VLSI Trends

A Brief History

- 1958: First integrated circuit
, Flip-flop using two transistors
, From Texas Instruments
- 2011
> Intel 10 Core Xeon Westmere-EX

Courtesy Texas Instruments
$\checkmark 2.6$ billion transistors
$\checkmark 32 \mathrm{~nm}$ process

Courtesy Intel

Moore's Law

- Growth rate
> $2 x$ transistors \& clock speeds every 2 years over 50 years
> 10x every 6-7 years
- Dramatically more complex algorithms previously not feasible
> Dramatically more realistic video games and graphics animation (e.g. Playstation 4, Xbox 360 Kinect, Nintendo Wii)
> $1 \mathrm{Mb} / \mathrm{s}$ DSL to $10 \mathrm{Mb} / \mathrm{s}$ Cable to $2.4 \mathrm{~Gb} / \mathrm{s}$ Fiber to Homes
> 2G to 3G to 4G wireless communications
> MPEG-1 to MPEG-2 to MPEG-4 to H. 264 video compression
> 480×270 (0.13 million pixels) NTSC to 1920x1080 (2 million pixels) HDTV resolution

Moore's Law

Moore's Law

- Many other factors grow exponentially
> Ex: clock frequency, processor performance

Standard Cells

NOR-3

XOR-2

Standard Cell Layout

GeForce 8800

($600+$ million transistors, about $60+$ million gates)

Subwavelength Lithography Challenges

NRE Mask Costs

ASIC NRE Costs Not Justified for Many Applications

- Forecast: By 2010, a complex ASIC will have an NRE Cost of over \$40M = \$28M (NRE Design Cost) + \$12M (NRE Mask Cost)
- Many "ASIC" applications will not have the volume to justify a \$40M NRE cost
- e.g. a $\$ 30$ IC with a 33% margin would require sales of 4M units (x \$10 profit/IC) just to recoup \$40M NRE Cost

Power Density a Key Issue

- Motivated mainly by power limits
- $P_{\text {total }}=P_{\text {dynamic }}+P_{\text {leakage }}$
- $P_{\text {dynamic }}=1 / 2 \propto C V_{D D}{ }^{2} f$
- Problem: power (heat dissipation) density has been growing exponentially because clock frequency (f) and transistor count have been doubling every 2 years

Power Density a Key Issue

- Intel VP Patrick Gelsinger (ISSCC 2001)
> "If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun."

Before Multicore Processors

- e.g. Intel Itanium II
> 6-Way Integer Unit < 2\% die area
> Cache logic > 50\% die area
- Most of chip there to keep these 6 Integer Units at "peak" rate
- Main issue is external DRAM latency (50ns) to internal clock (0.25 ns) is 200:1
- Increase performance by higher clock frequency and more complex pipelining \& speculative execution

Multicore Era

- Multicore era
> Operate at lower voltage and lower clock frequency
> Simpler processor cores
> Increase performance by more cores per chip
- e.g. Intel 10 Core Xeon Westmere-EX
> 1.73-2.66 GHz (vs. previous Xeons at 4 Ghz)

Embedded Multicore Processors

- Embedded multicore processors replacing ASICs
> Much simpler processor cores, much smaller caches
- e.g. Tilera-GX: 100 processors

What Does the Future Look Like?

Corollary of Moore's law: Number of cores will double every 18 months

$$
\begin{array}{lllll}
& \text { ‘02 } 05 & \text { ‘ } 08 & \text { '11 }
\end{array}
$$

Research	16	64	256	1024	4096
Industry	4	16	64	256	1024

(Cores minimally big enough to run a self-respecting OS!)

ITRS Roadmap

- Semiconductor Industry Association forecast
> Intl. Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
$L_{\text {gate }}(\mathrm{nm})$	20	14	10	7	5
$V_{D D}(\mathrm{~V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

