
Using the Command-Line Jam STAPL Solution for
Device Programming

2017.04.10

AN-425 Subscribe Send Feedback

The Jam™ Standard Test and Programming Language (STAPL) standard is compatible with all Altera
devices that supports in-system programming (ISP) using JTAG. You can implement the Jam STAPL
solution using the Jam STAPL players and the quartus_jli command-line executable.

You can simplify in-field upgrades and enhance the quality, flexibility, and life-cycle of your end products
by using Jam STAPL to implement ISP. The Jam STAPL solution provides a software-level and vendor-
independent standard for ISP using PCs or embedded processors. The Jam STAPL solution is suitable for
embedded systems—small file size, ease of use, and platform independence.

Jam STAPL Players
Altera supports two types of Jam STAPL file formats. There are two Jam STAPL players to accommodate
these file types.

• Jam STAPL Player—ASCII text-based Jam STAPL files (.jam)
• Jam STAPL Byte-Code Player—byte-code Jam STAPL files (.jbc)

The Jam STAPL players parse the descriptive information in the .jam or .jbc. The players then interprets
the information as data and algorithms to program the targeted devices. The players do not program a
particular vendor or device architecture but only read and understand the syntax defined by the Jam
STAPL specification.

Alternatively, you can also use the quartus_jli command-line executable to program and test Altera®

devices using .jam or .jbc. The quartus_jli command-line executable is provided with the
Quartus® II software version 6.0 and later.

Differences Between the Jam STAPL Players and quartus_jli
A single .jam or .jbc can contain several functions such as programming, configuring, verifying,
erasing, and blank-checking a device.

The Jam STAPL players are interpreter programs that read and execute the .jam or .jbc files. The Jam
STAPL players can access the IEEE 1149.1 signals that are used for all instructions based on the IEEE
1149.1 interface. The players can also process user-specified actions and procedures in the .jam or .jbc.

The quartus_jli command-line executable has the same functionality as the Jam STAPL players but
with additional capabilities:

• It provides command-line control of the Quartus II software from the UNIX or DOS prompt.
• It supports all programming hardware available in the Quartus II software version 6.0 and later.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information
and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=AN-425
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20(AN-425%202017.04.10)%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 1: Differences Between Jam STAPL Players and quartus_jli Command-Line Executable

• You can download the Altera Jam STAPL players from the Altera website.
• You can find the quartus_jli command-line executable in the <Quartus II system

directory>\bin directory.

Features Jam STAPL Players quartus_jli

Supported Download
Cables

ByteBlaster™ II, ByteBlasterMV, and
ByteBlaster parallel port download
cables.

All programming cables are
supported by the JTAG server such
as the USB-Blaster™, ByteBlaster II,
ByteBlasterMV, ByteBlaster,
MasterBlaster™, and EthernetBlaster.

Porting of Source Code to
the Embedded Processor

Yes No

Supported Platforms • 16-bit and 32-bit embedded
processors.

• 32-bit Windows.
• DOS.
• UNIX.

• 32-bit Windows.
• 64-bit Windows.
• DOS.
• UNIX.

Enable or Disable
Procedure from the
Command-Line Syntax

• To enable the optional procedure,
use the –d<procedure>=1 option.

• To disable the recommended
procedure, use the –d<procedure>=0
option.

• To disable the recommended
procedure, use the
–d<procedure> option.

• To enable the optional procedure,
use the –e<procedure> option.

Related Information
Altera Jam STAPL Software
Provides the Altera Jam STAPL software for download.

Jam STAPL Files
Altera supports two types of Jam STAPL files: .jam ASCII text files and .jbc byte-code files.

ASCII Text Files (.jam)

Altera supports the following formats of the ASCII text-based .jam:

• JEDEC JESD71 STAPL format. Altera recommends that you use this format for new projects. In most
cases, you use .jam files in tester environments.

• Jam version 1.1 format (pre-JEDEC).

Byte-Code Files

The binary .jbc files are compiled versions of .jam files. A .jbc is compiled to a virtual processor
architecture where the ASCII text-based Jam STAPL commands are mapped to byte-code instructions
compatible with the virtual processor.

2 Jam STAPL Files
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

https://www.altera.com/download/programming/jam/jam-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Jam STAPL Byte-Code .jbc format—compiled version of the JEDEC JESD71 STAPL file. Altera
recommends that you use this format in embedded application to minimize memory usage.

• Jam Byte-Code .jbc format—compiled version of the Jam version 1.1 format file.

Generating Byte-Code Jam STAPL Files
The Quartus II software can generate .jam and .jbc files. You can also compile a .jam into a .jbc with
the stand-alone Jam STAPL Byte-Code Compiler. The compiler produces a .jbc that is functionally
equivalent to the .jam.

The Quartus II software tools support programming and configuration of multiple devices from single or
multiple .jbc files. You can include Altera and non-Altera JTAG-compliant devices in the JTAG chain. If
you do not specify a programming file in the Programming File Names field, devices in the JTAG chain
are bypassed.

Figure 1: Multi-Device JTAG Chain and Sequence Configuration in Quartus II Programmer

Note: If you convert JTAG chain files to .jam, the Quartus II Programmer options that you select for
other devices in the JTAG chain are not programmed into the new .jam. The Quartus II
Programmer ignores your programming options while you are creating a multi-device .jam or
JTAG Indirect Configuration (.jic) file. However, you can choose the programming options to
apply to the device when you use the Jam STAPL Player with the generated .jam. For a multi-
device .jam, the programming options you choose are applied to each device that has a data file in
the JTAG chain.

1. On the Quartus II menu, select Tools > Programmer.
2. Click Add File and select the programming files for the respective devices.
3. On the Quartus II Programmer menu, select File > Create/Update > Create Jam, SVF, or ISC File.
4. In the File Format list, select a .jbc format.

AN-425
2017.04.10 Generating Byte-Code Jam STAPL Files 3

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2: Generating a .jbc for a Multi-Device JTAG Chain in the Quartus II Software

5. Click OK.

Related Information
Altera Jam STAPL Software
Provides the Altera Jam STAPL software for download.

List of Supported .jam and .jbc Actions and Procedures
A .jam or .jbc consists two types of statements: action and procedure.

• Action—a sequence of steps required to implement a complete operation.
• Procedure—one of the steps contained in an action statement.

An action statement can contain one or more procedure statements or no procedure statement. For action
statements that contain procedure statements, the procedure statements are called in the specified order to
complete the associated operation. You can specify some of the procedure statements as “recommended”
or “optional” to include or exclude them in the execution of the action statement.

Table 2: Supported .jam or .jbc Actions and Optional Procedures for Each Action in Altera Devices

Devices (.jam)/(.jbc) Action Optional Procedures

(Off by default)

MAX® 3000A

MAX 7000B

MAX 7000AE

Program • do_blank_check
• do_secure
• do_low_temp_programming
• do_disable_isp_clamp
• do_read_usercode

Blankcheck do_disable_isp_clamp
Verify • do_disable_isp_clamp

• do_read_usercode

Erase do_disable_isp_clamp
Read_usercode —

4 List of Supported .jam and .jbc Actions and Procedures
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

https://www.altera.com/download/programming/jam/jam-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Devices (.jam)/(.jbc) Action Optional Procedures

(Off by default)

MAX II

MAX V

MAX 10 FPGA

Program • do_blank_check
• do_secure
• do_disable_isp_clamp
• do_bypass_cfm
• do_bypass_ufm
• do_real_time_isp
• do_read_usercode
• do_verify
• do_force_sram_download
• do_bypass_icb(1)

• do_bypass_cfm1(1)

Blankcheck • do_disable_isp_clamp
• do_bypass_cfm
• do_bypass_ufm
• do_real_time_isp
• do_force_sram_download
• do_bypass_icb(1)

• do_bypass_cfm1(1)

Verify • do_disable_isp_clamp
• do_bypass_cfm
• do_bypass_ufm
• do_real_time_isp
• do_read_usercode
• do_force_sram_download
• do_bypass_icb(1)

• do_bypass_cfm1(1)

Erase • do_disable_isp_clamp
• do_bypass_cfm
• do_bypass_ufm
• do_real_time_isp
• do_force_sram_download
• do_bypass_icb(1)

• do_bypass_cfm1(1)

• do_blank_check

Read_usercode —

(1) Applicable in MAX 10 FPGA only.

AN-425
2017.04.10 List of Supported .jam and .jbc Actions and Procedures 5

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Devices (.jam)/(.jbc) Action Optional Procedures

(Off by default)

Stratix® device family

Arria® device family

Cyclone® device family

Configure • do_read_usercode
• do_halt_on_chip_cc
• do_ignore_idcode_errors

Read_usercode —

Enhanced Configuration
Devices

Program • do_blank_check
• do_secure
• do_read_usercode
• do_init_configuration

Blankcheck —
Verify do_read_usercode
Erase —
Read_usercode —
Init_configuration —

Serial Configuration Devices

Configure • do_read_usercode
• do_halt_on_chip_cc
• do_ignore_idcode_errors

Program • do_blank_check
• do_epcs_unprotect

Blankcheck —
Verify —
Erase —
Read_usercode —

Definitions of .jam and .jbc Action and Procedure Statements

Table 3: Definitions of .jam Action Statements

Action Description

Program Programs the device.

Blankcheck Checks the erased state of the device.

Verify Verifies the entire device against the programming data in the .jam
or .jbc.

Erase Performs a bulk erase of the device.

Read_usercode Returns the JTAG USERCODE register information from the device.

6 Definitions of .jam and .jbc Action and Procedure Statements
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Action Description

Configure Configures the device.

Init_configuration Specifies that the configuration device configures the attached devices
immediately after programming.

Check_idcode Compares the actual device IDCODE with the expected IDCODE
generated in the .jam and .jbc.

Table 4: Definitions of .jam Procedure Statements

Procedure Description

do_blank_check When enabled, the device is blank-checked.

do_secure When enabled, the security bit of the device is set.

do_read_usercode When enabled, the player reads the JTAG USERCODE of the device
and prints it to the screen.

do_disable_isp_clamp When enabled, the ISP clamp mode of the device is ignored.

do_low_temp_programming When enabled, the procedure allows the industrial low temperature ISP
for MAX 3000A, 7000B, and 7000AE devices.

do_bypass_cfm When enabled, the procedure performs the specified action only on the
user flash memory (UFM).

do_bypass_ufm When enabled, the procedure performs the specified action only on the
configuration flash memory (CFM).

do_real_time_isp When enabled, the real-time ISP feature is turned on for the ISP action
being executed.

do_init_configuration When enabled, the configuration device configures the attached device
immediately after programming.

do_halt_on_chip_cc When enabled, the procedure halts the auto-configuration controller to
allow programming using the JTAG interface. The nSTATUS pin
remains low even after the device is successfully configured.

do_ignore_idcode_errors When enabled, the procedure allows configuration of the device even if
an IDCODE error exists.

do_erase_all_cfi When enabled, the procedure erases the common flash interface (CFI)
flash memory that is attached to the parallel flash loader (PFL) of the
MAX 10, MAX V, or MAX II device.

do_epcs_unprotect When enabled, the procedure removes the protection mode of the
serial configuration devices (EPCS).

do_verify When Enabled, during Programming, the data is verified

do_bypass_icb By default, operations will be targeted on fullchip (except read back).
However if this procedure is enabled, ICB settings will be excluded.

AN-425
2017.04.10 Definitions of .jam and .jbc Action and Procedure Statements 7

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Procedure Description

do_bypass_cfm1 By default, operations will be targeted on fullchip (except read back).
However if this procedure is enabled, CFM1 sector (if present) will be
excluded.

do_force_sram_download When this option is set, CRAM is upgraded (= internal reconfiguration)
automatically on the timing pof was loaded to CFM. This option is used
with real_time_isp.

Jam STAPL Player and quartus_jli Exit Codes
Exit codes are the integer values that indicate the result of an execution of a .jam or .jbc. An exit code
value of zero indicates success. A non-zero value indicates failure and identifies the general type of failure
that occurred.

Table 5: Exit Codes Defined in Jam STAPL Specification (JEST71)

Both the Jam STAPL Player and the quartus_jli command-line executable can return the exit codes
listed in this table.

Exit Code Description

0 Success
1 Checking chain failure
2 Reading IDCODE failure
3 Reading USERCODE failure
4 Reading UESCODE failure
5 Entering ISP failure
6 Unrecognized device ID
7 Device version is not supported
8 Erase failure
9 Blank-check failure

10 Programming failure
11 Verify failure
12 Read failure
13 Calculating checksum failure
14 Setting security bit failure
15 Querying security bit failure
16 Exiting ISP failure
17 Performing system test failure

8 Jam STAPL Player and quartus_jli Exit Codes
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Jam STAPL Player
The Jam STAPL Player commands and parameters are not case-sensitive. You can write the option flags in
any sequence.

To specify an action in the Jam STAPL Player command, use the -a option followed immediately by the
action statement with no spaces. The following command programs the entire device using the
specified .jam:

jam -aprogram <filename>.jam

Figure 3: Programming an EPM240 Device Using the Jam STAPL Player

This figure shows an example of a successful action with an exit code value of zero.

You can execute the optional procedures associated with each action using the –d option followed
immediately by the procedure statement with no spaces. The following command erases only the UFM
block of the device using real-time ISP:

jam -aerase -ddo_bypass_cfm=1 -ddo_real_time_isp=1 <filename>.jam

Figure 4: Erasing Only the UFM Block of the Device with the Real-Time ISP Feature Enabled

Note: To run a .jbc, use the Jam STAPL Byte-Code Player executable name (jbi) with the same
commands and parameters as the Jam STAPL Player.

Note: To program serial configuration devices with the Jam STAPL Player, you must first configure the
FPGA with the Serial FlashLoader image. The following commands are required:

jam -aconfigure <filename>.jam
jam -aprogram <filename>.jam

AN-425
2017.04.10 Using the Jam STAPL Player 9

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
AN 370: Using the Serial FlashLoader With the Quartus II Software
Provides more information about generating .jam for serial configuration devices.

Using the quartus_jli Command-Line Executable
The quartus_jli command-line executable supports all Altera download cables such as the
ByteBlaster, ByteBlasterMV, ByteBlaster II, USB-Blaster, MasterBlaster, and Ethernet Blaster.

Table 6: Command-Line Executable Options for quartus_jli Command-Line Executable

The quartus_jli commands and parameters are not case-sensitive. You can write the option flags in
any sequence.

Option Description

-a Specifies the action to perform.

-c Specifies the JTAG server cable number.

-d Disables a recommended procedure.

-e Enables an optional procedure.

-i Displays information on a specific option or topic.

-l Displays the header file information in a .jam or the list of supported
actions and procedures in a .jbc file when the file is executed with an
action statement.

-n Displays the list of available hardware.

-f Specifies a file containing additional command-line arguments.

Related Information
Differences Between the Jam STAPL Players and quartus_jli on page 1
Provides more information about download cables.

Command-line Syntax of quartus_jli Command-Line Executable
To specify which programming hardware or cable to use when performing an action statement, use this
command syntax:

quartus_jli -a<action name> -c<cable index> <filename>.jam

To enable a procedure associated with an action statement, use this command syntax:

quartus_jli -a<action name> -e<procedure to enable> -c<cable index> <filename>.jam

To disable a procedure associated with an action statement, use this command syntax:

quartus_jli -a<action name> -d<procedure to disable> -c<cable index> <filename>.jam

10 Using the quartus_jli Command-Line Executable
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

http://www.altera.com/literature/an/an370.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To program serial configuration devices with the quartus_jli command-line executable, use the
following commands:

quartus_jli -aconfigure <filename>.jam
quartus_jli -aprogram <filename>.jam

To get more information about an option, use this command syntax:

quartus_jli --help=<option|topic>

The following examples show the command-line syntax to run the quartus_jli command-line
executable.

Example 1: Display a List of Available Download Cables in a Machine

To display a list of available download cables on a machine as shown in the following figure, at the
command prompt, type this command:

quartus_jli –n

Figure 5: Display of the Available Download Cables

Numbers 1) and 2) in the figure are the cable index numbers. In the command, replace <cable
index> with the index number of the relevant cable

Example 2: Display Header File Information in a Jam File

To display the header file information in a .jam when executing an action statement, use this
command syntax:

quartus_jli -a<action name> <filename>.jam -l

AN-425
2017.04.10 Command-line Syntax of quartus_jli Command-Line Executable 11

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6: Header File Information of a Jam File when Executing an Action Statement

Example 3: Configure and Return JTAG USERCODE of an FPGA Device

To configure and return the JTAG USERCODE of an FPGA device using the second download
cable on the machine with a specific .jam, at the command prompt, type this command:

quartus_jli -aconfigure -edo_read_usercode -c2 <filename>.jam

12 Command-line Syntax of quartus_jli Command-Line Executable
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7: Configuring and Reading the JTAG USERCODE of the EP2C70 Device Using the USB-
Blaster Cable

Using Jam STAPL for ISP with an Embedded Processor
Embedded systems contain both hardware and software components. When you are designing an
embedded system, lay out the PCB first. Then, develop the firmware that manages the functionality of the
board.

Methods to Connect the JTAG Chain to the Embedded Processor
You can connect the JTAG chain to the embedded processor in two ways:

• Connect the embedded processor directly to the JTAG chain
• Connect the JTAG chain to an existing bus using an interface device

In both JTAG connection methods, you must include space for the MasterBlaster or ByteBlasterMV
header connection. The header is useful during prototyping because it allows you to quickly verify or
modify the contents of the device. During production, you can remove the header to save cost.

Connecting the Embedded Processor Directly to the JTAG Chain
In this method, four of the processor pins are dedicated to the JTAG interface.

This method is the most straightforward. This method saves board space but reduces the number of
available embedded processor pins.

Connecting the JTAG Chain to an Existing Bus Using an Interface Device
In this method, the JTAG chain is represented by an address on the existing bus and the processor
performs read and write operations on this address.

AN-425
2017.04.10 Using Jam STAPL for ISP with an Embedded Processor 13

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8: Connecting the JTAG Chain to the Embedded System

TDI

TMS

TCK

TDO

TDI
TMS

TCK

TDO

TDI
TMS

TCK

TDO

TDI
TMS

TCK

TDO

TDI

TMS

TCK

TDO

ControlControl

d[3..0]d[7..0]

adr[19..0]

Control

d[7..0]

adr[19..0]adr[19..0]

Interface
Logic

(Optional)

Any JTAG
Device

EPROM or
 System

Memory

To/from ByteBlasterMV

Embedded
Processor

Embedded System

8

8

4

20

2020

MAX 9000,
MAX 9000A,
MAX 7000S,
MAX 7000A,
MAX 7000AE,
MAX 7000B,
or MAX 3000A,
EPC2,
EPC4, EPC8, EPC16
Devices

Any JTAG
Device

TDI

TMS
TRST

CONF_DONE
nSTATUS

nCONFIG
MSEL0
MSEL1

nCE

TCK

TDO

FLEX 10K,
FLEX 10KA,
FLEX10KE,
APEX 20K,
APEX 20KE,
APEX II,
Mercury,
Stratix & Stratix GX,
Cyclone,
Device

1 kW1 kW

VCC VCC VCC

GND

Example 4: Design Schematic of Interface Device

The following figure shows an example design schematic of an interface device. This example
design is for your reference only. If you use this example, you must ensure that:

• TMS, TCK, and TDI are synchronous outputs
• Multiplexer logic is included to allow board access for the MasterBlaster or ByteBlasterMV

download cable

14 Connecting the JTAG Chain to an Existing Bus Using an Interface Device
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9: Interface Logic Design Example
Except for the data[3..0] data path, all other inputs in this figure are optional. These inputs are
included only to illustrate how you can use the interface device as an address on an embedded
data bus.

adr[19..0] AD_VALID

TDO

TDI
TMS

TCK

DATA3

DATA2

DATA1

DATA0

TDI_Reg

TMS_Reg

TCK_Reg

adr[19..0]

nDS

d[3..0]

R_nW

R_AS

nRESET

CLK

address_decode

ByteBlaster_nProcessor_Select

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

ByteBlaster_TDO TDO

data[1..0][2..0] result[2..0]

Byteblaster_nProcessor_Select

Q

result1

result0

result2

TDI_Reg

TMS_Reg

TCK_Reg

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

data[0][0]

data[1][0]

data[0][1]

data[1][1]

data[0][2]

data[1][2]

LPM_MUX

PRN
D

ENA
CLRN

Q
PRN

D

ENA
CLRN

Q
PRN

D

ENA
CLRN

The embedded processor asserts the JTAG chain’s address. You can set the R_nW and R_AS signals
to notify the interface device when you want the processor to access the chain.

• To write—connect the data[3..0] data path to the JTAG outputs of the device using the three
D registers that are clocked by the system clock (CLK). This clock can be the same clock used by
the processor.

• To read—enable the tri-state buffers and let the TDO signal flow back to the processor.

This example design also provides a hardware connection to read back the values in the TDI, TMS,
and TCK registers. This optional feature is useful during the development phase because it allows
the software to check the valid states of the registers in the interface device.

In addition, the example design includes multiplexer logic to permit a MasterBlaster or ByteBlas‐
terMV download cable to program the device chain. This capability is useful during the prototype
phase of development when you want to verify the programming and configuration.

AN-425
2017.04.10 Connecting the JTAG Chain to an Existing Bus Using an Interface Device 15

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Board Layout
When you lay out a board that programs or configures the device using the IEEE Std. 1149.1 JTAG chain,
you must observe several important elements.

Treat the TCK Signal Trace as a Clock Tree on page 16
The TCK signal is the clock for the entire JTAG chain of devices. Because these devices are edge-triggered
by the TCK signal, you must protect the TCK signal from high-frequency noise and ensure that the signal
integrity is good.

Use a Pull-Down Resistor on the TCK Signal on page 16
You must hold the TCK signal low using a pull-down resistor to keep the JTAG test access port (TAP) in a
known state at power-up.

Make the JTAG Signal Traces as Short as Possible on page 16
Short JTAG signal traces help eliminate noise and drive-strength issues.

Add External Resistors to Pull the Outputs to a Defined Logic Level on page 17
During programming or configuration, you must add external resistors to the output pins to pull the
outputs to a defined logic level.

Treat the TCK Signal Trace as a Clock Tree
The TCK signal is the clock for the entire JTAG chain of devices. Because these devices are edge-triggered
by the TCK signal, you must protect the TCK signal from high-frequency noise and ensure that the signal
integrity is good.

Ensure that the TCK signal meets the rise time (tR) and fall time (tF) parameters specified in the data sheet
of the relevant device family.

You may also need to terminate the signal to prevent overshoot, undershoot, or ringing. This step is often
overlooked because the signal is software-generated and originated at a processor general-purpose I/O
pin.

Use a Pull-Down Resistor on the TCK Signal
You must hold the TCK signal low using a pull-down resistor to keep the JTAG test access port (TAP) in a
known state at power-up.

A missing pull-down resistor can cause a device to power-up in the state of JTAG and its boundary-scan
test (BST). This situation can cause conflicts on the board.

A typical resistor value is 1 kΩ.

Make the JTAG Signal Traces as Short as Possible
Short JTAG signal traces help eliminate noise and drive-strength issues.

Give special attention to the TCK and TMS pins. Because TCK and TMS signals are connected to every device
in the JTAG chain, these traces see higher loading than the TDI or TDO signals.

Depending on the length and loading of the JTAG chain, you may require additional buffering to ensure
the integrity of the signals that propagate to and from the processor.

16 Board Layout
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Add External Resistors to Pull the Outputs to a Defined Logic Level
During programming or configuration, you must add external resistors to the output pins to pull the
outputs to a defined logic level.

The output pins tri-state during programming or configuration. Additionally, on MAX 7000, FLEX® 10K,
APEX™ 20K, and all configuration devices, the pins are pulled up by a weak internal resistor—for example,
50 kΩ.

However, not all Altera devices have weak pull-up resistors during ISP or in-circuit reconfiguration. For
information about which device has weak pull-up resistors, refer to the data sheet of the relevant device
family.

Note: Altera recommends that you tie the outputs that drive sensitive input pins to the appropriate level
using an external resistor on the order of 1 kΩ. You may need to analyze each of the preceding
board layout elements further, especially signal integrity. In some cases, analyze the loading and
layout of the JTAG chain to determine whether you need to use discrete buffers or a termination
technique.

Related Information
AN100: In-System Programmability Guidelines

Embedded Jam STAPL Players
The embedded Jam STAPL Player is able to read .jam that conforms to the standard JEDEC file format
and is backward compatible with legacy Jam version 1.1 syntax. Similarly, the Jam STAPL Byte-Code
Player can play .jbc compiled from Jam STAPL and Jam version 1.1 .jam.

The Jam STAPL Byte-Code Player
The Jam STAPL Byte-Code Player is coded in the C programming language for 16 bit and 32 bit
processors. A specific subset of the player source code also supports some 8 bit processors.

The source code for the 16 bit and 32 bit Jam STAPL Byte-Code Player is divided into two categories:

• jbistub.c—platform-specific code that handles I/O functions and applies to specific hardware.
• All other C files—generic code that performs the internal functions of the player.

AN-425
2017.04.10 Add External Resistors to Pull the Outputs to a Defined Logic Level 17

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an100.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10: Jam STAPL Byte-Code Player Source Code Structure

This shows the organization of the source code files by function. The process of porting the Jam STAPL
Byte-Code Player to a particular processor is simplified because the platform-specific code is all kept
inside jbistub.c.

Jam STAPL Player
I/O Functions
(jbistub.c file)

Main Program

Error
Message
TCK

TMS

TDI
TDO

InterpretParse Compare
& Export

.jbc

Related Information
AN 111: Embedded Programming Using the 8051 and Jam Byte-Code
Provides more information about Altera’s support for 8 bit processors.

Steps to Port the Jam STAPL Byte-Code Player
The default configuration of jbistub.c includes the code for DOS, 32 bit Windows, and UNIX. Because
of this configuration, the source code is compiled and evaluated for the correct functionality and
debugging on these operating systems.

For embedded environments, you can remove this code with a single #define preprocessor statement. In
addition, porting the code involves making minor changes to specific parts of the code in jbistub.c.

Table 7: Functions Requiring Customization

This table lists the jbistub.c functions that you must customize to port the Jam STAPL Byte-Code
Player.

Function Description

jbi_jtag_io() Provides interfaces to the four IEEE 1149.1 JTAG signals, TDI, TMS, TCK,
and TDO.

jbi_export() Passes information, such as the user electronic signature (UES), back to
the calling program.

jbi_delay() Implements the programming pulses or delays needed during
execution.

jbi_vector_map() Processes signal-to-pin map for non-IEEE 1149.1 JTAG signals.
jbi_vector_io() Asserts non-IEEE 1149.1 JTAG signals as defined in the VECTOR

MAP.

18 Steps to Port the Jam STAPL Byte-Code Player
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

http://www.altera.com/literature/an/an111.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Perform the steps in the following sections to ensure that you customize all the necessary codes.

1. Step 1: Set the Preprocessor Statements to Exclude Extraneous Code on page 19
To eliminate DOS, Windows, and UNIX source code and included libraries, change the default PORT
parameter to EMBEDDED.

2. Step 2: Map the JTAG Signals to the Hardware Pins on page 19
The jbi_jtag_io() function in jbistub.c contains the code that sends and receives the binary
programming data. By default, the source code writes to the parallel port of the PC. You must remap all
four JTAG signals to the pins of the embedded processor.

3. Step 3: Handle Text Messages from jbi_export() on page 20
The jbi_export() function uses the printf() function to send text messages to stdio.

4. Step 4: Customize Delay Calibration on page 20
The calibrate_delay() function determines how many loops the host processor runs in a
millisecond. This calibration is important because accurate delays are used in programming and
configuration.

Step 1: Set the Preprocessor Statements to Exclude Extraneous Code
To eliminate DOS, Windows, and UNIX source code and included libraries, change the default PORT
parameter to EMBEDDED.

Add this code to the top of jbiport.h:

#define PORT EMBEDDED

Step 2: Map the JTAG Signals to the Hardware Pins
The jbi_jtag_io() function in jbistub.c contains the code that sends and receives the binary
programming data. By default, the source code writes to the parallel port of the PC. You must remap all
four JTAG signals to the pins of the embedded processor.

Figure 11: Default PC Parallel Port Signal Mapping

This figure shows the jbi_jtag_io() signal mapping of the JTAG pins to the parallel port registers of the
PC. The PC parallel port hardware inverts the most significant bit: TDO.

I/O Port

OUTPUT DATA - Base Address

INPUT DATA - Base Address + 1

27 56 4 3 1 0

00 0TDI 0 0 TMS TCK

---TDO XX X X --- ---

Example 5: PC Parallel Port Signal Mapping Sample Source Code for jbi_jtag_io()

int jbi_jtag_io(int tms, int tdi, int read_tdo)
{
 int data = 0;
 int tdo = 0;

AN-425
2017.04.10 Step 1: Set the Preprocessor Statements to Exclude Extraneous Code 19

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (!jtag_hardware_initialized)
 {
 initialize_jtag_hardware();
 jtag_hardware_initialized = TRUE;
 }
 data = ((tdi ? 0x40 : 0) | (tms ? 0x2 : 0)); /*TDI,TMS*/
 write_byteblaster(0, data);

 if (read_tdo)
 {
 tdo = (read_byteblaster(1) & 0x80) ? 0 : 1; /*TDO*/
 }
 write_blaster(0, data | 0x01); /*TCK*/
 write_blaster(0, data);

 return (tdo);
}

• The PC parallel port inverts the actual value of TDO. Because of this, the jbi_jtag_io()
function in the preceding code inverts the value again to retrieve the original data in the
following line:

tdo = (read_byteblaster(1) & 0x80) ? 0 : 1;

• If your target processor does not invert TDO, use the following code:

tdo = (read_byteblaster(1) & 0x80) ? 1 : 0;

• To map the signals to the correct addresses, use the left shift (<<) or right shift (>>) operator.
For example, if TMS and TDI are at ports 2 and 3, respectively, use this code:

data = (((tdi ? 0x40 : 0) >> 3) | ((tms ? 0x02 : 0) << 1));

• Apply the same process to TCK and TDO.

The read_byteblaster and write_byteblaster signals use the inp() and outp() functions
from the conio.h library, respectively, to read and write to the port. If these functions are not
available, you must substitute them with equivalent functions.

Step 3: Handle Text Messages from jbi_export()
The jbi_export() function uses the printf() function to send text messages to stdio. The Jam STAPL
Byte-Code Player uses the jbi_export() signal to pass information, for example, the device UES or
USERCODE, to the operating system or software that calls the Jam STAPL Byte-Code Player. The function
passes text and numbers as strings and decimal integers, respectively.

If there is no stdout device available, the information can be redirected to a file or storage device, or
passed back as a variable to the program that called the player.

Related Information
AN 39: IEEE 1149.1 JTAG Boundary-Scan Testing in Altera Devices

Step 4: Customize Delay Calibration
The calibrate_delay() function determines how many loops the host processor runs in a millisecond.
This calibration is important because accurate delays are used in programming and configuration.

By default, this number is hardcoded as 1,000 loops per millisecond and represented as:

one_ms_delay = 1000

20 Step 3: Handle Text Messages from jbi_export()
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

http://www.altera.com/literature/an/an039.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If this parameter is known, adjust it accordingly. Otherwise, use code similar to the code included for
Windows and DOS platforms that counts the number of clock cycles it takes to execute a single loop. This
code has been sampled over multiple tests and, on average, produces an accurate delay result. The
advantage to this approach is that calibration can vary based on the speed of the host processor.

After the Jam STAPL Byte-Code Player is ported and working, verify the timing and speed of the JTAG
port at the target device. Timing parameters for the supported Altera devices must comply with the JTAG
timing parameters and values provided in the data sheet of the relevant device family.

If the Jam STAPL Byte-Code Player does not operate within the timing specifications, you must optimize
the code with the appropriate delays. Timing violations can occur in powerful processors that can generate
TCK at a rate faster than 10 MHz.

Note: To avoid unpredictable Jam STAPL Byte-Code Player operation, Altera strongly recommends
keeping the source code files other than jbistub.c in their default state.

Jam STAPL Byte-Code Player Memory Usage
The Jam STAPL Byte-Code Player uses memory in a predictable manner. You can estimate the ROM and
RAM usage.

Estimating ROM Usage

Figure 12: Equation to Estimate the Maximum Required ROM Size
Use this equation to estimate the maximum amount of ROM required to store the Jam STAPL Byte-Code
Player and the .jbc.

The .jbc size can be separated into these categories:

• The amount of memory required to store the programming data.
• The space required for the programming algorithm.

Figure 13: Equation to Estimate .jbc Size

This equation provides a .jbc size estimate that may vary by ±10%, depending on device utilization. If
device utilization is low, .jbc sizes tend to be smaller because the compression algorithm used to
minimize file size will more likely find repetitive data.

This equation also indicates that the algorithm size stays constant for a device family but the programming
data size grows slightly as more devices are targeted. For a given device family, the increase in the .jbc
size caused by the data component is linear.

• Alg stands for space used by the algorithm
• Data stands for space used by the compressed programming data
• k stands for the index representing the device being targeted
• N stands for the number of target devices in the chain

AN-425
2017.04.10 Jam STAPL Byte-Code Player Memory Usage 21

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Algorithm File Size Constants

Table 8: Algorithm File Size Constants Targeting a Single Altera Device Family

Device Typical .jbc Algorithm Size (KB)

Stratix device family 15

Cyclone device family 15

Arria device family 15

Mercury™ 15

EPC16 24

EPC8 24

EPC4 24

EPC2 19

MAX 7000AE 21

MAX 7000 21

MAX 3000A 21

MAX 9000 21

MAX 7000S 25

MAX 7000A 25

MAX 7000B 17

MAX II 24.3

MAX V 24.3

MAX 10 24.3(2)

Table 9: Algorithm File Size Constants Targeting Multiple Altera Device Families

This table lists the algorithm file size constants for possible combinations of Altera device families that
support the Jam language.

Devices Typical .jbc Algorithm Size (KB)

FLEX 10K, MAX 7000A, MAX 7000S, MAX 7000AE(3) 31

FLEX 10K, MAX 9000, MAX 7000A, MAX 7000S, MAX 7000AE 45

MAX 7000S, MAX 7000A, MAX 7000AE 31

MAX 9000, MAX 7000A, MAX 7000S, MAX 7000AE 45

(2) Size is preliminary.
(3) If you are configuring FLEX or APEX devices, and programming MAX 9000 and MAX 7000 devices, the

FLEX or APEX algorithm adds negligible memory.

22 Algorithm File Size Constants
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compressed and Uncompressed Data Size Constants

Table 10: Data Constants for Altera Devices Supporting the Jam Language (for ISP)

In this table, the enhanced configuration devices (EPC) data sizes use a compressed Programmer Object
File (.pof).

Device
Typical Jam STAPL Byte-Code Data Size (KB)

Compressed Uncompressed(4)

EP1S10 105 448

EP1S20 188 745

EP1S25 241 992

EP1S30 320 1310

EP1S40 369 1561

EP1S60 520 2207

EP1S80 716 2996

EP1C3 32 82

EP1C6 57 150

EP1C12 100 294

EP1C20 162 449

EPC4(5) 242 370

EPC8(5) 242 370

EPC8(6) 547 822

EPC16(5) 242 370

EPC16(7) 827 1344

EP1SGX25 243 992

EP1SGX40 397 1561

EP1M120 30 167

EP1M350 76 553

EP20K30E 14 48

EP20K60E 22 85

EP20K100E 32 130

(4) For more information about how to generate .jbc with uncompressed programming data, refer to
www.altera.com/mysupport.

(5) The programming file targets one EP1S10 device.
(6) The programming file targets one EP1S25 device.
(7) The programming file targets one EP1S40 device.

AN-425
2017.04.10 Compressed and Uncompressed Data Size Constants 23

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

http://www.altera.com/mysupport
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device
Typical Jam STAPL Byte-Code Data Size (KB)

Compressed Uncompressed(4)

EP20K160E 56 194

EP20K200E 53 250

EP20K300E 78 347

EP20K400E 111 493

EP20K600E 170 713

EP20K1000E 254 1124

EP20K1500E 321 1509

EP2A15 107 549

EP2A25 163 788

EP2A40 257 1209

EP2A70 444 2181

EPM7032S 8 8

EPM7032AE 6 6

EPM7064S 13 13

EPM7064AE 8 8

EPM7128S, EPM7128A 5 24

EPM7128AE 4 12

EPM7128B 4 12

EPM7160S 10 28

EPM7192S 11 35

EPM7256S, EPM7256A 15 51

EPM7256AE 11 18

EPM7512AE 18 37

EPM9320, EPM9320A 21 57

EPM9400 21 71

EPM9480 22 85

EPM9560, EPM9560A 23 98

EPF10K10, EPF10K10A 12 15

(4) For more information about how to generate .jbc with uncompressed programming data, refer to
www.altera.com/mysupport.

24 Compressed and Uncompressed Data Size Constants
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

http://www.altera.com/mysupport
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device
Typical Jam STAPL Byte-Code Data Size (KB)

Compressed Uncompressed(4)

EPF10K20 21 29

EPF10K30 33 47

EPF10K30A 36 51

EPF10K30E 36 59

EPF10K40 37 62

EPF10K50, EPF10K50V 50 78

EPF10K50E 52 98

EPF10K70 76 112

EPF10K100, EPF10K100A, EPF10K100B 95 149

EPF10K100E 102 167

EPF10K130E 140 230

EPF10K130V 136 199

EPF10K200E 205 345

EPF10K250A 235 413

EP20K100 128 244

EP20K200 249 475

EP20K400 619 1,180

EPC2 136 212

EPM240 12.4(8) 12.4

EPM570 11.4 19.6

EPM1270 16.9 31.9

EPM2210 24.7 49.3

MAX V (9) (9)

MAX 10 (9) (9)

(4) For more information about how to generate .jbc with uncompressed programming data, refer to
www.altera.com/mysupport.

(8) There is a minimum limit of 64 kilobits (Kb) for compressed arrays with the .jbc compiler. Programming
data arrays that are smaller than 64 Kb (8 kilobytes (KB)) are not compressed. The EPM240 programming
data array is below the limit, which means that the .jbc files are always uncompressed. A memory buffer is
needed for decompression. For small embedded systems, it is more efficient to use small uncompressed
arrays directly rather than to uncompress the arrays.

(9) The file size is design dependent. Refer to the generated .jbc file for the file size.

AN-425
2017.04.10 Compressed and Uncompressed Data Size Constants 25

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

http://www.altera.com/mysupport
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Jam STAP Byte-Code Player Size

Table 11: Jam STAPL Byte-Code Player Binary Size

Use the information in this table to estimate the binary size of the Jam STAPL Byte-Code Player
Build Description Size (KB)

16 bit Pentium/486 using the MasterBlaster or ByteBlasterMV
download cables

80

32 bit Pentium/486 using the MasterBlaster or ByteBlasterMV
download cables

85

Estimating Dynamic Memory Usage

Figure 14: Equation to Estimate Maximum Required DRAM
Use this equation to estimate the maximum amount of DRAM required by the Jam STAPL Byte-Code
Player.

The .jbc size is determined by a single-device or multi-device equation.

The amount of RAM used by the Jam STAPL Byte-Code Player is the total size of the .jbc and the sum of
the data required for each targeted device. If the .jbc file is generated using compressed data, then some
RAM is used by the player to uncompress and temporarily store the data.

If you use an uncompressed .jbc, the RAM size is equal to the uncompressed .jbc size.

Note: The memory requirements for the stack and heap are negligible in terms of the total amount of
memory used by the Jam STAPL Byte-Code Player. The maximum depth of the stack is set by the
JBI_STACK_SIZE parameter in jbimain.c.

Related Information

• Estimating ROM Usage on page 21
Provides the equation to estimate the .jbc size.

• Compressed and Uncompressed Data Size Constants on page 23
Lists the uncompressed data sizes.

Example of Calculating DRAM Required by Jam STAPL Byte-Code Player
To determine memory usage, first determine the amount of ROM required and then estimate the RAM
usage.

This example uses a 16-bit Motorola 68000 processor to program EPM7128AE and EPM7064AE devices
in an IEEE Std. 1149.1 JTAG chain using a compressed .jbc.

1. Use the multi-device equation to estimate the .jbc size.

26 Jam STAP Byte-Code Player Size
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15: Multi-Device Equation to Estimate .jbc Size

• Because the .jbc file contains compressed data, use the compressed data file size constants to
determine the data size. Refer to the related information.

• In this example, Alg is 21 KB and Data is the sum of EPM7064AE and EPM7128AE data sizes (8 KB
+ 4 KB = 12 KB).

• The the .jbc file size is 33 KB.
2. Estimate the Jam STAPL Byte-Code Player size—this example uses a Jam STAPL Byte-Code Player size

of 62 KB because the Motorola 68000 processor is a 16 bit processor. Use the following equation to
determine the amount of ROM required. In this example, the ROM size is 95 KB.

Figure 16: Equation to Estimate the Maximum Required ROM Size

3. Estimate the RAM usage using the following equation. In this example, the .jbc size is 33 KB.
Figure 17: Equation to Estimate Maximum Required DRAM

• Because the .jbc uses compressed data, add up the uncompressed data size for each device to find
the total amount of RAM usage. Refer to the related information.

• The uncompressed data size constants for EPM7064AE and EPM7128AE are 8 KB and 12 KB,
respectively.

• The total DRAM usage in this example is calculated as RAM Size = 33 KB + (8 KB + 12 KB) = 53
KB.

In general, .jam files use more RAM than ROM. This characteristic is desirable because RAM is cheaper.
In addition, the overhead associated with easy upgrades becomes less of a factor when programming a
large number of devices. In most applications, the importance of easy upgrades outweigh memory costs.

Related Information
Compressed and Uncompressed Data Size Constants on page 23
Lists the compressed data sizes.

Updating Devices Using Jam
To update a device in the field, download a new .jbc and run the Jam STAPL Byte-Code Player, in most
cases, with the program action statement.

AN-425
2017.04.10 Updating Devices Using Jam 27

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The main entry point for the Jam STAPL Byte-Code Player is jbi_execute(). This routine passes specific
information to the player. When the player finishes, it returns an exit code and detailed error information
for any run-time errors. The interface is defined by the routine’s prototype definition in jbimain.c:

JBI_RETURN_TYPE jbi_execute
(
 PROGRAM_PTR program
 long program_size,
 char *workspace,
 long workspace_size,
 char *action,
 char **init_list,
 int reset_jtag
 long *error_address,
 int *exit_code,
 int *format_version
)

The code within main() in jbistub.c determines the variables that are passed to jbi_execute(). In
most cases, this code is not applicable to an embedded environment. Therefore, you can remove this code
and set up the jbi_execute() routine for the embedded environment.

Before calling the jbi_execute function, construct init_list with the correct arguments that
correspond to the valid actions in .jbc, as specified in the JEDEC standard JESD71 specification. The
init_list is a null-terminated array of pointers to strings.

An initialization list tells the Jam STAPL Byte-Code Player the types of functions to perform—for
example, program and verify—and this list is passed to jbi_execute(). The initialization list must be
passed in the correct manner. If an initialization list is not passed or the initialization list is invalid, the
Jam STAPL Byte-Code Player simply checks the syntax of the .jbc and if there is no error, returns a
successful exit code without performing the program function.

Example 6: Code to Set Up init_list for Performing Program and Verify Operation

Use this code to set up init_list that instructs the Jam STAPL Byte-Code Player to perform a
program and verify operation.

char CONSTANT_AREA init_list[][] = "DO_PROGRAM=1", "DO_VERIFY=1";

The default code in the Jam STAPL Byte-Code Player sets init_list differently and is used to
give instructions to the Jam STAPL Byte-Code Player from the command prompt.

The code in this example declares the init_list variable while setting it equal to the appropriate
parameters. The CONSTANT_AREA identifier instructs the compiler to store the init_list array in
the program memory.

After the Jam STAPL Byte-Code Player completes a task, the player returns a status code of type
JBI_RETURN_TYPE or integer. A return value of "0" indicates a successful action. The jbi_execute()
routine can return any of the exit codes as defined in the Jam STAPL Specification.

Related Information
Jam STAPL Player and quartus_jli Exit Codes on page 8

28 Updating Devices Using Jam
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

jbi_execute Parameters

Table 12: Parameters in the jbi_execute() Routine

You must pass the mandatory parameters for the Jam STAPL Byte-Code Player to run.
Parameter Status Description

program Mandatory A pointer to the .jbc. For most embedded systems,
setting up this parameter is as easy as assigning an
address to the pointer before calling jbi_execute().

program_size Mandatory Amount of memory (in bytes) that the .jbc occupies.

workspace Optional A pointer to dynamic memory that can be used by the
Jam STAPL Byte-Code Player to perform its necessary
functions. The purpose of this parameter is to restrict the
player memory usage to a predefined memory space. This
memory must be allocated before calling jbi_execute()
.

If the maximum dynamic memory usage is not a
concern, set this parameter to null, which allows the
player to dynamically allocate the necessary memory to
perform the specified action.

workspace_size Optional A scalar representing the amount of memory (in bytes) to
which workspace points.

action Mandatory A pointer to a string (text that directs the Jam STAPL
Byte-Code Player). Example actions are PROGRAM or
VERIFY. In most cases, this parameter is set to the string
PROGRAM. The text can be in upper or lower case because
the player is not case-sensitive.

The Jam STAPL Byte-Code Player supports all actions
defined in the Jam STAPL Specification.

Take note that the string must be null-terminated.

init_list Optional An array of pointers to strings. Use this parameter when
applying Jam version 1.1 files, or when overriding
optional sub-actions.

Altera recommends using the STAPL-based .jbc with
init_list. When you use a STAPL-based .jbc, init_
list must be a null-terminated array of pointers to
strings.

AN-425
2017.04.10 jbi_execute Parameters 29

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Status Description

error_address — A pointer to a long integer. If an error is encountered
during execution, the Jam STAPL Byte-Code Player
records the line of the .jbc where the error occurred.

exit_code — A pointer to a long integer. Returns a code if there is an
error that applies to the syntax or structure of the .jbc.
If this kind of error is encountered, the supporting
vendor must be contacted with a detailed description of
the circumstances in which the exit code was
encountered.

Related Information

• List of Supported .jam and .jbc Actions and Procedures on page 4
• Definitions of .jam and .jbc Action and Procedure Statements on page 6

Running the Jam STAPL Byte-Code Player
Calling the Jam STAPL Byte-Code Player is like calling any other subroutine. In this case, the subroutine is
given actions and a file name, and then it performs its function.

In some cases, you can perform in-field upgrades depending on whether the current device design is up-
to-date. The JTAG USERCODE value is often used as an electronic "stamp" that indicates the device
design revision. If the USERCODE is set to an older value, the embedded firmware updates the device.

The following pseudocode shows how you can call the Jam Byte-Code Player multiple times to update the
target Altera device:

result = jbi_execute(jbc_file_pointer, jbc_file_size, 0, 0,\
"READ_USERCODE", 0, error_line, exit_code);

The Jam STAPL Byte-Code Player reads the JTAG USERCODE and exports it using the jbi_export()
routine. The code then branches based on the result.

With Jam STAPL Byte-Code software support, updates to the supported Altera devices are as easy as
adding a few lines of code.

Example 7: Switch Statement

You can use a switch statement, as shown in this example, to determine which device needs to be
updated and which design revision you must use.

switch (USERCODE)
{
 case "0001": /*Rev 1 is old - update to new Rev*/
 result = jbi_execute (rev3_file, file_size_3, 0, 0,\
 "PROGRAM", 0, error_line, exit_code);
 case "0002": /*Rev 2 is old - update to new Rev*/
 result = jbi_excecute(rev3_file, file_size_3, 0, 0,\
 "PROGRAM", 0, error_line, exit_code);
 case "0003":
 ; /*Do nothing - this is the current Rev*/
 default: /*Issue warning and update to current Rev*/
 Warning - unexpected design revision;

30 Running the Jam STAPL Byte-Code Player
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 /*Program device with newest Rev anyway*/
 result = jbi_execute(rev3_file, file_size_3, 0, 0,\
 "PROGRAM", 0, error_line, exit_code);
}

Document Revision History

Date Version Changes

April 2017 2017.04.10 • Added optional .jam procedures in Supported .jam or .jbc Actions
and Optional Procedures for Each Action in Altera Devices.

• Added .jam procedure statement and description in Definitions
of .jam Procedure Statements.

December 2016 2016.12.09 Updated the typical jam STAPL byte-code data size for MAX V and
MAX 10 devices in Data Constants for Altera Devices Supporting the
Jam Language (for ISP) table.

September 2014 2014.09.22 • Added information for MAX 10 devices.
• Added the "do_epcs_unprotect" optional .jam procedure for serial

configuration devices to disable EPCS protection mode.
• Restructured and rewrote several sections for clarity and style

update.
• Updated template.

December 2010 5.0 • Changed chapter and topic titles ("Differences Between the Jam
STAPL Players and quartus_jli" on page 2, "ASCII Text Files" on
page 3, "Byte-Code Files" on page 3, "Generating Jam STAPL Files"
on page 3, "Using the quartus_jli Command-Line Executable" on
page 10, and "Embedded Jam STAPL Players" on page 16).

• Updated all screenshots.
• Updated several table and figure titles (minor text changes).
• Added information for MAX V devices.
• Corrected text errors in Figure 9.
• Updated codes in "Step 2: Map the JTAG Signals to the Hardware

Pins" and "Updating Devices Using Jam".
• Updated equations for clarity. Involves changes in equations

numbering throughout the document.
• Corrected minor error in "Notes to Table 9:" on page 23.
• Removed "Conclusion" chapter.
• Major text edits throughout the document.

July 2010 4.0 Technical publication edits. Updated screen shots.

July 2009 3.0 Technical publication edits only. No technical content changes.

AN-425
2017.04.10 Document Revision History 31

Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

August 2008 2.1 • Added new paragraph: "Updating Devices Using Jam".
• Updated Table 3.
• Updated Table 1.

November 2007 2.0 • Updated "Introduction".
• Added new sections: "Jam STAPL Players", "Jam STAPL Files",

"Using the Jam STAPL for ISP via an Embedded Processor",
"Embedded Jam Players", and "Updating Devices Using Jam".

December 2006 1.1 • Changed chapter title.
• Updated "Introduction" section.
• Updated "Differences Between Jam STAPL Player and quartus_jli

Command-Line Executable".
• Updated Figure 6, Figure 7, and Figure 8.

32 Document Revision History
AN-425

2017.04.10

Altera Corporation Using the Command-Line Jam STAPL Solution for Device Programming

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Using%20the%20Command-Line%20Jam%20STAPL%20Solution%20for%20Device%20Programming%20(AN-425%202017.04.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Using the Command-Line Jam STAPL Solution for Device Programming
	Jam STAPL Players
	Differences Between the Jam STAPL Players and quartus_jli

	Jam STAPL Files
	Generating Byte-Code Jam STAPL Files
	List of Supported .jam and .jbc Actions and Procedures
	Definitions of .jam and .jbc Action and Procedure Statements

	Jam STAPL Player and quartus_jli Exit Codes

	Using the Jam STAPL Player
	Using the quartus_jli Command-Line Executable
	Command-line Syntax of quartus_jli Command-Line Executable

	Using Jam STAPL for ISP with an Embedded Processor
	Methods to Connect the JTAG Chain to the Embedded Processor
	Connecting the Embedded Processor Directly to the JTAG Chain
	Connecting the JTAG Chain to an Existing Bus Using an Interface Device

	Board Layout
	Treat the TCK Signal Trace as a Clock Tree
	Use a Pull-Down Resistor on the TCK Signal
	Make the JTAG Signal Traces as Short as Possible
	Add External Resistors to Pull the Outputs to a Defined Logic Level

	Embedded Jam STAPL Players
	The Jam STAPL Byte-Code Player
	Steps to Port the Jam STAPL Byte-Code Player
	Step 1: Set the Preprocessor Statements to Exclude Extraneous Code
	Step 2: Map the JTAG Signals to the Hardware Pins
	Step 3: Handle Text Messages from jbi_export()
	Step 4: Customize Delay Calibration

	Jam STAPL Byte-Code Player Memory Usage
	Estimating ROM Usage
	Algorithm File Size Constants
	Compressed and Uncompressed Data Size Constants
	Jam STAP Byte-Code Player Size

	Estimating Dynamic Memory Usage
	Example of Calculating DRAM Required by Jam STAPL Byte-Code Player

	Updating Devices Using Jam
	jbi_execute Parameters
	Running the Jam STAPL Byte-Code Player

	Document Revision History

