × t| = −kB T

Ω

(b × t)

|b × t| ln

(
c(r)

c0

)
(9.161)

where t is the dislocation tangential vector and µ the chemical potential. This term
couples the equation of motion with diffusion.

The Phonon Drag Force It is a characteristic feature of dislocations that they
dissipate energy during their motion. This is due to the velocity-dependent electron and
phonon drag (Eshelby 1949b; Leibfried 1950; Nabarro 1951; Rosenfield et al. 1968). The
dominant contribution to friction arises from phonon–dislocation interactions F Pdrag. In
this context two mechanisms have been discussed, namely, the nonlinearity mechanism
which is imposed by the anharmonicity of the potential (Seeger and Engelke 1968; Brails-
ford 1972) and the fluttering mechanism (Ninomiya 1970) which is due to inelastic scat-
tering between the dislocation and a phonon. A comparison of both approaches which
provide very similar predictions except at very low temperatures was given by Suzuki
(1991). Following the approach of Ninomiya (1970), i.e. assuming a fluttering mecha-
nism, the temperature-dependent portion of the friction force can be written

F
Pdrag(T ) = Bp(T ) ẋ =

kB T ω
2
D

π2 c3i
ẋ at T > 0.5 Θ

F
Pdrag(T ) = Bp(T ) ẋ =

14.4 kB T ω2
D

π2 c3i

(
T

Θ

)2

ẋ at T < 0.5 Θ

(9.162)

where Bp(T ) is the temperature-dependent friction coefficient, Θ the Debye tempera-
ture, ωD the Debye frequency, and ci the transverse or longitudinal velocity of sound,
respectively.

The Electron Drag Force The frictional force due to conduction electrons with the
coefficient Be was assessed by Tittmann and Bömmel (1966) using standard perturbation
theory, and by Kravchenko (1966) and Brailsford (1969) using the Boltzmann equation.
According to the analysis of these papers given by Suzuki (1991) the contribution of
electrons to friction is practically independent of the temperature. For edge-type segments
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the electronic portion of the friction amounts to

F
Edrag = Be ẋ =

(
1 − 2ν

1 − ν

)2
n0me vF b

2 q
D

96

1

2
 1

1 +
(

q
D

q
TF

)2 +

(
q
TF

q
D

)
tan−1

(
q
D

q
TF

)

 ẋ (9.163)

where ν is Poisson’s ration, n0 the equilibrium value of the electron density, me the mass
of the quasi-free electron, vF the Fermi velocity, qD the radius of a Debye sphere, and qTF

the reciprocal of the Thomas–Fermi screening length. For screw dislocations the electronic
frictional force is negligible.

The Inertia Force When the dislocation movement does not take place in the over-
damped regime, i.e. at very high applied forces, inertial effects F iner must be taken into
consideration. This contribution renders the equation of motion into a second-order dif-
ferential equation. The effective mass meff per length of a dislocation can be calculated
according to

meff = m′
eff

1√
1 −

(
ẋ
ci

)2
m′

eff =
µ b2

2 ci2
(9.164)

where µ is the shear modulus, ci the velocity of sound, and m′
eff the rest mass of the

dislocation. The mass point assigned to a dislocation segment of length L = |r′

A −r′

B |
then amounts to ∆m = meffL.

The Cross-Slip Force While edge dislocations generally have a well-defined slip
plane, this is not the case for screw dislocations. A particular glide plane for screw
dislocations can only be defined in terms of the present maximum orientation factor which
would force an ideal screw dislocation into a certain plane, or through the occurrence of
dissociation of the original complete dislocation into partial dislocations. The tendency
to dissociate is inversely weighted by the stacking fault energy of the particular material.
Thus, dislocation cross-slip is obstructed by the enthalpy that is required to recombine
the dissociated portions of the dislocation. This gives rise to a cross-slip drag force F cross.

The Thermal Force The contributions discussed above represent relevant line forces
that must be considered for simulating athermal dislocation dynamics. However, in order
to allow simulations at temperatures other than 0 K, thermal forces F therm must be
included in the model. This concept is particularly important for simulating thermal
activation processes (Leibfried 1957; Rönnpagel et al. 1993; Mohles and Rönnpagel 1996;
Mohles 1996).

From a thermodynamic point of view dislocations in thermodynamic equilibrium with
the crystal can be regarded as a canonical ensemble, the energy of which fluctuates in time.
Thermal fluctuations, which are also referred to as thermal noise, represent a formal term
by which to express the unpredictable influence of many uncorrelated tiny perturbances,
each of which changes the state variables of the system in a small but random fashion
(Haken 1978; Schuss 1980; Freedman 1982; Haken 1983; Risken 1984; Gardiner 1985).
Irrespective of the thermal fluctuations, the macroscopic mean value of the energy is a
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well-defined function of temperature, which is prescribed by the heat bath, i.e. by the
temperature of the crystal.

Due to the drag force terms, the moving dislocation continuously dissipates energy
as a function of its velocity. Since the dislocation is assumed to be in thermodynamic
equilibrium with the crystal, the energy lost through dissipation must be compensated
by applying thermal pulses. These pulses can be described in terms of a Langevin force
in case of the Brownian motion (Kramers 1940; Chandrasekhar 1943; Rönnpagel et al.
1993). It is assumed that the average of this force over the ensemble should vanish, i.e.

〈
F

therm(t)
〉

= 0 (9.165)

since the equation of motion of the average velocity 〈ẋ〉 does not contain any probabilistic
term. When multiplying the Langevin force term at two different times t and t′, one
further assumes that the resulting average value vanishes if the time step (t′ − t) exceeds
the duration time τ c of a collision of the considered particle with the atoms:

〈
F

therm(t) , F
therm(t′)

〉
= 0 where |t− t′| ≥ τ c (9.166)

This amounts to stating that the Langevin force changes randomly in size and sign without
correlation. This assumption is reasonable since it is likely that the collisions of the atoms
with the small particle are approximately independent8.

Usually, the collision time τ c is much smaller than the relaxation time of the velocity
of the small particle, which amounts to τ r = 1/B(T ) where B(T ) is the friction coefficient.
Thus, the approximation τ c → 0 appears reasonable. This leads to the form

〈
F

therm(t) , F
therm(t′)

〉
= q δ(t− t′) where τ c → 0 (9.167)

The Dirac delta function appears in this equation because otherwise the energy of the
particle considered cannot be finite as it should be in accord with equipartition law.
According to Rönnpagel, Streit, and Pretorius (1993), the strength of the thermal noise
term is given by

q =
2B(T ) kB T

m2
eff

(9.168)

where meff is the effective mass per length. Combining equations (9.168) and (9.162)
substantiates the fact that the strength of the Langevin force is not simply linearly
proportional to the temperature but also temperature-dependent through the phonon-
dependent part of B(T ). In order to produce such thermal pulses, one must provide
Gaussian-distributed random vectors Λ(i, j) for each segment i at position x(i) and time
step j:

f(Λk) =
1√
2π

exp

(
− Λk

2

2

)
. (9.169)

where Λk is the kth component of the vector Λ. The thermal force F therm(x(i), tj ≤ t <
tj + ∆tj) imposed in the time between tj and tj + ∆tj then amounts to

F
therm (x(i), tj ≤ t < tj + ∆tj) = Λ(i, j) |b|

√
2B(T ) kB T

∆l(i) ∆tj b2
(9.170)

8It is not necessarily straightforward that this applies also to the interaction with moving disloca-
tions. Furthermore, the phonon spectrum of crystals might be relevant in this context.
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where ∆l(i) is the length of the segment i (Rönnpagel et al. 1993). The portions of Λ(i, j)
that are parallel to the segment tangential vector can be neglected (Mohles 1996).

Local heating of the slip plane is usually not considered. In metals it is generally
assumed that the dissipation of heat due to friction is much faster as compared with the
glide velocity of the dislocation. After each deformation step the temperature increase of
the heat bath can be calculated from the disspiated power.

Solution of the Equation of Motion Incorporating all the above-mentioned con-
tributions in equation (9.160) results, for each dislocation consisting of j sequentially
arranged segments defined by j + 1 vectors, in a set of 3·j coupled, nonlinear, stochastic,
partial differential equations of second order (Rönnpagel 1993; Raabe 1997). Such a set of
equations must be solved for appropriate initial-value conditions, i.e. for given initial po-
sitions x

j
0 and initial velocities ẋ

j
0 by using finite difference techniques, e.g. a higher-order

Runge–Kutta or predictor–corrector method (see methods in Chapter 3).

9.4.2.6 The Chemical Structure Evolution Equation

Each edge dislocation portion in the state of nonconservative motion acts as a sink or
source of intrinsic point defects. Their production entails a concentration change and
thus a shift of the chemical potential (Section 9.4.2.4). This can exert a substantial
influence on the dynamics of the dislocations in terms of an osmotic force that obstructs
further climb.

As will be sketched out here the kinetics of these intrinsic defects must be treated se-
parately from the kinetics of the dislocations. This can be achieved by using a continuum
diffusion model, i.e. Fick’s first law and the continuity equation. The concept of using
Newton’s law of motion for the dislocations and the diffusion law for the point defects
causes the outlined simulation to approach a hybrid model. The separate treatment of
dislocation dynamics and point defect diffusion becomes necessary since a fundamental
three-dimensional space- and time-discretized description of dislocation dynamics cannot
be attained by simply stipulating instant equilibration of the newly generated point de-
fects. The immediate restoration of the thermal equilibrium concentration of the point
defects is not obstructed by thermodynamics but by kinetics.

This becomes evident from a simple example: let us consider a small crystal volume
element at a temperature near absolute zero which contains a single positive edge disloca-
tion. If one now imposes a sufficiently large tensile stress σ parallel to the Burgers vector
b so that σb3 becomes similar to the energy of the vacancy formation, the dislocation will
show negative climb. Such nonconservative motion thus occurs by mechanical rather than
thermal generation of vacancies. Once produced, the mobility of these point defects would
at T ' 0 K practically amount to zero, entailing a drastic increase in the osmotic force
on the climbing dislocation. On the other hand it is obvious that if the experiment were
repeated at T / Tmelt no chemical effects would occur due to the instant equilibration of
the newly formed point defects.

In the simulation, for each climbing segment with a length of one Burgers vector, the
number of point defects generated can be tracked directly during each time step. The
local point defect production rate in a volume element can be expressed in terms of the
respective adsorption or emission rate of such defects ∂ ns / ∂ t at the segments that act
as sink or source in that portion of volume. The production rate can thus be calculated
from the nonconservative component of the velocity vector of the considered dislocation
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Figure 9.8: Schematic representation of the modified continuity equation for point defect
production at a climbing dislocation considering a source term ċs (equation (9.172)).
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s (r, t)

∂t
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where Nvol is the number of lattice sites in the considered volume element, ṅvol
s the

production rate in that volume element, ̺ the density of the material, M its molar mass,
NL the Loschmidt number, and ċs the change in the volume concentration due to climb.
The latter expression is hereafter referred to as the source term. The function f(1/|b|) is
a step function that introduces a normalization by |b|, indicating that a point defect is
only generated when the climb step amounts to at least one Burgers vector.

For a small crystal volume element the original continuity equation (10.16) must then
be complemented by the source term derived above,

∂c(r, t)

∂t
= −∇ j +

∂cs(r, t)

∂t
(9.172)

where c is the volume concentration of point defects, ∇ j = divj their flux density diver-
gence, and ċs the source term (Figure 9.8).

Although the continuity equation was originally meant to describe the conservation
of mass rather than of vacancies its use in the present context is reasonable, since equa-
tion (9.172) expresses the fact that both the spatial divergence in the flux density and
local source terms must entail a temporal concentration change in the volume element
considered. Combining the modified continuity equation with Fick’s first law

j = −D ∇ c (9.173)

whereD is the bulk self-diffusion coefficient, leads to an expression similar to Fick’s second
law of diffusion,

∂c(r, t)

∂t
= D∆ c +

∂cs(r, t)

∂t
= D∆ c + f(1/|b|) ̺NL

M

∂x⊥
s (r, t)

∂t
(9.174)

where ∆ = div grad is the Laplace operator. The diffusion coefficient is assumed to
be dependent on the local hydrostatic stress state but independent of the concentration
of the point defects. Since the free enthalpy for the formation of intrinsic interstitials
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considerably exceeds that for the formation of vacancies, it is reasonable to neglect them
in the calculation. That means one generally deals with a vacancy source term with either
a negative or positive sign according to the actual direction of climb.

In its present form equation (9.174) provides a statistical description of self-diffusion
by consideration of source terms. In a more generalized version this equation can be
rewritten

∂c(r, t)

∂t
= M̃ ∆

(
δgchem

δc(r, t)
+

δgelast

δc(r, t)

)
+

∂cs(r, t)

∂t
(9.175)

where M̃ is the mobility, gchem the chemical and gelast the elastic contribution to the Gibbs
enthalpy density. While the chemical interaction among the vacancies is negligible in that
it merely consists in the local change of the electron density, the additional influence of
their elastic interaction must be regarded as a relevant term. While it is conceivable that
this elastic vacancy–vacancy interaction term can enter the Landau free enthalpy form
in a closed analytical fashion, the incorporation of the elastic interaction between the
vacancies and the dislocations is less straightforward.

While the space-discretized simulation of dislocation dynamics which is based on solv-
ing Newton’s equation of motion, equation (9.160), requires a finite difference solution only
at those coordinates where dislocation portions are actually located, the simultaneous so-
lution of the diffusion problem sketched above must be carried out continuously for the
entire volume under consideration. Thus, any such dislocation dynamics simulation must
be accompanied by a finite difference simulation to solve the modified diffusion equation,
equation (9.174). A reasonable approach to implementing the proposed model might be
to combine a modified Cahn–Hilliard code for the simulation of isostructural spinodal
phase transformation phenomena with the mechanics outlined above. It should be noted
that even without the presence of source terms in equation (9.175), substantial vacancy
diffusion can nonetheless occur due to the inhomogeneity of stress. If in neighboring finite
difference cells different dislocation densities and arrangements impose unequal displace-
ment fields, net diffusion fluxes can occur due to the dependence of the free enthalpy
functional on that stress.

9.4.3 Viscous and Viscoplastic Dislocation Dynamics

9.4.3.1 Introduction

When dislocation simulations are conducted to mimic dynamics in the overdamped high-
stress regime, the differential equations that were presented in the preceding section can
be simplified. For instance, by dropping the inertia term in equation (9.160) the system
can be turned into a set of first-order differential equations which is easier and faster to
solve. In a second step, the treatment of thermal activation can be simplified by using
a statistical exponential expression (Kocks et al. 1975; Weertman and Weertman 1980;
Nadgornyi 1988) in conjunction with one single Monte Carlo step instead of a Langevin
term. Furthermore, the discrete consideration of self-interaction can be replaced by a
discrete line tension approximation (Fivel et al. 1996).

Most phenomenological simulations have been conducted in two dimensions with infi-
nite straight edge dislocations (Neumann 1971; Lépinoux and Kubin 1987; Ghoniem and
Amodeo 1989; Gulluoglu et al. 1989; Amodeo 1990; Gulluoglu et al. 1990; Gulluoglu
and Hartley 1992; Gulluoglu and Hartley 1993; Lubarda et al. 1993; Raabe and Roters
1995; van der Giessen and Needleman 1995; Wang and LeSar 1995; Roters and Raabe
1996; Roters et al. 1996; Raabe et al. 1996; Zacharopoulos et al. 1997). Edge dislocation
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glide is typically modeled in such approaches as successive periods of resting in front of
obstacles and viscous glide between them.

Accounting for both effects, the dislocation velocity component in the direction of
glide can be expressed according to

ẋglide =
λ

tw + tg
(9.176)

where λ is the obstacle spacing, tw the waiting time in front of obstacles and tg the
time for glide between obstacles. When no particles or precipitates are considered, the
obstacle spacing λ is determined exclusively by the forest dislocation density. In cases
where additional obstacles such as precipitates are included, the effective obstacle spacing
can be computed according to

1

λ
=
∑

i

1

λi
(9.177)

where λi is the respective spacing of lattice defects i that interact with moving disloca-
tions. If only forest dislocations are considered with a density proportional to the total
dislocation density, one can write

λ ∝ 1√
̺

(9.178)

where ̺ is the total dislocation density. Cutting of forest dislocations is a thermally
activated process. Therefore, the cutting frequency νcut can be expressed in the following
manner:

νcut = 2 ν0 exp

(
− Q

kB T

)
sinh

(
σ V

kB T

)
=

2 ν0 exp

(
− Q

kB T

)
sinh

(
FglideA

kB T

)
(9.179)

where Q is the activation energy, σ V = FglideA the mechanical work that results from the
net local stress, and ν0 the attack frequency. It is typically assumed that the activation
area A is proportional to the spacing of the forest dislocations. The sinh function results
from the consideration of both forward and backward jumps.

The time spent resting in front of an obstacle is then simply given by

tw =
1

νcut
(9.180)

Between the obstacles viscous glide is assumed. Hence, the local glide velocity for unim-
peded motion, ẋu

glide, is proportional to the force Fglide, so that tg can be calculated as

tg =
λ

ẋu
glide

=
λ

cFglide
(9.181)

where c is a constant. From equations (9.176)–(9.181) the net velocity in the direction of
glide can be derived:

ẋglide =
λ

tw + tg
=

2 ν0 c λ Fglide sinh
(

Fglide A

kB T

)

c Fglide exp
(

Q
kB T

)
+ 2 ν0 sinh

(
Fglide A

kB T

) (9.182)
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In contrast to this glide law, the nonconservative climb process is controlled by diffu-
sion. The velocity of dislocation climb ẋclimb is thus directly proportional to the respective
force component with the diffusion coefficient D as constant, viz.

ẋclimb = BFclimb =
D

kB T
Fclimb =

Fclimb

kB T
D0 exp

(
− H

kB T

)
(9.183)

where H is the activation enthalpy for vacancy formation and migration.
Once the dislocation velocities are determined in accord with the respective local stress

fields, it has to be ensured that possible resulting dislocation reactions are considered by
the simulation prior to the movement of the dislocations. Therefore, the time increment
of each simulation step is chosen dynamically. For this purpose the minimum spacing
between two dislocations is determined. The distance traveled by the fastest dislocation
can then be limited to half this value. After the time increment has been determined, all
dislocations are then moved according to their individual velocities.

It is clear that two-dimensional simulations of edge dislocation dynamics do not ac-
count for dislocation multiplication. This shortcoming is due to the fact that all dislo-
cations are parallel. This means that new dislocations have to be introduced by some
artificial argument. This can be done by inserting a new mobile dislocation into the sys-
tem whenever a dislocation is immobilized, or by explicitly relating the production rate
to the glide activity in each glide system.

Phenomenological dislocation dynamics simulations are also possible in three dimen-
sions (Devincre and Condat 1992; Raabe 1995a; Devincre 1996; Fivel et al. 1996). In
these approaches the dislocation lines are typically subdivided into piecewise straight,
sequentially arranged segments of either pure screw- or edge-type character (Kubin et al.
1992). Thus, in contrast to the two-dimensional simulations, in three dimensions the
mobility of the two different segment types must be distinguished.

Following the above concept, the glide velocity of an edge segment in kink motion,
ẋkink, can be written

ẋkink =
Ck ω0 ΛFkink sinh

(
Fkink A

kB T

)

Fkink

Bk
exp

(
Qk

kB T

)
+ Ck Γ0 sinh

(
Fkink A

kB T

) (9.184)

where ω0 is the Debye frequency, Λ the local flight path of the segment, Fkink the net
glide force acting on the kink segment, Qk the activation energy, Ck a constant, and Bk

the drag coefficient. For situations where either the waiting or the flying time dominates,
simpler phenomenological laws can be used, namely,

ẋkink = C̃k

(
τ

τ0

)m

exp

(
− Qk

kB T

)
(9.185)

for the former, and

ẋkink =
τ b

B̃k

(9.186)

for the latter case, where C̃k and B̃k are constants, τ0 the reference shear stress9, and m
a variable which quantifies the stress dependence of the kink velocity.

For the screw portions similar glide expressions apply, although furnished with some-
what different constants, which reflect the influence of the dislocation core on the segment

9The reference shear stress is not identical to the critical resolved shear stress.
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mobility. However, screw dislocations in three-dimensional simulations can also leave their
actual glide plane. For describing this cross-slip probability p in discrete calculations,
Fivel, Gosling, and Canova (1996) suggested using an expression of the form

p ∝ exp

(
(τf − τIII)V

kB T

)
(9.187)

where τf represents the effective friction stress, τIII the stage-III stress, and V the acti-
vation volume of the process. The nonconservative movement of jogs is climb-controlled
and can be described in accord with equation (9.183)

ẋclimb = B Fclimb =
D

kB T
Fclimb =

Fclimb

kB T
D0 exp

(
− H

kB T

)
(9.188)

where H is the activation enthalpy of self-diffusion in the bulk material. For considering
the influence of the local stress on the jog climb rate, equation (9.188) can be rewritten

ẋ′
climb =

Fclimb

kB T
D0 exp

(
− H

kB T

)
=

Fclimb

kB T
D0 exp

(
−
(
H f +Hm

)

kB T

)

=
Fclimb

kB T
D0 exp

(
− Hm

kB T

)
exp

(
−
(
H f − σh Ω

)

kB T

)
(9.189)

where Ω is the atomic volume which can be approximated by |b|3, σh the local hydrostatic
stress component, H f the enthalpy of formation of vacancies, and Hm their enthalpy of
migration (Friedel 1964; Hirth and Lothe 1968; Suzuki 1991).

The influence of osmotic forces (Section 9.4.2.5) which can gradually oppose jog climb
is usually neglected in phenomenological dislocation dynamics simulations. The omission
of such chemical effects is often justified by the assumption that jog drag-stimulated va-
cancy fluxes mutually compensate each other by short-range diffusional processes among
jogs with opposite sign. The self-interaction of such phenomenological dislocation simu-
lations is typically considered by including the analytical line tension approximation or
some numerical criteria derived therefrom (Devincre and Condat 1992).

9.5 Kinematics of Discrete Dislocation Dynamics

Dislocation dynamics can be used for the calculation of stress–strain curves and lattice
reorientations. By tracing all distances traveled by the individual dislocations during each
time step it is straightforward to use the Orowan equation for the calculation of the shear
rate during a particular time step γ̇ according to

γ̇ = ̺m b ¯̇xglide (9.190)

where ̺m is the density of mobile dislocations, b the magnitude of their Burgers vector,
and ¯̇xglide their average glide velocity.

In the case where N individual dislocations are considered in a two-dimensional si-
mulation, the right-hand side of equation (9.190) can be substituted by a sum over all
dislocations. The shear rate in the x1-direction can then be calculated by

γ̇x1 =
1

A

N∑

i

bix1
ẋi

x1
(9.191)
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where bix1
is the x1-component of the Burgers vector of the ith dislocation and ẋi

x1
its

velocity in the x1-direction during the considered time interval. A is the area of the
simulation cell. The shear rate in the x2-direction can be calculated analogously, i.e.

γ̇x2 =
1

A

N∑

i

bix2
ẋi

x2
. (9.192)

The shear rate ε̇x1 x2 can be calculated according to

ε̇x1x2 =
1

2
(γ̇x1 + γ̇x2) . (9.193)

This leads to a strain increment per simulation step ∆t which amounts to ∆εx1x2 =
ε̇x1x2 ∆t.

In three dimensions the strain rate tensor during a numerical experiment can be
calculated by applying Orowan’s equation to all segments in the array. Following equation
(9.191) the shear rate in the three spatial directions can be calculated by

γ̇x1 =
1

V

N∑

i

bix1
ẋi

x1
∆s γ̇x2 =

1

V

N∑

i

bix2
ẋi

x2
∆s γ̇x3 =

1

V

N∑

i

bix3
ẋi

x3
∆s

(9.194)
where ∆s the segment length and V the volume of the simulation box. The normal
components of the strain rate tensor are then determined by

ε̇x1x1 = γ̇x1 ε̇x2x2 = γ̇x2 ε̇x3x3 = γ̇x3 (9.195)

and its shear components by

ε̇x1 x2 =
1

2
(γ̇x1 + γ̇x2) ε̇x1 x3 =

1

2
(γ̇x1 + γ̇x3) ε̇x2 x3 =

1

2
(γ̇x2 + γ̇x3) (9.196)

The strain increments per simulation step ∆t amount to

∆εx1x1 = γ̇x1 ∆t ∆εx2x2 = γ̇x2 ∆t ∆εx3x3 = γ̇x3 ∆t (9.197)

and its shear components to

∆εx1x2 =
∆t

2
(γ̇x1 + γ̇x2) ∆εx1x3 =

∆t

2
(γ̇x1 + γ̇x3) ∆εx2x3 =

∆t

2
(γ̇x2 + γ̇x3)

(9.198)

The rotation rate of the lattice affected, ω̇latt
xixj

, which results from the shears on the
individual slip systems, can be computed from the rigid-body rotation rate, i.e. from the
skew symmetric portion of the discretized crystallographic velocity gradient tensor, ω̇spin

xixj
,

and from the antisymmetric part, u̇anti
xi,xj

, of the externally imposed macroscopic velocity

gradient tensor, u̇ext
xi,xj

:

ω̇latt
xixj

= u̇anti
xi,xj

− ω̇spin
xixj

=
1

2

(
u̇ext

xi,xj
− u̇ext

xj ,xi

)
− 1

2

(
γ̇xi

− γ̇xj

)
(9.199)
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Figure 9.9: Annihilation ellipse in 2D dislocation dynamics. It is constructed by the values
for the spontaneous annihilation spacing of dislocations that approach by glide and by
climb.

9.6 Dislocation Reactions and Annihilation

In the preceding chapters it was mainly long-range interactions between the dislocation
segments that were addressed. However, strain hardening and dynamic recovery are
essentially determined by short-range interactions, i.e. by dislocation reactions and by
annihilation, respectively.

Using a phenomenological approach which can be included in continuum-type simu-
lations, one can differentiate between three major groups of short-range hardening dis-
location reactions (Franciosi et al. 1980): the strongest influence on strain hardening is
exerted by sessile reaction products such as Lomer–Cottrell locks. The second strongest
interaction type is the formation of mobile junctions. The weakest influence is naturally
found for the case in which junctions are formed.

Two-dimensional dislocation dynamics simulations usually account for annihilation
and the formation of sessile locks. Mobile junctions and the Peach–Koehler interaction
occur naturally among parallel dislocations. The annihilation rule is straightforward. If
two dislocations on identical glide systems but with opposite Burgers vectors approach
more closely than a certain minimum allowed spacing, they spontaneously annihilate and
are removed from the simulation. Current two-dimensional simulations (Roters et al.
1996) use different minimum distances in the direction of glide (dg

ann ≈ 20|b|) and climb
(dc

ann ≈ 5|b|), respectively (Essmann and Mughrabi 1979) (Figure 9.9).
Lock formation takes place when two dislocations on different glide systems react to

form a new dislocation with a resulting Burgers vector which is no longer a translation
vector of an activated slip system. In the two-dimensional simulation this process can
be realized by the immobilization of dislocations on different glide systems when they
approach each other too closely (Figure 9.10). The resulting stress fields of the sessile
reaction products are usually approximated by a linear superposition of the displacement
fields of the original dislocations before the reaction.

Dislocation reactions and the resulting products can also be included in three-dimen-
sional simulations. Due to the larger number of possible reactions, two aspects require
special consideration, namely, the magnitude and sign of the latent heat that is associated
with a particular reaction, and the kinematic properties and the stress field of the reaction
product.

The first point addressed can be solved without using additional analytical equations.
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Figure 9.10: Reaction ellipse in 2D dislocation dynamics. It is constructed by the values
for the spontaneous reaction spacing of dislocations that approach by glide and by climb.

For investigating whether a particular reaction between two neighboring segments will
take place or not, one subtracts the total elastic and core energy of all initial segments
that participate in the reaction from that of the corresponding configuration after the
reaction. If the latent heat is negative, the reaction takes place. Otherwise, the segments
pass each other without reaction. In face-centered cubic materials two dislocations can
undergo 24 different types of reactions. From this number only 12 entail sessile reaction
products. Assuming simple configurations, i.e. only a small number of reacting segments,
the corresponding latent heat data can be included in the form of a reference table.

The short-range back-driving forces that arise from cutting processes are calculated
from the corresponding increase in line energy. For either of the cutting defects, the
increase in dislocation line amounts to the Burgers vector of the intersecting dislocation.
Although this short-range interaction does not impose the same immediate hardening
effect as a Lomer–Cottrell lock, it subsequently gives rise to the so-called jog drag effect,
which is of the utmost relevance to the mobility of the dislocations affected.

The treatment of annihilation is also straightforward. If two segments have a spacing
below the critical annihilation distance (Essmann and Mughrabi 1979) the reaction takes
place spontaneously. However, the subsequent reorganization of the dislocation segment
vectors is not simple and must be treated with care.

The stress and mobility of glissile dislocation junctions can be simulated by using a
simple superposition of the segments involved. Unfortunately, this technique does not ade-
quately reflect the behavior of Lomer–Cottrell locks. Such sessile junctions must therefore
be artificially rendered immobile.

9.7 Application of Dislocation Statics and Dynam-

ics in Materials Science

The literature on discrete dislocation dynamics can be grouped essentially into simulations
in two dimensions and in three dimensions. Two-dimensional (2D) calculations can be
carried out either with flexible dislocations which are constrained to lie in their glide plane
or with nonflexible infinite straight dislocations which can leave their glide plane. While
the first type of 2D simulation provides a view normal to the glide plane, the second one
provides a lateral perspective parallel to the dislocation tangent. Three-dimensional (3D)
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simulations are independent of such geometrical constraints.

Field of application Reference

two-dimensional, Neumann (1971)
straight dislocations Lépinoux and Kubin (1987)

Ghoniem and Amodeo (1989)
Gulluoglu, Srolovitz, LeSar, and Lomdahl (1989)
Amodeo (1990)
Gulluoglu, LeSar, Srolovitz, and Lomdahl (1990)
Gulluoglu and Hartley (1992)
Gulluoglu and Hartley (1993)
Lubarda, Blume, and Needleman (1993)
Raabe and Roters (1995)
van der Giessen and Needleman (1995)
Wang and LeSar (1995)
Raabe, Roters, and Marx (1996)
Roters and Raabe (1996)
Roters, Raabe, and Gottstein (1996)
Roters and Raabe (1997)
Zacharopoulos, Srolovitz, and LeSar (1997)

two-dimensional, Foreman and Makin (1966)
curved dislocations Bacon, Kocks, and Scattergood (1973)

Scattergood and Bacon (1975)
Rönnpagel (1987)
Rönnpagel, Streit, and Pretorius (1993)
Mohles and Rönnpagel (1996)
Mohles (1996)

three-dimensional Devincre and Condat (1992)
Demir, Hirth, and Zbib (1992)
Kubin, Canova, Condat, Devincre, Pontikis, and Bréchet (1992)
Kubin (1993a)
Kubin (1993b)
Devincre and Kubin (1994)
Rhee, Hirth, and Zbib (1994)
Devincre (1995)
Raabe (1995a)
Raabe (1995b)
Raabe (1996a)
Raabe (1996b)
Devincre (1996)
Raabe (1998a)



9.8 Examples of Dislocation Dynamics Simulations in Materials Science 171

Figure 9.11: Gradual generation of shear-type dislocation bands in a 2D dislocation dy-
namics simulation (Ghoniem and Amodeo 1989).

9.8 Examples of Dislocation Dynamics Simulations

in Materials Science

9.8.1 Two-Dimensional Dynamics

Two-dimensional dislocation dynamics simulations are pertinent tools in understanding
the origin of structure formation and dislocation patterning. This is obvious from Figures
9.11 and 9.12, which were calculated by some of the pioneers in this domain (Ghoniem
and Amodeo 1989; Amodeo 1990; Gulluoglu and Hartley 1992). Both examples show the
formation of dislocation patterns, i.e. of areas with a high dislocation density and with
a low dislocation density. Figure 9.13 shows a dislocation cell structure together with
the local microtexture. The misorientation distribution was calculated from the spatial
distribution of the antisymmetric portion of the displacement gradient tensor (Roters and
Raabe 1997).

Mohles and Rönnpagel (1996) have conducted two-dimensional dislocation dynamics
calculations using a model where the dislocations are regarded as taut elastic defects that
cannot leave their actual glide plane. The simulations presented were conducted with
periodic boundary conditions. The model was used for the prediction of the interaction
between solute atoms and moving flexible dislocations (Figure 9.14).

9.8.2 Three-Dimensional Dynamics

Two-dimensional dislocation dynamics simulations suffer from the disadvantage that they
do not allow the dislocations to cross-slip, climb, and multiply in a straightforward man-
ner. However, these kinetic aspects can be of relevance in the prediction of dislocation
patterning phenomena.
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Figure 9.12: Gradual generation of dense dislocation walls in a 2D dislocation dynamics
simulation (Gulluoglu 1992).

Figure 9.13: 2D Dislocation cell structure together with the local microtexture in x and y
direction. The misorientation distribution was calculated from the spatial distribution of
the antisymmetric portion of the displacement gradient tensor (Roters and Raabe 1997).
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Figure 9.14: 2D dislocation dynamics calculations where the dislocations are regarded
as taut elastic defects that cannot leave their actual glide plane (Mohles and Rönnpagel
1996).
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Figure 9.15: Initial 3D dislocation configuration in an fcc single crystal (Kubin 1993).

Figures 9.15 and 9.16 show an example of the pioneering simulations of Kubin (1993a)
in this field. The dislocation lines are subdivided into piecewise straight sequentially ar-
ranged segments. The calculations have been conducted for an fcc crystal with a multislip
orientation. The individual dislocation portions are aligned parallel to potential valleys
with a low crystal index so as to either assume pure edge or pure screw character. This
technique maps the abrupt- or hard-kink model, where the influence of the Peierls force
on the dislocation shape exceeds that of the self-interaction force. The results can give
some ideas of the early stages of dislocation cell formation.

Similar calculations have been carried out by Raabe (1995a). The simulations pre-
sented consider thermally activated climb (Figures 9.17, 9.18). The scaling length of these
simulations is much below that of the calculations shown above. However, they therefore
involve fewer dislocation lines. The individual dislocation segments can have arbitrary
orientation and mixed character. This approach reflects the smooth-kink model. The
dynamics of the dislocations are computed by solving Newton’s law of motion for each
segment assuming local stress equilibrium.
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Figure 9.16: 3D dislocation configuration after a strain of about 10−4 and 10−3 (Kubin
1993).

Figure 9.17: 3D dislocation dynamics simulation considering climb; structure after a total
strain of about 10−4 (Raabe 1995).
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Figure 9.18: 3D dislocation dynamics simulation considering climb; structure after a total
strain of about 10−3 (Raabe 1995).



Chapter 10

Ginzburg–Landau-Type

Phase Field Kinetic Models

10.1 Introduction

The capability of predicting equilibrium and non-equilibrium phase transformation phe-
nomena, particularly of the liquid–solid and solid–solid types, at a microstructural scale,
is among the most challenging topics in modern materials science. This is due to the
fact that a detailed knowledge of the structural, topological, morphological, and chemical
characteristics of microstructures that arise from such transformations forms the basis of
most, if not all, advanced microstructure–property models. For instance, to predict such
important characteristics of engineering materials as strength, electrical conductivity, or
toughness requires a rather detailed consideration of features like the type, shape, and
distribution of second phases, the grain size, or the solute concentration of certain atoms.
Introducing methods to predict such microstructure characteristics of materials can thus
be regarded as an opportunity to open the door to the microstructural tailoring of ma-
terials, i.e. to the design of specific microstructures with regard to beneficial material
property profiles (Brout 1965; Stanley 1971; Warlimont 1974; Christian 1975; Gunton
et al. 1983; Khachaturyan 1983; Ratke and Thieringer 1985; Ratke 1987; Haasen 1991;
Porter and Easterling 1992; Johnson et al. 1994).

It is clear, that models which aim to predict not only final thermodynamic equilibrium
states but also realistic microstructures must consider both the various chemical, elastic,
electromagnetic, and thermal contributions to the thermodynamic potential functions and
the kinetics of the lattice defects involved. While the thermodynamics of phase trans-
formation phenomena only prescribes the general direction of microstructure evolution,
with the final tendency to eliminate all non-equilibrium lattice defects1, the kinetics of
the lattice defects determines the actual microstructural path. For instance, the rate and
the path of microstructural changes such as diffusional decomposition in a supersaturated
substitutional alloy, nonconservative motion of edge dislocations, or migration of heavily
curved homophase interfaces, are not only governed by the decrease in the free energy

1According to Haasen (1984) only certain point defects can be regarded as equilibrium lattice defects,
since their entropy contribution compensates their enthalpy of formation or solution, respectively.
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of the system, but also by the temperature-dependent mobility of the various defects in-
volved. The dominance of kinetics in structure evolution of technical alloys has the effect
that the path towards equilibrium often leads the system through a series of competing
non-equilibrium microstructural states.

In this context, it is an essential fact that it is not those microstructures that are
close to equilibrium, but those that are in a highly non-equilibrium state, that provide
advantageous materials properties. In that sense microstructure optimization at the meso-
scopic level has to concentrate on the control and prediction of kinetics.

In past decades the exploitation of non-equilibrium effects associated with phase trans-
formations for the optimization of materials properties and manufacturing processes was
mostly confined to the use of empirical methods.

Only recently has the advent of powerful computer facilities made it possible for the
first time to render fundamental theoretical state variable approaches, that in parts have
been known for a long time, into numerical codes for tackling solid- and liquid-state phase
transformation kinetics in a discretized fashion, considering both spatial and temporal
changes in the chemical, crystallographic, and structural fields. These state variables
appear frequently as so-called phase field variables and give this chapter its title.

Among the most versatile approaches in this domain are the Cahn–Hilliard and Allen–
Cahn kinetic phase field models, which can be regarded as metallurgical derivaties of the
theories of Onsager and Ginzburg–Landau. These models represent a class of very ge-
neral and flexible phenomenological continuum field approaches which are capable of de-
scribing continuous and quasi-discontinuous phase separation phenomena in coherent and
non-coherent systems. The term quasi-discontinuous means that the structural and/or
chemical field variables in these models are generally defined as continuous spatial func-
tions which change smoothly rather than sharply across internal interfaces.

While the Cahn–Hilliard model originally describes the kinetics of transformation
phenomena with conserved field variables (e.g. chemical concentration), the Allen–Cahn
model describes transformations with nonconserved variables (e.g. crystal orientation,
long-range order, crystal structure).

While the original Ginzburg–Landau approach was directed at calculating electro-
magnetic second-order phase transition phenomena, advanced metallurgical variants are
capable of addressing a variety of transformations in metals, ceramics, and polymers, such
as spinodal decomposition, competitive particle ripening, non-isostructural precipitation
and growth phenomena, grain growth, solidification, and dendrite formation in terms
of corresponding chemical and structural phase field variables (Cahn and Hilliard 1958;
Cahn 1961; Cahn 1962; Cahn and Hilliard 1965; Khachaturyan 1968; Morral and Cahn
1971; Langer et al. 1975; Khachaturyan 1983; Gurtin 1989; Chen and Khachaturyan
1991a; Chen and Khachaturyan 1991b; Chen and Khachaturyan 1991c; Wang et al. 1991;
Gurtin 1996; Chen et al. 1992; Takenaka and Hashimoto 1993; Wang et al. 1993; Cahn
and Taylor 1994; Johnson et al. 1994; Chan and Rey 1995; Dreyer 1995; Chen and Wang
1996; Löchte and Gottstein 1996).

This chapter has the following strategy. First, some analytical fundamentals will
be reviewed, which are of relevance in the modeling of diffusive phase transformations in
solids, viz., Fick’s second law, which describes the kinetics of concentration profile changes,
the Gibbs–Thomson equation, which relates the chemical potential to the surface-to-
volume ratio ∂A/∂V , and the Lifshitz–Slyozov–Wagner (LSW) theory, which provides an
analytical approach to describe particle coarsening. Subsequently, advanced approaches
to the space- and time-discretized description of diffusive phase transformations will be
reviewed, focusing on the continuum and microscopic phase field kinetic concepts.
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10.2 Diffusional Phase Transformation

10.2.1 The Phenomenological Laws of Diffusion

An equilibrium between any set of phases α, β, γ, ... in an isobaric–isothermal system is
not described by the absence of concentration gradients in the sense of Fick’s first law,
but by the condition that the chemical potential µ of any component A, B, C, ... is the
same in every phase (Ludwig 1979; Atkins 1986).

µα
A = µβ

A = µγ
A = ...

µα
B = µβ

B = µγ
B = ...

µα
C = µβ

C = µγ
C = ...

...

(10.1)

For a one-dimensional binary isothermal system with components A and B containing
vacancies V, the flux densities ji of the respective particles i, i.e. the net number that
passes through a plane of unit area in time, is given by

jA = −MAA
∂µA

∂x
−MAB

∂µB

∂x
−MAV

∂µV

∂x

jB = −MBA
∂µA

∂x
−MBB

∂µB

∂x
−MBV

∂µV

∂x

jV = −MVA
∂µA

∂x
−MVB

∂µB

∂x
−MVV

∂µV

∂x

(10.2)

where the coefficients Mij , which are often referred to as mobilities, are connected by a
number of relations (Shewmon 1963; Crank 1967; Haasen 1984).

Provided sinks and sources of the particles A, B, and vacancies V, are absent, the
following flux density balance equation holds:

∑

i

ji = jA + jB + jV = 0 (10.3)

For the general case it must be considered that real microstructures are often not free from
sinks and sources. For instance, while solute atoms can be stored temporarily at other
lattice defects such as grain boundaries and dislocations, short-range vacancy diffusion
cycles are typical of nonconservative dislocation motion. However, these effects will be
neglected in the following. The coefficients Mij are related by

∑

i

MAi = MAA +MAB +MAV = 0

∑

i

MBi = MBA +MBB +MBV = 0

∑

i

MVi = MVA +MVB +MVV = 0

(10.4)

From the Onsager relations of reciprocity (1931a) it follows that the matrix of the mobility
coefficients is always symmetric (Shewmon 1963; Crank 1967)

Mij = Mji (10.5)
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Equations (10.2) can then be written

jA = −MAA
∂

∂x
(µA − µV) −MAB

∂

∂x
(µB − µV)

jB = −MAB
∂

∂x
(µA − µV) −MBB

∂

∂x
(µB − µV)

(10.6)

If the vacancies are everywhere in equilibrium, i.e. ∂µV/∂x = 0, equations (10.6) reduce
to

jA = −MAA
∂µA

∂x
−MAB

∂µB

∂x

jB = −MAB
∂µA

∂x
−MBB

∂µB

∂x

(10.7)

Anticipating that the nondiagonal terms of the mobility matrix Mij are negligible, one
obtains an expression for the phenomenological first law of Fick:

jA = −MAA
∂µA

∂x
= −MAA kBT

∂ ln aA

∂x

jB = −MBB
∂µB

∂x
= −MBB kBT

∂ ln aB

∂x

(10.8)

where µ = µ0 + kBT ln a and a is the chemical activity. These expressions reproduce the
well-known form of Fick’s law

jA = −D̃A
∂cA
∂x

jB = −D̃B
∂cB
∂x

(10.9)

where D̃i is the chemical diffusion coefficient, i.e.

D̃i = Di

(
1 +

d ln γi

d ln νi

)
(10.10)

where γi is the activity coefficient of the component i and νi = ci/c. Using the Gibbs–
Duhem equation

∑
i(ni dµi) = 0, the net flux density j = jB − jA can be written

j = −M ∂

∂x
(µB − µA) (10.11)

If the nondiagonal terms are not neglected M amounts to

M =
1

2
[ (1 − c)(MBB −MAB) + c(MAA −MAB) ] (10.12)

where c = cB. Expressing the Helmholtz free energy density f in terms of the chemical
potential and using the Gibbs–Duhem relation leads to

∂f

∂c
= µB − µA (10.13)

The free energy F is obtained by integration over the volume,

F =

∫

V

f(c(r)) dV (10.14)
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where dV = dx1 dx2 dx3. Fick’s first law can then be written in a modified form:

j = −M ∂

∂x

∂f

∂c
= −M ∂2f

∂x∂c

∂c

∂c
= −M ∂2f

∂c2
∂c

∂x
(10.15)

The derivation of Fick’s second law makes use of the continuity equation which states that
any spatial divergence in the flux density must entail a temporal concentration change.
To express this matter formally, one may write for a one-dimensional system

∂c

∂t
+
∂j

∂x
= 0 (10.16)

Fick’s second law can then be written

∂c

∂t
=

∂

∂x

(
M

∂

∂x

∂f

∂c

)
=

∂

∂x

(
M

∂2f

∂c2
∂c

∂x

)
(10.17)

This type of kinetic equation can be interpreted as a diffusional form of the more general
Onsager or Ginzburg–Landau equation (Onsager 1931a; Onsager 1931b):

∂ψi

∂t
= −M̂ij

δF̃

δψj
(10.18)

where F̃ is the free energy functional of the various functions ψj , δF̃ /δψj the thermody-
namic driving force, t the time, M̂ij the symmetric Onsager kinetic operator matrix, and
i = 1, 2, ..., ϑ the variable of the ϑ dynamic fields. The Einstein summation is implied.
Expressions according to equation (10.18) provide a fundamental means of describing the
kinetic equations of dynamic fields as a function of the thermodynamic driving force. It
should be noted that although equation (10.18) is linear with respect to the driving force,
it can be highly nonlinear with respect to the fields ψi. It is well known that such non-
linear coupled partial differential equations have solutions that depend in a very sensitive
manner on the starting conditions.

10.2.2 Ostwald Ripening and Gibbs–Thomson Equation

As early as 1900 the chemist W. Ostwald carried out the first systematic work on ripening.
In his study he investigated the dissolution of HgO particles2 in water. The experiments
showed that small HgO particles had a larger solubility, i.e. a larger tendency to dissolve
in water, than large particles. He interpreted this observation correctly in terms of the
dependence of the chemical potential on the respective particle surface curvature as pre-
dicted by the Gibbs–Thomson equation (Ostwald 1900). In its original meaning the term
“Ostwald ripening” is confined to a coarsening reaction where the second-phase particles
act as the only sinks and sources of solute atoms. In the present chapter this narrow
definition is dropped and Ostwald ripening is used as a general synonym for competitive
coarsening phenomena among polydispersed precipitates.

Ripening phenomena are of the utmost importance in the manufacturing and long-
term use of all precipitation-hardened alloys, especially technical aluminum alloys and su-
peralloys. While the former materials represent main structural compounds in aerospace
applications, the latter ones, as blades, are essential parts in high-temperature turbines.

2The notion “particle” in materials science is often reserved for indicating ceramic bonding. However,
in this chapter the terms particle, precipitate, and precipitation will be used synonymously.
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In these systems Ostwald ripening starts beyond the nucleation stage from a quenched
supersaturated state under isothermal conditions. It determines the dynamic evolution
of the size distribution of the precipitation microstructure by linking the diffusion profiles
near the surface of the precipitates, cM(R), through the respective average concentration
of the matrix c̄ = c(R∗). Coarsening phenomena are observed in conjunction with many
first- and second-order phase transitions, such as precipitation of supersaturated alloys,
eutectic, peritectic, eutectoid, and peritectoid phase transitions, isothermal primary and
secondary dendrite growth, late stages of spinodal decomposition, and in liquids (War-
limont 1974; Garrido 1980; Voorhees and Glicksman 1984; Ratke and Thieringer 1985;
Khachaturyan et al. 1988; Haasen 1991; Wagner and Kampmann 1991).

For deriving the Gibbs–Thomson equation as a basis to understand growth and shrink
phenomena, it is useful to dismantle the Gibbs free enthalpy G according to

G = GS +G0 (10.19)

where G0 is the free enthalpy contribution that is independent, and GS the contribution
that is not independent of the interface area. The latter portion may depend on the
orientation if at least one of the interacting phases is ordered, e.g. crystalline. For isotropic
interface energy equation (10.19) can be written

G = σ
MP

A
MP

+ G0 (10.20)

where σ
MP

is the specific isotropic interface energy and and A
MP

the interface area between
the spherical precipitate P and the matrix M.

The chemical potential of atom type A in the precipitate P amounts to

µP
A =

(
∂G

∂NA

)

T, p

= µA0 + σ
MP

∂A

∂NA
(10.21)

where µA0 is the interface-independent portion of the chemical potential and NA the
number of atoms in the precipitation. With the precipitation volume V and the average
atomic volume Ω = ∂V/∂NA equation (10.21) can be written

µM
A = µA0 + Ω

∂A

∂V
(10.22)

Considering only spherical precipitates with radius R, the term ∂A/∂V can be written
dA/dV , which is equal to the curvature 2/R. Equation (10.22) then reduces to

µP
M = µA0 +

2 Ω σ
MP

R
(10.23)

When assuming an ideal solution, the chemical potential of atoms A in the matrix can be
written

µM
A = µM,0

A + kBT ln
(
cM
)

(10.24)

where µM,0
A is the concentration-independent part of the chemical potential of atoms A

in the matrix. In thermodynamic equilibrium the chemical potential of atoms A must be
the same in all phases, i.e.

µP
A = µM

A (10.25)

Combining equations (10.23)–(10.25) leads to

kBT ln
(
cM
)

=
2 Ωσ

MP

R
+ µA0 − µM,0

A (10.26)
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Figure 10.1: Schematic illustration of the concentration profiles near the surfaces of var-
ious precipitations. R indicates the particle radius and R∗ the critical radius. cp is
the equilibrium concentration inside the particle and c̄ the average matrix concentration
which corresponds to the equilibrium concentration near the surface of a precipitation
with critical radius R∗.

If the curvature 1/R is very small, i.e. R → ∞, equation (10.26) can be written

kBT ln
(
cM (R → ∞)

)
= kBT ln

(
cM∞

)
= µA0 − µM,0

A (10.27)

where the value of cM∞ corresponds to the equilibrium concentration of atoms A in the
matrix as given by the solubility curve in the phase diagram. By inserting equation (10.27)
into equation (10.26) one obtains the well-known Gibbs–Thomson equation3,

cM(R) = cM∞ exp

(
2 σ

MP
Ω

kB T

1

R

)
(10.28)

which reflects that the equilibrium concentration of atoms A near the surface of a precipi-
tation depends in an exponentially inverse manner on its actual radius R. If the argument
in the exponential function is very small, i.e. (2σ

MP
Ω/(kBT R)) ≪ 1, equation (10.28)

may be linearized:

cM(R) ∼= cM∞

(
1 +

2 σ
MP

Ω

kBT

1

R

)
(10.29)

While the concentration directly near the surface of each precipitation is prescribed by
equation (10.29), the average matrix concentration at a sufficiently large distance from
the particle amounts to c̄. As will be discussed later, this assumption is only valid for
an infinitely small precipitated volume fraction. The average matrix concentration c̄
corresponds to the equilibrium concentration near the surface of a precipitation with
critical radius R∗. Its relation to the actual particle radius determines the local growth
rate. Figure 10.1 shows that the particle radius or, more precisely, its surface-to-volume
ratio decides whether it will shrink (cM(R) > c̄), grow (cM(R) < c̄), or remain unchanged
(cM(R∗) = c̄).

3All functions that express the chemical potential or the concentration as a function of the incremen-
tal change of surface per volume (curvature in the case of spherical precipitates) are typically referred
to as Gibbs–Thomson equations.
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The average matrix concentration must therefore be a function of time and can be
calculated by

c(R∗) = c̄ =

∫∞

0
c(R)f(R, t) dR∫∞

0
f(R, t) dR

(10.30)

where f(R, t) is the distribution of the spherical precipitates in space and time and
f(R, t) dR the number of precipitations with a radius within the range R to R+dR.
Combining equation (10.30) and equation (10.29) gives a simple expression for the criti-
cal radius R∗:

c(R∗) = c̄ =

∫∞

0
c(R)f(R, t) dR∫∞

0
f(R, t) dR

= cM∞

(
1 +

2σ
MP

Ω

kBT

1

R∗

)
(10.31)

which leads to

R∗ =
2σ

MP
Ω

kBT

1

ln
(

c̄
cM∞

) (10.32)

A more detailed derivation of equation (10.32) requires the consideration of chemical
diffusion (Martin and Doherty 1976). Due to Ostwald ripening the average precipitate
number density changes from ≈ 1025m−3 to less than ≈ 1019m−3 in typical two-phase
alloys (Wagner and Kampmann 1991).

10.2.3 Lifshitz–Slyozov–Wagner Theory

The classical analytical description of isothermal competitive ripening phenomena of poly-
dispersed precipitates is provided by the LSW theory (Lifshitz and Slyozov 1961; Wagner
1961) The basic assumptions that are made in the analytical derivation of the LSW the-
ory are that the volume fraction of the precipitate phase is (close to) zero, no relative
movement of matrix and precipitate occurs, the matrix is infinite, the precipitates are
equiaxial, no elastic stresses occur, and stationary conditions exist.

For the derivation of the LSW theory it is more convenient to use the general operators
∇ and ∆ instead of Cartesian derivatives. The volume change during ripening of a particle
is proportional to the diffusion flux that penetrates its surface. The flux counts positive
when the atoms diffuse from the precipitation into the matrix. To express this matter
formally, for isotropic diffusion through the interface one can write

dV

dt
= 4πR2 dR

dt
= −jΩ 4πR2 (10.33)

where j is the flux density, Ω the atomic volume, and R the radius of a spherical parti-
cle. The above formulation implies the absence of a relative movement of precipitation
and matrix (Ratke and Thieringer 1985; Wan and Sahm 1990a; Wan and Sahm 1990b).
Neglecting the concentration dependence of the diffusion coefficient, the flux density can
be calculated using Fick’s first law, equation (10.8), in its conventional form,

j = −D ∇c (10.34)

where D is the diffusion constant of A atoms near the surface of the precipitate. The
neglect of chemical diffusion is admissible in this context since the LSW theory generally
stipulates c → 0. Using the stationary form (∂c/∂t = 0) of Fick’s second law (Laplace
equation) without consideration of chemical diffusion

∇ (D∇c(r)) = D∇2c(r) = ∇2c(r) = ∆c(r) = 0 (10.35)
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where the nabla operator ∇ refers to the first and the Laplace operator ∆ to the second
spatial derivative, under the border conditions

c(r = R) ≡ cR

c(r → ∞) = c̄
(10.36)

one obtains the concentration gradient at the surface of the precipitate:

∇c |R =
c̄− cR
R

(10.37)

The growth rate of the particle amounts to

dR

dt
= ΩD

c̄− cR
R

(10.38)

Combining equation (10.38) with

cR = c∞ +
λ

R
and c̄ = c∞ +

λ

R∗
(10.39)

where λ = 2σ
MP

Ω c∞/(kBT ), leads to

dR

dt
=
λ ΩD

R2

(
R

R∗(t)
− 1

)
(10.40)

(Greenwood 1956). During the ripening process the large precipitates grow at the expense
of the small ones. This leads to a shift in the average particle size and thus to a different
average matrix concentration c̄. Thus, the critical particle radius R∗(t) will gradually
increase as a function of time.

The corresponding evolution of the distribution function of the spherical precipitates
f(R, t) satisfies the continuity equation (Lifshitz and Slyozov 1961; Wagner 1961):

∂f(R, t)

∂t
+

∂

∂R

(
f(R, t)

∂R

∂t

)
= 0 (10.41)

This nonlinear partial differential equation can be rewritten by introducing the dimen-
sionless parameters

ρ = R/R∗ and τ = ln

(
R∗

R∗
0

)3

(10.42)

where R∗
0 is the critical particle radius at time t0. As was shown by Lifshitz and Slyozov

(1961) and Wagner (1961) for the asymptotic case, t→ ∞, the dimensionless distribution
function f(ρ, τ ) reveals a stationary state where it may be separated according to

f(ρ, τ ) = g(τ ) · h(ρ) (10.43)

By using this separation ansatz the dimensionless distribution function can be solved.
The first function g(τ ) describes the temporal evolution of the critical radius R∗:

g(τ ) = g0 exp(−β τ ) (10.44)

where τ = τ (R∗) (equation (10.42)). The second function h(ρ) describes the particle size
distribution:

h(ρ) =
81

25/3

ρ2

(3/2 − ρ)11/3

1

(3 + ρ)7/3
exp

(
− ρ

3/2 − ρ

)
(10.45)
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It must be considered that this solution obtained through separation is valid only for
t → ∞, i.e. it applies to the late stages of ripening. Finally, LSW predicts a temporal
evolution of the critical radius R∗ according to

R∗3 −R∗
0
3

= ν ε(t− t0) = C
LSW

(t− t0) (10.46)

where ε and C
LSW

are material-dependent constants and ν a material-independent con-
stant (ν

LSW
= 4/9).

Based on the original LSW theory a number of refined analytical mean field ap-
proaches, considering for example nonzero precipitate volume fractions, were suggested.
These theories typically predict a flattened particle size distribution and an identical time
dependence for the evolution of the critical radius, namely, R∗ ∝ t1/3.

10.3 Continuum Phase Field Kinetic Models

10.3.1 Cahn–Hilliard and Allen–Cahn Model

When a homogeneous, single-phase, binary solution is rapidly quenched from a sufficiently
elevated homologous temperature to a temperature below its upper critical solution tem-
perature, gradual phase separation may occur. However, phase transition will only hap-
pen if the quench brings the solution into the two-phase coexistence region and if the
temperature suffices for diffusion.

Phase separation may proceed through the discontinuous process of nucleation and
growth in the metastable region, or by the continuous process of spinodal decomposition
in the unstable region (Cahn and Hilliard 1971; Christian 1975; Gunton et al. 1983;
Ratke 1987; Wagner and Kampmann 1991). While small concentration fluctuations in
the metastable region increase the total free energy of the system in terms of the nucle-
ation energy, a sufficiently large but finite concentration (concentration in the precipitate)
perturbation can degrade it. This renders the entire solid solution unstable and leads to
phase separation by discontinuous nucleation and subsequent growth.

In contrast, continuous phase separation, as described by spinodal decomposition,
gradually degrades the free energy right from the beginning of phase transition, i.e. it
is a non-activated process and does not reveal any threshold energy. Such coherent,
i.e. isostructural, decomposition phenomena are theoretically described by the Cahn–
Hilliard model (1958), which combines the generalized law of diffusion (equations (10.17)
and (10.18)) with a Landau energy term (Section 10.3.2). The extension of the original
Cahn–Hilliard model to non-coherent phase transformations, i.e. transitions which change
the long-range order, the crystal orientation, or the crystal structure, is provided by the
Allen–Cahn model (1979) and its generalized derivatives.

While the Cahn–Hilliard model describes the kinetics of transformation phenomena
with conserved field variables (e.g. chemical concentration), the Allen–Cahn model de-
scribes transformations with nonconserved variables (e.g. long-range order).

Both the Cahn–Hilliard model and the Allen–Cahn model can in certain cases be
solved analytically. However, in advanced computational materials science applications,
the approaches are transcribed into a form that is discrete in space, i.e. the time-dependent
variables are defined as spatial field variables, which requires the employment of numer-
ical solution methods (Khachaturyan 1983; Chen and Khachaturyan 1991a; Chen et al.
1992; Johnson et al. 1994; Chan and Rey 1995; Chen and Wang 1996; Wang et al. 1996).
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Figure 10.2: Schematic one-dimensional representation of a sharp (a) and of a diffuse (b)
interface. Grain boundaries are in the phase field models not sharp but realized in terms
of gradients between 0 and 1 in the orientational field variable.

The dependence of the variables on the spatial coordinates enables one to prescribe he-
terogeneous composition and structure phase fields, and allows one to simulate both the
kinetics and the resulting morphology associated with phase separation. Since spatial gra-
dients in the various conserved and nonconserved field variables (concentration, structure,
orientation, long-range order) represent diffuse, i.e. non-sharp, interfaces between phases,
the underlying models are sometimes also referred to as “phase field kinetic models” or
“diffuse phase field kinetic models” (Figure 10.2).

The generalized phase field methods are based on furnishing a set of Ginzburg–Landau
or Onsager kinetic equations, equation (10.18), with an appropriate well-fitted Landau-
or Redlich–Kister-type free energy density functional that may depend on both conserved
and nonconserved field variables.

∂c(r, t)

∂t
= M ∇2 δF̃

δc(r, t)

∂η1(r, t)

∂t
= −L̂1j

δF̃

δηj(r, t)

...

∂ηϑ(r, t)

∂t
= −L̂ϑj

δF̃

δηj(r, t)

(10.47)

where c(r, t) is the concentration field variable, which is defined here as the solvent volume

fraction, ηi(r, t) are the i different structure field variables with i = 1, ..., ϑ, F̃ is the free
energy functional, t the time, r the spatial coordinate, L̂ij the symmetric matrix of the
kinetic structure operators, M the kinetic coefficient of diffusion (mobility), and ϑ the
number of dynamic structure fields. It is stipulated that the coefficients M and L̂ij are
independent of the structure parameters and of the concentration. The local value of the
chemical potential is given by the common derivative

(
δF̃

δχi(r, t)

)

T,j 6=i

= µi(r) (10.48)

where χi(r, t) is the generalized field form of the original functions c(r, t) and ηj(r, t). If
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Figure 10.3: Typical “double-well” form of the homogeneous portion in the free energy
density term f(c(r, t)) in the case of a binary solid solution for describing spinodal systems.
The arrow indicates the increase in temperature.

the effect of the structural parameters on the chemical potential is neglected, the derivative
δF̃/δc(r, t) corresponds to the local value of the chemical potential µ(r).

If M becomes a function of concentration, for instance in the case of large concentra-
tions, the first Onsager relation in equations (10.47) must be written in the form

∂c(r, t)

∂t
= ∇

(
M ∇ δF̃

δc(r, t)

)
(10.49)

The Cahn–Hilliard model is based on the first expression in equations (10.47) and the
assumption that a concentration field exists, which characterizes the phase of the system
at each point in space and time, and that the total free energy of an inhomogeneous binary
solution can be expressed through its energy density as a functional of that concentration
field and its gradients in the form

F̃ =

∫

V

ft (c(r, t)) dV ≡
∫

V

(
f(c(r, t)) + κ (∇c(r, t))2

)
dV (10.50)

where V is the volume occupied by the system, ft(c(r, t)) the total density of the free
energy, f(c(r, t)) the homogeneous portion of ft(c(r, t)), i.e. the free energy density of the
homogeneous phase with no gradients, and κ(∇c(r, t))2 a gradient term for the descrip-
tion of additional free energy in inhomogeneous systems, for instance interfacial energy.
The constant κ is positive and related to the respective interfacial constants. It can be
regarded as the weighting constant in the interfacial “penalty” term, quantifying the sys-
tem’s tendency to reduce the total interfacial area. Since the term κ(∇c(r, t))2 amounts
to a non-sharp description of interfaces, its application is straightforward for the identifi-
cation of interfaces arising from concentration changes, but less obvious for the treatment
of boundaries arising solely from structure changes, such as grain boundaries. The ho-
mogeneous portion f(c(r, t)) in the free energy density term is in the case of spinodal
problems usually assumed to have a “double-well” form (Figure 10.3). It should be noted
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in this context that for the realistic simulation of continuous phase separation this ho-
mogeneous portion in the free energy must be fitted to describe a typical spinodal free
energy curve including convex and concave sections. A classical chemical approach for
the approximation of f(c(r, t)) is

f(c(r, t)) = f0(c(r, t)) + floc(c(r, t)) − Ts(c(r, t)) (10.51)

where f0(c(r, t)) is the equilibrium free energy density function of an ideal two-phase solu-
tion, floc(c(r, t)) the local energy density, and s(c(r, t)) the molar entropy. In isostructural
systems with fluctuations only in the chemical field the local energy density is identical
to the chemical mixing energy density. For an ideal mixture f0(c(r, t)) depends on the
chemical potential of the pure constituents, say A and B, weighted linearly as a function
of the concentration:

f0(c(r, t)) = c(r, t) µA
0 + (1 − c(r, t)) µB

0 (10.52)

According to the Redlich–Kister approach, the local or mixing energy of a solid solution
containing A and B atoms can be approximated by

fR
loc(c(r, t)) = c(r, t) ( 1 − c(r, t) )

∑

i

Ci
A↔B(T ) [ ( 1 − c(r, t) ) − c(r, t)]i (10.53)

where Ci
A↔B(T ) is a set of phenomenological coefficients, which in part is dependent on

the temperature, and must be extracted from experiments or determined theoretically.
The entropy contribution, which ensures that the slope of f(c(r, t)) goes to infinity as c
goes to 0 or 1, can be written

s = −R [ c(r, t) ln c(r, t) + ( 1 − c(r, t) ) ln( 1 − c(r, t) ) ] / Ωm (10.54)

where Ωm is the molar volume and R = kBNL.
The total free energy of an inhomogeneous binary isostructural solution, consisting of

A and B, can then be calculated according to

F̃ =

∫

V

(
c(r, t) µA

0 + (1 − c(r, t)) µB
0

+ c(r, t) ( 1 − c(r, t) )
∑

i

Ci
A↔B(T ) ( (1 − c(r, t) ) − c(r, t))i

+ RT ( c(r, t) ln c(r, t) + ( 1 − c(r, t) ) ln( 1 − c(r, t) ))i /Ωm + κ (∇c(r, t))2
)
dV

(10.55)

A second often encountered approach for the description of the free energy density is the
Landau form

f(c(r, t)) = f0(c(r, t)) + fLand
loc (c(r, t)) − Ts(c(r, t))

= f0(c(r, t)) +
C1

2
(c(r, t) − ccrit)

2 +
C2

4
(c(r, t) − ccrit)

4 − Ts(c(r, t)) (10.56)

where C1, C2, and ccrit are phenomenological constants which must be fitted from theory
or experiment. The Landau energy density function will be discussed more detailed in
the next section.



190 10 Ginzburg–Landau-Type Phase Field Kinetic Models

The Cahn–Hilliard equation uses field variables for the description of the concentration
array. The concentration field is a conservative field since any change must happen in
accord with the continuity equation, equation (10.16). This approach is consequently only
capable of describing isostructural phase transformations, where different phases differ
from each other only in concentration, but not in long-range order, crystal orientation,
elastic strain, or crystal structure. The latter aspects, however, are often of relevance in
phase transformations that occur in engineering materials. To extend the use of diffuse
Ginzburg–Landau-type kinetic phase field models to the prediction of non-isostructural
phase transformation phenomena one has to additionally consider nonconservative fields,
e.g. structure and phase fields. The influence of such structure and order phase fields on
the kinetics and morphology of phase separation can be considered by using the remaining
differential expressions in equation (10.47) together with a modified free energy form which
does not only depend on the chemical concentration but also on one or more structure
variables ηi(r, t) with i = 1, ..., ϑ.

For systems with only one structure variable, say a long-range order field variable
η(r, t), the local contribution to the free energy density can be written

floc(c(r, t), η(r, t)) =
C3

2
(c(r, t) − ccrit1)

2 +
C4

4
(ccrit2 − c(r, t)) η(r, t)2

− C5

4
η(r, t)4 +

C6

6
η(r, t)6 (10.57)

where C3, C4, C5, C6, ccrit1, and ccrit2 are phenomenological constants which must be
fitted from theory or experiment.

More complex functionals for the total free energy density to consider a larger number
of variables, say a number of ϑ orientational, i.e. texture variable fields, in addition to the
β chemical concentration fields, follow the general form

ft (c1(r, t), c2(r, t), ..., cβ(r, t), η1(r, t), η2(r, t), ..., ηϑ(r, t))

= f0 (c1(r, t), c2(r, t), ..., cβ(r, t), η1(r, t), η2(r, t), ..., ηϑ(r, t))

+ floc (c1(r, t), c2(r, t), ..., cβ(r, t), η1(r, t), η2(r, t), ..., ηϑ(r, t))

− Ts (c1(r, t), c2(r, t), ..., cβ(r, t), η1(r, t), η2(r, t), ..., ηϑ(r, t))

+
1

2

β∑

q=1

κc
q (∇cq(r, t))2 +

1

2

ϑ∑

p=1

κs
p (∇ηp(r, t))

2 (10.58)

where κc
q are the interface energy coefficients for chemical gradients and κs

q the interface
energy coefficients for orientational gradients (grain boundaries) (Cahn and Hilliard 1958;
Chen and Wang 1996). The influence of elastic stresses on the total free energy (see Section
10.5) must be included in a variational form similar to Eshelby’s inclusion formulation
(Khachaturyan 1983; Dreyer 1995; Löchte et al. 1998).

10.3.2 Thermal Fluctuation

Except for the initial chemical and structural spatial state of the system, which is often
randomly chosen, the simulations according to equations (10.47) are entirely determin-
istic. Although they can adequately describe growth and coarsening, they do not cover
nucleation (Wang et al. 1996). For overcoming this handicap they can be complemented
by adding a stochastic Langevin type force term ξ(x, t) to the right-hand parts of each
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equation (Landau and Lifshitz 1980; Landau and Lifshitz 1981; Wang et al. 1996) that
transforms equations (10.47) into

∂c(r, t)

∂t
= M ∇2 δF̃

δc(r, t)
+ ξ(r, t)

∂η1(r, t)

∂t
= −L̂1j

δF̃

δηj(r, t)
+ ξ1(r, t)

...

∂ηϑ(r, t)

∂t
= −L̂ϑj

δF̃

δηj(r, t)
+ ξϑ(r, t)

.

The noise functions ξϑ(r, t) and ξ(r, t) are Gaussian-distributed and have to satisfy the
requirements of the fluctuation-dissipation theorem (Landau and Lifshitz 1980; Wang
et al. 1996).

Considering a Langevin-type noise term amounts to recasting the statistical expression
into a microscopic form. The incorporation of such random pulses reflects the influence
of Brownian particle motion, i.e. of thermal fluctuation, assuming that the average of this
force over the ensemble should vanish (Kramers 1940; Chandrasekhar 1943; Risken 1984).
That means the Langevin force changes randomly in size and sign without correlation.

Solutions of the above field are typically obtained by using fast Fourier transforms
which are available in common FORTRAN and C libraries. Convenient overviews of the
solution algorithms in reciprocal space have been published by Küpper and Masbaum
(1994), Chan and Rey (1995), and Copetti and Elliott (1996).

10.3.3 Landau Energy Density Functional

One of the most straightforward and widely used methods to formulate thermodynamic
potentials near critical points was suggested by Landau for magnetic systems (Landau
1937a; Landau 1937b). It is based on the assumption that one can expand the thermo-
dynamic potential in a power series about the critical point. A simple physical derivation
of the quadratic Landau form can also be made by expressing the free energy in terms of
all the nearest-neighbor binding enthalpies and their configurational entropy.

This section presents the combination of a Landau-type potential, formulated for a
concentration field, with a kinetic equation (Cahn and Hilliard 1958).

The starting point is the Onsager or Ginzburg–Landau diffusion equation (equation
(10.18)). Furnished with a Landau potential and a gradient interface term of the type
described by equation (10.50), one obtains the classical Cahn–Hilliard equation (Cahn
1961).

∂c(r, t)

∂t
= M ∇2

[(
∂F

∂c(r, t)

)

T

− k∇2c(r, t)

]
(10.59)

Close to the critical coordinates Tc and ccrit the following Taylor series approach for the
local free energy density can be used in accord with Landau’s magnetic theory:

f(c(r, t)) = f0+
A

2
(c(r, t) − ccrit)

2+
B

4
(c(r, t) − ccrit)

4+
C

6
(c(r, t) − ccrit)

6+ ... (10.60)

The derivative of this expression is
(
∂f(c(r, t))

∂c(r, t)

)

T

= A (c(r, t) − ccrit)+B (c(r, t) − ccrit)
3 +C (c(r, t) − ccrit)

5 + ... (10.61)
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where c(r, t) ≡ cB, and A < 0, B > 0 if T is below the critical temperature Tc. Since the
above series expansion depends on the small quantity c(r, t) − ccrit it can be rewritten

(
∂f(c(r, t))

∂c(r, t)

)

T

∼= A (c(r, t) − ccrit) +B (c(r, t) − ccrit)
3 (10.62)

By combining equation (10.59) and equation (10.62) one obtains the classical Ginzburg–
Landau equation for describing phase transition phenomena in magnetic media (Gunton
et al. 1983):

∂

∂t
(c(r, t) − ccrit) = M∇2 [A (c(r, t) − ccrit) +B (c(r, t) − ccrit)

3 − k∇2 (c(r, t) − ccrit)
]

(10.63)

10.3.4 Solution of the Linearized CHGL theory

Estimations of the incipient stages of spinodal precipitation can be made under the as-
sumption that the concentration fluctuations are small. This allows one to drop terms
that are not linear in the concentration on the right-hand side of equation (10.59). Fur-
thermore, it is stipulated that the phase separation is isostructural. That means the field
is a conservative one and no additional phase field needs to be considered.

Assuming a constant mobility M the Cahn–Hilliard equation, equation (10.59), can
be linearized according to

∂c

∂t
= M

(
∂2F

∂c2

∣∣∣∣
c0

∇2 c − 2κ∇4 c

)
(10.64)

where c0 is the initial average concentration. In the unstable region and for relatively
large diffusion distances, the diffusion coefficient D̃ becomes negative, which means that
existing concentration fluctuations will be sharpened rather than removed.

D̃ ∼= M
∂2F

∂c2

∣∣∣∣
c0

(10.65)

The change of the sign of D̃ from positive to negative describes the phenomenon of up-hill
diffusion and is a characteristic feature of spinodal decomposition (Cahn 1961).

An analytical solution of equation (10.64) is obtained by using Fourier transforms
(Cahn and Hilliard 1958). The general solution amounts to

c − c0 =
∑

k

[A(k) cos (k r) +B(k) sin (k r) ] eR(k) t (10.66)

where R(k) is the amplification factor, ki = 2π/λi, and λi the wavelength for fluctuation
i. R(k) amounts to

R(k) = −Mk2

(
∂2F

∂c2

∣∣∣∣
c0

+ 2κ k2

)
(10.67)

The amplification factor determines the thermodynamic direction of the phase separation.
Equations (10.66) and (10.67) substantiate the fact that concentration fluctuations will
only grow if ∂2F/∂c2|c0 < 0 and

∣∣∂2F/∂c2|c0
∣∣ >

∣∣2κ k2
∣∣, i.e. R(k) is positive in the
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unstable region so that existing fluctuations c− c0 will be promoted. The fastest-growing
wavelength λmax, which can be obtained from equation (10.67), amounts to

λmax =
√

8π2

[(
− 1

2κ

)
∂2F

∂c2

∣∣∣∣
c0

]− 1
2

(10.68)

The morphology that results for the initial stages of spinodal phase separation is then a
superposition of periodic concentration modulations of a fixed wavelength, but random
in amplitude.

10.4 Microscopic Phase Field Kinetic Model

While the deterministic phase field variants of the Ginzburg–Landau model correctly
predicts the main microstructural path of phase transition from a more statistical point
of view, it cannot generally deal with structural events at the atomic level (Khachaturyan
1968; Wang et al. 1996).

Thus, Khachaturyan (1968) suggested an extension of the Ginzburg–Landau-type con-
tinuum field kinetic models for the simulation of phase separation phenomena, namely, the
microscopic lattice diffusion theory. Chen (1995) employed a similar microscopic approach
to simulate grain growth.

The microscopic approach of Khachaturyan simultaneously describes the diffusion ki-
netics of ordering and decomposition in a spatially inhomogeneous alloy where the compo-
sition and long-range order parameter are coupled through a non-equilibrium free energy
functional. The main contrast of this approach with its continuum type counterpart is
that the macroscopic kinetic coefficients that occur in the underlying set of Ginzburg–
Landau or Onsager equations can be computed at a microscopic level. For this purpose
Khachaturyan suggested introduction of a microscopic field for the description of dis-
placive transformations caused by the elementary diffusional jumps of atoms over crystal
lattice sites that result in atomic ordering, antiphase domain boundary movement, con-
centration delamination, and Ostwald ripening phenomena of polydispersed precipitates
in terms of a temporal evolution of composition and long-range order profiles. Thus, the
microscopic field kinetic approach is formulated in terms of the crystal lattice site diffusion
in a non-ideal solid solution, which is actually a random walk-type problem for a system
of interacting atoms (Chen and Khachaturyan 1991a). The resulting kinetic equations
are nonlinear finite difference differential equations which can be solved only numerically.

The microscopic field representing the atomic structure and alloy morphologies is
described by the single-site occupation probability function χ(r, t), which is actually an
average of the occupation number c(r) over the time-dependent ensemble χ(r, t) = 〈c(r)〉 ,
where 〈...〉 denotes averaging. This means that the values of this real-space function
represent the probability of observing a solute atom at lattice site r and time t. The
values of the occupation number are described by

c(r) =

{
1, if a site r is occupied by a solute atom
0, otherwise

(10.69)

The dynamic evolution of this microscopic field is described by a Ginzburg–Landau or
Onsager-type kinetic equation (10.18),

∂χ(r, t)

∂t
=
∑

r
′

L
(
r − r

′
) δF̃

δχ(r′, t)
(10.70)
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where F̃ is the free energy functional of the functions χ(r′ , t), δF̃/δχ(r′ , t) the thermody-
namic driving force, t the time, and L(r − r′) the symmetric microscopic kinetic matrix.
The coefficients in this kinetic matrix are inversely proportional to the average diffusion
time required for the number of elementary jumps from lattice site r to lattice site r′ .
This concept for deriving of the kinetic coefficient matrix establishes the main progress
of the microscopic lattice diffusion theory as compared with the conventional continuum
field kinetic approach, page (Khachaturyan 1968; Khachaturyan et al. 1988; Wang et al.
1996). The numerical solution of equations (10.47) with a Landau-type potential con-
taining the gradient term (∇c(r))2, equation (10.50), only considers the influence of the
nearest neighborhood. In contrast, the microscopic approach, equation (10.70), considers
the entire concentration field in each time step.

The occupation probability for solute atoms meets the conservation condition

Ns =
∑

r

χ
(
r

′ , t
)

(10.71)

where Ns is the number of solute atoms in the system. Since the presence of sources or
sinks other than precipitations are excluded, the following equation holds as well:

dNs

dt
= 0 (10.72)

Combining equations (10.72) and (10.70) then leads to

dNs

dt
=

(
∑

r

L(r)

) 
∑

r
′

δF̃

δχ(r′, t)


 = 0 (10.73)

Since it cannot be assured that the sum of the elementary thermodynamic driving forces
δF̃/δχ(r′ , t) is equal to zero, the first multiplier should therefore be zero, i.e.

∑

r

L(r) = 0 (10.74)

The Fourier transform of equation (10.70) gives the reciprocal space representation and
can be written

∂χ̆(k, t)

∂t
=
∑

r
′

L̆(k)

[
δF̃

δχ(r, t)

]

k

(10.75)

where [δF̃/δχ(k, t)]k , χ̆(k, t), and L̆(k) are the discrete Fourier transforms of the corre-

sponding functions in real space, δF̃ /δχ(r, t), χ(r, t), and L(r). They are given by

χ̆(k, t) =
∑

r

χ(k, t) e−i k r

L̆(k) =
∑

r

L(k) e−i k r
(10.76)

For phase separation without structure change the characteristic wavelength of the meso-
scopic inhomogeneity ds is typically much larger than the lattice spacing a. In that case
χ̆(k, t) is only significant around k = 0, with |k | being of the order of 2π/ds. The function
χ̆(k, t) is then a Fourier transform of the mesoscopic concentration field c(r). Similar
considerations apply for the form of χ̆(q, t) where |q |=|k − k0 |. The function χ̆(q, t) is
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the Fourier transform of the long-range parameter field χ(r). The Fourier transform of
L(r) is given by

L̆(k) ≈ −Mijkikj (10.77)

with the expansion coefficients tensor

Mij =

(
∂2L̆(k)

∂ki∂kj

)
(10.78)

Re-substituting these coefficients into the Fourier transform of the Onsager equation,
equation (10.75), leads to

∂χ̆(k, t)

∂t
= −Mijkikj

[
δF̃

δχ(r, t)

]

k

(10.79)

and the Fourier back-transform amounts to

∂c(r, t)

∂t
= Mij∇i∇j

(
δF̃

δχ(r, t)

)
(10.80)

which corresponds to the Cahn–Hilliard equation. From this transition of the microscopic
approach to the mesoscopic phenomenological kinetic equation one finds that the macro-
scopic kinetic coefficients can be computed from elementary diffusion jumps. Further
details of this method were given by Chen and Khachaturyan (1991a), Chen and Wang
(1996), and Wang, Chen, and Khachaturyan (1996).

10.5 Consideration of Elastic Stresses

The incorporation of elastic terms in addition to the interfacial contribution and the
Landau-type chemical portion into the free energy functional can be realized following the
work of Eshelby (1957) and Khachaturyan (1983). A derivation of the classical Eshelby
inclusion formulas is also given in Chapter 17.

The derivation of the elastic term is based on the assumption of continuum homo-
geneity with respect to the elastic properties, i.e. the elastic constants are independent
of the atomic concentration. The elastic fields which are described in terms of pairwise
interactions of strain sources can be calculated by superposition.

According to Khachaturyan (1983) the derivation can be made in five steps. First,
the volume is divided into s identical subunits, each having a homogeneous concentration.
These small units are described by the form-function

ϑp(r)

{
1 in the volume unit Ωp

0 outside the volume unit Ωp

(10.81)

where the total volume is Ω =
∑s

p=1 Ωp.

In the second step, one removes a volume unit of interest, Ω0
p, from the homogeneous

matrix, so that it is free of external stresses, and subjects it to an internal change of state,
for instance a concentration change, which may entail an eigenstrain ε0ij(p). This strain
transforms the affected volume into Ωex

p .
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It has to be noted that the first two steps do not change the elastic energy, since the
first step did not create a true surface and the second step did not expand or shrink the
affected volume unit against any external stress state.

In the third step, one imposes a stress state on the volume Ωex
p in such a way as

to restore the original shape of the volume Ω0
p. Using Hooke’s linear law of anisotropic

elasticity, equation (9.29), the mechanical portion of work required to deform the volume,
equations (9.63)–(9.68), can be calculated according to

F el
1 =

1

2

s∑

p=1

∫

Ω

ϑp(r)σ0
ij(p)

(
−ε0ij(p)

)
dr

3

=
1

2

s∑

p=1

∫

Ω

ϑp(r)Cijkl

(
−ε0ij(p)

) (
−ε0kl(p)

)
dr

3 (10.82)

where the Einstein summation rule applies.
As indicated by the expressions σ0

ij(p) and ε0ij(p), the stress and strain state may be
different in each of the subvolumes. Cijkl is the fourth-order tensor of the elastic stiffness
constants (see Chapter 9, Table 9.1).

In the forth step, the strained volume element Ω0
p is repositioned into the original

matrix, exactly at its original location. Since no elastic interaction with the matrix is
considered at this stage, there is no elastic energy contribution arising from this step.

The last step considers the elastic interaction between the volume element Ω0
p and the

surrounding matrix, which occurs by the relaxation of the stress σ0
ij(p) that was imposed

on that piece of volume. The relaxation leads to a mechanical equilibrium which depends
on the values of the variabes, e.g. on the atomic concentration or the values of possible
structure variables in case of a non-isostructural transformation, that characterize the
state of Ω0

p.
Using σij(p) and εij(p) to indicate the true stress and strain fields that are present

in the material after relaxation, one can express the contribution of the relaxation to the
elastic energy by

F el
2 =

1

2

s∑

p,q=1

∫

Ω

(∫

Ω

ϑp(r) (−εij(p)) Ãijkl(|r − r
′ |) (−εkl(q)) ϑq(r) dr

′3
)

dr
3

(10.83)

where the fourth-order interaction tensor Ãijkl connects the pairwise elastic interactions
between the various volume elements. The factor 1

2
comes from the fact that the interac-

tions must not be counted twice.
For a binary alloy an analytical solution for the total elastic contribution to the free

energy was given as a function of the concentration field by Gitt (1997).

F el(c) = F el
1 (c) + F el

2 (c) =
1

2

∫

Fo

(
Ã(k) − Ãmin

)
|c̃(k)|2 dk3

(2π)3
(10.84)

where Fo indicates integration in Fourier space and c̃(k) the Fourier transform of the
concentration field c(r) in Fourier space

c̃(k) =

∫

Ω

dk3

(2 π)3
c(r) e−i k r . (10.85)

The interaction tensor is a complicated function of the elastic constants (Khachaturyan

1983; Dreyer 1995; Gitt 1997). The constant Ãmin indicates the minimum value of Ã(k).
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Adding this term to the Landau functional form allows one to rewrite the Cahn–
Hilliard equation for isostructural transformation phenomena, equation (10.49), in a more
general fashion:

∂c(r, t)

∂t
= ∇

(
M ∇

(
δF chem

δc(r, t)
+

δF el

δc(r, t)

))
(10.86)

10.6 Application of Phase Field Kinetic Models in

Materials Science

This section gives a number of classical or recently published references on applications of
phase field kinetic simulations related to various domains of materials science. The list can
by no means be complete but may serve as a bibliography for getting better acquainted
with some examples of the recent original literature in this field.

Field of application Reference

classics and fundamentals Onsager (1931a)
Onsager (1931b)
Landau (1937a)
Landau (1937b)
Cahn and Hilliard (1958)
Cahn (1961)
Cahn (1962)
Cahn and Hilliard (1965)
Landau (1965)
Khachaturyan (1968)
Chan (1977)
Khachaturyan (1983)
Allen and Cahn (1979)
Gurtin (1989)
Penrose and Fife (1990)
Chen and Khachaturyan (1991a)
Chan and Rey (1995)
Gurtin (1996)

isostructural spinodal decomposition Khachaturyan (1967)
Khachaturyan and Shatalov (1969)
Morral and Cahn (1971)
Langer, Bar-On, and Miller (1975)
Hohenberg and Halperin (1977)
Rogers, Elder, and Desai (1988)
Onuki (1989)
Rogers (1989)
Chen and Khachaturyan (1991b)
Chen and Khachaturyan (1991c)
Wang, Chen, and Khachaturyan (1991)
Wang, Chen, and Khachaturyan (1992)
Takenaka and Hashimoto (1993)
Wang, Chen, and Khachaturyan (1993)
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Dreyer (1995)
Löchte and Gottstein (1996)
Eliott and Garcke (1996)
Löchte, Gitt, and Gottstein (1998)

non-isostructural transformation, Johnson, Howe, Laughlin, and Soffa (1994)
ordering phenomena Kobayashi (1994)

Wang and Khachaturyan (1995a)
Wang and Khachaturyan (1995b)
Fan and Chen (1995)
Chen, Wang, and Khachaturyan (1992)
Wang, Chen, and Khachaturyan (1996)
Chen and Wang (1996)

solidification and dendrite growth Caginalp and Fife (1986)
Caginalp (1989)
Caginalp and Socolowski (1991)
Wheeler, Boettinger, and McFaden (1992)
Kobayashi (1993)
Wheeler, Murray, and Schaefer (1993)
Caginalp and Xie (1993)
Wheeler, Boettinger, and McFaden (1993)
Warren and Boettinger (1995)

homophase and heterophase grain growth Chen and Yang (1994)
Chen (1995)
Chen and Wang (1996)
Chen and Fan (1996)
Fan and Chen (1997)
Fan, Geng, and Chen (1997)

numerical and computational aspects Küpper and Masbaum (1994)
Copetti and Elliott (1996)

10.7 Examples of Phase Field Simulations in

Materials Science

10.7.1 Simulation of Spinodal Decomposition

This section presents a two-dimensional continuum Cahn–Hilliard field kinetic simulation
of a spinodal decomposition and competitive isostructural ripening process in the system
aluminum–copper. The simulation considers the influence of internal ansiotropic elastic
stresses among the particles.

Light alloys based on the aluminum–copper system were the first ones in which the
process of spinodal decomposition and the resultant hardening was discovered and tho-
roughly studied. As a classical group of light and hardenable alloys, they are indispens-
able, particularly in the field of aerospace engineering.

The simulations presented in Figure 10.4 were conducted by Löchte (1997). The
two-dimensional approach (Figure 10.4) considers the chemical, elastic, and interfacial
contributions to the free energy density. The calculations were performed using an initial
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Figure 10.4: 2D simulation of spinodal decomposition and ripening in the system copper–
aluminum at an early stage; projection of the copper concentration, T = 423 K, t=0 s,
75 s, 100 s, 300 s and 500 s (Löchte, unpublished results 1997).

solute matrix concentration of 0.050 at% copper, a temperature of 423 K, and a value
of 0.07−10 J/m for the gradient energy coefficient. The plots reveal the kinetics and the
microstructural path at an early and at the later stage of ripening by projecting the copper
concentration after various annealing times.

The solutions were obtained using a finite difference scheme. The maximum admissible
grid size is related to the width of the diffuse heterophase interface, i.e. it is of an atomic
order of magnitude.

10.7.2 Simulation of Grain Growth

A number of mechanical and also many electromagnetic properties of polycrystalline ma-
terials depend on the microstructure arising from grain growth phenomena. This applies
in particular to the grain shapes, the grain size distribution, and the crystallographic
texture.

Because of the complexity of the various processes involved there is no closed analytical
treatment which allows one to predict all the topological and crystallographic aspects as-
sociated with grain growth phenomena in sufficient detail. This section therefore presents
an application of the diffuse phase field model to grain growth.

Figure 10.5 shows the application of a diffuse field Ginzburg–Landau type of calcula-
tion for predicting two-dimensional grain growth by Fan and Chen (1997). The extension
of the classical Cahn–Hilliard model to non-coherent phase transformations, i.e. transi-
tions which change the long-range order, the crystal structure, or, as in this case, the crys-
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Figure 10.5: 2D simulation of grain growth using a diffuse field Ginzburg–Landau ap-
proach (Fan et al. 1997).

tal orientation, is provided by a modified Ginzburg–Landau or Allen–Cahn model. While
the original Cahn–Hilliard approach describes the kinetics of transformation phenomena
with conserved field variables (e.g. chemical concentration), the generalized Ginzburg–
Landau or Allen–Cahn model can mimic transformations with nonconserved variables
(e.g. long-range order or crystallographic texture). The free energy density must then
be a function of all orientation or texture components ηi that appear in the simulation
and of the corresponding gradient “penalty” terms. The variable field of each texture
component is described in terms of values between 0 and 1 (Figure 10.2).



Chapter 11

Cellular Automata

11.1 Introduction and Fundamentals

Cellular automata are algorithms that describe the discrete spatial and/or temporal evo-
lution of complex systems by applying local or global deterministic or probabilistic trans-
formation rules to the sites of a lattice1. The space variable can stand for real space,
momentum space, or wave vector space. The lattice is defined in terms of a fixed number
of points. These can be regarded as the nodes of a finite difference field. The lattice
is typically regular and its dimensions can be arbitrary. It maps the elementary system
entities that are regarded as relevant to the model under consideration. These can be ar-
bitrarily sized continuum-type volume units, atomic particles, lattice defects, or animals
and so forth. The system entities are quantified in terms of generalized state variables,
such as dimensionless numbers, particle density, lattice defect density, particle velocity,
color, blood pressure, or animal species. The actual values of these state variables are
defined at each of the individual lattice sites. Each node must assume one of a finite set
of possible discrete states.

The evolution of the automaton takes place through the application of certain trans-
formation rules that act on the state of each node. These rules determine the state of
a site as a function of its previous state and the state of the neighboring sites (local
rules) or the state of all sites (global rules). Most classical cellular automata use local
transformation rules.

Deviations from the regular lattice structure are conceivable. This applies especially
to heterogeneous media, where the use of a smaller spacing can be pertinent in the vicinity
of relevant lattice regions. However, an adequate correction and renormalization of the
transformation rate must then be considered.

A cellular automaton evolves in discrete time steps. After each time interval the values
of the state variables are simultaneously updated for all nodes.

In recent years the concept of classical (CCA) cellular automata as defined by Wolfram
(1986) has been slightly extended to a class of more generalized (CGA) cellular automata.
The latter variant of the cellular automaton method is more flexible than the original
one, particlularly with respect to specific applications in computational materials science.

1Conventional cellular automata use local rules. Some modern variants consider intermediate or
long-range interactions also.
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Figure 11.1: The Pascal triangle can be regarded as a one dimensional cellular automaton.
The transformation rule is indicated by the arrows.

Generalized microstructure cellular automata can use a discrete spatial grid of cells or
sites, where space can be real space, momentum space, or wave vector space. Space is
usually homogeneous, i.e. all sites are identical and are arranged in a regular lattice, where
the transformation rules are the same everywhere. Like conventional automata, they must
assume one out of a finite number of possible states and the update of the cell states is
made in synchrony. In contrast to conventional automata, the transformation of sites can
follow deterministic or probabilistic laws. Generalized microstructure cellular automata
therefore increasingly gain momentum in computational materials science.

Owing to these features, the cellular automaton method provides a direct means of
simulating the evolution of dynamic systems which contain large numbers of similar com-
ponents on the basis of their mutual short- or long-range interactions (Schulman and
Seiden 1978; Wolfram 1983; Vichniac 1984; Wolfram 1986; Stauffer 1991). For simple
physical systems this amounts to discretely mapping approximate finite difference solu-
tions to a set of more or less complicated partial differential equations where one of the
independent variables is the time.

However, it must be underlined that cellular automata do not have any restrictions
in the type of elementary entities or transformation rules employed. They can map such
different situations as the distribution of the values of state variables in a simple finite
difference simulation, the colors in a blending algorithm, the health state of children in
a school building, the elements of fuzzy sets (see Appendix C.2) which can be subject to
arbitrary transformations, or elementary growth and decay processes of cells2.

For instance, the Pascal triangle, which can be used to calculate higher-order binom-
inal coefficients or the Fibonaccy numbers, can be regarded as a one-dimensional cellular
automaton, where the value that is assigned to each site of a regular triangular lattice is
calculated through the summation of the two numbers above it (Figure 11.1). In this case
the entities of the automaton are dimensionless integer numbers and the transformation
law is the summation rule.

Another automaton might consist of a cubic lattice where each point has a certain
color which can switch according to such simple transformation rules as “if more than
50% of the neighboring sites have the color blue, then the point considered switches from
its present color to red” or “if more than 75% of the neighboring sites have the color red,
then the point considered also switches to red.” For describing the mutual infection of

2For instance in Conway’s game of life.
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children in a school building, one could define a cellular automaton through the trivial
rule “if more than 50% of the children in one room are ill, all other children in that room
are infected”. In order to render such simple phenomenological models more plausible
and realistic, further transformation rules may be added. The above example could be
complemented by the rules “infected children recover after a certain number of time steps”
or “children can only be infected once”, and so forth.

In the field of computational materials science, the transformation rules of cellular
automata typically consist in the finite difference, finite element, or even Monte Carlo
approximation of an underlying set of coupled partial differential equations which depend
on time and two or three independent spatial coordinates. While local transformation
rules describe short-range interactions among neighboring sites, global transformation
rules can consider long-range interactions. The states of the sites are usually characterized
in terms of the values of the respective dependent variables, which are referred to as state
variables.

These introductory examples show that the cellular automaton concept is not simply
identical to conventional simulation approaches such as the various finite difference, finite
element, Ising, or Potts methods, but is defined in a much more general and versatile
manner. Cellular automata can even be regarded as a generalization of discrete calculation
methods. This flexibility is due to the fact that, besides the use of crisp mathematical
expressions as variables and transformation rules, automata can incorporate practically
any kind of element or rule that is assumed to be relevant.

For instance, in materials science, it may sometimes make sense to complement con-
ventional finite difference calculations, such as are encountered in the field of plasticity,
fracture mechanics, or grain growth, by a number of “if–then” rules. Such additions
can provide a simple and efficient way to deal with mathematical singularities, i.e. with
critical or spontaneous effects within an otherwise smooth function behavior. Indeed,
such rules occur frequently in microstructure simulations. For example, discrete dislo-
cation dynamics simulations often contain a rule of the type “if two antiparallel screw
dislocations approach closer than say, 5 Burgers vectors, they will undergo spontaneous
annihilation.” In fracture mechanics or spring models one often includes rules of the type
“if the crack velocity assumes a certain value, the sample will fail spontaneously”. In
recrystallization simulations one often encounters the rule “if a certain local value of the
crystal misorientation is reached, the site fulfills the kinetic instability criterion of nucle-
ation” or “if a certain local value of the stored elastic energy is reached, the site fulfills
the thermodynamic instability criterion of nucleation”.

Complementing the governing differential equations with such sets of “if–then” trans-
formation rules enables one to mimic the dynamic behavior of complex systems, often
entirely on the basis of the local interactions among the particles considered.

Cellular automata were introduced by von Neumann and Ulam for the simulation of
self-reproducing Turing automata and population evolution. In their original work they
denoted them at first as cellular spaces. Other authors used notions like tessellation
automata, homogeneous structures, tessellation structures, or iterative arrays. Later ap-
plications were particularly in the field of describing nonlinear dynamic behavior of fluids
and reaction–diffusion systems (Grosbas 1988; Mareschal and Lemarchand 1996).

Only recently, cellular automata also became important as a technique for the pre-
diction of microstructure evolution. In this domain a number of different aspects were
addressed, namely, primary static recrystallization (Hesselbarth and Göbel 1991; Pezzee
and Dunand 1994; Marx and Raabe 1995; Marx et al. 1995; Marx et al. 1996; Sheldon
and Dunand 1996), recovery (Raabe et al. 1996), formation of dendritic grain structures
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in solidification processes (Brown et al. 1994; Gandin and Rappaz 1994), dislocation
kink formation (Lépinoux 1996), sintering (Pimienta et al. 1992), and radial growth of
two-phase grain structures (Spittle and Brown 1994).

Cellular automata reveal a certain similarity to kinetic Monte Carlo integration ap-
proaches (Chapters 6 and 12). While the latter methods generally represent probabilistic
approaches to predict microstructures, cellular automata were originally designed as de-
terministic models. However, stochastic automata with probabilistic transformation rules
increasingly gain importance (Grassberger et al. 1984; Kinzel 1985; Raabe 1998b). The
original intention of introducing cellular automata into microstructure simulation was
the same as for the introduction of Potts-type Monte Carlo models, namely, the direct
mapping and simulation of microstructure evolution on the basis of local interactions.
For this purpose large numbers of deterministic (cellular automata) or stochastic (Monte
Carlo, probabilistic cellular automata) calculation steps are carried out in ensembles with
microscopically (Monte Carlo), mesoscopically (Potts Monte Carlo), or arbitrarily scaled
elementary units (cellular automata). Depending on the underlying physical model, the
results are then evaluated in the framework of statistical mechanics (Monte Carlo) or by
extracting microstructural parameters (Potts Monte Carlo, cellular automata).

Although cellular automaton simulations are typically carried out at an elementary
level (e.g. atoms, clusters of atoms, dislocation segments, subgrains), it should be em-
phasized that particularly those variants that discretize and map in a continuuum space
are not intrinsically calibrated by a characteristic physical length or time scale (Wolfram
1983). This means that a cellular automaton simulation of continuum systems requires
the definition of elementary units and transformation rules that adequately reflect the
system behavior at the level addressed. This explains why cellular automata approaches
are presented in this chapter on mesoscopic–microscopic approaches rather than together
with Monte Carlo (Chapter 6) or molecular dynamics simulations (Chapter 7). While the
latter techniques represent real microscopic models in a physical sense, the use of cellular
automata is not restricted to any particular regime but scalable to arbitrary systems.
Deriving thermodynamic quantities of equilibrium ensembles with cellular automata has
thus less foundation in physics than deriving them with Monte Carlo methods (Binder
and Stauffer 1987; Binder 1991a; Mareschal and Lemarchand 1996). For this reason it
is important to examine whether the elementary simulation units adequately reflect the
behavior of the underlying physical entities before performing a cellular automaton com-
puter experiment. Since the use of cellular automata is not confined to the microscopic
regime, it provides a convenient numerical means for bridging various space and time
scales in microstructure simulation.

11.2 Versatility of Cellular Automata in Materials

Science

The particular versatility of the cellular automaton approach for the simulation of micro-
structures arising from recrystallization, grain growth, and phase transition phenomena
is mainly due to its flexibility in the consideration of a large variety of possible spatial
state variables and transformation laws.

For instance, in the field of recrystallization and grain growth, cellular automata can
incorporate the local crystallographic texture and deformation in a discrete manner. For
describing these features, one typically uses the local crystal orientation g, the stroed
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elastic energy, i.e. some approximate measure such as the dislocation density ̺ or the
local Taylor factor M , and the temperature T as state variables. These variables are
dependent variables, i.e. they depend on the independent variables that quantify space
and time, x1, x2, x3, t.

The state quantities so defined enter the various local structural evolution laws such
as are required for the description of the particular phenomenon under investigation.
This concept allows a reasonable phenomenological description of individual mechanisms
such as recovery, nucleation, and the growth of nuclei on the basis of local data and
transformation rules.

By mapping the state variables on a two- or three-dimensional spatial grid, cellu-
lar automaton simulations are capable of accounting for microstructural inhomogeneities
such as second phases, microbands, shear bands, transition bands, heterophase interfaces,
grain boundaries, or twins. These local defect structures can be described in terms of
corresponding values of the state variables or their gradients. Shear bands are charac-
terized by high dislocation densities and large local lattice curvatures. The mobility m
of grain boundaries can be described3 for a given impurity content in terms of the local
misorientation between adjacent grains, ∆g = ∆g(ϕ1, φ, ϕ2), and the spatial orientation
of the grain boundary normal n, i.e. m = m(ϕ1, φ, ϕ2,n).

11.3 Formal Description of Cellular Automata

The local interaction of neighboring sites in a cellular automaton is specified through a
set of deterministic or stochastic transformation rules. The value of an arbitrary state
variable ξ assigned to a particular site at a time (t0+∆t) is determined by its present state
(t0) (or its last few states t0, t0−∆t, etc.) and the state of its neighbors. Considering the
last two time steps for the evolution of a one-dimensional cellular automaton, this can be
put formally by writing

ξt0+∆t
j = f

(
ξt0−∆t

j−1 , ξt0−∆t
j , ξt0−∆t

j+1 , ξt0
j−1, ξ

t0
j , ξ

t0
j+1

)
(11.1)

where ξt0
j indicates the value of the variable at a time t0 at the node j. The positions j+1

and j − 1 indicate the nodes in the immediate neighborhood of position j. The function
f specifies the set of transformation rules, such as provided by standard finite difference
algorithms.

If the state of the node depends only on its nearest neighbors (NN) the array is referred
to as von Neumann neighboring, equation (11.1). If both the NN and the next-nearest
neighbors (NNN) determine the ensuing state of the node, the array is called Moore neigh-
boring (Figure 11.2). In this context it must be underlined that, due to the discretization
of space, the type of neighboring affects the local transformation rates. For instance, in
the case of a higher-dimensional cellular automaton simulation, say with three indepen-
dent spatial variables described by rectangular coordinates, Moore neighboring, and cubic
cells, is carried out in a homogeneous medium, the predictions become dependent on the
shape of the cells. When the physical rules that determine the interactions among the

3For completely describing the character of a grain boundary as many as 8 independent parameters
are required, namely, three for the orientation, two for the (normalized) grain boundary plane, and three
for the components of the local relaxation vector, which is referred to as translation. Since the latter
three degrees of freedom are only accessible by molecular dynamics simulations, they are neglected in
the present context.
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Figure 11.2: (a) Example of a two-dimensional von Neumann configuration considering
nearest neighbors. (b) Example of two-dimensional Moore configuration considering both
nearest and next-nearest neighbors.

sites are isotropic the transformation rate predicted parallel to 〈110〉 must be normalized
by

√
2 and that parallel to 〈111〉 by

√
3.

Transforming these somewhat abstract rules and properties associated with general
automata into a materials-related simulation concept consists in mapping the values of
relevant state variables onto the cells of a cellular automaton grid which reflects the in-
dependent spatial coordinates, and using the approximate local finite difference solutions
of the underlying partial differential equations of the model addressed as local transfor-
mation rules.

For the Moore configuration, which allows one to introduce a certain medium-range
interaction among the sites, equation (11.1) can be rewritten as

ξt0+∆t
j = f

(
ξt0−∆t

j−2 , ξt0−∆t
j−1 , ξt0−∆t

j , ξt0−∆t
j+1 , ξt0−∆t

j+2 , ξt0
j−2, ξ

t0
j−1, ξ

t0
j , ξ

t0
j+1, ξ

t0
j+2

)
(11.2)

The above examples show that the state of a cellular automaton is completely specified
by the transformation rules and by the values of the state variables at each site. The
transformation rules used in general automata may indeed be very simple, for example:
“if three of the neighboring sites are in stateX the site addressed switches to Z”. However,
in deterministic microstructure simulations where the site interactions are described in
accord with the physical nature of the interaction, the transformation rules essentially
amount to obtaining approximate discretized finite difference solutions to locally acting
partial differential equations.

Even for very simple automata there exists an enormous variety of possible trans-
formation rules. For a one-dimensional binary cellular automaton with von Neumann
neighboring, each node must assume one of two possible states, say ξj = 1 or ξj = 0. For
such a scenario equation (11.1) assumes the form

ξt0+∆t
j = f

(
ξt0

j−1, ξ
t0
j , ξ

t0
j+1

)
(11.3)



11.3 Formal Description of Cellular Automata 207

This simple configuration already allows one to define 28 possible deterministic or prob-
abilistic transformation rules f . One of them is

(ξt0
j−1 = 1 , ξt0

j = 1 , ξt0
j+1 = 1) → ξt0+∆t

j = 0

(ξt0
j−1 = 1 , ξt0

j = 1 , ξt0
j+1 = 0) → ξt0+∆t

j = 1

(ξt0
j−1 = 1 , ξt0

j = 0 , ξt0
j+1 = 1) → ξt0+∆t

j = 0

(ξt0
j−1 = 1 , ξt0

j = 0 , ξt0
j+1 = 0) → ξt0+∆t

j = 1

(ξt0
j−1 = 0 , ξt0

j = 1 , ξt0
j+1 = 1) → ξt0+∆t

j = 1

(ξt0
j−1 = 0 , ξt0

j = 1 , ξt0
j+1 = 0) → ξt0+∆t

j = 0

(ξt0
j−1 = 0 , ξt0

j = 0 , ξt0
j+1 = 1) → ξt0+∆t

j = 1

(ξt0
j−1 = 0 , ξt0

j = 0 , ξt0
j+1 = 0) → ξt0+∆t

j = 0

In abbreviated form this scheme can be rewritten

(1, 1, 1) → 0
(1, 1, 0) → 1
(1, 0, 1) → 0
(1, 0, 0) → 1
(0, 1, 1) → 1
(0, 1, 0) → 0
(0, 0, 1) → 1
(0, 0, 0) → 0

This rule is encoded by 01011010 2 . Such a digital description of the transformation
scheme is of course only valid for a particular order of the corresponding basis. This order
is commonly chosen as a decimal row with decreasing value, i.e. (1, 1, 1) = 111, (1, 1, 0)
= 110, and so on. Transforming the binary code into decimal numbers using

27 26 25 24 23 22 21 20

0 1 0 1 1 0 1 0

leads to the decimal code number 9010. The digital coding system is commonly used for
compactly describing relevant transformation rules for cellular automata (Schulman and
Seiden 1978; Vichniac 1984).

If the state of a node is simply determined by the sum of the values taken by the
variables of the neighboring sites, the model is referred to as totalistic cellular automaton.
If the state of a node has a separate dependence on the state itself and on the sum of the
values taken by the variables of the neighbors, the model is referred to as outer totalistic
cellular automaton (Wolfram 1986).

As in the exemple shown above, the value of a variable at a node is derived from the
state of the neighbors through the employment of transformation rules. These rules are
identical at each node. It might seem useful to allow deviations from this condition in the
case of nonhomogeneous media. However, such materials are more easily simulated by
assigning corresponding properties to the state of the nodes and exploiting the huge variety
of possible switching rules rather than by changing the transformation laws locally. The
simulation of microstructure evolution with consideration of stochastic processes can be
achieved by rendering deterministic into probabilistic transformation rules (Grassberger
et al. 1984; Kinzel 1985; Raabe 1998b). If some of the transformation rules refer to
different real time scales (e.g. recrystallization and recovery, bulk diffusion and grain
boundary diffusion) it is essential to achieve a correct common scaling of the entire system.
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The requirement for an artificial adjustment of time scaling among various rules is due
to the fact that the transformation behavior is often determined by noncoupled Boolean
routines rather than by the exact local solutions to coupled differential equations. The
scaling problem becomes essential in the simulation of nonlinear systems. During the
simulation it can be useful to refine or coarsen the scale according to the kinetics (time
re-scaling) and spatial resolution (space re-scaling).

11.4 Probabilistic Cellular Automata

In order to avoid confusion when discussing nondeterministic cellular automata, one must
clearly indicate the stochastic element that appears in the algorithm. There are essentially
two possibile ways to transform a deterministic cellular automaton into a nondeterministic
one. The first approach consists in selecting the investigated lattice sites randomly, rather
than systematically in sequential order, but using a deterministic transformation law. The
second approach consists in using a probabilistic instead of a deterministic transformation,
but with a systematic investigation of all lattice sites. The first type of automaton is in
its basic setup similar to the Potts model4. In this section we are exclusively concerned
with the latter approach and refer to it as probabilistic or stochastic cellular automaton.

Probabilistic cellular automata are in their elementary setup very similar to conven-
tional cellular automata, except for the fact that the transition rules are stochastic rather
than deterministic (Grassberger et al. 1984; Kinzel 1985; Raabe 1998b).

The principle of probabilistic cellular automata is readily explained by considering a
one-dimensional chain of N lattice sites, each of which can assume one of k possible states
Sν = 0, 1, 2, ..., k − 1. Thus the whole chain can assume kN different configurations. In
the following, a given lattice state described by (S1, S2, ...SN ) is labeled by the integer
number

i =
N∑

ν=1

Sν k
ν−1 (11.4)

In a probabilistic cellular automaton it is now assumed that each state i occurs with the
probability Pi. This probability is a function of time, i.e Pi(t), and develops in discrete
time steps t = 0, 1, 2, ... according to some transition probabilities Tij . If only the last
time step (t− 1) is considered, this rule can be expressed formally by

Pi(t) =

(kN−1)∑

j=0

Tij Pj(t− 1) (11.5)

Thus, the transfer matrix Tij reflects the probability of obtaining a chain configuration i
if the system is in state j at the preceding time step.

Due to the underlying discrete cellular automaton technique, the transfer matrix Tij

is defined by local rules, i.e.

Tij =
N∏

ν=1

p
(
Sj

ν−1, S
j
ν , S

j
ν+1

∣∣Si
ν

)
(11.6)

where Sj
ν and Si

ν are the site variables of states j and i, respectively. Thus, the transition
of the variable Sj

ν depends only on the state of its nearest neighbors and on its own

4The Potts model uses both the random sequential selection of lattice sites and a probabilistic
transformation algorithm (Monte Carlo method).
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state. The generalization of this concept from von Neumann to Moore neighboring is
straightforward. The time evolution is entirely defined by the matrix p of rank k3 by k.

Probabilistic cellular automata can use both totalistic and discrete transformation
rules. Although probabilistic cellular automata reveal a certain resemblance to the Metropo-
lis Monte Carlo algorithm, two main differences occur. First, in contrast to the Monte
Carlo method where only one site is updated per time step, probabilistic cellular au-
tomata are, like most automata, updated simultaneously. Second, they are generally not
calibrated by any intrinsic length or time scale.

Albeit most cellular automata and especially their probabilistic variants are typically
employed to mimic problems at the microscopic level, their scaling parameters are princi-
pally determined by the underlying physical model rather than by the cellular automaton
algorithm.

11.5 Lattice Gas Cellular Automata

The basic definition of the lattice gas spin model was together with the corresponding
Hamiltonian introduced in Chapter 6. The use of lattice gas cellular automata generally
allows space- and time-discretized simulations of reaction–diffusion-type phenomena with
consideration of stochastic fluctuations.

Although these stochastic automata are typically employed for simulations in the
microscopic regime, their use, like that of all automaton-type models, is not necessarily
restricted to applications at the microscopic level. They can be used as well to mimic
mesoscopic or macroscopic systems, provided that adequate cellular automaton transfor-
mation rules can be identified5.

When used at the microscopic level, lattice gas cellular automaton simulations essen-
tially provide information about the topological evolution of reaction–diffusion systems,
but with much less computational effort than is required, by molecular dynamics for
instance.

Lattice gas cellular automata were originally suggested by Hardy et al. (1976) for
the simulation of time correlation functions and long-term behavior of complex reaction–
diffusion systems. In microstructure simulation the use of lattice gas cellular automata
has gained momentum, especially for the prediction of diffusion coefficients (Lemarchand
and Mareschal 1996) and the solution of Navier–Stokes-type problems (Wolfram 1986;
Rothman and Zaleski 1994; Mareschal and Lemarchand 1996).

Lattice gas automata have a number of properties in common with conventional au-
tomata, namely, they are discrete in both space and time, they use a discrete lattice,
and they are able to mimic complex dynamic system behavior at the macroscopic and
mesoscopic level also on the basis of simple local next-neighbor transformation, reaction,
and diffusion rules.

The lattice gas cellular automaton grid consists of a regular array of nodes which are
connected with their nearest neighbors. The grid can have cubic or hexagonal symmetry.
The connections between the sites are often referred to as bonds.

Typically, the transformation and reaction rules are attached to the nodes rather than
to the bonds. In classical cellular automata the lattice sites are assigned by the values of
state variables that can assume one out of a certain set of admissible states. In lattice

5The absence of intrinsic physical scales justifies the presentation of lattice gas cellular automata in
this chapter on meso- and microscale approaches rather than together with Monte Carlo (Chapter 6)
or molecular dynamics simulations (Chapter 7).
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Figure 11.3: Two-dimensional lattice gas cellular automaton with a cubic grid. The
diagram shows two consecutive particle arrangements without collisions. The momentum
(magnitude of particle velocities), the flight directions, and the mass (particle number)
are preserved. In the next step, collisions must be carried out in accord with a set of fixed
collision rules. Collisions will occur for particle pairs (a,c) and (b,d).

gas automata these state variables are replaced by a discrete set of particles. These have
usually a certain velocity, zero mass, and zero interaction energy. The number of particles
is conserved during the simulation reflecting the conservation of mass. The state of the
nodes in a lattice gas automaton is thus characterized by local particle densities rather
than by field variables. The set of particles is referred to as lattice gas.

In a simple two-dimensional lattice gas cellular automaton with cubic grid symmetry,
each node can be occupied by at most four particles. These can have four velocities, all
equal in absolute value, but pointing in the four possible directions (Figure 11.3). In a
grid with a planar hexagonal symmetry each node can be occupied by up to six particles
which can have six different velocity vectors (Figure 11.4). In either case configurations
are excluded in which more than one particle occupies a given state. This means that no
two particles may have the same grid position and direction of their velocity vector. This
rule must not be confused with the Pauli principle, but is simply introduced to improve
computational efficiency (Mareschal and Lemarchand 1996).

The dynamic evolution of lattice gas cellular automata is as follows. At discrete time
intervals ∆t, particles are moved from the sites they occupy to the sites, to which they are
pointing. At the node, elastic collisions are performed which conserve the mass (number)
and momentum (magnitude of the velocity) of the incoming configuration. Figures 11.3
and 11.4 show such consecutive situations, but before the actual collisions. Depending
on the configuration of the incoming particles, several post-collision configurations are
conceivable. The final node state is then usually randomly chosen among them or selected
in accord with a fixed deterministic set of collision rules. Following the pioneering work
of Frisch, Hasslacher, and Pomeau (1986), such collision rules are often referred to as
FHP collision rules. Figure 11.5 gives some examples of such rules. In the case of inert
particles, only collisions are considered. Modified chemical versions of lattice gas cellular
automata also consider reactions, where the colliding species may lead to new reaction
products with different properties.
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Figure 11.4: Two-dimensional lattice gas cellular automaton with a hexagonal grid. The
diagram shows two consecutive particle arrangements without collisions. The momentum
(magnitude of particle velocities), the flight directions, and the mass (particle number)
are preserved. In the next step, collisions must be carried out in accord with a set of fixed
collision rules. Collisions will occur for particle clusters (a,c,d), (e,f), and (g,h).

Figure 11.5: Two-dimensional lattice gas cellular automaton with a hexagonal grid. The
plots show some possible pre-collision configurations at a node together with some collision
rules. The rules represent possible consecutive particle arrangements after elastic collision.
Some lattice gas automata select these configurations randomly rather than from a fixed
list. During the collision, the momentum (magnitude of particle velocities) and the mass
(particle number) are conserved. The flight directions are usually changed.
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The post-collision products and configurations arising from all possible different two-,
three-, four-, five-, or even six-particle collisions, including those between ordinary parti-
cles and reaction products, are usually recorded in a database before the simulation. The
information in this list thus reflects the underlying microscopical physical and chemical
characteristics of the particle interactions.

In recent years various modified lattice gas cellular automaton approaches have been
suggested, such as the lattice–Boltzmann method, the temperature-dependent lattice gas
automaton using a variety of velocity amplitudes, and the various multi-phase models
which consider the character of the neighboring particles before the move (Wolfram 1983;
Mareschal and Lemarchand 1996).

11.6 Mesh Types for Cellular Automaton

Simulations

Most cellular automata used in computational materials science map the state variable
distribution on a simple cubic two- or three-dimensional grid using periodic boundary
conditions. The neighboring shells considered in the transformation and the symmetry of
the mesh can be of substantial influence on the topological evolution of the system. For
instance, simple and face-centered cubic lattices which consider only the first and second
nearest-neighbor shells artificially inhibit grain growth phenomena, where the driving
force is typically computed by using a discrete form of the Gibbs–Thomson equation.

Many two-dimensional cellular automaton simulations dealing with interface pheno-
mena use a mesh with hexagonal symmetry in order to allow the formation artificially of
equilibrium angles at triple points (see Section 12.2).

Cellular automata generally do not have an intrinsic scaling length. This value must
be derived by some physical argument associated with the phenomenon to be described.

11.7 Optimization of Cellular Automata with

Respect to Storage Limitation

In order to reduce the computer memory required by cellular automata, one can in some
cases make use of the fact that the information stored in the cells inside an expanding
volume is often of no relevance to the further course of the calculation. This applies partic-
ularly for the simulation of primary, secondary, and tertiary recrystallization phenomena,
solidification, and thin film deposition.

In these cases it is possible to separate the necessary information into two groups.
For example, in the case of primary static recrystallization, the first group contains the
data of the non-recrystallized cells with a high information density, for instance the local
dislocation density and the crystal orientation. The second group contains the data of
the recrystallized cells with a relatively low information density necessary to describe the
homogeneous interior of the newly formed grains. This approach allows one to store the
properties of the deformed microstructure on a hard disk, a low-price storage medium with
relatively slow access time, using the entire resolution of the grid. This information can be
retrieved into the main memory during the running time of the program with only a minor
increase in computation time. During the whole simulation this information has to be
stored on disk only once, namely, when the growth front passes the cell being considered.
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Table 11.1: Comparison of the Metropolis Monte Carlo algorithm (Potts lattice model)
and the cellular automaton algorithm.

Monte Carlo (Potts model) Cellular automaton

sequential update simultaneous update

microscopic length scale arbitrary length scale

probabilistic deterministic, probabilistic

applicable to statistical mechanics not suited for statistical mechanics

applicable to microstructure simulation applicable to microstructure simulation

In contrast, the surface of the growing grains, i.e. the recrystallization front, needs to
be constantly monitored during the entire recrystallization process. For this reason, the
positions of the grain surfaces must be kept in the comparatively fast and expensive
main memory. However, since surface rather than volume data are stored the required
capacity in random access computer memory (RAM) depends only on the square of the
grid dimension as opposed to a cubic dependence in a conventional three-dimensional
model. Therefore, it is possible to simulate larger structures with less computer memory.

For n cubic grains in a grid containing a3 cells, the number of cells in the surface of
these grains N is given by

N ≤ 6 3
√
n a2 (11.7)

For example, assuming a cubic grid with a base length of a = 500 cells and considering
a number of n = 100 grains, one has to consider only 7 · 106 cells as compared with 5003

= 125 · 106 cells in a conventional model. The latter represents the maximum number
of cells and would only be reached if the lattice were filled with grains that just do not
impinge upon each other (Marx 1998).

11.8 Cellular Automata and Monte Carlo

Cellular automata are often confused with the Potts Monte Carlo spin model. However,
there are fundamental differences between both methods. First, the cellular automaton
method is not intrinsically calibrated to the microscopic regime. Provided that adequate
elementary units and appropriate algebraic, differential, or integral equations with suit-
able field variables can be identified, cellular automaton models can be used with arbitrary
length and time scales. This is not the case for the Monte Carlo model, which is intrinsi-
cally scaled to the microscopic regime. Second, while in all Metropolis and Potts Monte
Carlo methods the sites of the generalized spins are examined sequentially by stochastic
sampling, cellular automata are updated simultaneously. Third, cellular automata provide
a much larger variety of possible deterministic or probabilistic transformation rules than
the multistate Potts model. The main similarities and differences between the Potts-type
Metropolis Monte Carlo and the cellular automaton algorithm are listed in Table 11.1.
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11.9 Simulation of Non-Equilibrium Phenomena

11.9.1 Thermodynamic Aspects

During the thermomechanical processing of metals one encounters a number of non-
equilibrium transformation phenomena and microstructure transients such as recyrstal-
lization, continuous grain growth, discontinuous grain growth, tertiary recyrstallization,
and discontinuous precipitation. From a microstructural point of view, these transforma-
tions have in common that they occur by the motion of high-angle grain boundaries. The
movement of homophase interfaces can be described phenomenologically in terms of the
transition of atoms or groups of atoms from one grain into a neighboring one, due to a
gradient of the Gibbs free enthalpy. The net driving pressure p can be written

p =
dG

dV
(11.8)

where G is the Gibbs free enthalpy and V the volume affected. In real materials various
contributions affect the value of the local free enthalpy.

In cold-worked metals the elastic energy that is stored due to the increased dislocation-
density ̺ contributes the largest portion to the driving pressure. Using a classical statis-
tical state variable approach, this contribution p(̺) can be written

p(̺) ≈ 1

2
∆̺ µ b2 . (11.9)

In this equation ∆̺ is the difference in dislocation density across the internal interface,
µ the bulk shear modulus in the isotropic limit, and b the magnitude of the Burgers
vector. Sometimes the contribution of the dislocations that are stored in the cell walls
̺w and inside the cells ̺i are expressed separately. While the latter value enters the
formula directly, the former one can be expressed in terms of the subgrain size D and the
interfacial energy of the subgrain walls γsub:

p(̺i, ̺w) ≈ 1

2
∆̺i µ b

2 +
αγsub

D
(11.10)

where α is a constant. Using the Read–Shockley equation, the contribution of the sub-
grain walls can be calculated as a function of the misorientation angle. Although this
approach is somewhat more detailed than that in equation (11.9) it nonetheless neglects
the contribution of internal long-range stresses.

A second contribution generally arises from the Laplace or capillary pressure that acts
on each crystal. This arises from the tendency to decrease the total interfacial area and
can be expressed for spherical grain shapes in terms of the local curvature of the interface.
One may assume for a conventional grain size distribution and spherical grain shapes that

p(γ) =
αγ

R
(11.11)

where α is a constant of the order 2–3, γ the interfacial energy, and 1/R the curvature.
In thin films an additional driving force stems from the gradient in surface energy,

p(γs) =
2 (γ1 − γ2)B dx

hB dx
=

2∆γ B

h
(11.12)

where B is the film width, h the film thickness, and ∆γ the change in surface energy.
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A chemical contribution to the driving pressure arises in the oversaturated state.
The corresponding transformation is referred to as discontinuous precipitation. For small
concentrations this chemical driving force amounts to

p(c) ≈ kB

Ω
(T0 − T1) c0 ln c0 (11.13)

where kB is the Boltzmann constant, Ω the atomic volume, T1 the real temperature
during the (numerical) experiment, T0 the equilibrium temperature which corresponds to
the oversaturated concentration at T1, and c0 the concentration. A similar contribution
can enter the total driving pressure due to the loss of long-range order in a cold-worked or
quenched intermetallic material. Further terms, which are of minor relevance in a practical
context, are due to gradients of the magnetic, elastic, or temperature field. Possible back
driving forces are due to impurity drag (Lücke and Detert 1957; Lücke and Stüwe 1963),
particle drag (Hu et al. 1966; Haeßner 1978; Gottstein 1984; Doherty et al. 1990), and
the generation of domains behind the moving high-angle grain boundary in ordered alloys
(Humphreys and Hatherly 1995).

11.9.2 Kinetic Aspects

For the onset of primary recrystallization a thermodynamic, mechanic, and kinetic insta-
bility is required (Cahn 1966; Haeßner 1978; Gottstein 1984; Humphreys and Hatherly
1995). The first type of instability is referred to as nucleation, the second one as net
driving force, and the third one as motion of high-angle grain boundaries.

Nucleation during primary recrystallization cannot take place as a homogeneous pro-
cess in a thermodynamic sense. This means that the gain in free enthalpy that is obtained
by locally reducing the elastic energy does not effectively compensate the surface energy
required to produce the new high-angle grain boundary that surrounds the nucleus. Thus,
it is straightforward that heterogeneous nucleation prevails during recrystallization. Po-
tential nucleation sites are areas with very high dislocation densities or small subgrain
sizes, respectively, and large local lattice misorientations, such as shear bands, microbands,
transition bands, existing high-angle grain boundaries, and deformation zones in the vicin-
ity of precipitates (Himmel 1963; Cahn 1966; Hansen et al. 1995).

During primary recrystallization the criterion of a net driving pressure component
normal to the newly formed boundary is usually satisfied. In cases in which smaller
driving forces are being considered, such as are encountered in secondary and ternary
recrystallization or grain growth, the driving pressure inherent to these processes can be
compensated by back driving forces such as those caused by impurities and precipitates.

In the early stages of primary recrystallization, nuclei with high-angle grain boundaries
are formed which have the kinematic freedom to sweep as incoherent interfaces through the
deformed matrix. In a simple physical picture the motion of high-angle grain boundaries
can be described in terms of the diffusion of atoms or atomic clusters through the interface
under one or more of the aforementioned driving forces. A symmetric rate equation,
which describes interface motion in terms of an isotropic single-atom diffusion process
perpendicularly through a homogeneous grain boundary, can be written

ẋ = νD λgb n c

{
exp

(
−∆G− ∆Gt/2)

kB T

)
− exp

(
−∆G+ ∆Gt/2

kB T

)}
(11.14)

where ẋ is the velocity of the interface, νD the Debye frequency, λgb the jump width
through the interface, c the intrinsic concentration of in-plane self-diffusion carrier defects
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(e.g. grain boundary vacancies or shuffle sources), n the normal of the grain boundary
segment, ∆G the Gibbs enthalpy of motion through in the interface, ∆Gt the Gibbs
enthalpy associated with the transformation, kB the Boltzmann constant, and T the
absolute temperature. Bold symbols indicate vector quantities. The Debye frequency is
of the order of 1013–1014 s−1 and the jump width of the order of the magnitude of the
Burgers vector. Inserting the enthalpy, the entropy, and the driving pressure, equation
(11.14) can be rewritten

ẋ = νD λgb n exp

(
∆Sf

kB

)
exp

(
−∆H f

kB T

)

·
{

exp

(
−∆Hm − T∆Sm − (p/2) Ω)

kB T

)
− exp

(
−∆Hm − T∆Sm + (p/2) Ω)

kB T

)}

(11.15)

where p the driving force (e.g. stored elastic energy or interface curvature), Ω the atomic
volume, ∆Sf the entropy of formation, ∆H f the enthalpy of formation, ∆Sm the entropy
of motion, and ∆Hm the enthalpy of motion. The atomic volume is of the order of b3,
where b is the Burgers vector. While ∆Sf mainly quantifies the vibrational entropy, ∆Sm

contains both configurational and vibrational contributions. By summarizing these terms,
equation (11.15) can be written

ẋ = νD bn exp

(
∆Sf + ∆Sm

kB

)
sinh

(
pΩ

kB T

)
exp

(
−∆H f + ∆Hm

kB T

)
(11.16)

Due to the small argument in the sinh, equation (11.16) can be linearized,

ẋ ≈ νD bn exp

(
∆Sf + ∆Sm

kB

) (
pΩ

kB T

)
exp

(
−∆H f + ∆Hm

kB T

)
(11.17)

This approximation can be compared with the well-known phenomenological expression
which is used for the Arrhenius analysis of experimental grain boundary mobility data,

ẋ = nmp = nm0 exp

(
− Qgb

kB T

)
p (11.18)

where m is the mobility and Qgb the activation energy of grain boundary motion. Com-
paring the coefficients in equations (11.17) and (11.18) yields

m0 =
νD bΩ

kB T
exp

(
∆Sf + ∆Sm

kB

)
and Qgb = ∆H f + ∆Hm (11.19)

equations (11.14)–(11.19) provide a classical kinetic picture of grain boundary motion.
During annealing, primary recrystallization in its advanced state competes to a certain

extent with recovery. In the incipient stages of primary recrystallization, local recovery
processes promote the formation of nuclei. However, in the latter stages, the continuous
degradation of the stored energy due to dislocation annihilation and rearrangements can
substantially degrade the local driving force so that recrystallization is slowed down.
Assuming that the rate of recovery ˙̺ is proportional to the stored dislocation density ̺,
a simple exponential law can be derived, namely,

̺(t) = ̺0 exp

(
− t

τ

)
(11.20)

where ̺(t) is the dislocation density as a function of time t, ̺0 the dislocation density
after deformation, and τ the relaxation time.
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11.9.3 Deterministic Cellular Automaton Solution

This section presents a deterministic cellular automaton approach for simulating primary
recrystallization of cold-worked metals. It is assumed that the driving force for both
nucleation and growth of newly recrystallized grains is the gradient of the local dislocation
density. Growth terminates upon impingement. The cellular automaton method allows
one to introduce arbitrary conditions for recovery and nucleation (Reher 1998).

The start data contain information on the geometry of the grid and the values of
the state variables, e.g. temperature, nucleation probabilities, grain boundary mobilities,
dislocation density, and crystal orientation. These data must be provided in the form of
a three-dimensional matrix, i.e. they map the major features of the initial microstructure
as a function of space. To reduce the computer memory required, the grains can be
numbered and only this number can then be stored for each cell.

The arrays that are held in the main memory of the computer are the so-called grain
list and the surface list. The first of these contains information on the crystallographic
orientation of the grains. Its entries comprise the number of a grain and the three Euler
angles describing its orientation. The second describes only those cells which belong to
the surface of a grain. To minimize further the amount of required memory only two
indispensable data sets should be stored in this list, namely, the coordinates of the cells
and the number of the grain to which this cell belongs.

The main loop of a cellular automaton for simulating primary static recrystallization
starts at time t0. It follows the physical process of primary recrystallization and can
be subdivided into three major routines which can be called sequentially during each
timestep ti, viz., recovery, nucleation, and growth of nuclei.

In the recovery step the dislocation density, which is related to the driving force
and potentially to the nucleation rate, can be reduced according to the kinetics outlined
in equation (11.20). In a simple finite difference formulation a factor f < 1 can be
calculated which depends on the relaxation time τ , the temperature T , and the time ti.
The dislocation density at time ti then amounts to

̺(x1, x2, x3, ti, T, τ, ϕ1, φ, ϕ2) = f̺(T, τ, ti) ̺(x1, x2, x3, t0, T, τ, ϕ1, φ, ϕ2) (11.21)

In a more sophisticated approach the function f might also depend on the local orientation,
ϕ1, φ, ϕ2, rendering ordinary recovery into orientation dependent recovery.

In the nucleation step individual cells or cell clusters must be switched from the
deformed into the recrystallized state.

In the grid this can be described geometrically by an arrangement of spheres with a
given radius in the bulk of the sample being modeled. Various deterministic or stochas-
tic nucleation criteria are conceivable. In the simplest possible approach, one can use a
site-saturated statistical spatial arrangement of nucleus grains in the deformation matrix
without referring to particular criteria. Depending on the underlying model, the orienta-
tion of a nucleus could be identical to, similar to (∆g ≤ 15◦), or different from that of the
surrounding deformation matrix (∆g > 15◦). Nuclei with identical or similar orientation
can only grow when they are located on existing high-angle grain boundaries, where they
can grow into neighboring grains with a sufficiently different orientation. In a somewhat
more physical approach one could select only those cells as nucleation sites that reveal a
maximum in the stored energy and/or a maximum local misorientation in the deformation
matrix. Combining these criteria which are characteristic features of the considered grain
orientation with the rule of producing nuclei with a similar orientation to the surrounding
host matrix amounts to assuming oriented nucleation. The decision about the nucleation
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event could be made by applying a deterministic rule or a Monte Carlo step. Introducing
the latter transformation rule would change the deterministic cellular automaton into a
hybrid automaton with a probabilistic nucleation and a deterministic growth and recovery
module.

After the nucleation step, the nucleus grain can be added to the grain list. It is
usually assumed to be of spherical shape. All cells which belong to the surface of this
sphere should be appended to the surface list. Cells in the interior of the sphere are marked
as recrystallized. Usage of spheres is necessary to suppress the strong influence of the grid
geometry on the shape of the developing grains. The nucleation condition determines the
number of nuclei Ni that are created at time ti. Different nucleation conditions such as
site-saturation and constant nucleation rate can be easily implemented.

In the growth step a loop can be executed for each nucleus over all the cells that belong
to the surface of the grain considered. During this loop the difference in crystallographic
orientation between a surface cell and its non-recrystallized neighbor cells is determined.
The grain boundary mobility is a function of this misorientation ∆g and the temperature
T . Its value can be extracted from a simple reference table. For Read–Shockley type
small angle boundaries and twin boundaries with a low coincidence value, such as Σ = 3
or Σ = 9, the mobility is usually set equal to zero.

In the case of primary recrystallization the local driving force depends on the actual
dislocation density ̺ of the non-recrystallized cell. The velocity of the moving boundary,
i.e. the growth step (in units of cell diameters) in a single time increment, is the product
of driving force and mobility. As a result the surface cell considered is displaced laterally
into its environment by the calculated number of cells in the direction of its neighbor
cell. This movement can be performed by means of Bresenham’s algorithm adapted for a
three-dimensional environment. All cells encountered during this displacement are marked
as recrystallized. Growth ceases when the recrystallized cells impinge upon each other
(Hesselbarth and Göbel 1991; Pezzee and Dunand 1994; Marx and Raabe 1995; Raabe
et al. 1996; Marx et al. 1996).

11.9.4 Probabilistic Cellular Automaton Solution

Differential equations of the type given in equations (11.17) or (11.18) can be directly
used as transformation rules in a mesoscale kinetic cellular automaton. In contrast to
the deterministic approach described above, the probabilistic cellular automaton method
consists in replacing the deterministic integration by a stochastic one using a weighted
random sampling scheme. For this purpose equation (11.17) or (11.18) must be separated
into a deterministic part, ẋ0, and a probabilistic part, w,

ẋ = ẋ0 w = n
kB Tm0

Ω

pΩ

kB T
exp

(
− Qgb

kB T

)
(11.22)

where ẋ is the velocity of the boundary and

ẋ0 = n
kB Tm0

Ω
and w =

pΩ

kB T
exp

(
− Qgb

kB T

)
(11.23)

The simulations are to be conducted on a spatial mesh, the given scale of which, λm, is
much above the atomic scale (λm can relate to the dislocation cell size or some similar
more or less arbitrary quantity). If a transformation event takes place, the grain thus
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grows (or shrinks) by λ3
m rather than b3. For correcting the scaling, equation (11.22)

must therefore be rewritten

ẋ = ẋ0 w = n (λm ν) w with ν =
kB Tm0

Ω λm
(11.24)

However, depending on the value of λm, the time scale, (1/ν), imposed by such a frequency
might be not appropriate for stochastic integration. It is therefore helpful to normalize
the above equation by an attack frequency ν0, so that

ẋ = ẋ0 w = n λm ν0

(
ν

ν0

)
w = ̂̇x0

(
ν

ν0

)
w = ̂̇x0 ŵ (11.25)

where

̂̇x0 = n λm ν0 and ŵ =

(
ν

ν0

)
pΩ

kB T
exp

(
− Qgb

kB T

)
=

m0 p

λm ν0
exp

(
− Qgb

kB T

)

(11.26)

While ̂̇x0 is determined by the mesh size and the chosen attack frequency, ŵ is deter-
mined by the temperature and experimental input data. For instance, the grain boundary
characteristics involved can depend on the misorientation and plane inclination, and the
driving forces on the stored elastic energy and local curvature. Coupled sets of differential
equations of the type given by equation (11.25) can be integrated stochastically.

11.10 Application of Cellular Automata in

Materials Science

This section gives a number of classical or recently published references on applications of
cellular automata simulations related to various domains of materials science. The list can
by no means be complete but it may serve as a bibliography for getting better acquainted
with some examples of the recent original literature in this field. Materials-related appli-
cations of cellular automaton simulations are particularly in the field of transformation
phenomena, such as those encountered during solidification and recrystallization. A se-
cond major portion of the publications is concerned with reaction–diffusion systems and
lattice gas automata.

Field of application Reference

fundamentals, mathematical Schulman and Seiden (1978)
properties Wolfram (1983)

Vichniac (1984)
Packard and Wolfram (1985)
Wolfram (1985)
Wolfram (1986)
Stauffer (1991)
Mahnke (1996)

primary static recrystallization Hesselbarth and Göbel (1991)
Pezzee and Dunand (1994)
Marx and Raabe (1995)
Marx, Raabe, and Gottstein (1995)
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Marx, Raabe, and Gottstein (1996)
Sheldon and Dunand (1996)
Raabe (1998b)
Reher (1998)

reaction–diffusion and lattice Frisch, Hasslacher, and Pomeau (1986)
gas automata Berryman and Franceschetti (1989)

Gerhardt and Schuster (1989)
Dab, Lawniczak, and Boon (1990)
Kong and Cohen (1991)
Mai and von Niessen (1991)
van der Hoef and Frenkel (1991)
Sahimi (1993)
Chopard, Luthi, and Croz (1994)
Cheng, Chan, and Chau (1995)
Cohen and Wang (1995)
Wang and Cohen (1995)
Lemarchand and Mareschal (1996)
Mareschal and Lemarchand (1996)

crystal dislocation recovery Raabe, Roters, and Marx (1996)
fracture mechanics Ossadnik (1993)

Henderson, Main, and Norman (1994)
dendrites and crystal Packard (1986)
solidification Cortie (1993b)

Gandin and Rappaz (1994)
Brown, Williams, and Spittle (1994)
Spittle and Brown (1995)
Rezende, Ludwig, and Sahm (1996)
Gandin and Rappaz (1997)

dislocation patterning and kink Hesselbarth and Steck (1992)
formation Nummelin (1994)

Lépinoux (1996)
sintering Pimienta, Garboczi, and Carter (1992)
phase transition phenomena Alexander, Edrei, and Garrido (1992)

Karapiperis (1995)
Bussemaker, Deutsch, and Geigant (1997)
Petersen and Alstrom (1997)

crystal and domain growth Langer (1980)
Kessler, Levine, and Koplik (1984)
Willson (1984)
Ben-Jakob, Goldenfeld, Langer, and Schon (1985)
Takahashi and Suzuki (1990)
Kohyama (1991)
Willson (1992)
Braga, Cattaneo, and Vogliatti (1995)
Liu, Baudin, and Penelle (1996)
Davies (1997b)

two-phase grain structures Spittle and Brown (1994)
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Figure 11.6: Consecutive sections of a recrystallizing sample. Deterministic 3D cellular
automaton simulation. The grid size amounts to 200 × 200 × 200 points (Reher 1997).

11.11 Examples of Cellular Automaton

Simulations in Materials Science

11.11.1 Simulation of Recrystallization by Use of a CA with

Deterministic Transformation Rules

This section presents a deterministic three-dimensional cellular automaton simulation.
The method has been developed to simulate primary recrystallization of strongly cold-
worked metals (Marx and Raabe 1995; Marx et al. 1995; Gottstein 1996; Reher 1998).

The driving force for the nucleation and growth of recrystallized grains is the disloca-
tion density of the deformed matrix. Growth terminates upon impingement. The model
allows one to introduce different conditions for recovery, nucleation and grain growth. The
model is capable of simulating kinetics, microstructure and texture development during
recrystallization. Figure 11.6 shows some consecutive sections of a recrystallizing sample.
Figure (11.7) shows three sections through the center of a simulated recrystallization mi-
crostructure. The simulation used a grid of 200 × 200 × 200 points in real space. Figure
(11.8) shows two sections of a simulated recrystallization microstructure. The simulations
were conducted with different nucleation rates.

11.11.2 Simulation of Recrystallization and Coarsening by

Use of a CA with Stochastic Transformation Rules

This section gives an example of an application of a discrete kinetic three-dimensional
stochastic cellular automaton. The local transformation rule of the automaton consists
in solving a probabilistic analogue of a classical linear symmetric rate equation for grain
boundary segment motion at each site of a three-dimensional lattice (Raabe 1998b). The
rate equation is turned into a form which makes it usable at the mesoscopic scale. The
time integration of the underlying differential equations is achieved through a weighted
Monte Carlo scheme6. The stochastic cellular automaton allows one the spatial, kinetic,

6The use of a probabilistic transformation rule that acts on each site synchronously must not be
confused with the Potts model, where the sites are picked randomly, and where the update is sequential.
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Figure 11.7: Three perpendicular sections from a deterministic 3D cellular automaton
simulation. The grid size amounts to 200 × 200 × 200 points (Reher 1997).

Figure 11.8: 2D sections from a deterministic 3D cellular automaton simulation on the
basis of deformation data incorporated from a preceding finite element simulation. Simu-
lation in areas with a high and a low nucleation rate. The diagram also shows the final
texture and the grain size distrubution (Reher 1997).
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and crystallographic simulation of mesoscale transformation phenomena that involve non-
conserved orientational field variables and the motion of sharp interfaces. The automaton
is discrete in time, real space, and orientation space. The approach works without empiri-
cal quantities and allows one to incorporate theoretical or experimental texture, mobility,
and grain boundary energy data.

Figure 11.9 shows a two-dimensional recrystallization simulation of a heavily deformed
aluminum single crystal with a uniform near-cube orientation and an initial dislocation
density of 1015 m−2. The driving force is due to the stored elastic energy. Crystal recovery
and the back driving force arising from boundary curvature are not considered.

The simulation uses site-saturated nucleation conditions with a statistical distribution
of the nuclei in real and orientation space. It considers three classes of grain boundaries.

Figure 11.9: 2D recrystallization of an aluminum single crystal, T = 800 K, 30%, 51%, and
82% recrystallized, square length 20 µm. Probabilistic 3D cellular automaton simulation
(Raabe 1998).

The near 35◦ 〈112〉 special boundaries are characterized by Q1 = 1.58 eV and lnm01/γ =
16.4 µm2/s, the near 40◦ 〈111〉 special boundaries by Q2 = 1.56 eV and lnm02/γ = 16.8
µm2/s, and average boundaries by Qa = 1.60 eV and lnm0a/γ = 16.0 µm2/s. Q is the
activation energy of the mobility, m0 the temperature-independent part of the mobility,
and γ the grain boundary energy. The ratio m0/γ is referred to as reduced mobility. γ is
assumed as 0.7 J/m2. The boundary planes can have arbitrary inclination.

Figure 11.10 shows some consecutive two-dimensional sections from a three-dimensional
grain growth simulation of a recrystallized aluminum single crystal. This automaton works
on a three-dimensional cubic lattice considering the first, second, and third neighbor shell
for the calculation of the local Laplace driving pressure that acts through the boundary
curvature on each portion of the interface. All equations of motion are simultaneously
integrated using a weighted stochastic sampling integration scheme. The presented sim-
ulations were carried out for a temperature of T = 800 K with a grid length of 30µm.
The sections were taken after 0 s, 75 s, 755 s, and 1510 s.
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Figure 11.10: Some consecutive 2D sections from a 3D grain growth simulation of a
recrystallized aluminum single crystal, T = 800 K, section length 30µm, (a) 0 s, (b) 75
s, (c) 755 s, (d) 1510 s. Probabilistic 3D cellular automaton simulation (Raabe 1998).



Chapter 12

Mesoscale Kinetic Monte

Carlo and Potts Models

12.1 Introduction and Fundamentals

The application of the Metropolis Monte Carlo method (Chapter 6) in microstructure
simulation has gained momentum particularly through the extension of the Ising lattice
model for modeling magnetic spin systems to the kinetic multistate Potts lattice model
(Potts 1952; Wu 1982).

The original Ising model is in the form of a 1
2

spin lattice model where the internal
energy of a magnetic system is calculated as the sum of pair-interaction energies between
the atoms or molecules, which are attached to the nodes of a regular lattice (Huang 1963;
Binder 1984; Koonin 1986; Binder 1991a; Yeomans 1992). The Hamiltonian is defined in
equation (6.31). In its original version the Ising spin model takes a quasi-thermodynamic
view of the local magnetic interactions without quantifying time (Chapter 6).

The Potts model deviates from the Ising model by generalizing the spin and by using
a different Hamiltonian. It replaces the boolean spin variable where only two states are
admissible (“spin up”, “spin down”) by a generalized variable Si which can assume one
out of a discrete set of q possible states, and accounts only for the interaction between
dissimilar neighbors as defined by equation (6.36) (Potts 1952; Wu 1982; Fernandez 1989;
Hu and Hsiao 1992; Bassler and Zia 1994; Chen and Hu 1994; Chen et al. 1995; Janke
and Villanova 1995; Eichorn and Binder 1996).

The introduction of such a discrete spectrum of possible spins enables one to represent
domains by regions of identical spin or better state. For instance, in microstructure
simulation such domains can be interpreted as areas of similarly oriented crystal material.
Each of these spin orientation variables can then be equipped with a set of characteristic
state variable values quantifying for instance the lattice energy, the surface energy, the
dislocation density, the Taylor factor, or any other structure- or orientation-dependent
constitutive quantity of interest. Lattice regions which consist of domains with identical
spin or state can be interpreted as crystal grains (Figure 12.1). The values of the state
variable enter the Hamiltonian of the Potts model. The most characteristic property of
this energy operator is that it defines the interaction energy between nodes with like spins
to be zero, and between nodes with unlike spins to be one (equation (12.4)). This rule
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Figure 12.1: Mapping of generalized spin numbers to sites in a Potts lattice model. This
approach allows one to represent domains discretely by regions of identical spin. Such ar-
eas can be interpreted as crystal grains. Each lattice site is then assigned a certain energy
content, reflecting for instance the stored elastic energy arising from plastic deformation
(Tavernier and Szpunar 1991).

allows the identification of interfaces and the quantification of the interfacial energies for
each boundary segment as a function of the abutting domains.

This property of the Potts model makes it very versatile for describing coarsening
phenomena. In this field it takes a quasi-microscopic metallurgical view of grain growth
or ripening, where the crystal interior is composed of lattice points (e.g. atom clusters)
with identical energy (e.g. orientation) and the grain boundaries are the interfaces be-
tween different types of such domains. As in a real ripening scenario, interface curvature
leads to increased wall energy on the convex side and thus to wall migration (Figure 12.2)
(Srolovitz et al. 1984; Grest et al. 1988; Glazier et al. 1990; Holm et al. 1996). The
discrete simulation steps in the Potts model, by which the progress of the system towards
thermodynamic equilibrium, i.e. the kinetic evolution, takes place, are typically calculated
by randomly switching lattice sites and weighting the resulting interfacial energy changes
in terms of Metropolis Monte Carlo sampling. In pure coarsening simulations the switch-
ing of sites that are inside domains without any connection to existing interfaces is of
no relevance and can be regarded as fluctuation. In Potts simulations which also include
a state-variable measure for the orientation-dependent stored elastic energy, fluctuation
inside grains can be interpreted as nucleation events of primary recrystallization.

Switching events that are relevant for coarsening can only take place by orientation
changes of sites close to interfaces. This means that, if the new total configurational
energy after switching two interface domains A and B, is smaller than the preceding one,
the move would bring the system to a state of lower total interfacial energy. Hence,
the move is accepted and the switched domains remain in their respective new positions.
However, if the new energy exceeds the preceding one, i.e. if the configurational change
∆E has a positive value, the move is accepted only with a certain probability, namely

pA→B ∝ exp

(
− ∆E

kBT

)
(12.1)

One now generates a pseudo-random number ξ between 0 and 1 and determines the new
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Figure 12.2: Characterization of a grain boundary in the Potts model. (a) Flat interface;
interaction among nearest (NN) and next-nearest neighbors (NNN); all spins assigned
to the boundary segments i have an energy of γi. Single flips to change the topology
through bulging entail an energy increase from three to five “interaction” pairs. Neglecting
geometrical corrections, i.e. different weighting functions for NN and NNN, the energy of
the bulging cell would increase from 3 γ to 5 γ. (b) Convex interface; interaction among
NN and NNN; boundary cells i have an energy of γi. The circled spins reduce energy by
flipping (5 γ → 3 γ). The grain with spins 2 will grow at the expense of grain 1 (Srolovitz
et al. 1984; Glazier et al. 1990).

interface configuration according to the rule:

ξ





≤ exp
(
− ∆E

kBT

)
: the switch is accepted

> exp
(
− ∆E

kBT

)
: the switch is not accepted

(12.2)

If the new configuration is rejected, one counts the original position as a new one and
repeats the process by switching two other arbitrarily chosen neighboring interface do-
mains.

Although multistate Potts models thus correctly describe grain coarsening phenomena
in terms of the weighted change of crystal orientations across boundaries, and typically
reveal a distinct topological transient evolution, originally they did not provide a clear
kinetic measure of these changes.

This disadvantage was to a certain extent surmounted by the introduction of the
kinetic multistate Potts models. Like all Monte Carlo methods, they sample the N sites
in the array in a random fashion. N such trial rearrangements are then defined as one
Monte Carlo step (Anderson et al. 1984; Rollett et al. 1989). This method of introducing
a kinetic unit into the model amounts to interpreting these N reorientation attempts as
one single simultaneous sampling step rather than a number of N successive sampling
steps. The number of such Monte Carlo steps is then used as a unit proportional to time.
The microstructural evolution is reflected by the temporal mesoscopic development of the
domain size and shape. While the classical Monte Carlo approach is confined to time-
independent predictions of state function values, through the advent of the kinetic Potts
model it becomes a convenient means in simulating microstructure evolution (Srolovitz
et al. 1984).
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Figure 12.3: Influence of lattice symmetry on the angles at triple points in two-dimensions.
The use of hexagonal planar grids supports the evolution of the 120◦ angles at boundary
triple points (a). The use of a simple square lattice with consideration of the first and
second nearest-neighbor shells leads to the formation of 135◦ and 90◦ angles at boundary
triple points (b).

Materials-related Potts-type simulations have been devoted to nucleation (Tavernier
and Szpunar 1991b), static primary recrystallization (Srolovitz et al. 1986; Srolovitz et al.
1988; Rollett et al. 1989; Tavernier and Szpunar 1991a; Holm et al. 1996), normal grain
growth (Anderson et al. 1984; Srolovitz et al. 1984), secondary recrystallization (Rollett
et al. 1989; Holm et al. 1996), dynamic recrystallization (Rollett et al. 1992; Peczak
1995; Holm et al. 1996), recrystallization in the presence of particles (Doherty et al.
1990; Holm et al. 1996), and solidification (Müller-Krumbhaar 1989).

12.2 Influence of Grid Size and Symmetry

According to Glazier, Anderson, and Grest (1990), reliable simulations on the basis of the
Potts model are obtained if the lattice has at least 1000 spins per lattice side. The Potts
model can be used both with von Neumann neighboring (nearest-neighbor interaction)
and with Moore neighboring (first, second, and third nearest-neighbor interaction (three-
dimensional)) (Chapter 11, Figure 11.2).

Most of the early Potts simulations used a hexagonal planar grid. This symmetry
artificially supports the evolution of the 120◦ angles at boundary triple points. This angle
maps the equilibrium topology of grain boundaries in two-dimensional structures when
all the interface energies are identical. In contrast, the use of a simple square lattice with
consideration of the first and second nearest-neighbor shells leads to the formation of
135◦ and 90◦ angles at boundary triple points (Figure 12.3). In most recent simulations,
particularly in the three-dimensional versions, simple cubic lattices are preferred.

Both the symmetry and the considered neighboring have a substantial influence on
the energetics and thus on the topological evolution of the system. For instance, simple
and face-centered cubic lattices which consider only the first and second nearest-neighbor
shells artificially inhibit grain growth. However, when used with consideration of the
first, second, and third nearest-neighbor shells, simple cubic lattices do not inhibit grain
growth.
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12.3 Application of Multistate and Kinetic Potts

Models in Materials Science

This section gives some references on examples of applications of Potts simulations related
to materials science. The list can by no means be complete but may serve as a bibliography
for getting better acquainted with the original literature in this field. Materials-related
applications of the Potts model have been devoted to nucleation, static primary recrys-
tallization, normal grain growth, secondary recrystallization, dynamic recrystallization,
recrystallization in the presence of particles, solidification, and diffusion.

Field of application Reference

classics, fundamentals Potts (1952)
Wu (1982)
Binder (1984)
Binder (1991c)

nucleation Tavernier and Szpunar (1991b)
primary recrystallization Srolovitz, Grest, and Anderson (1986)

Srolovitz, Grest, Anderson, and Rollett (1988)
Rollett, Srolovitz, Doherty, and Anderson (1989)
Tavernier and Szpunar (1991a)
Holm, Rollett, and Srolovitz (1996)

normal grain growth Anderson, Srolovitz, Grest, and Sahni (1984)
Srolovitz, Anderson, Sahni, and Grest (1984)
Mehnert and Klimanek (1998)

secondary recrystallization Rollett, Srolovitz, and Anderson (1989)
Holm, Rollett, and Srolovitz (1996)

dynamic recrystallization Rollett, Luton, and Srolovitz (1992)
Peczak (1995)
Holm, Rollett, and Srolovitz (1996)

grain growth with particles Doherty, Li, Anderson, Rollett, and Srolovitz (1990)
solidification Müller-Krumbhaar (1989)

12.4 Examples of Potts Simulations in Materials

Science

12.4.1 Grain Coarsening Phenomena

In the basic variant of the Potts model (1952) the interaction energy between nodes
with like spins is defined to be zero, and between nodes with unlike spins to be one.
The corresponding Hamiltonian thus contains sums of the components of the Kronecker
symbol, multiplied by the exchange interaction energy J between nearest neighbors (NN)
(Binder 1984). For the case of the multistate Potts model, which is based on using a set of
q generalized spin numbers, the Hamiltonian for the two-dimensional case can be written

HPotts = −J
∑

〈i,j〉

(
δsi sj

− 1
)

si = 1, 2, ..., q (12.3)
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where q is the number of possible states, and 〈i, j〉 the sum over nearest-neighbor pairs
in the lattice.

In microstructure simulation the above energy operator can be extended to allow the
identification of internal interfaces because it defines a nonvanishing interaction energy
between lattice points with unlike generalized spin, and zero energy between points of
identical spin. Following Rollett, Srolovitz, Doherty, Anderson, and Grest (1990) a Potts-
type operator for the simulation of orientation-dependent problems can be formulated
according to

Hgg = − J

2

N∑

i

nn∑

j

(
δsi sj

− 1
)

si = 1, 2, ..., q (12.4)

where q is the number of texture components considered, sk the corresponding spin num-
ber of each lattice site representing a particular crystal orientation gk in which the site
is embedded,

∑N
i the sum over all lattice sites, and

∑nn
j the sum over all nearest neigh-

bors. Lattice sites si that are adjacent to sites having different grain orientations sj 6=i are
defined as being separated by a high-angle grain boundary (Figure 12.1). Lattice sites
which are surrounded by sites with the same orientation are located in the grain interior.
Thus, equation (12.4) yields an energy value J for each unlike pair of sites which amounts
to identifying a grain boundary.

Figure 12.4: Three-dimensional grain growth simulation using a kinetic Potts Monte Carlo
model (Mehnert 1998).

In a more generalized q-state Potts model the exact value of the interface energy J
could even vary depending on the respective values of the energy or respectively of the
orientation variables that are assigned to the considered neighboring lattice sites. Such a
general approach may be referred to as a microscopic multistate interface model.

A grain growth simulation that is based on this approach is shown in Figure 12.4.
Figure 12.5 shows a similar grain growth simulation, but with additional consideration of
particles.
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Figure 12.5: Two-dimensional grain growth simulation using a kinetic Potts Monte Carlo
model with particles (Doherty et al. 1990).

12.4.2 Recrystallization

The approach outlined in the preceding section is designed to predict grain coarsening
phenomena by using a classical Potts-type Hamiltonian, equation (12.4). For extending
this concept to the simulation of recrystallization and grain growth phenomena at the
same time, a modified operator can be formulated which additionally accounts for the
energy that is accumulated during plastic deformation (Srolovitz et al. 1986, Rollett et
al. 1990), namely

Hrx =
N∑

i

(
E f (si) +

J

2

nn∑

j

(
δsi sj

− 1
)
)

si = 1, 2, ..., q (12.5)

where q is the number of texture components, sk the spin number of each lattice site with a
particular orientation gk, f (si) a step function which amounts to unity for unrecrystallized
and zero for recrystallized sites, E the stored elastic energy per site accumulated during
the preceding plastic deformation,

∑N
i the sum over all lattice sites, and

∑nn
j the sum

over all nearest neighbors. The influence of nucleation rates and sites were discussed in
some detail by Rollett, Srolovitz, Doherty, Anderson, and Grest (1990).

A recrystallization simulation by Srolovitz, Grest, and Anderson (1986) based on the
above operator is shown in Figure 12.6. From equation (12.5) it is obvious that, since
recrystallization and ordinary grain coarsening take place simultaneously, the kinetics and
the topological evolution depend on the ratio of the stored elastic energy to the interfacial
energy E/J . In metallic systems, the energy contribution of the dislocations typically
exceeds that of the grain boundaries by up to one order of magnitude. Figure 12.6 shows
a partially recrystallized microstructure which exhibits a bimodal grain size distribution.
The two-dimensional calculation was conducted with an E/J ratio of 3 and with site-
saturated nucleation conditions using 10 nuclei on 40 000 lattice sites. Figure 12.7 shows
the Avrami kinetics as predicted by two-dimensional simulations with a different number
of nuclei.
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Figure 12.6: Partially recrystallized microstructure with a bimodal grain size distribution
(Srolovitz et al. 1986). The 2D calculation was conducted with an E/J ratio of 3 and
with site-saturated nucleation conditions using 10 nuclei on 40 000 lattice sites.

Figure 12.7: Avrami curves for 2D simulations with a different number of nuclei (Srolovitz
et al. 1986). F is the recrystallized area fraction and t the number of MC units. The
calculations used an E/J ratio of 3 and with site-saturated nucleation conditions. The
grid had 40 000 lattice sites. Curves a-f correspond to 5, 10, 20, 50, 100, 200 nuclei.



Chapter 13

Geometrical and Component

Models

13.1 Introduction

This section presents two groups of models which are based on geometrical considerations
for the simulation of recrystallization and grain growth problems. The first approach is
the geometrical or topological model of Mahin, Hanson, and Morris Jr. (1980) and Frost,
Whang, and Thompson (1986) which is mainly based on incorporating the elementary
geometry of nucleation, growth and impingement. It was employed mainly to mimic
topologies of thin films. The second model is the more versatile component approach
of Juul Jensen (1992). While the first model is particularly useful for predicting the
dependence of grain topology and grain size distribution on the nucleation conditions, the
second approach complements conventional analytical growth expressions with spatial
aspects of nucleation, impingement, and texture.

13.2 Geometrical Model

Geometrical models, like all mesoscale recrystallization and grain growth models, repre-
sent continuum approaches. They consist basically of three major steps: nucleation,
crystal growth to impingement, and, in some cases, subsequent grain coarsening. The
last of these steps will be discussed in Chapter 14.

As in most related models, the nuclei are either initially distributed in a site-saturated
fashion or constantly added to the non-recrystallized volume fraction as a linear or decrea-
sing function of time. After their generation, it is assumed that all nuclei grow isotropically
in space at a constant growth rate. This means that all existing nuclei expand equally to
spheres until they impinge upon each other.

For site-saturated nucleation conditions the final grain topology can be constructed
by employing straightforward geometrical considerations (Frost et al. 1986; Frost and
Thompson 1987a; Frost et al. 1990). If two neighboring grains nucleate at the same time,
and expand in radius at the same constant growth rate, the final interface between them
will be a straight line. This boundary is identical to the perpendicular bisector of the
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Figure 13.1: Development of straight interfaces between three crystals formed at the same
time, under isotropic and constant growth rate conditions.

line joining the two initial nucleation sites. This simple geometrical result is identical to
the construction rule of Wigner–Seitz cells. When three neighboring crystals grow under
the same conditions, the resulting topology will be a triple point, which is the meeting
coordinate of the three perpendicular bisectors of the edges of the triangle formed by
the nucleation sites (Figure 13.1). If the three nuclei are generated at different times,
but grow at the same rate, they will impinge upon another along an interface line with
hyperbolic shape (Figure 13.2). The final position of the triple point can be specified by

r1 +Gt1 = r2 +Gt2 = r3 +Gt3 (13.1)

where ri is the distance from the nucleation site of grain i to the triple point, G the
isotropic growth rate, and ti the nucleation time for grain i. Using this algorithm with
site-saturated nucleation conditions will generate the well-known Voronoi structure, which
is identical to a Wigner–Seitz construction on the basis of random lattice points in space
(Figure 13.3). Voronoi topologies are sometimes also referred to as Dirichlet or Theissen
structure. Similar structures, which are often called Johnson–Mehl topologies, arise from
such geometrical models equipped with a constant nucleation rate (Figure 13.4).

13.3 Component Model

An extended version of the geometrical model was introduced by Juul Jensen (1992) as a
simulation method for the prediction of recrystallization. This approach, which is referred
to as the component model, complements conventional analytical growth expressions with
advanced spatial aspects of texture, growth, and impingement (Juul Jensen 1997b). The
simulations are conducted on a three-dimensional spatial cubic grid, which is referred to
as a “computer sample” (Figure 13.5). The grid size is determined by the number of
grains in the simulation and the density of the nuclei. The input data required to perform
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Figure 13.2: Development of hyperbolic interfaces between three crystals, formed at dif-
ferent times, under isotropic and constant growth rate conditions.

a simulation are the number of grains N , the number of different texture components
i, the total nucleation density, the size of the nuclei r(i), the nucleation rate ṅ(t, i), the
spatial distribution of the nuclei, which also may depend on the orientation (i), the grain
shape as a function of i, and the growth rate G(i, t).

The simulation proceeds as follows. At first, the N nuclei are distributed according
to the nucleation information, after which each nucleus has a position (x1, x2, x3) and
a nucleation time t0. Subsequently, one calculates for each non-recrystallized point in
the finite difference grid the time when each of the N nuclei would arrive at that point.
From this information one registers that particular grain which arrives first at the coordi-
nate inspected, together with its time of arrival. This method amounts to excluding the
possibility that the newly formed grains can overlap, i.e. they generally stop when they
impinge upon each other. However, further growth of impinging grains in all the other
non-recrystallized directions is not impeded.

From this geometrical rule, which is systematically applied to all points in the lattice,
one obtains the entire topology and texture of the partially and completely recrystallized
material. The particular versatility of the component or multicomponent method lies
in its ability to include experimental information, for instance on particular nucleation
conditions and/or starting textures.

13.4 Application of Geometrical and Component

Models in Materials Science

This section lists some classical and recent publications on applications of geometrical and
component simulations related to various domains of materials science. The list can by
no means be complete but may serve as a bibliography for getting better acquainted with
the recent original literature in this field. Geometrical and component models are usually
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Figure 13.3: 2D Voronoi or Dirichlet crystal topology generated through a Wigner–Seitz
cell construction on random points. The metallurgical analog to this is a nucleation–
growth process with site-saturated nucleation followed by isotropic and constant growth.
Under such conditions only straight interfaces can develop (Frost et al. 1986).

Figure 13.4: 2D Johnson–Mehl crystal topology generated through a nucleation–growth
process with constant nucleation rate and isotropic and constant growth. Under such
conditions both straight and hyperbolic interfaces can develop (Frost et al. 1986).
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Figure 13.5: Presentation of the 3D calculation grid as used in the component model of
Juul Jensen (1992). The lattice contains nuclei with three different initial crystal orien-
tations. The shaded plane indicates how 2D slices are extracted for statistical analysis.

employed for the fast computation of microstructures and crystallographic textures with
consideration of various nucleation and growth conditions. Advanced versions allow the
incorporation of the initial texture.

Field of application Reference

classics about geometrical modeling Getis and Boots (1979)
Mahin, Hanson, and Morris Jr. (1980)
Frost, Whang, and Thompson (1986)
Frost and Thompson (1987a)
Frost and Thompson (1987b)
Frost, Thompson, and Walton (1990)

component or multicomponent model Juul Jensen (1992)
Juul Jensen (1997b)

13.5 Examples of Geometrical and Component

Simulations in Materials Science

Following equation (13.1), the deviation of the interface shape from a straight line in
geometrical models can be determined either by the nucleation time or by the growth rate
(Frost and Thompson 1987a). Figure 13.6 shows two 2D crystal structures produced by
continuous nucleation with different exclusion zones around them. Figure 13.7 shows two
2D sections extracted from a 3D component simulation of primary static recrystallization
at two different times (Juul Jensen 1992; Juul Jensen 1997b). The different gray scales
indicate the various texture components.
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Figure 13.6: Two 2D crystal topologies computed by Frost and Thomson (1987) by con-
tinuous nucleation with different exclusion zones.

Figure 13.7: Recrystallization simulation of Juul Jensen (1997) according to the compo-
nent model.



Chapter 14

Topological Network and

Vertex Models

14.1 Introduction and Fundamentals

Topological network and vertex models idealize solid materials or soap-like structures
as homogeneous continua which contain interconnected boundary segments that meet at
vertices, i.e. boundary junctions. Depending on whether the system dynamics lies in the
motion of the junctions or of the boundary segments, they are sometimes also referred to
as boundary dynamics models. The grain boundaries appear as lines or line segments in
two-dimensional and as planes or plane segments in three-dimensional simulations. The
dynamics of these coupled interfaces or interface portions and of the vertices determine
the evolution of the entire network. The motion of the boundaries and sometimes that
of the vertices also can be described either in terms of a Newtonian equation of motion
which contains a frictional portion (equation (9.160)) or in terms of a linearized first-order
rate equation (equations (11.14)-(11.18)).

Depending on the physical model behind such a simulation, the boundary segments
and vertices can have different types of equations of motion, considering for instance
aspects such as an effective mass, frictional terms, or, in a rate context, characteristic
activation enthalpies.

Using the frictional form of the classical equation of motion with a strong damping
term results in a steady-state motion where the velocity of the defect depends only on
the local force but not on its previous velocity. The overdamped steady-state description
is similar to choosing a linearized rate equation, where the defect velocity is described in
terms of a temperature-dependent mobility term and the local driving pressure.

The calculation of the local forces in most vertex models is based on equilibrating the
line energies of subgrain walls and high-angle grain boundaries at the interface junctions
according to Herring’s equation. The enforcement of local mechanical equilibrium at these
nodes, i.e. triple points, is for obvious topological reasons usually only possible by allowing
the abutting interfaces to curve. These curvatures in turn act through their capillary force,
which is directed towards the center of curvature, on the junctions; in sum this may lead
to their displacement (Figure 14.1). In order to avoid the artificial enforcement of a
constant boundary curvature between two neighboring nodes, the interfaces are usually
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Figure 14.1: Constant boundary curvature induced by the enforcement of local mechanical
equilibrium at the junctions. All grain boundaries have the same energy.

Figure 14.2: Nonconstant boundary curvature induced by the enforcement of local me-
chanical equilibrium at the junctions. All grain boundaries have the same energy.

decomposed into sequences of piecewise straight boundary segments (Figure 14.2). Some
currently used versions of topological models formulate and integrate the equations of
motion successively for each segment and/or node through the entire network. This
method of decoupling the originally coupled differential equations of motion can lead to
inaccurate predictions, because it renders the simulation dependent on the order in which
the differential equations are solved. More sophisticated codes thus solve all the coupled
equations of motion simultaneously.

Most vertex and network models use switching rules which describe the topological
recombination of approaching vertices. This is an analogy to the use of phenomenologi-
cal annihilation and lock-formation rules that appear in dislocation dynamics. As in all
continuum models, the consideration of such more or less artificial recombination laws
replaces the exact atomistic treatment which requires molecular dynamics methods. Ac-
cording to the Mullins–von Neumann law for two-dimensional cell structures, crystals
with less than six sides will be prone to shrink. Figure 14.3 shows some possible recombi-
nation reactions which take place when neighboring vertices are closer than some critical
spontaneous recombination spacing. It is worth noting in this context that the recom-
bination rules, particularly the various critical recombination spacings, can substantially
affect the topological results of a simulation. Depending on the underlying constitutive
continuum description, vertex simulations can consider crystal orientation and therefore
misorientations across the boundaries, interface mobility, and the difference in elastic
energy between adjacent grains. Due to the stereological complexity of grain boundary
arrays and the large number of degrees of freedom encountered in such approaches, most
network simulations are currently confined to the two-dimensional regime (Figure 14.4).
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Figure 14.3: Some switching or recombination rules to describe the topological rearrange-
ment of approaching vertices in boundary networks. The recombination of cells with more
than three sides (c,d) can be reduced to binary (a) and triangular recombinations (b).
(a) Flip of two vertices. (b) Collapse of a triangular cell. (c) Collapse of a cell with four
sides. (d) Collapse of a cell with five sides.

Depending on which lattice defect is assumed to determine the dynamical evolution of
the system, one sometimes speaks of pure vertex models, where only the motion of the
junctions is considered, or of pure network models, where only the motion of the bound-
ary segments is considered. Since they are not intrinsically scaled, vertex and network
models are a convenient means of simulating the kinetics and the resulting topological
rearrangements of interface ensembles at the mesoscopic scale.

Topological interface or boundary dynamics simulations, together with dislocation
dynamics simulations, can be classified as continuum dynamical methods since they pro-
ceed by calculating the dynamics of each individual continuum defect entity (dislocation
segment, interface segment, vertex) instead of minimizing the total system energy. In con-
trast, molecular dynamics simulations can be regarded as atomistic dynamical systems
since they proceed by calculating the dynamics of individual atoms.

Topological boundary dynamics models are different from kinetic Potts models in that
they are not based on minimizing the total energy but directly calculate the motion of the
lattice defects, usually on the basis of capillary and elastic forces. They are also different
from phase field Ginzburg–Landau type-interface models in that they use sharp rather
than diffuse boundaries.

14.2 Application of Topological and Vertex

Models in Materials Science

This section presents a list of some classical and recently published references on ap-
plications of topological network and vertex simulations related to various domains of
materials science. The list can by no means be complete but may serve as a bibliography
for getting better acquainted with some examples of the recent original literature in this
field. Vertex and topological network models are typically used to mimic crystal recov-
ery and nucleation by subgrain growth, continuous recrystallization, incipient stages of
discontinuous recrystallization, bulging phenomena, continuous and discontinuous grain
growth, low-cycle fatigue, and superplastic deformation.
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Application Authors

topological and dynamic fundamentals Weaire and Kermode (1983)
Weaire and Kermode (1984)
Ceppi and Nasello (1986)
Scavuzzo, Ré, and Ceppi (1990)

ordinary high-angle boundary grain growth Weaire and Kermode (1983)
Frost and Thompson (1988)
Kawasaki (1989)
Pan and Cocks (1993)

subgrain growth, nucleation Humphreys (1992b)
Humphreys (1992a)
Humphreys (1993)
Svoboda (1996a)

low-cycle fatigue Draheim (1995)
Draheim and Gottstein (1996b)

14.3 Examples of Topological and Vertex

Simulations in Materials Science

14.3.1 Vertex Model for Recovery and Recrystallization

In two-dimensional vertex approaches for the simulation of recovery and the early stages
of recrystallization, the interfaces are idealized as line defects. Their mobility and energy
are typically related to the misorientation angle, for instance using the Read–Shockley
equation. The boundaries can rearrange according to their local curvature and the stored
energy. The resulting movements of the junctions occur with preservation of connectivity
according to the resulting net forces and boundary mobilities.

Most analytical recrystallization models (Marthinsen et al. 1989; Furu and Nes 1990;
Marthinsen et al. 1990; Vandermeer and Rath 1990; Vandermeer et al. 1991) and nu-
merical simulations (Srolovitz et al. 1986; Srolovitz et al. 1988; Rollett et al. 1989;
Hesselbarth and Göbel 1991; Tavernier and Szpunar 1991a; Rollett et al. 1992; Pezzee
and Dunand 1994; Marx and Raabe 1995; Marx et al. 1995; Holm et al. 1996; Raabe et al.
1996; Sheldon and Dunand 1996; Reher 1998) describe the growth and impingement of
given nuclei rather than the incipient transformation stages that rearrange the subgrain
structure and thus can lead to nucleation.

For the simulation of such subgrain coarsening nucleation events, Humphreys (1992a)
introduced a vertex model to simulate the early, rather than the late, stages of recrys-
tallization and recovery. The physical picture behind this type of model is that the
nucleation process can be simulated by the inhomogeneity of subgrain growth, which can
lead to cells of a critical size through an accumulation of local misorientations that were
introduced during deformation. This means that the model regards the subgrain as an
elementary nucleation unit for recrystallization phenomena (Humphreys 1992b). This
concept is in line with the classical picture of subgrain coalescence (Hu 1962; Hu 1963).
Consequently, the vertex simulation treats the subgrain walls as underlying elementary
lattice defects which determine the formation of nuclei through their respective mobilities.
The consideration of subgrain growth as a major nucleation mechanism of primary static
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recrystallization is in good accord with numerous microstructural observations of growth
kinetics of dislocation cell structures in aluminum (Doherty 1978; Gottstein 1984; Juul
Jensen et al. 1985; Lan et al. 1990; Ananthan et al. 1991; Rosen et al. 1995) and var-
ious body-centered cubic alloys (Swann and Nutting 1961; Dillamore and Roberts 1965;
Dillamore et al. 1972). However, it is less obvious for materials with low stacking fault
energy, such as austenitic stainless steels or brass (Haeßner 1978), and materials with
inhomogeneous microstructures, such as many intermetallic alloys. The vertex model

Figure 14.4: Basic setup of the subgrain network model.

suggested by Humphreys (1992a) represents the microstructure as an array of subgrains.
The cell coordinates are given by their respective node points (Figure 14.4). This tech-
nique requires much less random access memory compared with Potts-type Metropolis
Monte Carlo or deterministic cellular automaton methods, where the entire volume must
be discretized. The initial subgrain network can be constructed as a regular or Voronoi
array1. As shown in Figure 14.4, each subgrain is then assigned a certain orientation.

For obtaining subgrain growth, the cell walls must be mobile under the influence of
a driving force. The velocity of the interfaces v is described in the model of Humphreys
(1992a) by a viscous flow rule which mimics steady-state overdamped boundary motion,

v = m
dG

dV
(14.1)

where G is the Gibbs free enthalpy, V the volume, and m the interface mobility. The free
enthalpy change can be expressed through the interface curvature:

dG

dV
=

2γc(g)

Rc
(14.2)

where 1/Rc is the cell wall curvature, and γc(g) the specific interface energy as a function
of the boundary misorientation g. The curvature of the subgrain walls is obtained by
equilibrating the total force at each node, which follows the well-known relation

γ23

(1 + ǫ2ǫ3) sin Ψ1 + (ǫ3 − ǫ1) cosΨ1
=

γ13

(1 + ǫ1ǫ3) sin Ψ2 + (ǫ1 − ǫ2) cos Ψ2

=
γ12

(1 + ǫ1ǫ2) sin Ψ3 + (ǫ2 − ǫ3) cosΨ3
(14.3)

1A Voronoi array corresponds to a Dirichlet tesselation. It is constructed according to the Wigner–
Seitz method but with randomly distributed starting points.
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where γij is the specific boundary energy that separates grain i from grain j, and ǫi =
∂ ln γ(hkl)/∂Ψi the dependence of the energy on the spatial orientation of the boundary
plane Ψ. If the subgrain energy is independent of Ψ, equation (14.3) can be written

γij

Ψk
= constant (14.4)

It should be noted that the local curvature must not be confused with the grain size.
Both values can differ by orders of magnitude.

In three dimensions the subgrain misorientation can be described in terms of Eu-
ler angles, g = g(ϕ1, φ, ϕ2), or Rodrigues vectors, q = n tan (Θ/2), i.e. by using three
independent parameters. In two-dimensional simulations one parameter, viz. the misori-
entation angle Θ, suffices because the rotation axis is generally perpendicular to the grain
boundary normal. Since in network models the orientations of adjacent subgrains are
known, the local misorientation is known as well. For misorientation angles below 15◦

the Read–Shockley (RS) equation can be used. Since the cell walls being considered are
not treated at the dislocation level, the conventional version of the RS equation applies,
implying that only one group of dislocations contributes to the misorientation:

γc
2D(Θ) ∼= Θ [Ac −Bc ln(Θ)]

Ac =
Ed

b
−Bc lnαd and Bc =

µ b

4π(1 − ν)

(14.5)

where Θ is the misorientation angle between two neighboring subgrains in two dimensions,
Ed the energy of the dislocation core, b the magnitude of the Burgers vector, µ the shear
modulus, ν Poisson’s ratio, and αd the inner cut-off radius around the dislocation core
expressed in units of |b| (Hirth and Lothe 1968).

The forces of the individual subgrain boundaries that meet at a junction are summed
to give the total driving force on the node considered. The resulting velocity of the junc-
tion is then determined by assuming viscous flow, equation (14.1). The mobility of the
node is determined from the misorientation-dependent mobilities of the boundaries in the
direction of the driving force, which in turn is obtained from an average of the mobilities
of the moving boundaries, weighted by the boundary lengths resolved perpendicular to
the direction of motion (Humphreys 1992a). The node is then shifted a small distance
according to its actual velocity (Figure 14.5). The determination or theoretical predic-
tion of the low-angle grain boundary mobilities as a function of misorientation is less
straightforward than assessing their energy. In various studies Humphreys (1992a) tested
different mobility laws; in all of them, mobilities increased with misorientation up to 15◦,
where they remained constant.

14.3.2 Toplogical Network Model for Grain Growth

Figures 14.6, 14.7, and 14.8 show a two-dimensional network simulation of homogeneous
grain coarsening according to the method of Svoboda (1996a). This approach is based on
the assumption of mechanical equilibrium of the grain boundary line forces at the triple
junctions. The corresponding tangent angles of the boundaries at the triple points deter-
mine the curvature of the boundaries. The interfaces consists of a number of individual
sequentially arranged piecewise straight segments. The capillary force imposed by them is
summed, and determines the resulting shift of the junction. The simulation uses viscous
flow rules.
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Figure 14.5: Example of the incipient stages of nucleation described by subgrain coarsen-
ing in the network model (Humphreys 1992).

Figure 14.6: Initial microstructure of a network model (Svoboda 1996).
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Figure 14.7: Intermediate microstructure of an annealed network; model of Svoboda
(1996).

Figure 14.8: Final microstructure of an annealed and coarsened network; model of Svo-
boda (1996).
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Chapter 15

Introduction

This Part deals with the simulation of materials properties and microstructures at the
mesoscopic (grain and subgrain scale) and macroscopic (entire specimen) levels. Of course,
a strict subdivision of the numerous methods that exist in computational materials science
according to the length scales that they address is to a certain extent arbitrary and
depends on the aspect under investigation.

The following chapters provide an introduction to the macroscale application of the
finite element, the finite difference, and various polycrystal elasticity and plasticity me-
thods. While the finite element method is discussed with particular respect to applications
in the field of plasticity, the finite difference method is applied to the macroscale solution
of the heat and diffusion equation. The polycrystal models are discussed with particular
respect to the homogenization assumptions on which they are based.

Selecting these particular simulation techniques for an overview on meso- and macro-
scale materials simulations deserves some justification.

The finite element method is a versatile numerical means of obtaining approximate
solutions to boundary and initial-value problems. Its approach consists in subdividing
the sample of interest into a number of subdomains and by using polynomial functions
to approximate the true course of a state function in a piecewise fashion over each sub-
domain (Courant 1943; Zienkiewicz and Morgan 1983). Hence, finite element methods
are not intrinsically calibrated to some specific physical length or time scale. The mathe-
matical foundations of the finite element method have already been presented in a more
general chapter about differential equations and their numerical solution (Chapter 3).
However, it is well known that the application of the finite element method in materials
science lies particularly in the field of macro- and mesoscale simulations where averag-
ing empirical or phenomenological constitutive laws can be incorporated. Emphasis is
often placed on computational mechanics, particularly when the considered shapes are
complicated, the material response is nonlinear, or the applied forces are dynamic (Rowe
et al. 1991; Nemat-Nasser and Hori 1993). All three features are typically encountered
in the calculation of large scale structures and plastic deformation. The extension of
classical computational solid mechanics to microstructure mechanics or computational
micromechanics requires a scale-dependent physical formulation of the underlying consti-
tutive behavior that is admissible at the level addressed, and a detailed incorporation of
microstructure (Gittus and Zarka 1986; Andersen et al. 1994; Krausz and Krausz 1996;
Schmauder and Weichert 1996; Schmauder and Raabe 1996).
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This task reveals a certain resemblance to molecular dynamics, where the equations of
motion are solved for a large number of interacting particles. These calculations require
some approximate formulation of the interatomic potential. It is clear that the accuracy of
the underlying potential determines the reliability of the predictions. Similar arguments
apply for the use of computational solid mechanics in materials science. The validity of
the constitutive laws and the level at which the microstructure is incorporated in the
finite element grid determine the predictive relevance of the simulation. As a rule the
accuracy of solid mechanics calculations can be increased by decreasing the level at which
the required microstructural and constitutive data are incorporated. Advanced finite
element methods have recently also been used on a much finer microstructural scale for
the prediction of diffusion and transformation phenomena.

In addition to the above-mentioned field of solid states mechanics and its treatment
with finite element methods, many materials problems exist, which must be formulated
as initial-value rather than as boundary-value problems. Such time dependent simula-
tions are characterized by the presence of time derivatives in the governing differential
equations and the prescription of initial conditions at the time origin. Methods to numer-
ically integrate equations which involve time derivatives are provided by the various finite
difference approaches (Forsythe and Wasow 1960; Richtmyer and Morton 1967; Dettman
1969; Marsal 1976; DeVries 1994; Bellomo and Preziosi 1995). Finite difference methods
comprise a number of general numerical means for solving initial-value problems. Ty-
pical examples in materials science are the solution of the diffusion or heat equation, of
the atomic equations of motion in molecular dynamics, or of the equations of motion in
dislocation dynamics. As is apparent from these examples, the use of finite difference
algorithms is also not confined to any particular scale. The fundamentals of the finite dif-
ference methods have therefore already been discussed in Chapter 3. The present chapter
is devoted exclusively to discussing the potential of the finite difference method at the
meso- and macroscale.

Numerical methods to solve initial- and boundary-value problems have in common
the discretization of the independent variables, which are usually time and space, and the
transformation of the continuous derivatives into finite difference quotients. Performing
these discretizations amounts to recasting the continuous problem expressed by differential
equations with an infinite number of unknowns, i.e. function values, into an algebraic one
with a finite number of unknown parameters which can be calculated in an approximate
fashion. Although both the finite difference and the finite element method can essentially
be used to solve boundary- and initial-value problems, the latter technique represents
the more general approach since it uses polynomial shape functions and a minimalization
procedure. According to Zienkiewicz and Morgan (1983), the finite difference techniques
can thus be regarded as a subset of the finite element approximation.

In contrast to these rather scale-independent techniques, polycrystal models represent
classical homogenization approaches to the simulation of the elastic and plastic response
of polycrystalline and multiphase materials at the macro- and mesoscale with particu-
lar consideration of crystallographic textures. As examples of polycrystal elasticity and
plasticity simulations Voigt, Reuss, Hashin–Shtrikman, Taylor–Bishop–Hill, relaxed con-
straints Taylor-type, advanced grain interaction models, inclusion, and self-consistent
approaches will be discussed.



Chapter 16

Finite Element and

Difference Methods at the

Meso–Macroscale

16.1 Introduction and Fundamentals

The mathematical basis of the finite element method has already been addressed in Chap-
ter 3. This section is devoted to discussing particular applications of the method for the
simulation of materials problems at the meso- and macroscale with special emphasis on
large-strain plasticity.

The finite element technique is a numerical method for obtaining approximate solu-
tions to boundary- and initial-value problems by using polynomial interpolation functions.
In contrast to analytical techniques, finite elements are also applicable to complicated
shapes. The basic characteristic of the finite element method is the discretization of
the domain of interest, which may have nearly arbitrary geometry, into an assembly of
relatively simply shaped elements which are connected.

The finite element method approximates the real course of the state variables con-
sidered within each element by ansatz or interpolation polynomials. This approach of
interpolating the variable within each cell amounts to assuming a piecewise polynomial
solution over the entire domain under consideration. In the case of elastic and large-strain
plastic materials response it is usually the displacement that is the unknown state vari-
able. The polynomials usually serve also as shape functions to update the form of the
finite elements. The coordinate transformation associated with the updating of this mesh,
for instance during a simulated large-strain plastic deformation process is often referred
to as the most important component of a successful finite element solution. This problem
is of special relevance for simulations at the meso- and macroscale.

In order to derive the governing equations for the resulting displacements in a me-
chanically consistent manner, the finite element method incorporates certain additional
criteria which are usually derived from the equilibrium of the forces. In the field of solid-
state deformation this is mostly achieved by minimizing corresponding energy functionals,
with the displacement field variable entering in the form of ansatz polynomials. Depend-
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ing on the character of the material response to external and internal loads, three criteria
prevail in solid mechanics: namely, the strong form of the differential equation of motion,
the weak form of the virtual work principle, and the stable equilibrium quantified by the
minimum potential energy or minimum mechanical energy. While the variational vir-
tual displacement principle is frequently used for nonlinear material response, the use of
the minimum potential energy principle prevails for linear material response. The latter
method is also referred to as the Dirichlet variational principle1.

For obtaining approximate solutions, the polynomial trial functions for the unknown
state variables (e.g. displacement) are substituted into the integral functionals for the
energy calculation. This technique does not necessarily lead to a minimization of possi-
ble deviations at particular nodes but to a minimization of the total, i.e. of the integral
deviation. Thus, the finite element method focuses on achieving the best possible cor-
respondence between the correct and the approximate solution over the entire system.
The incorporation of the trial functions into the integral functionals results in a system of
equations which represents a discretized counterpart of the underlying continuous partial
differential equations and whose solution is the discrete solution at the nodes (Courant
1943; Livesley 1983; Zienkiewicz and Morgan 1983; Rao 1989; Rowe et al. 1991). Whilst
most of the early finite element methods used in computational materials science pos-
tulated isotropic, homogeneous, linear, and continuous materials properties (Zienkiewicz
and Taylor 1989), a number of advanced methods consider material heterogeneity, crystal
anisotropy, nonlinear material response, and nonlinear geometrical aspects (Gittus and
Zarka 1986; McHugh et al. 1993a; Dawson et al. 1994; Fleck et al. 1994; Schmauder
1994; Wang et al. 1994; Beaudoin et al. 1995; Beaudoin et al. 1996; Sarma and Dawson
1996; Schmauder and Weichert 1996; Schmauder and Raabe 1996; Stouffer and Dame
1996; Raabe and Bunge 1997).

In deterministic systems there exists a fundamental difference between spatial coor-
dinates and time, namely, symmetry breaking. While space is isotropic, time always
passes in the same direction, i.e. it is irreversible. From this qualitative difference in
the independent system coordinates it follows that, unlike space-dependent tasks, time-
dependent problems must be formulated as initial-value rather than as boundary-value
problems. Consequently, time-dependent initial-value simulations are characterized by the
presence of time derivatives in the governing differential equations and the prescription of
initial conditions at the time origin. Typical examples of such time dependent differential
equations are Newton’s equation of motion, the wave equation, the heat equation, and
the diffusion equation. The heat and diffusion equations contain first-order and the wave
equation second-order time derivatives (see Chapter 3).

Since it is very tedious or sometimes even impossible to obtain exact solutions to these
equations by analytical integration, the employment of numerical approaches is often
indispensable. The finite difference method represents a general technique for integrating
equations which involve time derivatives. However, it can also be employed to solve
boundary-value or mixed problems (Forsythe and Wasow 1960; Richtmyer and Morton
1967; Dettman 1969; Marsal 1976; Boas 1983; DeVries 1994). Some basic algorithms for
numerically solving initial-value problems are described in Chapter 3.

Focusing on applications in large-scale materials simulations, finite difference algo-
rithms are frequently encountered in solving heat flow and bulk diffusion problems. Fur-
thermore, they represent standard techniques for the time integration of the equations of

1It can be shown that the variational potential energy principle of Dirichlet is equivalent to the
virtual displacement principle (Curnier 1994).
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motion in the field of molecular dynamics and dislocation dynamics. Typical variants in
these domains are the Verlet and the Gear predictor–corrector algorithm (Chapter 7).

Although much of the material presented in this section is relevant to other engineering
disciplines, emphasis will be placed here on technical details of the finite element (FE)
and finite difference (FD) methods required for predictions in the fields of solid mechanics,
heat flow, and solid-state diffusion.

16.2 The Equilibrium Equation in FE Simulations

Depending on the character of the material response to external and internal loads, the
material dynamics are conveniently described in terms of the “strong form” of the differ-
ential equation of motion, the “weak form” of the virtual work principle, or the stable
equilibrium quantified by the “minimum mechanical energy”.

A simple straightforward approach to deriving the equations for displacement-based
finite element codes starts from the general principle of virtual work. This is the work
done by arbitrary small virtual displacements due to on the forces and moments acting
on a solid body in accord with continuity and displacement boundary constraints. For
the most general case this principle can be written

δŴ = ⊂
∫∫∫

V

⊃ σij δε̂ij dV = ⊂
∫∫∫

V

⊃ Pj δûj dV + ⊂
∫∫

S

⊃Tj δûj dS + Fj δûj (16.1)

where δŴ is the virtual work which results from the strain due to the virtual displacements
δε̂ that act on the stresses σ. This work equals the sum of the virtual work which results
from the virtual displacements δû due to the body force P , to the tractions T , and to
point forces F . S is the surface that encloses the volume V .

Equation (16.1) is generally valid for an arbitrary body. However, the finite ele-
ment method decomposes the solid under investigation into a large number n of simply
shaped volume elements which are connected at nodes. Thus, equation (16.1) applies for
each individual segment under implicit consideration of equilibrium and compatibility.
The course of the displacement is approximated in each finite element by interpolation
polynomials that enter all n equations of the form of equation (16.1). This amounts to
calculating the volume and surface integrals over each finite segment individually and
subsequently summing over all elements. Assuming that the point forces are only applied
at the nodal points, equation (16.1) may then be rewritten

∑

n

⊂
∫∫∫

V

⊃ σij δε̂ij dV =
∑

n

⊂
∫∫∫

V

⊃ Pj δûj dV +
∑

n

⊂
∫∫

S

⊃Tj δûj dS +
∑

n

Fj δûj (16.2)

where S is the respective surface enclosing V , the individual element volume2.

16.3 Finite Elements and Shape Functions

The original finite element techniques were based on assuming isotropic, homogeneous,
linear, and continuous materials behavior. More sophisticated methods, which nowa-
days prevail in advanced computational materials science, increasingly consider material
heterogeneity, crystal anisotropy, and nonlinear material response.

2Each finite element can have a different volume.
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Figure 16.1: Some examples of element shapes for two-dimensional finite element calcu-
lations. (a) Rectangular element. (b) Triangular element. (c) Quadrilateral element.

Figure 16.2: Two examples of element shapes for three-dimensional finite element calcu-
lations. (a) Tetrahedral element. (b) Rectangular element.

However, the finite element algorithm generally represents a continuum type of ap-
proach. It does not exactly incorporate the genuine dynamics of single lattice defects
such as dislocations for the description of crystal plasticity but typically uses averaging
constitutive materials laws. This is usually realized by employing the apparatus of the
state variable approach with implicit variables (Gittus and Zarka 1986; Stouffer and Dame
1996). This more phenomenological method is required for conducting simulations at the
macro- and mesoscale within reasonable computation times. The continuum approach
represents an acceptable simplification when the typical spacing of the underlying lattice
defects is much shorter then the characteristic dimensions of the body.

In contrast to microscopic simulations where each lattice defect is considered individ-
ually, or analytical approaches where the surrounding of an element under investigation
is averaged as effective medium, the finite element method has to discretize the solid
being investigated into an assembly of simply shaped elements. Figures 16.1 and 16.2
show some possible shapes of finite elements for two-dimensional and three-dimensional
simulations. The shapes and sizes of the finite elements are defined in terms of the spatial
coordinates of their nodes. The element nodes are those points where the state variable
investigated, say the displacement field u, is actually calculated by the finite element algo-
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rithm. In order to ensure strain compatibility, the finite elements are interconnected at a
finite number such nodes. This means that most nodes belong to more than one element.
The values ui of the spatial state variable field u(x1, x2, x3) at the ith node can serve as
interpolation points for calculating the course of the variable anywhere in the element to
which the node belongs. Elements which allow one the approximation of the coordinates
and of the course of the field variable of any point inside the element as a function of
the nodal coordinates and of the nodal values of the state variable by simple polynomial
functions are referred to as isoparametric elements. The polynomials are usually designed
to describe both the element shape and the course of the state variable inside the element.
The approximation functions are therefore often referred to as polynomial form functions,
shape functions, ansatz functions, or interpolation functions. The use of isoparametric
elements has many computational and convergence advantages for accurate finite element
solutions. Most finite element methods in computational material science therefore work
with isoparametric elements.

For instance, for a simple two-dimensional isoparametric element with four nodes the
following set of linear shape functions can be used:

K1(ζ,κ) =
1

2
(1 + ζ) (1 + κ) K2(ζ,κ) =

1

2
(1 + ζ) (1 − κ)

K3(ζ,κ) =
1

2
(1 − ζ) (1 + κ) K4(ζ,κ) =

1

2
(1 − ζ) (1 − κ)

(16.3)

The variables ζ and κ lie within the the range −1 ≤ ζ,κ ≤ +1. The values of the
considered field variable u(ζ,κ) in the element can then be calculated by

u(ζ,κ) =

n=4∑

i=1

Ki(ζ,κ) ui (16.4)

where n is the number of nodes and ui are the values of the field variable at the nodes.
The form functions are used to transform the algebraic strain–displacement relations into
a more convenient matrix notation. More precisely, the application of shape functions to
state variables allows one to map each element into a master generic element with a fixed
length by using an isoparametric transformation. Figure 16.3 shows the transformation of
a two-dimensional triangular and a two-dimensional quadrilateral element from physical
space to mapped space.

16.4 Assemblage of the Stiffness Matrix

This section describes the assemblage of the element and system stiffness matrix and the
consideration of elastic and elastic-plastic constitutive materials response.

By defining the spatial derivatives Ki,j = ∂Ki/∂xj along xj , j = 1, 2, 3, of the n
different ansatz functions i = 1, 2, ..., n, the matrix B with rank (3, n) can be written

B =




K1,1 0 0 ... Ki,1 0 0 ... Kn,1 0 0
0 K1,2 0 ... 0 Ki,2 0 ... 0 Kn,2 0
0 0 K1,3 ... 0 0 Ki,3 ... 0 0 Kn,3

K1,2 K1,1 0 ... Ki,2 Ki,1 0 ... Kn,2 Kn,1 0
0 K1,3 K1,2 ... 0 Ki,3 Ki,2 ... 0 Kn,3 Kn,2

K1,3 0 K1,1 ... Ki,3 0 Ki,1 ... Kn,3 0 Kn,1




(16.5)
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Figure 16.3: Transformation of a two-dimensional triangular (a) and a two-dimensional
quadrilateral (b) element from the physical coordinate system (x1, x2) to the mapped
coordinate system (ζ,κ).

The infinitesimal strain tensor can be written as a vector:

ε
T =

(
∂u1

∂x1
,
∂u2

∂x2
,
∂u3

∂x3
,
∂u2

∂x3
+
∂u3

∂x2
,
∂u1

∂x3
+
∂u3

∂x1
,
∂u1

∂x2
+
∂u2

∂x1

)
(16.6)

where ui and xj are the displacements and the three orthogonal directions, respectively.
Accordingly, the 3 n components of the displacement vector can be written

u
T =

(
u1

x1
, u1

x2
, u1

x3
, u2

x1
, u2

x2
, u2

x3
, ... , un

x1
, un

x2
, un

x3

)
(16.7)

where n is the number of element nodes. The relation between strain and displacement
can then be compactly presented in the form

ε(i=1,...,6) = B(i=1,....,6) (j=1,...,3·n) u(j=1,...,3·n) (16.8)

where the index notation shows the ranks of the matrices. From the B matrix the stiffness
matrices of the elements can be obtained by integration according to

K
elem =

∫

Velem

B
T

C
El

B dVelem

K
elem =

∫

Velem

B
T

C
El,Pl

B dVelem

(16.9)

where CEl is the elastic stiffness tensor and CEl,Pl the elastic–plastic stiffness tensor,
each of which describes the constitutive material behavior. The rank of the element
stiffness matrix Kelem corresponds to the degrees of freedom per element. The total
stiffness matrix K is obtained by a summation of all element stiffness matrices Kelem. It
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describes both the actual geometry and the material behavior of the entire system. The
rank of K maps the degrees of freedom of the entire finite element system.

For an isotropic linear elastic material response, the matrix CEl,Pl reduces to CEl and
can be written

C
El =

E

(1 + ν)(1 − 2ν)




(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν 1 0 0 0

0 0 0 (1−2ν)
2

0 0

0 0 0 0 (1−2ν)
2

0

0 0 0 0 0 (1−2ν)
2




(16.10)

using the reduced suffix notation. The complete description requires a fourth-rank tensor
notation. Further details of isotropic and anisotropic linear elastic materials response are
given in Chapter 9.

If the material is deformed both elastically and plastically, the matrix CEl,Pl must be
used instead of CEl. A typical approach for CEl,Pl has the form

C
El,Pl = C

El − D(Γ) (16.11)

One possible approach to write the backstress matrix D(Γ) is

Dij = Γi Γj
3

2 k2
f

(
1 +

2E ET (1 + ν)

3E (E − ET)

)−1

(16.12)

where Γn, n = 1, ..., 6 denotes the kth component of the stress deviator written in vec-
tor form, E the elastic modulus, ET the strain hardening coefficient dσ/dε, and kf the
flow stress. Equation (16.12) seems to differ from a typical metallurgical constitutive
description since it subtracts the plastic portion from the elastic one rather than adding
it. However, this description is consistent with conventional approaches, since it simply
extrapolates the elastic stress linearly into the plastic regime beyond the actual yield sur-
face and then subtracts the overestimated portion to end up with a final value which lies
exactly on the yield surface. More detailed presentations of the incorporation of nonlinear
materials response have been published by Gittus and Zarka (1986), Stouffer and Dame
(1996), and Krausz and Krausz (1996).

The forces at the element nodes are now computed from the actual stresses by inte-
gration:

F
elem =

∫

Velem

B σ dVelem (16.13)

The total internal force vector F is calculated by a summation. The integrations in
equations (16.9) and (16.13) can be carried out using the Gauss integral formula.

The final infinitesimal displacements at the nodes ∆u are found by solving the equation
system




K1,1 ... K1,m

. ... .

. ... .

. ... .
Km,1 ... Km,m







u1

.

.

.
um




=




F1 − F1

.

.

.
Fm − Fm




(16.14)

where m = 3 n is the number of degrees of freedom of the system, i.e. the number of nodes
multiplied by the dimension (2D, 3D), F the vector of the externally imposed nodal loads,
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F the internal force vector arsising from the internal stresses among the elements, and
F −F the minimization criterion imposed by the requirement for equilibrium3. Since the
total stiffness matrix depends implicitly on the node displacements, equation (16.14) is a
nonlinear equation which must be solved by iteration.

16.5 Solid-State Kinematics

For describing finite deformation kinematics associated with complex loading situations,
two basic approaches are conceivable. The first method, referred to as the Lagrange pre-
sentation, describes the movement of each elementary unit as a function of time and space.
It is thus particularly suitable for describing nonstationary processes. If the equation of
motion for each element and deformation step is described in terms of the initial sample
coordinate system, the method is referred to as the total Lagrangian description. If the
field variables are expressed in terms of the respective preceding state, the approach is
denoted as the updated Lagrangian description. The second method, referred to as the
Euler description, considers material flow through a given section. Thus, it is a suitable
technique for describing stationary processes. Although the Lagrange method is less flex-
ible than the Euler method, its application prevails in the description of nonstationary
deformation processes. The Euler method prevails in the investigation of deformation
processes with relatively simple material flow kinematics, such as wire drawing or homo-
geneous cold rolling.

For measuring incremental deformations it is pertinent to define two tensor quantities,
namely, the deformation gradient F (x, t), and the related displacement gradient H(x, t).
Following the notation commonly used in continuum mechanics, bold capital letters are
used to indicate second-rank tensor quantities while bold lowercase letters indicate first-
rank tensor quantities.

The spatial coordinates, r(x, t), of each material point at time t > t0 can be described
by its preceding coordinates, x(t0), at a time t = t0 and the space dependent displacement
u(x, t), i.e.

r(x, t) = x(t0) + u(x, t) (16.15)

The deformation gradient tensor F is then defined by

Fij =
∂ri

∂xj
(16.16)

and the displacement gradient tensor H by4

Hij =
∂ui

∂xj
(16.17)

The relation between both tensors is expressed by

H = F − I (16.18)

where I is the unit tensor

I =




1 0 0
0 1 0
0 0 1


 (16.19)

3In full, F − F would be written F(t + ∆t) − F (t).
4In elasticity theory one often uses the abbreviation ui,j for the displacement gradient tensor, where

the comma indicates the spatial derivative.
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Equation (16.18) indicates that the temporal derivative of the deformation gradient tensor
and of the displacement gradient tensor must be equal:

Ḣ = Ḟ (16.20)

These derivatives are termed the deformation gradient rate tensor, velocity gradient ten-
sor, or displacement gradient rate tensor. The deformation gradient must remain strictly
positive and bounded in order to prevent any self-penetration or cracking of the mate-
rial. If a volume element undergoes pure translation, the deformation gradient effectively
remains equal to 1 and the displacement gradient equal to 0. However, this would no
longer be the case if the element were to undergo pure rigid-body rotation. This means
that the deformation and the displacement gradient tensor are not objective measures of
deformation, since they do filter translation but not rigid-solid rotation. For obtaining
an adequate measure that can distinguish between strain and rotation, one uses a linear
decomposition of the deformation gradient tensor F into a symmetric portion U or W ,
and an ortho-normalized antisymmetric portion R:

F = R U = W R (16.21)

This operation, which is referred to as the polar decomposition theorem, implies that each
deformation can be decomposed into a strain and a rigid-body rotation. For an arbitrary
deformation, W is not necessarily identical to U . In other words, the symmetric part of
the deformation gradient tensor is a path-dependent quantity and cannot be treated as a
state function. By using these definitions it is now possible to introduce tensors that are
objective measures of deformation, i.e. that are independent of the rigid-body rotation.
For instance, the product

F
T
F = U

T
R

T
R U = U

2 (16.22)

where
R R

T = I (16.23)

is independent of the rotation R. The identity of U and UT is straightforward since U is
symmetric. Equation (16.23) follows from the fact that R is orthogonal and normalized.
Thus, U can be transformed as a pure strain to its principal axes; this corresponds to
the solution of an eigenvalue problem. Expressing U in terms of its eigenvectors ni, the
transposed eigenvectors nT

i , and its eigenvalues λi yields

U =
3∑

i=1

λi ni n
T
i (16.24)

so that U 2 can be written

U
2 =

3∑

i=1

λ2
i ni n

T
i (16.25)

Hence, by knowing F (equation (16.22)), one can calculate the eigenvalues and the rota-
tion associated with the prescribed deformation state. The eigenvalues λi represent the
incremental rotation-free deformation parallel to the principal axes ni. The strain tensor
E can be written

E =
3∑

i=1

εi ni n
T
i (16.26)

where εi are the strain components parallel to the principal axes ni. Typically, the strain
components are nonlinear functions of the eigenvalues, i.e. εi = f(λi). Two relations
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between strain and eigenvalue are typically in use, viz. the logarithmic form, εLi = ln(λi),
and the Green–Lagrange form, εGi = 1/2 (λ2−1). In three dimensions this can be written

E
L =

1

2
ln(F F

T)

E
G =

1

2
(F F

T − I)

(16.27)

Both tensors represent objective measures of deformation. Using the relation between F

and H as given in equation (16.18), they can be rewritten

E
L =

1

2
ln
(
(H + I) (H + I)T

)
=

1

2
ln
(
(H + I)

(
H

T + I
))

=
1

2
ln
(
H + H

T + HH
T + I

)
≈ 1

2
ln
(
H + H

T + I
)

(16.28)

E
G =

1
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(H + I) (H + I)T − I

)
=

1

2
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(H + I)
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H

T + I
)
− I

)

=
1
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(
H + H

T + HH
T
)
≈ 1

2

(
H + H

T
)

(16.29)

These expressions provide convenient rotation-free measures of deformation.
However, there are four main reasons for employing rate tensor equations instead

of the displacement gradient or deformation gradient tensor form. First, the temporal
derivative of H is equal to that of F , equation (16.20), second, the constitutive behavior
of materials is often related not only to the strain but to the strain rate, third, in work-
hardening materials it makes only sense to use incremental strains5, and fourth, many
industrial forming processes prescribe the strain rate but not necessarily the strain.

Using the Green–Lagrange form, equation (16.29), one can calculate the symmetric
and antisymmetric portions of the velocity gradient tensor according to

Ė =
1

2
(Ḣ + Ḣ

T
) =

1

2
(Ḟ + Ḟ

T
)

Ω =
1

2
(Ḣ − Ḣ

T
) =

1

2
(Ḟ − Ḟ

T
)

(16.30)

where Ė is the strain rate tensor, Ω the spin, and Ḣ = Ḟ the velocity gradient tensor.
While the Ė tensor is symmetric, the Ω tensor is antisymmetric.

16.6 Conjugate Stress–Strain Measures

From the objective strain measures derived in the preceding section, so-called conjugate
stress quantities can be found. In general, an increment of the energy density associated
with a Cauchy stress tensor σ and a strain increment dε is calculated by dW = σij dεij ,
where the Einstein summation rule applies. A stress tensor that is combined with an
objective strain tensor increment to give the same increment of the energy density dW is
then referred to as energetically conjugate to that strain.

5The shape and the size of the yield surface can change after each strain increment due to work-
hardening and crystal anisotropy. The strain increment can then be devided by the simulation time
step to give a strain rate.
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The stress tensor that is conjugate to the Green–Lagrange strain tensor EG is denoted
as the second Piola–Kirchhoff stress tensor Λ:

dW =
[
J (F −1)T σ F

−1
]

ij
dEG

ij = Λ dE
G . (16.31)

where F is the deformation gradient tensor and J the volume dilatation. Since the volume
dilatation in most metals is equal to 1, the above equation can be rewritten

dW =
[
(F −1)T σ F

−1
]

ij
dEG

ij =
[
R

T
σ R

]
ij

dEG
ij = Λ dE

G . (16.32)

where the polar decomposition theorem has been applied (see equation (16.21)).
Accordingly, the Kirchhoff stress tensor Σ, which is conjugate to the logarithmic strain

EL, is defined through

dW =
[
R

T (Σ) R
]

ij
dEL

ij (16.33)

It is often pertinent to dismantle stress tensor increments into a part that depends
on the rigid-body rotation, and a part that reflects the stress change as enforced by the
constitutive material behavior. In general form such a decomposition can, for a given
tensor A, be written

Ȧ =
▽

A + ΩA + AΩT (16.34)

where
▽

A is referred to as Jaumann derivative.

16.7 Finite Difference Methods at the Macroscale

The use of finite difference solution algorithms is not confined to any particular length
or time scale. The fundamentals of the various finite difference methods have therefore
already been addressed in Chapter 3. This Section is devoted exclusively to discussing the
potential of the finite difference method for large-scale applications such as the solution
of heat conduction problems.

Mathematically, the one-dimensional heat equation is identical to the one-dimensional
diffusion equation, i.e. to Fick’s second law:

∂u

∂t
− λ

∂2u

∂x2
= 0 (16.35)

where λ is the thermal conductivity, which here is assumed to be independent of the tem-
perature, and u(x, t) the temperature distribution. Under stationary conditions, i.e. u̇ = 0,
the heat equation changes into the Laplace equation

λ
∂2u

∂x2
= 0 (16.36)

In the case where sinks or sources appear under stationary conditions in the volume
element being considered, the heat equation changes into the Poisson equation

λ
∂2u

∂x2
= f(x) (16.37)
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Assuming a one-dimensional bar of length L with constant temperatures u0 = u(x = 0)
and uL = u(x = L) on either side of it and a constant heat generation rate per length of
Q(x), equation (16.37) can be rewritten

λ
∂2u

∂x2
= −Q(x) (16.38)

Evaluating the above equation at a typical grid point x = l amounts to

λ
∂2u

∂x2

∣∣∣∣
l

= −Ql (16.39)

Using the Taylor formula, equation (3.20), a generalized finite difference Euler form can
be found to replace the second derivative at the point x = l in equation (16.37), namely,

λ
ul+1 − 2ul + ul−1

∆x2
= −Ql (16.40)

This equation can now be formulated for each of the L − 1 grid points in the one-
dimensional array, i.e. at x = x1, x2, ... , xL−2, xL−1, under consideration of the boundary
conditions and the signs:

2u1 −u2 = ∆x2 Q1

λ
+u0

−u1 +2u2 −u3 = ∆x2 Q2

λ

. −u2 +2u3 −u4 = ∆x2 Q3

λ

. . −u3 +2u4 −u5 = ∆x2 Q4

λ

. . . . . . . . . .

. . . . . . . . .

. . . . . . . .

−uL−3 +2uL−2 −uL−1 =
∆x2 QL−2

λ

−uL−2 +2uL−1 =
∆x2 QL−1

λ
+uL

(16.41)
Writing the components of the temperature distribution at the various points as a vector
whose transpose amounts to uT = (u1, u2, ..., uL−1), their coefficients as a matrix K ,

K =




2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

−1 2 −1
0 −1 2




(16.42)
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and the right-hand side of equation (16.41) as vector f ,

f =




∆x2

λ
Q1 +u0

∆x2

λ
Q2

.

.

.
∆x2

λ
QL−2

∆x2

λ
QL−1 +uL




(16.43)

allows one to write the above equation system in a more compact notation, namely,

Ku = f (16.44)

Thus, by discretizing the initial second-order differential equation, the original problem of
identifying an unknown continuous function has been replaced by the problem of solving
a matrix equation for the discrete values of u.

Since the matrix K is symmetric, positive definite, and tridiagonal, the solution to
equation (16.44) is readily obtained by solving

u = K
−1

f (16.45)

16.8 Application of FE and FD Methods in

Materials Science

This section lists a few classical and recently published references on applications of finite
element and finite difference simulations related to various domains of materials science.
The table can by no means be complete but may serve as a bibliography for getting better
acquainted with some examples of the recent original literature in this field. Materials-
related applications of finite element and finite difference simulations are particularly in
the field of solid-state mechanics, diffusion, and heat transport.

Field of application Reference

classics, FE Courant (1943)
Oden (1972)
Atlee-Jackson (1982)
Livesley (1983)
Zienkiewicz and Morgan (1983)
Rao (1989)
Zienkiewicz and Taylor (1989)
Crisfield (1991)
Zienkiewicz and Taylor (1991)
Rowe, Sturgess, Hartley, and Pillinger (1991)

classics, FD Forsythe and Wasow (1960)
Richtmyer and Morton (1967)
Dettman (1969)
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Dettman (1969)
Marsal (1976)
Boas (1983)
DeVries (1994)
Bellomo and Preziosi (1995)

FE–crystal Gotoh (1978)
plasticity Gotoh and Ishise (1978)

Gotoh (1980)
Mathur and Dawson (1989)
Havlicek, Kratochvil, Tokuda, and Lev (1990)
Becker (1991)
Chung and Shah (1992)
Kalindindi, Bronhorst, and Anand (1992)
McHugh, Asaro, and Shih (1993a)
McHugh, Asaro, and Shih (1993b)
McHugh, Asaro, and Shih (1993c)
McHugh, Asaro, and Shih (1993d)
Dawson, Beaudoin, and Mathur (1994)
Fleck, Muller, Ashby, and Hutchinson (1994)
Takahashi, Motohashi, Tokuda, and Abe (1994)
Bertram and Kraska (1995)
Bacroix and Gilormini (1995)
Beaudoin, Dawson, Mathur, and Kocks (1995)
Beaudoin, Mecking, and Kocks (1996)
Kraska and Bertram (1996)
Maudlin, Wright, Kocks, and Sahota (1996)
Maudlin and Schiferl (1996)
Sarma and Dawson (1996)
Bertram, Böhlke, and Kraska (1997)
Feyel, Calloch, Marquis, and Cailletaud (1997)
Cleveringa, van der Giessen, and Needleman (1997)

micro- Christensen (1979)
mechanics Owen and Hinton (1980)

Gittus and Zarka (1986)
Predeleanu (1987)
Chenot and Onate (1988)
Beynon (1990)
Aboudi (1991)
Havner (1992)
Wulf, Schmauder, and Fischmeister (1993)
Nemat-Nasser and Hori (1993)
Andersen, Bilde-Sørensen, Lorentzen, Pedersen, and Sørensen (1994)
Schmauder (1994)
Schmauder and Weichert (1996)
Schmauder and Raabe (1996)
Stouffer and Dame (1996)
Cornec and Schmauder (1997)
Raabe and Bunge (1997)
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Figure 16.4: Simulation of localized orientation gradients in face-centered polycrystals
using a finite element formulation involving a constitutive response from crystal plasticity
theory (Beaudoin et al. 1996).

16.9 Examples of Finite Element Simulations

in Materials Science

16.9.1 Crystal Plasticity Finite Element Simulation

Beaudoin, Mecking, and Kocks (1996) have published an example of a finite element
formulation which involves a viscoplastic constitutive response from crystal plasticity
theory. The approach is used to simulate localized orientation gradients in face-centered
polycrystals. The polycrystals are idealized as three-dimensional arrangement of grains,
each consisting of many finite elements (Figure 16.4). The simulations demonstrate the
evolution of nonuniform deformation zones within individual crystals. This effect leads
to the formation of subgrain domains which are separated by boundaries of high mis-
orientation. Similar two-dimensional calculations were conducted by Becker (1991) and
McHugh, Asaro, and Shih (1993a) (Figure 16.5).

16.9.2 Finite Element Simulation of Solidification

Fackeldey, Ludwig, and Sahm (1996) have published a three-dimensional finite element
simulation of a casting process. The hybrid approach links thermal and mechanical aspects
by taking into account local and transient heat transfer coefficients at the casting mould
interface, dendrite formation during solidification, and the release of latent heat (Figure
16.6). The simulation involves a model for the consideration of the air gap between mould
and metal. It is assumed that the casting–mould interface consists of elements that have
no volumetric extension. The stiffness of these elements is assumed to be zero. This initial
condition mimics a gap between the metal and the mould at the interface nodes. The
simulation then involves a method of constraining the local contact of the nodes across
the interface by reducing the rank of the finite element system of equations. Segregation
effects and the formation of dendrites are incorporated as well.
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Figure 16.5: 2D simulations of localized strains in a polycrystal (McHugh et al. 1993).

Figure 16.6: A hybrid approach of solidification which links thermal and mechanical
aspects by taking into account local and transient heat transfer coefficients at the casting
mould interface, dendrite formation during solidification, and the release of latent heat
(Fackeldey et al. 1996).



Chapter 17

Polycrystal Elasticity and

Plasticity Models

17.1 Introduction and Fundamentals

Polycrystal models are classical averaging methods to predict the elastic and plastic re-
sponse of polycrystalline and multiphase materials at the meso- and macroscale without
immediate incorporation of the dynamics of the lattice and its defects1. Real materials
tend to have highly complex microstructures which can substantially influence their over-
all response to external loads. However, meso- and macroscale models must use methods
to level out these fine details of the microstructure. This must be done by replacing
the microstructure by an appropriate constitutive description and by including certain
assumptions about material homogeneity. The main differences among the various poly-
crystal models therefore arise from their particular approach to tackling these two tasks.

Consequently, this chapter reviews first some aspects of homogenization in polycrys-
talline aggregates and some fundamentals of their constitutive description. Subsequently
the Voigt, Reuss, Hashin–Shtrikman, Taylor-Bishop-Hill, relaxed constraints Taylor type,
advanced grain interaction models, and self-consistent approaches are presented.

Most of the ensuing sections focus on materials mechanics. It might be helpful to insert
here a brief remark on notation, because in most books which take a mechanics perspective
the expressions for tensor operations differ from those in books with a materials science
background. The following expressions for Hooke’s law are all equivalent:

σij = Cijkl εkl

σ = C ε

σ = C : ε

(17.1)

Expressions of the first and second type will be used in the following text.

1Some recent polycrystal plasticity simulations consider mesoscopic microstructural aspects. For
instance, the mutual blocking of dislocations on different slip systems is sometimes phenomenologically
described in terms of unequal coefficients of the hardening matrix.
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Figure 17.1: In mesoscopically heterogeneous microstructures (grain-scale heterogeneity)
neither the strain nor the stress can be homogeneous throughout the sample. The dis-
location symbols indicate the heterogeneity. (a) Voigt (elastic) or Taylor full-constraints
(plastic) model of strain homogeneity. Constant strain everywhere in the sample violates
stress equilibrium. (b) Reuss (elastic) or Sachs (plastic) model of stress homogeneity.
Constant stress everywhere in the sample violates strain compatibility.

17.2 Homogenization Models for Polycrystals

Single-phase polycrystals are materials that usually consist of a large number of grains
(mg), each having a different crystallographic orientation. The distribution of the grain
orientations in such aggregates is referred to as crystallographic texture. It can be de-
scribed in terms of a set of Gauss-type scattering texture component functions (Lücke
et al. 1981) or in terms of the orientation distribution function which is based on spheri-
cal harmonics (Bunge 1982). Since both the elastic and the plastic responses to external
mechanical loads or electromagnetic fields are typically highly anisotropic within each of
these individual crystals, it is an intricate task to predict the total response of the entire
sample when all the grains are mutually misoriented. For instance, the elastic anisotropy2

of matter is evident from the components of the elastic tensor and the plastic anisotropy
from the geometry of dislocation slip, crack propagation, and athermal mechanisms such
as twinning or martensite transformation.

The problem of material heterogeneity becomes even more pronounced when dealing
with polyphase polycrystals, where not only the orientation but also the intrinsic elastic
and plastic responses of each material portion can vary from point to point.

Due to this heterogeneity imposed by microstructure at the meso- or grain-scale it
is obvious that neither the strain nor the stress will be homogeneous throughout me-
chanically loaded samples (Figure 17.1). However, meso- and macroscale polycrystal
simulations are explicitly designed to deal somehow with these subtleties of microstruc-
ture and to find sufficiently precise solutions for the material’s response by introducing
an appropriate homogenization of stress and/or strain.

According to Aernoudt, van Houtte, and Leffers (1993) and van Houtte (1996b), a
straightforward mechanical approach to solve this problem of stress and strain hetero-
geneity might consist in formulating and solving the equations of force equilibrium and

2Tungsten is the only elastically isotropic material. Its Zener ratio is equal to one.
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Figure 17.2: Force equilibrium and strain rate compatibility at a grain boundary according
to van Houtte (1993, 1996).

strain rate compatibility at each grain or phase boundary that exists within a polyphase
polycrystalline aggregate. For instance, let us consider equilibrium and compatibility at
a grain boundary as shown in Figure 17.2. At such a flat and infinite grain interface with
the normal x3 which separates grain α from grain β, the following equations must be
satisfied expressing static equilibrium of the stresses:

σα
33 = σβ

33 σα
13 = σβ

13 σα
23 = σβ

23 (17.2)

and compatibility of the strain rates at that boundary:

ε̇α
11 = ε̇β

11 ε̇α
22 = ε̇β

22 ε̇α
12 = ε̇β

12 (17.3)

Identical considerations apply for the remaining boundaries. Unfortunately, up to now
neither elastic nor plastic models exist that satisfy these constraints for real microstruc-
tures, i.e. for polycrystals consisting of grains with arbitrary morphology and orientation
with consideration of stress and strain homogeneity inside the crystals (Aernoudt et al.
1993). However, this shortcoming of existing theoretical approaches of micromechanics
is not due to a lack in physical understanding but to an insufficient incorporation of
microstructural details.

This is made clear by the following simple estimation. Consider a microstructure with
as many as mg grains. The strain and stress may be homogeneous within each individual
crystal. The number of unknowns in such a material amounts to 6mg for the components
of the stress tensor and 6mg for the components of the strain tensor. This set of unknowns
can be reduced from 12mg to 6mg through the use of a stress–strain relation.

On the other hand, the system would have to satisfy certain boundary conditions. For
the macroscopic stress state σmacro and the macroscopic strain state εmacro the boundary
conditions amount to

σ
macro =

1

V

∫
σ

grain dV ε
macro =

1

V

∫
ε
grain dV (17.4)

which leads to 12 equations, 6 for the components of the macroscopic stress and 6 for the
components of the macroscopic strain. Using a stress–strain relation, this number can
be reduced from 12 to 6. Now assume that the number of grain boundaries where stress
equilibrium and strain compatibility must be preserved according to equations (17.2)
and (17.3) amounts to mb. These mb interfaces separate the mg grains. One could then
formulate as many as 6mb additional equations for the polycrystal, namely 3mb equations
for strain compatibility and 3mb equations for stress equilibrium. Together with the
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boundary conditions, one can thus identify at least 6 + 6mb equations for the 6mg

unknowns. For the case of simplicity let us assume that the grains have an orthorhombic
symmetry and hence 6 boundaries each3. Thus, one can formulate 6 + 36/2mg equations4.
This means that there is no unambigious solution to this problem since there are too many
equations for a limited number of unknowns.

Physically, the ambiguity arises from the fact that the strain and stress are presumably
not homogeneous but heterogeneous within each of the crystals. In other words, each
grain typically contains further lattice defects apart from conventional high-angle grain
boundaries, which influence the course of stress and strain. For instance, even well-
annealed polycrystalline samples can contain relatively stable dislocation substructures,
which can give rise to long- or short-range internal stress and strain fields.

The simplest possible approaches to approximate the true course of the unknown
stress and strain functions in the material by homogenization are the strain homogeneity
approaches of Voigt for the elastic case and Taylor for the plastic case, and the stress
homogeneity approaches of Reuss for the elastic case and Sachs for the plastic case (Figure
17.1). While the assumption of stress homogeneity violates the compatibility of strain,
the assumption of strain homogeneity violates the equilibrium of stress.

Further details of the mechanical anisotropy of crystalline matter and the treatment
of homogenization of mesoscopically heterogeneous materials can be found in the works of
Hill (1950), Nye (1967), Mura (1987), van Houtte (1992), Nemat-Nasser and Hori (1993),
and Stouffer and Dame (1996).

17.3 Constitutive Models for Polycrystals

The constitutive model for the linear elastic material response of solid matter is Hooke’s
law in tensorial notation, equation (9.29). Hooke’s law means that for small external or
internal forces the time-independent reversible response of the material which is quantified
by the displacement field can be linearly related to that force. The strains, expressed by
the symmetric part of the displacement gradient tensor, then describe a linear elastic
shape change which is proportional to the stress.

In the field of low-temperature crystal plasticity and in many areas of elasticity and
pseudo-elasticity of noncrystalline materials nonlinear relations between strain and stress
prevail. The phenomenological methods of describing such constitutional behavior at
the macroscale are often grouped into rate-independent or yield surface approaches and
rate-dependent or viscoplastic approaches.

The rate-independent or yield surface description can be formulated in stress space and
in strain space. It is sometimes also referred to as the elastic–plastic description. Usually,
these approaches are used for plastically incompressibles materials, approximating the
typical plastic response of many metals and alloys. The construction of a yield surface in
stress space for a rate-insensitively deforming material is based on the assumption that
irriversible deformation starts when a certain critical shear stress σcrit is reached. The
tensorial expression that defines this critical stress in stress space as a function of the
applied stress tensor describes the yield surface (Westergaard 1920; von Mises 1928). It
is referred to as the yield criterion and can be written

f (σ) = σcrit . (17.5)

3On average, real grains have about 14 interface planes, at least from a mesoscopic viewpoint.
4Each grain boundary in the bulk belongs to 2 grains.
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Figure 17.3 shows sections of two classical yield criteria in the principal or Haigh–Wester-
gard stress space, namely the Tresca and the von Mises critera. While the Tresca criterion
represents a maximum shear stress criterion, the von Mises approach takes an energetic
view by formulating the yield surface as a potential function which can be derived from
the distorsion energy. For a general stress state, the von Mises yield function can be
written

1

2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6σ2
12 + 6σ2

23 + 6σ2
13

]
= σ2

crit

(17.6)
When transformed to the principal stresses σ1, σ2, σ3 (Chapter 9), it can then be rewritten

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] = σ2
crit (17.7)

When expressed in deviatoric stress space, the von Mises yield function can be written

3J2 =
3

2
Sij Sij = σ2

crit (17.8)

where J2 is the second invariant of the stress deviator, and Sij are the deviatoric stress
components (see Chapter 9). According to equation (17.8), plasticity theories which are
based on the von Mises yield function, are often referred to as J2 flow theories, i.e. they
are independent on the hydrostatic stress.

Yield surfaces of the kind presented in Figure 17.3 have some important features.
Stress states outside the yield surface cannot occur. At stress states below the yield
surface the material is only elastically deformed. Any imposed stress tensor that describes
a stress state on the yield surface gives rise to irreversible deformation. That means all
admissible stress states for plastic flow must lie on the yield surface (Mendelson 1968;
Kocks 1970; Rice 1975; Gittus and Zarka 1986; Besseling and van der Giessen 1993;
Krausz and Krausz 1996; Stouffer and Dame 1996). The symmetry of the Tresca and
von Mises yield surfaces reflects the assumption that the flow stress under compression
is equal to that under tension. This flow law is violated for materials which show a so-
called Bauschinger effect. The classical yield criteria determine the begin of irriversible
nonlinear flow for a material with plastically isotropic behavior which is exposed to a
general three-dimensional stress state. Real polycrystalline materials, however, often
show an anisotropic yield surface (Kocks et al. 1983; Canova et al. 1984; Lequeu et al.
1987; Lequeu and Jonas 1988; van Houtte 1992; Bacroix and Gilormini 1995; Maudlin
and Schiferl 1996). This anisotropy can be attributed to the crystallographic nature of
plasticity which occurs by the activation of discrete slip, twinning, and martensite systems,
and to the formation of preferred crystallographic orientations during processing. The
largest plastic anisotropy is consequently found for single crystals (see Section 17.10).
It is worth noting that anisotropic yield surfaces cannot be presented in the principal
or Haigh–Westergard stress space. Hill (1950) suggested a quadratic yield function for
describing the anisotropy at the onset of plastic flow. For a three-dimensional stress state
the Hill yield function can be written

1

2

[
F (σ22 − σ33)

2 +G (σ33 − σ11)
2 +H (σ11 − σ22)

2

+ 2N σ2
12 + 2M σ2

13 + 2Lσ2
23

]
= σ2

crit (17.9)
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Figure 17.3: Sections of two classical yield criteria in the principal or Haigh–Westergard
stress space: Tresca and von Mises yield criteria.

In the deviatoric stress space, the Hill function can be written

1

2

[
(G+H)2 S2

11 + (F +H)2 S2
22 + (F +G)2 S2

33 − 2H S11 S22

− 2GS11 S33 − 2F S22 S33 + 2N S2
12 + 2M S2

13 + 2LS2
23

]
= σ2

crit (17.10)

In index notation this can be rewritten more compactly as

1

2
αijkl Skl Sij = σ2

crit (17.11)

where the components of the symmetrical matrix α amount to

α1111 = G+H α2222 =F +H α3333 = F +G

α1122 = α2211 = −H α1133 = α3311 = −G α2233 = α3322 = −F

α1212 = α2121 = α1221 =α2112 =
1

2
N

α1313 = α3131 = α1331 =α3113 =
1

2
M

α2323 = α3232 = α2332 =α3223 =
1

2
L

(17.12)

These equations of Hill can be used for empirically describing the texture-dependent
evolution of yield surface anisotropy, i.e. of the yield surface shape. However, yield surfaces
do not only change their shape but can also expand in stress space due to work-hardening.
Figure 17.4 shows two typical cases of hardening as used frequently in the conventional
isotropic rate-independent J2 approach. The rate-dependent or viscoplastic approaches
assume that the flow stress is related to the actual strain rate of the material. The
incorporation of a rate-dependent constitutive law into polycrystal models is outlined in
Section 17.14.
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Figure 17.4: Two examples of material hardening in the rate-independent constitutive
approach. (a) Isotropic work hardening; the yield surface expands isotropically in stress
space; (b) Kinematic hardening; the yield surface is shifted without changing its shape.
The diagrams show only two-dimensional sections of the six-dimensional yield surfaces in
general stress space.

By applying the theory of plastic potentials and by introducing a constitutive law that
relates the flow stress to both the strain and the strain rate it can be shown that the rate-
independent or yield surface concept is only a limiting case for a series of equipotential
flow surfaces when the strain-rate sensitivity approaches zero (Hill 1987; van Houtte 1994;
van Houtte 1996b) (Figure 17.5). A crystallographic interpretation of the rate-insensitive
yield surface is given in Section 17.10.

17.4 Voigt Model of Homogeneous Elastic Strain

An early homogenization approach for elastic loading was suggested by Voigt (1910), who
assumed that in the case of a macroscopically prescribed strain state εmacro

each material portion dVi is in the same strain state as the entire sample εmicro
i (x),

irrespective of its spatial position in the specimen,

ε
macro = ε

micro (x) (17.13)

The strain would then be homogeneous throughout the sample.
However, for instance in a polycrystalline sample, the elastic response typically varies

from grain to grain, due to the spatially changing crystal orientation. The elastic stiffness
tensor components Cijkl are usually given in crystal rather than in sample coordinates
(Chapter 9, Table 9.1). To use them in sample coordinates for the calculation of the
macroscale polycrystal elasticity, they can be rotated parallel to the sample coordinates
according to

Csample
ijkl = ami anj aok apl C

crystal
mnop (17.14)

where ami, anj , aok, and apl are the elements of the transformation matrix between the
sample and the crystal reference system.
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Figure 17.5: The theory of plastic potentials shows that by applying a constitutive law
which relates the flow stress to the strain and its actual rate, the yield surface can be
regarded as a limiting surface for a series of equipotential flow surfaces when the strain-
rate sensitivity approaches zero (van Houtte 1994, 1996). The diagram shows only a
two-dimensional section of the six-dimensional yield surface.

This transformation shows that the local elastic properties of the sample will differ
from grain to grain, according to the local crystallographic texture (Figure 17.1). The
example can easily be generalized for polyphase materials. Since in the Voigt model the
prescribed strain is the same everywhere in the sample, the stress must vary according to

σcrystal
ij (g,x) = Ccrystal

ijkl (g,x) εcrystal
kl (g,x) = Ccrystal

ijkl (g,x) εsample
kl (17.15)

where g is the local orientation of the crystal. The prescribed strain εsample
kl corresponds

to εmacro
kl in equation (17.13).
The Voigt limit for the elastic response of a polycrystalline sample can be calculated by

weighting the tensor of the elastic stiffness as a function of orientation with the orientation
distribution function.

17.5 Reuss Model of Homogeneous Elastic Stress

A different approach to treating the homogenization problem in an elastically loaded
polycrystalline sample was suggested by Reuss (1930). He suggested that in the case of
a macroscopically prescribed stress state σmacro each material portion dVi is in the same
stress state σmicro

i (x), irrespective of its spatial position in the specimen,

σ
macro = σ

micro (x) (17.16)

The stress would then be homogeneous throughout the specimen.
As was outlined above for the stiffness tensor, in a polycrystal the elastic response

may vary from grain to grain, in accord with the local orientation of the crystal. Prior
to using the components of the compliance tensor in the coordinates of the sample, they
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must be rotated parallel to the sample coordinates according to

Ssample
ijkl = ami anjaok apl S

crystal
mnop (17.17)

where ami, anj , aok, and apl are the elements of the transformation matrix between the
sample and the crystal reference system. The compliance will thus differ from grain to
grain, according to the local grain orientation (Figure 17.1).

Since in the Reuss model the prescribed external stress is constant throughout the
specimen, the strain must vary according to

εcrystal
ij (g,x) = Scrystal

ijkl (g,x) σcrystal
kl (g,x) = Scrystal

ijkl (g,x) σsample
kl (17.18)

where the stress σsample
kl corresponds to σmacro

kl in equation (17.16).
The elastic Reuss limit can be calculated for a polycrystal by weighting the tensor

of the elastic compliance as a function of orientation with the orientation distribution
function.

Since neither the Voigt nor the Reuss method provides reliable approximations to the
elastic modulus of a polycrystal, Hill defined an average modulus which consists of the
equally weighted results of both above models.

17.6 Hashin–Shtrikman Homogenization for

Polycrystal Elasticity

The basic idea of the Hashin–Shtrikman homogenization approach for elastic (polycrys-
talline) materials consists in replacing a microstructurally heterogeneous material by a
homogeneous volume element with a different homogeneous modulus (Hashin and Shtrik-
man 1962a). The solution is found by using a variational principle.

The derivation starts by considering a representative volume element with the stiffness
tensor C and the compliance tensor S, and n linearly elastic inclusions Ωi with i =
1, 2, ..., n which have the stiffness tensor C i and the compliance tensor Si. It is convenient
to introduce the variables C ′ and S′ which assume the values C and S inside the matrix
and C i and Si inside the inclusion.

Now one considers that the representative volume element is subjected to a uniform
macroscopic stress σ0. This stress is used to define an overall compliance tensor according
to

ε ≡ S̃ σ
0 (17.19)

In the next step one considers an equivalent homogeneous volume v of material which
has an identical geometry to that of the representative volume element, and introduces
the eigenstrain field for the homogenization. It is assumed that the newly introduced
material exhibits everywhere a constant stiffness tensor Cv and compliance tensor Sv.
These tensors are associated with an arbitrary homogeneous linear elastic comparison
material which replaces the former heterogeneous representative volume element. They
do not represent field variables but are constant.

Now one introduces the eigenstrain field εe (x) such that the comparison material
has the same stress and strain fields as the original heterogeneous representative volume
element. This leads to the consistency conditions

σ (x) = C
′ (x) ε (x) = C

v [ ε (x) − ε
e (x) ]

ε (x) = S
′ (x) σ (x) = S

v
σ (x) + ε

e (x)
(17.20)
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Figure 17.6: Schematic representation of various homogenization approaches.

After that the eigenstrain εe (x) can be used to determine the stress in the homogeneous
comparison material which is equivalent to the stress field in the original representative
volume element:

σ (x) =
[
S

′ (x) − S
v
]

ε
e (x) (17.21)

By assuming that the volume is subjected to uniform boundary tractions one can now
define the perturbation stress σp (x). This stress field can be regarded as a measure for
the deviation of the stress field in the homogeneous comparison material σ (x) from σ0,
equation (17.19).

σ
p (x) ≡ σ (x) − σ

0 (17.22)

The so-defined perturbation stress field is in general a functional of the distributed eigen-
strains. The solution of this variational problem using tensor integral operators which
include an appropriate Green’s function leads to the Hashin–Shtrikman formulation. De-
tails of the solution technique can be found in the works of Hashin and Shtrikman (1962b),
Hill (1963), Kröner (1977), Willis (1977), and Nemat-Nasser and Hori (1993).

17.7 Eshelby’s Inclusion Approach

The Voigt model of homogeneous internal strain under an externally imposed elastic strain
and the Reuss model for homogeneous internal stress under an externally imposed elastic
load can be regarded as the upper (Voigt) and lower (Reuss) bounds of the overall modulus
of elastically heterogeneous materials. From a mechanical standpoint both approaches are
unsatisfactory since they violate either elastic stress equilibrium (Voigt) or elastic strain
compatibility (Reuss) (Figure 17.6).

Eshelby (1957) formulated an improved elastic homogenization approach which is
based on inserting a linear elastic inclusion of spherical or ellipsoidal shape into an infi-
nite matrix medium. The strain and stress distributions are obtained after relaxing this
compound. A similar approach which was used by Khachaturyan (1983) for deriving the
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elastic contribution to the free enthalpy functional in phase field models is discussed in
Chapter 10.

In contrast to the Voigt and Reuss descriptions, the inclusion in the Eshelby model
does not simply experience a strain or stress state identical to the sample without any
consideration of the surrounding matrix, but as a rule generates an elastic response in the
inclusion and in the matrix. In the classical inclusion model the matrix is homogeneous
and has isotropic elastic properties.

The first part of the derivation consists in formulating and solving the so-called trans-
formation problem. This amounts to finding a solution for an embedded inclusion which
has the same linear elastic properties as the matrix but undergoes a shape change due to
transformation.

The transformation problem can be separated into a number of subsequent calculation
steps. First, one removes a volume unit from the homogeneous matrix, so that it be free
of external stresses, and subjects it to a shape change.

This transformation can be due to changes in temperature or electrical field, or a
consequence of martensite formation. The physical reason for this transformation is with-
out relevance for the further derivation. Since the volume affected is not connected to
the matrix, it undergoes a shape change which is in accord with the transformation or
eigenstrain εe. The elastic energy remains unchanged during this step since it does not
expand or shrink the affected volume unit in response to an external stress state.

In the next step, one imposes a stress on the transformed unit volume in order to
restore exactly its original shape prior to transformation and fit it back into the rigid
matrix. As a rule a stress σi will be generated in the inclusion which is proportional to
the deviation of the transformed from the original shape,

σ
i = C [ εc − ε

e ] (17.23)

where εc is the strain that is imposed on the inclusion to fit it back into the matrix.
Eshelby found an analytical solution for this problem by consideration of Hooke’s

law, stress equilibrium, and strain compatibility. The macroscopic stress and strain in
the matrix at an infinite distance from the inclusion were assumed to be zero. The
distributions of stress and strain were homogeneous in the spherical or ellipsoidal inclusion
and heterogeneous in the matrix.

According to Eshelby (1957), Mura (1987), Indenbom and Lothe (1992) and van
Houtte (1992) the solution can be written in the general form

ε
c = D ε

e or εcij = Dijkl ε
e
kl (17.24)

where D is a fourth-rank elastic tensor, the components of which amount to α and β.
They are defined by

εc hyd = α εe hyd

εc dev
ij = β εe dev

ij

(17.25)

where εc hyd and εe hyd are the scalar hydrostatic strain portions

εc hyd =
1

3
εcii

εe hyd =
1

3
εeii

(17.26)
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and εc dev
ij and εe dev

ij the deviatoric strain components

εc dev
ij = εcij − εc hyd δij

εe dev
ij = εeij − εe hyd δij .

(17.27)

The values of α and β amount to

α =

(
1

3

) (
1 + ν

1 − ν

)

β =

(
2

15

) (
4 − 5ν

1 − ν

) (17.28)

Based on this classical solution the second part of the derivation consists in solving
the so-called inhomogeneity problem. It changes the conditions with respect to the trans-
formation problem by allowing dissimilar linear elastic properties of the matrix and the
inclusion and by assuming a nonzero matrix stress σM and strain εM at infinite distance
from the inclusion, i.e. by loading the entire material. Eshelby solved this problem by
reducing it to the transformation problem. He showed that the body consisting of matrix
and inhomogeneous inclusion can be replaced by an unbounded matrix and a transformed
inclusion with the same elastic constants as the matrix.

First, one has to derive the transformation eigenstrain εe of the inclusion, which makes
it equivalent to an inhomogeneous inclusion:

ε
e = D

′
ε
M or εeij = D′

ijkl ε
M
kl (17.29)

where D′ is a fourth-rank elastic tensor, the components of which amount to α′ and β′.
They are defined by

εe hyd = α′ εMhyd

εe dev
ij = β′ εMdev

ij

(17.30)

where εe hyd and εM hyd are the scalar hydrostatic portions of the eigenstrain and of the
matrix strain tensor, respectively

εe hyd =
1

3
εeii

εM hyd =
1

3
εMii

(17.31)

and εe dev
ij and εM dev

ij the corresponding deviatoric strain components

εe dev
ij = εeij − εe hyd δij

εM dev
ij = εMij − εM hyd δij

(17.32)

The values for α′ and β′ are

α′ =
κi − κM

(κM − κi)α − κM

β′ =
µi − µM

(µM − µi) β − µM

(17.33)
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where µi is the Lamé constant of the inclusion, µm the Lamé constant of the matrix, κi

the bulk modulus of the inclusion, and κm that of the matrix; α and β are the same as in
equation (17.28).

After the calculation of the eigenstrain εe of this so called inhomogeneous inclusion,
one can further proceed by inserting this result into equation (17.24) for the calculation
of the true inclusion strain εc.

By combining the elastic tensor coefficients from equations (17.24) and (17.29) one can
rewrite compactly the relationship between the true inclusion strain and the macroscopic
strain in the unbounded matrix at infinity

ε
c = D

∗
ε
M or εcij = D∗

ijkl ε
M
kl (17.34)

The above results now make it possible to establish a relation between the true strain
εc and the stress σi in the inclusion. Such a relation can be derived by use of some of the
above formulas under the assumption that the stress and strain in the matrix go to zero
at an infinite distance from the inclusion. From

ε
e = D

−1
ε
c (17.35)

and

σ
i = C [εc − ε

e ] (17.36)

one obtains

σ
i = C

[
ε
c − D

−1
ε
c
]

= C
[
I − D

−1
]

ε
c (17.37)

This formulation has the advantage that it establishes a relation between the true strain
and the stress in the inclusion without the use of the transformation strain.

For a system where the macroscopic stress and strain decay to zero at infinity it is
often written in a somewhat more compact form, namely

σ
i = −L

∗
ε
i (17.38)

where εi is equal to εc. The fourth-rank elastic tensor L∗, which is usually referred to as
the interaction tensor amounts to

L
∗ = −C

[
I − D

−1 ] (17.39)

The unit tensor I can be written

Iijkl =
1

2
( δik δjl + δil δjk ) (17.40)

Under a nonvanishing stress and strain field in the matrix, σM and εM, the interaction
formula becomes [

σ
i − σ

M
]

= −L
∗
[
ε
i − ε

M
]

(17.41)

This result shows that a hard grain which carries less strain as compared with the entire
sample, has a higher stress.
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17.8 Kröner’s Self-Consistent Approach

The self-consistent approach of Kröner (1958a) is based on equation (17.41). It treats
each crystal as a spherical inclusion in a linear elastic unbounded matrix. The matrix
consists of all the other crystals (Kröner 1961).

By replacing the stress in the inclusion σi by the local elastic tensor as a function of
grain orientation c(g) and the strain in the inclusion εi and replacing the stress in the
matrix σM by the elastic tensor of the entire polycrystalline sample C and the strain in
the matrix εM, one can rewrite equation (17.41)

[
c(g) ε

i
]
−
[
C ε

M
]

= L
∗
[
ε
i − ε

M
]

(17.42)

This expression can be transformed into

σ
i = c(g) [ c(g) + L

∗ ]
−1

[ C + L
∗ ] ε

M (17.43)

This equation can be averaged over all crystals in the sample. Integrating the right-
hand side of the equation over the orientation distribution function f(g) of the considered
sample yields an averaged elastic matrix stress. This matrix stress can be written as a
function of all crystal orientations

σ
M =

{∫
c(g) [ c(g) + L

∗ ]
−1

[ C + L
∗ ] f(g) dg

}
ε
M (17.44)

By comparison of the coefficients one obtains an integral equation for the polycrystal
modulus C :

C =

∫
c(g) [ c(g) + L

∗ (C) ]
−1

[ C + L
∗ (C) ] f(g) dg (17.45)

Since this equation is an implicit form, i.e. its integrand contains C itself, it must be
solved by iteration. Polycrystal methods based on such a formulation are referred to as
self-consistent models.

17.9 Taylor Full-Constraints Model for

Homogeneous Plastic Strain in Polycrystals

Taylor (1938) suggested in his pioneering work that strain (rate) compatibility among the
grains assembled in a polycrystal is necessarily preserved if all crystals undergo the same
shape change as the entire sample (Figure 17.6). The original Taylor model, which is
referred to as the full-constraints model, thus considers strain compatibility throughout
the sample but neglects stress equilibrium at the grain boundaries.

For fulfilling a prescribed plastic strain state, crystals must use slip or twinning sys-
tems, i.e. they do not behave like a homogeneous isotropic continuum which can follow
any arbitrary shape change. Due to their different crystal orientations, different grains in
a polycrystalline aggregate will as a rule employ different combinations of slip systems to
attain an externally imposed velocity gradient state.

In this context the Taylor full-constraints model makes two main assumptions. First,
it stipulates that an approach which is based on the strict fulfillment of strain rate com-
patibility reflects polycrystal plasticity better than a model that is based on the mere
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fulfillment of strict stress equilibrium5. Second, it assumes that large strain deformation
of metals is not adequately described from a physical point of view by an isotropic homo-
geneous constitutive law, but requires the incorporation of the crystallographic character
of plasticity.

The original Taylor full-constraints model assumes that the external macroscopic
strain corresponds to the internal microscopic strain, and that a prescribed deformation
must be accomplished by crystallographic slip, twinning, or martensitic transformation
(Taylor 1938). Following the work of Bunge (1970), Kocks (1970), Gil Sevilliano, van
Houtte, and Aernoudt (1980), van Houtte (1985), van Houtte (1988), and Aernoudt, van
Houtte, and Leffers (1993), the classical Taylor theory can be formulated in a somewhat
generalized fashion.

In the full-constraints approach the externally imposed macroscopic velocity gradient
tensor serves as an input quantity. The fields of the velocity gradient, rotation, stress,
strain, and strain rate are supposed to be homogeneous within each grain. For preserving
compatibility, the external velocity gradient tensor is prescribed for each crystal. The
distortion of each grain is accomplished by crystal slip and/or twinning in such a manner
that the local velocity gradient assumes the prescribed external value. In most cases this
requires multiple slip. The mathematical treatment of this model will be discussed now
in more detail.

The activation of a slip system t takes place if the shear stress τ t on that system
reaches the value of the critical resolved shear stress τ t

crit for this family of slip systems.
The actual shear stress on the glide system t can be calculated from a given stress state
σij by using

τ t = σij m
t
ij (17.46)

where the Einstein summation rule applies. The matrix with the components mt
ij is a

crystallographic transformation matrix which describes the orientation of the slip system
t with respect to the crystal coordinate system. For the case of single slip in a single
crystal under pure tension mt

ij degenerates into the Schmid factor. This means that the
expressions

τ t
crit = σij m

t
ij and − τ t

crit = σij m
t
ij (17.47)

describe the yield locus or yield function for a single crystal.
Written in index notation, the transformation matrix mt of the coefficients mt

ij is
given by

mt
ij = bti n

t
j (17.48)

where btin
t
j is the dyadic product of the normalized Burgers vector bt and normalized

glide plane normal nt of the slip system t. In matrix notation, equation (17.48) can be
rewritten

m
t = b

t ⊙ n
t (17.49)

where bt ⊙ nt = btin
t
j is the dyadic product written in matrix form. The symmetric part

M t of the transformation matrix mt is given by6

M t
ij =

1

2

(
mt

ij + mt
ji

)
=

1

2

(
bti n

t
j + btj n

t
i

)
(17.50)

5Self-consistent and coupled finite element/Taylor models of crystal plasticity consider both stress
equilibrium and strain compatibility, at least in an approximate fashion. The main approximation of
self-consistent schemes lies in the averaging of the surroundings as an effective medium and that of
finite element codes in the use of interpolation functions instead of the real displacements.

6no summation over t.
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Using a detailed notation, equation (17.50) can be rewritten for the slip system t:



M t

11 M t
12 M t

13

M t
21 M t

22 M t
23

M t
31 M t

32 M t
33


 =

1

2



mt

11 mt
12 mt

13

mt
21 mt

22 mt
23

mt
31 mt

32 mt
33


 +

1

2



mt

11 mt
21 mt

31

mt
12 mt

22 mt
32

mt
13 mt

23 mt
33




=
1

2



bt1n

t
1 bt1n

t
2 bt1n

t
3

bt2n
t
1 bt2n

t
2 bt2n

t
3

bt3n
t
1 bt3n

t
2 bt3n

t
3


 +

1

2



bt1n

t
1 bt2n

t
1 bt3n

t
1

bt1n
t
2 bt2n

t
2 bt3n

t
2

bt1n
t
3 bt2n

t
3 bt3n

t
3


 (17.51)

The antisymmetric part Y t of mt is given by

Y t
ij =

1

2

(
mt

ij − mt
ji

)
=

1

2

(
bti n

t
j − btj n

t
i

)
(17.52)

Using a detailed notation, equation (17.52) can be rewritten



Y t

11 Y t
12 Y t

13

Y t
21 Y t

22 Y t
23

Y t
31 Y t

32 Y t
33


 =

1

2



mt

11 mt
12 mt

13

mt
21 mt

22 mt
23

mt
31 mt

32 mt
33


 − 1

2



mt

11 mt
21 mt

31

mt
12 mt

22 mt
32

mt
13 mt

23 mt
33




=
1

2



bt1n

t
1 bt1n

t
2 bt1n

t
3

bt2n
t
1 bt2n

t
2 bt2n

t
3

bt3n
t
1 bt3n

t
2 bt3n

t
3


 − 1

2



bt1n

t
1 bt2n

t
1 bt3n

t
1

bt1n
t
2 bt2n

t
2 bt3n

t
2

bt1n
t
3 bt2n

t
3 bt3n

t
3


 (17.53)

The transformation coefficients mt
ij and therefore also M t

ij and Y t
ij depend on the crystal

orientation when expressed in the external reference system. However, they are indepen-
dent of the crystal orientation when written in crystal coordinates. For instance, if one
assumes a rolling stress state according to Tucker (1964)7, a single active slip system t
= (101)[101̄] in a (001)[100] oriented crystal, and a sample coordinate system defined by
x1 ‖ rolling direction, x2 ‖ transverse direction, and x3 ‖ normal direction, one obtains
for the shear stress on the slip system (101)[101̄]: τ t = σ11 = −σ33. In the example the
coefficients mt

ij are the same in the crystal and in the sample coordinate system. For
arbitrary orientations, the transformations of m, M , and Y can be calculated using

mt
kl = aki alj m

t
ij (17.54)

where the transformation operators aki and alj are related to the rotation matrix g

which transforms the specimen coordinate system into the crystal coordinate system.
The rotation matrix contains the normalized components h′, k′, l′ corresponding to the
crystal direction parallel to the sheet normal x3, q

′, r′, s′ to that parallel to the transverse
direction x2, and u′, v′, w′ to that parallel to the rolling direction x1,

g =



u′ q′ h′

v′ r′ k′

w′ sk′ l′


 (17.55)

However, these various considerations about the calculation of resolved shear stresses
and their relation to crystal slip are at first of minor importance since in the Taylor
theory only the strain rate is prescribed whilst the stress is initially unknown. The above

7According to Tucker, the stress deviator during rolling can be dismantled into a compressive stress
parallel to the sheet normal (σ33 = −σ11) and a tensile stress parallel to the rolling direction (σ11).



17.9 Taylor Full-Constraints Model for Homogeneous Strain in Polycrystals 283

equations therefore cannot be used to determine the active slip systems and the resulting
grain rotations, as for instance in the Sachs approach.

Instead, one has to start with the deformation gradient tensor F and the displacement
gradient tensor H . According to their respective definitions given in Chapter 16, equations
(16.16) and (16.17), F can be expressed in terms of H

F = I + H (17.56)

where I is the unit matrix. In vector gradient notation the above equation amounts to

∂ri

∂xj
=
∂xi

∂xj
+
∂ui

∂xj
(17.57)

where x is a vector that combines two physical points in the crystal and r a vector that
combines the same points after an infinitesimal deformation step, equation (16.15). Thus
one can express r in terms of F or H , respectively:

r = F x = (H + I) x (17.58)

Both tensors H and F can be dismantled to distinguish strain from rotation. For instance,
one uses a linear decomposition of the deformation gradient tensor F into a symmetric
portion U or W , and an orthogonal normalized antisymmetric (skew symmetric) portion
F a:

F = F a U = W F a (17.59)

It must be emphasized that the tensors W and U are not necessarily identical to each
other, but depend on the deformation path. However, for sufficiently small strains one
may assume that both symmetric tensors are very similar, so that the above equation can
be rewritten

F = F a U = W F a ≈ F aF s (17.60)

where F s is the approximate symmetric portion of F . The linear decomposition of the
displacement gradient tensor, written in crystal coordinates, can then by obtained from
equation (17.56):

F ≈ F aF s = I + H = (I + Ha)(I + H s) = I + Ha + H s + HaH s (17.61)

where H s is the symmetric portion of H which represents shape changes, and Ha its
antisymmetric portion which describes a rigid body rotation of the continuum. For incre-
mental strains the above equation simplifies to

H ≈ Ha + H s (17.62)

The symmetric and antisymmetric components of H can be found by

H s =
1

2

(
H + H

T
)

Ha =
1

2

(
H − H

T
) (17.63)

where HT is the transpose of H . However, it must be underlined, that in the generalized
Taylor theory not the displacement gradient, but the macroscopic velocity gradient tensor,
as prescribed by the deformation process, serves as input quantity. The latter tensor
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corresponds to the displacement gradient rate tensor. This can be expressed formally by
writing

Ḣ s =
1

2

(
Ḣ + Ḣ

T
)

Ḣa =
1

2

(
Ḣ − Ḣ

T
) (17.64)

Details of the derivation of the Green–Lagrange form of the strain rate tensor and related
quantities are presented in Chapter 16.

Now one has to consider a crystal with f different slip systems. The shear rate on slip
system t is described by γ̇t. Using the normalized slip plane normal nt and the normalized
shear direction bt, γ̇t can be linearly dismantled into its symmetric and its antisymmetric
parts according to equations (17.51) and (17.53):

γ̇t
M

t = γ̇t 1

2
(bt ⊙ n

t + n
t ⊙ b

t)

γ̇t
Y

t = γ̇t 1

2
(bt ⊙ n

t − n
t ⊙ b

t)

(17.65)

where bt⊙nt = btin
t
j is the dyadic product according to equation (17.51). These contribu-

tions must be summed over all active slip systems t = 1, ..., f ; this defines the symmetric
tensor Γ̇s and its antisymmetric counterpart Γ̇a.

Γ̇s =

f∑

t=1

γ̇t
M

t

Γ̇a =

f∑

t=1

γ̇t
Y

t

(17.66)

Before deriving the orientation change of the grain it must be considered that in general an
extra spin Ω will be required in order to respond to the geometrical constraints imposed by
the macroscopic deformation process (van Houtte and Aernoudt 1975; Kocks and Chandra
1982). This extra spin determines the rate of the orientation change of the crystal. Thus,
the sum of the tensors Γ̇s, Γ̇a, and Ωs must be equal to the externally imposed velocity
gradient tensor Ḣ written in lattice coordinates:

Ḣ = Γ̇s + Γ̇a + Ω (17.67)

Again, this expression can be dismantled into its symmetric and its antisymmetric portion.

Ḣ s = Γ̇s

Ḣa = Γ̇a + Ω
(17.68)

According to the generalized full-constraints Taylor theory, the strain rate of the neigh-
boring crystals should be identical. Hence, the symmetric part of equation (17.67) is now
solved to identify the unknown shear rates γ̇t for the f active systems out of Ḣ s, which

is known since Ḣ and thus also Ḣ
T

are prescribed by the deformation process. Once the
γ̇t are found, the antisymmetric tensor Γ̇a can be calculated. The lattice rotation Ω is
finally obtained by solving Ω = Ḣa − Γ̇a.

At this point it is worth emphasizing that under certain relaxed-constraints condi-
tions the method outlined above for the calculation of the lattice rotation is not generally
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unambiguous. This is readily shown by expressing the rotation for crystals subjected
to a uniaxial compression test both in terms of the rigid-body rotation and the anti-
symmetric contribution of the active slip systems, equation (17.68), and in terms of the
conservation of the compression plane. The expressions yield a different result in one of
the antisymmetric matrix component pairs and thus show different properties with re-
spect to symmetry operations that should leave them invariant. However, for plane-strain
rolling which consists of thickness reduction (invariant rolling plane) and an equivalent
elongation (invariant rolling direction), both results are exactly identical.

If several combinations of slip systems fulfill the imposed strain tensor, the solution
with the minimum plastic work rate per unit volume that is dissipated along the glide
planes will be selected:

P = τcrit

f=5∑

t=1

∣∣γ̇t
∣∣ → min (17.69)

where τcrit = τ t
crit is the critical resolved shear stress which is assumed here to be identical

on all t = 1, ..., f active slip systems.
This rule is referred to as the first-order plastic criterion. If k different families of

slip systems with different critical resolved shear stresses τ
tk
crit are considered, the above

equation must be rewritten

P =

f1∑

t1=1

τ t1
crit

∣∣γ̇t1
∣∣ + ... +

fk∑

tk=1

τ tk
crit

∣∣γ̇tk
∣∣ → min (17.70)

The consideration of k different types of slip systems is of fundamental importance in
describing polycrystal plasticity of body-centered cubic alloys, intermetallic compounds,
and face-centered cubic alloys at elevated temperatures.

If the first-order plastic criterion does not yield an unambiguous result, the selection
procedure must be complemented by a second criterion. Renouard and Wintenberger
(1980) suggested such a second-order plastic criterion which selects from a given set of
possible solutions the combination that leads to a minimum energy of the rotated grain.
However, Kocks (1994) pointed out that this criterion is inadequate from a physical point
of view, since it stipulates that the final orientation of the grain is already known before
deformation.

An alternative method of selecting an active set of slip systems on a physically sound
basis is the consideration of small fluctuations of the local critical resolved shear stress.
However, the local intrinsic work or latent hardening matrix hαβ , which quantifies the
change of flow stress τα

crit on slip system α due to a shear increment γβ on slip system β
is usually unknown. Therefore, small stress oscillations must be introduced in a random
fashion. This corresponds to assuming a random selection criterion.

The second-order plastic criterion can have a noticeable influence on the predicted
crystallographic texture. This was investigated by comparing Taylor simulations using ei-
ther the criterion of Renouard and Wintenberger (1980) or random choice with viscoplastic
Taylor simulations8. It was observed that predictions obtained for body-centered cubic
metals were less sensitive with respect to the selection method employed than those ob-
tained for face-centered cubic materials and some intermetallic compounds. However, in
all cases it was revealed that the simulation results were very sensitive to the slip system
families involved and their respective critical shear stresses. Further relevant Taylor sim-
ulation parameters are the number of different grain orientations and their scatter width.

8Viscoplastic Taylor codes do not have to use a second-order plastic criterion (Section 17.14).
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The set of initial orientations that enters a Taylor simulation is usually identified by de-
composing the measured starting texture into a number of 800-3000 Gauss-type scattering
model components. The final orientation distribution function is then determined from
a set of predicted orientations by using the Gauss method of Lücke, Pospiech, Virnich,
and Jura (1981). The scatter width employed should be in accord with local texture
measurements (Raabe 1994; Raabe and Boeslau 1994).

17.10 Bishop–Hill Polycrystal Model

The theory of Bishop and Hill (1951) is essentially equivalent to Taylor’s full-constraints
model (Kocks 1970; Aernoudt et al. 1993). Similarly to Taylor’s approach, the Bishop–Hill
theory assumes strain rate compatibility among the grains. According to the generalized
Schmid law the activation of a slip system t is governed by

−τ t
crit ≤ τ t ≤ τ t

crit (17.71)

where τ t
crit is the critical resolved shear stress on the slip system t. Combining this equation

for τt with equation (17.46) defines two hyperplanes in the six-dimensional stress space
(Westergaard 1920; von Mises 1928).

These planes are used to determine the elastic limit for a general three-dimensional
stress state (Section 17.3). Stress states outside this surface are not admissible. If the
actual stress is below these hyperplanes, no slip occurs. The coordinates on the planes
represent stress states which give rise to slip activity. The combination of the hyperplanes
of all possible slip systems creates a hypersurface which contains all possible stress states
for plastic flow. The coordinates of the entire hypersurface in stress space can be de-
rived by adding hydrostatic stresses to the actual stress tensor. This method implicitly
postulates isotropy and plastic incompressibility. The deviatoric stress vector which then
determines the elastic limit is generally normal to the hydrostatic stress line which is
generated in stress space by gradually changing the hydrostatic portion. The hydrostatic
line is the axis of the yield surface and the plane normal to it is referred to as π plane.
This six-dimensional surface of the elastic limit is referred to as the yield locus, yield func-
tion, or yield surface for the single crystal considered and has the form of a hyperprism
(Mendelson 1968; Kocks 1970; Gittus and Zarka 1986; van Houtte et al. 1989; Krausz
and Krausz 1996; Stouffer and Dame 1996).

If the yield locus is determined, the maximum work principle can be used for the
determination of the unknown plastic stress state that corresponds to the known plastic
strain rate (Hill 1950; Kocks 1970; Kocks et al. 1983). The plastic stress is located on or
below the yield surface and satisfies the condition

P = σij ε̇ij → max (17.72)

which means that the dissipated plastic work rate per unit volume should be maximized.
van Houtte (1988) has suggested a convenient tensor–vector conversion which allows one
to express a given strain rate as a vector in stress space. Except for some special cases,
this strain rate vector will not be normal to a single facet (single slip) or to an edge of
the yield surface (double slip) (Aernoudt et al. 1993). In the usual case equation (17.72)
will thus be satisfied for a stress state which corresponds to a vertex of the yield locus
(multiple slip) (Figure 17.7). The identification of the active yield vertex makes it possible
to find the active set of slip systems. As was discussed by Kocks (1970) and Aernoudt
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Figure 17.7: Section of the single crystal yield locus in stress space. (a) The strain rate
vector ε̇ is normal to the facet of the yield locus. All stresses σi that belong to this
facet satisfy the maximum work principle (single slip). (b) The strain rate vector ε̇ is not
normal to any facet or edge of the yield locus. Therefore only one particular stress state
σi satisfies the maximum work principle (multiple slip), van Houtte (1988).

et al. (1993), the Taylor and the Bishop–Hill theories lead to identical predictions of
active slip systems, provided that identical first- and second-order plastic criteria are
used. Hence, the Taylor full-constraints approach is often synonymously denoted as the
Taylor–Bishop–Hill theory.

17.11 Taylor Relaxed-Constraints Models

In the full-constraints (FC) Taylor model the externally imposed strain rate is entirely
transferred into each grain where it has to be achieved by crystallographic slip, mechanical
twinning, or martensitic transformation. This concept implies the possibility of avoiding
incompatibilities between neighboring grains.

In the relaxed-constraints (RC) Taylor-type models some of the shear rate components
imposed need not be fulfilled, i.e. they are relaxed (Honneff and Mecking 1978; van Houtte
1981; Kocks and Chandra 1982; Wenk 1985; van Houtte 1988). This assumption allows for
local incompatibilities between neighboring grains. The basic approach of all RC models
is the relaxation of strain compatibility in favor of improved stress homogeneity. If one
of the imposed strain rate components is dropped, only four instead of the original five
equations (FC) need to be solved. Consequently, strain relaxation leads to the reduction
of the number of slip systems employed and hence to a lower deformation energy (Taylor
energy) as compared with the FC model. Since for each prescribed strain rate component
that is relaxed the corresponding compatibility equation is neglected, the number of strain
rate equations to be solved reflects the number of active slip systems. For simulating
cold-rolling textures, various strain rate relaxation schemes have been used (Honneff and
Mecking 1981; Kocks and Chandra 1982; Raphanel and van Houtte 1985; Hirsch et al.
1987; Hirsch and Lücke 1988a; Raabe 1992; Raabe 1995c; Tóth et al. 1997). In these
approaches the gradual strain relaxation was justified by the changing grain shape. It
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Figure 17.8: Schematic representation of the strain rate relaxation modes used for the
simulation of polycrystal plasticity at intermediate strains (classical lath model, relaxation
of ε̇13; modified lath-type model, relaxation of ε̇12) and large strains (pancake model,
relaxation of ε̇13 and ε̇23).

is clear that for an equiaxed grain morphology, large interactions with the neighboring
crystals arise when the strain constraints are dropped. In contrast, when the grains are
very flat, for instance after large-strain cold reduction, the interaction with grains in the
rolling or transverse direction seems to be less relevant.

For low thickness reductions one can assume an equiaxed grain shape9. Therefore, it
is reasonable to start Taylor simulations at low strains by imposing full strain constraints
(FC model) (Raabe 1995c). At intermediate thickness reductions the grain shape is elon-
gated and flattened but retains its original width. According to Honneff (1980), Honneff
and Mecking (1981), and van Houtte (1982) one can therefore allow for strain incompa-
tibility in the rolling direction and relax the corresponding shear strain rate constraint.
This approach is referred to as the lath model (van Houtte 1982). Using a coordinate
system with x1 ‖ rolling direction, x2 ‖ transverse direction, and x3 ‖ normal direction,
the lath model corresponds to a relaxation of the ε̇13 strain rate constraint (Figure 17.8).

Lath-type Taylor simulations only require four rather than five slip systems to achieve
a relaxed prescribed external shape change. At large rolling strains the grain shape is
usually very flat and equiaxed in the rolling plane. Such morphology is assumed to
allow for strain rate incompatibility in both the rolling and transverse directions. In the
simulation, two shear strain rate constraints are then dropped, namely ε̇13 and ε̇23. On
account of the flat grain shape this approach is referred to as the pancake model (Honneff
and Mecking 1981; van Houtte 1982) (Figure 17.8). Pancake-type Taylor simulations only
require three rather than five slip systems to achieve a relaxed prescribed external shape
change in the crystals being considered. Especially combined full- and relaxed-constraints
models with gradual lath and pancake relaxation have been successfully used for the
description of texture formation during large-strain rolling reduction of body-centered
cubic (bcc) alloys (Raphanel and van Houtte 1985; Raabe 1995d). In face-centered cubic
alloys (fcc) with a low stacking fault energy the third possible strain rate relaxation, which
is referred to as the brass shear relaxation (relaxation of ε̇12), has also been discussed. It is

9The assumption of equiaxed grain shapes at the beginning of cold rolling is no longer justified
for certain technical iron–chromium, iron–silicon, and aluminum alloys. Depending on the strain and
temperature distribution during hot rolling, recovery instead of recrystallization can prevail. This leads
to elongated rather then equiaxed grain shapes, especially in the center layers of the hot-rolled sheets.
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clear that even for the flat grain limit this relaxation mode gives rise to a larger interaction
among neighboring grains than the lath or pancake case. However, it is conceivable that
the interaction could be lowered when positive and negative brass shears of neighboring
crystals mutually compensate (Duggan et al. 1990; Lee and Duggan 1993). Such behavior
was indeed observed in experiments (Köhlhoff 1988).

17.12 Sachs Model for Homogeneous Plastic Stress

in Polycrystals

The early model of Sachs (1928) describes the simplest case of crystal deformation. It
assumes that plastic strain is obtained by activation of the slip system(s) with the highest
resolved shear stress according to the externally imposed stress. When used for the
description of polycrystal plasticity, the Sachs model thus considers stress equilibrium but
neglects strain compatibility. For this reason its employment was originally confined to the
description of single crystal rather than polycrystal plasticity. However, modified Sachs
models have also been used successfully to describe polycrystal deformation (Leffers 1968;
Pedersen and Leffers 1987). When the resolved shear stress reaches the critical resolved
shear stress, the Sachs model predicts for face-centered cubic crystals under tensile or
compression conditions the activation of one slip system in the case of a less symmetric
orientation, e.g. {134}, and up to eight slip systems in the case of a symmetric orientation,
e.g. {001}.

17.13 Statistical Grain Interaction Model

The use of the full-constraints (FC) Taylor model requires the activation of five slip
systems10 for fulfilling a prescribed plastic strain state in the crystals being considered.
The use of relaxed-constraints (RC) simulations reduces the required number of active slip
systems from five to four (lath model) or even three (pancake model). This relaxation
reduces strain rate homogeneity and increases stress homogeneity. This leads to the
reduction of the deformation energy (Taylor energy) as compared with the FC model,
equation (17.69).

In a new Taylor-type approach by Schmitter (1991b) the imposed shear strain com-
ponents are not entirely ignored but only partially relaxed according to the gain in the
Taylor deformation energy (van Houtte 1996a). The latter quantity depends on the grain
orientation. In Schmitter’s model the shear-dependent degradation of the Taylor energy is
expressed in terms of a so-called shear capacity, Γ. This value is defined as the maximum
slope of the plane combining the deformation energy predicted by the FC model with that
computed by the RC model. The shear capacity is thus dependent on the orientation of
the grain g and is a measure of the gain in energy that is achieved when a certain shear
component is relaxed. The shear capacities are calculated independently for the three
shear rate components, Γ̇12(g), Γ̇13(g), Γ̇23(g), and the broadening component of the
strain rate tensor, Γ̇22(g). Each orientation-dependent shear capacity is then normalized
by the highest occurring value for the corresponding shear rate component, Γ̇max

12 , Γ̇max
13 ,

10The activation of five slip systems does not generally imply that all five systems contribute identical
amounts of shear. Depending on the second-order plastic criterion, even in the Taylor full-constraints
model certain grain orientations can reveal one, two or even three slip systems with a shear contribution
much below that of the dominant systems.
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Γ̇max
23 , and Γ̇max

22 . The respective shear rate of the considered crystal is then calculated
from the shear rate predicted by the relaxed-constraints (RC) model weighted by the
normalized shear capacity according to

ˆ̇ε12(g) =

(
Γ̇12(g)

Γ̇max
12

)
ε̇RC
12 (g)

ˆ̇ε13(g) =

(
Γ̇13(g)

Γ̇max
13

)
ε̇RC
13 (g)

ˆ̇ε23(g) =

(
Γ̇23(g)

Γ̇max
23

)
ε̇RC
23 (g)

ˆ̇ε22(g) =

(
Γ̇22(g)

Γ̇max
22

)
ε̇RC
22 (g)

(17.73)

In other words the shear capacity quantifies the larger tendency of certain grains to neglect
local strain rate constraints at the expense of compatibility than others. By including this
approach, the original Taylor model was modified in a way which renders it more physically
plausible and at the same time in better agreement with experiments (Schmitter 1991b;
Raabe 1995e).

17.14 Viscoplastic Polycrystal Modeling

The numerical solution of Taylor–Bishop–Hill-type polycrystal models can be elegantly
obtained by using linear programming techniques (van Houtte and Aernoudt 1975). How-
ever, these models require a second-order plastic criterion for interpreting the multiple-
solution problem.

An alternative concept in dealing with secondary effects was suggested by the nonlin-
ear strain rate sensitivity polycrystal models (Canova et al. 1984; Asaro and Needleman
1985; Canova 1988; Tóth et al. 1988; Engler et al. 1993; Tóth et al. 1997). These ap-
proaches, which are typically referred to as viscoplastic models, assume that during plastic
deformation crystallographic slip and/or twinning are not confined to those few systems
which fulfill the Taylor–Bishop–Hill criterion. In contrast, it is suggested that glide takes
place on nearly all existing slip systems, even if their respective resolved shear stress, as
calculated from the external stress, is small. This concept is put formally by expressing
the critical resolved shear stress τ t

crit on a particular glide system t as a function of the
shear rate γ̇t on this system:

τ t
crit = τ0 sgn

[
γ̇t
] ∣∣∣∣

γ̇t

γ̇0

∣∣∣∣
m

= τ0

(
γ̇t

γ̇0

) ∣∣∣∣
γ̇t

γ̇0

∣∣∣∣
m−1

(17.74)

where τ0 is the reference shear stress (not the critical resolved shear stress), γ̇0 the shear
rate associated with the reference stress τ0, m the strain rate sensitivity, and sgn

[
γ̇t
]

the
sign of γ̇t. The reference stress τ0 and the reference strain rate γ̇0 must have equal signs.
The dependence of the shear rate on system t on the critical resolved shear stress τ t

crit

can then be written

γ̇t = γ̇0 sgn
[
τ t
crit

] ∣∣∣∣
τ t
crit

τ0

∣∣∣∣
1/m

(17.75)
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For simulating cold deformation, low m values of about 1
100

– 1
20

are typically used (Canova
1988; Engler et al. 1993; Molinari and Tóth 1994; Tóth et al. 1997).

The viscoplastic flow law given by equation (17.74) can be combined with the crys-
tallographic form of the yield surface function (equation 17.47)

τ t
crit = σij m

t
ij (17.76)

where σij is the stress and mt
ij the orientation matrix which describes the geometry of

the slip systems with respect to the crystal coordinate system11, and with the externally
prescribed strain rate tensor (equations 17.50, 17.66, and 17.68)

Ḣs ij
=

f∑

t=1

γ̇t M t
ij (17.77)

to give

Ḣs ij
=

1

2

(
γ̇0

τ
1/m
0

)
f∑

t=1

(
mt

ij +mt
ji

)
mt

kl σkl

∣∣mt
pq σpq

∣∣(1/m)−1
(17.78)

which can be solved consistently for σ, Ḣ s, and γt by use of an iterative scheme.

17.15 Generalized Self-Consistent Polycrystal

Models

The full-constraints Taylor model accounts for strain compatibility but not for stress
equilibrium among the grains during plastic deformation. Relaxed-constraints Taylor-
type models improve stress homogeneity at the expense of strain homogeneity on a phe-
nomenological basis. However, from a mechanical point of view neither approach provides
a convincing theoretical solution to polycrystal deformation since the requirement for ei-
ther strain compatibility or stress equilibrium is violated.

As was outlined in Sections 17.7 and 17.8, self-consistent models describe the defor-
mation of simply shaped grains embedded within a polycrystal in a mechanically more
rigorous manner than Taylor approaches.

Self-consistent calculations are based on the model of a spherical or ellipsoidal mate-
rial portion, for instance a crystal grain or a particle, which is embedded within infinite
surroundings with homogeneous properties. The crystal or particle considered is usually
referred to as an inclusion and the surrounding material as the matrix (Eshelby 1957;
Eshelby 1961; Kröner 1958a; Kröner 1961). While the inclusion represents a grain char-
acterized by its orientation or a particle characterized by its different elastic or plastic
behavior and ellipsoidal strain-dependent shape, the matrix reflects the average homoge-
neous properties of all the other crystals or of the matrix material, respectively.

The stress and strain rate distributions within the inclusion are assumed to be homo-
geneous. While the properties of the matrix are homogeneous, the resulting stress and
strain rate fields are typically heterogeneous. The first solutions to this model satisfying
both stress and strain constraints was suggested by Eshelby (1957) for the elastic case.

11The transformation matrix m
t of the slip system t must not be confused with the strain rate

sensitivity m.
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Kröner (1958a) extended this inclusion approach to the so-called self-consistent scheme
for elastic and plastic cases (Kröner 1961).

In generalizing equation (17.41) all plasticity self-consistent schemes proceed by re-
lating the local stress to the local strain or strain rate by using a set of constitutive
equations and by applying the equilibrium conditions. As a starting point one assumes a
constitutive relation between stress σij and strain rate ε̇kl, for instance

σij = Aijkl ε̇kl = Aijkl u̇k,l (17.79)

where Aijkl is the fourth-rank tensor with the symmetry properties Aijkl = Ajikl = Aijlk

that characterize the constitutive law, u̇k the velocity vector, and u̇k,l the second-rank
velocity gradient tensor. It is stipulated that Aijkl is space-independent and the strain
rate much below one, i.e. ε̇kl ≪ 1. The equilibrium condition for the entire polycrystal is
expressed by

σij,j = 0 (17.80)

where body forces are neglected. The expression σij,j denotes the derivative ∂σij/∂xj ,
where xj is the spatial coordinate parallel to the j direction12. Using the constitutive law,
equation (17.79), the equilibrium equation can be rewritten

σij,j = (Aijkl u̇k,l), j = Aijkl u̇k,lj = 0 (17.81)

The tensor Aijkl can be decomposed into a uniform portion A0
ijkl and a space-dependent

portion Ãijkl(r). Following Thiem, Berveiller, and Canova (1986), and Molinari, Canova,
and Ahzi (1987) the above equation can then be rewritten

A0
ijkl u̇k,lj + fi = 0 (17.82)

where the hydrostatic pressure is neglected. The term fi can be interpreted as a fictitious
body force and expressed by

fi =
(
Ãijkl(r) u̇k,l

)
, j

= Ãijkl(r) u̇k,lj (17.83)

Body forces act directly on each particle of the body, rather than being applied by tractions
at its boundaries and transmitted through the various particles by means of internal
stresses.

For an infinite medium with homogeneous properties this set of partial differential
equations can be solved using the Green’s tensor functions Gkm(r − r′) and Green’s
vector functions Hm(r − r′) satisfying the equation

A0
ijkl Gkm,lj(r − r

′) −Hm,i(r − r
′) + δim δ(r − r

′) = 0 (17.84)

where δim is the Kronecker symbol and δ(r − r′) the Dirac delta function located at r′ .
For a given value of m the expression δi(m=const.) δ(r − r′) maps the ith component of a
point force concentrated at r′ and parallel to the direction m (Asaro et al. 1973; Bacon
et al. 1979a; Mura 1987; Boas 1983).

The total displacement rates can then be expressed as integrals of the set of Green’s
tensor functions which provide solutions to delta-type portions of the underlying differ-
ential equations, equation (17.83).

u̇n = ¯̇un + ⊂
∫∫∫

V

⊃ Gni(r − r
′) fi(r

′) dV (17.85)

12A detailed discussion of the equilibrium equations and Hooke’s law is given in Chapter 9.
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The total velocity gradient field can then be derived by

u̇n,m = ¯̇un,m + ⊂
∫∫∫

V

⊃ Ãijkl(r
′) Gni,m(r − r

′) u̇k,lj dV (17.86)

where u̇ is the local displacement rate, ¯̇u the macroscopic displacement rate, and V the
volume of the inclusion. Using the convolution symbol ⊗ allows one to rewrite the integral
according to

Gni ⊗ fi = ⊂
∫∫∫

V

⊃ Gni(r − r
′) fi(r

′) dV (17.87)

so that the displacement rate fields can be written compactly as

u̇n = ¯̇un +Gni ⊗ fi (17.88)

and the corresponding velocity gradient fields as

u̇n,m = ¯̇un,m +Gni,mj ⊗ Ãijkl(r
′) u̇k,l (17.89)

This expression can be symmetrized and written as

ε̇Tnm = ¯̇εTnm + Γnmij ⊗ Ãijkl(r
′) ε̇Tkl (17.90)

where ε̇T is the symmetric part of the local strain rate and ¯̇ε
T

the symmetric part of the
macroscopic strain rate tensor. The tensor Γnmij is defined by

Γnmij =
1

4
(Gni,mj +Gmi,nj +Gnj,mi +Gnj,ni) (17.91)

Equations (17.89) constitute a linear set of integral equations with respect to the unknown
velocity gradients. The above expressions, equations (17.79)–(17.91), give an idea of the
general method of developing plasticity self-consistent schemes.

Exact solutions to particular materials depend on the respective type of constitutive
law. For instance, by using the shape-dependent Eshelby tensor Eijkl, the elastic strains
can be separated from the plastic strains, so that one obtains the general formula (equation
17.41)

σi
ij − σM

ij = Cijkl ( Iklmn − Eklmn ) ( ε̇Mmn − ε̇imn ) (17.92)

where Cijkl is the linear elasticity tensor for general anisotropy, Iijkl the identity tensor
on symmetric tensors, defined by Iijkl = 1

2
(δikδjl + δilδjk), ε̇Mkl the strain rate tensor in

the matrix, ε̇ikl the strain rate tensor in the inclusion, σi
ij the stress in the inclusion, and

σM
ij the macroscopic stress. In the isotropic limit the Eshelby equation can be rewritten

σi
ij − σM

ij = 2µ ( Iijkl − Eijkl ) ( ε̇Mkl − ε̇ikl ) (17.93)

where µ is the modulus of rigidity. As expressed by equation (17.92) it is a crucial
assumption of all self-consistent models that a linear relation exists between the deviation
of the local stress σi

ij in the inclusion from the macroscopic stress σM
ij , and the deviation

of the local strain rate ε̇iij from the macroscopic strain rate ε̇Mij . For considering the grain
shape of the inclusion under the assumption of homogeneous matrix properties, equation
(17.92) can be rewritten

σi
ij − σM

ij = χ Tijkl ( ε̇Mkl − ε̇ikl ) (17.94)

where χ is the coupling factor and Tijkl the fourth-rank accommodation tensor which
accounts for the grain shape.
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Based on this general background, various self-consistent models were developed con-
sidering different types of microstructurally relevant material features in their respective
constitutive laws (Eshelby 1961; Kröner 1961; Eshelby 1970; Thiem et al. 1986; Molinari
et al. 1987; Canova 1988; Lipinski and Berveiller 1989; Lipinski et al. 1992; Muller et al.
1994a; Muller et al. 1994b).

Wagner, Canova, van Houtte, and Molinari (1991), Royer, Nadari, Yala, Lipinski, Cec-
caldi, Berveiller, and Penelle (1991), Aernoudt, van Houtte, and Leffers (1993), and Tóth,
Molinari, and Raabe (1997) have shown that the texture predictions of self-consistent
polycrystal models are very similar to those of pancake Taylor-type models.

17.16 Simulation of Local Orientation Gradients

by Use of Polycrystal Theory

Grains are defined as crystalline areas with a uniform orientation that changes discontin-
uously at the grain boundary. The orientation distribution of all the grains in a polycrys-
talline aggregate is referred to as crystallographic texture. However, in contrast to the
basic definition, local texture measurements substantiate the fact that as a rule deformed
grains do not have a uniform orientation but contain local orientation gradients (Haeßner
1978; Gottstein 1984; Ananthan et al. 1991; Boeslau and Raabe 1994).

This section presents a Taylor-based model for the prediction of deformation micro-
textures, i.e. of the orientation distributions that are generated at the grain scale during
plastic deformation. The introductory question is why grains in a polycrystal, which by
definition should be oriented uniformly, reveal orientation gradients after deformation.
Although grains in undeformed polycrystals already contain a considerable number of
dislocations, only weak overall orientation gradients can be detected within each single
crystal before deformation. This means that in the initial state only a small number of
geometrically necessary dislocations are present (Nye 1953; Ashby 1970). Clearly, most
dislocations are arranged in such a manner that long range misorientations are mutually
compensated.

However, if the polycrystal is cold-deformed, local orientation gradients gradually ap-
pear. Consequently, there must be some elementary reason why a sufficiently large content
of geometrically necessary dislocations is generated and accumulated during plastic de-
formation.

The present model assumes that one predominant reason can be found in the require-
ment for strain compatibility, i.e. it stipulates that the development of local orientation
gradients is due to the influence of the neighboring crystals. The model aims to give an
upper-bound evaluation of this influence (Raabe 1994). As a starting point it is assumed
that on opposite borders of a considered grain the respective neighboring crystals can
impose different strain rate constraints. For instance, it is conceivable that either of the
neighboring grains is hard, while the other one is soft. The prescription of unequal strain
rate constraints on adjacent borders of the considered grain can lead to different shear
rates locally, entailing different local spins13.

Using this concept, upper-bound values of potential orientation gradients can be com-
puted for various strains and initial orientations of the considered grain. However, the
model does not predict any microscopic spatial details of the computed misorientations.

13If the local misorientations exceed a certain value, one should no longer speak of orientation gradi-
ents but of grain fragmentation or deformation banding.



17.17 Application of Polycrystal Models in Materials Science 295

Figure 17.9: Grain with two neighboring crystals that impose unequal strain rate con-
straints on opposite borders (Raabe 1992).

The investigation of the evolution of microtexture within single grains is expected to al-
low relevant insight into the orientation-dependent deformation of grains in polycrystalline
samples and thus into the formation of nuclei during primary recrystallization.

In order to simulate the upper-bound values for the evolution of local misorientations,
Taylor full-constraints and Taylor relaxed-constraints can be imposed on opposite grain
boundaries, respectively (Figure 17.9). It is first assumed that one boundary connects
the grain to a neighboring crystal that is very hard (high Taylor factor). For that region
of crystal the full-constraints (FC) Taylor model is applied. The calculation leads to
the final orientation gFC(∆ε). On the opposite border where an adjacent soft grain is
positioned (low Taylor factor), the simulation is repeated using either the Sachs (FC–Sachs
combination model) or the relaxed-constraints (RC) Taylor model (FC–RC combination
model), which leads to an orientation gRC(∆ε).

The resulting misorientation between gFC(∆ε) and gRC(∆ε) can then be regarded
as an upper-bound value for the orientation gradient which can occur in the considered
grain. In this simple approach it is not explicitly specified whether the neighboring pairs
of grains that impose inhomogeneous constraints are positioned in the rolling, transverse,
or normal direction.

17.17 Application of Polycrystal Models in

Materials Science

This section gives some classical and some recently published references on applications
of polycrystal simulation methods related to various domains of materials science. The
table can by no means be complete but may serve as a bibliography for getting better
acquainted with some examples from the recent original literature in this field. Materials-
related applications of polycrystal simulations are particularly in the field of solid-state
mechanics and crystallographic textures.

Field of application Reference
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classics about homogenization Voigt (1910)
and polycrystal models Reuss (1930)

Taylor (1938)
Bishop and Hill (1951)
Eshelby (1957)
Kröner (1958a)
Eshelby (1961)
Kröner (1961)
Hashin and Shtrikman (1962a)
Hashin and Shtrikman (1962b)

constitutive models for Westergaard (1920)
polycrystals von Mises (1928)

Hill (1950)
Mendelson (1968)
Rice (1971)
Argon (1975)
Gittus and Zarka (1986)
Kocks (1987)
Krausz and Krausz (1996)
Stouffer and Dame (1996)

polycrystal modeling of creep Brown (1970)
Hutchinson (1976)
Weng (1982)
Turner and Tomé (1993)

polycrystal Taylor simulation Chin and Mammel (1967)
Dillamore, Smith, and Watson (1967)
Dillamore, Butler, and Green (1968)
Bunge (1970)
Kocks (1970)
Dillamore and Katoh (1974)
van Houtte and Aernoudt (1975)
Honneff and Mecking (1978)
Gil Sevilliano, van Houtte, and Aernoudt (1980)
Honneff and Mecking (1981)
van Houtte (1981)
Kocks and Chandra (1982)
van Houtte (1982)
Kocks, Canova, and Jonas (1983)
Asaro and Needleman (1985)
van Houtte (1985)
Raphanel and van Houtte (1985)
von Schlippenbach, Emren, and Lücke (1986)
Emren, von Schlippenbach, and Lücke (1986)
Bacroix and Jonas (1988)
Hirsch and Lücke (1988b)
van Houtte (1988)
van Houtte, Mols, van Bael, and Aernoudt (1989)
Aernoudt, van Houtte, and Leffers (1993)
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Raabe and Lücke (1993)
Kocks and Necker (1994)
Raabe and Lücke (1994)
Hölscher, Raabe, and Lücke (1994)
Raabe (1995e)
Raabe and Mao (1995)
Raabe (1996c)

polycrystal plasticity self- Berveiller and Zaoui (1979)
consistent Berveiller and Zaoui (1981)

Thiem, Berveiller, and Canova (1986)
Molinari, Canova, and Ahzi (1987)
Canova (1988)
Lipinski and Berveiller (1989)
Tomé, Lebensohn, and Kocks (1991)
Lipinski, Naddari, and Berveiller (1992)
Lebensohn and Tomé (1993a)
Lebensohn and Tomé (1993b)
Lebensohn and Tomé (1994)
Muller, Lemoine, and Berveiller (1994a)
Muller, Lemoine, and Berveiller (1994b)
Turner, Tomé, and Woo (1994)
Molinari and Tóth (1994)
Tóth and Molinari (1994)
Tóth, Molinari, and Raabe (1997)

17.18 Examples of Polycrystal Simulations in

Materials Science

17.18.1 Simulation of the Elastic Constants of Steels

This example (Figure 17.10) of Klinkenberg, Raabe, and Lücke (1992) shows the course
of the overall elastic moduli of textured polycrystalline steels according to the Voigt,
Reuss, and Hill models. The simulation clearly demonstrates the strong influence of the
crystallographic orientation distribution on the elastic properties.

17.18.2 Comparison of Polycrystal Homogenization

Approaches

This section presents the comparison of texture simulations which were obtained from
different polycrystal models (Tóth et al. 1997). The simulations were compared to ex-
perimental data of a 90% cold-rolled iron-chromium steel.

Figure 17.11 shows the 〈100〉 and 〈110〉 pole figures of a finite element tuned self-
consistent viscoplastic simulation (a), of a Taylor full-constraints viscoplastic simulation
(b), of a Taylor relaxed-constraints pancake viscoplastic simulation (c), and of the exper-
imental texture (d). The texture predictions according to the viscoplastic self-consistent
polycrystal model are in good accord with the Taylor relaxed-constraints viscoplastic
model and with the experimental data.
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Figure 17.10: Simulated course of the elastic modulus of textured polycrystalline steels
according to the Voigt, Reuss, and Hill models (Klinkenberg, Raabe, Lücke 1992).

17.18.3 Simulation of Textures in Iron-Aluminides

In this section the rolling texture of B2/DO3 ordered polycrystalline iron-aluminides is
simulated by use of a Taylor model and compared to experimental data (Raabe 1996c).
In the simulations {110}〈111〉 and {112}〈111〉 slip systems are considered. The ratio
of the critical resolved shear stress of the two systems, λ = τ{110}〈111〉/τ{112}〈111〉 , is
varied between 1 and 10. The evolution of the grain shape during rolling is considered by
gradually relaxing the strain rate constraintss.

The simulations with λ = 10 (activation mainly of {112} slip planes) yield a better
agreement with experiment than the simulations with λ = 1 (activation of {110} and
{112} slip planes). Figure 17.12 shows the simulated texture for a ratio of τ{110}〈111〉 =
10 · τ{112}〈111〉 together with the experimental results.

17.18.4 Combination of Texture and FE Simulation

Figure 17.13 shows the through-thickness gradient in the experimental hot-rolling tex-
ture of a low-carbon steel together with the corresponding texture predictions which were
obtained from combined Taylor–finite element simulations (Beckers et al. 1998). The
simulations proceeded by using the velocity gradient tensor, as calculated from the fi-
nite element program, as input for a Taylor simulation. The finite element simulation
considered surface friction.
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Figure 17.11: 〈100〉 and 〈110〉 pole figures of a finite element tuned self-consistent vis-
coplastic simulation (a), of a Taylor full-constraints viscoplastic simulation (b), of a Taylor
relaxed-constraints pancake viscoplastic simulation (c), and of the experimental texture
(d). (Tóth, Molinari, and Raabe 1997).

Figure 17.12: Texture of 80% warm-rolled ordered iron-aluminide; (a) simulated texture,
{110}〈111〉 and {112}〈111〉 slip, τ{110}〈111〉 = 10 · τ{112}〈111〉, gradual strain rate relax-
ation; (b) experimental textures in the center layer (Troll = 800-830 K) (Raabe 1996)
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Figure 17.13: Through-thickness gradient in the experimental hot-rolling texture of a
low-carbon steel and texture predictions obtained from combined Taylor–finite element
simulations (Beckers, Sebald, Gottstein 1998).
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Chapter 18

Fundamentals

The behavior of materials is determined by thermodynamics and kinetics. The thermo-
dynamic forces prescribe the general evolution direction of the microstructures according
to their average chemistry, temperature, pressure, and so forth. The kinetic features of
those lattice defects that are involved in microstructure evolution select one out of the
many possible evolution paths. It is thus mainly the kinetics which determines the actual
microstructural path of materials. It is hence obvious that any microstructure simulation
effort has to place special emphasis on the incorporation of microstructure kinetics.

However, the kinetic details associated with the various microstructural ingredients
depend on the scale and the lattice defects addressed. For instance, a macroscale finite
element simulation of a hot-rolling process does usually not consider the fine details as-
sociated with the dynamics of dislocations or transformation phenonena at the mesoscale
(Figure 18.1. However, the predictive character of microstructure simulations depends on
the level at which kinetics is incorporated. The evolution of materials microstructures is
characterized by the production, annihilation, transformation, and accumulation of lattice
defects at a scale that can range from the atomic spacing to the specimen size. This means
that microstructures can evolve in parallel at entirely different space and time levels (King
et al. 1995; Bréchet and Kubin 1996; Gottstein 1996; Campbell et al. 1997; Cleveringa
et al. 1997; Shenoy et al. 1998). Due to the nonlinear character of microstructure evo-
lution it is often a critical task to assess which kinetic details are relevant for predicting
microstructures and which may be neglected.

Based on this experience, microstructure simulations typically address three salient
points: first, they aim at improving our insight into the underlying physical principles
that govern the nature of microstructure evolution at the various scales. This task falls
into the domain of elaborating physically plausible structural evolution laws. Second,
they provide quantitative microstructure–property relations. This point can be regarded
as a contribution to identifying appropriate microstructural equations of state. Third,
they allow us to investigate both of the aforementioned aspects at levels that are not
amenable to experimentation or under conditions that have not yet been studied. The
latter aspect is particularly important for introducing simulations in industry.

For meeting these aims it is important to identify those defects and levels that are of
relevance for solving a particular problem. The large spread of scales often encountered
advocates introduction of the concept of integrated modeling and simulation (Gottstein
1996). This notion describes the coupling of computer codes with the aim to bridge the
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Figure 18.1: Large-scale finite element simulation of a hot-rolling process with some meso-
scopic and microscopic details indicated, such as grain growth, transformation, ripening,
crystallographic texture, and dislocation dynamics.

scale gaps among different simulation levels. This can be achieved by simultaneous (syn-
chronous, direct) integration or sequential integration. The first term means that various
interacting simulation levels are simultaneously considered in one computer experiment.
The second notion describes the simpler method of an adequate parameter transfer among
simulations that are used sequentially.

Some aspects associated with the integration of different levels have been addressed
in the literature. Ashby (1992) quantified the problem of scale coupling in materials mod-
eling in terms of four different levels of complexity, namely, structure evolution, multiple
mechanisms, linked processes, and spatial variation. Bréchet and Kubin (1996) gave a de-
tailed overview of the characteristic microstructural length scales, time scales, and driving
forces that represent underlying scaling parameters of simulations. Goryachev (1996) dis-
cussed the connection of the basic conservation and flow laws among different simulation
levels. Gottstein (1996) and Campbell, Huang, King, Lassila, Nikkel, dias de la Rubia,
Shu, Foiles, Hughes, and Smyshyaev (1997) have started ambitious materials simulation
initiatives in which both sequentially and simultaneously integrated approaches are exten-
sively used. This Part is concerned with reviewing some fundamentals of simultaneously
and sequentially integrated modeling and simulation under consideration of various space
and time scales, with the aim of identifying the characteristic scales of microstructure evo-
lution and identifying upper and lower bounds that limit the application of the various
modeling and simulation methods. This information can serve as a platform to decide
whether a simulation should be nanoscopic, microscopic, mesoscopic, or macroscopic,
i.e. whether the underlying lattice defects are treated individually, collectively, or in an
averaging continuum approach. Furthermore, it makes it possible to estimate whether
the chosen scale-dependent simulation should be complemented by integrated concepts.



Chapter 19

Space and Time Scales in

Microstructure Simulation

Tables 1.1–1.3 and Figures 1.1–1.2 (Chapter 1) showed the main space and time levels
encountered in engineering materials. These scales introduce a certain hierarchy into
microstructure simulation, at least from a spatial and temporal point of view. However,
it should be emphasized that this hierarchy of scales or levels does not necessarily reflect
a hierarchy of relevance. For instance, the strength or the electrical conductivity of a
specimen can be substantially influenced by solute atoms, i.e. by lattice defects that act
at the microscopic–nanoscopic scale. In contrast, it is conceivable that mesoscopic and
macroscopic defects such as the surface or internal interfaces can be of much less relevance
in the investigation of a macroscopic problem.

It is the task of this chapter to identify the physically relevant scaling parameters in the
various models that are used in computational materials science and to give an estimation
of whether they impose certain upper- or lower-bound constraints on the corresponding
simulation approaches (Table 19.1). This point is of relevance to both the performance
and the reliability of computer simulations since they generally depend on an adequate
discretization of space and time.

The upper-bound parameters of a simulation should cover all relevant features of the
system addressed. They should be small enough to reduce computation time and large
enough to catch the physically relevant characteristics of the microstructural problem in a
statistical fashion. The latter point means that simulations should provide sufficient data
so that the results may be interpreted with a certain statistical reliability. The lower-
bound parameters of a simulation should capture the main physics of the underlying
lattice defects.

If the underlying minimum length scales and time increments used in a simulation
are too large compared with those that are physically admissible, the calculations will
lead to incorrect predictions. From a mathematical point of view these minimum cha-
racteristic length and time scales are related to the maximum increments that may be
used in numerically solving the underlying discretized differential equations without in-
troducing artifacts. However, if the chosen resolution of the simulation is too high the
performance of the calculation is unnecessarily degraded. The gap between the upper
and the lower scaling parameters, which define the spatial and temporal spread of the
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Table 19.1: Characteristic scaling lengths at the nanoscopic, microscopic, mesoscopic, and
macroscopic level.

Length Physical origin Physical origin Simulation method

scale [m] (upper bound) (lower bound)

100–10−3 external load cross sectional re-
duction, critical re-
gions

finite elements, finite difference

100–10−7 external load grain size, dislocati-
on cell size, crack
size, particle size

advanced microstructure finite
element models (microstruc-
ture mechanics)

100–10−7 external load grain shape Taylor–Bishop–Hill models

100–10−8 external load grain shape, inclu-
sion shape, cell size

self consistent models

100–10−9 system size atom percolation models

100–10−9 system size atomic clusters cellular automata (determinis-
tic or probabilistic)

10−3–10−7 grain clusters dislocation cell size,
microband

boundary dynamics, topolog-
ical network models, vertex
models

10−4–10−9 grain clusters Burgers vector, an-
nihilation spacing

dislocation dynamics

10−5–10−9 grain clusters atom clusters continuum field kinetic theory

10−5–10−9 grain clusters structural interface
unit, atom clusters

Potts model

10−5–10−9 grain Burgers vector, an-
nihilation spacing

dislocation segment dynamics

10−6–10−9 grain atom clusters microscopic field kinetic theory

10−7–10−10 system size atom clusters cluster variation method

10−7–10−10 system size atom clusters molecular field approximation

10−7–10−10 system size atom Metropolis Monte Carlo

10−6–10−10 cell size atom molecular dynamics (pair po-
tentials, embedded atom po-
tentials)

10−8–10−12 atom clusters ion, electron ab initio molecular dynamics
(tight binding potentials, local
density functional theory)
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simulation, should at least amount to one or two orders of magnitude. This value allows
bridging of at least one microstructural level. This means that microstructure simulations
at the atomic level should provide some insight at the lattice defect level (e.g. dislocation,
grain boundary), calculations at the lattice defect level should allow predictions at the
grain level (e.g. second order stresses, particle distribution), and simulations at the grain
level should produce reliable results at the specimen level.

The main spatial scaling parameters and some upper and lower bounds are shown in
Table 19.1 for the nanoscopic–microscopic, the microscopic–mesoscopic level, and for the
mesoscopic–macroscopic level.

The difference in scale that exists between the upper and lower bounds usually de-
termines the storage and performance capabilities required in microstructure simulations.
For instance, the number of elements used in a finite element simulation directly deter-
mines the rank of the system stiffness matrix. The upper-bound parameters that typically
define the size of microscopic–mesoscopic simulations are prescribed by the grain size or
some similar value such as particle spacing or phase spacing. Calculations in this regime
often bridge the scale between elementary lattice defects or ensembles of lattice defects
and the grain size. In cases where samples are sufficiently small at least in one or two
dimensions (foil, wire), microscopic–mesoscopic simulations can even yield predictions at
the specimen level. Dislocation dynamics represents a simulation technique that is related
to molecular dynamics. Its main differences from atomistic modeling lies in the coarser
discretization of time and space and in the fact that it is not intrinsically scaled by the
Debye frequency and the atomic spacing, as is the molecular dynamics method, but scaled
by the jump frequency of the atoms and some spatial value that lies between the Burgers
vector and the minimum dislocation spacing. In contrast to molecular dynamics, disloca-
tion dynamics can bridge scaling gaps between the microscopic and mesoscopic regime.
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Appendix A

General Reading

Overviews

R. J. Arsenault, J. R. Beeler, J. A. Simmons Computer Simulation for Materials
Applications 1976 National Bureau of Standards

T. Ericson Computers in Materials Technology 1981 Pergamon Press

R. J. Arsenault, J. R. Beeler, D. M. Esterling Computer Simulation in Materials
Science 1986 ASM International

J. E. Mark, M. E. Glicksman, S. P. Marsh Computational Methods in Materials Sci-
ence 1992 MRS

J. Q. Broughton, P. Bristowe, J. Newsam Materials Theory and Modeling 1993 MRS

H. O. Kirchner, L. P. Kubin, V. Pontikis Proceedings of NATO ASI on Computer
Simulation in Materials Science, Nano/Meso/Macroscopic Space and Time Scales
1996 NATO Advanced Science Institutes Series

P. Klimanek and W. Pantleon Simulationstechniken in der Materialwissenschaft (in
German) 1996 Technische Universität Freiberg

D. Raabe Microstructure Simulation in Materials Science 1997 Shaker

J. Hirsch Simulation, Modellierung, Informationssysteme (in German) 1997 DGM

R. LeSar and D. Clarke Computer Simulation: A Textbook for Materials Scientists
and Engineers (in preparation) 1998

Mathematical Modeling and Scientific

Computation

J. von Neumann Collected Works of J. von Neumann 1963 Pergamon Press

I. G. Andrews, R. R. McLone Mathematical Modeling 1976 Butterworths

E. A. Bender An Introduction to Mathematical Modeling 1978 John Wiley & Sons

0The complete references for the listed titles are given in the References at the

end of the book.
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C. L. Dym and E. S. Ivay Principles of Mathematical Modeling 1980 Academic Press

X. J. R. Avula, R. E. Kalman, A. I. Liapis, E. Y. Rodin Mathematical Modeling
in Science and Technology 1983 Pergamon Press

H. P. Williams Model Building in Mathematical Programming 1985 John Wiley & Sons

S. E. Koonin Computational Physics 1986 The Benjamin/Cummings Publishing Com-
pany, Inc.

J. M. Smith Mathematical Modeling and Digital Simulation for Engineers and Scien-
tists 1987 John Wiley & Sons

F. Neelamkavil Computer Simulation and Modeling 1987 John Wiley & Sons

W. Cheney and D. Kincaid Numerical Mathematics and Computing 1994 Brooks/Cole
Publishing Company

N. Bellomo, L. Preziosi Modeling Mathematical Methods and Scientific Computation
1995 CRC Press

Monte Carlo and Molecular Dynamics

J. M. Hammersley, D. C. Handscomb Monte Carlo Methods 1964 Methuen’s and
Co./John Wiley & Sons

I. M. Torrens Interatomic Potentials 1972 Academic Press

W. Bruns, I. Motoc, K. O’Driscol Monte Carlo Applications in Polymer Science 1981
Springer Verlag

R. W. Hockney, J. W. Eastwood Computer Simulation using Particles 1981 McGraw-
Hill

K. Binder Applications of the Monte Carlo Method in Statistical Physics 1984 Springer–
Verlag

D. W. Heermann Computer Simulation Methods in Theoretical Physics 1986 Springer-
Verlag

W. G. Hoover Molecular Dynamics 1986 Springer-Verlag

K. Binder, D. Stauffer A Simple Introduction to Monte Carlo Simulation 1987 Springer-
Verlag

G. Ciccotti, D. Frenkel, I. R. McDonald Simulation of Liquids and Solids — Molec-
ular Dynamics and Monte Carlo Methods in Statistical Mechanics 1987 North-
Holland

M. P. Allen, D. J. Tildesley Computer Simulation of Liquids 1989 Clarendon Press

M. Meyer, V. Pontikis Proceedings of NATO ASI on Computer Simulation in Materi-
als Science, Interatomic Potentials, Simulation Techniques and Applications 1989
Kluwer Academic Publishers and NATO Science Division

J. Tersoff, D. Vanderbilt, V. Vitek Atomic Scale Calculations in Materials Science
1989 MRS

V. Vitek, D. J. Srolovitz Atomistic Simulation of Materials: Beyond Pair Potentials
1989 Plenum Press

M. P. Allen, D. J. Tildesley Proceedings of NATO ASI on Computer Simulation in
Chemical Physics 1992 Kluwer Academic Publishers/NATO Science Division

D. Wolf, S. Yip Materials Interfaces 1992 Chapman and Hall

A. F. Voter Interatomic Potentials for Atomistic Simulations 1996 MRS Bulletin
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Cellular Automata

S. Wolfram Theory and Applications of Cellular Automata 1986 World Scientific Pub-
lishing

Simulation of Microstructure and Transformation

L. Kaufman, H. Bernstein Computer Calculation of Phase Diagrams 1970 Academic
Press

H. E. Stanley Introduction to Phase Transitions and Critical Phenomena 1971 Claren-
don Press

M. F. Ashby, R. Bullough, C. S. Hartley, J. P. Hirth Dislocation Modeling of Phys-
ical Systems 1980 Pergamon Press

A. G. Khachaturyan Theory of Structural Transformations in Solids 1983 John Wiley
& Sons

L. H. Bennett Computer Modeling of Phase Diagrams 1986 The Metallurgical Society
of AIME

D. J. Srolovitz Computer Simulation of Microstructural Evolution 1986 Metallurgical
Society of AIME

L. P. Kubin, G. Martin Non-Linear Phenomena in Materials Science I, II 1988,
1992 Trans Tech Publication

M. P. Anderson, A. D. Rollett Simulation and Theory of Evolving Microstructures
1990 TMS Publication

F. J. Humphreys, M. Hatherly Recrystallization and Related Annealing Phenomena
1995 Pergamon Press

Industrial Modeling

R. S. Andersen, F. R. de Hoog The Application of Mathematics in Industry 1976
Butterworths

P. R. Sahm, P. N. Hansen Numerical Simulation and Modeling of Casting and So-
lidification Processes for Foundry and Cast-House 1984 International Commercial
Foundry Association, New York

M. Predeleanu Computational Techniques for the Prediction of Materials Processes and
Defects 1987 Elsevier Science

J. Szekely, W. E. Wahnsiedler Mathematical Modeling Strategies in Materials Pro-
cessing 1988 John Wiley & Sons

J. L. Chenot, E. Onate Modeling of Metal Forming Processes 1988 Kluwer

J. W. Evans, J. Brimacombe Mathematical and Physical Modeling of Metals Process-
ing 1989 John Wiley & Sons

S. Yue Proceedings of the International Symposium on Mathematical Modeling of Hot
Rolling of Steel 1990 TMS

J. H. Beynon, P. Ingham, H. Teichert, K. Waterson Proceedings of the First and
Second International Conference on Modeling of Metal Rolling Processes 1993,
1996 The Institute of Materials

R. Tomellini Proceedings of an ECSC Workshop on Modeling of Steel Microstructural
Evolution during Thermomechanical Treatment 1997 European Commision
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Microstructure Mechanics and Textures

J. Gittus, J. Zarka Modeling Small Deformations of Polycrystals 1986 Elsevier Ap-
plied Science

T. Mura Micromechanics of Defects in Solids 1987 Martinus Nijhoff Publishers

P. Hartley, I. Pillinger, C. E. N. Sturgess Modeling of Material Deformation Pro-
cesses 1992 Springer Verlag

S. Schmauder, D. Weichert, D. Raabe, A. Cornec Proceedings 3rd–6th International
Workshops on the Computational Modeling of the Mechanical Behaviour of Mate-
rials 1994, 1996, 1996, 1997 Elsevier Science

S. Nemat-Nasser, M. Hori Micromechanics: Overall Properties of Heterogeneous Ma-
terials 1993 North-Holland

D. Raabe, H. J. Bunge Proceedings of the Symposium Computer Simulation and Mod-
eling in Texture Research 1997 Gordon and Breach Science

Finite Element and Finite Difference Methods

G. E. Forsythe, W. R. Wasow Finite Difference Methods for Partial Differential Equa-
tions 1960 John Wiley & Sons

M. J. O. Carroll, A. W. Bush, M. Cross, R. D. Gibson, T. S. Wilkinson Modeling
and Simulation in Practice 1980 Emjoc Press

O. C. Zienkiewicz and K. Morgan Finite Elements and Approximation 1983 John
Wiley & Sons

O. C. Zienkiewicz, R. L. Taylor The Finite Element Method, 4th Edition, Vols. 1, 2
1989, 1991 McGraw-Hill

A. Curnier Computational Methods in Solid Mechanics 1994 Kluwer

S. S. Rao The Finite Element Method in Engineering 1989 Pergamon Press

G. W. Rowe, C. E. N. Sturgess, P. Hartley, and I. Pillinger Finite Element Plas-
ticity and Metal Forming Analysis 1991 Cambridge University Press

Journals on Materials Modeling and Simulation

Modeling and Simulation in Materials Science and Engineering, Institute of Physics

Computational Materials Science, Elsevier

Computers and Structures, Pergamon Press

Computers in Physics, American Institute of Physics,

Simulation and Computation, M. Dekker

Molecular Simulation, Gordon and Breach
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Computer Classification

As far as computational materials science is concerned, progress in computer technol-
ogy can be quantified in terms of speed, information storage, infrastructure, technical
reliability, and investment costs.

The performance of a computer is essentially determined by three factors, namely,
by the physical properties of its ingredients (e.g. thermionic valves or complementary
field-effect transistors), by the chip design (e.g. processors with a complex or reduced
instruction set), and by its architecture (e.g. von Neumann architecture or massively
parallel architecture). The speed of a computer can be measured in units of floating
point operations per second (FLOP/s)1. While this value only provides a measure for
the numerical performance of the processor, the average speed of a memory-processor
system is better quantified in terms of million instructions per second (MIPS) or cycles
per instruction (CPI) (Kästner 1978).

However, for estimating the performance of a simulation code on a particular com-
puter, the number of FLOP/s or MIPS is insufficient information, since these quanti-
ties do not account for further limiting factors such as the cache, bus, and swapping
speed. For analyzing mixed requirements, benchmark tests represent a more appropriate
means of assessing the system performance with respect to particular simulation appli-
cations. Benchmark tests are programs that test the characteristics of a computer such
as its numerical power (CPU benchmarks2) or its general performance, considering the
co-operation of the various hardware components (system benchmarks).

Technically, the chip performance is determined by the quality and arrangement of its
key elements. These elements are devices, gates, and lines. Typical devices are transistors
and capacitors. Gates perform functions and are typically made up, on average, of three
or four devices. Lines link together blocks of gates. There are two typical integrated
circuit (IC) designs, which differ in the type of gate integration technology. The first one
is the complementary metal oxide semiconductor (CMOS) and the second one is referred
to as emitter coupled logic (ECL).

Physically, the performance of a processor chip is determined by the gate delay or,
more precisely, by the speed of a signal between two subsequent gatter entrances. While
the early thermionic valves (≈ 1950) provided switching times of 1µs, the first germanium

1Larger units in use are Mega, Giga and Tera FLOP/s (MFLOP/s, GFLOP/s, TFLOP/s).
2CPU = central processor unit.
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Table B.1: Progressive technology of integrated circuits.

Date Integration Number of Equivalent Typical functions

level transistors gates or systems

1950 SSI 1–40 1–10 single circuit

Late 1960s MSI 40–400 10–100 functional network

Late 1970s LSI 40–4500 100–1000 hand calculator

Mid 1980s VLSI 4500–300000 1000–80000 microprocessor

Present ULSI > 300000 > 80000 computer on a chip
SSI, small-scale integration; MSI, mid-scale integration; LSI, large-scale integration; VLSI, very
large-scale integration; ULSI, ultra large-scale integration.

based transistors required only 0.3µs (≈ 1960). The first ICs had switching times of 10ns
(≈ 1965). Modern very large-scale integrated (VLSI) and ultra large-scale integrated
(ULSI) chips have switching times of less then 1ns (Table B.1). It is clear that enhanced
integration, i.e. reduced transistor size will further degrade this value (e.g. Giga-scale
integration, GSI) (Tietze and Schenk 1980; Size 1981). For semiconductor transistors this
construction principle of large-scale integration is naturally limited when the source and
drain geometry reach the level of mono-atomic layers.

However, the switching speed is constrained not only by the gatter spacing, but also
by the mean free path of the electrons and holes. The mean free path of the charge
carriers can be increased by using gallium arsenide or aluminum gallium arsenide instead
of silicon (Seeger 1982). This concept is realized by using metal semiconductor field-
effect transistors (MESFETs) instead of conventional metal oxide field-effect transistors
(MOSFETs) or complementary metal oxide field effect transistors (CMOSFETs).

Even beyond the scale predetermined by the mean free path of the charge carriers, the
switching speed of a transistor can be further increased. This is attained when the mean
free electron path is in the order of the channel length. When the electron penetrates the
channel without inelastic scattering, it is referred to as a ballistic electron. The ballistic
speed of a charge carrier is much larger than its drift velocity. Further substantial im-
provement can be expected from the exploitation of quantum effects (Tietze and Schenk
1980; Size 1981; Seeger 1982). Owing to these various technical improvements, develop-
ment in processor speed has in the recent decades described an exponential increase. As a
rule, in a five-year period the maximum attainable speed (counted in FLOP/s) increases
by a factor of ten (Lau 1994; Märtin 1994).

Besides these physical parameters the chip speed is also affected by its architecture.
Since about 1985 an increasing number of VLSI and ULSI processors were designed as re-
duced instruction set computers (RISCs) rather than as conventional complex instruction
set computers (CISCs). RISCs have a smaller number of instructions than CISCs. Thus,
in most cases RISCs require a larger number of single instructions than CISCs. However,
in modern processor architectures this intrinsic disadvantage is over-compensated by in-
creasing the number of internal registers, which reduces the memory access, and by the
efficient use of hardware pipelines (Märtin 1994). Furthermore, traditional large-scale in-
tegration chip concepts are increasingly complemented by application-specific integrated
circuits (ASICs). In recent decades the costs for buying, operating, and maintaining com-
puters have been tremendously reduced. This progress was essentially due to the transi-
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tion from bipolar to silicon-based MOSFET and CMOSFET technology, the large-scale
integration of transistors, and the mass production of these ingredients. The production
of MOSFET and double-metal CMOSFET chips is nowadays characterized by the use of
more than 10 active mask layers and requires about 50 major process steps. However, it is
less expensive than that of bipolar components, which are therefore increasingly confined
to applications where high current densities are required. When expressed in terms of
floating point operations, computing costs have been decreased by a factor of about 106

since 1955.
In 1946 John von Neumann suggested a basic theoretical architecture as a universal

approach for computers. This concept was first realized in the so-called Princeton com-
puter (Flynn 1972; Märtin 1994). The von Neumann computer contains five structural
ingredients which establish its logical and spatial subdivision. These are the computer
memory unit, the arithmetic logic unit, the control unit, the input/output unit, and the
unit communication network (system bus).

The memory unit stores program codes and data. It contains a register for data
and addresses. The memory is decomposed into memory cells, each having a width of
w bits. The use of a memory unit allows each scientific task to be represented by a
particular computer program and loaded from an external source. The arithmetic logic
unit carries out arithmetic, logic, and shift operations. For this purpose an accumulator
unit, a combination unit, and at least one further register (multiplication register) is
required. The control unit contains an instruction register, an instruction counter, a
decoding unit, and a control unit for instruction execution. The input/output unit makes
it possible to communicate data and programs from/to external data sources. The system
bus represents the communication network unit among the above-mentioned parts and
makes possible the transfer of data packages with a respective word length of w bits.
This basic structure of the von Neumann architecture is typical of many computers until
now. However, for attaining further substantial power enhancement, departure from
this concept and introduction of competitive architectures such as may be realized in
multiprocessor machines gain momentum.

According to the scheme of Flynn (1966), computers can be classified into four cate-
gories depending on their respective instruction and data stream organization, namely,
single instruction stream–single data stream (SISD), single instruction stream–multiple
data stream (SIMD), multiple instruction stream–single data stream (MISD), and multiple
instruction stream–multiple data stream (MIMD) architectures (Table B.2.

Among these four groups SISD represents the traditional von Neumann concept. In
SISD computers only one instruction is carried out using one particular information unit
per time step. For running a program, one control unit produces a single instruction
stream which is gradually executed by the arithmetic logic unit. The required data and
the results are exchanged between the central memory unit and one single arithmetic logic
unit. The personal computers with processor types 8088, i286, i386, and i486, the VAX
11/780, and the IBM 360/91 represent typical examples of SISD architectures.

In the ideal SIMD computer one instruction considers multiple data per time step.
For running a program, one single control unit produces a single instruction stream at
the same time parallel in various processing elements. This technique must not be con-
fused with parallel computing, where the various arithmetic logic units can work entirely
independently with different data and different instructions. The parallel distribution of
the relevant information arranged in the instruction to the various processing elements is
referred to as instruction broadcasting. Vector computers are often assorted to the SIMD
architecture. However, the pipeline technique does not represent a pure SIMD concept,



318 B Computer Classification

Table B.2: Computer classification according to Flynn

Category Instruction stream–data stream Examples

SISD single instruction stream– von Neumann architecture,

single data stream e.g. personal computer

SIMD single instruction stream– pipeline architecture,

multiple data stream e.g. vector computer

MISD multiple instruction stream– -

single data stream

MIMD multiple instruction stream– multi-processor architecture,

MIMD multiple data stream e.g. parallel computer

since the data are subsequently tackled by the single processing units. The ILLIAC IV
field computer and the Goodyear STARAN computer represent typical examples of SIMD
architectures. The S6000 and most RISC workstations contain massive pipeline architec-
tures. The MISD architecture is a theoretical concept without practical relevance. In the
Flynn scheme it is only included forsymmetry reasons.

MIMD computers are referred to as parallel or multiple processor machines, where a
processor represents a component with its own control unit and various processing ele-
ments. The components, especially the processors of an MIMD computer, are intercon-
nected to each other. This means that a MIMD computer contains numerous processors
which can independently execute individual instruction streams using individual data
streams. MIMD computers were developed along two main directions. In the first type
all processors share a common memory unit. These architectures are referred to as shared
memory MIMD concepts. In the second type the memory is not globally accessible but
distributed among the processors. This approach is thus referred to as the distributed
memory MIMD concept. The latter class of MIMD computer is typically denoted as a
massively parallel processor (MPP) computer. The Cray machines C98, T3D, and J916,
the IBM SP2, the Intel XP/S140, the Fujiutsu VPP500, and the Parsitec GC/192 and
GC/128 are typical examples of MIMD computers. Among these, the Fujiutsu VPP500
computer of the Japanese National Aerospace Laboratory, which is equipped with 140
individual processors and distributed memory, is at present (1997) regarded as the fastest
running machine. It realizes 170 GFLOP/s. Current technology forecasts in that field
even predict an MMP computer with as much as 1 TFLOP/s by the year 2000. The
classification of Flynn (1966) was refined by Shore (1973) who uses six different classes.
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Advanced Empirical

Methods

C.1 Artificial Neural Networks

Modern artificial neural networks are adaptive systems in the form of computer programs
which are typically based on the implementation of nonlinear mathematical models on
parallel architectures and/or large-scale integrated circuits. However, the basic installa-
tion of neural networks does not necessarily require massively parallel architectures but
can be simulated by computer programs.

The main philosophy behind artificial neural networks is their ability to learn by
example, or if expressed more technically, to modify input data systematically and map
them on output data (Rumpelhart and McCelland 1986; Ritter et al. 1991; Schmitter
1991a; Nauck et al. 1994; Wassermann 1994; Mukherjee et al. 1995; Schmitter 1995).

The principle of artificial neural networks was adapted from the neurophysiology of the
human brain, which represents a genetic, morphological, functional network of intercon-
nected neuron cells (Pschyrembel 1990). The average human brain can contain as many
as 1011 neurons which are connected to each other by as many as 1015 interconnections
(Figure C.1).

The biological neuron cells contain two types of interconnections, namely, the axons
and the dendrites. Axons are usually much longer and also thicker than dendrites, which
transmit electrochemical signals from other neuron cells to the cell to which they belong.
The axon carries the signal from the neuron of which it is a part to various other neuron
cells. These can be located in the immediate neighborhood or very far away from the
emitting neuron. Accordingly, axons can have a length of the order of micrometers or in
the meter range.

The basic mathematical principle of learning by experience in artificial neural networks
corresponds to a nonlinear procedure that maps an input vector to an output vector by
using free parameters that are referred to as weights. The learning process is then realized
by comparing correct standard patterns or data with results obtained from analyzing
modified training data in an iterative fashion. Depending on the deviation between output
and standard, the weighting functions between the neurons are gradually adapted (Figures
C.2 and C.3).
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Figure C.1: Schematic illustration of two biological neurons. The arrows indicate the
direction of the transmitted electrochemical signal.

The development of artificial neural networks is based on the pioneering work of
W. S. McCulloch and W. H. Pitts in 1943 on neurons as elementary logical units of
adaptive systems. All neural network models are essentially designed to mimic the basic
principle of information transfer among biological neurons. This is achieved by connecting
the information content provided by a number of input data and mapping them to a set
of output data with variable intensity in an adaptive manner.

The first neural network systems were based on a one-neuron architecture. These early
attempts, which were rooted in the work of F. Rosenblatt and B. Widrow, were termed
adaptive linear elements and already had the ability to identify letters irrespective to their
orientation. Current advanced approaches to artificial neural networks can be roughly
classified in three groups, namely, multilayer feedforward nets, self-organizing maps, and
learning vector quantizers.

Multilayer perceptron-type networks belong to the group of multilayer feedforward
nets. They consist of one or more neuron layers connected in forward direction. The
input layer is usually not connected. The layers between input and output layer are not
directly accessible and are therefore termed hidden layers. Figure C.2 shows a typical ex-
ample of a multilayer perceptron neural network and the corresponding type of sigmoidal
weighting function. The supervised training of multilayer perceptrons is performed by the
backpropagation algorithm with respect to the summed squared difference of the actual
and desired output data set.

Self-organizing maps are usually characterized by a one- or two-dimensional array of
output neurons. The neurons in self-organizing maps compute their activation by using
a so-called distance measure that quantifies the discrepancy between input and output
vectors. Their weighting function is usually bell-shaped. The learning process proceeds
by identifying the neuron with the smallest deviation between input and output and by
adapting the weighting functions of the neighboring neurons accordingly. Thus, a self-
organizing neural network generates topological clusters of similarly weighted neurons
(Figure C.3).



C.2 Fuzzy Set Theory 321

Figure C.2: Schematic illustration of the basic structure of a multilayer perceptron neural
network.

Figure C.3: Schematic illustration of the basic structure of a self-organizing map (Kohonen
net).

C.2 Fuzzy Set Theory

Scientific concepts are characterized by a crisp and often deterministic description of the
problems addressed. Solutions are usually obtained numerically or analytically under
well-defined boundary- and initial-value conditions. This means that answers which are
obtained through scientific computing are given in a quantitative fashion, or if Boolean
aspects are concerned, in a dichotomous manner, in terms of true or false. These concepts
make sense when the model under investigation is formulated quantitatively by using
state variables, state equations, evolution equations, and independent variables, as well
as boundary- and initial-value conditions. The solutions obtained can then be interpreted
in the framework of the underlying formal model.

However, our everyday experience in the observation of real situations discloses three
major problems which together can make it difficult to render real events into conven-
tional formal scientific models. First, real situations are often not precisely defined and
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not entirely deterministic in nature, at least not in the average phenomenological human
perception. Second, real systems tend to be highly complex. This means that a com-
prehensive deterministic description of real situations typically requires a large variety of
dependent and independent variables as well as detailed boundary and initial data. For
instance, one main aspect of classical scientific modeling consists in extracting from a
real system those variables that are assumed to be of particular relevance in the context
addressed, rather than using all available data. Finally, one must admit that there are
a number of possible input data to a model which are not accessible to measurements.
Third, a discrepancy exists between real languages and exact formal languages which are
in the incipient stages employed to formulate models. Thus the problem arises in transfer-
ing a human thought into a formal mathematical framework without losing some aspects
because of deficiencies and discrepancies in syntax and semantics.

As the name implies, fuzzy set approaches define a theory of graded concepts (Zadeh
1968; Zadeh et al. 1974; Zadeh 1978; Zimmermann 1978; Nauck et al. 1994; Bothe 1995).
This is a theory in which neither classical probabilistic nor bivalent logic concepts prevail,
but in which decisions are a matter of degree. In other words, every aspect in fuzzy logic
is elastic1 rather than stiff.

Some basic definitions of fuzzy sets will be reviewed below in a more detailed manner.
In a classical set of objects 〈C〉, for each individual element ci ∈ 〈C〉 it can be clearly
defined whether it belongs to a defined subset 〈A〉 of 〈C〉, i.e. ci ∈ 〈A〉 j 〈C〉, or not,
i.e. ci 6∈ 〈A〉 j 〈C〉. The decision about the assignment of the object is made in a
dichotomous fashion, i.e. it is answered in terms of “true” or “false”. In a classical set
one can enumerate the individual elements that belong to a particular set 〈A〉,

c1, c2, ..., cn ∈ 〈A〉 (C.1)

and describe the set analytically,

ci = x2
i , xi ∈ 〈X〉 , ci ∈ 〈A〉 (C.2)

by setting boundary conditions, such as

〈A〉 = {c|c ≤ N} , N = constant (C.3)

or by using a delta-type characteristic equation. This equation sets a Boolean variable b
equal to 1 if the object belongs to the set and equal to 0 if it does not belong to the set.

In contrast to such classical sets, fuzzy sets allow one to define the membership of an
element of a set in terms of a non-Boolean variable. This means that the characteristic
function allows various degrees of membership b 6= 1 and b 6= 0 for the objects of a given
set. In other words, if 〈C〉 is a set of elements denoted generically by c then a fuzzy set

〈Ã〉 in 〈C〉 is a set of ordered pairs according to

〈Ã〉 =

{(
c, ϑ〈Ã〉(c)

) ∣∣∣∣c ∈ 〈C〉
}

(C.4)

where ϑ〈Ã〉(c) is referred to as the membership function, grade of membership, degree of

compatibility, or degree of truth of c in 〈Ã〉 which maps 〈C〉 into the memberspace 〈M 〉.

1The terms “elastic” and “stiff” are used here in a figurative sense.
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In simple cases fuzzy sets can thus be described as an ordered set of object pairs,
where the first one denotes the element and the second one the degree of membership or
the degree of correspondence, e.g.

〈Ã〉 =

{
(light green, 0.1), (green, 0.2), (dark green, 0.5), (blue, 1.0),

(dark red, 0.5), (red, 0.2), (light red, 0.1)

}
(C.5)

In this fuzzy set, the element named “blue” has obviously the closest compatibility with
an addressed object. 〈Ã〉 could be named the fuzzy set “best compatibility in color”.
Another fuzzy set could describe “real numbers close to zero”, i.e.

〈Ã〉 =

{(
c, ϑ〈Ã〉(c)

) ∣∣∣∣ϑ〈Ã〉(c) =
1√
2

exp

(
−
(

c√
2

)2
)}

(C.6)

According to these examples a fuzzy set can be defined as a generalized set and
the corresponding membership function can be referred to as a generalization of the
characteristic equation (Zadeh 1968; Zimmermann 1991).

The support set S
(
〈Ã〉

)
of a given fuzzy set 〈Ã〉 is the crisp set of all ci ∈ 〈C〉 with

the property ϑ〈Ã〉(c) > 0. In the context of equation (C.5) one can state that the elements
light green, green, dark green, blue, dark red, red, and light red, which all yielded positive
membership values, are part of the support of 〈Ã〉 while other colors such as yellow and
brown clearly do not have a compatibility ≥ 0.

Formulating this concept in a more general fashion, one defines a set of elements that
belong to the fuzzy set 〈Ã〉 at least to the degree α. Such a subset is referred to as an
α-level set and can be written

〈Ãα〉 =

{
c ∈ 〈C〉

∣∣∣∣ϑ〈Ã〉(c) ≥ α

}
(C.7)

or, as a so-called strong α-level set, defined by

〈Ãα〉 =

{
c ∈ 〈C〉

∣∣∣∣ϑ〈Ã〉(c)α

}
(C.8)

A further point of relevance in fuzzy set theory is the convexity of a set. As opposed
to conventional set theory, convexity of a fuzzy set is defined with reference to the mem-
bership function ϑ〈Ã〉 rather than through the support of a fuzzy set. A fuzzy set 〈Ã〉 is
referred to as convex if

ϑ〈Ã〉 (λ c1 + (1 − λ) c2) ≥ min
(
ϑ〈Ã〉(c1), ϑ〈Ã〉(c2)

)
, c1, c2 ∈ 〈C〉, λ ∈ [0, 1] (C.9)

Accordingly, a fuzzy set is convex when all its α-level subsets are convex. For a fuzzy set

〈Ã〉 the so-called cardinality
∣∣∣〈Ã〉

∣∣∣ is defined by

∣∣∣〈Ã〉
∣∣∣ =

∑

c ∈ 〈C〉,

ϑ〈Ã〉(c) (C.10)
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and the relative cardinality
∣∣∣
∣∣∣〈Ã〉

∣∣∣
∣∣∣ by

∣∣∣
∣∣∣〈Ã〉

∣∣∣
∣∣∣ =

∣∣∣〈Ã〉
∣∣∣

|〈C〉| (C.11)

Above it was shown that the membership function represents the main difference be-
tween classical and fuzzy sets. While for conventional sets Boolean membership functions
are defined, for fuzzy sets non-Boolean membership functions prevail. The main oper-
ations among fuzzy sets are thus defined in terms of operations on the corresponding
membership functions (Zadeh 1968).

The membership function ϑ
〈Ã〉∩〈̃B̃〉

(c) of the intersection 〈Ã〉 ∩ 〈B̃〉 is defined point-

wise by

ϑ〈Ã〉∩〈B̃〉(c) = min
{
ϑ〈Ã〉(c), ϑ〈B̃〉(c)

}
, c ∈ 〈C〉 (C.12)

The membership function ϑ〈Ã〉∪〈B̃〉(c) of the union 〈̃A〉 ∪ 〈̃B〉 is defined pointwise by

ϑ〈Ã〉∪〈B̃〉〉(c) = max
{
ϑ〈Ã〉(c), ϑ〈B̃〉(c)

}
, c ∈ 〈C〉 (C.13)

The membership function ϑ
C 〈Ã〉(c) of the complement of a fuzzy set 〈Ã〉 is defined by

ϑ
C 〈Ã〉(c) = 1 − ϑ〈Ã〉(c), c ∈ 〈C〉 (C.14)

Further fuzzy set operations are discussed in detail by Zadeh (1968) and Zimmermann
(1978).
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Percolation Theory

D.1 Fundamentals

Percolation theory investigates whether a system which consists of elementary or micro-
scopic states that are defined at the nodes of a given lattice is macroscopically connected
or not (Binder 1984; Stauffer 1991; Stauffer and Aharony 1992; Sahimi 1994; Stauffer and
Aharony 1995). In other words, percolation theory examines whether a given ensemble
with microscopic states A,B, ... can be penetrated along a certain path defined by neigh-
boring sites of identical state. This requires that from the start to the end of the path
each site with, say, state A has a neighboring site within the same state. A trivial solution
emerges if all sites are in the same state.

Thus, if the rules that determine the respective state of the microscopic sites at a
given time are put aside (e.g. spin up or spin down), percolation theory addresses a
purely geometrical problem. In this view percolation models provide information about
the topology of sites that share a common property.

The underlying spatial lattices can be regular or irregular, e.g. Voronoi tessellations are
admissible. Figure 6.10 showed some typical lattices that are frequently used in Monte
Carlo, cellular automaton, and percolation simulations. Obvious macroscopic tasks of
percolation theory are the prediction of forest fire propagation and the estimation of the
connectivity of oil resources. In materials research, percolation is of considerable rele-
vance in simulating current paths, microplastic behavior, diffusion, fracture mechanics,
or properties of porous media (Stauffer and Aharony 1992; Kuo and Gupta 1995). Al-
though percolation simulations are often used for predicting structure evolution at the
microscopic level, they are not intrinsically calibrated and can therefore be applied to
arbitrary regimes of space and time.

D.2 Bond, Site, and Bootstrap Percolation

Percolation models follow two separate objectives. First, they determine the states of the
lattice nodes by using an algorithm which reflects the physical situation to be described.
For instance, this can be done by using a numerical sampling procedure. Second, they
examine the topological data of the system, such as the cluster size and distribution, or
macroscopic connectivity.
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Percolation processes can be simulated on regular or random networks. Classical
percolation approaches concentrate on two main aspects, namely, the bond percolation
problem and the site percolation problem.

In the bond percolation problem the connections between neighboring nodes are ei-
ther occupied, i.e. the elementary junctions establish connectivity (conducting elements)
or vacant, i.e. the microscopic junctions are closed and interrupt connectivity (insulat-
ing elements). The bonds are occupied randomly and independently of each other with
probability p. Thus, a junction is vacant with probability 1 − p.

Two sites are connected if there exists at least one path between them consisting solely
of occupied bonds. The state of being connected does not give any information about the
length of the path between the considered nodes. An array of connected positions which
is entirely surrounded by vacant bonds is denoted as a cluster. If p is much below 1 the
clusters are typically much smaller than the network. It is clear that the relation between
cluster size and network size depends on the network size itself (Sahimi 1994; Stauffer
and Aharony 1995). However, if p is close to 1 the network should be entirely connected.
At some well-defined probability value p, a topological transition of the random network
from a macroscopically disconnected to a connected one takes place. This value is referred
to as the bond percolation threshold, pcb. It represents the largest fraction of connecting
elementary junctions below which there is no sample-spanning cluster of occupied bonds,
i.e. no complete system penetration.

The site percolation problem is tackled accordingly. However, in this approach the
nearest neighbors rather than the elementary bonds determine the connectivity. The
corresponding threshold value is referred to as the site percolation threshold, pcs. The
analytical derivation of the percolation threshold values is only possible for the Bethe
lattice and for simple two-dimensional lattices. For arbitrary grids the thresholds must
be computed by using Monte Carlo methods. For the Bethe lattice it was observed that
the two thresholds are related by pBethe

cb = pBethe
cs = 1/(z− 1), where z is the coordination

number of the lattice, i.e. the number of bonds connected to the same site. Although this
relation might suggest the identity of the two threshold values for other systems also, it is
observed that in most investigated arrays pcb is smaller than pcs. The product Bc = z pcb

can be regarded as an invariant of a percolation network. For a system with dimension
D, Bc amounts to Bc ≃ D/(D − 1).

Bootstrap percolation models describe system evolution and connectivity under con-
sideration of certain local termination rules (Adler 1991; Stauffer 1991).

At each time step, all sites within a certain state Sa that do not have at least m neigh-
bors with a state Sb are transformed into a passive state, i.e. they no longer participate
in the evolution of the system.

The termination rule becomes clear when applied to a two-dimensional Ising square
lattice. At each time step, all sites with “spin up”, that do not have at least m neighbors
occupied, i.e. in a “spin up” state, after the previous time step, are rendered passive and
do not change their state again. At the beginning of the simulation, a fraction p of all
sites is randomly occupied (“occupied” means “spin up”). The case m = 0 corresponds
to ordinary random percolation. The case m = 1 leads to the elimination of all isolated
occupied sites. For m = 2 all loose strings are removed and only clusters or closed chains
remain. The threshold value for these cases of bootstrap percolation is not changed
compared with random percolation, since the infinite cluster that penetrates the system
is preserved after this culling process. On the other hand, if m equals the number of
neighbors, a single empty site will finally empty the whole lattice, like an infection.
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Boas, M. L. (1983). Mathematical Methods in the Physics Sciences. John Wiley, New
York.

Boeslau, J. and D. Raabe (1994). In Proceedings 10th International Conference on
Textures of Materials (ICOTOM 10), Mater. Sci. For., Volume 157–162, pp. 501.
Trans Tech Publications.
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Hesselbarth, H. W. and I. R. Göbel (1991). Acta Metall. 39, 2135.
Hesselbarth, H. W. and E. Steck (1992). In Non-Linear Phenomena in Materials Sci-

ence II; Vol. eds.: G. Martin and L. P. Kubin, Volume 23–24 of Solid State Phe-
nomena, pp. 445. Trans Tech Publication, CH-Aedermannsdorf.

Heuer, H. O. (1993). J. Stat. Phys. 72, 789.
Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford Science Publication.

Clarendon Press, Oxford.
Hill, R. (1952). Proc. R. Soc. London A 65, 349.
Hill, R. (1963). J. Mech. Phys. Solids 11, 357.



References 339

Hill, R. (1987). J. Mech. Phys. Solids 35, 23.
Hill, T. L. (1956). Statistical Mechanics. McGraw-Hill, New York.
Himmel, L. (1963). Recovery and Recrystallization of Metals. John Wiley, New York.
Hirsch, J. (1997). Simulation, Modellierung, Informationssysteme (in German). DGM

Informationsgesellschaft, Deutsche Gesellschaft für Metallkunde.
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Hirsch, J. and K. Lücke (1988b). Acta Metall. 36, 2883.
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Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Metallkunde
und Metallphysik.

Kohlhoff, S., P. Gumbsch, and H. F. Fischmeister (1991). Phil. Mag. A 64, 851.
Kohn, W. and L. J. Sham (1965). Phys. Rev. A 140, 1133.
Kohyama, T. (1991). J. Stat. Phys. 63, 637.



342 References

Kolmogorov, A. N. (1937). Izv. Akad. Nauk. USSR Ser. Metemat 1, 355.
Kong, X. P. and E. G. D. Cohen (1991). J. Stat. Phys. 62, 737.
Koonin, S. E. (1986). Computational Physics. Benjamin/Cummings Publishing.
Kosztin, I., B. Faber, and K. Schulten (1996). Amer. J. Phys. 64, 633.
Kotrla, M. and A. C. Levi (1994). Surf. Sci. 317, 183.
Kramers, H. A. (1940). Physica 7, 264.
Kraska, M. and A. Bertram (1996). Technol. Mech. 16, 51.
Krausz, A. S. and K. Krausz (1996). Unified Constitutive Laws of Plastic Deformation.

Academic Press, London.
Kravchenko, V. Y. (1966). Sov. Phys. — Solid State 8, 740.
Krawietz, A. (1986). Materialtheorie - Mathematische Beschreibung des

phänomenologischen thermomechanischen Verhaltens. Springer-Verlag, Berlin,
Heidelberg.
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Kröner, E. (1958b). Kontinuumstheorie der Versetzungen und Eigenspannungen, Vol-

ume 5 of Ergebnisse der angewandten Mathematik. Springer-Verlag, New York.
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Marthinsen, K., T. Furu, E. Nes, and N. Ryum (1990). In Simulation and Theory of
Evolving Microstructures, Vol. eds.: M.P. Anderson and A.D. Rollett, pp. 87. The
Minerals, Metals and Materials Society, TMS Publication.

Marthinsen, K., O. Lohne, and E. Nes (1989). Acta Metall. 37, 135.
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Raabe, D. and K. Lücke (1994). In Proceedings 10th International Conference on Tex-

tures of Materials (ICOTOM 10), Mater. Sci. For., Vol. ed.: H. J. Bunge, Volume
157–162, pp. 1469. Trans Tech Publications.

Raabe, D. and W. Mao (1995). Phil. Mag. A 71, 805.
Raabe, D. and F. Roters (1995). In Proceedings of the 4th European Conference on

Advanced Materials and Processes, Euromat 95, Symposium F – Materials and
Processing Control, Volume 3, pp. 395. Associatione Italiana di Metallurgia, Milano,
Italy.

Raabe, D., F. Roters, and V. Marx (1996). Text. Microstruct. 26-27, 611.
Radhakrishnan, B. and T. Zacharia (1995). Met. Mater. Trans 26, 2123.
Raeker, T. J. and A. E. DePristo (1991). Int. Rev. Chem. Phys. 93, 1.
Rahman, A. (1964). Phys. Rev. 136 A, 405.
Rao, S. S. (1989). The Finite Element Method in Engineering. Pergamon Press.
Raphanel, J. L. and P. van Houtte (1985). Acta Metall. 33, 1481.
Ratke, L. (1987). Zur Kinetik der Vergröberung von Dispersoiden in strömenden
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Kröner, E., 25, 118
Kubin, L.P., 9, 25, 27, 115, 118, 121, 170,

303
Kuhlmann-Wilsdorf, D., 26

Lagrange
- equation of motion, 99
- form, 99
- formalism, 99
- formulation, 98
- representation, 258

Lagrange–Euler function, 98
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Nosé scheme, 101
nucleation, 118, 226, 227, 233

- random, 118
- site, 118
- site saturated, 118
- spatially random, 118

nuclei, 87



374 Subject and Author Index

number of atoms, 113
numerical

- computation, 115
- error, 34, 35
- experiment, 20, 66
- integration, 67, 72

- hit-or-miss method, 66
- Monte Carlo, 66

- modeling, 13, 20, 23, 23
- definition, 13

- precision, 33
- simulation, 13
- solution, 20
- stochastic sampling, 61

object, 322
obstacle force, 155
Onsager equation, 181
Oppenheimer, R.J., 51, 64, 89
opposite spin, 96
order, 9, 115
organic chemistry, 89
orientation, 15, 84
orientation dependent stored elastic en-

ergy, 226
orientation distribution function, 268, 270
Orlov, S.S., 118
Orowan, E., 150, 167
orthogonality, 95
Ortiz, M., 103
oscillation period, 88
osmotic force, 155, 161
Ostwald ripening, 181, 182
outer totalistic cellular automata, 207
overdamped, 120

- glide, 120
- high stress dislocation dynamics,

163
overlap, 95
oxides, 93, 94

pair interaction, 94
pair potential, 17, 88, 90, 91

- classical, 92
- hard sphere, 91
- Lennard–Jones, 88, 91
- Morse, 88, 91
- radially symmetric, 92

pair-functional
- model, 93
- potential, 92, 93

parabolic partial differential equation, 32
parallel computing, 315
parameter, 18, 20

- adjustable, 91
- macroscopic, 56
- scaling, 88
- transfer, 11

Parinello scheme, 100

Parinello, M., 87, 100, 104
partial differential equation, 11, 32, 32,

34, 115, 133, 134, 136, 137, 206,
250

- Green’s function, 133
- introduction, 30
- numerical solution, 32
- phenomenological, 116
- solution, 133

particle, 55
- interaction, 49
- motion, 29
- ripening, 25, 178, 198
- size, 15

partition function, 57, 60, 73
- canonical ensemble, 58
- grandcanonical ensemble, 59
- isobaric–isothermal ensemble, 59
- microcanonical ensemble, 59

path-dependent, 28, 51–53, 60, 63, 225
- function, 16
- problem, 52
- process, 88

path-independent
- function, 16
- quantity, 87

Pauli principle, 96
Pauli repulsion, 91
Pauli, W., 96
Peach–Koehler force, 156
Peczak, P., 118
Peierls force, 155
Peinel, G., 88
Penelle, P., 28
percolation, 9

- bond, 325
- bootstrap, 325
- problem, 66
- site, 325
- theory, 325

personal computer, 317
Pettifor, D.G., 89
Pezzee, C.E., 25, 118
phase diagram, 78
phase field kinetic model, 5, 9, 25, 34,

177, 181, 187
- discretization of space, 34
- discretization of time, 34

phase field kinetic simulation, 198
- application, 197
- elastic stresses, 195
- microscopic, 193

phase space, 51, 52, 53, 55, 73, 87
- coordinates, 55
- density, 57, 71
- Gibbs, 53, 55
- Helmholtz, 53, 55
- temporal evolution, 55
- trajectory, 55



Subject and Author Index 375

- deterministic, 52
- stochastic, 52

phase state, 52
phase transformation, 9, 25, 177, 179

- equilibrium, 177
- isostructural, 9
- liquid-state, 178
- non-equilibrium, 177
- non-isostructural, 9
- solid-state, 178

phase transition, 84
phenomenological, 12, 89

- constitutive equation, 24
- dynamics, 118
- law, 115
- laws of diffusion, 179
- model, 11, 27, 114, 120
- partial differential equation, 116

Phillips, R., 103
phonon drag force, 155
physical metallurgy, 89
physical parameters, 14
physical time and length scale, 12
piecewise polynomial solution, 251
Piola–Kirchhoff stress tensor, 260
Planck, M., 57
plane wave, 95
plastic

- anisotropy, 268
- deformation, 120
- instability, 27
- potential, 272

plasticity, 24
plasticity finite element method, 15
point defect, 161

- extrinsic, 114
- intrinsic, 114

Poisson equation, 31, 32
Poisson’s ratio, 92
polar decomposition theorem, 261
pole figure, 297
polycrystal, 268, 270

- elastictiy and plasticity models,
267

- fundamentals, 267
- mechanics, 270
- model, 25, 267
- models, 267
- plasticity, 11, 249
- plasticity model, 291
- simulation

- application, 295
- constitutive model, 270
- equipotential flow surface, 272
- examples, 297
- yield surface, 270

polycrystalline metal, 120
polymer, 84, 104, 106, 114

- amorphous, 115

- block copolymers, 115
- chain orientation, 84
- copolymers, 115
- crstalline, 115
- Monte Carlo simulation, 84
- necking, 115
- paracrystalline domain, 115
- simulation, 84, 106
- spherolites, 115
- structure, 115

polymerization, 84
polynomial

- ansatz function, 41, 46
- form function, 251
- function, 41, 250
- trial function, 33, 41, 43

Pontikis, V., 118, 121, 170
Porter, D.A., 177
Portevin–LeChatelier effect, 114
position vector, 58
potassium, 91
potential, 51, 88, 89, 92, 94, 95, 98

- atomic, 88
- bond order, 9, 94
- Born–Mayer, 94
- cohesion, 92
- covalent, 93, 94
- decohesion, 92
- effective medium, 9, 92, 93
- embedded atom, 9, 84, 92, 93
- empirical, 92, 93, 95
- empirical pair, 9
- energy, 98
- Finnis–Sinclair, 93
- Finnis-Sinclair, 92
- function, 26, 88
- glue, 92, 93
- hard sphere, 91
- interatomic, 88, 89
- ionic, 93, 94
- isotropic many-body, 92, 93
- Lennard–Jones, 91
- many-body, 92, 93
- Morse, 91
- pair, 90, 91
- pair-functional, 92, 93
- pseudopotential, 90
- second moment, 9, 92, 93
- semi-empirical, 92, 93, 95
- shell, 9, 93, 94
- tight-binding, 95, 95
- weak pseudopotential, 90

Potts model, 5, 12, 26, 51, 60, 63, 75,
78, 116, 117, 204, 225, 225

- and cellular automata, 117
- application, 229
- diffusion, 228, 229
- domain, 52
- energy, 226



376 Subject and Author Index

- examples, 229
- generalized spin, 225
- grain growth, 226, 228, 229
- interaction energy, 229
- interface curvature, 226
- kinetic, 52, 225
- multistate, 52, 87, 225, 229
- q-state, 52, 87, 225
- recrystallization, 228, 229
- ripening, 226
- solidification, 228, 229

Potts, R.B., 52, 118
precipitation, 178, 198

- growth, 178, 198
prediction

- beyond the atomic scale, 14
- discrete, 53
- local, 53
- microstructure evolution, 23
- statistical, 53
- stress, 119

predictive power, 23
predictor–corrector method, 38, 101
pressure, 60
Preziosi, L., 18
primary grain boundary dislocation, 84
primary recrystallization, 226, 227
Princeton computer, 317
principal stress, 126
principle of modeling, 13
Prinz, F.B., 26, 115
probabilistic, 51–53, 60, 87, 225

- cellular automata, 11
- cellular automata, 208
- cellular automaton, 26
- model, 61

probability, 55
probability density, 57

- canonical ensemble, 58
- grandcanonical ensemble, 59
- isobaric–isothermal ensemble, 59
- microcanonical ensemble, 59

probability distribution, 73
process, 6

- atomistic, 88
- path-dependent, 88

processor, 315
processor speed, 316
programing, 20

- code, 20
- error, 20
- language, 12

propagation of acoustic waves, 51
properties

- electromagnetic, 5
- lattice defects, 114
- mechanical, 5
- non-average, 55

pseudo-random numbers, 65, 68, 71

pseudo-stochastic process, 61
pseudopotential, 91, 92, 94, 95

q-state Potts model, 87
quadrature

- Monte Carlo, 81
- trapezoid method, 81

quantum mechanics, 89, 95
quantum-mechanical potential, 90
quasi-defects, 23
quasi-free electron, 92

Raabe, D., 18, 25, 28, 118, 121, 170, 297
radial dependence, 95
radiation, 66
Rahman, A., 52, 87, 88, 98, 100, 101,

104
random nucleation, 118
random number, 51, 64–68

- experiment, 61
- generator, 65
- pseudo, 71
- weighted, 71

random sampling, 117
random walk, 64, 66, 84
Rappaz, M., 204
rate equation, 17, 204
rate-dependent deformation, 270, 272
rate-independent deformation, 270, 272
Rath, B.B, 27
Ratke, L., 177
reaction/interaction criterion, 153
Read–Shockley equation, 214
real

- language, 322
- physical defects, 23
- situation, 13
- system, 13
- time, 88

recovery, 9, 216
recrystallization, 9, 25, 27, 118, 233, 234,

235
reduced instruction set, 315, 317
Reher, F., 25
relaxation time, 51
relaxed-constraints model, 9, 25, 287
Reppich, B., 115
repulsive interatomic force, 94
Reuss model, 9, 267, 274
Rhee, M., 118, 121, 170
Rice, J.R., 297
rigid-body rotation, 124, 261
ripening, 25, 195, 197, 198, 226
RISC, 315, 317
Ritz method, 44, 44, 46
Ritz, L., 44
Rollett, A.D., 25, 52, 63, 118, 228, 229
rolling process, 24
Rosenblueth, A., 13



Subject and Author Index 377

Rosenbluth, A.W., 51, 64
Rosenbluth, M.N., 51, 64
rotation, 124
rotational equilibrium, 127
Roters, F., 118, 121, 170
round-off error, 35
round-robin test, 28
Royer, R., 28
Runge–Kutta method, 40, 40
Ryum, N., 27
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